WorldWideScience

Sample records for cationic silver clusters

  1. Reactions of mixed silver-gold cluster cations AgmAun + (m+n=4,5,6) with CO: radiative association kinetics and density functional theory computations.

    Science.gov (United States)

    Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M

    2006-09-14

    Near thermal energy reactive collisions of small mixed metal cluster cations Ag(m)Au(n) (+) (m+n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu(3) (+) and Ag(2)Au(2) (+) are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu(2)CO(+). In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77 to 1.09 eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a "head-on" fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag(2)Au(2) (+) suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed.

  2. Metastable fragmentation of silver bromide clusters

    International Nuclear Information System (INIS)

    L'Hermite, J.M.; Rabilloud, F.; Marcou, L.; Labastie, P.

    2001-01-01

    The abundance spectra and the fragmentation channels of silver bromide clusters have been measured and analyzed. The most abundant species are Ag n Br n - 1 + and Ag n Br n + 1 - and Ag 14 Br 13 + is a magic number, revealing their ionic nature. However, some features depart from what is generally observed for alkali-halide ionic clusters. From a certain size, Ag n Br n - 1 + is no more the main series, and Ag n Br n - 2, 3 + series become almost as important. The fast fragmentation induced by a UV laser makes the cations lose more bromine than silver ions and lead to more silver-rich clusters. Negative ions mass spectra contain also species with more silver atoms than required by stoichiometry. We have investigated the metastable fragmentation of the cations using a new experimental method. The large majority of the cations release mainly a neutral Ag 3 Br 3 cluster. These decay channels are in full agreement with our recent ab initio DFT calculations, which show that Ag + -Ag + repulsion is reduced due to a globally attractive interaction of their d orbitals. This effect leads to a particularly stable trimer (AgBr) 3 and to quasi-planar cyclic structures of (AgBr) n clusters up to n = 6. We have shown that these two features may be extended to other silver halides, to silver hydroxides (AgOH) n , and to cuprous halide compounds. (orig.)

  3. Plasmon enhanced silver quantum cluster fluorescence for biochemical applications

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, Jörg P.; Mogensen, K. B.

    2014-01-01

    Fluorescence microscopy of individual silver quantum clusters on the surface of silver nanoparticles reveals strong photoactivated emission under blue light excitation [1-4]. In this work, silver nanoparticles are produced by annealing silver thin films deposited on a glass substrate and silver...... quantum clusters are subsequently synthesized at the surface of the nanoparticles by photoactivation in presence of Ag+ cations in solution. The photogeneration of these silver quantum clusters leads to a great increase in the fluorescent signal. This photoactivated surface can then be used for sensing...... purposes. It was found, that in presence of a strong nucleophile (such as CN-), silver quantum clusters are dissolved into non-fluorescing AgCN complexes, resulting in a fast and observable decrease of the fluorescent signal....

  4. Binding energy and preferred adsorption sites of CO on gold and silver-gold cluster cations: adsorption kinetics and quantum chemical calculations.

    Science.gov (United States)

    Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M

    2008-01-01

    We revisit the reactivity of trapped pure gold (Au(n)+, n cluster cations (Ag(m)Au(n)+, m + n adsorption sites, associated vibrational frequencies) of CO to the noble metal as a function of cluster size and composition. Starting from results for pure gold cluster cations for which an overall decrease of CO binding energy with increasing cluster size was experimentally observed--from about 1.09 +/- 0.1 eV (for n = 6) to below 0.65 +/- 0.1 eV (for n > 26) we demonstrate that metal--CO bond energies correlate with the total electron density and with the energy of the lowest unoccupied molecular orbital (LUMO) on the bare metal cluster cation as obtained by density functional theory (DFT) computations. This is a consequence of the predominantly sigma-donating character of the CO-M bond. Further support for this concept is found by contrasting the predictions of binding energies to the experimental results for small alloy cluster cations (Ag(m)Au(n)+, 4 adsorption sites and pre-screen favorable isomers.

  5. Silver clusters from nozzle expansions

    International Nuclear Information System (INIS)

    Hagena, O.F.

    1990-01-01

    This note reports on the first successful experiments to generate silver clusters (N≤100) in supersonic nozzle flows. A mixture of argon/silver-vapor was used expanding from a conical nozzle (0.35 mm, 10deg full cone angle, 17 mm long conical section). Source temperature and total pressure ranged up to 2200 K/300 kPa, and silver partial pressure up to 25 kPa. The data confirm the scaling laws developed to compare clustering of metals with that of rare gases. (orig.)

  6. Anaerobic toxicity of cationic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gitipour, Alireza; Thiel, Stephen W. [Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Scheckel, Kirk G. [USEPA, Office of Research and Development, Cincinnati, OH (United States); Tolaymat, Thabet, E-mail: tolaymat.thabet@epa.gov [USEPA, Office of Research and Development, Cincinnati, OH (United States)

    2016-07-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag{sup +} under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L{sup −1}, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L{sup −1} as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag{sup +}. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L{sup −1} as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L{sup −1}), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  7. Tuning Properties in Silver Clusters

    KAUST Repository

    Joshi, Chakra Prasad

    2015-07-09

    The properties of Ag nanoclusters are not as well understood as those of their more precious Au cousins. However, a recent surge in the exploration of strategies to tune the physicochemical characteristics of Ag clusters addresses this imbalance, leading to new insights into their optical, luminescence, crystal habit, metal-core, ligand-shell and environmental properties. In this Perspective, we provide an overview of the latest strategies along with a brief introduction of the theoretical framework necessary to understand the properties of silver nanoclusters and the basis for their tuning. The advances in cluster research and the future prospects presented in this Perspective will eventually guide the next large systematic study of nanoclusters, resulting in a single collection of data similar to the periodic table of elements.

  8. Water Adsorption on Free Cobalt Cluster Cations

    NARCIS (Netherlands)

    Kiawi, Denis M.; Bakker, Joost M.; Oomens, Jos; Buma, Wybren Jan; Jamshidi, Zahra; Visscher, Lucas; Waters, L. B. F. M.

    2015-01-01

    Cationic cobalt clusters complexed with water Con+–H2O (n = 6–20) are produced through laser ablation and investigated via infrared multiple photon dissociation (IR-MPD) spectroscopy in the 200–1700 cm–1 spectral range. All spectra exhibit a resonance close to the 1595 cm–1 frequency of the free

  9. Water adsorption on free cobalt cluster cations

    NARCIS (Netherlands)

    Kiawi, D.M.; Bakker, J.M.; Oomens, J.; Buma, W.J.; Jamshidi, Z.; Visscher, L.; Waters, L.B.F.M.

    2015-01-01

    Cationic cobalt clusters complexed with water Con+-​H2O (n = 6-​20) are produced through laser ablation and investigated via IR multiple photon dissocn. (IR-​MPD) spectroscopy in the 200-​1700 cm-​1 spectral range. All spectra exhibit a resonance close to the 1595 cm-​1 frequency of the free water

  10. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Data.gov (United States)

    U.S. Environmental Protection Agency — Toxicity data for the impact of nano-silver on anaerobic degradation. This dataset is associated with the following publication: Gitipour, A., S. Thiel, K. Scheckel,...

  11. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Science.gov (United States)

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...

  12. DNA templates silver clusters with magic sizes and colors for multi-cluster fluorescent assemblies

    Science.gov (United States)

    Copp, Stacy

    2015-03-01

    The natural inclusion of information in DNA, a vital part of life's rich complexity, can also be exploited to create diverse structures with multiple scales of complexity. Now emerging in novel photonic applications, DNA-stabilized silver clusters (AgN-DNA) are compelling examples of multi-scale DNA-directed assembly: individual fluorescent clusters, each templated by specific DNA base motifs, can then be arranged together in DNA-mediated multi-cluster assemblies with nanoscale precision. We discuss how DNA imbues AgN-DNA with unique features. Our optical data on pure AgN-DNA show that DNA base-cationic silver ligands impose rod-like shapes for neutral silver clusters, whose length primarily determines fluorescence color. This shape anisotropy leads to the aspherical AgN-DNA magic number cluster sizes and ``magic color'' groupings. We exploit DNA's sequence properties to extract multi-base motifs that select certain magic cluster sizes, using machine learning algorithms applied to large data sets. With these base motifs, we design DNA scaffolds to arrange multiple atomically precise AgN together in nanoscale proximity. We demonstrate that clusters are stable when held at separations below 10 nm, both in bicolor, dual cluster DNA clamp assemblies and in one-dimensional assemblies of atomically precise clusters arrayed on DNA nanotubes. Supported by NSF-CHE-1213895 and NSF-DMR-1309410. SMC acknowledges NSF-DGE-1144085, a NSF GRFP.

  13. Density functional study of the interaction of carbon monoxide with small neutral and charged silver clusters.

    Science.gov (United States)

    Zhou, Jia; Li, Zhen-Hua; Wang, Wen-Ning; Fan, Kang-Nian

    2006-06-08

    CO adsorption on small neutral, anionic, and cationic silver clusters Ag(n) (n = 1-7) has been studied with use of the PW91PW91 density functional theory (DFT) method. The adsorption of CO on-top site, among various possible sites, is energetically preferred irrespective of the charge state of the silver cluster. The cationic silver clusters generally have a greater tendency to adsorb CO than the anionic and neutral silver ones, except for n = 3 and 4, and the binding energies reach a local minimum at n = 5. The binding energies on the neutral clusters, instead, reach a local maximum at n = 3, which is about 0.87 eV, probably large enough to be captured in the experiments. Binding of CO to the silver clusters is generally weaker than that to the copper and gold counterparts at the same size and charge state. This is due to the weaker orbital interaction between silver and CO, which is caused by the larger atomic radius of the silver atom. In contrast, Au atoms with a larger nuclear charge but a similar atomic radius to silver owing to the lanthanide contraction are able to have a stronger interaction with CO.

  14. Water Adsorption on Free Cobalt Cluster Cations.

    Science.gov (United States)

    Kiawi, Denis M; Bakker, Joost M; Oomens, Jos; Buma, Wybren Jan; Jamshidi, Zahra; Visscher, Lucas; Waters, L B F M

    2015-11-05

    Cationic cobalt clusters complexed with water Con(+)-H2O (n = 6-20) are produced through laser ablation and investigated via infrared multiple photon dissociation (IR-MPD) spectroscopy in the 200-1700 cm(-1) spectral range. All spectra exhibit a resonance close to the 1595 cm(-1) frequency of the free water bending vibration, indicating that the water molecule remains intact upon adsorption. For n = 6, the frequency of this band is blue-shifted, but it gradually converges to the free water value with increasing cluster size. In the lower-frequency range (200-650 cm(-1)) the spectra contain several bands which show a very regular frequency evolution, suggesting that the exact cluster geometry has little effect on the water-surface interaction. Density functional theory (DFT) calculations are carried out at the OPBE/TZP level for three representative sizes (n = 6, 9, 13) and indicate that the vibrations responsible for the resonances correspond to bending and torsional modes between the cluster and water moieties. The potential energy surfaces describing these interactions are very shallow, making the calculated harmonic frequencies and IR intensities very sensitive to small geometrical perturbations. We conclude that harmonic frequency calculations on (local) minima structures provide insufficient information for these types of cluster complexes and need to be complemented with calculations that provide a more extensive sampling of the potential energy surface.

  15. Development kinetics of silver clusters on silver halides

    International Nuclear Information System (INIS)

    Grzesiak, S.; Belloni, J.; Marignier, J.-L.

    2008-01-01

    Silver nuclei are produced by pulse radiolysis at the surface of AgCl nanocrystallites in the presence of an electron donor, the methyl viologen, which induces the growth of silver nuclei. The experimental results observed on the increase of the silver atom concentration and on the decay of the donor concentration during this process, which is similar to the photographic development by an electron donor, are compared with the kinetics obtained from numerical simulation. The model assumes that the formation of silver clusters with a supercritical nuclearity is required before the start of an electron transfer reaction from the two reduced forms of the donor methyl viologen to the silver clusters. The reaction is controlled by the access of the donor to the surface sites of the AgCl crystallite. The rate constant values of the successive steps of the mechanism are derived from the adjustment of calculated kinetics to experimental signals under various conditions, using a single set of parameters which are fairly suitable under all conditions studied

  16. Plasmon enhanced silver quantum cluster fluorescence for biochemical applications

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, Jörg P.; Mogensen, K. B.

    2014-01-01

    Fluorescence microscopy of individual silver quantum clusters on the surface of silver nanoparticles reveals strong photoactivated emission under blue light excitation [1-4]. In this work, silver nanoparticles are produced by annealing silver thin films deposited on a glass substrate and silver...

  17. Plasmon enhanced silver quantum cluster fluorescence for biochemical applications

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, J.P.; Mogensen, Klaus Bo

    2014-01-01

    Fluorescence microscopy of individual silver quantum clusters on the surface of silver nanoparticles reveals strong photoactivated emission under blue light excitation [1-4]. In this work, silver nanoparticles are produced by annealing silver thin films deposited on a glass substrate and silver q...

  18. DNA-Protected Silver Clusters for Nanophotonics

    Directory of Open Access Journals (Sweden)

    Elisabeth Gwinn

    2015-02-01

    Full Text Available DNA-protected silver clusters (AgN-DNA possess unique fluorescence properties that depend on the specific DNA template that stabilizes the cluster. They exhibit peak emission wavelengths that range across the visible and near-IR spectrum. This wide color palette, combined with low toxicity, high fluorescence quantum yields of some clusters, low synthesis costs, small cluster sizes and compatibility with DNA are enabling many applications that employ AgN-DNA. Here we review what is known about the underlying composition and structure of AgN-DNA, and how these relate to the optical properties of these fascinating, hybrid biomolecule-metal cluster nanomaterials. We place AgN-DNA in the general context of ligand-stabilized metal clusters and compare their properties to those of other noble metal clusters stabilized by small molecule ligands. The methods used to isolate pure AgN-DNA for analysis of composition and for studies of solution and single-emitter optical properties are discussed. We give a brief overview of structurally sensitive chiroptical studies, both theoretical and experimental, and review experiments on bringing silver clusters of distinct size and color into nanoscale DNA assemblies. Progress towards using DNA scaffolds to assemble multi-cluster arrays is also reviewed.

  19. Magnetic Properties of Iron Clusters in Silver

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Al Rawas, A.; Yousif, A.; Gismelseed, A.; Rais, A.; Al-Omari, I.; Bouziane, K. [College of Science, Department of Physics (Oman); Widatallah, H. [Khartoum University, Department of Physics, Faculty of Science (Sudan)

    2004-12-15

    The discrete variational method is used to study the effect of interactions of iron impurities on the magnetic moments, hyperfine fields and isomer shifts at iron sites in silver. We study small clusters of iron atoms as they grow to form FCC phase that is coherent with the silver lattice. The effects of the lattice relaxation and the ferromagnetic and antiferromagnetic couplings are also considered. When Fe atoms congregate around a central Fe atom in an FCC arrangement under ferromagnetic coupling, the local magnetic moment and the contact charge density at the central atom hardly change as the cluster builds up, whereas the hyperfine field increases asymptotically as the number of Fe nearest neighbors increases. Introduction of antiferromagnetic coupling has minor effect on the local magnetic moments and isomer shifts, however it produces large reduction in the hyperfine field. The lattice relaxation of the surrounding Fe atoms towards a BCC phase around a central Fe atom leads to reduction in the magnetic moment accompanied by increase in the magnetic hyperfine field.

  20. Supported silver clusters as nanoplasmonic transducers for protein sensing

    DEFF Research Database (Denmark)

    Fojan, Peter; Hanif, Muhammad; Bartling, Stephen

    2015-01-01

    Transducers for optical sensing of proteins are prepared using cluster beam deposition on quartz substrates. Surface plasmon resonance phenomenon of the supported silver clusters is used for the detection. It is shown that surface immobilisation procedure providing adhesion of the silver clusters...... an enhancement of the plasmon absorption band used for the detection. Atomic force microscopy study allows to suggest that immobilisation of antibodies on silver clusters has been achieved, thus giving a possibility to incubate and detect an antigen of interest. Hence, by applying the developed preparation...

  1. Cation-pi interaction of the univalent silver cation with meso-octamethylcalix[4]pyrrole: Experimental and theoretical study

    Czech Academy of Sciences Publication Activity Database

    Polášek, Miroslav; Kvíčala, J.; Makrlík, E.; Křížová, Věra; Vaňura, P.

    2017-01-01

    Roč. 1130, FEB 2017 (2017), s. 408-413 ISSN 0022-2860 Grant - others:GA MŠk(CZ) 20/2015; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388955 Keywords : silver cation * meso-octamethylcalix[4]pyrrole * complexation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.753, year: 2016

  2. Voltammetry of Lead Cations on a New Type of Silver Composite Electrode in the Presence of Other Cations

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Šebková, Světlana; Kopanica, M.

    2004-01-01

    Roč. 379, - (2004), s. 294-301 ISSN 1618-2642 Grant - others:GIT(AR) 101/02/U111/CZ Institutional research plan: CEZ:AV0Z4040901 Keywords : voltammetry * silver composite electrode * lead cations Subject RIV: CG - Electrochemistry Impact factor: 2.098, year: 2004

  3. Biosorption of silver cations onto Lactococcus lactis and Lactobacillus casei isolated from dairy products.

    Directory of Open Access Journals (Sweden)

    Maciej Milanowski

    Full Text Available The current work deals with the phenomenon of silver cations uptake by two kinds of bacteria isolated from dairy products. The mechanism of sorption of silver cations by Lactococcus lactis and Lactobacillus casei bacteria was investigated. Inductively coupled plasma-mass spectrometry (ICP-MS was used for determination of silver concentration sorbed by bacteria. Analysis of charge distribution was conducted by diffraction light scattering method. Changes in the ultrastructure of Lactococcus lactis and Lactobacillus casei cells after treatment with silver cations were investigated using transmission electron microscopy observation. Molecular spectroscopy methods, namely Fourier transform-infrared spectroscopy (FT-IR and matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS were employed for description of the sorption mechanism. Moreover, an analysis of volatile organic compounds (VOCs extracted from bacterial cells was performed.

  4. Electronic shell structure in multiply charged silver clusters

    International Nuclear Information System (INIS)

    Kandler, O.; Athanassenas, K.; Echt, O.; Kreisle, D.; Leisner, T.; Recknagel, E.

    1991-01-01

    Silver clusters are generated by standard laser vaporization technique and ionized via multiphoton ionization. Time-of-flight mass spectrometry reveals singly, doubly and triply charged clusters, Ag n z+ (z=1, 2, 3). The spectra show, for all charge states, intensity variations, indicating enhanced stabilities for cluster sizes with closed electronic configurations in accord with the spherical jellium model. (orig.)

  5. Cationic and neutral copper (I) iodide cluster MOFs derived from ...

    Indian Academy of Sciences (India)

    By utilizing L¹, a cationic 2D-MOF {[(L¹) ₂ (Cu₆I₅)](OH) · 3DMF·4MeOH}n, 1 containing a rugby ball shaped discrete Cu₆I₅ cluster has been reported earlier. Formation of a new 3D-MOF {[(L²) ₂ (Cu₆I₄)](OH) ₂· 2DMF}n containing a Zintl type [(Cu₆I₄4) ² ⁺]n cluster chains is reported in this paper. A neutral cluster MOFs ...

  6. Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.

    Science.gov (United States)

    Manzoor, Dar; Pal, Sourav

    2015-06-18

    Metal clusters of silver have attracted recent interest of researchers as a result of their potential in different catalytic applications and low cost. However, due to the completely filled d orbital and very high first ionization potential of the silver atom, the silver-based catalysts interact very weakly with the reacting molecules. In the current work, density functional theory calculations were carried out to investigate the effect of hydrogen atom chemisorption on the reactivity and catalytic properties of inert silver clusters. Our results affirm that the hydrogen atom chemisorption leads to enhancement in the binding energy of the adsorbed O2 molecule on the inert silver clusters. The increase in the binding energy is also characterized by the decrease in the Ag-O and increase in the O-O bond lengths in the case of the AgnH silver clusters. Pertinent to the increase in the O-O bond length, a significant red shift in the O-O stretching frequency is also noted in the case of the AgnH silver clusters. Moreover, the hydrogen atom chemisorbed silver clusters show low reaction barriers and high heat of formation of the final products for the environmentally important CO oxidation reaction as compared to the parent catalytically inactive clusters. The obtained results were compared with those of the corresponding gold and hydrogen atom chemisorbed gold clusters obtained at the same level of theory. It is expected the current computational study will provide key insights for future advances in the design of efficient nanosilver-based catalysts through the adsorption of a small atom or a ligand.

  7. Carbon monoxide adsorption on silver doped gold clusters.

    Science.gov (United States)

    De Haeck, Jorg; Veldeman, Nele; Claes, Pieterjan; Janssens, Ewald; Andersson, Mats; Lievens, Peter

    2011-03-24

    Well controlled gas phase experiments of the size and dopant dependent reactivity of gold clusters can shed light on the surprising discovery that nanometer sized gold particles are catalytically active. Most studies that investigate the reactivity of gold clusters in the gas phase focused on charged, small sized clusters. Here, reactivity measurements in a low-pressure reaction cell were performed to investigate carbon monoxide adsorption on neutral bare and silver doped gold clusters (Au(n)Ag(m); n = 10-45; m = 0, 1, 2) at 140 K. The size dependence of the reaction probabilities reflects the role of the electronic shells for the carbon monoxide adsorption, with closed electronic shell systems being the most reactive. In addition, the cluster's reaction probability is reduced upon substitution of gold atoms for silver. Inclusion of a single silver atom causes significant changes in the reactivity only for a few cluster sizes, whereas there is a more general reduction in the reactivity with two silver atoms in the cluster. The experimental observations are qualitatively explained on the basis of a Blyholder model, which includes dopant induced features such as electron transfer from silver to gold, reduced s-d hybrization, and changes in the cluster geometry.

  8. Dipole (hyper)polarizabilities of neutral silver clusters

    Science.gov (United States)

    Jorge, Francisco E.; de Macedo, Luiz G. M.

    2016-12-01

    At the Douglas-Kroll-Hess (DKH) level, the B3PW91 functional along with the all-electron relativistic basis sets of valence triple and quadruple zeta qualities are used to determine the structure, stability, and electronic properties of the small silver clusters (Agn, n ⩽ 7). The results presented in this study are in good agreement with the experimental data and theoretical values obtained at a higher level of theory from the literature. Static polarizability and hyperpolarizability are also reported. It is verified that the mean dipole polarizability per atom exhibits an odd-even oscillation and that the polarizability anisotropy is directly related to the cluster shape. In this article, the first study of hyperpolarizabilities of small silver clusters is presented. Except for the monomer, the second hyperpolarizabilities of the silver clusters are significantly larger than those of the copper clusters. Project supported by CNPq, CAPES, and FAPES (Brazilian Agencies).

  9. [6]Helicene as a novel molecular tweezer for the univalent silver cation: Experimental and theoretical study

    Czech Academy of Sciences Publication Activity Database

    Klepetářová, B.; Makrlík, E.; Jaklová Dytrtová, Jana; Böhm, S.; Vaňura, P.; Storch, Jan

    2015-01-01

    Roč. 1097, Oct 5 (2015), s. 124-128 ISSN 0022-2860 R&D Projects: GA ČR GP13-21409P; GA ČR GAP207/10/1124; GA TA ČR TA01010646; GA MPO FR-TI3/628 Institutional support: RVO:61388963 ; RVO:67985858 Keywords : univalent silver cation * [6]helicene * cation-pi interaction * structures Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.780, year: 2015

  10. Electrical double layer on silver iodide and overcharging in the presence of hydrolyzable cations

    NARCIS (Netherlands)

    Lyklema, J.; Golub, T.P.

    2007-01-01

    Previous studies on the surface charge and electrokinetic charge on silver iodide as a function of the pAg in the presence of some monovalent and trivalent cations as the counterions were extended to include the influence of pH. The main reason for this study was to investigate the possible

  11. The adsorption of helium atoms on small cationic gold clusters.

    Science.gov (United States)

    Goulart, Marcelo; Gatchell, Michael; Kranabetter, Lorenz; Kuhn, Martin; Martini, Paul; Gitzl, Norbert; Rainer, Manuel; Postler, Johannes; Scheier, Paul; Ellis, Andrew M

    2018-04-04

    Adducts formed between small gold cluster cations and helium atoms are reported for the first time. These binary ions, Aun+Hem, were produced by electron ionization of helium nanodroplets doped with neutral gold clusters and were detected using mass spectrometry. For a given value of n, the distribution of ions as a function of the number of added helium atoms, m, has been recorded. Peaks with anomalously high intensities, corresponding to so-called magic number ions, are identified and interpreted in terms of the geometric structures of the underlying Aun+ ions. These features can be accounted for by planar structures for Aun+ ions with n ≤ 7, with the addition of helium having no significant effect on the structures of the underlying gold cluster ions. According to ion mobility studies and some theoretical predictions, a 3-D structure is expected for Au8+. However, the findings for Au8+ in this work are more consistent with a planar structure.

  12. Micellized sequestered silver atoms and small silver clusters

    International Nuclear Information System (INIS)

    Borgarello, E.; Lawless, D.; Serpone, N.; Pelizzetti, E.; Meisel, D.

    1990-01-01

    Pulse radiolysis was used to examine the nature of the silver species obtained when an aqueous solution containing sequestered Ag + ions was reduced by hydrated electrons in the presence of a surfactant macrocyclic crown ether, labeled L, and/or a maltoside surfactant. The initially formed product is the Ag 0 (L) species which rapidly loses its ligand (half-life ≤5 μs) and reacts with another Ag + (L) ion to form Ag 2 + (L). The latter species decays by a bimolecular process to form the Ag 4 2+ (L) n species at a faster rate than its ligand free analogue. Ultimately, colloidal metallic silver, (Ag) n , forms which is stabilized by the surfactant moieties. No long-term stability to the reduced monomolecular species could be obtained

  13. Cation-pi interaction of the univalent silver cation with racemic [6]helicene in the gas phase and in the solid state

    Czech Academy of Sciences Publication Activity Database

    Klepetářová, Blanka; Makrlík, E.; Sýkora, D.; Böhm, S.; Vaňura, P.

    2016-01-01

    Roč. 117, Oct 15 (2016), s. 1-6 ISSN 0277-5387 Institutional support: RVO:61388963 Keywords : univalent silver cation * [6]helicene * cation-pi interaction * DFT calculations * X-ray crystallography Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.926, year: 2016

  14. Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters

    Science.gov (United States)

    Ralević, Uroš; Isić, Goran; Anicijević, Dragana Vasić; Laban, Bojana; Bogdanović, Una; Lazović, Vladimir M.; Vodnik, Vesna; Gajić, Radoš

    2018-03-01

    The adsorption of thiacyanine dye molecules on citrate-stabilized silver nanoparticle clusters drop-cast onto freshly cleaved mica or highly oriented pyrolytic graphite surfaces is examined using colocalized surface-enhanced Raman spectroscopy and atomic force microscopy. The incidence of dye Raman signatures in photoluminescence hotspots identified around nanoparticle clusters is considered for both citrate- and borate-capped silver nanoparticles and found to be substantially lower in the former case, suggesting that the citrate anions impede the efficient dye adsorption. Rigorous numerical simulations of light scattering on random nanoparticle clusters are used for estimating the electromagnetic enhancement and elucidating the hotspot formation mechanism. The majority of the enhanced Raman signal, estimated to be more than 90%, is found to originate from the nanogaps between adjacent nanoparticles in the cluster, regardless of the cluster size and geometry.

  15. Hydrogen Promoted Oxygen Activation by Free Gold Cluster Cations

    Science.gov (United States)

    Barnett, Robert N.; Yoon, Bokwon; Landman, Uzi; Lang, Sandra M.; Bernhardt, Thorsten M.

    2009-03-01

    In this contribution we present experiments and first-principles density functional theory calculations on gas-phase reaction of small gold clusters, aiming at elucidation of the role of hydrogen in the activation of molecular oxygen for the selective oxidation of hydrocarbons. Positively charged gold clusters. Au4^+ and Au6^+. were chosen because electronic factors and experimental data suggest them to be most suitable for promoting the oxidation of unsaturated hydrocarbons. Our investigations show that, although small gas phase gold cluster cations are inert toward molecular oxygen, the pre-adsorption of molecular hydrogen cooperatively activates the adsorption of O2 on Au4^+ and Au6^+. Temperature and reaction time dependent investigations in an octopole ion trap under multi-collision conditions reveal that hydrogen promotes the activation and dissociation of molecular oxygen on the gold clusters at temperatures as low as 200 K. The detailed mechanism of the hydrogen induced oxygen activation, involving an intermediate hydro-peroxy-complex is revealed by the DFT calculations.

  16. EPR Study of Hole-Trapping at Cation Vacancies in Silver-Halides

    Science.gov (United States)

    Kao, Chien-Teh

    The hole-trapping at cation vacancies in silver halides is studied by means of electron paramagnetic resonance (EPR). The studied silver halide crystals were doped with trivalent Fe, and also with one of the divalent ions Ca, Cd, or Zn. The former dopant is to serve as a hole source upon sub-band-gap irradiation, while the latter increases the concentration of silver vacancies in the crystal. In AgCl, the photo-hole is observed to become self-trapped at a silver ion at a regular lattice site near a cation vacancy. The thermal stability of the resulting vacancy-perturbed self-trapped hole (STH) is found to be substantially enhanced by the presence of the nearby vacancy. Due to the close similarity of the EPR spectrum of the new centers to that of the normal STH, the existence of the vacancy-perturbed STH centers is further confirmed by isochronal annealing experiments. By comparing the intensities of the 20K STH spectra after annealing at successively higher temperatures, it is demonstrated that, in fact, there exist two types of vacancy-perturbed STH centers, one of which decays at 70K and the other survives up to a higher temperature (110K). In addition, by computer simulation, the position of the perturbing vacancy is determined to be located at the next-nearest-neighbor position for the less stable perturbed STH. On the other hand, in AgBr, no corresponding effects have been seen here. This result is in contrast to what is expected from Kanzaki's optical absorption experiments, in which an absorption line was assigned to a hole trapped near a cation vacancy in AgBr. The metastable nature of the self-trapped hole state in AgBr might probably provide explanation for the absence of such a resonance, even with the stabilizing effect of a nearby silver vacancy.

  17. Reversible Silver Electrodeposition from Boron Cluster Ionic Liquid (BCIL) Electrolytes.

    Science.gov (United States)

    Dziedzic, Rafal M; Waddington, Mary A; Lee, Sarah E; Kleinsasser, Jack; Plumley, John B; Ewing, William C; Bosley, Beth D; Lavallo, Vincent; Peng, Thomas L; Spokoyny, Alexander M

    2018-02-28

    Electrochemical systems offer a versatile means for creating adaptive devices. However, the utility of electrochemical deposition is inherently limited by the properties of the electrolyte. The development of ionic liquids enables electrodeposition in high-vacuum environments and presents opportunities for creating electrochemically adaptive and regenerative spacecraft components. In this work, we developed a silver-rich, boron cluster ionic liquid (BCIL) for reversible electrodeposition of silver films. This air and moisture stable electrolyte was used to deposit metallic films in an electrochemical cell to tune the emissivity of the cell in situ, demonstrating a proof-of-concept design for spacecraft thermal control.

  18. Highly Stable Monocrystalline Silver Clusters for Plasmonic Applications

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Popok, Vladimir N.; Evlyukhin, Andrey B.

    2017-01-01

    nanoparticles (NPs), which exhibit a long-term stability of optical properties under ambient conditions without any protective treatments. Ensembles with different densities (surface coverages) of size-selected NPs (mean diameters of 12.5 and 24 nm) on quartz substrates are fabricated using the cluster...... properties (monitored with optical spectroscopy) and strong field enhancements (revealed by surface-enhanced Raman spectroscopy) at least 5 times longer as compared to chemically synthesized silver NPs with similar sizes. The obtained results are of high practical relevance for the further development...... of sensors, resonators, and metamaterials utilizing the plasmonic properties of silver NPs....

  19. Silver Nanoparticles Stabilised by Cationic Gemini Surfactants with Variable Spacer Length

    Directory of Open Access Journals (Sweden)

    Martin Pisárčik

    2017-10-01

    Full Text Available The present study is focused on the synthesis and investigation of the physicochemical and biological properties of silver nanoparticles stabilized with a series of cationic gemini surfactants having a polymethylene spacer of variable length. UV-VIS spectroscopy, dynamic light scattering, scanning electron microscopy and zeta potential measurements were applied to provide physicochemical characterization of the silver nanoparticles. The mean size values of the nanoparticles were found to be in the 50 to 115 nm range. From the nanoparticle size distributions and scanning electron microscopy images it results that a population of small nanoparticles with the size of several nanometers was confirmed if the nanoparticles were stabilized with gemini molecules with either a short methylene spacer (two or four −CH2− groups or a long spacer (12 −CH2− groups. The average zeta potential value for silver nanoparticles stabilized with gemini molecules is roughly independent of gemini surfactant spacer length and is approx. +58 mV. An interaction model between silver nanoparticles and gemini molecules which reflects the gained experimental data, is suggested. Microbicidal activity determinations revealed that the silver nanoparticles stabilized with gemini surfactants are more efficient against Gram-negative bacteria and yeasts, which has a direct relation to the interaction mechanism of nanoparticles with the bacterial cell membrane and its structural composition.

  20. Silver Cation Coordination Study to AsW9 Ligand – A Trilacunar Arsenotungstate Compound

    Directory of Open Access Journals (Sweden)

    Berta Lavinia

    2017-06-01

    Full Text Available Objective: The main objective of this research is to find the coordination ratio between AsW9 and Ag+, as a preliminary study for synthesizing a new silver-arsenotungstate complex. Material and method: The ligand:cation molar ratio in complexes was determined by conductometric and potentiometric titrations of AsW9 with silver salts: CH3COOAg, AgNO3. Results: The ratio was obtained from the inflexion points of the curves when molar ratio was plotted versus conductivity, or from the equivalence point when silver added volume was plotted versus pH value. Each graphic shows one point of inflexion corresponding to 1:1.54 ratio of AsW9:Ag+. In the same manner, the equivalent volumes determined by graphical method gave the ratio 1:1.53. The spectral results confirmed that a AsW9:Ag+ complex was formed since the ligand absorption maxima values have been changed from 190 nm to 197 nm in the case of using AgNO3 and 196 nm for CH3COOAg corresponding to the W=Od bond, and from 246.5 nm to 274 nm (AgNO3 and 270 nm (CH3COO-Ag+ for the W-Ob,c-W bond. Conclusions: Silver cation exhibit a preference for AsW9 in a ratio of 3 to 2. This ratio can be associated to a sandwich type arrangement, with two trilacunary Keggin building blocks incorporating 3 metal cations in a tetrahedral geometry.

  1. Reversible Silver Electrodeposition from Boron Cluster Ionic Liquid (BCIL) Electrolytes

    OpenAIRE

    Spokoyny, Alexander; Dziedzic, Rafal M.; Waddington, Mary A.; Lee, Sarah E.; Kleinsasser, Jack; Plumley, John B.; Ewing, William C.; Bosley, Beth D.; Lavallo, Vincent; Peng, Thomas L.

    2017-01-01

    Electrochemical systems offer a versatile means for creating adaptive devices. However, the utility of electrochemical deposition is inherently limited by the properties of the electrolyte. The development of ionic liquids enables electrodeposition in high-vacuum environments and presents opportunities for creating electrochemically adaptive and regenerative spacecraft components. In this work we developed a silver-rich, boron cluster ionic liquid (BCIL) for reversible electrodeposition of si...

  2. Cationic guar gum orchestrated environmental synthesis for silver nano-bio-composite films.

    Science.gov (United States)

    Abdullah, Md Farooque; Ghosh, Sumanta Kumar; Basu, Sreyasree; Mukherjee, Arup

    2015-12-10

    This work is meant for environmentally friendly synthesis and functional evaluation of silver nanoparticles in a newer cationic guar biopolymer (GGAA). Assembly of molecules in lower size range (∼ 10 nm) was attained in a biopolymer entrapped bottom-up synthesis. Guar gum is a filming biopolymer. Nanoparticles encaged in cationic guar (GGAgnC) were preserved as films for months without any significant effect on particle size, distribution or plasmonic intensity. The new nano-bio-composite and films were characterized fully in FTIR, XRD, SEM and TEM studies. Silver nanoparticles induced surface water repellency remarkably and lowered moisture permeability. GGAgnC film water contact angle was recorded as 115° while, that in case of GGAA was 59°. GGAgnC expressed intense antimicrobial activity when tested against a range of microorganisms. Immobilized silver nanoparticles in GGAA can feasibly be used as filming microbicidals suitable for textiles, packaging and biomedical device applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Structures of tin cluster cations Sn3(+) to Sn15(+).

    Science.gov (United States)

    Drebov, Nedko; Oger, Esther; Rapps, Thomas; Kelting, Rebecca; Schooss, Detlef; Weis, Patrick; Kappes, Manfred M; Ahlrichs, Reinhart

    2010-12-14

    We employ a combination of ion mobility measurements and an unbiased systematic structure search with density functional theory methods to study structure and energetics of gas phase tin cluster cations, Sn(n)(+), in the range of n = 3-15. For Sn(13)(+) we also carry out trapped ion electron diffraction measurements to ascertain the results obtained by the other procedures. The structures for the smaller systems are most easily described by idealized point group symmetries, although they are all Jahn-Teller distorted: D(3h) (trigonal bipyramid), D(4h) (octahedron), D(5h) (pentagonal bipyramid) for n = 5, 6, and 7. For the larger systems we find capped D(5h) for Sn(8)(+) and Sn(9)(+), D(3h) (tricapped trigonal prism) and D(4d) (bicapped squared antiprism) plus adatoms for n = 10, 11, 14, and 15. A centered icosahedron with a peripheral atom removed is the dominant motif in Sn(12)(+). For Sn(13)(+) the calculations predict a family of virtually isoenergetic isomers, an icosahedron and slightly distorted icosahedra, which are about 0.25 eV below two C(1) structures. The experiments indicate the presence of two structures, one from the I(h) family and a prolate C(1) isomer based on fused deltahedral moieties.

  4. Importance of cations and anions from control agents in the synthesis of silver nanowires by polyol method

    Science.gov (United States)

    Zhu, Qing; Zhang, Zhejuan; Sun, Zhuo; Cai, Bin; Cai, Wenjun

    2016-06-01

    The important influence of cations and anions, such as Fe3+, Cu2+, H+, Na+, K+, Cl-, SO4 2- and NO3 - from control agents on the growth of silver nanowires (AgNWs) by polyol method are seriously studied. The products with silver nanostructures are characterized by field emission scanning electron microscopy, ultraviolet-visible spectroscopy and X-ray diffraction. The effect of slow release of Ag+, low value of solubility product constant due to anions and decrease in surface oxidation etching effect due to cations on silver nanostructures are discussed. The results demonstrate that strong oxidative activeness of cation makes a greater contribution to high purity of AgNWs, especially with the aid of Cl-. This work provides a simple, efficient and controllable method for high-yield production of long AgNWs.

  5. Utilization of surface Plasmon resonance band of silver nanoparticles for determination of critical micelle concentration of cationic surfactants

    Science.gov (United States)

    Salem, Jamil K.; El-Nahhal, Issa M.; Najri, Bassam A.; Hammad, Talaat M.

    2016-11-01

    We have utilized surface Plasmon resonance (SPR) band sensitivity to surfactant concentration to investigate the critical micelle concentration (cmc) of CTAB, HY and CPB. The process is based upon an in situ formation of silver nanoparticles (AgNPs) through the reduction of silver ions (Ag+) by diethylene triamine (DETA) at 25 °C. In the presence of cationic surfactants, Ag+ ions can be reduced to AgNPs in a few minutes, accompanied by changes in intensity and wavelength of the SPR band. The spectral shifts of SPR band and the change of color have been used to determine CMC values of cationic surfactants.

  6. Studying the silver nanoparticles influence on thermodynamic behavior and antimicrobial activities of novel amide Gemini cationic surfactants.

    Science.gov (United States)

    Shaban, Samy M; Abd-Elaal, Ali A

    2017-07-01

    Three novels amide Gemini cationic surfactants with various alkyl chains and their silver nanohybrid with silver nanoparticles were synthesized and a confirmation study for surfactant and their nanoparticles formation has been established using IR, 1 HNMR, TEM and UV-Vis spectroscopy. The surface-active properties of these surfactants and their nanoform were investigated through surface tension and electrical conductivity measurements and a comparative study has been established. The thermodynamic parameters of micellization and adsorption were assessed at temperatures range from 25 to 65°C. The effect of silver particles on the surface behavior of the synthesized surfactant has been discussed. The aggregation behavior of silver nanoparticles with these synthesized Gemini surfactants in water were investigated using dynamic light scattering and transmission electron microscopy. Furthermore, the antimicrobial activities of these synthesized amide Gemini surfactants and their nanostructure with silver against both Gram positive and Gram negative bacteria were also investigated. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Experimental and theoretical study on cation-pi interaction of the univalent silver cation with [7]helicene in the gas phase and in the solid state

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Klepetářová, Blanka; Sýkora, D.; Böhm, S.; Vaňura, P.; Storch, Jan

    2015-01-01

    Roč. 635, Aug 16 (2015), s. 355-359 ISSN 0009-2614 R&D Projects: GA ČR GP13-21409P; GA ČR GAP207/10/1124; GA TA ČR TA01010646; GA MPO FR-TI3/628 Institutional support: RVO:61388963 ; RVO:67985858 Keywords : [7]helicene * univalent silver cation * crystal structure Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.860, year: 2015

  8. Base motif recognition and design of DNA templates for fluorescent silver clusters by machine learning.

    Science.gov (United States)

    Copp, Stacy M; Bogdanov, Petko; Debord, Mark; Singh, Ambuj; Gwinn, Elisabeth

    2014-09-03

    Discriminative base motifs within DNA templates for fluorescent silver clusters are identified using methods that combine large experimental data sets with machine learning tools for pattern recognition. Combining the discovery of certain multibase motifs important for determining fluorescence brightness with a generative algorithm, the probability of selecting DNA templates that stabilize fluorescent silver clusters is increased by a factor of >3. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The effect of cations on sperm motility performance and fertilizing ability of silver carp Hypophtalmychtis molitrix

    Directory of Open Access Journals (Sweden)

    Khara H.

    2012-01-01

    Full Text Available The objective of the study was to investigate the effect of saline solution containing cations (Na+, K+, Ca+2, Mg+2 on sperm motility performance (duration of sperm motility and percentage of motile spermatozoa and fertilizing capacity of sperm (fertilization rate, hatching rate, larvae length during hatching, larvae length during active feeding and survival rate in silver carp. The results suggested that solutions containing ions did not improve the duration of sperm motility. The same was observed for the percentage of motile spermatozoa. Fertilization rate influenced by solutions containing Ca+2, and other ions could not affect this parameter. The results showed that hatching rate was higher in solutions containing 99 mEq/L NaCl, 2 mEq/L MgCl2 and 2, 4 mEq/L CaCl2 respectively. Also, survival rate was higher in the solution containing 2 mEq/L MgCl2 and 36 mg/dL KCl respectively.With regard to the obtained results, it was concluded that using appropriate activation medium can improve quality of fish sperm and subsequently increases artificial reproduction performance.

  10. Reactivity of Monolayer Protected Silver Clusters Towards Excess Ligand: A Calorimetric Study

    KAUST Repository

    Baksi, Ananya

    2017-10-31

    Reactivity of monolayer protected atomically precise clusters of noble metals is of significant research interest. Till date very few experimental data are available on the reaction thermodynamics of such clusters. Here we report a calorimetric study of the reaction of glutathione (GSH) protected silver clusters in presence of excess ligand, GSH using isothermal titration calorimetry (ITC). We have studied Ag11(SG)7 and Ag32(SG)19 clusters and compared their reactivity with GSH protected silver nanoparticles (AgNPs) and silver ions. Clusters show intermediate reactivity towards excess ligand com-pared to nanoparticles and silver ions. Several control experiments were performed to understand the degradation mech-anism of these silver clusters and nanoparticles. Effect of dissolved oxygen in the degradation process was studied in de-tail and found that it did not have a significant role, although alternate pathways of degradation with the involvement of oxygen cannot be ruled out. Direct confirmation of the fact that functionalized metal clusters fall in-between NPs and atomic systems in their stability is obtained experimentally for the first time. Several other thermophysical parameters of these clusters were also determined including, density, speed of sound, isentropic compressibility and coefficient of thermal expansion.

  11. Selective Transport of Silver(I) Cation Across a Bulk Liquid Membrane Containing Bis-β-enamino Ester as Ion Carrier

    OpenAIRE

    Tarahomi,Somayeh; Rounaghi,Gholam Hossein; Eshghi,Hossein; Daneshvar,Leili; Chamsaz,Mahmoud

    2017-01-01

    Facilitated transport of silver(I) cation across a bulk liquid membrane by two synthesized ligands, bis-β-enamino ester (BBEE) and bis(benzoic acid) trioxaheptane (BBAT), as carriers dissolved in dichloromethane has been investigated. BBEE was used as a specific ion carrier for the transport of silver(I) ion. The influence of experimental parameters affecting the transport efficiency of silver(I) ion have been studied. In the presence of thiosulfate as a suitable metal ion acceptor in th...

  12. High reactivity of nanosized niobium oxide cluster cations in methane activation: A comparison with vanadium oxides.

    Science.gov (United States)

    Ding, Xun-Lei; Wang, Dan; Wu, Xiao-Nan; Li, Zi-Yu; Zhao, Yan-Xia; He, Sheng-Gui

    2015-09-28

    The reactions between methane and niobium oxide cluster cations were studied and compared to those employing vanadium oxides. Hydrogen atom abstraction (HAA) reactions were identified over stoichiometric (Nb2O5)N(+) clusters for N as large as 14 with a time-of-flight mass spectrometer. The reactivity of (Nb2O5)N(+) clusters decreases as the N increases, and it is higher than that of (V 2O5)N(+) for N ≥ 4. Theoretical studies were conducted on (Nb2O5)N(+) (N = 2-6) by density functional calculations. HAA reactions on these clusters are all favorable thermodynamically and kinetically. The difference of the reactivity with respect to the cluster size and metal type (Nb vs V) was attributed to thermodynamics, kinetics, the electron capture ability, and the distribution of the unpaired spin density. Nanosized Nb oxide clusters show higher HAA reactivity than V oxides, indicating that niobia may serve as promising catalysts for practical methane conversion.

  13. Liquid-like cationic sub-lattice in copper selenide clusters

    Science.gov (United States)

    White, Sarah L.; Banerjee, Progna; Jain, Prashant K.

    2017-02-01

    Super-ionic solids, which exhibit ion mobilities as high as those in liquids or molten salts, have been employed as solid-state electrolytes in batteries, improved thermoelectrics and fast-ion conductors in super-capacitors and fuel cells. Fast-ion transport in many of these solids is supported by a disordered, `liquid-like' sub-lattice of cations mobile within a rigid anionic sub-lattice, often achieved at high temperatures or pressures via a phase transition. Here we show that ultrasmall clusters of copper selenide exhibit a disordered cationic sub-lattice under ambient conditions unlike larger nanocrystals, where Cu+ ions and vacancies form an ordered super-structure similar to the bulk solid. The clusters exhibit an unusual cationic sub-lattice arrangement wherein octahedral sites, which serve as bridges for cation migration, are stabilized by compressive strain. The room-temperature liquid-like nature of the Cu+ sub-lattice combined with the actively tunable plasmonic properties of the Cu2Se clusters make them suitable as fast electro-optic switches.

  14. Inverse H/D isotope effects in benzene activation by cationic and anionic cobalt clusters.

    Science.gov (United States)

    Tombers, Matthias; Barzen, Lars; Niedner-Schatteburg, Gereon

    2013-02-14

    Reactions under single collision conditions with benzene C(6)H(6) and with benzene-d(6) C(6)D(6) of size selected cationic cobalt clusters Co(n)(+) and of anionic cobalt clusters Co(n)(-) in the cluster size range n = 3-28 revealed that dehydrogenation by cationic clusters is sparse, whereas it is ubiquitous in reactions by anionic clusters. Kinetic isotope effects (KIE) in total reaction rates are inverse and, in part, large. Dehydrogenation isotope effects (DIE) are normal. A multistep model of adsorption and stepwise dehydrogenation from the precursor adsorbate unravels a possible origin of the inverse KIE: Single step C-H bond activation is swift (no KIE in forward direction) and largely reversible (normal KIE backward) whereas H/D tunneling is likely to contribute (backward). DFT calculations of the structures and energetics along the reaction path in [Co(13)C(6)H(6)](+) lend support to the proposed multistep model. The observed effects on rates and KIEs of cluster charges and of cluster sizes are noted to elucidate further.

  15. Comparative study of formation and stabilization of Gold and Silver Clusters and Nanoparticles in Mordenites

    NARCIS (Netherlands)

    Bogdanchikova, N.; Tuzovskaya, I.; Pestryakov, A.; Susarrey Arce, A.

    2011-01-01

    Supporting silver and gold on mordenites by ion-exchange method with further reduction with H2 leads to formation of neutral and charged metal clusters inside zeolite channels as well as metal nanoparticles on external surface of mordenite. A portion of the cluster states of the metals and stability

  16. Enantiopure Radical Cation Salt Based on Tetramethyl-Bis(ethylenedithio-Tetrathiafulvalene and Hexanuclear Rhenium Cluster

    Directory of Open Access Journals (Sweden)

    Flavia Pop

    2016-01-01

    Full Text Available Electrocrystallization of the (S,S,S,S enantiomer of tetramethyl-bis(ethylenedithio-tetrathiafulvalene donor 1 in the presence of the dianionic hexanuclear rhenium (III cluster [Re6S6Cl8]2− affords a crystalline radical cation salt formulated as [(S-1]2·Re6S6Cl8, in which the methyl substituents of the donors adopt an unprecedented all-axial conformation. A complex set of intermolecular TTF···TTF and cluster···TTF interactions sustain an original tridimensional architecture.

  17. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    Science.gov (United States)

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  18. Plasmon assisted synthesis of highly fluorescing silver quantum cluster / polymer composites for biochemical sensing

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, J.P.; Mogensen, Klaus Bo

    2014-01-01

    Plasmonics is combined with polymer synthesis for rapid fabrication of highly fluorescing silver quantum cluster / polymer composites inside microfluidic channels. UV-light assisted synthesis of polymers has been investigated by a number of groups previously [1], however, plasmon assisted synthesis...... has not been presented before. This should allow highly localized fabrication of porous polymers that are defined by the location of the nanoplasmonic metal film. Silver quantum clusters (AgQCs) consisting of 2-10 atoms can be highly fluorescing in the visible wavelength range and possess a much...

  19. Plasmon assisted synthesis of highly fluorescing silver quantum cluster/polymer composites for biochemical sensing

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, J. P.; Mogensen, K. B.

    2014-01-01

    Plasmonics is combined with polymer synthesis for rapid fabrication of highly fluorescing silver quantum cluster/polymer composites inside microfluidic channels. UV-light assisted synthesis of polymers has been investigated by a number of groups previously [1], however, plasmon assisted synthesis...... has not been presented before. This should allow highly localized fabrication of porous polymers that are defined by the location of the nanoplasmonic metal film. Silver quantum clusters (AgQCs) consisting of 2-10 atoms can be highly fluorescing in the visible wavelength range and possess a greater...

  20. Spectroscopy of electronic transitions in Polycyclic Aromatic Hydrocarbon cations and their clusters

    International Nuclear Information System (INIS)

    Friha, Hela

    2012-01-01

    This thesis is an experimental study of the electronic spectroscopy of cations of Polycyclic Aromatic Hydrocarbons (PAHs) and their aggregates in conditions close to those of the interstellar medium (ISM), i.e. cold and totally isolated in the gas phase. It is related to the astrophysical context of the interstellar medium (ISM), in particular on the question of the possible link between interstellar PAHs and Diffuse Interstellar Bands (DIBs). The purpose of this thesis is to provide laboratory spectra which can be directly compared to the spectra of DIBs. Indeed these bands are the oldest spectroscopy riddle in astrophysics which remained unanswered for nearly 100 years and whose key is still looked for. A special attention is given to the methylated derivatives of PAHs species detected in many interstellar environments, cationic PAH dimers (the simplest PAH clusters). These clusters have been proposed as a model of the very small grains, which contribute to the formation of interstellar PAHs and whose chemical composition remains uncertain. This thesis has been mainly devoted to the determination of the electronic spectra of naphthalene cation monomer (Np + ) and its methylated derivative (2-MeN p + ), as well as the associated homogeneous dimers. The experimental method used is based on the photodissociation of van der Waals complexes PAH + m -Ar n (argon atoms spectators), prepared by UV laser photoionization in a supersonic jet. This technique combines different experimental tools, namely: molecular beam mass spectrometry and laser spectroscopy as well as physical tools such as the handling of clusters VdW PAH + m -Ar n , the detection of photo-fragments, the measurement of photodissociation efficiency. The identification of the fragments by the photodissociation of VdW clusters allowed us to determine the different possible fragmentation channels and especially to obtain the spectra the charge resonance transition and the first allowed transition to locally

  1. Optical Materials with a Genome: Nanophotonics with DNA-Stabilized Silver Clusters

    Science.gov (United States)

    Copp, Stacy M.

    Fluorescent silver clusters with unique rod-like geometries are stabilized by DNA. The sizes and colors of these clusters, or AgN-DNA, are selected by DNA base sequence, which can tune peak emission from blue-green into the near-infrared. Combined with DNA nanostructures, AgN-DNA promise exciting applications in nanophotonics and sensing. Until recently, however, a lack of understanding of the mechanisms controlling AgN-DNA fluorescence has challenged such applications. This dissertation discusses progress toward understanding the role of DNA as a "genome" for silver clusters and toward using DNA to achieve atomic-scale precision of silver cluster size and nanometer-scale precision of silver cluster position on a DNA breadboard. We also investigate sensitivity of AgN-DNA to local solvent environment, with an eye toward applications in chemical and biochemical sensing. Using robotic techniques to generate large data sets, we show that fluorescent silver clusters are templated by certain DNA base motifs that select "magic-sized" cluster cores of enhanced stabilities. The linear arrangement of bases on the phosphate backbone imposes a unique rod-like geometry on the clusters. Harnessing machine learning and bioinformatics techniques, we also demonstrate that sequences of DNA templates can be selected to stabilize silver clusters with desired optical properties, including high fluorescence intensity and specific fluorescence wavelengths, with much higher rates of success as compared to current strategies. The discovered base motifs can be also used to design modular DNA host strands that enable individual silver clusters with atomically precise sizes to bind at specific programmed locations on a DNA nanostructure. We show that DNA-mediated nanoscale arrangement enables near-field coupling of distinct clusters, demonstrated by dual-color cluster assemblies exhibiting resonant energy transfer. These results demonstrate a new degree of control over the optical properties

  2. Selective Transport of Silver(I) Cation Across a Bulk Liquid Membrane Containing Bis-β-enamino Ester as Ion Carrier

    OpenAIRE

    Tarahomi, Somayeh; Rounaghi, Gholam Hossein; Eshghi, Hossein; Daneshvar, Leili; Chamsaz, Mahmoud

    2017-01-01

    Facilitated transport of silver(I) cation across a bulk liquid membrane by two synthesized ligands, bis-β-enamino ester (BBEE) and bis(benzoic acid) trioxaheptane (BBAT), as carriers dissolved in dichloromethane has been investigated. BBEE was used as a specific ion carrier for the transport of silver(I) ion. The influence of experimental parameters affecting the transport efficiency of silver(I) ion have been studied. In the presence of thiosulfate as a suitable metal ion acceptor in the rec...

  3. Structuring molecular hydrogen around ionic dopants: Li(+) cations in small pH(2) clusters.

    Science.gov (United States)

    Ponzi, A; Marinetti, F; Gianturco, Franco A

    2009-05-28

    The formation of clusters of molecular hydrogen around a cationic charge, the Li(+) ion, is modelled by treating the global interaction as a sum of potentials where the Li(+)-H(2) forces come from a full anisotropic potential energy surface produced earlier in our group. The H(2)-H(2) interaction is taken from the literature and treated as a spherical potential between structureless bosonic solvent molecules of para-H(2) (pH(2)). The optimization of geometries and the minimum energy values are obtained via a genetic algorithm treatment whose structures are modified at the end to include a modelling of quantum effects. The results of hydrogen clustering around the cationic dopant indicate the presence of marked shell structures which are initially completed by the octahedral arrangement of the first six solvent partners, while the next shells are dominated by the mainly dispersive interaction among pH(2) molecules and show, in larger clusters, less structured solvent collocations around the ionic impurity.

  4. Acid decomposition and thiourea leaching of silver from hazardous jarosite residues: Effect of some cations on the stability of the thiourea system.

    Science.gov (United States)

    Calla-Choque, D; Nava-Alonso, F; Fuentes-Aceituno, J C

    2016-11-05

    The recovery of silver from hazardous jarosite residues was studied employing thiourea as leaching agent at acid pH and 90°C. The stability of the thiourea in synthetic solutions was evaluated in the presence of some cations that can be present in this leaching system: cupric and ferric ions as oxidant species, and zinc, lead and iron as divalent ions. Two silver leaching methods were studied: the simultaneous jarosite decomposition-silver leaching, and the jarosite decomposition followed by the silver leaching. The study with synthetic solutions demonstrated that cupric and ferric ions have a negative effect on thiourea stability due to their oxidant properties. The effect of cupric ions is more significant than the effect of ferric ions; other studied cations (Fe(2+), Zn(2+), Pb(2+)) had no effect on the stability of thiourea. When the decomposition of jarosite and the silver leaching are carried out simultaneously, 70% of the silver can be recovered. When the acid decomposition was performed at pH 0.5 followed by the leaching step at pH 1, total silver recovery increased up to 90%. The zinc is completely dissolved with any of these processes while the lead is practically insoluble with these systems producing a lead-rich residue. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Plasmon assisted synthesis of highly fluorescing silver quantum cluster/polymer composites for biochemical sensing

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, J. P.; Mogensen, K. B.

    2014-01-01

    photostability than organic fluorophores [2]. In this work AgQCs are embedded into the oligoaniline porous matrix and is tested for indirect fluorescence detection of cyanide in a simple microfluidic device (Fig. 1). Imaging of individual silver clusters inside the channel (Fig. 1) is made possible by using 100x...

  6. Reversible Formation of Silver Clusters and Particles in Polymer Films

    National Research Council Canada - National Science Library

    Gaddy, G. A; Korchev, A. S; McLain, Jason L; Black, J. R; Mills, German; Bratcher, Matthew S; Slaten, B. L

    2004-01-01

    .... The formation of Ag clusters and particles is monitored using UV-VIS spectroscopy. Films treated with H2O2 exhibit bleaching of the UV-VIS signals corresponding to Ag clusters and Ag particles that were generated during the photo reduction...

  7. Probing cluster surface morphology by cryo spectroscopy of N2 on cationic nickel clusters

    Science.gov (United States)

    Dillinger, Sebastian; Mohrbach, Jennifer; Niedner-Schatteburg, Gereon

    2017-11-01

    We present the cryogenic (26 K) IR spectra of selected [Nin(N2)m]+ (n = 5-20, m = 1 - mmax), which strongly reveal n- and m-dependent features in the N2 stretching region, in conjunction with density functional theory modeling of some of these findings. The observed spectral features allow us to refine the kinetic classification [cf. J. Mohrbach, S. Dillinger, and G. Niedner-Schatteburg, J. Chem. Phys. 147, 184304 (2017)] and to define four classes of structure related surface adsorption behavior: Class (1) of Ni6+, Ni13+, and Ni19+ are highly symmetrical clusters with all smooth surfaces of equally coordinated Ni atoms that entertain stepwise N2 adsorption up to stoichiometric N2:Nisurface saturation. Class (2) of Ni12+ and Ni18+ are highly symmetrical clusters minus one. Their relaxed smooth surfaces reorganize by enhanced N2 uptake toward some low coordinated Ni surface atoms with double N2 occupation. Class (3) of Ni5+ and Ni7+ through Ni11+ are small clusters of rough surfaces with low coordinated Ni surface atoms, and some reveal semi-internal Ni atoms of high next-neighbor coordination. Surface reorganization upon N2 uptake turns rough into rough surface by Ni atom migration and turns octahedral based structures into pentagonal bipyramidal structures. Class (4) of Ni14+ through Ni17+ and Ni20+ are large clusters with rough and smooth surface areas. They possess smooth icosahedral surfaces with some proximate capping atom(s) on one hemisphere of the icosahedron with the other one largely unaffected.

  8. Long-lived charge-separated states in ligand-stabilized silver clusters

    KAUST Repository

    Pelton, Matthew

    2012-07-25

    Recently developed synthesis methods allow for the production of atomically monodisperse clusters of silver atoms stabilized in solution by aromatic thiol ligands, which exhibit intense absorption peaks throughout the visible and near-IR spectral regions. Here we investigated the time-dependent optical properties of these clusters. We observed two kinetic processes following ultrafast laser excitation of any of the absorption peaks: a rapid decay, with a time constant of 1 ps or less, and a slow decay, with a time constant that can be longer than 300 ns. Both time constants decrease as the polarity of the solvent increases, indicating that the two processes correspond to the formation and recombination, respectively, of a charge-separated state. The long lifetime of this state and the broad optical absorption spectrum mean that the ligand-stabilized silver clusters are promising materials for solar energy harvesting. © 2012 American Chemical Society.

  9. A partially substituted calix[4]resorcarene receptor and its selective recognition for soft metal cations (silver and mercury).

    Science.gov (United States)

    Danil de Namor, Angela F; Chaaban, Jinane K

    2008-02-21

    acetonitrile resulting from the departure of pendant arms from the resorcarene backbone greatly contrasts with the high stability observed for 1 and this metal cation in the various solvents. Preliminary results on the extraction of silver picrate by this ligand in the water-dichloromethane solvent system are reported. Final conclusions are given.

  10. Morphology and kinetics of aggregation of silver nanoparticles induced with regioregular cationic polythiophene

    Czech Academy of Sciences Publication Activity Database

    Kazim, Samrana; Jäger, Alessandro; Steinhart, Miloš; Pfleger, Jiří; Vohlídal, J.; Bondarev, D.; Štěpánek, Petr

    2016-01-01

    Roč. 32, č. 1 (2016), s. 2-11 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GAP108/12/1143 Institutional support: RVO:61389013 Keywords : conjugated polyelectrolyte * silver nanoparticles * dynamic light scattering Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.833, year: 2016

  11. The impact of Au doping on the charge carrier dynamics at the interfaces between cationic porphyrin and silver nanoclusters

    KAUST Repository

    Almansaf, Abdulkhaleq A.

    2017-02-04

    We explore the impact of Au doping on the charge transfer dynamics between the positively charged porphyrin (TMPyP) and negatively charged silver nanoclusters (Ag29 NCs). Our transient absorption (TA) spectroscopic results demonstrate that the interfacial charge transfer, the intersystem crossing and the triplet state lifetime of porphyrin can be tuned by the doping of Au atoms in Ag29 NCs. Additionally, we found that the electrostatic interaction between the negative charge of the cluster and the positive charge on the TMPyP is the driving force that brings them close to each other for complex formation and subsequently facilitates the transfer process.

  12. Silver Clusters in Zeolites: From Self-Assembly to Ground-Breaking Luminescent Properties.

    Science.gov (United States)

    Coutiño-Gonzalez, Eduardo; Baekelant, Wouter; Steele, Julian A; Kim, Cheol Woong; Roeffaers, Maarten B J; Hofkens, Johan

    2017-09-19

    Interest for functional silver clusters (Ag-CLs) has rapidly grown over years due to large advances in the field of nanoscale fabrication and materials science. The continuous development of strategies to fabricate small-scale silver clusters, together with their interesting physicochemical properties (molecule-like discrete energy levels, for example), make them very attractive for a wide variety of applied research fields, from biotechnology and the environmental sciences to fundamental chemistry and physics. Apart from useful catalytic properties, silver clusters (Ag n , n luminescent Ag-CLs within the microporous interiors of zeolite frameworks. This approach has yielded materials displaying a wide variety of optical properties, offering a spectrum of possible applications, from nano(micro)photonic devices to smart luminescent labels and sensors. The versatility of the Ag-zeolite multicomponent system is directly related to the intrinsic and complex tunability of the system as a whole. There are several key zeolite parameters that confer properties to the clusters, namely, the framework Si/Al ratio, choice of counterbalancing ions, silver loading, and zeolite topology, and cannot be overlooked. This Account is intended to shed light on the current state-of-the-art of luminescent Ag-CLs confined in zeolitic matrices, emphasizing the use of combinatorial approaches to overcome problems associated with the correct characterization and correlation of their structural, electronic, and photoluminescence properties, all to establish the important design principles for developing functional silver-zeolite-based materials. Additionally, examples of emerging applications and future perspectives for functional luminescent Ag-zeolite materials are addressed in this Account.

  13. Fluoride-induced reduction of Ag(I) cation leading to formation of silver mirrors and luminescent Ag-nanoparticles.

    Science.gov (United States)

    Maity, Krishnendu; Panda, Dillip K; Lochner, Eric; Saha, Sourav

    2015-03-04

    In aprotic solvents, Lewis basic F(-) anion reduces Lewis acidic Ag(I) cation to Ag(0), forming metallic silver mirrors on the inner surfaces of reaction vessels and luminescent Ag-nanoparticles (AgNPs) in supernatant solutions, which emit blue light upon UV irradiation. The F(-)-induced formation of silver mirrors and AgNPs was confirmed through X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), fluorescence spectroscopy, and mass spectrometry, whereas the Ag(I)-induced oxidation of F(-) to Ḟ radical, followed by its conversion to HF2(-) via H-abstraction and H-bonding, was evident from (19)F NMR spectroscopy. This redox reaction is deactivated in water, as the reducing power of hydrated F(-) diminishes drastically. Less Lewis basic Cl(-), Br(-), and I(-) ions do not reduce Ag(I) to Ag(0), instead they can only form Ag(I) halide precipitates irrespective of protic or aprotic solvents. The Ag-coated surfaces, luminescent AgNPs, and Ḟ radicals produced by this unprecedented redox reaction could be exploited as electrodes, light-emitting materials, and radical initiators, respectively.

  14. Synthesis of silver embedded poly(o-anisidine molybdophosphate nano hybrid cation-exchanger applicable for membrane electrode.

    Directory of Open Access Journals (Sweden)

    Anish Khan

    Full Text Available Poly(o-anisidine molybdophosphate was expediently obtained by sol-gel mixing of Poly(o-anisidine into the inorganic matrices of molybdophosphate, which was allowed to react with silver nitrate to the formation of poly(o-anisidine molybdophosphate embedded silver nano composite. The composite was characterized by Fourier Transform Infrared Spectroscopy, X-ray powder diffraction, UV-Vis Spectrophotometry, Fluorescence Spectroscopy, Scanning Electron Microscopy/Energy-dispersive X-ray Spectroscopy and Thermogravimertic Analysis. Ion exchange capacity and distribution studies were carried out to understand the ion-exchange capabilities of the nano composite. On the basis of highest distribution studies, this nano composite cation exchanger was used as preparation of heavy metal ion selective membrane. Membrane was characterized for its performance as porosity and swelling later on was used for the preparation of membrane electrode for Hg(II, having better linear range, wide working pH range (2-4.5 with fast response in the real environment.

  15. Catalytic coupling reaction mechanism of 4-nitrobenzenethiol on silver clusters: a density functional theoretical study.

    Science.gov (United States)

    Chen, Xiao; Wei, Wei; Li, Laicai; Liu, Liuxie; Pan, Rui; Tian, Anmin

    2017-10-23

    The catalytic coupling reaction mechanism of the transformation from 4-nitrobenzenethiol (4-NBT) to 4,4'-dimercaptoazobenzene (4,4'-DMAB) on a silver cluster was studied by density functional theory. Reactants, intermediates, transition states and products were optimized with the B3LYP method using the 6-311 + G(d,p) basis set (Ag using the pseudo potential basis set of LanL2DZ). Transition states and intermediates were confirmed by the corresponding vibration analysis and intrinsic reaction coordinates (IRC). Consistent with literature reports, the key point of the transformation from 4-NBT absorbed on the surface of Ag 5 clusters to 4,4'-DMAB is the elimination of two O atoms on the amino group. Meanwhile, the catalytic coupling reaction of 4-nitrobenzenethiol on a silver cluster is easy to carry out under irradiation. The possibility of "inter system channeling" (ISC) between different potential energy surfaces in the coupling reaction of 4-NBT is further discussed. The irradiation has an auxiliary catalytic effect on the coupling reaction. Our research results can explain the observed experimental phenomena. Graphical abstract Catalytic coupling reaction mechanism of the transformation from 4-nitrothiophenol (4-NBT) to 4,4'-dimercaptoazobenzene (4,4'-DMAB) on silver clusters studied by density functional theory.

  16. Synthesis of colloidal silver nanoparticle clusters and their application in ascorbic acid detection by SERS.

    Science.gov (United States)

    Cholula-Díaz, Jorge L; Lomelí-Marroquín, Diana; Pramanick, Bidhan; Nieto-Argüello, Alfonso; Cantú-Castillo, Luis A; Hwang, Hyundoo

    2018-03-01

    Ascorbic acid (vitamin C) has an essential role in the human body mainly due to its antioxidant function. In this work, metallic silver nanoparticle (AgNP) colloids were used in SERS experiments to detect ascorbic acid in aqueous solution. The AgNPs were synthesized by a green method using potato starch as reducing and stabilizing agent, and water as the solvent. The optical properties of the yellowish as-synthesized silver colloids were characterized by UV-vis spectroscopy, in which besides a typical band at 410 nm related to the localized surface plasmon resonance of the silver nanoparticles, a shoulder band around 500 nm, due to silver nanoparticle cluster formation, is presented when relatively higher concentrations of starch are used in the synthesis. These starch-capped silver nanoparticles show an intrinsic Raman peak at 1386 cm -1 assigned to deformation modes of the starch structure. The increase of the intensity of the SERS peak at 1386 cm -1 with an increase in the concentration of the ascorbic acid is related to a decrease of the gap between dimers and trimers of the silver nanoparticle clusters produced by the presence of ascorbic acid in the colloid. The limit of detection of this technique for ascorbic acid is 0.02 mM with a measurement concentration range of 0.02-10 mM, which is relevant for the application of this method for detecting ascorbic acid in biological specimen. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Self-Assembly of Silver Metal Clusters of Small Atomicity on Cyclic Peptide Nanotubes.

    Science.gov (United States)

    Cuerva, Miguel; García-Fandiño, Rebeca; Vázquez-Vázquez, Carlos; López-Quintela, M Arturo; Montenegro, Javier; Granja, Juan R

    2015-11-24

    Subnanometric noble metal clusters, composed by only a few atoms, behave like molecular entities and display magnetic, luminescent and catalytic activities. However, noncovalent interactions of molecular metal clusters, lacking of any ligand or surfactant, have not been seen at work. Theoretically attractive and experimentally discernible, van der Waals forces and noncovalent interactions at the metal/organic interfaces will be crucial to understand and develop the next generation of hybrid nanomaterials. Here, we present experimental and theoretical evidence of noncovalent interactions between subnanometric metal (0) silver clusters and aromatic rings and their application in the preparation of 1D self-assembled hybrid architectures with ditopic peptide nanotubes. Atomic force microscopy, fluorescence experiments, circular dichroism and computational simulations verified the occurrence of these interactions in the clean and mild formation of a novel peptide nanotube and metal cluster hybrid material. The findings reported here confirmed the sensitivity of silver metal clusters of small atomicity toward noncovalent interactions, a concept that could find multiple applications in nanotechnology. We conclude that induced supramolecular forces are optimal candidates for the precise spatial positioning and properties modulation of molecular metal clusters. The reported results herein outline and generalize the possibilities that noncovalent interactions will have in this emerging field.

  18. Interaction of the univalent silver cation with [Gly6]-antamanide: Experimental and theoretical study

    Science.gov (United States)

    Makrlík, Emanuel; Böhm, Stanislav; Kvíčala, Jaroslav; Vaňura, Petr; Ruzza, Paolo

    2018-03-01

    On the basis of extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Ag+(aq) + 1.Na+(nb) ⇄ 1.Ag+ (nb) + Na+(aq) occurring in the two-phase water - nitrobenzene system (1 = [Gly6]-antamanide; aq = aqueous phase, nb = nitrobenzene phase) was determined as log Kex (Ag+,1·Na+) = 1.5 ± 0.1. Further, the stability constant of the 1·Ag+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log βnb (1·Ag+) = 4.5 ± 0.2. Finally, by using quantum chemical DFT calculations, the most probable structure of the cationic complex species 1·Ag+ was derived. In the resulting complex, the "central" cation Ag+ is coordinated by four noncovalent interactions to the corresponding four carbonyl oxygen atoms of the parent ligand 1. Besides, the whole 1·Ag+ complex structure is stabilized by two intramolecular hydrogen bonds. The interaction energy of the considered 1·Ag+ complex was found to be -465.5 kJ/mol, confirming also the formation of this cationic species.

  19. A DFT study of the interaction of elemental mercury with small neutral and charged silver clusters

    Science.gov (United States)

    Sun, Lushi; Zhang, Anchao; Su, Sheng; Wang, Hua; Liu, Junli; Xiang, Jun

    2011-12-01

    Mercury adsorption on small neutral and charged Ag n clusters has been investigated by using DFT method. The results show that frontier molecular orbital theory is a useful tool to predict the selectivity of Hg adsorption. The binding energies of Hg on the cations are generally greater than those on the corresponding neutral and anionic clusters. NBO analysis indicates the electron flow in the neutral and charged complexes is mainly from the s orbital of Ag to the s orbital of Hg. For neutral and anionic complexes, electron transfer also occurs from p orbital of Hg to s orbital of Ag.

  20. Zero kinetic energy photoelectron spectroscopy of tryptamine and the dissociation pathway of the singly hydrated cation cluster

    Science.gov (United States)

    Gu, Quanli; Knee, J. L.

    2012-09-01

    The relative ionization energies of tryptamine conformations are determined by zero kinetic energy photoelectron spectroscopy and photoionization efficiency measurements. The relative cationic conformational stabilities are compared to the published results for the neutral molecule. In the cation, the interaction strength changes significantly between amino group and either the phenyl or the pyrrole moiety of the indole chromophore where most of the positive charge is located, leading to different conformational structures and relative conformer energies in the cation. In particular, the measured adiabatic ionization potential of isomer B is 60 928 ± 5 cm-1, at least 400 cm-1 higher than any of the 6 other tryptamine isomers which all have ionization potentials within 200 cm-1 of each other. In addition to the monomer, measurements were made on the A conformer of the tryptamine+-H2O complex including the ionization threshold and cation dissociation energy measured using a threshold photoionization fragmentation method. The water cluster exhibits an unexpectedly high ionization potential of 60 307 ± 100 cm-1, close to the conformer A monomer of 60 320 ± 100 cm-1. It also exhibits surprisingly low dissociation energy of 1750 ± 150 cm-1 compared to other H-bonding involved cation-H2O complexes which are typically several thousands of wavenumbers higher. Quantum chemical calculations indicate that upon ionization the structure of the parent molecule in the water complex remains mostly unchanged due to the rigid intermolecular double hydrogen bonded water molecule bridging the monomer backbone and its side chain thus leading to the high ionization potential in the water cluster. The surprisingly low dissociation energy measured in the cationic water complex is attributed to the formation of a much more stable structural isomer H+ in the exit channel.

  1. Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters

    Energy Technology Data Exchange (ETDEWEB)

    Fasolato, C. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena, 291, 00185 Rome (Italy); Domenici, F., E-mail: fabiodomenici@gmail.com, E-mail: paolo.postorino@roma1.infn.it; De Angelis, L.; Luongo, F.; Postorino, P., E-mail: fabiodomenici@gmail.com, E-mail: paolo.postorino@roma1.infn.it [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Sennato, S. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); CNR-IPCS UOS Roma, Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Mura, F. [Dip. Scienze di Base Applicate all' Ingegneria, Università Sapienza, Via A. Scarpa, 16, 00185 Rome (Italy); Costantini, F. [Dip. Ingegneria Astronautica Elettrica ed Energetica, Università Sapienza, Via Eudossiana, 18, 00184 Rome (Italy); Bordi, F. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena, 291, 00185 Rome (Italy); CNR-IPCS UOS Roma, Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy)

    2014-08-18

    A study of the Surface Enhanced Raman Scattering (SERS) from micrometric metallic nanoparticle aggregates is presented. The sample is obtained from the self-assembly on glass slides of micro-clusters of silver nanoparticles (60 and 100 nm diameter), functionalized with the organic molecule 4-aminothiophenol in water solution. For nanoparticle clusters at the micron scale, a maximum enhancement factor of 10{sup 9} is estimated from the SERS over the Raman intensity ratio normalized to the single molecule contribution. Atomic force microscopy, correlated to spatially resolved Raman measurements, allows highlighting the connection between morphology and efficiency of the plasmonic system. The correlation between geometric features and SERS response of the metallic structures reveals a linear trend of the cluster maximum scattered intensity as a function of the surface area of the aggregate. On given clusters, the intensity turns out to be also influenced by the number of stacking planes of the aggregate, thus suggesting a plasmonic waveguide effect. The linear dependence results weakened for the largest area clusters, suggesting 30 μm{sup 2} as the upper limit for exploiting the coherence over large scale of the plasmonic response.

  2. Formation of sputtered silver clusters under bombardment with SF sub 5 sup + ions

    CERN Document Server

    Ghalab, S; Maksimov, S E; Mazarov, P; Tugushev, V I; Dzhemilev, N K; Wucher, A

    2002-01-01

    The formation of Ag sub n clusters and Ag sub n sup + cluster ions under bombardment of a silver surface with SF sub 5 sup + and Xe sup + projectile ions was investigated experimentally. In order to obtain information about the relative abundance of clusters among the flux of sputtered particles independent of their charge state, mass spectra of both secondary ions and sputtered neutral particles were recorded. The neutral species were post-ionized prior to mass analysis by means of photo-ionization using an intense UV laser at a wavelength of 193 nm. It is found that measured Ag sub n sup + signals increase significantly if SF sub 5 sup + projectiles are used instead of rare gas (Ar sup + or Xe sup +) ions of the same kinetic impact energy. The signals of neutral Ag atoms and Ag sub n clusters, on the other hand, exhibit only a relatively small increase, thus indicating that the enhancement observed for the secondary ions is predominantly caused by an increased ionization probability of sputtered particles u...

  3. Asymmetric partitioning of metals among cluster anions and cations generated via laser ablation of mixed aluminum/Group 6 transition metal targets.

    Science.gov (United States)

    Waller, Sarah E; Mann, Jennifer E; Jarrold, Caroline Chick

    2013-02-28

    While high-power laser ablation of metal alloys indiscriminately produces gas-phase atomic ions in proportion to the abundance of the various metals in the alloy, gas-phase ions produced by moderate-power laser ablation sources coupled with molecular beams are formed by more complicated mechanisms. A mass spectrometric study that directly compares the mass distributions of cluster anions and cations generated from laser ablation of pure aluminum, an aluminum/molybdenum mixed target, and an aluminum/tungsten mixed target is detailed. Mass spectra of anionic species generated from the mixed targets showed that both tungsten and molybdenum were in higher abundance in the negatively charged species than in the target material. Mass spectra of the cationic species showed primarily Al(+) and aluminum oxide and hydroxide cluster cations. No molybdenum- or tungsten-containing cluster cations were definitively assigned. The asymmetric distribution of aluminum and Group 6 transition metals in cation and anion cluster composition is attributed to the low ionization energy of atomic aluminum and aluminum suboxide clusters. In addition, the propensity of both molybdenum and tungsten to form metal oxide cluster anions under the same conditions that favor metallic aluminum cluster anions is attributed to differences in the optical properties of the surface oxide that is present in the metal powders used to prepare the ablation targets. Mechanisms of mixed metal oxide clusters are considered.

  4. A near ambient pressure XPS study of subnanometer silver clusters on Al2O3 and TiO2 ultrathin film supports.

    Science.gov (United States)

    Mao, Bao-Hua; Chang, Rui; Shi, Lei; Zhuo, Qi-Qi; Rani, Sana; Liu, Xiao-Song; Tyo, Eric C; Vajda, Stefan; Wang, Sui-Dong; Liu, Zhi

    2014-12-28

    We have investigated model systems of silver clusters with different sizes (3 and 15 atoms) deposited on alumina and titania supports using ambient pressure X-ray photoelectron spectroscopy. The electronic structures of silver clusters and support materials are studied upon exposure to various atmospheres (ultrahigh vacuum, O2 and CO) at different temperatures. Compared to bulk silver, the binding energies of silver clusters are about 0.55 eV higher on TiO2 and 0.95 eV higher on Al2O3 due to the final state effect and the interaction with supports. No clear size effect of the silver XPS peak is observed on different silver clusters among these samples. Silver clusters on titania show better stability against sintering. Al 2p and Ti 2p core level peak positions of the alumina and titania support surfaces change upon exposure to oxygen while the Ag 3d core level position remains unchanged. We discuss the origin of these core level shifts and their implications for catalytic properties of Ag clusters.

  5. Quantum chemical study of the interaction of elemental Hg with small neutral, anionic and cationic Aun (n = 1–6) clusters

    International Nuclear Information System (INIS)

    Siddiqui, Shamoon Ahmad; Bouarissa, Nadir; Rasheed, Tabish; Al-Assiri, M.S.

    2013-01-01

    Graphical abstract: Binding energies as a function of cluster size for Au n Hg, Au n Hg + and Au n Hg − complexes. Highlights: ► Hg adsorption of neutral and charged Au n (n = 1–6) clusters has been discussed. ► Size and charged state of cluster significantly affect the Hg adsorption. ► Transfer of electron mainly found from s orbital of Hg to s orbital of Au. - Abstract: Adsorption of elemental mercury (Hg) on small neutral, cationic and anionic gold clusters (Au n , n = 1–6) has been studied by using the density functional theory (DFT). Results of this investigation show that frontier molecular orbital theory is a useful tool to predict the selectivity of Hg adsorption. It is found that adsorption of Hg on neutral, cationic and anionic Au n (n = 1–6) clusters are thermodynamically favorable. The binding energies of Hg on the cationic Au n clusters are greater than those on the neutral and anionic clusters. Natural bond orbital (NBO) analysis indicates that the flow of electrons in the neutral and charged clusters is mainly due to the s orbitals of Hg and Au. Results of NBO analysis also indicate that the binding energy of Hg with Au n clusters is directly proportional to the charge transfer, i.e. greater is the charge transfer, higher is the binding energy

  6. Membrane Order Is a Key Regulator of Divalent Cation-Induced Clustering of PI(3,5)P2and PI(4,5)P2.

    Science.gov (United States)

    Sarmento, Maria J; Coutinho, Ana; Fedorov, Aleksander; Prieto, Manuel; Fernandes, Fábio

    2017-10-31

    Although the evidence for the presence of functionally important nanosized phosphorylated phosphoinositide (PIP)-rich domains within cellular membranes has accumulated, very limited information is available regarding the structural determinants for compartmentalization of these phospholipids. Here, we used a combination of fluorescence spectroscopy and microscopy techniques to characterize differences in divalent cation-induced clustering of PI(4,5)P 2 and PI(3,5)P 2 . Through these methodologies we were able to detect differences in divalent cation-induced clustering efficiency and cluster size. Ca 2+ -induced PI(4,5)P 2 clusters are shown to be significantly larger than the ones observed for PI(3,5)P 2 . Clustering of PI(4,5)P 2 is also detected at physiological concentrations of Mg 2+ , suggesting that in cellular membranes, these molecules are constitutively driven to clustering by the high intracellular concentration of divalent cations. Importantly, it is shown that lipid membrane order is a key factor in the regulation of clustering for both PIP isoforms, with a major impact on cluster sizes. Clustered PI(4,5)P 2 and PI(3,5)P 2 are observed to present considerably higher affinity for more ordered lipid phases than the monomeric species or than PI(4)P, possibly reflecting a more general tendency of clustered lipids for insertion into ordered domains. These results support a model for the description of the lateral organization of PIPs in cellular membranes, where both divalent cation interaction and membrane order are key modulators defining the lateral organization of these lipids.

  7. Thermal Methane Conversion to Syngas Mediated by Rh1-Doped Aluminum Oxide Cluster Cations RhAl3O4.

    Science.gov (United States)

    Li, Ya-Ke; Yuan, Zhen; Zhao, Yan-Xia; Zhao, Chongyang; Liu, Qing-Yu; Chen, Hui; He, Sheng-Gui

    2016-10-05

    Laser ablation generated RhAl 3 O 4 + heteronuclear metal oxide cluster cations have been mass-selected using a quadrupole mass filter and reacted with CH 4 or CD 4 in a linear ion trap reactor under thermal collision conditions. The reactions have been characterized by state-of-the-art mass spectrometry and quantum chemistry calculations. The RhAl 3 O 4 + cluster can activate four C-H bonds of a methane molecule and convert methane to syngas, an important intermediate product in methane conversion to value-added chemicals. The Rh atom is the active site for activation of the C-H bonds of methane. The high electron-withdrawing capability of Rh atom is the driving force to promote the conversion of methane to syngas. The polarity of Rh oxidation state is changed from positive to negative after the reaction. This study has provided the first example of methane conversion to syngas by heteronuclear metal oxide clusters under thermal collision conditions. Furthermore, the molecular level origin has been revealed for the condensed-phase experimental observation that trace amounts of Rh can promote the participation of lattice oxygen of chemically very inert support (Al 2 O 3 ) to oxidize methane to carbon monoxide.

  8. Energetics and structures of charged helium clusters: comparing stabilities of dimer and trimer cationic cores.

    Science.gov (United States)

    Marinetti, Fabio; Bodo, Enrico; Gianturco, Franco A; Yurtsever, Ersin

    2008-12-01

    We present accurate ab initio calculations of the most stable structures of He(n)(+) clusters in order to determine the more likely ionic core arrangements existing after reaching structural equilibrium of the clusters. Two potential energy surfaces are presented: one for the He(2)(+) and the other with the He(3)(+) linear ion, both interacting with one He atom. The two computed potentials are in turn employed within a classical structure optimization where the overall interaction forces are obtained within the sum-of-potentials approximation described in the main text. Because of the presence of many-body effects within the ionic core, we find that the arrangements with He(3)(+) as a core turn out to be energetically preferred, leading to the formation of He(3)(+)(He)(n-3) stable aggregates. Nanoscopic considerations about the relative stability of clusters with the two different cores are shown to give us new information on the dynamical processes observed in the impact ionization experiments of pure helium clusters and the importance of pre-equilibrium evaporation of the ionic dimers in the ionized clusters.

  9. Colloidal systems of silver nanoparticles and high-regioregular cationic polythiophene with ionic-liquid-like pendant groups: Optical properties and SERS.

    Science.gov (United States)

    Kazim, Samrana; Pfleger, Jiří; Procházka, Marek; Bondarev, Dmitrij; Vohlídal, Jiří

    2011-02-15

    We report tuning of structure dependent optical properties of colloidal systems of borate-stabilized silver nanoparticles (Ag NPs) and polythiophene-based cationic polyelectrolyte with ionic-liquid like side groups: poly{3-[6-(1-methylimidazolium-3-yl)hexyl]thiophene-2,5-diyl bromide} (PMHT-Br) towards obtaining local electromagnetic field enhancement effects. Surface-enhanced Raman scattering (SERS) studies showed that the strong electromagnetic field enhancement is related to the formation of aggregates of Ag NPs achieved at the components ratio providing the charge balance between Ag NPs and cationic polythiophene, at which Ag NPs are nearly single-polymer-layer coated, their zeta potential is close to zero and they easily form aggregates in which the mean inter-particle distance enables the occurrence of desired plasmonic effects. Fluorescence quenching is efficient only in the systems with low concentrations of PMHT-Br, in which almost all polymer chains directly interact with the Ag NPs surface. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Assessing the sensitivity of benzene cluster cation chemical ionization mass spectrometry toward a wide array of biogenic volatile organic compounds

    Science.gov (United States)

    Lavi, Avi; Vermeuel, Michael; Novak, Gordon; Bertram, Timothy

    2017-04-01

    Chemical ionization mass spectrometry is a real-time, sensitive and selective measurement technique for the detection of volatile organic compounds (VOCs). The benefits of CIMS technology make it highly suitable for field measurements that requires fast (10Hz and higher) response rates, such as the study of surface-atmosphere exchange processes by the eddy covariance method. The use of benzene cluster cations as a regent ion was previously demonstrated as a sensitive and selective method for the detection of select biogenic VOCs (e.g. isoprene, monoterpenes and sesquiterpenes) [Kim et al., 2016; Leibrock and Huey, 2000]. Quantitative analysis of atmospheric trace gases necessitates calibration for each analyte as a function of atmospheric conditions. We describe a custom designed calibration system, based on liquid evaporation, for determination of the sensitivity of the benzene-CIMS to a wide range of organic compounds at atmospherically relevant mixing ratios (reactions and the role of water vapor and oxygen, we compare our measured sensitivities with a computational analysis of the charge distribution between the analyte, reagent ion and water molecules in the gas phase. These parameters provide insight on the ionization mechanism and provide parameters for quantification of organic molecules measured during field campaigns. References Kim, M. J., M. C. Zoerb, N. R. Campbell, K. J. Zimmermann, B. W. Blomquist, B. J. Huebert, and T. H. Bertram (2016), Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds, Atmos Meas Tech, 9(4), 1473-1484, doi:10.5194/amt-9-1473-2016. Leibrock, E., and L. G. Huey (2000), Ion chemistry for the detection of isoprene and other volatile organic compounds in ambient air, Geophys Res Lett, 27(12), 1719-1722, doi:Doi 10.1029/1999gl010804.

  11. Dehydrogenation of methanol by vanadium-oxide and -hydroxide cluster cations in the gas phase

    Czech Academy of Sciences Publication Activity Database

    Feyel, S.; Scharfenberg, L.; Daniel, Ch.; Hartl, H.; Schröder, Detlef; Schwarz, H.

    2007-01-01

    Roč. 111, č. 17 (2007), s. 3278-3286 ISSN 1089-5639 Grant - others:Deutsche Forschungsgemeinschaft(DE) SFB546 Institutional research plan: CEZ:AV0Z40550506 Keywords : C-H activation * cluster * mass spectroscopy * methanol * vanadium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.918, year: 2007

  12. Controlled Distribution and Clustering of Silver in Ag-DLC Nanocomposite Coatings Using a Hybrid Plasma Approach.

    Science.gov (United States)

    Cloutier, M; Turgeon, S; Busby, Y; Tatoulian, M; Pireaux, J-J; Mantovani, D

    2016-08-17

    Incorporation of selected metallic elements into diamond-like carbon (DLC) has emerged as an innovative approach to add unique functional properties to DLC coatings, thus opening up a range of new potential applications in fields as diverse as sensors, tribology, and biomaterials. However, deposition by plasma techniques of metal-containing DLC coatings with well-defined structural properties and metal distribution is currently hindered by the limited understanding of their growth mechanisms. We report here a silver-incorporated diamond-like carbon coating (Ag-DLC) prepared in a hybrid plasma reactor which allowed independent control of the metal content and the carbon film structure and morphology. Morphological and chemical analyses of Ag-DLC films were performed by atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. The vertical distribution of silver from the surface toward the coating bulk was found to be highly inhomogeneous due to top surface segregation and clustering of silver nanoparticles. Two plasma parameters, the sputtered Ag flux and ion energy, were shown to influence the spatial distribution of silver particles. On the basis of these findings, a mechanism for Ag-DLC growth by plasma was proposed.

  13. Gas-phase reactions of cationic vanadium-phosphorus oxide clusters with C2H(x) (x=4, 6): a DFT-based analysis of reactivity patterns.

    Science.gov (United States)

    Dietl, Nicolas; Zhang, Xinhao; van der Linde, Christian; Beyer, Martin K; Schlangen, Maria; Schwarz, Helmut

    2013-02-25

    The reactivities of the adamantane-like heteronuclear vanadium-phosphorus oxygen cluster ions [V(x)P(4-x)O(10)](.+) (x=0, 2-4) towards hydrocarbons strongly depend on the V/P ratio of the clusters. Possible mechanisms for the gas-phase reactions of these heteronuclear cations with ethene and ethane have been elucidated by means of DFT-based calculations; homolytic C-H bond activation constitutes the initial step, and for all systems the P-O(.) unit of the clusters serves as the reactive site. More complex oxidation processes, such as oxygen-atom transfer to, or oxidative dehydrogenation of the hydrocarbons require the presence of a vanadium atom to provide the electronic prerequisites which are necessary to bring about the 2e(-) reduction of the cationic clusters. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Gas-Phase Reactions of Cationic Vanadium-Phosphorus Oxide Clusters with C2Hx (x=4, 6): A DFT-Based Analysis of Reactivity Patterns

    Science.gov (United States)

    Dietl, Nicolas; Zhang, Xinhao; van der Linde, Christian; Beyer, Martin K; Schlangen, Maria; Schwarz, Helmut

    2013-01-01

    The reactivities of the adamantane-like heteronuclear vanadium-phosphorus oxygen cluster ions [VxP4−xO10].+ (x=0, 2–4) towards hydrocarbons strongly depend on the V/P ratio of the clusters. Possible mechanisms for the gas-phase reactions of these heteronuclear cations with ethene and ethane have been elucidated by means of DFT-based calculations; homolytic C–H bond activation constitutes the initial step, and for all systems the P–O. unit of the clusters serves as the reactive site. More complex oxidation processes, such as oxygen-atom transfer to, or oxidative dehydrogenation of the hydrocarbons require the presence of a vanadium atom to provide the electronic prerequisites which are necessary to bring about the 2e− reduction of the cationic clusters. PMID:23322620

  15. Cluster formation of network-modifier cations in cesium silicate glasses

    Science.gov (United States)

    Jardón-Álvarez, Daniel; Sanders, Kevin J.; Phyo, Pyae; Baltisberger, Jay H.; Grandinetti, Philip J.

    2018-03-01

    Natural abundance 29Si two-dimensional magic-angle flipping (2D MAF) NMR spectra were measured in a series of ten cesium silicate glass compositions xCs2O.(1 - x)SiO2, where x is 0.067, 0.113, 0.175, 0.179, 0.218, 0.234, 0.263, 0.298, 0.31, and 0.36. The Q3 shielding anisotropy decreases with increasing Cs content—interpreted as an increase in the non-bridging oxygen (NBO) bond length from increasing Cs coordination (clustering) around the NBO. The 29Si 2D MAF spectra for four glass compositions x = 0.218, 0.234, 0.263, 0.298 exhibit a second co-existing and distinctly smaller shielding anisotropy corresponding to a significantly longer Si-NBO length arising from a higher degree of Cs clustering around the NBO. This second Q3 site appears at a Cs2O mole fraction close to the critical mole fraction of x = 0.24 associated with the percolation threshold of non-bridging oxygen in random close packing of oxygen, thus suggesting that the longer Si-NBO length is associated with an infinite size spanning cluster while the sites with larger anisotropies are associated with shorter Si-NBO lengths and belong to finite size clusters. The equilibrium constant of the Q3 disproportionation reaction was determined as k3 = 0.005, indicating a Qn anionic species distribution close to a binary model as expected for a low field strength modifier such as cesium. It is also found that evolution of the isotropic Q4 and line shapes with increasing Cs content are consistent with a random connectivity model between Qn of differing number of bridging oxygen, n.

  16. Ab initio study of the structural, magnetic, and electronic properties of copper and silver clusters and their alloys with one palladium atom

    Directory of Open Access Journals (Sweden)

    S. J Hashemifar

    2015-01-01

    Full Text Available In this paper, the structural, magnetic, and electronic properties of two- to nine-atom copper and silver clusters and their alloys with one palladium atom are investigated by using full-potential all-electron density functional computations. After calculating minimized energy of several structural isomers of every nanocluster, it is argued that the small size nanoclusters (up to size of 6, ‎ prefer planar structures, while by increasing size a 2D-3D structural transformation is observed. The structural transformation of pure and copper-palladium clusters occurs in the size of seven and that of silver-palladium cluster in happens at the size of six. The calculated second difference and dissociation energies confirm that the two- and eight- atom pure clusters and three- and seven- atom alloyed clusters are magic clusters. The electronic and magnetic properties of stable isomers are calculated and considered after applying many body based GW correction.

  17. Infrared and electronic spectroscopy of benzene-ammonia cluster radical cations [C(6)H(6)(NH(3))(1,2)](+): observation of isolated and microsolvated σ-complexes.

    Science.gov (United States)

    Mizuse, Kenta; Hasegawa, Hayato; Mikami, Naohiko; Fujii, Asuka

    2010-10-28

    We report infrared (IR) and electronic spectra of benzene-ammonia cluster radical cations [C(6)H(6)(NH(3))(n)](+) (n = 1 and 2) in the gas phase to explore cluster structures and chemical reactivity of the simplest aromatic radical cation with base (nucleophile) molecules. The electronic spectra in the visible region indicate that these cluster cations no longer have the benzene cation chromophore as a result of an intracluster reaction. Analyses of the IR spectra, on the basis quantum chemical calculations and the vibration-internal rotation analysis, reveal that both [C(6)H(6)(NH(3))(1,2)](+) form σ-complex structures, in which the ammonia moiety is covalently bonded to the benzene moiety due to the intracluster nucleophilic addition. For [C(6)H(6)(NH(3))(2)](+), it is also shown that the second ammonia molecule solvates the σ-complex core via a N-H···N hydrogen bond. Such σ-complex structures are generally supposed to be a key intermediate of aromatic substitution reactions. The observed mass spectra and energetics calculations, however, show that [C(6)H(6)(NH(3))(n)](+) systems are inert for aromatic substitutions. The present experimental observations indicate the inherent stability of these σ-complex structures, even though they do not show the aromatic substitution reactivity.

  18. Emission processes of molecule-metal cluster ions from self-assembled monolayers of octanethiols on gold and silver

    International Nuclear Information System (INIS)

    Arezki, B.; Delcorte, A.; Bertrand, P.

    2004-01-01

    In this contribution, we focus on the emission processes of molecule-metal cluster ions from self-assembled monolayers (SAMs) of octanethiols CH 3 (CH 2 ) 7 SH on gold and silver. To improve our understanding of these complex phenomena, mass spectra and kinetic energy distributions (KEDs) of these two systems have been measured and compared using time-of-flight-SIMS under 15 keV Ga + bombardment. First, the spectra obtained from SAMs/Ag exhibit positive (M-H) m Ag m+1 + and negative (M-H) m Ag m-1 - cluster ions that are generally more intense than the (M-H) m Au n - observed for SAMs/Au. This trend is attributed to the electronegativity difference between S and these two metals resulting in a more ionic Ag-S bond. Second, our results show that, like for the SAM/Au system already investigated, unimolecular dissociation of Ag-thiolate clusters in the acceleration section of the spectrometer is an important formation mechanism. The fraction of the (M-H) m Ag n +,- aggregates formed in the vacuum via this process is even significantly higher than that of the (M-H) m Au n - cluster ions. This suggests that the cluster ions ejected from SAMs/Ag are less stable than those ejected from SAMs/Au. It is also observed that the high energy parts of the KEDs are steeper than for gold, which is probably due to the same phenomenon

  19. The antifungal effects and mechanical properties of silver bromide/cationic polymer nano-composite-modified Poly-methyl methacrylate-based dental resin.

    Science.gov (United States)

    Zhang, Yu; Chen, Yin-Yan; Huang, Li; Chai, Zhi-Guo; Shen, Li-Juan; Xiao, Yu-Hong

    2017-05-08

    Poly-methyl methacrylate (PMMA)-based dental resins with strong and long-lasting antifungal properties are critical for the prevention of denture stomatitis. This study evaluated the antifungal effects on Candida albicans ATCC90028, the cytotoxicity toward human dental pulp cells (HDPCs), and the mechanical properties of a silver bromide/cationic polymer nano-composite (AgBr/NPVP)-modified PMMA-based dental resin. AgBr/NPVP was added to the PMMA resin at 0.1, 0.2, and 0.3 wt%, and PMMA resin without AgBr/NPVP served as the control. Fungal growth was inhibited on the AgBr/NPVP-modified PMMA resin compared to the control (P  0.05) between the experimental and control groups. These data indicate that the incorporation of AgBr/NPVP conferred strong and long-lasting antifungal effects against Candida albicans to the PMMA resin, and it has low toxicity toward HDPCs, and its mechanical properties were not significantly affected.

  20. A new family of clusters containing a silver-centered tetracapped [Ag@Ag4(μ3-P)4] tetrahedron, inscribed within a N12icosahedron.

    Science.gov (United States)

    Artem'ev, Alexander V; Bagryanskaya, Irina Yu; Doronina, Evgeniya P; Tolstoy, Peter M; Gushchin, Artem L; Rakhmanova, Mariana I; Ivanov, Alexander Yu; Suturina, Anastasiya O

    2017-09-26

    An unprecedented silver-centered P-tetracapped [Ag@Ag 4 (μ 3 -P) 4 ] tetrahedron inscribed within a N 12 icosahedral cage has been discovered in the novel family of luminescent clusters. The latter are easily self-assembled by reacting Ag I salts with tris(2-pyridyl)phosphine (Py 3 P).

  1. Elevation of the Energy Threshold for Isomerization of 5-Hydroxyindole-(tert-butyl alcohol)1Cluster Cations.

    Science.gov (United States)

    Ikeda, Takamasa; Sakota, Kenji; Sekiya, Hiroshi

    2017-08-10

    Isomerization between two hydrogen-bonded (H-bonded) isomers of 5-hydroxyindole-(tert-butyl alcohol) 1 cluster cations ([5HI-(t-BuOH) 1 ] + ) was investigated in the gas phase. In the S 0 state, jet-cooled 5HI-(t-BuOH) 1 has two structural isomers, 5HI(OH)-(t-BuOH) 1 and 5HI(NH)-(t-BuOH) 1 , in which the t-BuOH molecule is bound to the OH or the NH group of 5HI. The IR photodissociation spectrum of [5HI-(t-BuOH) 1 ] + generated by two-color resonant two-photon ionization (2C-R2PI) via the S 1 -S 0 origin of 5HI(NH)-(t-BuOH) 1 provided evidence of both [5HI(OH)-(t-BuOH) 1 ] + and [5HI(NH)-(t-BuOH) 1 ] + coexisting in the D 0 state, indicating that [5HI(NH)-(t-BuOH) 1 ] + isomerizes to [5HI(OH)-(t-BuOH) 1 ] + after 2C-R2PI of 5HI(NH)-(t-BuOH) 1 . The lower limit of the energy threshold for the isomerization of [5HI(NH)-(t-BuOH) 1 ] + to [5HI(OH)-(t-BuOH) 1 ] + was experimentally determined to be 3362 ± 30 cm -1 , and the corresponding energy threshold for the isomerization of [5HI(NH)-(H 2 O) 1 ] + to [5HI(OH)-(H 2 O) 1 ] + has been reported to be 2127 ± 30 cm -1 . Thus, the energy threshold for the isomerization is elevated by at least 1200 cm -1 when the solvent molecule changes from H 2 O to t-BuOH. The elevation of the energy threshold is explained by the difference in the stabilization energies of [5HI-(t-BuOH) 1 ] + and [5HI-(H 2 O) 1 ] + in the initial and transition states owing to the larger proton affinity of t-BuOH than H 2 O.

  2. Neutral and cationic free-space oxygen–silicon clusters SiO{sub n} (1

    Energy Technology Data Exchange (ETDEWEB)

    Forte, G. [Dipartimento di Scienze del Farmaco, Facoltà di Farmacia, Università di Catania, Viale A. Doria, 6, I-95126 Catania (Italy); Angilella, G.G.N., E-mail: giuseppe.angilella@ct.infn.it [Dipartimento di Fisica e Astronomia, Università di Catania, 64, Via S. Sofia, I-95123 Catania (Italy); Scuola Superiore di Catania, Università di Catania, Via S. Nullo, 5/i, I-95123 Catania (Italy); CNISM, UdR Catania, 64, Via S. Sofia, I-95123 Catania (Italy); INFN, Sezione di Catania, 64, Via S. Sofia, I-95123 Catania (Italy); Pittalà, V. [Dipartimento di Scienze del Farmaco, Facoltà di Farmacia, Università di Catania, Viale A. Doria, 6, I-95126 Catania (Italy); March, N.H. [Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Oxford University, Oxford (United Kingdom); Pucci, R. [Dipartimento di Fisica e Astronomia, Università di Catania, 64, Via S. Sofia, I-95123 Catania (Italy); CNISM, UdR Catania, 64, Via S. Sofia, I-95123 Catania (Italy)

    2012-01-09

    Motivated by the theoretical study of Saito and Ono (2011) on three crystalline forms of SiO{sub 2} under pressure, quantum-chemical calculations on various free-space clusters of SiO{sub n} and GeO{sub n} for 1cationic clusters have been examined, for both geometry and equilibrium bond lengths. Coupled clusters and correlation-corrected MP2 calculations are presented. For the cations, we emphasize especially the structural distortions occurring in removing degeneracies. -- Highlights: ► Geometry and structure of various SiO{sub n} and GeO{sub n} clusters. ► Both neutral and cationic clusters. ► Varying coordination numbers. ► Relevant for high pressure studies.

  3. Charge transfer initiated nitroxyl chemistry on free silver clusters Ag{sub 2-5}{sup-} : size effects and magic complexes.

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, J.; Socaciu-Sieberg, L. D.; LeRoux, J.; Popolan, D.; Vajda, S.; Bernhardt, T. M.; Woste, L.; Chemistry; Freie Univ.; Univ. Ulm

    2007-01-01

    The reactivity of small silver cluster anions Ag{sub 2--5}- toward nitric oxide and mixtures of nitric oxide with carbon monoxide is investigated under multi-collision conditions in a radio frequency octopole ion trap at temperatures of 100 and 300 K. A strongly cluster size dependent reaction behavior is observed, where reactive fragmentation dominates for clusters with four or fewer atoms and only Ag{sub 5}- is able to form reaction products without dissociation of the metal cluster. The decisive role of charge transfer in the NO bond breakage, NO oxidation, and the formation of free NO{sub 2}{sup -} and N{sub 2}O{sub 4}{sup -} ions, as well as NxO(y>x)-ligands on the silver clusters is discussed. The mass spectrometric data reveal the particular stability of the reaction products AgN{sub 2}O{sub 4}{sup -} and Ag{sub 3}NO{sup -}. The reaction product mass spectra obtained for Ag{sub 5}{sup -} in the presence of NO and CO show the depletion of the NxO(y>x)-ligands on the metal cluster possibly involving the oxidation of CO to CO2.

  4. Media effects on the optical absorption spectra of silver clusters embedded in rara gas matrices

    International Nuclear Information System (INIS)

    Fedrigo, S.; Harbich, W.; Buttet, J.

    1993-01-01

    The optical absorption of small mass selected Ag n -clusters (n=7, 11, 15, 21) embedded in solid Ar, Kr and Xe has been measured. The absorption spectra show 1 to 3 major peaks between 3 and 4.5 eV, depending on the cluster size. Changing the matrix gas Ar→Kr→Xe induces a redshift which is comparable for all sizes studied and does not affect the main structure of the absorption spectra. We propose a scheme to estimate the gas phase value of the absorption energies which is in fair agreement with an estimation obtained by a simple model based on a Drude metal. (author). 10 refs, 2 figs

  5. A Combined Experimental and Theoretical Study of the Neutral, Cationic and Anionic Si3N Cluster Molecule

    Science.gov (United States)

    1994-04-22

    states of the SiN molecule, the two cationic triplet 3y-(I 1a 2 2a 21 X230 2 ) and 3n (1a 22a 2 1 70330) states are expected to be the most stable. Bruna ...82, 2547 (1985). (d) C. Yamada and E. Hirota, J. Chem. Phys. 88, 46 (1988). 20 P. J. Bruna , S. 0. Peyenimhoff and R. J. Buenker, J. Chem. Phys. 72

  6. Poly (methyl methacrylate) Composites with Size-Selected Silver Nanoparticles Fabricated using Cluster Beam Technique

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Juluri, Raghavendra Rao; Chirumamilla, Manohar

    2016-01-01

    An embedment of metal nanoparticles of well-defined sizes in thin polymer films is of significant interest for a number of practical applications, in particular, for preparing materials with tunable plasmonic properties. In this article, we present a fabrication route for metal–polymer composites...... tendency to flattening upon impact. By controlling the polymer hardness (from viscous to soft state) prior the cluster deposition and annealing conditions after the deposition the degree of immersion of the nanoparticles into polymer can be tuned, thus, making it possible to create composites with either...... particles partly or fully embedded into the film. Good size selection and rather homogeneous dispersion of nanoparticles in the thin polymer film lead to excellent plasmonic properties characterized by the narrow band and high quality factor of localized surface plasmon resonance....

  7. Theoretical study of oxygen adsorption on pure Au-n+1(+) and doped MAun+ cationic gold clusters for M = Ti, Fe and n=3-7

    DEFF Research Database (Denmark)

    Torres, M. Begona; Fernandez Sanchez, Eva; Balbas, Luis C.

    2008-01-01

    the adsorption energy and the O-O bond length of adsorbed oxygen increase when the amount of electronic charge on O-2 increases. On the other hand, we studied the adsorption of an O-2 molecule on doped MAun+ clusters, leading to the formation of (MAunO2+)(ad) complexes with different equilibrium configurations......A comparative study of the adsorption of an O-2 molecule on pure Au-n+1(+) and doped MAun+ cationic gold clusters for n = 3-7 and M = Ti, Fe is presented. The simultaneous adsorption of two oxygen atoms also was studied. This work was performed by means of first principles calculations based...... with size n are rationalized in terms of O-O and O-M bond distances, as well as charge transfer between oxygen and cluster substrates. The spin multiplicity of those (MAunO2+)(ad) complexes with the highest O-2 adsorption energy is a maximum (minimum) for M = Fe (Ti), corresponding to parallel (anti...

  8. Ordered and disordered models of local structure around Ag cations in silver borate glasses based on x-ray absorptio n near-edge structure spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej; Dalba, G.; Rocca, F.

    2004-01-01

    Roč. 69, - (2004), 134201/1-134201/16 ISSN 0163-1829 R&D Projects: GA ČR GA202/02/0841 Institutional research plan: CEZ:AV0Z1010914 Keywords : disordered systems * structural analysis * XANES * silver * borate glass es Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.075, year: 2004

  9. 2D-3D Transition for Cationic and Anionic Gold Clusters: A Kinetic Energy Density Functional Study

    DEFF Research Database (Denmark)

    Ferrighi, Lara; Hammer, Bjørk; Madsen, Georg

    2009-01-01

    We present a density functional theory study of the energetics of isolated Aun+ (n = 5-10) and Aun- (n = 8-13) gold clusters. We compare our results to both theoretical and experimental values from the literature and find the use of meta-generalized gradient approximation (MGGA) functionals...

  10. ToF-SIMS and laser-SNMS analysis of Madin-Darby canine kidney II cells with silver nanoparticles using an argon cluster ion beam.

    Science.gov (United States)

    Nees, Ricarda; Pelster, Andreas; Körsgen, Martin; Jungnickel, Harald; Luch, Andreas; Galla, Hans-Joachim; Arlinghaus, Heinrich F

    2015-06-15

    The use of nanoparticles is one of the fastest expanding fields in industrial as well as in medical applications, owing to their remarkable characteristics. Silver nanoparticles (AgNPs) are among the most-commercialized nanoparticles because of their antibacterial effects. Laser postionization secondary neutral mass spectrometry (laser-SNMS) and time-of-flight secondary ion mass spectrometry in combination with argon cluster ion sputtering was used for the first time to investigate the effects of AgNPs on Madin-Darby canine kidney (MDCK) II cells. Depth profiles and high-resolution three dimensional (3D) images of nanoparticles and organic compounds from cells were obtained using an Ar cluster ion beam for sputtering and Bi3 (+) primary ions for the analysis. The 3D distribution of AgNPs and other organic compounds in MDCK II cells could be readily detected with very high efficiency, sensitivity, and submicron lateral resolution. The argon cluster ion beam is well suited for the sputtering of biological samples. It enables a high sample removal rate along with low molecular degradation. The outer membrane, the cytoplasm, and the nuclei of the cells could be clearly visualized using the signals PO(+) and C3H8N(+) or CN(+) and C3H8N(+). The laser-SNMS images showed unambiguously that AgNPs are incorporated by MDCK II cells and often form silver aggregates with a diameter of a few micrometers, mainly close to the outside of the cell nuclei.

  11. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO 2 + ) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO 2 + ; therefore, cation-cation complexes indicate something unique about AnO 2 + cations compared to actinide cations in general. The first cation-cation complex, NpO 2 + ·UO 2 2+ , was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO 2 + species, the cation-cation complexes of NpO 2 + have been studied most extensively while the other actinides have not. The only PuO 2 + cation-cation complexes that have been studied are with Fe 3+ and Cr 3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO 2 + ·UO 2 2+ , NpO 2 + ·Th 4+ , PuO 2 + ·UO 2 2+ , and PuO 2 + ·Th 4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M -1

  12. Ortho-para interconversion in cation-water complexes: The case of V+(H2O) and Nb+(H2O) clusters

    Science.gov (United States)

    Ward, T. B.; Miliordos, E.; Carnegie, P. D.; Xantheas, S. S.; Duncan, M. A.

    2017-06-01

    Vanadium and niobium cation-water complexes, V+(H2O) and Nb+(H2O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O-H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 3:1 intensity ratios for K = odd:even levels for independent ortho:para nuclear spin states are missing for some complexes. We relied on highly correlated internally contracted multi-reference configuration interaction and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to the quasi-C2v symmetry with a significant probability off the C2 axis, thus explaining the reduced A values. Both vanadium and niobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 106 s-1).

  13. DFT-D investigation of the interaction between Ir (III) based photosensitizers and small silver clusters Ag{sub n} (n = 2–20, 92)

    Energy Technology Data Exchange (ETDEWEB)

    Bokareva, Olga S., E-mail: obokareva@gmail.com; Kühn, Oliver

    2014-05-19

    Highlights: • Dispersion effects in weakly bonded systems containing silver clusters are investigated. • Different dispersion models and their parametrizations are discussed. • Reparametrization of C{sub 6} coefficients for Ag and Ir is performed using MP2 and RPA as a reference. - Abstract: A dispersion-corrected density functional theory study of the photosensitizer [Ir(ppy){sub 2}(bpy)]{sup +} and its derivatives bound to silver clusters Ag{sub n} (n = 2–20, 92) is performed. The goal is to provide a new system-specific set of C{sub 6} interaction parameters for Ag and Ir atoms. To this end a QM:QM scheme is employed using the PBE functional and RPA as well as MP2 calculations as reference. The obtained C{sub 6} coefficients were applied to determine dissociation curves of selected IrPS–Ag{sub n} complexes and binding energies of derivatives containing oxygen and sulphur as heteroatoms in the ligands. Comparing different C{sub 6} parameters it is concluded that RPA-based dispersion correction produces binding energies close to standard D2 and D3 models, whereas MP2-derived parameters overestimate these energies.

  14. The effects of material loading and flow rate on the disinfection of pathogenic microorganisms using cation resin-silver nanoparticle filter system

    Science.gov (United States)

    Mpenyana-Monyatsi, L.; Mthombeni, N. H.; Onyango, M. S.; Momba, M. N. B.

    2017-08-01

    Waterborne diseases have a negative impact on public health in instances where the available drinking water is of a poor quality. Decentralised systems are needed to provide safe drinking water to rural communities. Therefore, the present study aimed to develop and investigate the point-of-use (POU) water treatment filter packed with resin-coated silver nanoparticles. The filter performance was evaluated by investigating the effects of various bed masses (10 g, 15 g, 20 g) and flow rates (2 mL/min, 5 mL/min, 10 mL/min) by means of breakthrough curves for the removal efficiency of presumptive Escherichia coli, Shigella dysenteriae, Salmonella typhimurium and Vibrio cholerae from spiked groundwater samples. The results revealed that, as the bed mass increases the breakthrough time also increases with regards to all targeted microorganisms. However, when the flow rate increases the breakthrough time decreased. These tests demonstrated that resin-coated silver nanoparticle can be an effective material in removing all targeted microorganisms at 100% removal efficiency before breakthrough points are achieved. Moreover the filter system demonstrated that it is capable of producing 15 L/day of treated water at an operating condition of 10 mL/min flow rate and 15 g bed mass, which is sufficient to provide for seven individuals in the household if they consume 2 L/person/day for drinking purpose. Therefore, the bed mass of the filter system should be increased in order for it to produce sufficient water that will conform to the daily needs of an individual.

  15. Theoretical study of the geometric and electronic structure of neutral and anionic doped silver clusters, Ag5X0,- with X = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni

    International Nuclear Information System (INIS)

    Hou Xinjuan; Janssens, Ewald; Lievens, Peter; Minh Tho Nguyen

    2006-01-01

    Density functional theory (DFT) has been applied to investigate the low-lying electronic states of neutral and anionic transition metal doped silver clusters Ag 5 X 0,- with X = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni using the B3LYP functional with the Stuttgart SDD basis sets. The structural features, frontier orbital energy gaps (HOMO and LUMO), vertical detachment energies, and vertical and adiabatic electronic affinities are evaluated. For all doped silver clusters, both in neutral and anionic states, two-dimensional and three-dimensional low-energy isomers are found to coexist. For neutral clusters, dopant Sc, Ti, V, and Mn atoms largely decrease the frontier orbital energy gaps, while they are markedly increased by Sc and Fe atoms in the anionic clusters. A completely quenched dopant magnetic moment is found in Ag 5 Sc, while high spin magnetic moments are located on the other dopant atoms in Ag 5 X 0,-

  16. Controlled Release of Biologically Active Silver from Nanosilver Surfaces

    OpenAIRE

    Liu, Jingyu; Sonshine, David A.; Shervani, Saira; Hurt, Robert H.

    2010-01-01

    Major pathways in the antibacterial activity and eukaryotic toxicity of nano-silver involve the silver cation and its soluble complexes, which are well established thiol toxicants. Through these pathways, nano-silver behaves in analogy to a drug delivery system, in which the particle contains a concentrated inventory of an active species, the ion, which is transported to and released near biological target sites. Although the importance of silver ion in the biological response to nano-silver ...

  17. clusters

    Indian Academy of Sciences (India)

    2017-09-27

    Sep 27, 2017 ... while CuCoNO, Co3NO, Cu3CoNO, Cu2Co3NO, Cu3Co3NO and Cu6CoNO clusters display stronger chemical stability. Magnetic and electronic properties are also discussed. The magnetic moment is affected by charge transfer and the spd hybridization. Keywords. CumConNO (m + n = 2–7) clusters; ...

  18. cluster

    Indian Academy of Sciences (India)

    has been investigated electrochemically in positive and negative microenvironments, both in solution and in film. Charge nature around the active centre ... in plants, bacteria and also in mammals. This cluster is also an important constituent of a ..... selection of non-cysteine amino acid in the active centre of Rieske proteins.

  19. In situ growth of luminescent silver nanoclusters inside bulk sol-gel silica glasses

    Science.gov (United States)

    El Hamzaoui, Hicham; Capoen, Bruno; Razdobreev, Igor; Bouazaoui, Mohamed

    2017-07-01

    Silver nanocluster-doped glasses are attractive materials for various photonic applications. In this paper, bulk silica glasses doped with luminescent silver nanoclusters have been prepared using the sol-gel technique. As a first step, dense silica glasses doped with ionic silver have been loaded with hydrogen. Thereafter, a heat-treatment in air atmosphere was performed to enable the growth of silver nanoclusters at different temperatures in the range 100-600 °C. The optical properties of the obtained nanocomposites have been studied, as a function of the post-annealing temperature, using optical absorption and photoluminescence spectroscopies. It has been shown that, under UV photoexcitation, the hydrogenated samples, heat-treated between 200 and 500 °C present visible luminescence due to cationic and neutral molecular-like silver clusters, consisting of a small number of Ag atoms or ions. After annealing at 600 °C, further Ag aggregation led to 2 nm-size silver nanoparticles, resulting in a quenching of the visible luminescence.

  20. Preparation of silver nanopatterns on DNA templates

    OpenAIRE

    Dai, Shuxi; Zhang, Xingtang; Li, Tianfeng; Du, Zuliang; Dang, Hongxin

    2010-01-01

    Patterns of silver metal were prepared on DNA networks by a template-directed selective deposition and subsequent metallization process. Scanning force microscopic observations and XPS investigations demonstrated that uniform networks of nanosized silver metal clusters formed after incubation of DNA LB films with silver ions and subsequent chemical reduction of silver ions/DNA films samples. The results showed that this template-directed metallization on DNA LB films provided a simple and eff...

  1. Radical cations in condensed phases

    Energy Technology Data Exchange (ETDEWEB)

    Symons, M.C.R. (Leicester Univ. (UK). Dept. of Chemistry)

    The subject is covered in sections, entitled: introduction (scope of present Review); preparative procedures; alkane and cycloalkane cations; alkene and cyclic alkene cations; alkyl-halide cations; alcohol and ether cations; carbonyl cations (aldehyde, ketone and ester cations); sulphur-centred cations; selenium-centred cations; nitrogen-centred cations; phosphorus-centred cations; tin- and lead-centred cations; aromatic cations; five membered hetero-aromatic cations; vinyl cations; inorganic cations.

  2. Encapsulation of a trinuclear silver(I) cluster by two imido-nitrido metalloligands [{Ti(eta5-C5Me5)(micro-NH)}3(micro3-N)].

    Science.gov (United States)

    Martín, Avelino; Martínez-Espada, Noelia; Mena, Miguel; Yélamos, Carlos

    2007-07-28

    Treatment of the metalloligand [{Ti(eta(5)-C(5)Me(5))(micro-NH)}(3)(micro(3)-N)] with silver(i) trifluoromethanesulfonate in different molar ratios gives the ionic compounds [Ag{(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}(2)][O(3)SCF(3)] and [Ag{(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}][O(3)SCF(3)] or the triangular silver cluster [(CF(3)SO(2)O)(3)Ag(3){(micro(3)-NH)(3)Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)}(2)] in which each face is capped by a metalloligand.

  3. Thermal Methane Activation by a Binary V-Nb Transition-Metal Oxide Cluster Cation: A Further Example for the Crucial Role of Oxygen-Centered Radicals

    Czech Academy of Sciences Publication Activity Database

    Wang, Z. C.; Liu, J. W.; Schlangen, M.; Weiske, T.; Schröder, Detlef; Sauer, J.; Schwarz, H.

    2013-01-01

    Roč. 19, č. 35 (2013), s. 11496-11501 ISSN 0947-6539 Institutional support: RVO:61388963 Keywords : binary oxide cluster * density functional calculations * mass spectrometry * methane activation * radical ions Subject RIV: CC - Organic Chemistry Impact factor: 5.696, year: 2013

  4. Membrane Order Is a Key Regulator of Divalent Cation-Induced Clustering of PI(3,5)P2 and PI(4,5)P2

    Czech Academy of Sciences Publication Activity Database

    Sarmento, Maria Joäo; Coutinho, A.; Fedorov, A.; Prieto, M.; Fernandes, F.

    2017-01-01

    Roč. 33, č. 43 (2017), s. 12463-12477 ISSN 0743-7463 Institutional support: RVO:61388955 Keywords : cell membranes * fluorescence spectroscopy * cluster analysis Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.833, year: 2016

  5. Gas-Phase Chemistry of Vanadium-Oxide Cluster Cations VmOn+ (m = 1 - 4, n = 1 - 10) with Water and Molecular Oxygen

    Czech Academy of Sciences Publication Activity Database

    Feyel, S.; Schröder, Detlef; Schwarz, H.

    -, č. 31 (2008), s. 4961-4967 ISSN 1434-1948 Grant - others:DFG(DE) SFB546 Institutional research plan: CEZ:AV0Z40550506 Keywords : clusters * isotope exchange * mass spectrometry * oxygen * vanadium oxide s Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.694, year: 2008

  6. Membrane Order Is a Key Regulator of Divalent Cation-Induced Clustering of PI(3,5)P2 and PI(4,5)P2

    Czech Academy of Sciences Publication Activity Database

    Sarmento, Maria Joäo; Coutinho, A.; Fedorov, A.; Prieto, M.; Fernandes, F.

    2017-01-01

    Roč. 33, č. 43 (2017), s. 12463-12477 ISSN 0743-7463 Institutional support: RVO:61388955 Keywords : cell membranes * fluorescence spectroscopy * cluster analysis Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor : 3.833, year: 2016

  7. Silver Nanoparticles

    Science.gov (United States)

    Khaydarov, R. R.; Khaydarov, R. A.; Estrin, Y.; Evgrafova, S.; Scheper, T.; Endres, C.; Cho, S. Y.

    The bactericidal effect of silver nanoparticles obtained by a novel electrochemical method on Escherichia coli, Staphylococcus aureus, Aspergillus niger and Penicillium phoeniceum cultures has been studied. The tests conducted have demonstrated that synthesized silver nanoparticles — when added to water paints or cotton fabrics — show a pronounced antibacterial/antifungal effect. It was shown that smaller silver nanoparticles have a greater antibacterial/antifungal efficacy. The paper also provides a review of scientific literature with regard to recent developments in the field of toxicity of silver nanoparticles and its effect on environment and human health.

  8. Silver-coated endotracheal tubes for prevention of ventilator-associated pneumonia in critically ill patients

    NARCIS (Netherlands)

    Tokmaji, George; Vermeulen, Hester; Müller, Marcella C. A.; Kwakman, Paulus H. S.; Schultz, Marcus J.; Zaat, Sebastian A. J.

    2015-01-01

    Ventilator-associated pneumonia (VAP) is one of the most common nosocomial infections in intubated and mechanically ventilated patients. Endotracheal tubes (ETTs) appear to be an independent risk factor for VAP. Silver-coated ETTs slowly release silver cations. It is these silver ions that appear to

  9. Silver Nanoparticles and Graphitic Carbon Through Thermal Decomposition of a Silver/Acetylenedicarboxylic Salt

    Directory of Open Access Journals (Sweden)

    Komninou Philomela

    2009-01-01

    Full Text Available Abstract Spherically shaped silver nanoparticles embedded in a carbon matrix were synthesized by thermal decomposition of a Ag(I/acetylenedicarboxylic acid salt. The silver nanoparticles, which are formed either by pyrolysis at 300 °C in an autoclave or thermolysis in xylene suspension at reflux temperature, are acting catalytically for the formation of graphite layers. Both reactions proceed through in situ reduction of the silver cations and polymerization of the central acetylene triple bonds and the exact temperature of the reaction can be monitored through DTA analysis. Interestingly, the thermal decomposition of this silver salt in xylene partly leads to a minor fraction of quasicrystalline silver, as established by HR-TEM analysis. The graphitic layers covering the silver nanoparticles are clearly seen in HR-TEM images and, furthermore, established by the presence of sp2carbon at the Raman spectrum of both samples.

  10. Discrete Silver(I)-Palladium(II)-Oxo Nanoclusters, {Ag4Pd13} and {Ag5Pd15}, and the Role of Metal-Metal Bonding Induced by Cation Confinement.

    Science.gov (United States)

    Yang, Peng; Xiang, Yixian; Lin, Zhengguo; Lang, Zhongling; Jiménez-Lozano, Pablo; Carbó, Jorge J; Poblet, Josep M; Fan, Linyuan; Hu, Changwen; Kortz, Ulrich

    2016-12-19

    We introduce the class of discrete silver(I)-palladium(II)-oxo nanoclusters with the preparation of {Ag 4 Pd 13 } and {Ag 5 Pd 15 }. Both polyanions represent the first examples of noble metal-capped polyoxo-noble-metalates in a fully inorganic assembly, featuring an unprecedented host-guest mode containing hetero- and homometallic Ag-Pd and Ag-Ag bonding interactions. Comprehensive theoretical calculations suggest that the Ag-Pd metallic bonds originate partially from surface confinement of Ag I guest ions onto the anionic polyoxopalladate host that is induced by strong electrostatic forces. This work opens the field of fully inorganic silver-palladium-oxo nanoclusters, which can be considered as discrete mixed noble metal precursors for the formation of monodisperse core-shell nanoparticles, with high relevance for catalysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ternary Silver Halide Nanocrystals.

    Science.gov (United States)

    Abeyweera, Sasitha C; Rasamani, Kowsalya D; Sun, Yugang

    2017-07-18

    Nanocrystalline silver halides (AgX) such as AgCl, AgBr, and AgI, a class of semiconductor materials with characteristics of both direct and indirect band gaps, represent the most crucial components in traditional photographic processing. The nanocrystal surfaces provide sensitivity specks that can turn into metallic silver, forming an invisible latent image, upon exposure to light. The photographic processing implies that the AgX nanoparticles possess unique properties. First, pristine AgX nanoparticles absorb light only at low efficiency to convert surface AgX into tiny clusters of silver atoms. Second, AgX nanoparticles represent an excellent class of materials to capture electrons efficiently. Third, small metallic silver clusters can catalyze the reduction of AgX nanoparticles to Ag nanoparticles in the presence of mild reducing reagents, known as self-catalytic reduction. These properties indicate that AgX nanoparticles can be partially converted to metallic silver with high precision, leading to the formation of hybrid AgX/Ag nanoparticles. The nanosized metallic Ag usually exhibit intense absorption bands in the visible spectral region due to their strong surface plasmon resonances, which make the AgX/Ag nanoparticles a class of promising visible-light-driven photocatalysts for environmental remediation and CO 2 reduction. Despite the less attention paid to their ability of capturing electrons, AgX nanoparticles might be a class of ideal electron shuttle materials to bridge light absorbers and catalysts on which electrons can drive chemical transformations. In this Account, we focus on ternary silver halide alloy (TSHA) nanoparticles, containing two types of halide ions, which increase the composition complexity of the silver halide nanoparticles. Interdiffusion of halide ions between two types of AgX at elevated temperatures has been developed for fabricating ternary silver halide alloy crystals, such as silver chlorobromide optical fibers for infrared

  12. Silver niobates

    International Nuclear Information System (INIS)

    Tanirbergenov, B.; Rozhenko, S.P.

    1979-01-01

    By means of determination of residual concentrations and pH measurements investigated are the AgNO 3 -KNbO 3 -H 2 O, AgNO 3 -K 3 NbO 4 -H 2 O, AgNO 3 -K 8 Nb 16 O 19 -H 2 O systems and established is formation of meta-, ortho-and hexaniobates of silver. AgNbO 3 x H 2 O, Ag 8 Nb 6 O 19 x 6H 2 O and Ag 3 NbO 3 x 2.5H 2 O are separated from aqueous solution. Using the methods of differential-thermal, thermogravimetric and X-ray-phase analyses it is shown that silver metaniobate transforms into the crystal state at 530 deg C. Ortho- and hexaniobate of silver decompose at 500 deg C with formation of silver metaniobate and metal silver

  13. A novel explanation for the enhanced colloidal stability of silver nanoparticles in the presence of an oppositely charged surfactant.

    Science.gov (United States)

    Skoglund, Sara; Blomberg, Eva; Wallinder, Inger Odnevall; Grillo, Isabelle; Pedersen, Jan Skov; Bergström, L Magnus

    2017-10-25

    The structural behavior in aqueous mixtures of negatively charged silver nanoparticles (Ag NPs) together with the cationic surfactants cetyltrimethylammonium bromide (CTAB) and dodecyltrimethylammonium chloride (DTAC), respectively, has been investigated using SANS and SAXS. From our SANS data analysis we are able to conclude that the surfactants self-assemble into micellar clusters surrounding the Ag NPs. We are able to quantify our results by means of fitting experimental SANS data with a model based on cluster formation of micelles with very good agreement. Based on our experimental results, we propose a novel mechanism for the stabilization of negatively charged Ag NPs in a solution of positively charged surfactants in which cluster formation of micelles in the vicinity of the particles prevents the particles from aggregating. Complementary SAXS and DLS measurements further support this novel way of explaining stabilization of small hydrophilic nanoparticles in surfactant-containing solutions.

  14. Isomerization of propargyl cation to cyclopropenyl cation ...

    Indian Academy of Sciences (India)

    step) for isomerization of the linear propargyl cation to the aromatic cyclopropenyl cation, also probing the phenomenon of solvation of this reaction by simple lone pair donors (NH3, H2O, H2S and HF) which bind to the substrate at two sites.

  15. Computer simulation of superionic conductors: II. Cationic conductors. Review

    International Nuclear Information System (INIS)

    Ivanov-Shitz, A. K.

    2007-01-01

    The state of the art of the molecular-dynamics simulation of superionic conductors is reviewed. The main studies devoted to the structural, dynamic, and transport properties of the basic classes of solid electrolytes with conductivity via silver, copper, lithium, sodium, and hydrogen cations are considered. The premelting effect in ionic crystals is discussed

  16. XPS characterization of silver exchanged ETS-10 and mordenite molecular sieves.

    Science.gov (United States)

    Anson, A; Maham, Y; Lin, C C H; Kuznicki, T M; Kuznicki, S M

    2009-05-01

    Silver exchanged molecular sieves ETS-10 (Ag-ETS-10) and mordenite (Ag-mordenite) were dehydrated under vacuum at temperatures between 100 degrees C-350 degrees C. Changes in the state of the silver were studied using X-ray photoelectron spectroscopy (XPS). Silver cations in titanosilicate Ag-ETS-10 are fully reduced to Ag(0) at temperatures as low as 150 degrees C. The characteristic features of the XPS spectrum of silver in this Ag-ETS-10 species correspond to only metallic silver. The signal for metallic silver is not observed in the XPS spectrum of aluminosilicate Ag-mordenite, indicating that silver cations are not reduced, even after heating to 350 degrees C.

  17. Implications of Pearl, Gold, Silver (PGS) craft industrial cluster towards settlements region in Karang Pule Village, Sekarbela District Of Mataram City

    Science.gov (United States)

    Sushanti, I. R.; Fitri, I. S.

    2017-06-01

    The existence of industry clusters in Mataram City gave effect to the surrounding residential areas [1]. In accordance Spatial Plan of Mataram City in 2011-2031 PGS industry cluster in the village of Karang Pule, Sekarbela district established as shopping tourism area. Distribution of industrial locations were in four of seven environments in Karang Pule. Distribution of PGS industry is divided into three (3) groups: craftsmen, craftsmen who is also a seller, and the seller (merchant). The location of the craftsmen, craftsmen who are also businessmen and entrepreneurs are also used as a dwelling house or workshop and store. So most of the people living in settlements around clusters of industry that there is a link between industry cluster and settlements. This study aims to determine the implications or the impact of the presence of PGS industry clusters the surrounding residential areas. The method used in this research is descriptive qualitative with the collection of primary data through direct observation and questionnaires. Based on direct observation on the shopping tourism area there are inequality between the conditions of industry clusters and settlements area by the presence of slums. The results showed that the PGS industry cluster impact on social, economic and environment near settlements area. Impacts that occur are: 1) the social aspect, there is a significant change in the level of education, social welfare and social disparities but less significant to the formation of institutions, particularly in community participation, 2) the economic aspect of the change status of community work, and increased revenue and 3) the environmental aspects of the change to the condition of the building, the quality of public housing, the presence of slums, changes in infrastructure and the environmental pollution.

  18. Excitations in clusters

    International Nuclear Information System (INIS)

    Bertsch, G.F.

    2001-01-01

    Statistical reaction theory is an important tool for understanding dynamic processes in clusters as well as for extracting information about theirs energetics. The author reviews the statistical reaction theory and establishes formulas concerning cluster evaporation rates, electron emission and radiative cooling. The author recalls a number of useful formulas for describing the electromagnetic properties of small particles, generalizes them and applies them in the case of alkali metal clusters and of silver clusters. The author ends discussing carbon structures, going from small clusters and molecules to fullerenes and nano-tubes. (A.C.)

  19. INTERACTION OF SILVER MOLECULAR CLUSTERS, INTRODUCED BY LOW-TEMPERATURE ION EXCHANGE METHOD, WITH NANOPARTICLES OF CdS IN FLUORINE PHOSPHATE GLASSES

    Directory of Open Access Journals (Sweden)

    N. D. Grazhdanov

    2015-09-01

    Full Text Available Glasses with metallic and semi-conductive nano-particles appear to be perspective non-linear and luminescent materials of photonics. It was shown in theory that composite optical materials containing semi-conductive CdS-core with Ag shell (or vice versa are optimal for enhancement of non-linear Kerr effect. Interaction of such an ensemble of particles leads to the forming of Ag island structures on the CdS particle, and formation of acanthite Ag2S on the two phases border (CdS-Ag is minimal. In glasses synthesis of CdS quantum dots occurred due to thermal treatment close to glass transition temperature; introduction of silver was realized by low-temperature ion exchange (LIE. The main object of this work is investigation of Ag+ -LIE effect on the growth of CdS nano-particles. Two glasses were explored in this work: without CdS (glass 1 and with CdS (glass 2, processed by LIE at the temperature of 320°С for 10, 20 and 30 minutes and subsequent heat treatment at temperatures of 410°С and 420°С. In case of glass 1, intensive luminescence appears as a result of LIE, and subsequent heat treatment results in surface resonance at λ=410 nm. In case of glass 2, absorbance spectra change appears that is specific for formation of acanthite and weak luminescence shifting to long-wavelength region (from 550 to 700 nm as a result of applying LIE and heat treatment. It indicates the growth of CdS quantum dots. Experiment has shown that quantum efficiency increases to 70% for glass 2 containing CdS quantum dots without LIE, while glass that contains silver shows steep decrease of quantum efficiency to 0%. That decrease is caused by formation of acanthite Ag2S on the surface of CdS quantum dot.

  20. Selective crystallization of cations with crown ethers

    International Nuclear Information System (INIS)

    Heffels, Dennis Egidius

    2014-01-01

    The aim of this work was to study the selectivity and preferences of the incorporation of differently sized cations in the cavities of various crown ethers and the characterization of the resulting compounds. The coordination preferences of crown ethers with different cavities have long been known, and the impact of other effects on the structure formation have increasingly become the focus of attention. In this work a comparative overview of the coordination preferences depending on various factors was undertaken. The focus was mainly on the variation of the cavity of the crown ether in the presence of differently sized cations. In addition, the effects of the solvent and differently coordinating anions have been investigated. Within the framework of this work, basic coordination preferences could be detected with rare earth nitrates, which are affected particularly by the choice of the solvent. The formation of different types of structures could be controlled by varying the conditions such that the incorporation of the cation in the cavity of the crown ether was influenced and the formation of a particular type of structure can be influenced partly by the choice of solvent. In this case no direct preferences for the incorporation into the cavity of the crown ether in relation to the cation size were observed for rare earth cations. However, the coordination of the crown ether leads in each case - for lanthanides - to rather high coordination numbers. A total of five new rare earth complexes and two structural variants could be observed with crown ethers. In the study of the selectivity of the incorporation into the cavity, known structures were also reproduced and further structures were characterized but the crystal structures not entirely solved. With the use of monovalent cations such as potassium, lithium or silver a total of nine new compounds could be synthesized, while no clear preferences for the incorporation of certain cations were detected. The

  1. Thermally induced morphological transition of silver fractals

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey; Kébaili, Nouari

    2014-01-01

    We present both experimental and theoretical study of thermally induced morphological transition of silver nanofractals. Experimentally, those nanofractals formed from deposition and diffusion of preformed silver clusters on cleaved graphite surfaces exhibit dendritic morphologies that are highly...... sensitive to any perturbation, particularly caused by temperature. We analyze and characterize the morphological transition both in time and temperature using the recently developed Monte Carlo simulation approach for the description of nanofractal dynamics and compare the obtained results...

  2. Metal Cationization Extractive Electrospray Ionization Mass Spectrometry of Compounds Containing Multiple Oxygens

    Science.gov (United States)

    Swanson, Kenneth D.; Spencer, Sandra E.; Glish, Gary L.

    2017-06-01

    Extractive electrospray ionization is an ambient ionization technique that allows real-time sampling of liquid samples, including organic aerosols. Similar to electrospray ionization, the composition of the electrospray solvent used in extractive electrospray ionization can easily be altered to form metal cationized molecules during ionization simply by adding a metal salt to the electrospray solvent. An increase in sensitivity is observed for some molecules that are lithium, sodium, or silver cationized compared with the protonated molecule formed in extractive electrospray ionization with an acid additive. Tandem mass spectrometry of metal cationized molecules can also significantly improve the ability to identify a compound. Tandem mass spectrometry of lithium and silver cationized molecules can result in an increase in the number and uniqueness of dissociation pathways relative to [M + H]+. These results highlight the potential for extractive electrospray ionization with metal cationization in analyzing complex aerosol mixtures. [Figure not available: see fulltext.

  3. Russell-Silver syndrome

    Science.gov (United States)

    Silver-Russell syndrome; Silver syndrome; RSS; Russell-Silver syndrome ... One in 10 children with this syndrome has a problem involving chromosome 7. In other people with the syndrome, it may affect chromosome 11. Most of the time, it ...

  4. Isomerization of propargyl cation to cyclopropenyl cation ...

    Indian Academy of Sciences (India)

    step) for isomeri- zation of the linear propargyl cation to ..... C3, C4 and C5. The ZPE corrections in each case are derived from the. B3LYP calculations. ..... the converse of which gives the relative capacity of the. LPD's to stabilize TS6 with respect ...

  5. Description of plasmon-like band in silver clusters: the importance of the long-range Hartree-Fock exchange in time-dependent density-functional theory simulations.

    Science.gov (United States)

    Rabilloud, Franck

    2014-10-14

    Absorption spectra of Ag20 and Ag55(q) (q = +1, -3) nanoclusters are investigated in the framework of the time-dependent density functional theory in order to analyse the role of the d electrons in plasmon-like band of silver clusters. The description of the plasmon-like band from calculations using density functionals containing an amount of Hartree-Fock exchange at long range, namely, hybrid and range-separated hybrid (RSH) density functionals, is in good agreement with the classical interpretation of the plasmon-like structure as a collective excitation of valence s-electrons. In contrast, using local or semi-local exchange functionals (generalized gradient approximations (GGAs) or meta-GGAs) leads to a strong overestimation of the role of d electrons in the plasmon-like band. The semi-local asymptotically corrected model potentials also describe the plasmon as mainly associated to d electrons, though calculated spectra are in fairly good agreement with those calculated using the RSH scheme. Our analysis shows that a portion of non-local exchange modifies the description of the plasmon-like band.

  6. Investigation on silver complexes of novel 1,2,3-triazole linked ...

    Indian Academy of Sciences (India)

    Abstract. The novel derivatives of 1,2,3-triazole linked crown ethers were investigated towards silver(I) ion coordination. The NMR measurements in deuterated methanol in different ratios of ligand and silver cation were studied. The experiments were performed in order to examine the way of binding Ag(I) ion by the ...

  7. Investigation on silver complexes of novel 1, 2, 3-triazole linked ...

    Indian Academy of Sciences (India)

    The novel derivatives of 1,2,3-triazole linked crown ethers were investigated towards silver(I) ion coordination. The NMR measurements in deuterated methanol in different ratios of ligand and silver cation were studied. The experiments were performed in order to examine the way of binding Ag(I) ion by the selected ligands.

  8. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    NARCIS (Netherlands)

    Richter, A.P.; Brown, J.S.; Bharti, B.; Wang, A.; Gangwal, S.; Houck, K.; Cohen Hubal, E.A.; Paunov, V.N.; Stoyanov, S.D.; Velev, O.D.

    2015-01-01

    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to

  9. Investigation on silver complexes of novel 1,2,3-triazole linked ...

    Indian Academy of Sciences (India)

    The novel derivatives of 1,2,3-triazole linked crown ethers were investigated towards silver(I) ion coordination. The NMR measurements in deuterated methanol in different ratios of ligand and silver cation were studied. The experiments were performed in order to examine the way of binding Ag(I) ion by the selected ligands.

  10. Cation Exchange Water Softeners

    Science.gov (United States)

    WaterSense released a notice of intent to develop a specification for cation exchange water softeners. The program has made the decision not to move forward with a spec at this time, but is making this information available.

  11. Enhancement of metal bioleaching from contaminated sediment using silver ion.

    Science.gov (United States)

    Chen, Shen-Yi; Lin, Jih-Gaw

    2009-01-30

    A silver-catalyzed bioleaching process was used to remove heavy metals from contaminated sediment in this study. The effects of silver concentration added on the performance of bioleaching process were investigated. High pH reduction rate was observed in the bioleaching process with silver ion. The silver ion added in the bioleaching process was incorporated into the lattice of the initial sulfide through a cationic interchange reaction. This resulted in the short lag phase and high metal solubilization in the bioleaching process. The maximum pH reduction rate and the ideal metal solubilization were obtained in the presence of 30 mg/L of silver ion. When the added silver ion was greater than 30 mg/L, the rates of pH reduction and metal solubilization gradually decreased. The solubilization efficiencies of heavy metals (Cu, Zn, Mn, Ni and Cr) were relatively high in the silver-enhanced bioleaching process, except Pb. No apparent effect of silver ion on the growth of sulfur-oxidizing bacteria was found in the bioleaching. These results indicate that the kinetics of metal solubilization can be enhanced by the addition of silver ion.

  12. Synthesis and characterization of silver nanoparticles in AOT microemulsion system

    Science.gov (United States)

    Zhang, Wanzhong; Qiao, Xueliang; Chen, Jianguo

    2006-11-01

    Colloidal silver nanoparticles have been synthesized in water-in-oil microemulsion using silver nitrate solubilized in the water core of one microemulsion as source of silver ions, hydrazine hydrate solubilized in the water core of another microemulsion as reducing agent, dodecane as the oil phase, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as the surfactant. The UV-vis absorption spectra and transmission electron microscopy (TEM) have been used to trace the growth process and elucidate the structure of the silver nanoparticles. UV-vis spectra show that the Ag4+ intermediates formed at early stages of the reaction and then the clusters grow or aggregate to larger nanoparticles. TEM micrographs confirm that the silver nanoparticles are all spherical. The resulting particles have a very narrow size distribution. Meanwhile, the diameter size of the particles is so small that the smallest mean diameter is only 1.6 nm. IR results show that the surfactant molecules are strongly adsorbed on the surface of silver particles through a coordination bond between the silver atom and the sulfonic group of AOT molecules, which endows the particles with a good stability in oil solvents. As dodecane is used as oil solvent to prepare silver nanoparticles, the formed nano-silver sol is almost nontoxic. As a result, the silver nanoparticles need not be separated from the reaction solution and the silver sol may be directly used in antibacterial fields.

  13. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  14. Cation-cation interaction in neptunyl(V) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krot, N.N. [Russian Academy of Sciences, Institute of Physical Chemistry (Russian Federation); Saeki, Masakatsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The original manuscript was prepared by Professor N.N. Krot of Institute of Physical Chemistry, Russian Academy of Sciences, in 1997. Saeki tried to translate that into Japanese and to add some new data since 1997. The contents include the whole picture of cation-cation interactions mainly in 5-valence neptunium compounds. Firstly, characteristic structures of neptunium are summarized of the cation-cation bonding in compounds. Secondly, it is mentioned how the cation-cation bonding affects physical and chemical properties of the compounds. Then, characterization-methods for the cation-cation bonding in the compounds are discussed. Finally, the cation-cation interactions in compounds of other actinide-ions are shortly reviewed. (author)

  15. The nature of electronic excitations at the metal-bioorganic interface illustrated on histidine-silver hybrids.

    Science.gov (United States)

    Sanader, Željka; Mitrić, Roland; Bonačić-Koutecký, Vlasta; Bellina, Bruno; Antoine, Rodolphe; Dugourd, Philippe

    2014-01-21

    We present a joint theoretical and experimental study of the structure selective optical properties of cationic and anionic histidine-silver complexes with Ag and Ag3 which were prepared in the gas phase using mass spectroscopy coupled to electrospray ion source. Our TDDFT calculations provide general insight into the nature of electronic excitations at the metal-bioorganic interface that involve π-π* excitation within bioorganic subunits, charge transfer between two subunits and intrametallic excitations. The binding of silver to histidine, one of the most important amino acids, induces red shift in the optical absorption of protonated histidine particularly for anionic species. The presence of the smallest metallic subunit Ag3 increases the intensity of low energy transitions of histidine illustrating a metal cluster-induced enhancement of absorption of biomolecules in hybrid systems. Comparison of calculated absorption spectra with experimental photofragmentation yield provides structural assignment of the measured spectroscopic patterns. Our findings may serve to establish silver-labeling as the tool for the detection of histidine or histidine-tagged proteins.

  16. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver.

    Science.gov (United States)

    Ivask, Angela; Elbadawy, Amro; Kaweeteerawat, Chitrada; Boren, David; Fischer, Heidi; Ji, Zhaoxia; Chang, Chong Hyun; Liu, Rong; Tolaymat, Thabet; Telesca, Donatello; Zink, Jeffrey I; Cohen, Yoram; Holden, Patricia Ann; Godwin, Hilary A

    2014-01-28

    Silver nanoparticles (Ag NPs) are commonly added to various consumer products and materials to impair bacterial growth. Recent studies suggested that the primary mechanism of antibacterial action of silver nanoparticles is release of silver ion (Ag(+)) and that particle-specific activity of silver nanoparticles is negligible. Here, we used a genome-wide library of Escherichia coli consisting of ∼4000 single gene deletion mutants to elucidate which physiological pathways are involved in how E. coli responds to different Ag NPs. The nanoparticles studied herein varied in both size and surface charge. AgNO3 was used as a control for soluble silver ions. Within a series of differently sized citrate-coated Ag NPs, smaller size resulted in higher Ag ion dissolution and toxicity. Nanoparticles functionalized with cationic, branched polyethylene imine (BPEI) exhibited equal toxicity with AgNO3. When we used a genome-wide approach to investigate the pathways involved in the response of E. coli to different toxicants, we found that only one of the particles (Ag-cit10) exhibited a pattern of response that was statistically similar to that of silver ion. By contrast, the pathways involved in E. coli response to Ag-BPEI particles were more similar to those observed for another cationic nanoparticle that did not contain Ag. Overall, we found that the pathways involved in bacterial responses to Ag nanoparticles are highly dependent on physicochemical properties of the nanoparticles, particularly the surface characteristics. These results have important implications for the regulation and testing of silver nanoparticles.

  17. Two new polyoxometalate-based hybrids consisting of Keggin-type cluster modified by (Ag4) group

    International Nuclear Information System (INIS)

    Zhao, Xiaofang; Sun, Xiaowei; Han, Zhangang; Zhao, Chuan; Yu, Haitao; Zhai, Xueliang

    2013-01-01

    Two new supramolecular polyoxometalate compounds [Ag 2 (mbpy) 3 ][Ag(mbpy) 2 ][PW 12 O 40 ] (1) and [Ag 2 (mbpy) 3 ] 2 [SiW 12 O 40 ] (2) (mbpy=4,4'-dimethyl-2,2'-dipyridyl), have been hydrothermally synthesized and characterized by IR, TG, and single-crystal X-ray diffraction techniques. The structural feature of 1–2 is in the cationic moiety of a tetra-core (Ag 4 ) cluster through weak Ag…Ag interactions. The silver(I) centers show three-, four- and five-coordinated geometries. In 1 the tetrameric silver atoms in ([Ag 2 (mbpy) 3 ] 2 ) 4+ covalently bind to [PW 12 O 40 ] 3− anion via Ag3O bonds, while there is only intermolecular hydrogen bonding between ([Ag 2 (mbpy) 3 ] 2 ) 4+ and [SiW 12 O 40 ] 4− in 2. The coordination environments of the tetrameric silver cations have a great influence on the structure richness of the Keggin-based hybrids. The fluorescence properties of compounds 1 and 2 also have been discussed. - Graphical abstract: New polyoxometalate-based hybrids consisting of Keggin-type clusters modified by (Ag 4 ) groups had been synthesized and characterized, and their photoluminescence properties were also discussed. Display Omitted - Highlights: • Two Keggin-type polyoxometalates consisting of (Ag 4 ) clusters through weak Ag…Ag interactions have been synthesized. • There exist face-to-face and dot-to-face π…π interactions in (Ag-ligand) 4 fragment. • The fluorescence properties of (Ag 4 ) modified POMs are also discussed

  18. Synthesis and characterization of myristic acid capped silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, P. K., E-mail: pkkhanna@cmet.gov.in; Kulkarni, Deepti; Beri, Rupinder K. [Nanoscience Group, Centre for Materials for Electronics Technology (C-MET) (India)

    2008-08-15

    Reduction of silver myristate (AgMy) under mild thermal reaction conditions in a dipolar aprotic solvent i.e. N, N-dimethylformamide (DMF) has been carried out. UV-visible absorption measurements of dried and re-dispersible brown flocculants showed broad features of surface plasmon resonance (SPR) due to silver nanoparticles. The freshly isolated particles showed absorption bands at 414 and 485 nm, respectively, due to inter-particle coupling or clustering of silver ions and silver atoms. X-ray diffraction (XRD) pattern of fcc zero-valent silver resulted in crystallite size of about 10 nm. Scanning electron microscopy (SEM) revealed formation of rod shaped silver with increasing reaction temperature. Thermal analysis (TGA) showed about 10% weight loss due to organic capping.

  19. A tetrakis(amido)phosphonium cation containing 2-pyridyl ( Py ...

    Indian Academy of Sciences (India)

    P-N compounds; imido P(V) anions; silver (I) complexes; cluster compounds; N-H bond deprotonation. 1. Introduction. Phosphorus-bound poly-imido anions have found a re- surgent research interest due to their ability to act as multi-site ligands in coordination chemistry.1 Several of the P(V)-imido metal complexes have ...

  20. Nanocrystalline silver dressings in wound management: a review

    Science.gov (United States)

    Fong, Joy; Wood, Fiona

    2006-01-01

    This paper describes the properties of nanocrystalline silver products (Acticoat™) and their applications and examines available evidence supporting their use in wound management. Acticoat utilizes nanotechnology to release nanocrystalline silver crystals. Acticoat releases 30 times less silver cations than silversulfadiazine cream or 0.5% silver nitrate solution but more of the silver released (by Acticoat). Silver-impregnated slow-release dressings release minute concentrations of silver which are quickly bound up by the chloride in the wound exudate. While extrapolations from in vitro and animal studies are cautious, evidence from these studies suggests Acticoat is: effective against most common strains of wound pathogens; can be used as a protective covering over skin grafts; has a broader antibiotic spectrum activity; and is toxic to keratinocytes and fibroblasts. Animal studies suggest a role for nanocrystalline silver in altering wound inflammatory events and facilitation of the early phase of wound healing. Quality human clinical trials into nanocrystalline silver are few. However, evidence suggests using Acticoat in wound management is cost effective, reduces wound infection, decreases the frequency of dressing changes and pain levels, decreases matrix metalloproteinase activity, wound exudate and bioburden levels, and promotes wound healing in chronic wounds. Although there is no in vivo evidence to suggest nanocrystalline silver is toxic to human keratinocytes and fibroblasts, there is in vitro evidence to suggest so; thus these dressings should be used cautiously over epithelializing and proliferating wounds. Future clinical research, preferably randomized controlled trials into nanocrystalline silver technology, may provide clinicians a better understanding of its applications in wound management. PMID:17722278

  1. Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

    Directory of Open Access Journals (Sweden)

    Jes Ærøe Hyllested

    2015-01-01

    Full Text Available Chemicals typically available in plants have the capability to reduce silver and gold salts and to create silver and gold nanoparticles. We report the preparation of silver nanoparticles with sizes between 10 and 300 nm from silver nitrate using fruit extract collected from pineapples and oranges as reducing agents. The evolvement of a characteristic surface plasmon extinction spectrum in the range of 420 nm to 480 nm indicates the formation of silver nanoparticles after mixing silver nitrate solution and fruit extract. Shifts in plasmon peaks over time indicate the growth of nanoparticles. Electron microscopy shows that the shapes of the nanoparticles are different depending on the fruit used for preparation. The green preparation process can result in individual nanoparticles with a very poor tendency to form aggregates with narrow gaps even when aggregation is forced by the addition of NaCl. This explains only modest enhancement factors for near-infrared-excited surface enhanced Raman scattering. In addition to the surface plasmon band, UV–visible absorption spectra show features in the UV range which indicates also the presence of small silver clusters, such as Ag42+. The increase of the plasmon absorption correlates with the decrease of absorption band in the UV. This confirms the evolution of silver nanoparticles from silver clusters. The presence of various silver clusters on the surface of the “green” plasmonic silver nanoparticles is also supported by a strong multicolor luminesce signal emitted by the plasmonic particles during 473 nm excitation.

  2. Identifi cation of Sectarianism

    Directory of Open Access Journals (Sweden)

    Martinovich Vladimir

    2016-03-01

    Full Text Available «New religious movements and society» is traditionally one of the most sophisticated topics in the area of new religions studies. Its problem field is so huge that up to now by far not all important research themes where even touched by scientists from all over the world. The problem of the process of the identification of sectarianism by diff erent societal institutions is one of such untouched themes that is taken as the main subject of this article. This process by itself is an inseparable part of the every societal deliberate reaction to the very existence of unconventional religiosity, its unstructured and mainly structured types. The focal point of the article is step-by-step analysis of the general structure elements of the process of the identification of sectarianism without any reference to the specific time and place of its flow. Special attention is paid to the analysis of the subjects of the identification of sectarianism, to the criteria for religious groups to be qualified as new religious movements, and to the specific features of the process of documents filtration. The causes of selective perception of sectarianism are disclosed. Some main consequences and unpredictable outcomes of the process of the identification of sectarianism are described.

  3. Activity of Antimicrobial Silver Polystyrene Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Palomba

    2012-01-01

    Full Text Available A simple technique based on doping polymers with in situ generated silver nanoparticles (Ag/PS films has been developed. In particular, an antiseptic material has been prepared by dissolving silver 1,5-cyclooctadiene-hexafluoroacetylacetonate in amorphous polystyrene, and the obtained solid solution has been heated for ca. 10 s at a convenient temperature (180°C. Under such conditions the metal precursor decomposes producing silver atoms that diffuse into the polymer and clusterize. The antimicrobial characteristics of the resulting polystyrene-based material have been accurately evaluated toward Escherichia coli (E. coli comparing the cytotoxicity effect of 10 wt.% and 30 wt.% (drastic and mild annealing silver-doped polystyrene to the corresponding pure micrometric silver powder. Two different bacterial viability assays were performed in order to demonstrate the cytotoxic effect of Ag/PS films on cultured E. coli: (1 turbidimetric determination of optical density; (2 BacLight fluorescence-based test. Both methods have shown that silver-doped polystyrene (30 wt.% provides higher antibacterial activity than pure Ag powder, under similar concentration and incubation conditions.

  4. Radiation-chemical decomposition of heavy metal azides; silver azide radiolysis kinetics

    International Nuclear Information System (INIS)

    Ryabykh, S.M.

    1985-01-01

    The complex kinetics study of radiation-chemical silver azide decomposition in anion and cation sublattices has been made using three mutually complemented techniques; nitrogen detection evolving into the environment, nitrogen kept by the crystal lattice after dissolving the irradiated crystal, and chemical analysis of silver separated after dissolving irradiated samples in a variety of solvents. The dissolution of irradiated silver azide was stated to have been complicated by complex secondary processes catalyzed with radiolytic silver particles. The possible model of those processes resulting in silver particle autodevelopment has been suggested. Kinetics mechanisms of metal accumulation and nitrogen kept by the crystal lattice have been considered. The facts regarding silver particle formation on the surface impurity centers located in the deformed crystal areas in the vicinity of surface macrodefects have been deduced. The parameters of formation stages and radiolytic silver particle growth have been estimated. The comparable analysis of silver azide radiolysis kinetics in anion and cation sub-lattices has been made and the relationship of these processes during silver particle formation has been obtained. (author)

  5. EXTRACTION CHARACTERISTICS OF THE CATION OF ALKYLDIMETHYLBENZYLAMMONIUM CHLORIDE AT THE PHASE BOUNDARY WATER-MEMBRANE SOLVENT

    Directory of Open Access Journals (Sweden)

    O. V. Luganska

    2015-06-01

    Full Text Available The extraction coefficients of the cation of alkyldimethylbenzylammonium chloride at the phase boundary water-tricresylphosphate, water-dioctylphthalate, water-dibutylphtalate have been determined by the potentiometric titration of the aqueous phase with a silver electrode. The correctness of the obtained results has been proved by the titrimetric method with visual fixation of the equivalence point using methylene blue indicator.

  6. New Horizons in Cationic Photopolymerization

    Directory of Open Access Journals (Sweden)

    Marco Sangermano

    2018-01-01

    Full Text Available In this review, we report some recent advances and new horizons in UV-induced cationic photopolymerization. In particular, after a brief introduction on the discovery and affirmation of the cationic photopolymerization process, new efforts in the synthesis of cationic photoinitiators are reported. Subsequently, an interesting and absolutely new application is reported, related to the combination of Radical-Induced Cationic Photopolymerization with Frontal Polymerization, achieving the cross-linking of epoxy composites.

  7. Reduction and aggregation of silver in aqueous gelatin and silica suspensions

    International Nuclear Information System (INIS)

    Kapoor, S.; Lawless, D.; Kennepohl, P.; Meisel, D.; Serpone, N.

    1994-01-01

    The investigation of silver reduction and aggregation processes are of specific interest to the photographic industry, which relies heavily on photochemical equivalents of these reactions. Mechanistic insights into the formation of small silver clusters in aqueous solution have been obtained from both pulse and γ-radiolytic studies. This paper examines the reduction of silver ions and the subsequent formation of silver clusters in aqueous gelatin solutions and on colloidal silica particles using the pulse radiolysis technique. The aggregation processes are compared with the parallel reactions in aqueous solutions

  8. Direct patterning of silver particles on porous silicon by inkjet printing of a silver salt via in-situ reduction.

    Science.gov (United States)

    Chiolerio, Alessandro; Virga, Alessandro; Pandolfi, Paolo; Martino, Paola; Rivolo, Paola; Geobaldo, Francesco; Giorgis, Fabrizio

    2012-09-06

    We have developed a method for obtaining a direct pattern of silver nanoparticles (NPs) on porous silicon (p-Si) by means of inkjet printing (IjP) of a silver salt. Silver NPs were obtained by p-Si mediated in-situ reduction of Ag+ cations using solutions based on AgNO3 which were directly printed on p-Si according to specific geometries and process parameters. The main difference with respect to existing literature is that normally, inkjet printing is applied to silver (metal) NP suspensions, while in our experiment the NPs are formed after jetting the solution on the reactive substrate. We performed both optical and scanning electron microscopes on the NPs traces, correlating the morphology features with the IjP parameters, giving an insight on the synthesis kinetics. The patterned NPs show good performances as SERS substrates.

  9. Polystyrene Based Silver Selective Electrodes

    Directory of Open Access Journals (Sweden)

    Shiva Agarwal

    2002-06-01

    Full Text Available Silver(I selective sensors have been fabricated from polystyrene matrix membranes containing macrocycle, Me6(14 diene.2HClO4 as ionophore. Best performance was exhibited by the membrane having a composition macrocycle : Polystyrene in the ratio 15:1. This membrane worked well over a wide concentration range 5.0×10-6–1.0×10-1M of Ag+ with a near-Nernstian slope of 53.0 ± 1.0 mV per decade of Ag+ activity. The response time of the sensor is <15 s and the membrane can be used over a period of four months with good reproducibility. The proposed electrode works well in a wide pH range 2.5-9.0 and demonstrates good discriminating power over a number of mono-, di-, and trivalent cations. The sensor has also been used as an indicator electrode in the potentiometric titration of silver(II ions against NaCl solution. The sensor can also be used in non-aqueous medium with no significant change in the value of slope or working concentration range for the estimation of Ag+ in solution having up to 25% (v/v nonaqueous fraction.

  10. Template assisted solid state electrochemical growth of silver micro- and nanowires

    International Nuclear Information System (INIS)

    Peppler, Klaus; Janek, Juergen

    2007-01-01

    We report on a template based solid state electrochemical method for fabricating silver nanowires with predefined diameter, depending only on the pore diameter of the template. As templates we used porous silicon with pore diameters in the μm range and porous alumina with pore diameters in the nm range. The template pores were filled with silver sulfide (a mixed silver cation and electronic conductor) by direct chemical reaction of silver and sulfur. The filled template was then placed between a silver foil as anode (bottom side) and a microelectrode (top side) as cathode. An array of small cylindrical transference cells with diameters in the range of either micro- or nanometers was thus obtained. By applying a cathodic voltage to the microelectrode silver in the form of either micro- or nanowires was deposited at about 150 deg. C. The growth rate is controllable by the electric current

  11. Optimization of silver-dielectric-silver nanoshell for sensing applications

    International Nuclear Information System (INIS)

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-01-01

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell

  12. Optimization of silver-dielectric-silver nanoshell for sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Shirzaditabar, Farzad; Saliminasab, Maryam [Department of Physics, Razi University, Kermanshah 67144-15111 (Iran, Islamic Republic of)

    2013-08-15

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell.

  13. Metal cation uptake and reduction kinetics in microalgal cell culture

    Science.gov (United States)

    Kare, Anudeep

    This work was conducted to create a bio synthetic process for production of sustainable Nano materials, such as Noble metal nanoparticles with the use of living organisms as catalysts. Dactylococcus, Coelastrella and Chlamydomonas reinhardtii are the different species of algae used through which the Au and Ag nanoparticles are extracted. Under the appropriate bioprocess conditions phototrophic algal cell cultures can catalyze the conversion of soluble metal cations, such as trivalent gold cation (Au+3), to metallic gold nanoparticles (Au0 NP) and silver cation (Ag+) to metallic silver nanoparticles (Ag0 NP). The primary objective of this experiment is to identify the rate-limiting kinetics such as, mixing, biological, pH and so forth to see whether a scalable process can be proposed for production of these high valued materials. It is proposed in the literature that the reducing power required to drive this reaction is derived from the electron flux produced in the algae's photosynthetic apparatus. However, due to the lack of fundamental knowledge about the transport and kinetics, and therefore the bottlenecks and key process parameters, there is currently no scalable, controllable phototrophic system has been developed for the production of metallic nanoparticles.

  14. Selective Facet Reactivity During Cation Exchange in Cadmium Sulfide Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Sadtler, Bryce; Demchenko, Denis; Zheng, Haimei; Hughes, Steven; Merkle, Maxwell; Dahmen, Ulrich; Wang, Lin-Wang; Alivisatos, A. Paul

    2008-12-18

    The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper I (Cu+) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu2S) grows inwards from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver I (Ag+) exchange in CdS nanorods where non-selective nucleation of silver sulfide (Ag2S) occurs. From interface formation energies calculated for several models of epitaxialconnections between CdS and Cu2S or Ag2S, we infer the relative stability of each interface during the nucleation and growth of Cu2S or Ag2S within the CdS nanorods. The epitaxial connections of Cu2S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. However, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.

  15. Molecular weight evaluation of poly-dimethylsiloxane on solid surfaces using silver deposition/TOF-SIMS

    Science.gov (United States)

    Inoue, Masae; Murase, Atsushi

    2004-06-01

    Molecular ions include information about end groups, functional groups and molecular weight. A method for directly detecting this in the high-mass region of the spectrum (>1000 amu) from poly-dimethylsiloxane (PDMS) on a solid surface was investigated. It was found that a TOF-SIMS analysis of silver-deposited surfaces (silver deposition/TOF-SIMS) is useful for this purpose. Two methods for silver deposition, the diode sputtering method and the vacuum evaporation coating method, were tried. The former required the sample to be cooled so as to prevent the damage of the sample surface due to thermal oxidation; the latter caused no damage to sample surfaces at room temperature. Using silver deposition/TOF-SIMS analysis, silver-cationized quasi-molecular ions were clearly detected from PDMS on solid surfaces and their images were observed without the interference of deposited silver. By applying to the analysis of paint defects, etc., it was confirmed that this technique is useful to analyze practical industrial materials. Silver-cationized ions were detected not only from PDMS, but also from other organic materials, such as some kinds of lubricant additives and fluorine oils on solid surfaces. Therefore, silver deposition/TOF-SIMS was proved to be useful for the analysis of thin substances on solid surfaces.

  16. Ion-selective chalcogenide electrodes for a number of cations.

    Science.gov (United States)

    Hirata, H; Higashiyama, K

    1972-04-01

    Ion-selective chalcogenide disc electrodes have been developed which are responsive to cations such as silver, lead, chromium(III), nickel, cobalt(II), cadmium, zinc, copper(II) and manganese(II) ions. Each was prepared by using the corresponding metal chalcogenide with silver sulphide. An electrode was assembled with both a compacted and a sintered disc. The sintered electrodes were more sensitive and stable than the compacted ones. Response to silver ion was 59.5 mV pAg , to lead, nickel, cadmium, zinc and copper(II) 29.5 mV pM and to chromium(III) 20 mV pM . Cobalt(II) and manganese(II) electrodes had a non-Nernstian response of 25 mV pM . Both selenides and tellurides can be used for potentiometric determination, but the manganese(II) electrode serves as an analytical tool only when the disc consists of manganese(II) telluride and silver sulphide.

  17. Synthesis and X-ray crystal structure of cationic polynuclear hydroxide acetylacetonate lanthanide(III) clusters with homodinuclear or heterodinuclear decacarbonyl hydrides: [HMo2(CO)1]- and [HCrW(CO)1]-

    International Nuclear Information System (INIS)

    Volpe, M.; Bombieri, G.; Marchini, N.

    2006-01-01

    The synthesis and characterization of new polynuclear lanthanide(III) ionic clusters of general formula [Ln 9 (acac) 16 (OH) 1 ] + [Mo 2 (CO) 1 (μ-H)] - (Ln = Sm, Eu, Gd, Dy, Yb) and [Sm 9 (acac) 16 (OH) 1 ] + [CrW(CO) 1 (μ-H)] - is reported. The polynuclear complexes, prepared under pure nitrogen atmosphere by interaction of the hydridic metal carbonyls with the β-dichetonate Ln(acac) 3 .3H 2 O (Ln = Sm, Eu, Gd, Dy, Yb). The new clusters were characterized by elemental analysis, complexometric titration for Ln, atomic absorption for Cr, W and Mo, gas-volumetric analysis for CO, FTIR spectroscopy and single crystal X-ray structure determination of [Sm 9 (acac) 16 (OH) 1 ][Mo 2 (CO) 1 (μ-H)]. The Eu and Yb complexes are isostructural to the Sm one for which, similarly to their homonuclear chromium and tungsten derivative analogues, a square antiprismatic arrangement of eight Sm ions with the ninth at the center of the antiprism has been found

  18. Precise micropatterning of silver nanoparticles on plastic substrates

    International Nuclear Information System (INIS)

    Ammosova, Lena; Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.

    2017-01-01

    Highlights: • Silver ink has been deposited on plastic substrate and silver nanoparticles have been produced. • 3D control allows both ink superimposing and deposition on complicated surfaces. • Polyol method ensures the formation of metallic mircopatterns with high uniformity. • Substrate wettability, ink volume, and sintering temperature influences deposited patterns. - Abstract: Conventional fabrication methods to obtain metal patterns on polymer substrates are restricted by high operating temperature and complex preparation steps. The present study demonstrates a simple yet versatile method for preparation of silver nanoparticle micropatterns on polymer substrates with various surface geometry. With the microworking robot technique, we were able not only to directly structure the surface, but also precisely deposit silver nanoparticle ink on the desired surface location with the minimum usage of ink material. The prepared silver nanoparticle ink, containing silver cations and polyethylene glycol (PEG) as a reducing agent, yields silver nanoparticle micropatterns on plastic substrates at low sintering temperature without any contamination. The influence of the ink behaviour was studied, such as substrate wettability, ink volume, and sintering temperature. The ultraviolet visible (UV–vis), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) measurements revealed the formation of micropatterns with uniformly distributed silver nanoparticles. The prepared patterns are expected to have a broad range of applications in optics, medicine, and sensor devices owing to the unique properties of silver. Furthermore, the deposition of a chemical compound, which is different from the substrate material, not only adds a fourth dimension to the prestructured three-dimensional (3D) surfaces, but also opens new application areas to the conventional surface structures.

  19. Precise micropatterning of silver nanoparticles on plastic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ammosova, Lena; Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A., E-mail: tapani.pakkanen@uef.fi

    2017-04-15

    Highlights: • Silver ink has been deposited on plastic substrate and silver nanoparticles have been produced. • 3D control allows both ink superimposing and deposition on complicated surfaces. • Polyol method ensures the formation of metallic mircopatterns with high uniformity. • Substrate wettability, ink volume, and sintering temperature influences deposited patterns. - Abstract: Conventional fabrication methods to obtain metal patterns on polymer substrates are restricted by high operating temperature and complex preparation steps. The present study demonstrates a simple yet versatile method for preparation of silver nanoparticle micropatterns on polymer substrates with various surface geometry. With the microworking robot technique, we were able not only to directly structure the surface, but also precisely deposit silver nanoparticle ink on the desired surface location with the minimum usage of ink material. The prepared silver nanoparticle ink, containing silver cations and polyethylene glycol (PEG) as a reducing agent, yields silver nanoparticle micropatterns on plastic substrates at low sintering temperature without any contamination. The influence of the ink behaviour was studied, such as substrate wettability, ink volume, and sintering temperature. The ultraviolet visible (UV–vis), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) measurements revealed the formation of micropatterns with uniformly distributed silver nanoparticles. The prepared patterns are expected to have a broad range of applications in optics, medicine, and sensor devices owing to the unique properties of silver. Furthermore, the deposition of a chemical compound, which is different from the substrate material, not only adds a fourth dimension to the prestructured three-dimensional (3D) surfaces, but also opens new application areas to the conventional surface structures.

  20. High-yield water-based synthesis of truncated silver nanocubes

    International Nuclear Information System (INIS)

    Chang, Yun-Min; Lu, I-Te; Chen, Chih-Yuan; Hsieh, Yu-Chi; Wu, Pu-Wei

    2014-01-01

    Highlights: • Development of a water-based formula to fabricate truncated Ag nanocubes. • The sample exhibits (1 0 0), (1 1 0), and (1 1 1) on the facets, edges, and corners. • The sample shows three characteristic absorption peaks due to plasma resonance. -- Abstract: A high-yield water-based hydrothermal synthesis was developed using silver nitrate, ammonia, glucose, and cetyltrimethylammonium bromide (CTAB) as precursors to synthesize truncated silver nanocubes with uniform sizes and in large quantities. With a fixed CTAB concentration, truncated silver nanocubes with sizes of 49.3 ± 4.1 nm were produced when the molar ratio of glucose/silver cation was maintained at 0.1. The sample exhibited (1 0 0), (1 1 0), and (1 1 1) planes on the facets, edges, and corners, respectively. In contrast, with a slightly larger glucose/silver cation ratio of 0.35, well-defined nanocubes with sizes of 70.9 ± 3.8 nm sizes were observed with the (1 0 0) plane on six facets. When the ratio was further increased to 1.5, excess reduction of silver cations facilitated the simultaneous formation of nanoparticles with cubic, spherical, and irregular shapes. Consistent results were obtained from transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and UV–visible absorption measurements

  1. High-yield water-based synthesis of truncated silver nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yun-Min; Lu, I-Te; Chen, Chih-Yuan; Hsieh, Yu-Chi; Wu, Pu-Wei, E-mail: ppwu@mail.nctu.edu.tw

    2014-02-15

    Highlights: • Development of a water-based formula to fabricate truncated Ag nanocubes. • The sample exhibits (1 0 0), (1 1 0), and (1 1 1) on the facets, edges, and corners. • The sample shows three characteristic absorption peaks due to plasma resonance. -- Abstract: A high-yield water-based hydrothermal synthesis was developed using silver nitrate, ammonia, glucose, and cetyltrimethylammonium bromide (CTAB) as precursors to synthesize truncated silver nanocubes with uniform sizes and in large quantities. With a fixed CTAB concentration, truncated silver nanocubes with sizes of 49.3 ± 4.1 nm were produced when the molar ratio of glucose/silver cation was maintained at 0.1. The sample exhibited (1 0 0), (1 1 0), and (1 1 1) planes on the facets, edges, and corners, respectively. In contrast, with a slightly larger glucose/silver cation ratio of 0.35, well-defined nanocubes with sizes of 70.9 ± 3.8 nm sizes were observed with the (1 0 0) plane on six facets. When the ratio was further increased to 1.5, excess reduction of silver cations facilitated the simultaneous formation of nanoparticles with cubic, spherical, and irregular shapes. Consistent results were obtained from transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and UV–visible absorption measurements.

  2. Acute Toxicity of Silver Free and Encapsulated in Nanosized Zeolite for Eukaryotic Cells.

    Science.gov (United States)

    Anfray, Clément; Dong, Biao; Komaty, Sarah; Mintova, Svetlana; Valable, Samuel

    2017-04-26

    The potential toxicity of encapsulated silver in EMT-type nanosized zeolites on prokaryotic cells, human tumor cell lines from various origins, and primary cultures of neurons and astrocytes was investigated. Silver in cationic form (Ag + ) was encapsulated in EMT-type nanosized zeolites via an ion exchange process (Ag + -EMT) and compared with the reduced silver (Ag 0 ) in the zeolite (Ag 0 -EMT). As reference samples for the toxicity measurements, pure EMT-type zeolite and silver perchlorate were used. Cells were exposed to silver-containing zeolites (50, 100, and 400 μg/mL) for 24 and 48 h. After exposure to Ag + -EMT (50 μg/mL) for 24 h, a loss in cell viability independent of the cell type was observed, ranging from -34.37 ± 23.90% for astrocytes to -99.5 ± 0.24% for U87-MG cells. These results were comparable with the toxicity for silver perchlorate. The Ag 0 -EMT sample showed lower toxicity on human cell lines in comparison to that of Ag + -EMT. A decrease in cell viability, i.e., -73.46 ± 20.78% and -62.3 ± 17.96% for U87-MG and HEK 293 cells, respectively, under exposure only to high concentration of Ag 0 -EMT (400 μg/mL) for 24 h was measured. However, the Ag 0 -EMT was as toxic as the Ag + -EMT for astrocytes and neurons (-97.95 ± 3.31% and -100 ± 1.11%, respectively, after exposure to 50 μg/mL for 24 h). No decrease in cell viability exposed to pure EMT zeolite was found. The results demonstrate the severe toxicity of silver cations, either free or encapsulated, in comparison to reduced silver encapsulated in zeolite nanocrystals. Therefore, silver cations, either free or encapsulated, must be used with great caution regarding their toxicity on eukaryotic cells.

  3. Sorption by cation exchange

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1994-04-01

    A procedure for introducing exchange into geochemical/surface complexation codes is described. Beginning with selectivity coefficients, K c , defined in terms of equivalent fractional ion occupancies, a general expression for the molar based exchange code input parameters, K ex , is derived. In natural systems the uptake of nuclides onto complex sorbents often occurs by more than one mechanism. The incorporation of cation exchange and surface complexation into a geochemical code therefore enables sorption by both mechanisms to be calculated simultaneously. The code and model concepts are tested against sets of experimental data from widely different sorption studies. A proposal is made to set up a data base of selectivity coefficients. Such a data base would form part of a more general one consisting of sorption mechanism specific parameters to be used in conjunction with geochemical/sorption codes to model and predict sorption. (author) 6 figs., 6 tabs., 26 refs

  4. Transmission electron microscopy for elucidating the impact of silver-based treatments (ionic silver versus nanosilver-containing coating) on the model yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Despax, B; Saulou, C; Raynaud, P; Datas, L; Mercier-Bonin, M

    2011-04-29

    After exposure to ionic silver or nanosilver-containing plasma coating, the same visual aspect of scanning transmission electron microscopy (STEM) images was observed for the model yeast Saccharomyces cerevisiae. The main common feature was the presence of electron-dense nodules all over the cell. However, high resolution TEM (HRTEM), STEM, energy dispersive x-ray microanalysis spectroscopy (EDS) and electron microdiffraction revealed some striking differences. Regarding ionic silver exposure, the formation of electron-dense nodules was related to the Ag(+) reactivity towards sulfur-containing compounds to form clusters with Ag(2)S-like structures, together with the production of a few silver nanocrystals, mainly at the cell wall periphery. For nanosilver-based treatment, some sulfur-containing silver clusters preferentially located at the cell wall periphery were detected, together with nodules composed of silver, sulfur and phosphorus all over the cell. In both silver-based treatments, nitrogen and silver signals overlapped, confirming the affinity of silver entities for proteinaceous compounds. Moreover, in the case of nanosilver, interactions of silver with phosphorus-containing subcellular structures were indicated.

  5. Transmission electron microscopy for elucidating the impact of silver-based treatments (ionic silver versus nanosilver-containing coating) on the model yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Despax, B; Saulou, C; Raynaud, P [Universite de Toulouse, UPS, INPT, LAPLACE, 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Datas, L [Universite de Toulouse, UPS, INPT, CIRIMAT, 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Mercier-Bonin, M [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France)

    2011-04-29

    After exposure to ionic silver or nanosilver-containing plasma coating, the same visual aspect of scanning transmission electron microscopy (STEM) images was observed for the model yeast Saccharomyces cerevisiae. The main common feature was the presence of electron-dense nodules all over the cell. However, high resolution TEM (HRTEM), STEM, energy dispersive x-ray microanalysis spectroscopy (EDS) and electron microdiffraction revealed some striking differences. Regarding ionic silver exposure, the formation of electron-dense nodules was related to the Ag{sup +} reactivity towards sulfur-containing compounds to form clusters with Ag{sub 2}S-like structures, together with the production of a few silver nanocrystals, mainly at the cell wall periphery. For nanosilver-based treatment, some sulfur-containing silver clusters preferentially located at the cell wall periphery were detected, together with nodules composed of silver, sulfur and phosphorus all over the cell. In both silver-based treatments, nitrogen and silver signals overlapped, confirming the affinity of silver entities for proteinaceous compounds. Moreover, in the case of nanosilver, interactions of silver with phosphorus-containing subcellular structures were indicated.

  6. Sorption phenomena of modification of clinoptilolite tuffs by surfactant cations.

    Science.gov (United States)

    Rozić, M; Ivanec Sipusić, D; Sekovanić, L; Miljanić, S; Curković, L; Hrenović, J

    2009-03-15

    The sorption of cationic surfactant hexadecyltrimethylammonium (HDTMA) onto the solid/liquid interfaces of different clinoptilolite rich tuffs (CT) is examined. Examined were CT from Serbia with 75% clinoptilolite, CT from Turkey with 70% clinoptilolite, and CT from Croatia with 60% clinoptilolite. The sorption of HDTMA cations increased in the following order: CT from Serbia>CT from Turkey>CT from Croatia. The maximum amounts of sorbed HDTMA cations, normalized with regard to external cation exchange capacities of tuffs, were 1.79, 1.70, and 1.14 for Serbian, Turkish, and Croatian CT. FTIR analysis of samples with the maximum amount of sorbed HDTMA cations showed that HDTMA chains on Serbian CT adopt mainly a stretched all-trans conformation, while at the surfaces of CT from Turkey and Croatia the amount of gauche conformations increased. The zeta potentials of CT samples with the maximum amount of sorbed HDTMA cations and the sorption of benzoate anions on these samples increased in the following order: CT from Turkey>CT from Serbia>CT from Croatia. It can be assumed that on the surface of CT from Turkey iron (hydr)oxide clusters or nanoparticles with positive surface sites are present, due to which the isoelectric point is sifted toward lower and the zeta potential toward higher values. Therefore, the sorption of benzoate anions on modified CT from Turkey is also higher.

  7. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  8. Synthesis and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapy.

    Science.gov (United States)

    Ivashchenko, Olena; Lewandowski, Mikołaj; Peplińska, Barbara; Jarek, Marcin; Nowaczyk, Grzegorz; Wiesner, Maciej; Załęski, Karol; Babutina, Tetyana; Warowicka, Alicja; Jurga, Stefan

    2015-10-01

    The article is devoted to preparation and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapy. Magnetite nanopowder was produced by thermochemical technique; silver was deposited on the magnetite nanoparticles in the form of silver clusters. Magnetite/silver nanocomposite was investigated by XRD, SEM, TEM, AFM, XPS, EDX techniques. Adsorptivity of magnetite/silver nanocomposite towards seven antibiotics from five different groups was investigated. It was shown that rifampicin, doxycycline, ceftriaxone, cefotaxime and doxycycline may be attached by physical adsorption to magnetite/silver nanocomposite. Electrostatic surfaces of antibiotics were modeled and possible mechanism of antibiotic attachment is considered in this article. Raman spectra of magnetite, magnetite/silver and magnetite/silver/antibiotic were collected. It was found that it is difficult to detect the bands related to antibiotics in the magnetite/silver/antibiotic nanocomposite spectra due to their overlap by the broad carbon bands of magnetite nanopowder. Magnetic measurements revealed that magnetic saturation of the magnetite/silver/antibiotic nanocomposites decreased on 6-19 % in comparison with initial magnetite nanopowder. Pilot study of antimicrobial properties of the magnetite/silver/antibiotic nanocomposites were performed towards Bacillus pumilus. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Mineral commodity profiles: Silver

    Science.gov (United States)

    Butterman, W.C.; Hilliard, Henry E.

    2005-01-01

    Overview -- Silver is one of the eight precious, or noble, metals; the others are gold and the six platinum-group metals (PGM). World mine production in 2001 was 18,700 metric tons (t) and came from mines in 60 countries; the 10 leading producing countries accounted for 86 percent of the total. The largest producer was Mexico, followed by Peru, Australia, and the United States. About 25 percent of the silver mined in the world in 2001 came from silver ores; 15 percent, from gold ores and the remaining 60 percent, from copper, lead, and zinc ores. In the United States, 14 percent of the silver mined in 2001 came from silver ores; 39 percent, from gold ores; 10 percent, from copper and copper-molybdenum ores; and 37 percent, from lead, zinc, and lead-zinc ores. The precious metal ores (gold and silver) came from 30 lode mines and 10 placer mines; the base-metal ores (copper, lead, molybdenum, and zinc) came from 24 lode mines. Placer mines yielded less than 1 percent of the national silver production. Silver was mined in 12 States, of which Nevada was by far the largest producer; it accounted for nearly one-third of the national total. The production of silver at domestic mines generated employment for about 1,100 mine and mill workers. The value of mined domestic silver was estimated to be $290 million. Of the nearly 27,000 t of world silver that was fabricated in 2001, about one-third went into jewelry and silverware, one-fourth into the light-sensitive compounds used in photography, and nearly all the remainder went for industrial uses, of which there were 7 substantial uses and many other small-volume uses. By comparison, 85 percent of the silver used in the United States went to photography and industrial uses, 8 percent to jewelry and silverware, and 7 percent to coins and medals. The United States was the largest consumer of silver followed by India, Japan, and Italy; the 13 largest consuming countries accounted for nearly 90 percent of the world total. In the

  10. Crystallization of organically templated phosphomolybdate cluster ...

    Indian Academy of Sciences (India)

    cluster based solids were isolated in the presence of en (ethylenediamine) by controlling pH of the reaction medium. The lower-valent cluster invariably requires the presence of a suitable metal cation for further sta- bilization. A detailed investigation of the system was carried out where three different weak acids viz. oxalic.

  11. Cationic polymers and porous materials

    KAUST Repository

    Han, Yu

    2017-04-27

    According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.

  12. PIXE analysis of medieval silver coins

    Energy Technology Data Exchange (ETDEWEB)

    Abdelouahed, H. Ben, E-mail: habdelou@cern.ch [Centre National des Sciences et Technologies Nucleaires (CNSTN), Pole technologique, 2020 Sidi Thabet, Tunis (Tunisia); Gharbi, F. [Centre National des Sciences et Technologies Nucleaires (CNSTN), Pole technologique, 2020 Sidi Thabet, Tunis (Tunisia); Roumie, M. [IBA Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, 11-8281, Beirut (Lebanon); Baccouche, S. [Centre National des Sciences et Technologies Nucleaires (CNSTN), Pole technologique, 2020 Sidi Thabet, Tunis (Tunisia); Romdhane, K. Ben [Faculte des lettres et des sciences humaines, Universite de Tunis (Tunisia); Nsouli, B. [IBA Laboratory, Lebanese Atomic Energy Commission, National Council for Scientific Research, 11-8281, Beirut (Lebanon); Trabelsi, A. [Centre National des Sciences et Technologies Nucleaires (CNSTN), Pole technologique, 2020 Sidi Thabet, Tunis (Tunisia)

    2010-01-15

    We applied the proton-induced X-ray emission (PIXE) analytical technique to twenty-eight medieval silver coins, selected from the Tunisian treasury. The purpose is to study the fineness evolution from the beginning of the 7th to the 15th centuries AD. Each silver coin was cleaned with a diluted acid solution and then exposed to a 3 MeV proton beam from a 1.7 MV tandem accelerator. To allow the simultaneous detection of light and heavy elements, a funny aluminum filter was positioned in front of the Si(Li) detector entrance which is placed at 135{sup o} to the beam direction. The elements Cu, Pb, and Au were observed in the studied coins along with the major component silver. The concentration of Ag, presumably the main constituent of the coins, varies from 55% to 99%. This significant variation in the concentration of the major constituent reveals the economical difficulties encountered by each dynasty. It could be also attributed to differences in the composition of the silver mines used to strike the coins in different locations. That fineness evolution also reflects the poor quality of the control practices during this medieval period. In order to verify the ability of PIXE analytical method to distinguish between apparently similar coins, we applied hierarchical cluster analysis to our results to classify them into different subgroups of similar elemental composition.

  13. PIXE analysis of medieval silver coins

    International Nuclear Information System (INIS)

    Abdelouahed, H. Ben; Gharbi, F.; Roumie, M.; Baccouche, S.; Romdhane, K. Ben; Nsouli, B.; Trabelsi, A.

    2010-01-01

    We applied the proton-induced X-ray emission (PIXE) analytical technique to twenty-eight medieval silver coins, selected from the Tunisian treasury. The purpose is to study the fineness evolution from the beginning of the 7th to the 15th centuries AD. Each silver coin was cleaned with a diluted acid solution and then exposed to a 3 MeV proton beam from a 1.7 MV tandem accelerator. To allow the simultaneous detection of light and heavy elements, a funny aluminum filter was positioned in front of the Si(Li) detector entrance which is placed at 135 o to the beam direction. The elements Cu, Pb, and Au were observed in the studied coins along with the major component silver. The concentration of Ag, presumably the main constituent of the coins, varies from 55% to 99%. This significant variation in the concentration of the major constituent reveals the economical difficulties encountered by each dynasty. It could be also attributed to differences in the composition of the silver mines used to strike the coins in different locations. That fineness evolution also reflects the poor quality of the control practices during this medieval period. In order to verify the ability of PIXE analytical method to distinguish between apparently similar coins, we applied hierarchical cluster analysis to our results to classify them into different subgroups of similar elemental composition.

  14. Silver and gold in the Protein Data Bank.

    Science.gov (United States)

    Carugo, Oliviero

    2017-10-01

    The structural features of the silver and gold sites in protein crystal structures extracted from the Protein Data Bank have been investigated. It is observed that both cations have nearly always low oxidations states (+1) and low coordination numbers, adopt standard stereochemistries, and interact preferentially (particularly gold) with sulfur donor atoms of cysteine and methionine side-chains. Interestingly, gold cation have been very often refined with occupancy minor than 1.0 and are very often "naked", in the sense that no donor atoms are sufficiently close to the metal cation. This apparently strange observation points out towards the need to develop specific and efficient validation tools for these elements when they are coordinated to proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Silver enhancement of nanogold and undecagold

    Energy Technology Data Exchange (ETDEWEB)

    Hainfield, J.F.; Furuya, F.R.

    1995-07-01

    A recent advance in immunogold technology has been the use of molecular gold instead of colloidal gold. A number of advantages are realized by this approach, such as stable covalent, site-specific attachment, small probe size and absence of aggregates for improved penetration. Silver enhancement has led to improved and unique results for electron and light microscopy, as well as their use with blots and gels. Most previous work with immunogold silver staining has been done with colloidal gold particles. More recently, large gold compounds (``clusters``) having a definite number of gold atoms and defined organic shell, have been used, frequently with improved results. These gold dusters, large compared to simple compounds, are, however, at the small end of the colloidal gold scale in size; undecagold is 0.8 nm and Nanogold is 1.4 nm. They may be used in practically all applications where colloidal gold is used (Light and electron microscopy, dot blots, etc.) and in some unique applications, where at least the larger colloidal golds don`t work, such as running gold labeled proteins on gels (which are later detected by silver enhancement). The main differences between gold clusters and colloidal golds are the small size of the dusters and their covalent attachment to antibodies or other molecules.

  16. Nanosecond (ns) laser transfer of silver nanoparticles from silver-exchanged soda-lime glass to transparent soda-lime glass and shock waves formation

    International Nuclear Information System (INIS)

    Sow, Mohamed Chérif; Blondeau, Jean-Philippe; Sagot, Nadine; Ollier, Nadège; Tite, Teddy

    2015-01-01

    Highlights: • Silver nanoparticles growth by nanosecond laser irradiation of silver exchanged soda-lime glasses. • Silver nanoparticles transfer. • Nanosecond laser induced shock waves formation on glass. - Abstract: In this contribution, we showed for the first time in our knowledge a single-step process for silver clusters and nanoparticles growth and transfer from silver-exchanged soda-lime glass to un-exchanged soda-lime glass (transparent glass in visible and NIR domain) by nanosecond (ns) laser irradiation. The transferred silver nanoparticles in transparent glass are strongly linked to the glass surface. In addition, we point out the formation of shock waves, with selective silver clustering on the top wave. This technique provides an alternative and simple way to obtain metallic nanoparticles in different media which can be traversed by laser wavelength used. Moreover, this experiment is made at room temperature and air environment. It is worth noting that our technique requires a glass previously doped with the corresponding silver ions

  17. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...... and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...

  18. Pulsed laser excitation of phosphate stabilised silver nanoparticles

    Indian Academy of Sciences (India)

    Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic. Research Centre, Trombay ... with rise in the absorption in the red region which was attributed to the photoejection of electrons 10. They interpret their ... metallic clusters of silver, showing the normal SPB absorption, it could also generate under certain ...

  19. Molecular modeling of organic corrosion inhibitors: why bare metal cations are not appropriate models of oxidized metal surfaces and solvated metal cations.

    Science.gov (United States)

    Kokalj, Anton

    2014-01-01

    The applicability of various models of oxidized metal surfaces - bare metal cations, clusters of various size, and extended (periodic) slabs - that are used in the field of quantum-chemical modeling of corrosion inhibitors is examined and discussed. As representative model systems imidazole inhibitor, MgO surface, and solvated Mg(2+) ion are considered by means of density-functional-theory calculations. Although the results of cluster models are prone to cluster size and shape effects, the clusters of moderate size seem useful at least for qualitative purposes. In contrast, the bare metal cations are useless not only as models of oxidized surfaces but also as models of solvated cations, because they bind molecules several times stronger than the more appropriate models. In particular, bare Mg(2+) binds imidazole by 5.9 eV, while the slab model of MgO(001) by only 0.35 eV. Such binding is even stronger for 3+ cations, e.g., bare Al(3+) binds imidazole by 17.9 eV. The reasons for these fantastically strong binding energies are discussed and it is shown that the strong bonding is predominantly due to electron charge transfer from molecule to metal cation, which stems from differences between molecular and metal ionization potentials.

  20. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    Directory of Open Access Journals (Sweden)

    Runa Ghosh Auddy

    2013-01-01

    Full Text Available Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA for wound healing applications. Biologically synthesized silver nanoparticles (Agnp were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P<0.05. Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation.

  1. Controlled release of biologically active silver from nanosilver surfaces.

    Science.gov (United States)

    Liu, Jingyu; Sonshine, David A; Shervani, Saira; Hurt, Robert H

    2010-11-23

    Major pathways in the antibacterial activity and eukaryotic toxicity of nanosilver involve the silver cation and its soluble complexes, which are well established thiol toxicants. Through these pathways, nanosilver behaves in analogy to a drug delivery system, in which the particle contains a concentrated inventory of an active species, the ion, which is transported to and released near biological target sites. Although the importance of silver ion in the biological response to nanosilver is widely recognized, the drug delivery paradigm has not been well developed for this system, and there is significant potential to improve nanosilver technologies through controlled release formulations. This article applies elements of the drug delivery paradigm to nanosilver dissolution and presents a systematic study of chemical concepts for controlled release. After presenting thermodynamic calculations of silver species partitioning in biological media, the rates of oxidative silver dissolution are measured for nanoparticles and macroscopic foils and used to derive unified area-based release kinetics. A variety of competing chemical approaches are demonstrated for controlling the ion release rate over 4 orders of magnitude. Release can be systematically slowed by thiol and citrate ligand binding, formation of sulfidic coatings, or the scavenging of peroxy-intermediates. Release can be accelerated by preoxidation or particle size reduction, while polymer coatings with complexation sites alter the release profile by storing and releasing inventories of surface-bound silver. Finally, the ability to tune biological activity is demonstrated through a bacterial inhibition zone assay carried out on selected formulations of controlled release nanosilver.

  2. Albumin-stabilized fluorescent silver nanodots

    Science.gov (United States)

    Sych, Tomash; Polyanichko, Alexander; Kononov, Alexei

    2017-07-01

    Ligand-stabilized Ag nanoclusters (NCs) possess many attractive features including high fluorescence quantum yield, large absorption cross-section, good photostability, large Stokes shift and two-photon absorption cross sections. While plenty of fluorescent clusters have been synthesized on various polymer templates, only a few studies have been reported on the fluorescent Ag clusters on peptides and proteins. We study silver NCs synthesized on different protein matrices, including bovine serum albumin, human serum albumin, egg albumin, equine serum albumin, and lysozyme. Our results show that red-emitting Ag NCs can effectively be stabilized by the disulfide bonds in proteins and that the looser structure of the denatured protein favors formation of the clusters.

  3. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    Science.gov (United States)

    Richter, Alexander P.; Brown, Joseph S.; Bharti, Bhuvnesh; Wang, Amy; Gangwal, Sumit; Houck, Keith; Cohen Hubal, Elaine A.; Paunov, Vesselin N.; Stoyanov, Simeon D.; Velev, Orlin D.

    2015-09-01

    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles.

  4. Liquid-solid extraction of cationic metals by cationic amphiphiles

    International Nuclear Information System (INIS)

    Muller, W.

    2010-01-01

    In the field of selective separation for recycling of spent nuclear fuel, liquid-liquid extraction processes are widely used (PUREX, DIAMEX..) in industrial scale. In order to guarantee a sustainable nuclear energy for the forthcoming generations, alternative reprocessing techniques are under development. One of them bases on the studies from Heckmann et al in the 80's and consists in selectively precipitating actinides from aqueous waste solutions by cationic surfactants (liquid-solid extraction). This technique has some interesting advantages over liquid-liquid extraction techniques, because several steps are omitted like stripping or solvent washing. Moreover, the amount of waste is decreased considerably, since no contaminated organic solvent is produced. In this thesis, we have carried out a physico-chemical study to understand the specific interactions between the metallic cations with the cationic surfactant. First, we have analysed the specific effect of the different counter-ions (Cl - , NO 3 - , C 2 O 4 2- ) and then the effect of alkaline cations on the structural properties of the surfactant aggregation in varying thermodynamical conditions. Finally, different multivalent cations (Cu 2+ , Zn 2+ , UO 2 2+ , Fe 3+ , Nd 3+ , Eu 3+ , Th 4+ ) were considered; we have concluded that depending on the anionic complex of these metals formed in acidic media, we can observe either an adsorption at the micellar interface or not. This adsorption has a large influence of the surfactant aggregation properties and determines the limits of the application in term of ionic strength, temperature and surfactant concentration. (author) [fr

  5. Enhancement of the stability of silver nanoparticles synthesized using aqueous extract of Diospyros discolor Willd. leaves using polyvinyl alcohol

    Science.gov (United States)

    Ardani, H. K.; Imawan, C.; Handayani, W.; Djuhana, D.; Harmoko, A.; Fauzia, V.

    2017-04-01

    Biosynthesis of silver nanoparticles is recently attracting considerable attention because of it reduces the environmental impact and already used in numerous applications. However, the disadvantages such as easy aggregation and instability properties, prevent its’ application. In this papers, biosynthesis of silver nanoparticles using aqueous extract of Diospyros discolor Willd. leaves have been prepared. The effect of biosynthesis variables, like ratio of reactants and reduction time on the particle size distribution, stability, and morphology of the silver nanoparticles were investigated. The resulted silver nanoparticles were characterized using UV spectroscopy, Transmission Electron Microscopy, and Particles Size Analyzer. Polyvinyl alcohol (PVA) was used to enhance the stability of the silver nanoparticles. Silver nanoparticles modification with 1% PVA concentration has produced a better characteristic of particle size distribution compared to the original silver nanoparticles, from highly polydisperse into moderately disperse. The results of the Zetta potential measurement also confirmed the increase stability of cluster distribution in the colloidal Ag/PVA compared to the original Ag.

  6. Magnetron sputtering cluster apparatus for formation and deposition of size-selected metal nanoparticles

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir

    2015-01-01

    The experimental setup utilizing a DC magnetron sputtering source for production of metal clusters, their size (mass) selection and following deposition in high vacuum is described. The source is capable to form clusters of various metals, for example, copper, silver, gold etc. Cluster size selec...... capability in formation of supported size-selected metal nanoparticles with controllable coverage for various practical applications.......The experimental setup utilizing a DC magnetron sputtering source for production of metal clusters, their size (mass) selection and following deposition in high vacuum is described. The source is capable to form clusters of various metals, for example, copper, silver, gold etc. Cluster size...

  7. Synthesis of Silver Nanoparticles Using Hydroxyl Functionalized Ionic Liquids and Their Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Young Key Shim

    2008-05-01

    Full Text Available We report a new one phase method for the synthesis of uniform monodisperse crystalline Ag nanoparticles in aqueous systems that has been developed by using newly synthesized mono and dihydroxylated ionic liquids and cationic surfactants based on 1,3-disubstituted imidazolium cations and halogens anions. The hydroxyl functionalized ionic liquids (HFILs and hydroxyl functionalized cationic surfactants (HFCSs also simultaneously acts both as the reductant and protective agent. By changing the carbon chain length, alcohol structure and anion of the 1,3-imidazolium based HFILs and HFCSs the particle size, uniform and dispersibility of nanoparticles in aqueous solvents could be controlled. Transmission electron microscopy (TEM, electron diffraction, UV-Vis and NMR, were used for characterization of HFILs, HFCSs and silver nanoparticles. TEM studies on the solution showed representative spherical silver nanoparticles with average sizes 2-8 nm, particularly 2.2 nm and 4.5 nm in size range and reasonable narrow particle size distributions (SD-standard distribution 0.2 nm and 0.5 nm respectively. The all metal nanoparticles are single crystals with face centered cubic (fcc structure. The silver nanoparticles surface of plasmon resonance band (λmax around 420 nm broadened and little moved to the long wavelength region that indicating the formation of silver nanoparticles dispersion with broad absorption around infrared (IR region. Silver complexes of these HFILs as well as different silver nanoparticles dispersions have been tested in vitro against several gram positive and gram negative bacteria and fungus. The silver nanoparticles providing environmentally friendly and high antimicrobial activity agents.

  8. Leaching of Silver from Silver-Impregnated Food Storage Containers

    Science.gov (United States)

    Hauri, James F.; Niece, Brian K.

    2011-01-01

    The use of silver in commercial products has proliferated in recent years owing to its antibacterial properties. Food containers impregnated with micro-sized silver promise long food life, but there is some concern because silver can leach out of the plastic and into the stored food. This laboratory experiment gives students the opportunity to…

  9. Cluster headache

    Science.gov (United States)

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache; Vascular headache - cluster ... Doctors do not know exactly what causes cluster headaches. They ... (chemical in the body released during an allergic response) or ...

  10. Evaluation of Silver-Exchanged Zeolites Under Development by University of Maine for Chemical Warfare Agent Decontamination Applications

    National Research Council Canada - National Science Library

    Brickhouse, Mark D; Lalain, Teri A; D'Onofrio, Terrence G; Procell, Lawrence R; Zander, Zachary B

    2007-01-01

    .... The hypothesis under investigation is that rapid decontamination can be achieved by the interaction of agent with silver metal clusters within zeolites coupled with subsequent photo-catalytic excitation...

  11. Absorbent silver (I) antimicrobial fabrics

    Science.gov (United States)

    In recent years, silver in form of silver ions, has been gaining importance in the wound management as an effective broad-spectrum antimicrobial agent. Silver has a long history as an antimicrobial agent, especially in the treatment of wounds. Alginates and carboxymethyl (CM) cotton contain carboxyl...

  12. Silver-palladium cathode

    Energy Technology Data Exchange (ETDEWEB)

    Poizot, Philippe [Laboratoire de Reactivite et Chimie des Solides, UMR CNRS 6007, Universite de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex (France); Simonet, Jacques, E-mail: jacques.simonet@univ-rennes1.f [Laboratoire MaCSE, UMR CNRS 6226, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France)

    2010-12-15

    The formation of silver-palladium electrodes is described. It mainly corresponds to the palladization of silver by means of treatment with palladium salts (nitrate and sulphate) in acidic media. Other ways may exist such as the modification of solid conductors like carbons by deposition of a silver-palladium alloy. By using those electrodes in polar aprotic solvents, the one-electron cleavage of carbon-halogen bonds of most alkyl iodides and bromides may yield free alkyl radicals. Coupling and cross-coupling reactions can easily be carried out at such electrodes. The present review aims at discussing the electro-catalytic process as well as providing an update on the state of the art on this new mode of scission regarding carbon-heteroatom bonds.

  13. Eight-Electron Silver and Mixed Gold/Silver Nanoclusters Stabilized by Selenium Donor Ligands.

    Science.gov (United States)

    Chang, Wan-Ting; Lee, Po-Yi; Liao, Jian-Hong; Chakrahari, Kiran Kumarvarma; Kahlal, Samia; Liu, Yu-Chiao; Chiang, Ming-Hsi; Saillard, Jean-Yves; Liu, C W

    2017-08-14

    The first atomically and structurally precise silver-nanoclusters stabilized by Se-donor ligands, [Ag 20 {Se 2 P(O i Pr) 2 } 12 ] (3) and [Ag 21 {Se 2 P(OEt) 2 } 12 ] + (4), were isolated by ligand replacement reaction of [Ag 20 {S 2 P(O i Pr) 2 } 12 ] (1) and [Ag 21 {S 2 P(O i Pr) 2 } 12 ] + (2), respectively. Furthermore, doping reactions of 4 with Au(PPh 3 )Cl resulted in the formation of [AuAg 20 {Se 2 P(OEt) 2 } 12 ] + (5). Structures of 3, 4, and 5 were determined by single-crystal X-ray diffraction. The anatomy of cluster 3 with an Ag 20 core having C 3 symmetry is very similar to that of its dithiophosphate analogue 1. Clusters 4 and 5 exhibit an Ag 21 and Au@Ag 20 core of O h symmetry composed of eight silver capping atoms in a cubic arrangement and encapsulating an Ag 13 and Au@Ag 12 centered icosahedron, respectively. Both ligand exchange and heteroatom doping result in significant changes in optical and emissive properties for chalcogen-passivated silver nanoparticles, which have been theoretically confirmed as 8-electron superatoms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Silver azide photolysis

    OpenAIRE

    Surovoy, E. P.; Sirik, S. M.; Bugerko, L. N.

    2007-01-01

    The preliminary silver azide light irradiation (?=365 nm, I>1·1015 quanta·cm-2·с-1) in vacuum (Р=1·10-5 Pа) alongside with increase in photolisys speed and a photocurrent results in occurrence new long-wave (up to ?=1280 nm) area of spectral sensitivity. Constants of silver azide photolysis speed are determined. As a result of measurements of a contact potential difference, volt - ampere of characteristics, a contact photoelectrical moving force, a photocurrent it is established, that at silv...

  15. Silver-Russell syndrome

    Directory of Open Access Journals (Sweden)

    Shohela Akhter

    2016-08-01

    Full Text Available Silver-Russell syndrome is clinically and genetically a heterogeneous disorder. In most of the cases, etiology is unknown, only in 10% cases defect in chromosome 7 is identified. It bas distinctive facial features and asymmetric limbs. Most predominant symptom is growth failure. A case of Silver-Russell syndrome reported here who presented with growth failure, hemihypertrophy ofleft side oftbe body, dysmorphic facial profile and difficulty in speech. Counseling was done with the parents regarding the etiology, progression and outcome of the disease.

  16. 3,4-Dihydro-1,3-2H-benzoxazines: Novel reducing agents through one electron donation mechanism and their application as the formation of nano-metallic silver coating

    Energy Technology Data Exchange (ETDEWEB)

    Kaewvilai, Attaphon [Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok, 10900 (Thailand); Wattanathana, Worawat [Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900 (Thailand); Jongrungruangchok, Suchada [Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rangsit University, Pathumthani, 12000 (Thailand); Veranitisagul, Chatchai [Department of Material and Metallurgical Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Klong 6, Thanyaburi, Pathumthani, 12110 (Thailand); Koonsaeng, Nattamon [Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900 (Thailand); Laobuthee, Apirat, E-mail: fengapl@ku.ac.th [Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Chatuchak, Bangkok, 10900 (Thailand)

    2015-11-01

    3,4-dihydro-1,3-2H-benzoxazines as novel one-electron donators for silver(I) ion into nano-metallic silver was firstly found and reported. The silver formation from nano-spherical particles to coral-like and dendrite-like structures was presented. With respect to the characterization results, the feasible reaction mechanism of the silver formation was proposed as an electron donated from benzoxazine to silver(I) ion, resulting in a radical cationic species of benzoxazine and silver(0). Based on this reduction process, a new approach for nano-silver coating on various surfaces such as fumed silica (SiO{sub 2}), titanium dioxide (TiO{sub 2}), carbon black (CB), chitosan (CS) including plastic sheet (polycarbonate, PC) and pellet (polyvinyl alcohol, PVA), was also revealed. Besides the nano-silver coated products were applied as antimicrobials fillers for Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Micrococcus luteus ATCC 9341, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 2785 and Candida albicans ATCC 10231. - Highlights: • Benzoxazines were discovered to be novel reducing agents for silver(I) ion. • The speculated mechanism of the one electron donation process was investigated. • Dendrite structure of silver was formed from spherical silver nanoparticles. • A new approach for nano metallic-silver coating on various surfaces was revealed. • The nano-silver coated products were applied as antimicrobials fillers.

  17. 3,4-Dihydro-1,3-2H-benzoxazines: Novel reducing agents through one electron donation mechanism and their application as the formation of nano-metallic silver coating

    International Nuclear Information System (INIS)

    Kaewvilai, Attaphon; Wattanathana, Worawat; Jongrungruangchok, Suchada; Veranitisagul, Chatchai; Koonsaeng, Nattamon; Laobuthee, Apirat

    2015-01-01

    3,4-dihydro-1,3-2H-benzoxazines as novel one-electron donators for silver(I) ion into nano-metallic silver was firstly found and reported. The silver formation from nano-spherical particles to coral-like and dendrite-like structures was presented. With respect to the characterization results, the feasible reaction mechanism of the silver formation was proposed as an electron donated from benzoxazine to silver(I) ion, resulting in a radical cationic species of benzoxazine and silver(0). Based on this reduction process, a new approach for nano-silver coating on various surfaces such as fumed silica (SiO 2 ), titanium dioxide (TiO 2 ), carbon black (CB), chitosan (CS) including plastic sheet (polycarbonate, PC) and pellet (polyvinyl alcohol, PVA), was also revealed. Besides the nano-silver coated products were applied as antimicrobials fillers for Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Micrococcus luteus ATCC 9341, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 2785 and Candida albicans ATCC 10231. - Highlights: • Benzoxazines were discovered to be novel reducing agents for silver(I) ion. • The speculated mechanism of the one electron donation process was investigated. • Dendrite structure of silver was formed from spherical silver nanoparticles. • A new approach for nano metallic-silver coating on various surfaces was revealed. • The nano-silver coated products were applied as antimicrobials fillers.

  18. Pyocyanin production by Pseudomonas aeruginosa confers resistance to ionic silver.

    Science.gov (United States)

    Muller, Michael; Merrett, Neil D

    2014-09-01

    Silver in its ionic form (Ag+), but not the bulk metal (Ag0), is toxic to microbial life forms and has been used for many years in the treatment of wound infections. The prevalence of bacterial resistance to silver is considered low due to the nonspecific nature of its toxicity. However, the recent increased use of silver as an antimicrobial agent for medical, consumer, and industrial products has raised concern that widespread silver resistance may emerge. Pseudomonas aeruginosa is a common pathogen that produces pyocyanin, a redox toxin and a reductant for molecular oxygen and ferric (Fe3+) ions. The objective of this study was to determine whether pyocyanin reduces Ag+ to Ag0, which may contribute to silver resistance due to lower bioavailability of the cation. Using surface plasmon resonance spectroscopy and scanning electron microscopy, pyocyanin was confirmed to be a reductant for Ag+, forming Ag0 nanoparticles and reducing the bioavailability of free Ag+ by >95% within minutes. Similarly, a pyocyanin-producing strain of P. aeruginosa (PA14) reduced Ag+ but not a pyocyanin-deficient (ΔphzM) strain of the bacterium. Challenge of each strain with Ag+ (as AgNO3) gave MICs of 20 and 5 μg/ml for the PA14 and ΔphzM strains, respectively. Removal of pyocyanin from the medium strain PA14 was grown in or its addition to the medium that ΔphzM mutant was grown in gave MICs of 5 and 20 μg/ml, respectively. Clinical isolates demonstrated similar pyocyanin-dependent resistance to Ag+. We conclude that pseudomonal silver resistance exists independently of previously recognized intracellular mechanisms and may be more prevalent than previously considered. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Silver against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Kirketerp-Møller, K.; Kristiansen, S.

    2007-01-01

    Silver has been recognized for its antimicrobial properties for centuries. Most studies on the antibacterial efficacy of silver, with particular emphasis on wound healing, have been performed on planktonic bacteria. Our recent studies, however, strongly suggest that colonization of wounds involves...... bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa......, but that the silver concentration is important. A concentration of 5-10 ig/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 ig/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate...

  20. Design of growing points for silver nanoparticles on polypropylene membranes

    Science.gov (United States)

    Mendieta-Jiménez, Ana L.; Carpio-Martínez, Pablo; Cortés-Guzmán, Fernando; Gómez-Espinosa, Rosa María

    2018-02-01

    The nucleation process of a nanoparticle requires an environment that stabilizes the initial seed and favors the growth action. In this paper, we present a specific design of growing points for silver nanoparticles based on the well-known affinity of the silver to the chlorine atoms and to aromatic groups by cation-π interactions. [2-(vinylphenyl)ethyl]chloromethylphenylsilane was proposed as growing point of nanoparticles, which has been synthetized and grafted on a polypropylene membrane. Nanoparticles were synthesized by chemically reducing an AgNO3 solution with NaBH4 and the so synthesized nanoparticles were also fully characterized. Using DFT-QTAIM calculations a model of the initial seed and a growth mechanism were proposed.

  1. The reduction process of phytic acid-silver ion system: A pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ravi [Radiation and Photochemistry Division, Chemistry Group, Bhabha Atomic Research Center, Mumbai 400 085 (India)]. E-mail: rjudrin@yahoo.com; Mukherjee, Tulsi [Radiation and Photochemistry Division, Chemistry Group, Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2007-05-15

    Reduction of silver ion in a silver-phytic acid (1:1 ratio) system has been studied using pulse radiolysis technique. Time-resolved transformation of the intermediates, Ag{sup +{yields}}Ag{sup 0{yields}}Ag{sub 2} {sup +{yields}}Ag{sub 3} {sup 2+}, has been clearly observed in the reduction of silver-phytic acid (1:1) system. The effect of phytic acid on the formation and decay of initial silver clusters has been also studied. The surface plasmon absorption band of stable silver nanoparticle (410 nm) and dynamic light scattering technique has been used to characterize the nanoparticles and measure the average size (R {sub av}=100 nm)

  2. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    Energy Technology Data Exchange (ETDEWEB)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 77146 Olomouc (Czech Republic); Kolar, M, E-mail: ales.panacek@upol.cz [Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77520 Olomouc (Czech Republic)

    2011-07-06

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  3. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    International Nuclear Information System (INIS)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R; Kolar, M

    2011-01-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  4. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    Science.gov (United States)

    Kvitek, L.; Panacek, A.; Prucek, R.; Soukupova, J.; Vanickova, M.; Kolar, M.; Zboril, R.

    2011-07-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  5. 21 CFR 73.2500 - Silver.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Silver. 73.2500 Section 73.2500 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2500 Silver. (a) Identity. (1) The color additive, silver, is a crystalline powder of high purity silver prepared by the reaction of silver nitrate with ferrous...

  6. Micronutrient Fortification of Foods

    African Journals Online (AJOL)

    Micronutrient Fortification of Foods: Developing A Program. Mahshid Lotti, M.G. Venkatesh Manar, Richard J. H. M. .... Develop the fortification technology. 11. Perform studies on interactions, potency, stability, ... Fortification with vitamin A is a long-term strategy capable of maintaining adequate vitamin A status over time.

  7. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  8. Poly-l-lysine-Coated Silver Nanoparticles as Positively Charged Substrates for Surface-Enhanced Raman Scattering

    NARCIS (Netherlands)

    Marsich, L.; Bonifacio, A.; Mandal, S.; Krol, S.; Beleites, C.; Sergo, V.

    2012-01-01

    Positively charged nanoparticles to be used as substrates for surface-enhanced Raman scattering (SERS) were prepared by coating citrate-reduced silver nanoparticles with the cationic polymer poly-l-lysine. The average diameter of the coated nanoparticles is 75 nm, and their zeta potential is +62.3

  9. Characterization of Electrochemically Generated Silver

    Science.gov (United States)

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (Silver does not require hardware to remove it from a water system, and therefore can provide a simpler means for disinfecting water. The Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  10. Silver matrix composites reinforced with galvanically silvered particles

    OpenAIRE

    J. Śleziona; J. Wieczorek,

    2007-01-01

    Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powd...

  11. Cluster Headache

    Science.gov (United States)

    ... re at risk of cluster headache. A family history. Having a parent or sibling who has had cluster headache might ... of Nondiscrimination Advertising Mayo Clinic is a not-for-profit organization ...

  12. Structure prediction of AlnOm clusters

    International Nuclear Information System (INIS)

    Smok, P

    2011-01-01

    Genetic algorithm simulations, using Buckingham potential to represent the anion-anion and cation-anion short-range interactions, were performed in order to predict the equilibrium positions of the Al and O ions in Al n O m clusters. In order to find the equilibrium structures of compounds a self-organizing genetic algorithm were constructed. The calculation were carried out for several clusters Al n O m , with different numbers of aluminium and oxygen atoms.

  13. Synthesis of Silver Nanoparticles in Cotton Fabric by Polyvinyl-2-pyrrolidone as a Reducing and Stabilizing Agent

    Directory of Open Access Journals (Sweden)

    Farbod Alimohammadi

    2012-12-01

    Full Text Available Silver nanoparticles have been extensively applied in various fields suchas polymers and textile fibers considering their well known antimicrobialproperties. In conventional methods nano silver is synthesized through chemical reduction however, in this paper a novel synthesis method based on aqueous solution of ammonia/silver complex with cationic stabilizer along with UV-C irradiation is introduced. On this basis, silver nitrate was oxidized with sodium hydroxide and then transformed into [Ag(NH32]+ aqueous solution with ammonia followed by adding PVP as a reducing and stabilizing agent and irradiated by UV-C. The formation of silver nanoparticles was confirmed from the appearance of surface plasmon absorption and the X-ray diffraction (XRD demonstrated that the colloidal nanoparticles were pure silver and Zeta sizer showed particle size distribution. Cotton fabric finishing was accomplished in pad process with various concentrations of nano-sized colloidal silver. Some characteristics of the fabric such as antimicrobial against different microorganisms including gram positive bacteria (Staphylococcous aureus, one gram negative bacteria (Escherichia coli, UV–vis spectrophotometry, color space a*, b* and L*, scanning electron microscopy, EDAX were investigated. Very good antibacterial efficacy against S. aureus and E. coli (higher than 97% appeared even by applying a low nanosilver content (200 ppm for twenty cycles of home laundering. Polyvinyl pyrrolidone resulted in a remarkable control in the release of silver nanoparticle from the coating and can improve the long-term microbiological activity, especially against home laundering.

  14. Meaningful Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  15. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    Enkephalin, an endogeneous substance in the human brain showing morphine-like biological functions, has been detected at the single molecule level based on the surface-enhanced Raman signal of the ring breathing mode of phenylalanine, which is one building block of the molecule. For enhancing...... the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  16. High frequency of silver resistance genes in invasive isolates of Enterobacter and Klebsiella species.

    Science.gov (United States)

    Sütterlin, S; Dahlö, M; Tellgren-Roth, C; Schaal, W; Melhus, Å

    2017-07-01

    Silver-based products have been marketed as an alternative to antibiotics, and their consumption has increased. Bacteria may, however, develop resistance to silver. To study the presence of genes encoding silver resistance (silE, silP, silS) over time in three clinically important Enterobacteriaceae genera. Using polymerase chain reaction (PCR), 752 bloodstream isolates from the years 1990-2010 were investigated. Age, gender, and ward of patients were registered, and the susceptibility to antibiotics and silver nitrate was tested. Clonality and single nucleotide polymorphism were assessed with repetitive element sequence-based PCR, multi-locus sequence typing, and whole-genome sequencing. Genes encoding silver resistance were detected most frequently in Enterobacter spp. (48%), followed by Klebsiella spp. (41%) and Escherichia coli 4%. Phenotypical resistance to silver nitrate was found in Enterobacter (13%) and Klebsiella (3%) isolates. The lowest carriage rate of sil genes was observed in blood isolates from the neonatology ward (24%), and the highest in blood isolates from the oncology/haematology wards (66%). Presence of sil genes was observed in international high-risk clones. Sequences of the sil and pco clusters indicated that a single mutational event in the silS gene could have caused the phenotypic resistance. Despite a restricted consumption of silver-based products in Swedish health care, silver resistance genes are widely represented in clinical isolates of Enterobacter and Klebsiella species. To avoid further selection and spread of silver-resistant bacteria with a high potential for healthcare-associated infections, the use of silver-based products needs to be controlled and the silver resistance monitored. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  17. Biological synthesis of silver nanoparticles

    International Nuclear Information System (INIS)

    Maliszewska, I; Szewczyk, K; Waszak, K

    2009-01-01

    Fungus-mediated synthesis of silver nanoparticles is reported. The nanosilver was formed in contact with the cell-free filtrate of Penicillium strain studied. The nanoparticles were characterized by means of the UV-Vis spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The synthesized nanosilver showed a absorbed maximum at 425 nm in the visible region. The SEM characterization of the fungus cells treated with silver nitrite indicated that the protein might be responsible for the reduction of silver ions. Transmission electron microscopy (TEM) micrograph showed formation of silver nanoparticles in the range of 10-100 nm.

  18. MOD silver metallization for photovoltaics

    Science.gov (United States)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.

  19. Biosynthesis of silver nanoparticles.

    Science.gov (United States)

    Poulose, Subin; Panda, Tapobrata; Nair, Praseetha P; Théodore, Thomas

    2014-02-01

    Metal nanoparticles have unique optical, electronic, and catalytic properties. There exist well-defined physical and chemical processes for their preparation. Those processes often yield small quantities of nanoparticles having undesired morphology, and involve high temperatures for the reaction and the use of hazardous chemicals. Relatively, the older technique of bioremediation of metals uses either microorganisms or their components for the production of nanoparticles. The nanoparticles obtained from bacteria, fungi, algae, plants and their components, etc. appear environment-friendly, as toxic chemicals are not used in the processes. In addition to this, the formation of nanoparticles takes place at almost normal temperature and pressure. Control of the shape and size of the nanoparticles is possible by appropriate selection of the pH and temperature. Three important steps are the bioconversion of Ag+ ions, conversion of desired crystals to nanoparticles, and nanoparticle stability. Generally, nanoparticles are characterized by the UV-visible spectroscopy and use of the electron microscope. Silver nanoparticles are used as antimicrobial agents and they possess antifungal, anti-inflammatory, and anti-angiogenic properties. This review highlights the biosynthesis of silver nanoparticles by various organisms, possible mechanisms of their synthesis, their characterization, and applications of silver nanoparticles.

  20. Single pass kernel k-means clustering method

    Indian Academy of Sciences (India)

    In unsupervised classification, kernel -means clustering method has been shown to perform better than conventional -means clustering method in ... 518501, India; Department of Computer Science and Engineering, Jawaharlal Nehru Technological University, Anantapur College of Engineering, Anantapur 515002, India ...

  1. Evidence for the Formation of Pyrimidine Cations from the Sequential Reactions of Hydrogen Cyanide with the Acetylene Radical Cation.

    Science.gov (United States)

    Hamid, Ahmed M; Bera, Partha P; Lee, Timothy J; Aziz, Saadullah G; Alyoubi, Abdulrahman O; El-Shall, M Samy

    2014-10-02

    Herein, we report the first direct evidence for the formation of pyrimidine ion isomers by sequential reactions of HCN with the acetylene radical cation in the gas phase at ambient temperature using the mass-selected variable temperature and pressure ion mobility technique. The formation and structures of the pyrimidine ion isomers are theoretically predicted via coupled cluster and density functional theory calculations. This ion-molecule synthesis may indicate that pyrimidine is produced in the gas phase in space environments before being incorporated into condensed-phase ices and transformed into nucleic acid bases such as uracil.

  2. Antifungal and physical characteristics of modified denture base acrylic incorporated with silver nanoparticles.

    Science.gov (United States)

    Nam, Ki-Young; Lee, Cheong-Hee; Lee, Chul-Jae

    2012-06-01

    This study evaluated the antifungal and physical characteristics of denture base acrylic combined with silver nanoparticles. Polymerized denture acrylic disc specimens containing 0 (control), 1.0, 5.0, 10.0, 20.0 and 30.0 wt% of silver nanoparticles were placed on separate culture plate dish and 100 ìL samples of yeast suspension of Candida albicans strain were inoculated on each specimens and incubated at 37°C, for 24 h. The antifungal effects were evaluated as a number of viable cells in retrieved fungal suspension. To characterize physical aspects, specimens were tested for elution of silver cation (Ag(+)) at 24 h and 30th day, thermal analysis (TG/DTA), scanning electron microscope and energy dispersed X-ray analysis (SEM/EDX) and color stability. Significant reduced CFU was exhibited at 20.0 and 30.0 wt% of silver nanoparticles incorporated (p denture acrylic containing silver nanoparticles was accessed by TG/DTA and EDX analysis. The modified denture base acrylic combined with silver nanoparticles displayed antifungal properties and acted like latent antifungal material itself with low-releasing Ag(+), however, the improvement of poor color stability was still required. © 2012 The Gerodontology Society and John Wiley & Sons A/S.

  3. Cation-Coupled Bicarbonate Transporters

    OpenAIRE

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2014-01-01

    Cation-coupled HCO3− transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3− and associated with Na+ and Cl− movement. The first Na+-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 ...

  4. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.

    2010-03-01

    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  5. Morphological and Spectral Characteristics of Hybrid Nanosystems Based on Mono- and Bimetallic Platinum Nanoparticles and Silver

    Science.gov (United States)

    Valueva, S. V.; Vylegzhanina, M. E.; Sukhanova, T. E.

    2018-02-01

    Morphological and spectral characteristics of hybrid nanosystems (NSes) based on mono- and bimetallic silver and platinum nanoparticles (NPs) stabilized by a cationic polyelectrolyte (CP), poly- N,N,N,N-trimethylmethacryloyloxyethylammonium methylsulfate, are determined via static/dynamic light scattering, UV spectroscopy, and atomic force microscopy. The formation of dense spherical polymolecular nanostructures is established. The possibility of controlling the morphological and spectral characteristics of the NS is shown by varying the nature and composition of NPs.

  6. Data Clustering

    Science.gov (United States)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  7. Corrosion protection for silver reflectors

    Science.gov (United States)

    Arendt, Paul N.; Scott, Marion L.

    1991-12-31

    A method of protecting silver reflectors from damage caused by contact with gaseous substances which are often present in the atmosphere and a silver reflector which is so protected. The inventive method comprises at least partially coating a reflector with a metal oxide such as aluminum oxide to a thickness of 15 .ANG. or less.

  8. Selective crystallization of cations with crown ethers; Selektive Kristallisation von Kationen mit Kronenethern

    Energy Technology Data Exchange (ETDEWEB)

    Heffels, Dennis Egidius

    2014-07-04

    The aim of this work was to study the selectivity and preferences of the incorporation of differently sized cations in the cavities of various crown ethers and the characterization of the resulting compounds. The coordination preferences of crown ethers with different cavities have long been known, and the impact of other effects on the structure formation have increasingly become the focus of attention. In this work a comparative overview of the coordination preferences depending on various factors was undertaken. The focus was mainly on the variation of the cavity of the crown ether in the presence of differently sized cations. In addition, the effects of the solvent and differently coordinating anions have been investigated. Within the framework of this work, basic coordination preferences could be detected with rare earth nitrates, which are affected particularly by the choice of the solvent. The formation of different types of structures could be controlled by varying the conditions such that the incorporation of the cation in the cavity of the crown ether was influenced and the formation of a particular type of structure can be influenced partly by the choice of solvent. In this case no direct preferences for the incorporation into the cavity of the crown ether in relation to the cation size were observed for rare earth cations. However, the coordination of the crown ether leads in each case - for lanthanides - to rather high coordination numbers. A total of five new rare earth complexes and two structural variants could be observed with crown ethers. In the study of the selectivity of the incorporation into the cavity, known structures were also reproduced and further structures were characterized but the crystal structures not entirely solved. With the use of monovalent cations such as potassium, lithium or silver a total of nine new compounds could be synthesized, while no clear preferences for the incorporation of certain cations were detected. The

  9. ADSORPTION METHOD FOR SEPARATING METAL CATIONS

    Science.gov (United States)

    Khym, J.X.

    1959-03-10

    The chromatographic separation of fission product cations is discussed. By use of this method a mixture of metal cations containing Zr, Cb, Ce, Y, Ba, and Sr may be separated from one another. Mentioned as preferred exchange adsorbents are resins containing free sulfonic acid groups. Various eluants, such as tartaric acid, HCl, and citric acid, used at various acidities, are employed to effect the selective elution and separation of the various fission product cations.

  10. Silver Nanoparticle Controlled Synthesis and Implications in Spectroscopy, Biomedical and Optoelectronics Applications

    Science.gov (United States)

    Stamplecoskie, Kevin

    This thesis describes the photochemical synthesis of silver nano particles, several ways to make these particles as well as control the size and shape of the colloidal particles. Understanding the primary reactions in photochemical nanoparticle formation has lead to important contributions to the overall mechanism of metal nanoparticle synthesis. The size and shape control of the particles is shown to have important implications for the Raman spectrum of surface bound molecules. The particles have also been used in antibacterial properties where it was shown that silver nanoparticles are more antibacterial than the corresponding silver cation, while remaining non-toxic to several common cell lines. The particles were also shown to have some interesting properties that can be exploited in lithography and optoelectronics.

  11. Silver complexation by metallacryptates.

    Science.gov (United States)

    Lamberts, Kevin; Tegoni, Matteo; Jiang, Xiang; Kou, Hui-Zhong; Englert, Ulli

    2016-01-07

    We report the first complete characterization of metallycryptates encapsulating Ag(I) cations: carboxylato ligands derived from l-proline and l-alanine chelate and bridge six Cu(II) centres arranged in a slightly distorted octahedral fashion. Eight oxygen atoms of these ligands are disposed in square-prismatic geometry and coordinate the monovalent cation. Two alternative metallacryptates based on alanine have been identified which differ with respect to aggregation: a solid in which pairs of encapsulating sites are formed competes with an infinite chain of M(I) coordinating sites. In contrast, the individual encrypting moieties are arranged as overall neutral and isolated molecular species in the proline-based metallacryptate. This proline derivative can accomodate Ag(I) and Na(I) cations and form a solid solution. Susceptibility measurements confirm ferromagnetic interactions between the Cu(II) within the hexanuclear proline cryptate and thus underline the similarity between solids accommodating Na(I) and Ag(I). Spectroscopic results suggest that these metallacryptates hardly dissociate in methanol solution.

  12. Bosonic helium droplets with cationic impurities: Onset of electrostriction and snowball effects from quantum calculations

    International Nuclear Information System (INIS)

    Coccia, E.; Bodo, E.; Marinetti, F.; Gianturco, F. A.; Yildrim, E.; Yurtsever, M.; Yurtsever, E.

    2007-01-01

    Variational Monte Carlo and diffusion Monte Carlo calculations have been carried out for cations such as Li + , Na + , and K + as dopants of small helium clusters over a range of cluster sizes up to about 12 solvent atoms. The interaction has been modeled through a sum-of-potential picture that disregards higher order effects beyond atom-atom and atom-ion contributions. The latter were obtained from highly correlated ab initio calculations over a broad range of interatomic distances. This study focuses on two of the most striking features of the microsolvation in a quantum solvent of a cationic dopant: electrostriction and snowball effects. They are discussed here in detail and in relation with the nanoscopic properties of the interaction forces at play within a fully quantum picture of the cluster features

  13. Bosonic helium droplets with cationic impurities: onset of electrostriction and snowball effects from quantum calculations.

    Science.gov (United States)

    Coccia, E; Bodo, E; Marinetti, F; Gianturco, F A; Yildrim, E; Yurtsever, M; Yurtsever, E

    2007-03-28

    Variational Monte Carlo and diffusion Monte Carlo calculations have been carried out for cations such as Li(+), Na(+), and K(+) as dopants of small helium clusters over a range of cluster sizes up to about 12 solvent atoms. The interaction has been modeled through a sum-of-potential picture that disregards higher order effects beyond atom-atom and atom-ion contributions. The latter were obtained from highly correlated ab initio calculations over a broad range of interatomic distances. This study focuses on two of the most striking features of the microsolvation in a quantum solvent of a cationic dopant: electrostriction and snowball effects. They are discussed here in detail and in relation with the nanoscopic properties of the interaction forces at play within a fully quantum picture of the cluster features.

  14. Chitosan finishing nonwoven textiles loaded with silver and iodide for antibacterial wound dressing applications.

    Science.gov (United States)

    Aubert-Viard, François; Martin, Adeline; Chai, Feng; Neut, Christel; Tabary, Nicolas; Martel, Bernard; Blanchemain, Nicolas

    2015-03-02

    Polyethylene terephtalate (PET) and Polypropylene (PP) textiles are widely used in biomedical application such as wound dressings and implants. The aim of this work was to develop an antibacterial chitosan (CHT) coating activated by silver or by iodine. Chitosan was immobilized onto PET and PP supports using citric acid (CTR) as a crosslinking agent through a pad-dry-cure textile finishing process. Interestingly, depending on the CHT/CTR molar ratio, two different systems were obtained: rich in cationic ammonium groups when the CTR concentration was 1%w/v, and rich in anionic carboxylate groups when the CTR concentration was 10%w/v. As a consequence, such samples could be selectively loaded with iodine and silver nitrate, respectively.Both types of coatings were analyzed using SEM and FTIR, their sorption capacities were evaluated toward iodide/iodate anions (I(-)/IO3(-)) and the silver cations (Ag(+)) were evaluated using elemental analysis. Finally, in vitro evaluations were carried out to evaluate the cytocompatibility on the epithelial cell line. The silver loaded textile reported a stronger antibacterial effect against E.coli (5 log10 reduction) than toward S. aureus (3 log10) while the antibacterial effect of the iodide loaded textiles was limited to 1 log10 to 2 log10 on both strains.

  15. Rethinking Schools and the Power of Silver

    Science.gov (United States)

    Sleeter, Christine

    2011-01-01

    This 25th anniversary of "Rethinking Schools" can be thought of as its silver anniversary. Silver itself must be considered through contrasting lenses. On the one hand, as lessons in "Rethinking Globalization" teach, silver and gold were the basis of Europe's horrendous exploitation of Latin America. On the other hand, silver is often associated…

  16. Oral toxicity of silver ions, silver nanoparticles and colloidal silver – a review

    DEFF Research Database (Denmark)

    Hadrup, Niels; Lam, Henrik Rye

    2014-01-01

    Orally administered silver has been described to be absorbed in a range of 0.4-18% in mammals with a human value of 18%. Based on findings in animals, silver seems to be distributed to all of the organs investigated, with the highest levels being observed in the intestine and stomach. In the skin...

  17. Synthesis of sub-micron silver and silver sulfide particles via solvothermal silver azide decomposition

    International Nuclear Information System (INIS)

    Grocholl, Luke; Wang Jianjun; Gillan, Edward G.

    2003-01-01

    Many transition-metal azides are thermodynamically unstable with respect to the elements and thus, may serve as energetic precursor sources in nanoscale metal particle synthesis. This report describes the use of silver azide (AgN 3 ) in nonaqueous, solvothermal decomposition reactions to produce crystalline sub-micron silver particles and interconnected structures. The thermal decomposition of AgN 3 directly produces silver and N 2 and no secondary chemical reducing agent is required. This solvothermal conversion was examined in toluene, tetrahydrofuran (THF), and trioctylamine below 250 deg. C. The coordinating solvents produced the smallest particles (150-500 nm), while the toluene reaction products were near 1 μm in size. The addition of soluble elemental sulfur to the THF reaction results in the growth of silver sulfide particles near 1 μm in size. The silver and Ag 2 S products are crystalline by X-ray diffraction and show some faceting by scanning electron microscopy

  18. Process for making silver metal filaments

    Science.gov (United States)

    Bamberger, Carlos E.

    1997-01-01

    A process for making silver metal particles from silver salt particles having the same morphology. Precursor silver salt particles selected from the group consisting of silver acetate and silver sulfide having a selected morphology are contained in a reactor vessel having means for supporting the particles in an air suspension to prevent the agglomeration of the particles. Air is flowed through the reactor vessel at a flow rate sufficient to suspend the particles in the reactor vessel. The suspended precursor silver salt particles are heated to a processing temperature and at a heating rate below which the physical deterioration of the suspended precursor silver salt particles takes place. The suspended precursor silver salt particles are maintained at the processing temperature for a period of time sufficient to convert the particles into silver metal particles having the same morphology as the precursor silver salt particles.

  19. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick

    2010-01-01

    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  20. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina

    2012-01-01

    the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  1. Cluster editing

    DEFF Research Database (Denmark)

    Böcker, S.; Baumbach, Jan

    2013-01-01

    . The problem has been the inspiration for numerous algorithms in bioinformatics, aiming at clustering entities such as genes, proteins, phenotypes, or patients. In this paper, we review exact and heuristic methods that have been proposed for the Cluster Editing problem, and also applications...

  2. A Silver DNAzyme.

    Science.gov (United States)

    Saran, Runjhun; Liu, Juewen

    2016-04-05

    Silver is a very common heavy metal, and its detection is of significant analytical importance. DNAzymes are DNA-based catalysts; they typically recruit divalent and trivalent metal ions for catalysis. Herein, we report a silver-specific RNA-cleaving DNAzyme named Ag10c obtained after six rounds of in vitro selection. Ag10c displays a catalytic rate of 0.41 min(-1) with 10 μM Ag(+) at pH 7.5 with 200 mM NaNO3, while its activity is completely inhibited with the same concentration of NaCl. Ag10c is highly specific for Ag(+) among all the tested metals. A catalytic beacon biosensor is designed by labeling a fluorophore and a quencher on the DNAzyme. Fluorescence enhancement is observed in the presence of Ag(+) with a detection limit of 24.9 nM Ag(+). The sensor shows a similar analytical performance in Lake Huron water. This is the first monovalent transition metal dependent RNA-cleaving DNAzyme. Apart from its biosensor application, this study strengthens the idea of exploring beyond the traditional understanding of multivalent ion dependent DNAzyme catalysis.

  3. GREEN SYNTHESIS OF SILVER NANO PARTICLES

    OpenAIRE

    Pallavi Sharma; Valentina V Umrania

    2017-01-01

    The research was carried out to investigate the synthesis of silver nano particles. The silver nano particles have wide tremendous application in the therapeutics, antimicrobials, diagnostics, catalysis, micro-electronics and high sensitivity biomolecular detection. Silver nano particles grow in a single-step method, at room temperature, and with no addition of external energy. The silver nanoparticles were synthesized from silver nitrate aqueous solution through a simple, ecofriendly and cos...

  4. Size distribution of silver nanoclusters induced by ion, electron, laser beams and thermal treatments of an organometallic precursor

    International Nuclear Information System (INIS)

    D'Urso, L.; Nicolosi, V.; Compagnini, G.; Puglisi, O.

    2004-01-01

    Recently, a huge variety of physical and chemical synthetic processes have been reported to prepare nanostructured materials made of very small (diameter<50 nm) metallic clusters. Depending on the nature of clusters, this new kind of materials posses interesting properties (electronic, optical, magnetic, catalytic) that can be tailored as a function of the particles size and shape. Silver nanoparticles have been obtained by direct thermal treatment or by beam-enhanced decomposition (ion, electron and laser) of a silver organometallic compound (precursor) spinned onto suitable substrates. In this paper, we present the results of a study on the size distribution of such nanoparticles as a function of the different synthesis methods. It was found that the methods employed strongly affect the silver nanoparticles formation. Smaller silver nanoclusters were obtained after reduction by ion beam irradiation and thermal treatment, as observed by using different techniques (AFM, XRD and UV-Vis)

  5. Size distribution of silver nanoclusters induced by ion, electron, laser beams and thermal treatments of an organometallic precursor

    Energy Technology Data Exchange (ETDEWEB)

    D' Urso, L.; Nicolosi, V.; Compagnini, G.; Puglisi, O

    2004-03-15

    Recently, a huge variety of physical and chemical synthetic processes have been reported to prepare nanostructured materials made of very small (diameter<50 nm) metallic clusters. Depending on the nature of clusters, this new kind of materials posses interesting properties (electronic, optical, magnetic, catalytic) that can be tailored as a function of the particles size and shape. Silver nanoparticles have been obtained by direct thermal treatment or by beam-enhanced decomposition (ion, electron and laser) of a silver organometallic compound (precursor) spinned onto suitable substrates. In this paper, we present the results of a study on the size distribution of such nanoparticles as a function of the different synthesis methods. It was found that the methods employed strongly affect the silver nanoparticles formation. Smaller silver nanoclusters were obtained after reduction by ion beam irradiation and thermal treatment, as observed by using different techniques (AFM, XRD and UV-Vis)

  6. Optimization of divalent cation in Saccharomyces pastorianus ...

    African Journals Online (AJOL)

    Cassava starch fermentations were conducted in batch cultures to optimize the effect of divalent cations on ethanol production with Saccharomyces pastorianus using the central composite rotatable response surface design. Divalent cations used were magnesium (Mg2+), zinc (Zn2+) and calcium (Ca2+). Maximum ethanol ...

  7. Spectroscopie des transitions électroniques des cations hydrocarbures aromatiques polycycliques et de leurs agrégats

    OpenAIRE

    Friha, Hela

    2012-01-01

    This work is mainly an experimental study of the electronic spectroscopy of the polycyclic aromatic hydrocarbon cations and their clusters in conditions close to those of the interstellar medium. The aim of this study is to obtain data that can be compared with the spectrum of the diffuse interstellar bands and to explore the properties of PAH clusters.; Ce travail est une étude expérimentale de la spectroscopie électronique des cations hydrocarbures aromatiques polycycliques (PAH) et de leur...

  8. Structural evolution in the crystallization of rapid cooling silver melt

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z.A., E-mail: ze.tian@gmail.com [School of Physics and Electronics, Hunan University, Changsha 410082 (China); Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Dong, K.J.; Yu, A.B. [Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2015-03-15

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald’s rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperature range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid–solid phase transition. - Highlights: • A comprehensive structural analysis is conducted focusing on crystallization. • The involved atoms in our analysis are more than 90% for all samples concerned. • A series of distinct intermediate states are found in crystallization of silver melt. • A novelty icosahedron-saturated state breeds the metastable bcc state.

  9. MOD silver metallization for photovoltaics

    Science.gov (United States)

    Vest, G. M.; Vest, R. W.

    1985-01-01

    The feasibility of utilizing metallo-organic decomposition (MOD) silver inks were investigated for front contact metallization of solar cells. Generic synthesis procedures were developed for all metallo-organic compounds investigated. Silver neodecanoate was found to be the most suitable silver metallo-organic compound for use in thick film inks, but the quality of the inks was found to be highly dependent on its purity. Although neither the process nor inks were completely optimized for solar cell front contact metallization, they show great promise for this application.

  10. arsenomolybdate compound with cytosinium cations

    Indian Academy of Sciences (India)

    perspective view of the [(HAsO4)2Mo6O19]6− anion with its numbering scheme is shown in figure 3. The polyoxo- molybdate cluster [(HAsO4)2Mo6O19]6− can be described as a ring of six distorted edge-, face- and corner-sharing. MoO6 octahedra with two HAsO4 tetrahedra capped on each side. The arsenic As2 subunit ...

  11. Clustering Dycom

    KAUST Repository

    Minku, Leandro L.

    2017-10-06

    Background: Software Effort Estimation (SEE) can be formulated as an online learning problem, where new projects are completed over time and may become available for training. In this scenario, a Cross-Company (CC) SEE approach called Dycom can drastically reduce the number of Within-Company (WC) projects needed for training, saving the high cost of collecting such training projects. However, Dycom relies on splitting CC projects into different subsets in order to create its CC models. Such splitting can have a significant impact on Dycom\\'s predictive performance. Aims: This paper investigates whether clustering methods can be used to help finding good CC splits for Dycom. Method: Dycom is extended to use clustering methods for creating the CC subsets. Three different clustering methods are investigated, namely Hierarchical Clustering, K-Means, and Expectation-Maximisation. Clustering Dycom is compared against the original Dycom with CC subsets of different sizes, based on four SEE databases. A baseline WC model is also included in the analysis. Results: Clustering Dycom with K-Means can potentially help to split the CC projects, managing to achieve similar or better predictive performance than Dycom. However, K-Means still requires the number of CC subsets to be pre-defined, and a poor choice can negatively affect predictive performance. EM enables Dycom to automatically set the number of CC subsets while still maintaining or improving predictive performance with respect to the baseline WC model. Clustering Dycom with Hierarchical Clustering did not offer significant advantage in terms of predictive performance. Conclusion: Clustering methods can be an effective way to automatically generate Dycom\\'s CC subsets.

  12. Clustering analysis

    International Nuclear Information System (INIS)

    Romli

    1997-01-01

    Cluster analysis is the name of group of multivariate techniques whose principal purpose is to distinguish similar entities from the characteristics they process.To study this analysis, there are several algorithms that can be used. Therefore, this topic focuses to discuss the algorithms, such as, similarity measures, and hierarchical clustering which includes single linkage, complete linkage and average linkage method. also, non-hierarchical clustering method, which is popular name K -mean method ' will be discussed. Finally, this paper will be described the advantages and disadvantages of every methods

  13. Cluster analysis

    CERN Document Server

    Everitt, Brian S; Leese, Morven; Stahl, Daniel

    2011-01-01

    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  14. Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes

    Science.gov (United States)

    Zhu, Liang; Yu, Xuedi; Hickner, Michael A.

    2018-01-01

    In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.

  15. Intracellular trafficking mechanism of cationic phospholipids including cationic liposomes in HeLa cells.

    Science.gov (United States)

    Un, K; Sakai-Kato, K; Goda, Y

    2014-07-01

    The development of gene delivery methods is essential for the achievement of effective gene therapy. Elucidation of the intracellular transfer mechanism for cationic carriers is in progress, but there are few reports regarding the intracellular trafficking processes of the cationic phospholipids taken up into cells. In the present work, the trafficking processes of a cationic phospholipid (1,2-dioleoyl-3-trimethylammonium-propane, DOTAP) were investigated from intracellular uptake to extracellular efflux using cationic liposomes in vitro. Following intracellular transport of liposomes via endocytosis, DOTAP was localized in the endoplasmic reticulum, Golgi apparatus, and mitochondria. Moreover, the proteins involved in DOTAP intracellular trafficking and extracellular efflux were identified. In addition, helper lipids of cationic liposomes were found to partially affect this intracellulartrafficking. These findings might provide valuable information for designing cationic carriers and avoiding unexpected toxic side effects derived from cationic liposomal components.

  16. Time-resolved photoelectron nano-spectroscopy of individual silver particles: Perspectives and limitations

    DEFF Research Database (Denmark)

    Rohmer, Martin; Bauer, Michael; Leissner, Till

    2010-01-01

    Simultaneous time- and energy-resolved two-photon photoemission with nanometer resolution is demonstrated for the first time. We monitor the energy dependence of the decay dynamics of electron excitations in individual silver particles, which were deposited from a gas aggregation cluster source...

  17. Core/shell formation and surface segregation of multi shell icosahedral silver-palladium bimetallic nanostructures: A dynamic and thermodynamic study

    International Nuclear Information System (INIS)

    Hewage, Jinasena W.

    2016-01-01

    Core/shell formation and surface segregation of multi shell icosahedral bimetallic silver-palladium nanostructures with the size of 55 and 147 atoms were studied by using the Molecular Dynamics simulations, and calculating Helmholtz free energy changes in the penetration of palladium atoms from shell to core, core to shell transition of silver and melting temperatures by using statistical mechanical densities of states. In 55 atoms icosahedra, two core–shell motifs, Ag 13 Pd 42 and Pd 13 Ag 42 with their isomers Pd 13 (Pd 29 Ag 13 ) and Ag 13 (Ag 29 Pd 13 ) were considered. Similarly in 147 atoms icosahedra, all mutations corresponding to the occupations of either silver atoms or palladium atoms in the core, inner shell or outer shell and their isomers generated by interchanging thirteen core atoms with thirteen atoms of the other type in the inner and outer shells were considered. It is found that the palladium-core clusters are more stable than the silver-core clusters and cohesive energy increases with the palladium composition. Phase transition of each cluster was studied by means of constant volume heat capacity. The trend in variation of melting temperature is accordance with the energy trend. Helmholtz free energy changes in palladium penetration, core to shell transition of silver and in surface mixing and segregation revealed the thermodynamic stability of the formation of Pd core Ag shell structures especially at silver rich environment and the surface segregation of silver. - Highlights: • Nanostructures of Pd m Ag n clusters for m + n = 55 and 147 have been studied. • Structures favor the formation of palladium-core surrounded by silver shell. • Calculated thermodynamic parameters confirm the energetic results. • Core/shell formation is favored at concentration of silver. • Silver segregation on surface while palladium penetration to core is observed.

  18. Structural evolution in the crystallization of rapid cooling silver melt

    Science.gov (United States)

    Tian, Z. A.; Dong, K. J.; Yu, A. B.

    2015-03-01

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald's rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperature range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid-solid phase transition.

  19. Occupational Clusters.

    Science.gov (United States)

    Pottawattamie County School System, Council Bluffs, IA.

    The 15 occupational clusters (transportation, fine arts and humanities, communications and media, personal service occupations, construction, hospitality and recreation, health occupations, marine science occupations, consumer and homemaking-related occupations, agribusiness and natural resources, environment, public service, business and office…

  20. Cancer Clusters

    Science.gov (United States)

    ... Peer Review and Funding Outcomes Step 4: Award Negotiation & Issuance Manage Your Award Grants Management Contacts Monitoring ... potentially hazardous working conditions, including suspected cancer clusters. Employees, authorized employee representatives, and employers can request these ...

  1. Titanium-Oxide Host Clusters with Exchangeable Guests.

    Science.gov (United States)

    Zhang, Guanyun; Li, Wenyun; Liu, Caiyun; Jia, Jiong; Tung, Chen-Ho; Wang, Yifeng

    2018-01-10

    A novel family of water-soluble, polyoxocationic titanium-oxide host-guest clusters are reported herein. They exhibit an unprecedented hexagonal prismatic core structure for hosting univalent cationic guests like K + , Rb + , Cs + and H 3 O + . Guest exchange has been studied using 133 Cs NMR, showing the flexible pore of a host permits passage of a comparatively larger cation and giving an equilibrium constant of ca. 13 for displacing Rb + by Cs + . Attractive ion-dipole interaction, depending on host-guest size complementarity, plays a dominant role for the preferential encapsulation of larger alkali-metal cationic guests.

  2. Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity

    Science.gov (United States)

    Hanim, Siti Aishah Mohd; Malek, Nik Ahmad Nizam Nik; Ibrahim, Zaharah

    2016-01-01

    Amine-functionalized, silver-exchanged zeolite NaY (ZSA) were prepared with three different concentrations of 3-aminopropyltriethoxysilane (APTES) (0.01, 0.20 and 0.40 M) and four different concentrations of silver ions (25%, 50%, 100% and 200% from zeolite cation exchange capacity (CEC)). The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), surface area analysis, thermogravimetric analysis (TGA) and zeta potential (ZP) analysis. The FTIR results indicated that the zeolite was functionalized by APTES and that the intensity of the peaks corresponding to APTES increased as the concentration of APTES used was increased. The antibacterial activities of the silver-exchanged zeolite NaY (ZS) and ZSA were studied against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538 using the disc diffusion technique (DDT) and minimum inhibitory concentration (MIC). The antibacterial activity of ZSA increased with the increase in APTES on ZS, and E. coli was more susceptible towards the sample compared to S. aureus. The FESEM micrographs of the bacteria after contact with the ZSA suggested different mechanisms of bacterial death for these two bacteria due to exposure to the studied sample. The functionalization of ZS with APTES improved the antibacterial activity of the silver-zeolite, depending on the concentration of silver ions and APTES used during modification.

  3. Interlayer reactions of the silver molybdate Ag 6Mo 10O 33

    Science.gov (United States)

    Rösner, Christian; Lagaly, Gerhard

    1984-06-01

    Silver molybdate Ag 6Mo 10O 33 exchanges silver ions for organic cations, particularly surface-active agents such as long-chain n-alkylammonium ions C nH 2 n+1 NH +3. The alkylammonium ions penetrate between the layers and aggregate as bimolecular structures. The alkyl chains in the interlayer are not in all- trans conformation but are isomerized into conformers with gauche-bonds. These chains aggregate as gauche-blocks because the polar chain ends (NH +3 and NH 2 groups) interacting with the molybdate layer cannot be close-packed. The specially favored formation and pronounced stability of gauche-blocks impede the quantitative exchange of the silver ions. No more than 20% of the silver ions are exchanged by alkylammonium nitrate. The gauche-blocks are stabilized by additional uptake of alkylamine molecules. Silver molybdate also reacts with alkylamine and forms long-spacing complexes with long segments of the alkyl chains perpendicular to the layers.

  4. Ion exchange of some transition metal cations on hydrated titanium dioxide in aqueous ammonia solutions

    International Nuclear Information System (INIS)

    Bilewicz, A.; Narbutt, J.; Dybczynski, R.

    1992-01-01

    The adsorption of transition metal cations on hydrated titanium dioxide in complexing ammonia and amine solutions has been studied as a function of ammonia (amine) concentration. The relationships between the distribution coefficients and ammonia concentration as well as the effects of various amines on sorption of transition metals indicate that a coordinate bond is formed between the metal ions and the hydroxy groups of the sorbent. The distribution coefficients of silver(I) and cobalt(II), which form strong ammonia complexes in aqueous solutions, decrease with increasing concentration of ammonia already at concentrations exceeding 10 -3 *mol*dm -3 . Cations of zinc, manganese and mercury which form much weaker ammonia complexes do not exhibit any effect of ammonia concentration in the whole range investigated. In the case of sorption of macroamounts of ammonia or amine complexes of silver, the molecular sieve effect plays an important role. The differences in the affinity of hydrated titanium dioxide for ammonia solvates of various transition metal ions can serve as a tool for effective separation of these ions in ammonia solutions. (author) 10 refs.; 4 figs.; 1 tab

  5. Cluster generator

    Science.gov (United States)

    Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  6. Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia Magna

    Science.gov (United States)

    Scanlan, Leona D.; Reed, Robert B.; Loguinov, Alexandre V.; Antczak, Philipp; Tagmount, Abderrahmane; Aloni, Shaul; Nowinski, Daniel Thomas; Luong, Pauline; Tran, Christine; Karunaratne, Nadeeka; Pham, Don; Lin, Xin Xin; Falciani, Francesco; Higgins, Chris P.; Ranville, James F.; Vulpe, Chris D.; Gilbert, Benjamin

    2013-01-01

    Nanowires (NWs), high-aspect-ratio nanomaterials, are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from nanoparticles. We carried out a comprehensive evaluation of the physico-chemical stability of four silver nanowires (AgNWs) of two sizes and coatings and their toxicity to Daphnia magna. Inorganic aluminum-doped silica coatings were less effective than organic poly(vinyl pyrrolidone) coatings at preventing silver oxidation or Ag+ release and underwent a significant morphological transformation within one-hour following addition to low ionic strength Daphnia growth media. All AgNWs were highly toxic to D. magna but less toxic than ionic silver. Toxicity varied as a function of AgNW dimension, coating and solution chemistry. Ag+ release in the media could not account for observed AgNW toxicity. Single-particle inductively coupled plasma mass spectrometry (spICPMS) distinguished and quantified dissolved and nanoparticulate silver in microliter-scale volumes of Daphnia magna hemolymph with a limit of detection of approximately 10 ppb. The silver levels within the hemolymph of Daphnia exposed to both Ag+ and AgNW met or exceeded the initial concentration in the growth medium, indicating effective accumulation during filter feeding. Silver-rich particles were the predominant form of silver in hemolymph following exposure to both AgNWs and Ag+. Scanning electron microscopy (SEM) imaging of dried hemolymph found both AgNWs and silver precipitates that were not present in the AgNW stock or the growth medium. Both organic and inorganic coatings on the AgNW were transformed during ingestion or absorption. Pathway, gene ontology and clustering analyses of gene expression response indicated effects of AgNWs distinct from ionic silver on Daphnia magna. PMID:24099093

  7. Silver nanoparticles in dentistry.

    Science.gov (United States)

    Noronha, Victor T; Paula, Amauri J; Durán, Gabriela; Galembeck, Andre; Cogo-Müller, Karina; Franz-Montan, Michelle; Durán, Nelson

    2017-10-01

    Silver nanoparticles (AgNPs) have been extensively studied for their antimicrobial properties, which provide an extensive applicability in dentistry. Because of this increasing interest in AgNPs, the objective of this paper was to review their use in nanocomposites; implant coatings; pre-formulation with antimicrobial activity against cariogenic pathogens, periodontal biofilm, fungal pathogens and endodontic bacteria; and other applications such as treatment of oral cancer and local anesthesia. Recent achievements in the study of the mechanism of action and the most important toxicological aspects are also presented. Systematic searches were carried out in Web of Science (ISI), Google, PubMed, SciFinder and EspaceNet databases with the keywords "silver nano* or AgNP*" and "dentist* or dental* or odontol*". A total of 155 peer-reviewed articles were reviewed. Most of them were published in the period of 2012-2017, demonstrating that this topic currently represents an important trend in dentistry research. In vitro studies reveal the excellent antimicrobial activity of AgNPs when associated with dental materials such as nanocomposites, acrylic resins, resin co-monomers, adhesives, intracanal medication, and implant coatings. Moreover, AgNPs were demonstrated to be interesting tools in the treatment of oral cancers due to their antitumor properties. The literature indicates that AgNPs are a promising system with important features such as antimicrobial, anti-inflammatory and antitumor activity, and a potential carrier in sustained drug delivery. However, there are some aspects of the mechanisms of action of AgNPs, and some important toxicological aspects arising from the use of this system that must be completely elucidated. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Electrodeposition of silver nanodendrites

    International Nuclear Information System (INIS)

    Kaniyankandy, Sreejith; Nuwad, J; Thinaharan, C; Dey, G K; Pillai, C G S

    2007-01-01

    Nanodendrites of silver were synthesized by electrodeposition using AgNO 3 as the source in ammoniacal solution. The method was remarkably fast, simple and scalable. X-ray diffraction (XRD) studies confirmed the formation of a cubic phase of silver. Scanning electron microscopy (SEM) revealed the formation of well-shaped dendrites. The nanodendrites were hyperbranched with lengths of the order of a few micrometres. The concentration of NH 3 in the electrolyte solution was found to have remarkable influence on the morphology, crystallite size and formation of branched nanodendrites. The branchings were found to occur at regular intervals of ∼50 nm along the main stem. Transmission electron microscopy (TEM) studies confirmed the SEM observation and revealed the 2D nature of the dendrites. Selected area electron diffraction (SAED) revealed that the dendrites were single crystalline in nature and the branching could have a crystalline origin. The direction of growth as inferred from SAED was . UV-vis spectra showed a single broad band centred on ∼380 nm indicating the spherical shape of the individual crystallites. The intrinsic size effect of the metal surface plasmon was used to explain the increase in the broadening on addition of NH 3 . The asymmetry of the band was explained on the basis of agglomeration of crystallites. The nanodendrites prepared by this method showed extension of the plasmon band through the entire visible region, indicating potential use in detection of single molecules based on enhanced Raman scattering. The deposition mechanism is described using the diffusion-limited aggregation model

  9. Silver Nanoparticles in Dental Biomaterials

    OpenAIRE

    Corrêa, Juliana Mattos; Mori, Matsuyoshi; Sanches, Heloísa Lajas; Cruz, Adriana Dibo da; Poiate, EdgardJr.; Poiate, Isis Andréa Venturini Pola

    2015-01-01

    Silver has been used in medicine for centuries because of its antimicrobial properties. More recently, silver nanoparticles have been synthesized and incorporated into several biomaterials, since their small size provides great antimicrobial effect, at low filler level. Hence, these nanoparticles have been applied in dentistry, in order to prevent or reduce biofilm formation over dental materials surfaces. This review aims to discuss the current progress in this field, highlighting aspects re...

  10. Cation transport in isomeric pentanes

    International Nuclear Information System (INIS)

    Gyoergy, Istvan; Gee, Norman; Freeman, G.R.

    1985-01-01

    The cation mobility μsub(+) is measured in n-pentane, isopentane, neo-pentane, and mixtures of n- and neo-pentane over conditions from the normal liquid, through the critical fluid, to the low density gas. Most of the liquid data correlate with the reduced temperature T/Tsub(c). The T/Tsub(c) reflects free volume and viscosity changes. Comparison is made to neutral molecule diffusion. The transition from viscosity control of mobility in the liquid to density control in the dilute gas occurs over the reduced viscosity region 3 > eta/etasub(c) > 0.6, which corresponds to the reduced density region 1.9 > eta/etasub(c) > 0.5. In the saturated gas etaμsub(+) is similar in all pentanes, but iso- approximately> n- > neo-pentane. At constant density dμsub(+)/dT >= 0 for gases. The average gas nμsub(+) is similar in all pentanes, but iso- approximately> n- > neo-pentane. At constant density dμsub(+)/dT >= 0 for gases. The average momentum transfer cross sections in the n-/neo-pentane mixtures are similar to those in neo-pentane at low T but similar to those in n-pentane at high T. The present findings are combined with previous electron mobility data in addressing the effect of hydrocarbon molecular (external) shape on the electric breakdown strength of gases

  11. Cationic Bolaamphiphiles for Gene Delivery

    Science.gov (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  12. Extraction of silver(I) from aqueous solutions in the absence and presence of copper(II) with a methimazole-based ionic liquid.

    Science.gov (United States)

    Reyna-González, Juan M; Torriero, Angel A J; Siriwardana, Amal I; Burgar, Iko M; Bond, Alan M

    2011-08-21

    The ionic liquid (IL) 2-butylthiolonium bis(trifluoromethanesulfonyl)amide, [mimSBu][NTf(2)], facilitates the efficient extraction of silver(I) from aqueous media via interaction with both the cation and anion components of the IL. Studies with a conventional aqueous-IL two phase system as well as microextraction of silver(I) by a thick IL film adhered to an electrode monitored in situ by cyclic voltammetry, established that [mimSBu][NTf(2)] can extract electroactive silver(I) ions from an aqueous solution. The pH of the aqueous phase decreases upon addition of [mimSBu](+), which is attributed to partial release of the hydrogen attached to the N(3) nitrogen atom of the imidazolium ring. The presence of silver(I) further increase the acidity of the aqueous phase as a consequence of coordination with the IL cation component. Voltammetric and (1)H and (13)C NMR techniques have been used to establish the nature of the silver(I) complexes extracted, and show that the form of interaction with the IL differs from that outlined previously for the extraction of copper(II). Insights on the competition established when silver(I) is extracted in the presence of copper(II) are provided. Finally, it is noted that metallic silver can be directly electrodeposited at the electrode surface after extraction of silver(I) into [mimSBu][NTf(2)] and that back extraction of silver(I) into aqueous media is achieved by addition of an acidic aqueous solution.

  13. Copper-silver ionization at a US hospital: interaction of treated ...

    Science.gov (United States)

    Tap water sampling and surface analysis of copper pipe/bathroom porcelain were performed to explore the fate of copper and silver during the first nine months of copper-silver ionization (CSI) applied to cold and hot water at a hospital in Cincinnati, Ohio. Ions dosed by CSI into the water at its point of entry to the hospital were inadvertently removed from hot water by a cation-exchange softener in one building (average removal of 72% copper and 51% silver). Copper at the tap was replenished from corrosion of the building’s copper pipes but was typically unable to reach 200 µg/L in first-draw and flushed hot and cold water samples. Unlike copper, silver solubility was not restricted by the incoming water’s high pH of 8.5. Cold water lines had >20 µg/L silver at most of the taps that were sampled, which further increased after flushing. However, silver plating onto copper pipe surfaces (particularly in the hot water line) prevented reaching 20 µg/L silver in hot water of many taps. Aesthetically displeasing purple/grey stains in bathroom porcelain were attributed to chlorargyrite [AgCl(s)], an insoluble precipitate that formed when CSI-dosed Ag+ ions combined with Cl- ions that were present in the incoming water. Overall, CSI aims to control Legionella bacteria in drinking water, but plumbing material interactions, aesthetics and other implications also deserve consideration to holistically evaluate in-building drinking water disinfection. To inform the

  14. First-Principles Modeling of ThO2 Solid Solutions with Oxides of Trivalent Cations

    Science.gov (United States)

    Alexandrov, Vitaly; Asta, Mark; Gronbech-Jensen, Niels

    2010-03-01

    Solid solutions formed by doping ThO2 with oxides of trivalent cations, such as Y2O3 and La2O3, are suitable for solid electrolyte applications, similar to doped zirconia and ceria. ThO2 has also been gaining much attention as an alternative to UO2 in nuclear energy applications, the aforementioned trivalent cations being important fission products. In both cases the mixing energetics and short-range ordering/clustering are key to understanding structural and transport properties. Using first-principles atomistic calculations, we address intra- and intersublattice interactions for both cation and anion sublattices in ThO2-based fluorite-type solid solutions and compare the results with similar modeling studies for related trivalent-doped zirconia systems.

  15. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.).

    Science.gov (United States)

    Zouzelka, Radek; Cihakova, Pavlina; Rihova Ambrozova, Jana; Rathousky, Jiri

    2016-05-01

    Despite the extensive research, the mechanism of the antimicrobial and biocidal performance of silver nanoparticles has not been unequivocally elucidated yet. Our study was aimed at the investigation of the ability of silver nanoparticles to suppress the growth of three types of algae colonizing the wetted surfaces or submerged objects and the mechanism of their action. Silver nanoparticles exhibited a substantial toxicity towards Chlorococcales Scenedesmus quadricauda, Chlorella vulgaris, and filamentous algae Klebsormidium sp., which correlated with their particle size. The particles had very good stability against agglomeration even in the presence of multivalent cations. The concentration of silver ions in equilibrium with nanoparticles markedly depended on the particle size, achieving about 6 % and as low as about 0.1 % or even less for the particles 5 nm in size and for larger ones (40-70 nm), respectively. Even very limited proportion of small particles together with larger ones could substantially increase concentration of Ag ions in solution. The highest toxicity was found for the 5-nm-sized particles, being the smallest ones in this study. Their toxicity was even higher than that of silver ions at the same silver concentration. When compared as a function of the Ag(+) concentration in equilibrium with 5-nm particles, the toxicity of ions was at least 17 times higher than that obtained by dissolving silver nitrite (if not taking into account the effect of nanoparticles themselves). The mechanism of the toxicity of silver nanoparticles was found complex with an important role played by the adsorption of silver nanoparticles and the ions released from the particles on the cell surface. This mechanism could be described as some sort of synergy between nanoparticles and ions. While our study clearly showed the presence of this synergy, its detailed explanation is experimentally highly demanding, requiring a close cooperation between materials scientists

  16. Mechanical Characterization of Polydopamine-Assisted Silver Deposition on Polymer Substrates

    Science.gov (United States)

    Cordes, Amanda Laurence

    Inspired by the adhesive proteins in marine mussels, polydopamine has become a popular adhesive ad-layer for surface functionalization of a variety of substrates. Based on the chemistry of the dopamine monomer, amine and thiol functional groups are hypothesized to increase adhesion between polymer substrates and polydopamine thin films. This hypothesis was the central motivation for development of a tailorable thiol-ene system in order to study the effects of substrate chemistry on polydopamine adhesion. While polydopamine-adhered silver has been studied on a variety of substrates, no in depth mechanical characterization has been performed and to date, no research has been published on thiol-enes coated in polydopamine-adhered silver. The purpose of this study was to characterize the mechanical durability and adhesion properties of a polydopamine-adhered silver film on commercial substrates and a tailorable thiol-ene system. Polydopamine and silver coatings were deposited on a variety of polymer substrates through a simple dip-coat process. The polydopamine forms a thin uniform adhesive layer and the silver deposits in a discontinuous manner with a nanoparticle sized base layer covering the full surface and micron-sized clusters adhered sporadically on top. Mechanical tensile testing was performed to characterize the durability of the silver coating on commercial polymers. Coated nylon and HDPE showed no signs of degradation or delamination of the polydopamine-adhered silver coating up to 30% strain although both substrates showed large plastic deformation. Peel tests were performed on both commercial polymers as well as a tailorable thiol-ene system. Results support the hypothesis that polydopamine adhesion is increased with the presence of functional groups. Parts of the HDPE sample were cleanly peeled, but silver patches were left sporadically across the surface pointing to weaker adhesion between polyethylene and polydopamine. A high adhesive strength tape was

  17. Structures and energetics of small lead cluster ions.

    Science.gov (United States)

    Kelting, Rebecca; Otterstätter, Robin; Weis, Patrick; Drebov, Nedko; Ahlrichs, Reinhart; Kappes, Manfred M

    2011-01-14

    By a combination of gas phase ion mobility measurements and relativistic density functional theory calculations with inclusion of spin-orbit coupling, we assign structures of lead cluster cations and anions in the range between 4 and 15 atoms. We find a planar rhombus for the tetramer, a trigonal bipyramid for the pentamer, and a pentagonal bipyramid for the heptamer, independent of charge state. For the hexamer, the cation and anion structures differ: we find an octahedron for the anion while the cation consists of fused tetrahedra. For the octamer, we find in both cases structures based on the pentagonal bipyramid motif plus adatom. For the larger clusters investigated we always find different structures for cations and anions. For example, Pb(12)(-) is confirmed to be a hollow icosahedron while Pb(12)(+) is a truncated filled icosahedron. Pb(13)(+) is a filled icosahedron but Pb(13)(-) is a hollow icosahedron with the additional atom capping a face. In order to get experimental information on the relative stabilities, we investigated the collision induced dissociation mass spectra for the different cluster sizes and charge states, and observe a strong correlation with the calculated fragmentation energies. Up to n = 13 the main fragmentation channel is atom loss; for the larger cluster sizes we observe fission into two large fragments. This channel is dominant for larger anions, less pronounced but clearly present for the cations.

  18. Franklin D. Roosevelt, Silver, and China.

    OpenAIRE

    Friedman, Milton

    1992-01-01

    The silver purchase program, initiated by Franklin Roosevelt in late 1933 in response to the economically small but politically potent silver bloc, gave a large short-run subsidy to silver producers at the cost of destroying any long-run monetary role for silver. More important, it imposed severe deflation on China, the only major country still on a silver standard, and forced it off the silver standard and on to a fiat standard, which brought forward in time and increased in severity the sub...

  19. Spectrophotometric studies on cation-cation interactions between Np(V) and Th(IV) cations in nitric acid medium

    International Nuclear Information System (INIS)

    Verma, P.K.; Pathak, P.N.; Bhattacharyya, A.; Prabhu, D.R.; Mohapatra, P.K.

    2014-01-01

    The higher-valent actinide cations exhibit fascinating coordination chemistry essentially due to the flexibility in their electronic structures. This is particularly applicable for the dioxo penta- and hexavalent lighter actinides such as U, Np, Pu, and Am. Even though the oxo moiety is assumed to be chemically inert in these cations, there are several studies which show that pentavalent Np cation (NpO 2 + ) displays a tendency of bonding with charged metal ions. This class of weak bond formation has been classified as cation-cation interactions (CCI). Initial studies suggested that these types of interactions of Np(V) with polyvalent metal ions are more probable in non complexing perchloric acid solutions. Majority of these studies have been performed in perchlorate media and the stability constant values have been calculated. On the other hand, these studies in nitric acid medium are rather few. Our recent spectrophotometric study has shown that Np(V) cation undergoes disproportionation reaction and the tendency for CCI becomes less favorable at elevated temperature in nitric acid media. This study has been extended for understanding possible CCI between Np(V)O 2 + and Th 4 + ions under varying conditions such as nitric acid (1-6 M HNO 3 ). Th concentration (up to 0.86 M), and temperature (293-343K). An attempt has been made to calculate the stability constant values and compare with those reported in other media

  20. Bussines Clusters

    Directory of Open Access Journals (Sweden)

    Sarmiza Pencea

    2010-10-01

    Full Text Available Clusters are complex economic structures in which similar companies, their up-stream and down-stream business partners, universities, research institutes, educational units, various service providers, diverse private and public institutions concentrate geografically, striving to get economies of agglomeration and scale, to capitalize on the resulting spill over effects, to cut costs, to better harness resources, to exchange information and experience, to improve quality, innovation, skills and productivity. By somehow unexpectedly combining competition and cooperation, they form a new, sophisticated stage in the evolution of production structures in quest of higher efficiency. This paper forays into the world of clusters and clusterization, which seem to increasingly capture the interest of businesses, scholars and policy makers. It looks at what clusters are, how they arise, what are their specific features, what benefits and challenges they can generate for companies and for the regions in which they locate and if and how they should be fostered by industrial policy interventions. The conclusion is that clusters can be very important development triggers and therefore they should be encouraged and nurtured by adequate policy measures. They should not only be used as a regular policy tool, but be placed at the very center of the development strategies of emerging economies.

  1. SERS Substrates by the Assembly of Silver Nano cubes: High-Throughput and Enhancement Reliability Considerations

    International Nuclear Information System (INIS)

    Rabin, O.; Lee, S.Y.; Rabin, O.

    2012-01-01

    Small clusters of nanoparticles are ideal substrates for SERS measurements, but the SERS signal enhancement by a particular cluster is strongly dependent on its structural characteristics and the measurement conditions. Two methods for high-throughput assembly of silver nano cubes into small clusters at predetermined locations on a substrate are presented. These fabrication techniques make it possible to study both the structure and the plasmonic properties of hundreds of nanoparticle clusters. The variations in SERS enhancement factors from cluster to cluster were analyzed and correlated with cluster size and configuration, and laser frequency and polarization. Using Raman instruments with 633 nm and 785 nm lasers and linear clusters of nano cubes, an increase in the reproducibility of the enhancement and an increase in the average enhancement values were achieved by increasing the number of nano cubes in the cluster, up to 4 nano cubes per cluster. By examining the effect of cluster configuration, it is shown that linear clusters with nano cubes attached in a face-to-face configuration are not as effective SERS substrates as linear clusters in which nano cubes are attached along an edge

  2. Separation study of some heavy metal cations through a bulk liquid membrane containing 1,13-bis(8-quinolyl-1,4,7,10,13-pentaoxatridecane

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Rounaghi

    2016-09-01

    Full Text Available Competitive permeation of seven metal cations from an aqueous source phase containing equimolar concentrations of Co2+, Fe3+, Cd2+, Cu2+, Zn2+, Ag+ and Pb2+ metal ions at pH 5 into an aqueous receiving phase at pH 3 through an organic phase facilitated by 1,13-bis(8-quinolyl-1,4,7,10,13-pentaoxatridecane (Kryptofix5 as a carrier was studied as bulk liquid membrane transport. The obtained results show that the carrier is highly selective for Ag+ cation and under the employed experimental conditions, it transports only this metal cation among the seven studied metal cations. The effects of various organic solvents on cation transport rates have been demonstrated. Among the organic solvents involving nitrobenzene (NB, chloroform (CHCl3, dichloromethane (DCM and 1,2-dichloroethane (1,2-DCE which were used as liquid membrane, the most transport rate was obtained for silver (I cation in DCM. The sequence of transport rate for this cation in organic solvents was: DCM > CHCl3 > 1,2-DCE > NB. The competitive transport of these seven metal cations was also studied in CHCl3–NB and CHCl3–DCM binary solvents as membrane phase. The results show that the transport rate of Ag+ cation is sensitive to the solvent composition and a non-linear relationship was observed between the transport rate of Ag+ and the composition of these binary mixed non-aqueous solvents. The influence of the stearic acid, palmitic acid and oleic acid as surfactant in the membrane phase on the transport of the metal cations was also investigated.

  3. Comparative investigation on cation-cation (Al-Sn) and cation-anion (Al-F) co-doping in RF sputtered ZnO thin films: Mechanistic insight

    Science.gov (United States)

    Mallick, Arindam; Basak, Durga

    2017-07-01

    Herein, we report a comparative mechanistic study on cation-cation (Al-Sn) and cation-anion (Al-F) co-doped nanocrystalline ZnO thin films grown on glass substrate by RF sputtering technique. Through detailed analyses of crystal structure, surface morphology, microstructure, UV-VIS-NIR transmission-reflection and electrical transport property, the inherent characteristics of the co-doped films were revealed and compared. All the nanocrystalline films retain the hexagonal wurtzite structure of ZnO and show transparency above 90% in the visible and NIR region. As opposed to expectation, Al-Sn (ATZO) co-doped film show no enhanced carrier concentration consistent with the probable formation of SnO2 clusters supported by the X-ray photoelectron spectroscopy study. Most interestingly, it has been found that Al-F (AFZO) co-doped film shows three times enhanced carrier concentration as compared to Al doped and Al-Sn co-doped films attaining a value of ∼9 × 1020 cm-3 due to the respective cation and anion substitution. The carrier relaxation time increases in AFZO while it decreases significantly for ATZO film consistent with the concurrence of the impurity scattering in the latter.

  4. Cationization of heparin for film applications

    Czech Academy of Sciences Publication Activity Database

    Šimkovic, I.; Mendichi, R.; Kelnar, Ivan; Filip, J.; Hricovíni, M.

    2015-01-01

    Roč. 115, 22 January (2015), s. 551-558 ISSN 0144-8617 Institutional support: RVO:61389013 Keywords : heparin * cationization * NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.219, year: 2015

  5. Mechanism of adhesion of electroless-deposited silver on poly(ether urethane)

    International Nuclear Information System (INIS)

    Gray, J.E.; Norton, P.R.; Griffiths, K.

    2005-01-01

    Bacterial growth on medical implants and devices is a common source of infection. There is a great deal of interest in the surface modification of polymeric materials to decrease infection rates without altering properties that affect their function. One possibility is to coat the material with an antibacterial agent such as silver. This paper explores the feasibility of depositing adherent silver films onto biomedical poly(ether urethanes) by an electroless plating process. The surface chemistry of the deposition process and the effect of a plasma treatment on the metal/polymer adhesion have been explored. The silver films produced on an unmodified poly(ether urethane) surface consist predominantly of micron-sized clusters that form in solution and are poorly adhered to the surface. However, some small adherent clusters are also deposited on the polymer surface and X-ray photoelectron spectroscopy of the metal/polymer interface shows evidence of chemical interaction between silver and surface carbonyl groups. An air plasma treatment of the polymer to increase the number of carbonyl containing groups at the surface has been shown to significantly improve the metal/polymer adhesion and to decrease the porosity of the silver films. This paper illustrates the importance of chemical bonding in the electroless metallization of polymers

  6. Test procedure for cation exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction

  7. Cationic surfactants as the hydrolytic micellar catalysts

    OpenAIRE

    Janošcová, Petra

    2013-01-01

    Cationic surfactants as the hydrolytic micellar catalysts Petra Janošcová The effectiveness of hydrolytic cleavage of the pesticide fenitrothionin cationic surfactants micellar media has been tested. All used surfactants increased the rate of fenitrothionhydrolysis, which was the evidence of micellar catalysis. For some surfactants decreases has been evident at the highest rate of hydrolysis concentrations. It has been the result of a phenomenon called the effect of empty micelles. High hydro...

  8. Asymmetric Aminalization via Cation-Binding Catalysis

    DEFF Research Database (Denmark)

    Park, Sang Yeon; Liu, Yidong; Oh, Joong Suk

    2018-01-01

    Asymmetric cation-binding catalysis, in principle, can generate "chiral" anionic nucleophiles, where the counter cations are coordinated within chiral environments. Nitrogen-nucleophiles are intrinsically basic, therefore, its use as nucleophiles is often challenging and limiting the scope...... of the reaction. Particularly, a formation of configurationally labile aminal centers with alkyl substituents has been a formidable challenge due to the enamine/imine equilibrium of electrophilic substrates. Herein, we report enantioselective nucleophilic addition reactions of potassium phthalimides to Boc-protected...

  9. Cycloaliphatic epoxide resins for cationic UV - cure

    International Nuclear Information System (INIS)

    Verschueren, K.; Balwant Kaur

    1999-01-01

    This paper introduces the cyclo - aliphatic epoxide resins used for the various applications of radiation curing and their comparison with acrylate chemistry. Radiation curable coatings and inks are pre - dominantly based on acrylate chemistry but over the last few years, cationic chemistry has emerged successfully with the unique properties inherent with cyclo - aliphatic epoxide ring structures. Wide variety of cationic resins and diluents, the formulation techniques to achieve the desired properties greatly contributes to the advancement of UV - curing technology

  10. [Synthesis and characterization of non fluorescent ZnS nano clusters].

    Science.gov (United States)

    Ding, Liang; Yang, Hui; Xi, Ya-nan; Zhang, Jin-chao; Shen, Shi-gang

    2015-01-01

    Zinc sulfide nano clusters were synthesized and characterized. A kind of method using zinc sulfide nanoparticles cluster cation exchange reaction(CX) to detect trace biological molecules was established. Non fluorescent ZnS nanoparticles (NCCs) were synthesized and characterized. The property of nano clusters directly influences the detection results. Through transmission electron microscopy images and X-ray diffraction, nano clusters which could quickly release a mass of Zn2+ from rapid cation exchange reaction were known to be porous and generate fluorescence signal under the action of zinc reagent. The external crystal arranges loosely compared to the internal, which is conducive to rapid cation exchange, and the crystal size is related to heating time. It was demonstrated that the smallest nanocluster had a relative large surface area and higher cationic exchange efficiency through the determination of the specific surface area of nano clusters for detecting surface area and pore size. Three methods (acid dissolution method, cation exchange and micro wave aided by cation exchange) which effected Zn2+ release performance were experimented. It turned out that microwave auxiliary cation exchange method had high SNR, simple operation, and could be used in zinc sulfide nanoparticle immunoassay. Having compared the relations between the release efficiency, target binding force of ZnZ2+ and its average diameter, the results show that the nano cluster size of 44 nm exhibits the highest cation exchange efficiency. All these features make the ZnS nanocluster cation exchange amplifier to be a highly sensitive, fairly biocompatible, low-cost and environment friendly detection tool in the detection of biomolecules.

  11. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

    Science.gov (United States)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.

    2017-04-01

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms . Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  12. Luminescent sulfides of monovalent and trivalent cations

    International Nuclear Information System (INIS)

    1975-01-01

    The invention discloses a family of luminescent materials or phosphors having a rhombohedral crystal structure and consisting essentially of a mixed host sulfide of at least one monovalent host cation and at least one trivalent host cation, and containing, for each mole of phosphor, 0.0005 to 0.05 mole of at least one activating cation. The monovalent host cations may be Na, K or Rb and Cs. The trivalent host cations may be Gd, La, Lu, Sc and Y. The activating cations may be one or more of trivalent As, Bi, Ce, Dy, Er, Pr, Sb, Sm, Tb and Tm; divalent Lu, Mn, Pb and Sn; and monovalent Ag, Cu and Tl. The novel phosphors may be used in devices to convert electron-beam, ultraviolet or x-ray energy to light in the visible spectrum. Such energy conversion can be employed for example in fluoroscopic screens, and in viewing screens of cathode-ray tubes and other electron tubes

  13. Crystal structures of the TRIC trimeric intracellular cation channel orthologues.

    Science.gov (United States)

    Kasuya, Go; Hiraizumi, Masahiro; Maturana, Andrés D; Kumazaki, Kaoru; Fujiwara, Yuichiro; Liu, Keihong; Nakada-Nakura, Yoshiko; Iwata, So; Tsukada, Keisuke; Komori, Tomotaka; Uemura, Sotaro; Goto, Yuhei; Nakane, Takanori; Takemoto, Mizuki; Kato, Hideaki E; Yamashita, Keitaro; Wada, Miki; Ito, Koichi; Ishitani, Ryuichiro; Hattori, Motoyuki; Nureki, Osamu

    2016-12-01

    Ca 2+ release from the sarcoplasmic reticulum (SR) and endoplasmic reticulum (ER) is crucial for muscle contraction, cell growth, apoptosis, learning and memory. The trimeric intracellular cation (TRIC) channels were recently identified as cation channels balancing the SR and ER membrane potentials, and are implicated in Ca 2+ signaling and homeostasis. Here we present the crystal structures of prokaryotic TRIC channels in the closed state and structure-based functional analyses of prokaryotic and eukaryotic TRIC channels. Each trimer subunit consists of seven transmembrane (TM) helices with two inverted repeated regions. The electrophysiological, biochemical and biophysical analyses revealed that TRIC channels possess an ion-conducting pore within each subunit, and that the trimer formation contributes to the stability of the protein. The symmetrically related TM2 and TM5 helices are kinked at the conserved glycine clusters, and these kinks are important for the channel activity. Furthermore, the kinks of the TM2 and TM5 helices generate lateral fenestrations at each subunit interface. Unexpectedly, these lateral fenestrations are occupied with lipid molecules. This study provides the structural and functional framework for the molecular mechanism of this ion channel superfamily.

  14. Biosynthesis of silver nanoparticles | Silambarasan | African Journal ...

    African Journals Online (AJOL)

    friendly and exciting approach. Several microorganisms have been known to produce silver nanoparticles (Ag NPs), when silver molecules are exposed either intracellularly or extracellularly. Intracellular synthesis may accomplish a better ...

  15. Silver Modified Degussa P25 for the Photocatalytic Removal of Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Neil Bowering

    2007-01-01

    Full Text Available A study of the photocatalytic behaviour of silver modified titanium dioxide materials for the decomposition and reduction of nitric oxide (NO gas has been carried out. The effects of silver loading, calcination temperature, and reaction conditions have been investigated. Prepared photocatalysts were characterised using XRD, TEM, and XPS. A continuous flow reactor was used to determine the photocatalytic activity and selectivity of NO decomposition in the absence of oxygen as well as NO reduction using CO as the reducing agent, over the prepared photocatalysts. XRD and TEM analysis of the photocatalysts showed that crystalline silver nitrate particles were present on the titanium dioxide surface after calcination at temperatures of up to 200∘C. The silver nitrate particles are thermally decomposed to form metallic silver clusters at higher temperatures. XPS analysis of the photocatalysts showed that for each of the temperatures used, both Ag+ and Ag0 were present and that the Ag0/Ag+ ratio increased with increasing calcination temperature. The presence of metallic silver species on the TiO2 surface dramatically increased the selectivity for N2 formation of both decomposition and reduction reactions. When CO was present in the reaction gas, selectivities of over 90% were observed for all the Ag-TiO2 photocatalysts that had been calcined at temperatures above 200∘C. Unfortunately these high selectivities were at the expense of photocatalytic activity, with lower NO conversion rates than those achieved over unmodified TiO2 photocatalysts.

  16. The Mode of Action of Silver and Silver Halides Nanoparticles against Saccharomyces cerevisiae Cells

    Directory of Open Access Journals (Sweden)

    A. A. Kudrinskiy

    2014-01-01

    Full Text Available Silver and silver halides nanoparticles (NPs (Ag, AgCl, AgBr, and AgI capped with two different stabilizers (sodium citrate and nonionic surfactant Tween 80 were obtained via sodium borohydride reduction of silver nitrate in an aqueous solution. The effect of the biocidal action of as-prepared synthesized materials against yeast cells Saccharomyces cerevisiae was compared to the effect produced by silver nitrate and studied through the measurement of cell loss and kinetics of K+ efflux from the cells depending on concentration of silver. The results clearly indicate that the silver ions either remained in the dispersion of silver NPs and silver halides NPs after their synthesis or were generated afterwards by dissolving silver and silver halides particles playing a major part in the cytotoxic activity of NPs against yeast cells. It was also supposed that this activity most likely does not relate to the damage of cell membrane.

  17. Cationic Closo-carboranes 2. Do computed 11B and 13C NMR chemical shifts support their experimental availability?

    Czech Academy of Sciences Publication Activity Database

    Hnyk, Drahomír; Jayasree, E.G.

    2013-01-01

    Roč. 34, č. 8 (2013), s. 656-661 ISSN 0192-8651 R&D Projects: GA ČR GAP208/10/2269 Institutional support: RVO:61388980 Keywords : boron clusters * weakly-coordinating cations * 11B NMR * dynamic electron correlation Subject RIV: CA - Inorganic Chemistry Impact factor: 3.601, year: 2013

  18. Silver and Chan revisited

    Science.gov (United States)

    Walsh, E.; Arnold, R.; Savage, M. K.

    2013-10-01

    Seismic shear waves emitted by earthquakes can be modeled as plane (transverse) waves. When entering an anisotropic medium, they can be split into two orthogonal components moving at different speeds. This splitting occurs along an axis, the fast polarization, that is determined by geologic conditions. We present here a comprehensive analysis of the Silver and Chan (1991) method, used to obtain shear wave splitting parameters, comprising theoretical derivations and statistical tests of the assumptions used to construct the standard errors. We find discrepancies in the derivations of equations in their article, with the most important being a mistake in how the standard errors are calculated. Our simulations suggest that the degrees of freedom are being overestimated by this method, and consequently, the standard errors are too small. Using a set of S waveforms from very similar shallow earthquakes on Reunion Island, we perform a statistical analysis on the noise of these replicates and find that the assumption of Gaussian noise does not hold. Further, the properties of background noise differ substantially from the noise obtained from the shear wave splitting analysis. However, we find that the estimated standard errors for the fast polarization are comparable to the spread in the fast polarization parameters between events. Delay time errors appear to be comparable to delay time estimates once cycle skipping is accounted for. Future work using synthetic seismograms with simulated noise should be conducted to confirm this is the case for earthquakes in general.

  19. Polypyrrole-silver Nanocomposite: Synthesis and Characterization

    OpenAIRE

    D. M. Nerkar; S. V. Panse; S. P. Patil; S. E. Jaware; G. G. Padhye

    2016-01-01

    Polypyrrole-Silver (PPy-Ag) nanocomposite has been successfully synthesized by the chemical oxidative polymerization of pyrrole with iron (III) chloride as an oxidant, in the presence of a colloidal suspension of silver nanoparticles. Turkevich method (Citrate reduction method) was used for the synthesis of silver nanoparticles (Ag NPs). The silver nanoparticles were characterized by UV-Visible spectroscopy which showed an absorption band at 423 nm confirming the formation of nanoparticles. P...

  20. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan

    2000-01-01

    and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c...

  1. Cluster Matters

    DEFF Research Database (Denmark)

    Gulati, Mukesh; Lund-Thomsen, Peter; Suresh, Sangeetha

    2018-01-01

    In this chapter, we investigate corporate social responsibility (CSR) in industrial clusters in the Indian context. We use the definition of CSR as given in the Indian Ministry of Corporate Affairs’ National Voluntary Guidelines (NVGs) for Business Responsibility: ‘the commitment of an enterprise...

  2. Synthesis and characterization of nanophased silver tungstate

    Indian Academy of Sciences (India)

    of silver tungstate nanoparticles. 2. Experimental. Silver tungstate nanoparticles were synthesized by reacting AR grade silver nitrate. (AgNO3) and sodium tungstate (Na2WO4) using distilled water as solvent at room temperature. The method followed for this synthesis is similar to that used by. Takahashi et al [9]. However ...

  3. Topical silver for treating infected wounds

    NARCIS (Netherlands)

    Vermeulen, H.; van Hattem, J. M.; Storm-Versloot, M. N.; Ubbink, D. T.

    2007-01-01

    BACKGROUND: Topical silver treatments and silver dressings are increasingly used for the local treatment of contaminated or infected wounds, however, there is a lack of clarity regarding the evidence for their effectiveness. OBJECTIVES: To evaluate the effects on wound healing of topical silver and

  4. Synthesis and characterization of silver molybdate nanowires ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Silver molybdate nanowires, nanorods and multipods like structures have been prepared by an organic free hydrothermal process using ammonium molybdate and silver nitrate solutions. The powder X-ray diffraction (PXRD) patterns reveal that the silver molybdate belongs to anorthic structure. The thickness,.

  5. Cation Exchange in the Presence of Oil in Porous Media

    NARCIS (Netherlands)

    Farajzadeh, R.; Guo, H.; van Winden, J.L.; Bruining, J.

    2017-01-01

    Cation exchange is an interfacial process during which cations on a clay surface are replaced by other cations. This study investigates the effect of oil type and composition on cation exchange on rock surfaces, relevant for a variety of oil-recovery processes. We perform experiments in which brine

  6. Geometrical parameters effects on local electric field enhancement of silver-dielectric-silver multilayer nanoshell

    Energy Technology Data Exchange (ETDEWEB)

    Shirzaditabar, Farzad; Saliminasab, Maryam [Department of Physics, Razi University, Kermanshah 67144-15111 (Iran, Islamic Republic of)

    2013-05-15

    The local electric field enhancement at different points of silver-dielectric-silver nanoshell is investigated using quasi-static theory. Because of the symmetric and anti-symmetric coupling between surface plasmon of inner silver core and outer silver shell, the local electric field spectrum of silver-dielectric-silver has two distinct peaks at resonance wavelengths. The silver core size and middle dielectric thickness affect the local electric field enhancement at different points of silver-dielectric-silver nanoshell. Increasing the silver core radius always leads to blue shift of shorter resonance wavelength and red shift of longer resonance wavelength. We observed two distinct local electric field peaks, which are corresponded to the symmetric and anti-symmetric coupling between inner and outer surface plasmons. In a system with thick silver shell, local electric field enhancement is greater than a system with thin silver shell. However, the local electric field variations as a function of silver core radius in both systems are different at different points of nanoshell. The effects of the dielectric thickness variations on local electric field are different from those from silver core size variations. As the dielectric thickness is about 3 nm, the highest local electric field enhancement occurs at the surface of the inner silver core, where the symmetric and anti-symmetric modes are mixed together.

  7. FY 1997 research and development of fusion domains. Part 1. Studies on cluster science; 1997 nendo seika hokokusho (yugo ryoiki kenkyu kaihatsu). 1. Cluster Science no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Studies were made on clusters which are thought to play important roles in status changes in substances (coagulation, crystallization and phase segregation) and chemical reactions (combustion, aqueous solution reaction and catalytic reaction). In the study of clusters by using infrared spectra, a method was developed to detect by using mass analyzer the cluster ion amount produced by dual resonance between resonantly enhanced multiphoton ionization (REMPI) and infrared lights. Fabrication of a Terahertz spectrometer was planned to enable high-resolution and high-accuracy observation on molecular clusters. Clusters consisting of silver atoms and ammonia molecules were successfully observed. A method was developed to investigate size dependence of cluster reactivity by using a Fourier converted ion cyclotron resonant mass analyzer. In addition, studies were conducted on clusters in liquids and aqueous solutions, clusters frozen in surface and matrix, and clusters stabilized in micro-space. 96 refs., 34 figs., 2 tabs.

  8. Solid phase extraction of ultra traces silver(I) using octadecyl silica membrane disks modified by 1,3-bis(2-cyanobenzene) triazene (CBT) ligand prior to determination by flame atomic absorption

    International Nuclear Information System (INIS)

    Rofouei, Mohammad Kazem; Payehghadr, Mahmood; Shamsipur, Mojtaba; Ahmadalinezhad, Asieh

    2009-01-01

    A simple, reliable and rapid method for preconcentration and determination of the ultra trace amount of silver using octadecyl silica membrane disk modified by a recently synthesized triazene ligand, 1,3-bis(2-cyanobenzene)triazene (CBT), and flame atomic absorption spectrometry is presented. Various parameters including pH of aqueous solution, flow rates, the amount of ligand and the type of stripping solvents were optimized. The breakthrough volume was greater than 1800 ml with an enrichment factor of more than 360 and 6.0 ng l -1 detection limit. The capacity of the membrane disks modified by 5 mg of the ligand was found to be 1070 μg of silver. The effects of various cationic interferences on the percent recovery of silver ion were studied. The method was successfully applied to the determination of silver ion in different samples, especially determination of ultra trace amount of silver in the presence of large amount of lead.

  9. Solid phase extraction of ultra traces silver(I) using octadecyl silica membrane disks modified by 1,3-bis(2-cyanobenzene) triazene (CBT) ligand prior to determination by flame atomic absorption

    Energy Technology Data Exchange (ETDEWEB)

    Rofouei, Mohammad Kazem, E-mail: rofouei@tmu.ac.ir [Faculty of Chemistry, Tarbiat Moalem University, Tehran (Iran, Islamic Republic of); Payehghadr, Mahmood [Department of Chemistry, Payame Noor University (PNU) (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Ahmadalinezhad, Asieh [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)

    2009-09-15

    A simple, reliable and rapid method for preconcentration and determination of the ultra trace amount of silver using octadecyl silica membrane disk modified by a recently synthesized triazene ligand, 1,3-bis(2-cyanobenzene)triazene (CBT), and flame atomic absorption spectrometry is presented. Various parameters including pH of aqueous solution, flow rates, the amount of ligand and the type of stripping solvents were optimized. The breakthrough volume was greater than 1800 ml with an enrichment factor of more than 360 and 6.0 ng l{sup -1} detection limit. The capacity of the membrane disks modified by 5 mg of the ligand was found to be 1070 {mu}g of silver. The effects of various cationic interferences on the percent recovery of silver ion were studied. The method was successfully applied to the determination of silver ion in different samples, especially determination of ultra trace amount of silver in the presence of large amount of lead.

  10. Durable silver coating for mirrors

    Science.gov (United States)

    Wolfe, Jesse D.; Thomas, Norman L.

    2000-01-01

    A durable multilayer mirror includes reflective layers of aluminum and silver and has high reflectance over a broad spectral range from ultraviolet to visible to infrared. An adhesion layer of a nickel and/or chromium alloy or nitride is deposited on an aluminum surface, and a thin layer of silver is then deposited on the adhesion layer. The silver layer is protected by a passivation layer of a nickel and/or chromium alloy or nitride and by one or more durability layers made of metal oxides and typically a first layer of metal nitride. The durability layers may include a composite silicon aluminum nitride and an oxinitride transition layer to improve bonding between nitride and oxide layers.

  11. Durable silver coating for mirrors

    International Nuclear Information System (INIS)

    Wolfe, J.D.; Thomas, N.L.

    2000-01-01

    A durable multilayer mirror includes reflective layers of aluminum and silver and has high reflectance over a broad spectral range from ultraviolet to visible to infrared. An adhesion layer of a nickel and/or chromium alloy or nitride is deposited on an aluminum surface, and a thin layer of silver is then deposited on the adhesion layer. The silver layer is protected by a passivation layer of a nickel and/or chromium alloy or nitride and by one or more durability layers made of metal oxides and typically a first layer of metal nitride. The durability layers may include a composite silicon aluminum nitride and an oxinitride transition layer to improve bonding between nitride and oxide layers

  12. Antituberculous effect of silver nanoparticles

    International Nuclear Information System (INIS)

    Kreytsberg, G N; Gracheva, I E; Kibrik, B S; Golikov, I V

    2011-01-01

    The in vitro experiment, involving 1164 strains of the tuberculosis mycobacteria, exhibited a potentiating effect of silver nanoparticles on known antituberculous preparations in respect of overcoming drug-resistance of the causative agent. The in vitro experiment, based on the model of resistant tuberculosis, was performed on 65 white mice. An evident antituberculous effect of the nanocomposite on the basis of silver nanoparticles and isoniazid was proved. Toxicological assessment of the of nanopreparations was carried out. The performed research scientifically establishes efficacy and safety of the nanocomposite application in combination therapy of patients suffering from drug-resistant tuberculosis.

  13. Fluorescent Thiol-Derivatized Gold Clusters Embedded in Polymers

    Directory of Open Access Journals (Sweden)

    G. Carotenuto

    2013-01-01

    Full Text Available Owing to aurophilic interactions, linear and/or planar Au(I-thiolate molecules spontaneously aggregate, leading to molecular gold clusters passivated by a thiolate monolayer coating. Differently from the thiolate precursors, such cluster compounds show very intensive visible fluorescence characteristics that can be tuned by alloying the gold clusters with silver atoms or by conjugating the electronic structure of the metallic core with unsaturated electronic structures in the organic ligand through the sulphur atom. Here, the photoluminescence features of some examples of these systems are shortly described.

  14. Determination of phosphorus in gold or silver brazing alloys

    International Nuclear Information System (INIS)

    Antepenko, R.J.

    1976-01-01

    A spectrophotometric method has been devised for measuring microgram levels of phosphorus in brazing alloys of gold or silver alloys is normally measured by solid mass spectrometry, but the high nickel concentration produces a double ionized nickel spectral interference. The described procedures is based upon the formation of molybdovandophosphoric acid when a molybdate solution is added to an acidic solution containing orthophosphate and vanadate ions. The optimum acidity for forming the yellow colored product is 0.5 N hydrochloric acid. The working concentration range is from 0.1 to 1 ppm phosphorus using 100-mm cells and measuring the absorbance at 460 nm. The sample preparation procedure employs aqua regia to dissolve the alloy oxidize the phosphorus to orthophosphate. Cation-exchange chromatography is used to remove nickel ions and anion-exchange and chromatography to remove gold ions as the chloride complex. Excellent recoveries are obtained for standard phosphorus solutions run through the sample procedure. The procedure is applicable to a variety of gold or silver braze alloys requiring phosphorus analysis

  15. Generation of new Agm Ten clusters via laser ablation synthesis using Ag-Te nano-composite as precursor. Quadrupole ion trap time-of-flight mass spectrometry.

    Science.gov (United States)

    Mawale, Ravi Madhukar; Amato, Filippo; Alberti, Milan; Havel, Josef

    2014-12-30

    Silver tellurides find applications in the development of infrared detection, imaging, magnetics, sensors, memory devices, and optic materials. However, only a limited number of silver tellurides have been described to date. Laser ablation synthesis (LAS) was selected to generate new Ag-Te clusters. Isothermal adsorption was used to study the formation of silver nano-particles-tellurium aggregates. Laser desorption ionization quadrupole ion trap time-of-flight mass spectrometry (LDI-QIT-TOFMS) was used for the generation and analysis of Agm Ten clusters. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to visualize the structure of materials. The stoichiometry of the generated clusters was determined by computer modeling of isotopic patterns. A simple, one-pot method for the preparation of Ag-Te nano-composite was developed and found suitable for LAS of silver tellurides. The LDI of Ag-Te nano-composite leads to the formation of 11 unary and 52 binary clusters. The stoichiometry of the 34 novel Agm Ten clusters is reported here for the first time. LAS with TOFMS detection was proven to be a powerful technique for the generation of silver telluride clusters. Knowledge of the stoichiometry of the generated clusters might facilitate the further development of novel high-tech silver tellurium nano-materials. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Mineral resource of the month: silver

    Science.gov (United States)

    Brooks, William E.

    2007-01-01

    Silver has been used for thousands of years as ornaments and utensils, for trade and as the basis of many monetary systems. The metal has played an important part in world history. Silver from the mines at Laurion, Greece, for example, financed the Greek victory over the Persians in 480 B.C. Silver from Potosi, Bolivia, helped Spain become a world power in the 16th and 17th centuries. And silver from the gold-silver ores at the Comstock Lode in Virginia City, Nev., helped keep the Union solvent during the Civil War.

  17. Cluster forcing

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    , Portugal and New Zealand have adopted the concept. Public sector interventions that aim to support cluster development in industries most often focus upon economic policy goals such as enhanced employment and improved productivity, but rarely emphasise broader societal policy goals relating to e.......g. sustainability or quality of life. The purpose of this paper is to explore how and to what extent public sector interventions that aim at forcing cluster development in industries can support sustainable development as defined in the Brundtland tradition and more recently elaborated in such concepts as eco...... in 2000 by the Welsh Automotive Task Force under the Welsh Assembly Government. The Accelerate programme takes basically different two directions: The first one, which was the first to be launched, is concerned with the upgrading of existing supply chains in the automotive industry in Wales. The programme...

  18. Cation Movements during Dehydration and NO2 Desorption in a Ba-Y,FAU zeolite: an in situ Time-resolved X-ray Diffraction Study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianqin; Hanson, Jonathan C.; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles HF

    2013-02-28

    Synchrotron-based in situ time-resolved X-ray diffraction and Rietveld analysis were used to probe the interactions between BaY, FAU zeolite frameworks and H2O or NO2 molecules. These results provided information about the migration of the Ba2+ cations in the zeolite framework during dehydration and during NO2 adsorption/desorption processes in a water free zeolite. In the hydrated structure water molecules form four double rings of hexagonal ice-like clusters [(H2O)6] in the 12-ring openings of the super-cage. These water rings interacted with the cations and the zeolite framework through four cation/water clusters centered over the four 6-membered rings of the super-cage (site II). Interpenetrating tetrahedral water clusters [(H2O)4] and tetrahedral Ba+2 cation clusters were observed in the sodalite cage. Consistent with the reported FT-IR results, three different ionic NOx species (NO+, NO+-NO2, and NO3-) were observed following NO2 adsorption by the dehydrated Ba-Y,FAU zeolite. The structure of the water and the NOx species were correlated with the interactions between the adsorbates, the cations, and the framework. The population of Ba2+ ions at different cationic positions strongly depended on the amount of bound water or NOx species. Both dehydration and NO2 adsorption/desorption resulted in facile migration of Ba2+ ions among the different cationic positions. Data obtained in this work have provided direct evidence for the Ba2+ cation migration to accommodate the binding of gas molecules. This important feature may play a pivotal role in the strong binding of NO2 to Ba-Y,FAU zeolite, a prerequisite for high catalytic activity in lean NOx reduction catalysis.

  19. Nanostructured silver for applications in surface enhanced Raman spectroscopy and photoelectrochemical reactions

    Science.gov (United States)

    Clayton, Daniel A.

    Initial work focused on characterizing silver and its surface enhanced Raman spectroscopy (SERS) capabilities. Silver nanowires were chosen as an ideal material and scanning confocal microscopy studies were performed to identify hot spots. The silver nanowires were found to exhibit fluorescence blinking that was attributed to small silver clusters undergoing rapid interchange from Ag0 to Ag2O. Control of this blinking was accomplished through the removal of oxygen and through electrochemical control of the system. SERS was also recorded from these nanowires. Deconvolution of the SERS signal from the fluorescence was accomplished either by increasing the SERS analyte concentration or increasing the total number of "hot spots" in the focus volume. Silver applications were studied by performing a SERS study of Rhodamine 6G (R6G) and Poly(3-hexylthiophene-2,5-diyl) (P3HT). A Tollens' silver substrate was utilized as the SERS substrate and similar blinking effects were found to arise. P3HT was cast from 4 different solvents:dichloromethane, chlorobenzene, THF, and toluene. The solvent effects were studied, with kinking of the polymer noted in the non-chlorinated solvents. Single molecule studies in conjunction with polarization control indicated that the P3HT formed in an overlapping manner with only partial charge transfer within the molecule. Finally silvers interactions with TiO2 were studied. Micron scale single crystal anatase TiO2 was synthesized by using HF in a hydrothermal process forming a truncated bipyramidal structure consisting of [101] and [001] faces. Fluorine was present in small amounts on the surface of the TiO2 as confirmed by x-ray photoelectron spectroscopy (XPS). An annealing process was used to remove the fluorine. Nitrogen doping was attempted, but was not found to occur in significant amounts. Visible light sensitivity was noted in annealed samples but did not occur in the bulk as demonstrated through photoelectrochemical measurements. Silver

  20. Regional Innovation Clusters

    Data.gov (United States)

    Small Business Administration — The Regional Innovation Clusters serve a diverse group of sectors and geographies. Three of the initial pilot clusters, termed Advanced Defense Technology clusters,...

  1. Gravimetric and volumetric determination of the purity of electrolytically refined silver and the produced silver nitrate

    Directory of Open Access Journals (Sweden)

    Ačanski Marijana M.

    2007-01-01

    Full Text Available Silver is, along with gold and the platinum-group metals, one of the so called precious metals. Because of its comparative scarcity, brilliant white color, malleability and resistance to atmospheric oxidation, silver has been used in the manufacture of coins and jewelry for a long time. Silver has the highest known electrical and thermal conductivity of all metals and is used in fabricating printed electrical circuits, and also as a coating for electronic conductors. It is also alloyed with other elements such as nickel or palladium for use in electrical contacts. The most useful silver salt is silver nitrate, a caustic chemical reagent, significant as an antiseptic and as a reagent in analytical chemistry. Pure silver nitrate is an intermediate in the industrial preparation of other silver salts, including the colloidal silver compounds used in medicine and the silver halides incorporated into photographic emulsions. Silver halides become increasingly insoluble in the series: AgCl, AgBr, AgI. All silver salts are sensitive to light and are used in photographic coatings on film and paper. The ZORKA-PHARMA company (Sabac, Serbia specializes in the production of pharmaceutical remedies and lab chemicals. One of its products is chemical silver nitrate (argentum-nitricum (l. Silver nitrate is generally produced by dissolving pure electrolytically refined silver in hot 48% nitric acid. Since the purity of silver nitrate, produced in 2002, was not in compliance with the p.a. level of purity, there was doubt that the electrolytically refined silver was pure. The aim of this research was the gravimetric and volumetric determination of the purity of electrolytically refined silver and silver nitrate, produced industrially and in a laboratory. The purity determination was carried out gravimetrically, by the sedimentation of silver(I ions in the form of insoluble silver salts: AgCl, AgBr and Agi, and volumetrically, according to Mohr and Volhardt. The

  2. Interaction of silver nanoparticles with Tacaribe virus

    Directory of Open Access Journals (Sweden)

    Speshock Janice L

    2010-08-01

    Full Text Available Abstract Background Silver nanoparticles possess many unique properties that make them attractive for use in biological applications. Recently they received attention when it was shown that 10 nm silver nanoparticles were bactericidal, which is promising in light of the growing number of antibiotic resistant bacteria. An area that has been largely unexplored is the interaction of nanomaterials with viruses and the possible use of silver nanoparticles as an antiviral agent. Results This research focuses on evaluating the interaction of silver nanoparticles with a New World arenavirus, Tacaribe virus, to determine if they influence viral replication. Surprisingly exposing the virus to silver nanoparticles prior to infection actually facilitated virus uptake into the host cells, but the silver-treated virus had a significant reduction in viral RNA production and progeny virus release, which indicates that silver nanoparticles are capable of inhibiting arenavirus infection in vitro. The inhibition of viral replication must occur during early replication since although pre-infection treatment with silver nanoparticles is very effective, the post-infection addition of silver nanoparticles is only effective if administered within the first 2-4 hours of virus replication. Conclusions Silver nanoparticles are capable of inhibiting a prototype arenavirus at non-toxic concentrations and effectively inhibit arenavirus replication when administered prior to viral infection or early after initial virus exposure. This suggests that the mode of action of viral neutralization by silver nanoparticles occurs during the early phases of viral replication.

  3. New, rapid method to measure dissolved silver concentration in silver nanoparticle suspensions by aggregation combined with centrifugation

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Feng, E-mail: fengdongub@gmail.com [University of Birmingham, Institute of Microbiology and Infection, School of Biosciences (United Kingdom); Valsami-Jones, Eugenia [University of Birmingham, School of Geography, Earth and Environmental Sciences (United Kingdom); Kreft, Jan-Ulrich [University of Birmingham, Institute of Microbiology and Infection, School of Biosciences (United Kingdom)

    2016-09-15

    It is unclear whether the antimicrobial activities of silver nanoparticles (AgNPs) are exclusively mediated by the release of silver ions (Ag{sup +}) or, instead, are due to combined nanoparticle and silver ion effects. Therefore, it is essential to quantify dissolved Ag in nanosilver suspensions for investigations of nanoparticle toxicity. We developed a method to measure dissolved Ag in Ag{sup +}/AgNPs mixtures by combining aggregation of AgNPs with centrifugation. We also describe the reproducible synthesis of stable, uncoated AgNPs. Uncoated AgNPs were quickly aggregated by 2 mM Ca{sup 2+}, forming large clusters that could be sedimented in a low-speed centrifuge. At 20,100g, the sedimentation time of AgNPs was markedly reduced to 30 min due to Ca{sup 2+}-mediated aggregation, confirmed by the measurements of Ag content in supernatants with graphite furnace atomic absorption spectrometry. No AgNPs were detected in the supernatant by UV–Vis absorption spectra after centrifuging the aggregates. Our approach provides a convenient and inexpensive way to separate dissolved Ag from AgNPs, avoiding long ultracentrifugation times or Ag{sup +} adsorption to ultrafiltration membranes.

  4. Silver based batteries for high power applications

    Science.gov (United States)

    Karpinski, A. P.; Russell, S. J.; Serenyi, J. R.; Murphy, J. P.

    The present status of silver oxide-zinc technology and applications has been described by Karpinski et al. [A.P. Karpinski, B. Makovetski, S.J. Russell, J.R. Serenyi, D.C. Williams, Silver-Zinc: status of technology and applications, Journal of Power Sources, 80 (1999) 53-60], where the silver-zinc couple is still the preferred choice where high specific energy/energy density, coupled with high specific power/power density are important for high-rate, weight or size/configuration sensitive applications. Perhaps the silver oxide cathode can be considered one of the most versatile electrode materials. When coupled with other anodes and corresponding electrolyte management system, the silver electrode provides for a wide array of electrochemical systems that can be tailored to meet the most demanding, high power requirements. Besides zinc, the most notable include cadmium, iron, metal hydride, and hydrogen electrode for secondary systems, while primary systems include lithium and aluminum. Alloys including silver are also available, such as silver chloride, which when coupled with magnesium or aluminum are primarily used in many seawater applications. The selection and use of these couples is normally the result of a trade-off of many factors. These include performance, safety, risk, reliability, and cost. When high power is required, silver oxide-zinc, silver oxide-aluminum, and silver oxide-lithium are the most energetic. For moderate performance (i.e., lower power), silver oxide-zinc or silver-cadmium would be the system of choice. This paper summarizes the suitability of the silver-based couples, with an emphasis on the silver-zinc system, as primary or rechargeable power sources for high energy/power applications.

  5. Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese.

    Science.gov (United States)

    Incoronato, A L; Conte, A; Buonocore, G G; Del Nobile, M A

    2011-04-01

    The objective of this work was to evaluate the effectiveness of an antimicrobial packaging system containing active nanoparticles on the quality deterioration of Fior di Latte cheese. To this aim, 3 concentrations of silver montmorillonite embedded in agar were used. The cell loads of spoilage and useful microorganisms were monitored during a refrigerated storage period. Moreover, cheese sensory quality (i.e., odor, color, consistency, and overall quality) was evaluated by means of a panel test. Results showed that the active packaging system markedly increased the shelf life of Fior di Latte cheese, due to the ability of silver cations to control microbial proliferation, without affecting the functional dairy microbiota and the sensory characteristics of the product. The active packaging system developed in this work could be used to prolong the shelf life of Fior di Latte and boost its distribution beyond local market borders. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. An Efficient and Benign Antimicrobial Depot Based on Silver-Infused MoS2.

    Science.gov (United States)

    Cao, Fangfang; Ju, Enguo; Zhang, Yan; Wang, Zhenzhen; Liu, Chaoqun; Li, Wei; Huang, Yanyan; Dong, Kai; Ren, Jinsong; Qu, Xiaogang

    2017-05-23

    Silver nanoparticles (AgNPs) have been used as a broad-spectrum antimicrobial agent, whose toxicity originates from the localized release of Ag + ions. However, the residual AgNPs core could generate potential risk to humans and waste of noble metals. Herein, we infused the cysteine-modified molybdenum disulfide with minimum Ag + ions and coated with a layer of cationic polyelectrolyte to construct an efficient and benign antimicrobial depot. The system exhibited much enhanced broad-spectrum antibacterial activity compared with an equivalent amount of silver nitrate, owing to its increasing accessibility of released Ag + to the cell walls of microorganisms. More importantly, the antibacterial system could be successfully applied to treat wound infection, while retaining high antibacterial activities, exhibiting negligible biotoxicity and avoiding the waste of Ag.

  7. Boron nitride nanosheets decorated with silver nanoparticles through mussel-inspired chemistry of dopamine

    International Nuclear Information System (INIS)

    Roy, Arup Kumer; In, Insik; Park, Byoungnam; Lee, Kang Seok; Park, Sung Young

    2014-01-01

    Boron nitride nanosheet (BNNS) decorated with silver nanoparticles (AgNPs) was successfully synthesized via mussel-inspired chemistry of dopamine. Poly(dopamine)-functionalized BNNS (PDA-BNNS) was prepared by adding dopamine into the aqueous dispersion of hydroxylated BNNS (OH-BNNS) at alkaline condition. AgNPs were decorated on PDA-BNNS through spontaneous reduction of silver cations by catechol moieties of a PDA layer on BNNS, resulting in AgNP-BNNS with good dispersion stability. Incorporation of PDA on BNNS not only played a role as a surface functionalization method of BNNS, but also provided a molecular platform for creating very sophisticated two-dimensional (2D) BNNS-based hybrid nanomaterials such as metal nanoparticle-decorated BNNS. (paper)

  8. Single pass kernel k-means clustering method

    Indian Academy of Sciences (India)

    easily implemented and is suitable for large data sets, like those in data mining appli- cations. Experimental results show that, with a small loss of quality, the proposed method can significantly reduce the time taken than the conventional kernel k-means cluster- ing method. The proposed method is also compared with other ...

  9. Conducting polymer-silver composites

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 814-848 ISSN 0366-6352 R&D Projects: GA TA ČR TE01020022 Institutional support: RVO:61389013 Keywords : polyaniline * polypyrrole * silver Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.193, year: 2013

  10. Mechanism of bacterial inactivation by cationic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Pavlova, I.B.; Samoylenko, I.I.

    1985-03-01

    The mechanism of bacteriocidal action of the cationic surfactant dimethylbenzylammonium chloride was studied on exposure of Staphylococcus aureus, Streptococcus faecium, Bacillus subtilis and Escherichia coli to different concentrations of the agent and determinations of survival plots. The data showed that the surfactant was bacteriocidal for all the bacteria tested at a concentration of 0.0001%, but more efficient in the case of the gram positives. Electron microscopy showed considerable damage and dissarrangement of the cytoplasmic membrane, indicating that the killing mechanism involved this organelle. It appears that cationic surfactants may constitute effective disinfectant preparations. 9 references, 2 figures.

  11. Ultra-small Ag clusters in zeolite A4: Antibacterial and thermochromic applications

    Science.gov (United States)

    Horta-Fraijo, P.; Cortez-Valadez, M.; Flores-Lopez, N. S.; Britto Hurtado, R.; Vargas-Ortiz, R. A.; Perez-Rodriguez, A.; Flores-Acosta, M.

    2018-03-01

    The physical and chemical properties of metal clusters depend on their atomic structure, therefore, it is important to determine the lowest-energy structures of the clusters in order to understand and utilize their properties. In this work, we use the Density Functional Theory (DFT) at the generalized gradient approximation level Becke's three-parameter and the gradient corrected functional of Lee, Yang and Puar (B3LYP) in combination with the basis set LANL2DZ (the effective core potentials and associated double-zeta valence) to determine some of the structural, electronic and vibrational properties of the planar silver clusters (Agn clusters n = 2-24). Additionally, the study reports the experimental synthesis of small silver clusters in synthetic zeolite A4. The synthesis was possible using the ion exchange method with some precursors like silver nitrate (AgNO3) and synthetic zeolite A4. The silver clusters in zeolite powder underwent thermal treatment at 450 °C to release the remaining water or humidity on it. The morphology of the particles was determined by Transmission Electron microscopy. The nanomaterials obtained show thermochromic properties. The structural parameters were correlated theoretically and experimentally.

  12. M4C9 (M = Ti, V): New gas phase clusters

    Indian Academy of Sciences (India)

    Unknown

    by means of association reactions with H2O. Metal–carbon clusters of other ... In Castleman's first report on metcars (metallocarbohedranes)1, cationic Ti–C clusters were produced in the laser ..... Kratschmer W, Lamb L D, Fostiropoulos K and Huffman D L 1990 Nature (London) 347. 354. 18. Piskoti S, Yarger J and Zettl A ...

  13. Thermal decomposition process of silver behenate

    International Nuclear Information System (INIS)

    Liu Xianhao; Lu Shuxia; Zhang Jingchang; Cao Weiliang

    2006-01-01

    The thermal decomposition processes of silver behenate have been studied by infrared spectroscopy (IR), X-ray diffraction (XRD), combined thermogravimetry-differential thermal analysis-mass spectrometry (TG-DTA-MS), transmission electron microscopy (TEM) and UV-vis spectroscopy. The TG-DTA and the higher temperature IR and XRD measurements indicated that complicated structural changes took place while heating silver behenate, but there were two distinct thermal transitions. During the first transition at 138 deg. C, the alkyl chains of silver behenate were transformed from an ordered into a disordered state. During the second transition at about 231 deg. C, a structural change took place for silver behenate, which was the decomposition of silver behenate. The major products of the thermal decomposition of silver behenate were metallic silver and behenic acid. Upon heating up to 500 deg. C, the final product of the thermal decomposition was metallic silver. The combined TG-MS analysis showed that the gas products of the thermal decomposition of silver behenate were carbon dioxide, water, hydrogen, acetylene and some small molecule alkenes. TEM and UV-vis spectroscopy were used to investigate the process of the formation and growth of metallic silver nanoparticles

  14. Low-temperature positron lifetime and Doppler-broadening measurements for single-crystal nickel oxide containing cation vacancies

    International Nuclear Information System (INIS)

    Waber, J.T.; Snead, C.L. Jr.; Lynn, K.G.

    1985-01-01

    Lifetime and Doppler-broadening measurements for positron annihilation in substoichiometric nickelous oxide have been made concomitantly from liquid-helium to room temperature. The concentration of cation vacancies is readily controlled by altering the ambient oxygen pressure while annealing the crystals at 1673 0 K. It was found that neither of the three lifetimes observed or their relative intensities varied significantly with the oxygen pressure, and the bulk rate only increased slightly when the specimen was cooled from room to liquid-helium temperatures. These results are interpreted as indicating that some of the positrons are trapped by the existing cation vacancies and a smaller fraction by vacancy clusters

  15. Bis{2-[(dimethylamino)methyl]phenyl}silverlithium. A tetranuclear organometallic compound with bridging aryl groups between silver and lithium

    NARCIS (Netherlands)

    Koten, G. van; Leusink, A.J.; Marsman, J.W.; Noltes, J.G.

    1973-01-01

    Bis{2-[(dimethylamino)methyl]phenyl}silverlithium has been prepared and characterized. Molecular weight determinations, and }1{}3{C NMR and }1{H NMR spectra reveal that the compound exists (in benzene) as a tetranuclear mixed metal cluster containing aryl groups bridging the silver and lithium

  16. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  17. Effect of cations on the hydrated proton.

    Science.gov (United States)

    Ottosson, Niklas; Hunger, Johannes; Bakker, Huib J

    2014-09-17

    We report on a strong nonadditive effect of protons and other cations on the structural dynamics of liquid water, which is revealed using dielectric relaxation spectroscopy in the frequency range of 1-50 GHz. For pure acid solutions, protons are known to have a strong structuring effect on water, leading to a pronounced decrease of the dielectric response. We observe that this structuring is reduced when protons are cosolvated with salts. This reduction is exclusively observed for combinations of protons with other ions; for all studied solutions of cosolvated salts, the effect on the structural dynamics of water is observed to be purely additive, even up to high concentrations. We derive an empirical model that quantitatively describes the nonadditive effect of cosolvated protons and cations. We argue that the effect can be explained from the special character of the proton in water and that Coulomb fields exerted by other cations, in particular doubly charged cations like Mg(2+)aq and Ca(2+)aq, induce a localization of the H(+)aq hydration structures.

  18. NMR studies of cation transport across membranes

    Energy Technology Data Exchange (ETDEWEB)

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  19. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  20. Resonance raman studies of phenylcyclopropane radical cations

    NARCIS (Netherlands)

    Godbout, J.T.; Zuilhof, H.; Heim, G.; Gould, I.R.; Goodman, J.L.; Dinnocenzo, J.P.; Myers Kelley, A.

    2000-01-01

    Resonance Raman spectra of the radical cations of phenylcyclopropane and trans-1-phenyl-2-methylcyclopropane are reported. A near-UV pump pulse excites a photosensitizer which oxidizes the species of interest, and a visible probe pulse delayed by 35 ns obtains the spectrum of the radical ion. The

  1. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.

    2003-01-01

    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M...

  2. Cationic flotation of some lithium ores

    International Nuclear Information System (INIS)

    Valadao, G.E.S.; Peres, A.E.C.; Silva, H.C. da

    1984-01-01

    The cationic flotation of some lithium ores (spodumene, amblygonite, petalite, lepidolite) is studied by the measure of zeta potential and micro-flotation tests in Hallimond tube. The effect of some modifier agents (corn starch, meta sodium silicate) on the lithium flotation is studied. (M.A.C.) [pt

  3. THE POSSIBILITY OF CREATING MULTIFUNCTIONAL SILVER-CONTAINING DRUGS WITH DETOXIFYING EFFECT

    Directory of Open Access Journals (Sweden)

    T. V. Popova

    2017-01-01

    Full Text Available Modern technology and the level of fundamental studies allow us to create the medical sorbents with the predetermined structural, mechanical and adsorptional properties. Sorption materials are interesting not only as detoxicants that are used to remove toxic agents from the liquid media, but also as carriers for a delivery in zones a therapeutic effect of biologically active substances. The aim of this work is the substantiation of structure of the multifunctional drug with anti-bacterial and detoxifying effects due to the complex of silver and the sorption component – alumina-silica-containing sorbent. Materials and methods. We used physico-chemical (sorption activity of methylene blue dye, specific surface, pH in contact with water, atomic emission spectrometry with inductively coupled plasma and pharmaceutical methods (bulk density, dissolution test for solid dosage forms. Results and discussion. The two-stage method of immobilization of a complex of silver and water repellent on the surface sorptionmatrix was justified. The sample of the optimum composition of silver-containing drugs was selected: aluminium oxide-hydroxide – 99.2%, clustered silver (Argovit – C – 2% – 0.3 %, based on silver and subsidiary substance (repellents – brand PMS P – 841 – 0.5 %. The output of silver into the solution from the specified sample composition for 8 hours did not exceed 1,6 ± 0,3%, the value of specific surface area of 90 m2/ g, the value of pH to 8.1 ± 0.02, bulk density 1.12 ± 0.11 g/cm3. Conclusion. An experimentally substantiated composition of silver-containing drug AlSi/Ag was received, a comprehensive scientific data of its physico-chemical and technological properties were obtained.

  4. Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles

    Science.gov (United States)

    Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxic...

  5. Aquatic Toxicity Comparison of Silver Nanoparticles and Silver Nanowires

    Directory of Open Access Journals (Sweden)

    Eun Kyung Sohn

    2015-01-01

    Full Text Available To better understand the potential ecotoxicological impact of silver nanoparticles (AgNPs and silver nanowires (AgNWs released into freshwater environments, the toxicities of these nanomaterials were assessed and compared using Organization for Economic Cooperation and Development (OECD test guidelines, including a “Daphnia sp., acute immobilization test,” “Fish, acute toxicity test,” and “freshwater alga and cyanobacteria, growth inhibition test.” Based on the estimated median lethal/effective concentrations of AgNPs and AgNWs, the susceptibility to the nanomaterials was different among test organisms (daphnia > algae > fish, suggesting that the AgNPs are classified as “category acute 1” for Daphnia magna, “category acute 2” for Oryzias latipes, and “category acute 1” for Raphidocelis subcapitata, while the AgNWs are classified as “category acute 1” for Daphnia magna, “category acute 2” for Oryzias latipes, and “category acute 2” for Raphidocelis subcapitata, according to the GHS (Globally Harmonized System of Classification and Labelling of Chemicals. In conclusion, the present results suggest that more attention should be paid to prevent the accidental or intentional release of silver nanomaterials into freshwater aquatic environments.

  6. Engineered Escherichia coli Silver-Binding Periplasmic Protein That Promotes Silver Tolerance

    OpenAIRE

    Hall Sedlak, Ruth; Hnilova, Marketa; Grosh, Carolynn; Fong, Hanson; Baneyx, Francois; Schwartz, Dan; Sarikaya, Mehmet; Tamerler, Candan; Traxler, Beth

    2012-01-01

    Silver toxicity is a problem that microorganisms face in medical and environmental settings. Through exposure to silver compounds, some bacteria have adapted to growth in high concentrations of silver ions. Such adapted microbes may be dangerous as pathogens but, alternatively, could be potentially useful in nanomaterial-manufacturing applications. While naturally adapted isolates typically utilize efflux pumps to achieve metal resistance, we have engineered a silver-tolerant Escherichia coli...

  7. Preparation of silver nanoparticles at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Mini, E-mail: mishramini5@gmail.com [Centre of Environmental Science, Department of Botany, University of Allahabad, Allahabad, U.P. (India); Chauhan, Pratima, E-mail: mangu167@yahoo.co.in [Department of Physics, University of Allahabad, Allahabad U.P. (India)

    2016-04-13

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  8. Solid state and aqueous behavior of uranyl peroxide cage clusters

    Science.gov (United States)

    Pellegrini, Kristi Lynn

    Uranyl peroxide cage clusters include a large family of more than 50 published clusters of a variety of sizes, which can incorporate various ligands including pyrophosphate and oxalate. Previous studies have reported that uranyl clusters can be used as a method to separate uranium from a solid matrix, with potential applications in reprocessing of irradiated nuclear fuel. Because of the potential applications of these novel structures in an advanced nuclear fuel cycle and their likely presence in areas of contamination, it is important to understand their behavior in both solid state and aqueous systems, including complex environments where other ions are present. In this thesis, I examine the aqueous behavior of U24Pp 12, as well as aqueous cluster systems with added mono-, di-, and trivalent cations. The resulting solutions were analyzed using dynamic light scattering and ultra-small angle X-ray scattering to evaluate the species in solution. Precipitates of these systems were analyzed using powder X-ray diffraction, X-ray fluorescence spectrometry, and Raman spectroscopy. The results of these analyses demonstrate the importance of cation size, charge, and concentration of added cations on the aqueous behavior of uranium macroions. Specifically, aggregates of various sizes and shapes form rapidly upon addition of cations, and in some cases these aggregates appear to precipitate into an X-ray amorphous material that still contains U24Pp12 clusters. In addition, I probe aggregation of U24Pp12 and U60, another uranyl peroxide cage cluster, in mixed solvent water-alcohol systems. The aggregation of uranyl clusters in water-alcohol systems is a result of hydrogen bonding with polar organic molecules and the reduction of the dielectric constant of the system. Studies of aggregation of uranyl clusters also allow for comparison between the newer uranyl polyoxometalate family and century-old transition metal polyoxometalates. To complement the solution studies of uranyl

  9. Synthesis and Characterization of Optically Active Fractal Seed Mediated Silver Nickel Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Joseph Adeyemi Adekoya

    2014-01-01

    Full Text Available The synthesis of new seed mediated AgNi allied bimetallic nanocomposites was successfully carried out by the successive reduction of the metal ions in diethylene glycol, ethylene glycol, glycerol, and pentaerythritol solutions, with concomitant precipitation of Ag/Ni bimetal sols. The optical measurement revealed the existence of distinct band edge with surface plasmon resonance (SPR in the region of 400–425 nm and excitonic emission with maximum peak at 382 nm which were reminiscent of cluster-in-cluster surface enriched bimetallic silver-nickel sols. The morphological characterization by transmission electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction analyses complimented by surface scan using X-ray photoelectron spectroscopy strongly supported the formation of intimately alloyed face-centered silver/nickel nanoclusters.

  10. High purity silver microcrystals recovered from silver wastes by eco-friendly process using hydrogen peroxide.

    Science.gov (United States)

    Gatemala, Harnchana; Ekgasit, Sanong; Wongravee, Kanet

    2017-07-01

    A simple, rapid, and environmentally friendly process using hydrogen peroxide, was developed for recovering high purity silver directly from industry and laboratory wastes. Silver ammine complex, [Ag(NH 3 ) 2 ] + Cl - , derived from AgCl were generated and then directly reduced using H 2 O 2 to reliably turn into high purity microcrystalline silver (99.99%) examined by EDS and XRD. Morphology of the recovered silver microcrystals could be selectively tuned by an addition of poly(vinyl pyrrolidone). The main parameters in the recovering process including pH, concentration of Ag + and the mole ratio of H 2 O 2 :Ag + were carefully optimized though the central composite design (CCD). The optimized condition was employed for a trial recovery of 50 L silver ammine complex prepared from a collection of silver-wastes during 3-year research on industrial nanoparticle production. The recovered silver microcrystals >700 g could be recovered with 91.27%. The remaining solution after filtering of the recovered silver microcrystals can be used repeatedly (at least 8 cycles) without losing recovery efficiency. Matrix interferences including Pb 2+ and Cl - play a minimal role in our silver recovery process. Furthermore, the direct usage of the recovered silver microcrystals was demonstrated by using as a raw material of silver clay for creating a set of wearable silver jewelries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Synthesis and optical properties of silver nanoparticles

    Science.gov (United States)

    Singh, Jaiveer; Kaurav, Netram; Choudhary, K. K.; Okram, Gunadhor S.

    2015-07-01

    The preparation of stable, uniform silver nanoparticles by reduction of silver acetate by ethylene glycol (EG) is reported in the present paper. It is a simple process of recent interest for obtaining silver nanoparticles. The samples were characterized by X-Ray diffraction (XRD), which reveals an average particle size (D) of 38 nm. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 319 nm.

  12. Biosynthesis of Silver Nanoparticles and Its Applications

    OpenAIRE

    M. Jannathul Firdhouse; P. Lalitha

    2015-01-01

    Silver nanoparticles possess unique properties which find myriad applications such as antimicrobial, anticancer, larvicidal, catalytic, and wound healing activities. Biogenic syntheses of silver nanoparticles using plants and their pharmacological and other potential applications are gaining momentum owing to its assured rewards. This critical review is aimed at providing an insight into the phytomediated synthesis of silver nanoparticles, its significant applications in various fields, and c...

  13. Risk assessment of silver nanoparticles

    International Nuclear Information System (INIS)

    Shipelin, V A; Gmoshinski, I V; Khotimchenko, S A

    2015-01-01

    Nanoparticles of metallic silver (Ag) are among the most widely used products of nanotechnology. Nanosized colloidal silver (NCS) is presented in many kinds of production as solutions of particles with diameter less than 100 nm. NCS is used in a variety of fields, including food supplements, medicines, cosmetics, packaging materials, disinfectants, water filters, and many others. Problems of toxicity and related safety of NCS for humans and environmental systems are recently overestimated basing on data of numerous toxicological studies in vitro and in vivo. The article discusses the results of current studies in recent years and the data of author's own experiments on studying the safety of NCS, that allows to move on to risk assessment of this nanomaterial presented in consumer products and environmental samples. (paper)

  14. Comparative investigation on cation-cation (Al-Sn) and cation-anion (Al-F) co-doping in RF sputtered ZnO thin films: Mechanistic insight

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, Arindam; Basak, Durga, E-mail: sspdb@iacs.res.in

    2017-07-15

    Highlights: • Comparative study on Al, Al-Sn and Al-F doped ZnO films has been carried out. • High transparent Al-F co-doped film shows three times enhanced carrier density. • Al-F co-doped film shows larger carrier relaxation time. • Al-Sn co-doped films shows carrier transport dominated by impurity scattering. • Al-F co-doped ZnO film can be applied as transparent electrode. - Abstract: Herein, we report a comparative mechanistic study on cation-cation (Al-Sn) and cation-anion (Al-F) co-doped nanocrystalline ZnO thin films grown on glass substrate by RF sputtering technique. Through detailed analyses of crystal structure, surface morphology, microstructure, UV-VIS-NIR transmission-reflection and electrical transport property, the inherent characteristics of the co-doped films were revealed and compared. All the nanocrystalline films retain the hexagonal wurtzite structure of ZnO and show transparency above 90% in the visible and NIR region. As opposed to expectation, Al-Sn (ATZO) co-doped film show no enhanced carrier concentration consistent with the probable formation of SnO{sub 2} clusters supported by the X-ray photoelectron spectroscopy study. Most interestingly, it has been found that Al-F (AFZO) co-doped film shows three times enhanced carrier concentration as compared to Al doped and Al-Sn co-doped films attaining a value of ∼9 × 10{sup 20} cm{sup −3} due to the respective cation and anion substitution. The carrier relaxation time increases in AFZO while it decreases significantly for ATZO film consistent with the concurrence of the impurity scattering in the latter.

  15. Preparation of counterion stabilized concentrated silver sols.

    Science.gov (United States)

    LaPlante, Sylas; Halaciuga, Ionel; Goia, Dan V

    2011-07-01

    A strategy for obtaining stable concentrated silver dispersions without dedicated stabilizing agents is presented. This approach consists of rapidly mixing aqueous solutions of silver salicylate and ascorbic acid. By using salicylate as Ag(+) counterion, it is possible to prepare stable sols with metal concentrations up to two orders of magnitude higher than with silver nitrate. The stabilizing effect of the counterion is the result of a decreased ionic strength due to salicylate protonation and its adsorption on the surface of silver. Both effects increase the range of the electrostatic repulsive forces by expanding the electrical double layer. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Cementation of silver ions on metallic copper

    International Nuclear Information System (INIS)

    Jaskula, M.

    2009-01-01

    The silver cementation on metallic copper was investigated in the presence or absence of oxygen. The influence of sulphuric acid and copper sulphate concentration on the silver cement morphology was studied in details, and results were linked with the previously determined kinetics data of the process. The morpgology of silver depopsit was found to be independent of the prosence of oxygen in the system in as well as the sulphuric acide concentration. Contrary, the concentration of copper sulphate strongly influenced the morphology of silver deposite. Two-stage mechanism of cementation was proposed. (authors).

  17. Tailoring silver nanoparticle construction using dendrimer templated silica networks

    International Nuclear Information System (INIS)

    Liu Xiaojun; Kakkar, Ashok

    2008-01-01

    We have examined the role of the internal environment of dendrimer templated silica networks in tailoring the construction of silver nanoparticle assemblies. Silica networks from which 3,5-dihydroxybenzyl alcohol based dendrimer templates have been completely removed, slowly wet with an aqueous solution of silver acetate. The latter then reacts with internal silica silanol groups, leading to chemisorption of silver ions, followed by the growth of silver oxide nanoparticles. Silica network constructed using generation 4 dendrimer contains residual dendrimer template, and mixes with aqueous silver acetate solution easily. Upon chemisorption, silver ions get photolytically reduced to silver metal under a stabilizing dendrimer environment, leading to the formation of silver metal nanoparticles

  18. Heavy hitters via cluster-preserving clustering

    DEFF Research Database (Denmark)

    Larsen, Kasper Green; Nelson, Jelani; Nguyen, Huy L.

    2016-01-01

    , providing correctness whp. In fact, a simpler version of our algorithm for p = 1 in the strict turnstile model answers queries even faster than the "dyadic trick" by roughly a log n factor, dominating it in all regards. Our main innovation is an efficient reduction from the heavy hitters to a clustering...... problem in which each heavy hitter is encoded as some form of noisy spectral cluster in a much bigger graph, and the goal is to identify every cluster. Since every heavy hitter must be found, correctness requires that every cluster be found. We thus need a "cluster-preserving clustering" algorithm......, that partitions the graph into clusters with the promise of not destroying any original cluster. To do this we first apply standard spectral graph partitioning, and then we use some novel combinatorial techniques to modify the cuts obtained so as to make sure that the original clusters are sufficiently preserved...

  19. Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Hanim, Siti Aishah Mohd; Malek, Nik Ahmad Nizam Nik, E-mail: niknizam@fbb.utm.my; Ibrahim, Zaharah

    2016-01-01

    Graphical abstract: - Highlights: • Functionalization of Ag-exchanged zeolite NaY with 3-aminopropyltriethoxysilane APTES (ZSA) as antibacterial agent. • Antibacterial assay of ZSA was performed against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538. • Functionalization of Ag-exchanged zeolite NaY with APTES significantly increased the antibacterial agent. • Different mechanisms of bacterial death were suggested for each bacteria type by the functionalized Ag-exchanged zeolite NaY. - Abstract: Amine-functionalized, silver-exchanged zeolite NaY (ZSA) were prepared with three different concentrations of 3-aminopropyltriethoxysilane (APTES) (0.01, 0.20 and 0.40 M) and four different concentrations of silver ions (25%, 50%, 100% and 200% from zeolite cation exchange capacity (CEC)). The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), surface area analysis, thermogravimetric analysis (TGA) and zeta potential (ZP) analysis. The FTIR results indicated that the zeolite was functionalized by APTES and that the intensity of the peaks corresponding to APTES increased as the concentration of APTES used was increased. The antibacterial activities of the silver-exchanged zeolite NaY (ZS) and ZSA were studied against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538 using the disc diffusion technique (DDT) and minimum inhibitory concentration (MIC). The antibacterial activity of ZSA increased with the increase in APTES on ZS, and E. coli was more susceptible towards the sample compared to S. aureus. The FESEM micrographs of the bacteria after contact with the ZSA suggested different mechanisms of bacterial death for these two bacteria due to exposure to the studied sample. The functionalization of ZS with APTES improved the antibacterial activity of the silver-zeolite, depending on the concentration of silver

  20. Silver ion recognition using potentiometric sensor based on recently synthesized isoquinoline-1,3-dione derivatives

    Directory of Open Access Journals (Sweden)

    AJAR KAMAL

    2012-08-01

    Full Text Available The four derivatives of isoquinoline-1,3-dione based on β-lactum (I-IV, have been explored as neutral ionophores for preparing poly(vinylchloride based polymeric membrane electrodes (PME selective to silver(I ions. The addition of sodium tetraphenylborate (NaTPB and dioctylsebacate (DOS as a plasticizer was found to improve the performance of ion selective electrodes. The best performance was obtained with PME-1 based on ionophore I having composition: ionophore (9.2 mg, PVC (100.1 mg, DOS (201.1 mg and NaTPB (1.5 mg in 5 mL tetrahydrofuran. The electrode response was linear with Nernstian slope of 58.44 mV/decade in the concentration range of 1.0 x 10-1 M to 5.0 x 10-6 M and detection limit of 5.83 x 10-6 M. It performs satisfactorily over wide pH range of 1.0-5.5. The proposed sensor can be used over a period of more than three months without any significant drift in potential and shows good selectivity to silver(I ion over a number of cations especially with no interference of mercury(II ions. Sharp end point was obtained when the sensor was used as an indicator electrode for the potentiometric titration of silver(I ions with chloride ions and therefore this electrode (PME-1 could be used for quantitative determination of silver(I ion in synthetic water, silver foil and dental amalgam samples.

  1. Factors influencing silver recovery and power generation in bio-electrochemical reactors.

    Science.gov (United States)

    Ho, Ngo Anh Dao; Babel, Sandhya; Sombatmankhong, Korakot

    2017-09-01

    The recovery of silver from Ag + solution coupled with power generation was investigated in bio-electrochemical system (BES). In this system, chemical energy existing in the organic matter in the anode chamber can be converted biologically to electrical energy which can be used for the reduction of Ag + ions in the cathode chamber. Results showed that type of substrate influenced the metabolic pathway and affected the cell voltage progression, and columbic efficiency. Silver recovery was not affected by increasing initial pH (2.0 to 7.0) and Ag + concentration (100 to 1000 mg/L) in the catholyte, whereas power generation was improved. A maximum power density of 8258 mW/m 3 and a columbic efficiency of 21.61% could be achieved with 1000 mg/L of Ag + . Ag + ions were reduced to form metallic deposits as Ag 0 crystals on the cathode surface, which were then confirmed by scanning electron microscope (SEM) image and energy dispersive X-ray (EDX) spectrum. The BES reactor had high silver removal (i.e., >96%) after 24 h of operation. When considering the crossover of Ag + ions through the cation exchange membrane, the removal was in the range of 83.73-92.51%. This crossover was not considerable as compared to the Ag + initial concentration. At higher initial Ag + concentration (2000 mg/L), the silver removal decreased to 88.61% and the maximum power density decreased to 5396 mW/m 3 . This study clearly showed that BES can be employed for silver recovery, wastewater treatment, and also electricity generation.

  2. Synthesis and characterization of silver-containing glasses: evolution under ionizing irradiation and femtosecond laser multi-scale structuring

    International Nuclear Information System (INIS)

    Desmoulin, Jean-Charles

    2016-01-01

    The silver-containing phosphate glasses allowed original developments throughout the micro-structuring of architectures for innovative photonic in the volume, at the surface or in the fibered material. The chemical engineering of the material plays an important role from this point of view. An increasing silver oxide ratio leads to an important quantity of pairs in the pristine glass matrix. This dimer in favor of the aggregation process bringing to the production of species during the interaction between the glass and the infrared femtosecond laser. A study conducted by EPR spectroscopy on irradiated samples (ionizing sources) demonstrated that the dose rate is predominant for the control of the involved chemical process. Mainly, electron and holes are stabilized at low dose rate whereas the formation of luminescent silver clusters occurs for high peak power typical of ultra-short lasers. The Direct Laser Writing process allows local structuring of the matter and resulted in original tridimensional patterns. The fine chemical distribution analysis inside annular fluorescent objects clearly showed a depletion zone of the silver concentration in the center. Ionic migration effects from the center towards the edges of the laser beam are then highlighted. The Eu 3+ -doped photosensitive glasses emphasized a synergy between photo-induced silver clusters and trivalent lanthanides. Indeed, a luminescence exaltation associated to the europium emission is measured. (author)

  3. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes

    DEFF Research Database (Denmark)

    Korsholm, Karen Smith; Agger, Else Marie; Foged, Camilla

    2007-01-01

    Cationic liposomes are being used increasingly as efficient adjuvants for subunit vaccines but their precise mechanism of action is still unknown. Here, we investigated the adjuvant mechanism of cationic liposomes based on the synthetic amphiphile dimethyldioctadecylammonium (DDA). The liposomes...... concentrations. This efficient adsorption onto the liposomes led to an enhanced uptake of OVA by BM-DCs as assessed by flow cytometry and confocal fluorescence laser-scanning microscopy. This was an active process, which was arrested at 4 degrees and by an inhibitor of actin-dependent endocytosis, cytochalasin D....... In vivo studies confirmed the observed effect because adsorption of OVA onto DDA liposomes enhanced the uptake of the antigen by peritoneal exudate cells after intraperitoneal injection. The liposomes targeted antigen preferentially to antigen-presenting cells because we only observed a minimal uptake...

  4. Facile preparation of water dispersible polypyrrole nanotube-supported silver nanoparticles for hydrogen peroxide reduction and surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Peng Yingjing; Qiu Lihua; Pan Congtao; Wang Cancan; Shang Songmin; Yan Feng

    2012-01-01

    Water dispersible polypyrrole nanotube/silver nanoparticle hybrids (PPyNT-COOAgNP) were synthesized via a cation-exchange method. The approach involves the surface functionalization of PPyNTs with carboxylic acid groups (-COOH), and cation-exchange with silver ions (Ag + ) and followed by the reduction of metal ions. The morphology and optical properties of the produced PPyNT-COOAgNP nanohybrids were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectrometer, and UV–vis spectroscopy. The as-prepared PPyNT-COOAgNP nanohybrids exhibited well-defined response to the reduction of hydrogen peroxide, and as extremely suitable substrates for surface-enhanced Raman spectroscopy (SERS) with a high enhancement factor of 6.0 × 10 7 , and enabling the detection of 10 −12 M Rhodamine 6G solution.

  5. Synthesis and crystal structure of bis(1-{[(quinolin-8-ylimino]methyl}pyrene-κ2N,N′silver(I trifluoromethanesulfonate

    Directory of Open Access Journals (Sweden)

    Miguel Pinto

    2016-10-01

    Full Text Available The title compound, [Ag(qPyr2]CF3SO3 where qPyr = 1-(quinoline-2-ylmethyleneaminopyrene, C26H16N2, was synthesized from a reaction of silver trifluoromethanesulfonate and qPyr in dichloromethane–methanol mixed media. In this design, the qPyr ligand was chosen for its characteristic excitation and emission profiles, which could enable the tracking of the silver complex within biological targets. The AgI atom resides in a distorted tetrahedral N4 coordination sphere. Analysis of the packing pattern revealed significant intra- and intermolecular π–π stacking interactions between the [Ag(qPyr2]+ cations. In addition, a weak C—H...O hydrogen bond consolidates the packing between cations and anions.

  6. Regulation of Cation Balance in Saccharomyces cerevisiae

    Science.gov (United States)

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  7. Mechanism of metal cationization in organic SIMS

    International Nuclear Information System (INIS)

    Wojciechowski, I.; Delcorte, A.; Gonze, X.; Bertrand, P.

    2003-01-01

    A scenario of metal cationization in which the organic molecule combines with a neutral excited metal atom is proposed. Ionization of the nascent complex occurs via ejection of an electron during the association process. Electron structure calculations for the model systems C 6 H 6 +Me (Me=Ag, Cu, Au) using the density functional theory give a strong argument in favor of the proposed mechanism

  8. Proton dynamics investigation for dimethyl ammonium cation

    International Nuclear Information System (INIS)

    Pislewski, N.; Tritt-Goc, J.; Jakubas, R.

    1995-01-01

    Proton dynamics in dimethyl ammonium cation has been investigated by means of NMR and spin echo methods in polycrystalline salts [NH 2 (CH 3 ) 2 ] + Bi 2 J 9 - and [NH 2 (CH 3 ) 2 ] + SbJ 9 - . Spin-lattice relaxation time as well as second moment of NMR line have been measured for influence study of crystal structure changes on proton dynamics

  9. The effect of silver on the optical, spectral-luminescent, and crystallization properties of bromide photo-thermo-refractive glasses

    Science.gov (United States)

    Oreshkina, K. V.; Dubrovin, V. D.; Ignat'ev, A. I.; Nikonorov, N. V.

    2017-10-01

    The effect of silver on the optical, spectral-luminescent, and crystallization properties of bromide photo-thermo-refractive glasses is studied. Multicomponent photosensitive glasses of the Na2O-ZnO-Al2O3-SiO2 system with photosensitizing agents (cerium, antimony, silver) and halogenides (fluorine and bromine) are synthesized. Ultraviolet irradiation and thermal treatment below the glass-transition temperature of the glasses cause the formation of silver molecular clusters, which exhibit luminescence in the visible and infrared regions. UV irradiation and thermal treatment of glasses above the glass-transition temperature lead to the growth of silver nanoparticles with plasmon resonance peak in the region of 420 nm. Further thermal treatment of glasses above the glass-transition temperature shifts the plasmon-resonance maximum by 70 nm to longer wavelengths, which is related to the growth of a crystalline shell consisting of mixed silver and sodium bromides on nanoparticles. This formation of a crystalline phase on colloidal centers results in a local increase in the refractive index of the irradiated region by +Δ n 900 ppm compared to the nonirradiated region. Photo-thermo-refractive glasses with increased silver concentration are promising photosensitive materials for creating holographic optical elements and devices for line narrowing and stabilizing filters, spectral beam combiners, and filters for increasing the spectral brightness of laser diodes. A positive change in the refractive index of Photo-thermo-refractive glasses provides the possibility of recording in them 3D waveguide and integrated-optical structures.

  10. Uptake and elimination kinetics of silver nanoparticles and silver nitrate by Raphidocelis subcapitata: The influence of silver behaviour in solution

    NARCIS (Netherlands)

    Ribeiro, Fabianne; Gallego-Urrea, Julián Alberto; Goodhead, Rhys M.; van Gestel, C.A.M.; Moeger, Julian; Soares, Amadeu M.V.M.; Loureiro, Susana

    2015-01-01

    Raphidocelis subcapitata is a freshwater algae species that constitutes the basis of many aquatic trophic chains. In this study, R. subcapitata was used as a model species to investigate the kinetics of uptake and elimination of silver nanoparticles (AgNP) in comparison to silver nitrate

  11. Synthesis and antimicrobial effects of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    S kheybari

    2010-09-01

    Full Text Available "n  "n "nBackground and the purpose of the study:The most prominent nanoparticles for medical uses are nanosilver particles which are famous for their high anti-microbial activity. Silver ion has been known as a metal ion that exhibit anti-mold, anti-microbial and anti-algal properties for a long time. In particular, it is widely used as silver nitrate aqueous solution which has disinfecting and sterilizing actions. The purpose of this study was to evaluate the antimicrobial activity as well as physical properties of the silver nanoparticles prepared by chemical reduction method. "nMethods:Silver nanoparticles (NPs were prepared by reduction of silver nitrate in the presence of a reducing agent and also poly [N-vinylpyrolidone] (PVP as a stabilizer. Two kinds of NPs were synthesized by ethylene glycol (EG and glucose as reducing agent. The nanostructure and particle size of silver NPs were confirmed by scanning electron microscopy (SEM and laser particle analyzer (LPA. The formations of the silver NPs were monitored using ultraviolet-visible spectroscopy. The anti-bacterial activity of silver NPs were assessed by determination of their minimum inhibitory concentrations (MIC against the Gram positive (Staphylococcus aureus and Staphylococcus epidermidis as well as Gram-negative (Escherichia coli and Pseudomonas aeruginosa bacteria. "nResults and Conclusion:The silver nanoparticles were spherical with particle size between 10 to 250 nm. Analysis of the theoretical (Mie light scattering theory and experimental results showed that the silver NPs in colloidal solution had a diameter of approximately 50 nm. "nBoth colloidal silver NPs showed high anti-bacterial activity against Gram positive and Gram negative bacteria. Glucose nanosilver colloids showed a shorter killing time against most of the tested bacteria which could be due to their nanostructures and uniform size distribution patterns.

  12. Reducible cationic lipids for gene transfer.

    Science.gov (United States)

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-01-01

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization. PMID:11389682

  13. Serum and urinary silver levels in thermal injury patients.

    Science.gov (United States)

    Boosalis, M G; McCall, J T; Ahrenholz, D H; Solem, L D; McClain, C J

    1987-01-01

    Although silver sulfadiazine has been used extensively as an effective topical antimicrobial agent in thermal injury patients, little is known about the cutaneous absorption of the silver moiety in these patients. Therefore, we longitudinally evaluated both serum silver concentration and 24-hour urinary excretion of silver in 23 patients with second- and third-degree thermal burns. Mean serum silver concentrations were modestly elevated throughout the patients' hospital course. Urinary excretion of silver was markedly elevated, especially in those patients with more severe burns. Indeed, in patients who had burns covering more than 60% of the total body surface area mean peak silver excretion was 1100 micrograms/24 hr (normal, less than 1 micrograms/24 hr). Thus, silver ion is absorbed across the burn wound in thermal injury patients treated with silver sulfadiazine. The 24-hour urinary excretion of silver appears to be a very sensitive indicator of cutaneous absorption in these patients. Possible implications of this cutaneous silver absorption warrant further evaluation.

  14. Antibacterial activities of silver nanoparticles and antibiotic-adsorbed silver nanoparticles against biorecycling microbes.

    Science.gov (United States)

    Khurana, Chandni; Vala, Anjana K; Andhariya, Nidhi; Pandey, O P; Chudasama, Bhupendra

    2014-09-20

    Silver nanoparticles have a huge share in nanotechnology based products used in clinical and hygiene products. Silver nanoparticles leaching from these medical and domestic products will eventually enter terrestrial ecosystems and will interact with the microbes present in the land and water. These interactions could be a threat to biorecycling microbes present in the Earth's crust. The antimicrobial action towards biorecycling microbes by leached silver nanoparticles from medical waste could be many times greater compared to that of silver nanoparticles leached from other domestic products, since medical products may contain traditional antibiotics along with silver nanoparticles. In the present article, we have evaluated the antimicrobial activities of as-synthesized silver nanoparticles, antibiotics - tetracycline and kanamycin, and antibiotic-adsorbed silver nanoparticles. The antimicrobial action of silver nanoparticles with adsorbed antibiotics is 33-100% more profound against the biorecycling microbes B. subtilis and Pseudomonas compared to the antibacterial action of silver nanoparticles of the same concentration. This study indicates that there is an immediate and urgent need for well-defined protocols for environmental exposure to silver nanoparticles, as the use of silver nanoparticles in nanotechnology based products is poorly restricted.

  15. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    Science.gov (United States)

    Liu, Suwen; Wehmschulte, Rudolf J.; Lian, Guoda; Burba, Christopher M.

    2006-03-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).

  16. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna

    Science.gov (United States)

    2012-01-01

    Background To better understand the potential ecotoxicological impacts of silver nanoparticles released into freshwater environments, the Daphnia magna 48-hour immobilization test was used. Methods The toxicities of silver nitrate, two types of colloidal silver nanoparticles, and a suspension of silver nanoparticles were assessed and compared using standard OECD guidelines. Also, the swimming behavior and visible uptake of the nanoparticles by Daphnia were investigated and compared. The particle suspension and colloids used in the toxicity tests were well-characterized. Results The results obtained from the exposure studies showed that the toxicity of all the silver species tested was dose and composition dependent. Plus, the silver nanoparticle powders subsequently suspended in the exposure water were much less toxic than the previously prepared silver nanoparticle colloids, whereas the colloidal silver nanoparticles and AgNO3 were almost similar in terms of mortality. The silver nanoparticles were ingested by the Daphnia and accumulated under the carapace, on the external body surface, and connected to the appendages. All the silver species in this study caused abnormal swimming by the D. magna. Conclusion According to the present results, silver nanoparticles should be classified according to GHS (Globally Harmonized System of classification and labeling of chemicals) as "category acute 1" to Daphnia neonates, suggesting that the release of nanosilver into the environment should be carefully considered. PMID:22472056

  17. Increased localized delivery of piroxicam by cationic nanoparticles after intra-articular injection.

    Science.gov (United States)

    Kim, Sung Rae; Ho, Myoung Jin; Kim, Sang Hyun; Cho, Ha Ra; Kim, Han Sol; Choi, Yong Seok; Choi, Young Wook; Kang, Myung Joo

    2016-01-01

    Piroxicam (PRX), a potent nonsteroidal anti-inflammatory drug, is prescribed to relieve postoperative and/or chronic joint pain. However, its oral administration often results in serious gastrointestinal adverse effects including duodenal ulceration. Thus, a novel cationic nanoparticle (NP) was explored to minimize the systemic exposure and increase the retention time of PRX in the joint after intra-articular (IA) injection, by forming micrometer-sized electrostatic clusters with endogenous hyaluronic acid (HA) in the synovial cavity. PRX-loaded NPs consisting of poly(lactic- co -glycolic acid), Eudragit RL, and polyvinyl alcohol were constructed with the following characteristics: particle size of 220 nm, zeta potential of 11.5 mV in phosphate-buffered saline, and loading amount of 4.0% (w/w) of PRX. In optical and hyperspectral observations, the cationic NPs formed more than 50 μm-sized aggregates with HA, which was larger than the intercellular gaps between synoviocytes. In an in vivo pharmacokinetic study in rats, area under the plasma concentration-time curve (AUC 0-24 h ) and maximum plasma concentration ( C max ) of PRX after IA injection of the cationic NPs were <70% ( P <0.05) and 60% ( P <0.05), respectively, compared to those obtained from drug solution. Moreover, the drug concentration in joint tissue 24 h after dosing with the cationic NPs was 3.2-fold ( P <0.05) and 1.8-fold ( P <0.05) higher than that from drug solution and neutrally charged NPs, respectively. Therefore, we recommend the IA cationic NP therapy as an effective alternative to traditional oral therapy with PRX, as it increases drug retention selectively in the joint.

  18. Titanomagnetite Curie temperatures: Effects of vacancies, chemical/cation ordering and thermal history

    Science.gov (United States)

    Jackson, M. J.; Bowles, J. A.; Lappe, S. C. L. L.; Solheid, P.

    2016-12-01

    Recent experimental work [Bowles et al, 2013, Nat. Commun.; Jackson and Bowles, 2014, G-cubed] has shown that the Curie temperatures (Tc) of intermediate-composition titanomagnetites (TM30-TM50) depend strongly on thermal history, with Tc increases of ≥100°C produced by moderate-temperature (300°-400° C) annealing in the lab or in slow natural cooling. Equally large decreases are produced by rapid cooling ("quenching") from higher temperatures. The phenomenon is robustly defined and repeatable, but the underlying mechanism remains enigmatic, presumably involving rearrangement of metal cations within the spinel lattice without any change in bulk composition. Previous studies [e.g., Moskowitz and Wanamaker, 1994, GRL; Lattard et al, 2006, JGR] have shown that cation deficiency controls Tc both directly, by changing the ferrous/ferric ratio, and indirectly, by affecting the cation ordering. Our new experiments examined the effects of oxidation state and nonstoichiometry on the magnitude of Tc changes produced by quenching/annealing. In our synthetic TMs these changes are generally relatively small (ΔTc100°), but when the samples are embedded in a reducing material (containing graphite), ΔTc becomes insignificant. These results strongly suggest that cation vacancies play an essential role in the cation rearrangements responsible for the observed changes in Tc. XMCD and low-temperature Mossbauer and magnetization measurements show no evidence of corresponding changes in ferrous/ferric site occupancy, and some form of octahedral-site chemical clustering or short-range ordering appears to be the best way to explain the large observed changes in Tc.

  19. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate

    Science.gov (United States)

    2011-01-01

    Background The study investigated the distribution of silver after 28 days repeated oral administration of silver nanoparticles (AgNPs) and silver acetate (AgAc) to rats. Oral administration is a relevant route of exposure because of the use of silver nanoparticles in products related to food and food contact materials. Results AgNPs were synthesized with a size distribution of 14 ± 4 nm in diameter (90% of the nanoparticle volume) and stabilized in aqueous suspension by the polymer polyvinylpyrrolidone (PVP). The AgNPs remained stable throughout the duration of the 28-day oral toxicity study in rats. The organ distribution pattern of silver following administration of AgNPs and AgAc was similar. However the absolute silver concentrations in tissues were lower following oral exposure to AgNPs. This was in agreement with an indication of a higher fecal excretion following administration of AgNPs. Besides the intestinal system, the largest silver concentrations were detected in the liver and kidneys. Silver was also found in the lungs and brain. Autometallographic (AMG) staining revealed a similar cellular localization of silver in ileum, liver, and kidney tissue in rats exposed to AgNPs or AgAc. Using transmission electron microscopy (TEM), nanosized granules were detected in the ileum of animals exposed to AgNPs or AgAc and were mainly located in the basal lamina of the ileal epithelium and in lysosomes of macrophages within the lamina propria. Using energy dispersive x-ray spectroscopy it was shown that the granules in lysosomes consisted of silver, selenium, and sulfur for both AgNP and AgAc exposed rats. The diameter of the deposited granules was in the same size range as that of the administered AgNPs. No silver granules were detected by TEM in the liver. Conclusions The results of the present study demonstrate that the organ distribution of silver was similar when AgNPs or AgAc were administered orally to rats. The presence of silver granules containing

  20. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, R D; Souza Filho, A G; Alves, O L [Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica, Universidade Estadual de Campinas, CP 6154, 13081-970, Campinas-SP (Brazil); Brocchi, M; Martins, D [Departamento de Genetica, Evolucao and Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Duran, N, E-mail: rholtz@iqm.unicamp.br, E-mail: agsf@fisica.ufc.br, E-mail: oalves@iqm.unicamp.br [Laboratorio de Quimica Biologica, Instituto de Quimica, Universidade Estadual de Campinas, Campinas-SP (Brazil)

    2010-05-07

    In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin.

  1. Electrically Conductive Silver Paste Obtained by Use of Silver Neodecanoate as Precursor

    Science.gov (United States)

    Shen, Longguang; Liu, Jianguo; Zeng, Xiaoyan; Ren, Zhao

    2015-02-01

    An electrically conductive silver paste has been prepared from an organometallic compound, silver neodecanoate, as silver precursor. The precursor was highly soluble in organic solvents and decomposed into metallic silver at low sintering temperatures (pseudoplastic liquid with viscosity in the range 6.5-9 Pa s. The paste was compatible with the micro-pen direct-writing process, enabling production of silver lines on a substrate. The electrical resistivity of the silver lines was 9 × 10-6 Ω cm after sintering at 115°C for 60 min, 5.8 × 10-6 Ω cm when sintered at 150°C for 60 min, and 3 × 10-6 Ω cm when sintered above 300°C, values which are similar to those of bulk silver. Hence, the prepared paste can be successfully used on flexible substrates such as polymers.

  2. Brightest Cluster Galaxies in REXCESS Clusters

    Science.gov (United States)

    Haarsma, Deborah B.; Leisman, L.; Bruch, S.; Donahue, M.

    2009-01-01

    Most galaxy clusters contain a Brightest Cluster Galaxy (BCG) which is larger than the other cluster ellipticals and has a more extended profile. In the hierarchical model, the BCG forms through many galaxy mergers in the crowded center of the cluster, and thus its properties give insight into the assembly of the cluster as a whole. In this project, we are working with the Representative XMM-Newton Cluster Structure Survey (REXCESS) team (Boehringer et al 2007) to study BCGs in 33 X-ray luminous galaxy clusters, 0.055 < z < 0.183. We are imaging the BCGs in R band at the Southern Observatory for Astrophysical Research (SOAR) in Chile. In this poster, we discuss our methods and give preliminary measurements of the BCG magnitudes, morphology, and stellar mass. We compare these BCG properties with the properties of their host clusters, particularly of the X-ray emitting gas.

  3. [Antioxidant activity of cationic whey protein isolate].

    Science.gov (United States)

    titova, M E; Komolov, S A; Tikhomirova, N A

    2012-01-01

    The process of lipid peroxidation (LPO) in biological membranes of cells is carried out by free radical mechanism, a feature of which is the interaction of radicals with other molecules. In this work we investigated the antioxidant activity of cationic whey protein isolate, obtained by the cation-exchange chromatography on KM-cellulose from raw cow's milk, in vitro and in vivo. In biological liquids, which are milk, blood serum, fetal fluids, contains a complex of biologically active substances with a unique multifunctional properties, and which are carrying out a protective, antimicrobial, regenerating, antioxidant, immunomodulatory, regulatory and others functions. Contents of the isolate were determined electrophoretically and by its biological activity. Cationic whey protein isolate included lactoperoxidase, lactoferrin, pancreatic RNase, lysozyme and angeogenin. The given isolate significantly has an antioxidant effect in model experimental systems in vitro and therefore may be considered as a factor that can adjust the intensity of lipid oxidation. In model solutions products of lipid oxidation were obtained by oxidation of phosphatidylcholine by hydrogen peroxide in the presence of a source of iron. The composition of the reaction mixture: 0,4 mM H2O2; 50 mcM of hemin; 2 mg/ml L-alpha-phosphatidylcholine from soybean (Sigma, German). Lipid peroxidation products were formed during the incubation of the reaction mixture for two hours at 37 degrees C. In our studies rats in the adaptation period immediately after isolation from the nest obtained from food given orally native cationic whey protein isolate at the concentration three times higher than in fresh cow's milk. On the manifestation of the antioxidant activity of cationic whey protein isolate in vivo evidence decrease of lipid peroxidation products concentration in the blood of rats from the experimental group receipt whey protein isolate in dos 0,6 mg/g for more than 20% (pisolate has an antioxidant

  4. Comparative analysis of cation/proton antiporter superfamily in plants

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Chuyu [ORNL; Yang, Xiaohan [ORNL; Xia, Xinli [Beijing Forestry University, China; Yin, Weilun [Beijing Forestry University, China

    2013-01-01

    The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant specieswas reported.We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240members are separated into three families, i.e., Na+/H+ exchangers, K+ efflux antiporters, and cation/H+ exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H+ exchangers in the examined angiospermspecies. Sliding windowanalysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and foundmostmotifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants.

  5. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  6. Preparation of silver powder through glycerol process

    Indian Academy of Sciences (India)

    Unknown

    These in- clude reduction of silver salts by NaBH4, HCHO/NaOH/ ... solid inorganic/organic salt of metal is suspended in a liquid polyol, the suspension is stirred and heated to a given temperature. The reduction of metallic salt by polyol quantitatively ... Though the solubility of silver nitrate in glycerol at room temperature is ...

  7. Synthesis and characterization of fluorophore attached silver ...

    Indian Academy of Sciences (India)

    Silver nanoparticles stabilized by soluble starch were synthesized and characterized. in vivo studies in rats showed no toxicity and revealed their distribution in various tissues and permeability across BBB. This starch stabilized silver nanoparticles have good biological characteristics to act as a potential promising vector for ...

  8. Preparation of silver powder through glycerol process

    Indian Academy of Sciences (India)

    High purity fine silver powder with uniform particle morphology was prepared through glycerol process. The process involves reduction of silver nitrate by glycerol under atmospheric conditions at a temperature below 175°C. Glycerol, in this process, acts as a solvent as well as a reducing agent. The powders prepared ...

  9. Topical silver for preventing wound infection

    NARCIS (Netherlands)

    Storm-Versloot, Marja N.; Vos, Cornelis G.; Ubbink, Dirk T.; Vermeulen, Hester

    2010-01-01

    BACKGROUND: Silver-containing treatments are popular and used in wound treatments to combat a broad spectrum of pathogens, but evidence of their effectiveness in preventing wound infection or promoting healing is lacking. OBJECTIVES: To establish the effects of silver-containing wound dressings and

  10. Preparation of silver powder through glycerol process

    Indian Academy of Sciences (India)

    Unknown

    Abstract. High purity fine silver powder with uniform particle morphology was prepared through glycerol process. The process involves reduction of silver nitrate by glycerol under atmospheric conditions at a tem- perature below 175°C. Glycerol, in this process, acts as a solvent as well as a reducing agent. The powders.

  11. Preparation of amine coated silver nanoparticles using ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. This article presents a simple method towards the preparation of functionalized silver nano- particles in a continuous medium. Silver nanoparticles were obtained through AgNO3 chemical reduction in ethanol and triethylenetetramine was used to stabilize and functionalize the metal. The product was characterized ...

  12. ECO-FRIENDLY SYNTHESIS OF SILVER NANOPARTICLES ...

    African Journals Online (AJOL)

    userpc

    thermal and antibacterial properties of silver nanoparticles have made them suitable for many industrial applications as such it is being rated as being amongst the most commercialized metallic nanoparticles. Quite a number of studies have reported either the extracellular or intracellular synthesis of silver nanoparticles ...

  13. Biosynthesis of silver nanoparticles synthesized by Aspergillus

    Indian Academy of Sciences (India)

    In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic activities were investigated. Silver nanoparticles were extracellularly synthesized using Aspergillus flavus and the formation of nanoparticles was observed after 72 h of incubation. The results recorded from colour ...

  14. Pharmacological Properties of Nanometals (Silver, Copper, Iron)

    OpenAIRE

    Chekman, I.S.

    2015-01-01

    The article summarizes the results of studies on the pharmacological, toxicological and specific properties of nanometals (silver, iron, copper). It is established that nanoparticles of silver, copper, iron exhibit antimicrobial action. Acute toxicity of nanometals depends on their nature, administration route and animal sex. Effects on heart activity and hemodynamic status as well as erythrocyte osmotic fragility have dose-dependent nature.

  15. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  16. ELECTRO-GRAVIMETRIC RECOVERY OF SILVER FROM ...

    African Journals Online (AJOL)

    Silver is also used in X-ray photography, medicine (Ag2O,. AgNO3, Argyrols), bactericide, antiseptic, oil and water purifier (Ag3PO4). In tableware, electric components, circuits, stable electrodes, medals and batteries silver is applied as a conductor and corrosion resistant metal [4-6]. In Pakistan three main types of rocks like ...

  17. Characterization of Fe -doped silver phosphate glasses

    Indian Academy of Sciences (India)

    Silver-ion- conducting glasses (superionic solids) exhibit high electrical conductivity and therefore they are attractive as electrolytes for all-solid-state batteries or microbatteries operating at ambient temperature [4–6]. Recently, we used BaO/SrO as dopants in silver phosphate glass and studied various prop- erties [7,8].

  18. Biological and electrical properties of biosynthesized silver

    Indian Academy of Sciences (India)

    Biological and electrical properties of biosynthesized silver nanoparticles. Madhulika ... Abstract. In this work, silver nanoparticles (AgNPs) were synthesized biochemically at room temperature using aqueous extract of rhizome of Rheum australe plant. ... The obtained results may have potential applications as sensors.

  19. Biosynthesis of silver nanoparticles synthesized by Aspergillus ...

    Indian Academy of Sciences (India)

    In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic activities were investigated. Silver nanoparticles were extracellularly synthesized using Aspergillus flavus and the formation of nanoparticles was observed after 72 h of incubation. The results recorded from colour ...

  20. Medium-induced change of the optical response of metal clusters in rare-gas matrices

    Science.gov (United States)

    Xuan, Fengyuan; Guet, Claude

    2017-10-01

    Interaction with the surrounding medium modifies the optical response of embedded metal clusters. For clusters from about ten to a few hundreds of silver atoms, embedded in rare-gas matrices, we study the environment effect within the matrix random phase approximation with exact exchange (RPAE) quantum approach, which has proved successful for free silver clusters. The polarizable surrounding medium screens the residual two-body RPAE interaction, adds a polarization term to the one-body potential, and shifts the vacuum energy of the active delocalized valence electrons. Within this model, we calculate the dipole oscillator strength distribution for Ag clusters embedded in helium droplets, neon, argon, krypton, and xenon matrices. The main contribution to the dipole surface plasmon red shift originates from the rare-gas polarization screening of the two-body interaction. The large size limit of the dipole surface plasmon agrees well with the classical prediction.

  1. Effect of silver nitrate concentration of silver nanowires synthesized using a polyol method and their application as transparent conductive films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jian-Yang [Department of Electronic Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan (China); Hsueh, Yu-Lee [Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Yunlin 640, Taiwan (China); Huang, Jung-Jie, E-mail: jjhuang@mail.dyu.edu.tw [Department of Industrial Engineering and Management, DaYeh University, Changhua 51591, Taiwan (China); Wu, Jia-Rung [Department of Computer Science and Information Engineering, Asia University, Taichung 413, Taiwan (China)

    2015-06-01

    Silver nanowires were synthesized using a polyol process by employing ethylene glycol, poly(N-vinylpyrrolidone), and silver nitrate as precursors. The concentration of silver nitrate was varied to study the resulting changes in aspect ratios of silver nanowires. The experimental results indicated that the growth characteristics of silver nanowires were affected by the synthesis temperature, the concentration of silver nitrate, and the rate at which silver nitrate was added. Field-emission scanning electron microscopy, UV–visible spectrophotometry, and X-ray diffractometry were employed to characterize the silver nanowires. As the concentration of silver nitrate was reduced, the diameters of the silver nanowires decreased, increasing the aspect ratio. The optimal diameter and length of the silver nanowires were 100 nm and 20 μm, respectively. A thin film composed of silver nanowires exhibited average transmittance of 92.15% at visible wavelengths and a sheet resistance of 20 Ω/sq; such a film could be used as a transparent conductive film in commercial applications. - Highlights: • Using a polyol method to synthesize of silver nanowire • Concentration effect of silver nitrate on the synthesis was discussed. • Seed precursors are not used during the silver nanowire synthesizing. • The silver nanowire diameter and length were 100 nm and 20 μm, respectively. • High transmittance and low sheet resistance of silver nanowire film can be obtained.

  2. Structures and physical properties of gaseous metal cationized biological ions.

    Science.gov (United States)

    Burt, Michael B; Fridgen, Travis D

    2012-01-01

    Metal chelation can alter the activity of free biomolecules by modifying their structures or stabilizing higher energy tautomers. In recent years, mass spectrometric techniques have been used to investigate the effects of metal complexation with proteins, nucleobases and nucleotides, where small conformational changes can have significant physiological consequences. In particular, infrared multiple photon dissociation spectroscopy has emerged as an important tool for determining the structure and reactivity of gas-phase ions. Unlike other mass spectrometric approaches, this method is able to directly resolve structural isomers using characteristic vibrational signatures. Other activation and dissociation methods, such as blackbody infrared radiative dissociation or collision-induced dissociation can also reveal information about the thermochemistry and dissociative pathways of these biological ions. This information can then be used to provide information about the structures of the ionic complexes under study. In this article, we review the use of gas-phase techniques in characterizing metal-bound biomolecules. Particular attention will be given to our own contributions, which detail the ability of metal cations to disrupt nucleobase pairs, direct the self-assembly of nucleobase clusters and stabilize non-canonical isomers of amino acids.

  3. Synthesis of silver nanoparticle and its application.

    Science.gov (United States)

    Pandian, A Muthu Kumara; Karthikeyan, C; Rajasimman, M; Dinesh, M G

    2015-11-01

    In this work, silver nanoparticles have been synthesized by wet chemical technique, green synthesis and microbial methods. Silver nitrate (10(-3)M) was used with aqueous extract to produce silver nanoparticles. From the results it was observed that the yield of nanoparticles was high in green synthesis. The size of the silver nanoparticles was determined from Scanning Electron Microscope analysis (SEM). Fourier Transform Infrared spectroscopy (FTIR) was carried out to determine the presence of biomolecules in them. Its cytotoxic effect was studied in cancerous cell line and normal cell line. MTT assay was done to test its optimal concentration and efficacy which gives valuable information for the use of silver nanoparticles for future cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. One-Pot Silver Nanoring Synthesis

    Directory of Open Access Journals (Sweden)

    Drogat Nicolas

    2009-01-01

    Full Text Available Abstract Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.

  5. Synthesis of battery grade reduced silver powder

    International Nuclear Information System (INIS)

    Qadeer, R.; Hameed, M.; Ikram, S.; Munir, A.

    2002-01-01

    Process for production of battery grade reduced silver powder, an active positive material for zinc-silver oxide batteries, having specific characteristics has been optimized and the synthesized reduced silver powder was characterized. Results reveal that the values of bulk density (1.25 0.1 g/cm3) and activity (73.27 %) of synthesized reduced silver powder lies within the recommended range for use as battery material. It has purity ≥ 98% and contains Fe and Cu as traces in the concentration range of 30 5 ppm and 15 7 ppm respectively. Others determined values of surface and pores parameters are: surface area 2.6 .4 m2/g: pore volume 3.10 cm3/g: pore diameter 0.043 mu m and porosity 20%. XRD studies reveal that reduced silver powder has a cubic structure. (author)

  6. Silver manganese oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  7. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    Energy Technology Data Exchange (ETDEWEB)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K. [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States); MacCuspie, Robert I. [National Institute of Standards and Technology (NIST), Materials Measurement Science Division (United States); Jeerage, Kavita M., E-mail: jeerage@boulder.nist.gov [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States)

    2015-07-15

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  8. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    International Nuclear Information System (INIS)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K.; MacCuspie, Robert I.; Jeerage, Kavita M.

    2015-01-01

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  9. Antimicrobial and cytotoxicity effect of silver nanoparticle synthesized by Croton bonplandianum Baill. leaves

    Directory of Open Access Journals (Sweden)

    K. Khanra

    2016-01-01

    Full Text Available Objective(s: For the development of reliable, ecofriendly, less expensive process for the synthesis of silver nanoparticles and to evaluate the bactericidal, and cytotoxicity properties of silver nanoparticles synthesized from root extract of Croton bonplandianum, Baill. Materials and Methods: The synthesis of silver nanoparticles by plant part of Croton bonplandianum was carried out.  The formation of nanoparticles was confirmed by Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, XRD and UV-Vis spectrophotometric analysis.  The biochemical properties were assayed by antibacterial study, cytotoxicity assay using cancer cell line.  Results: The formation of silver nanoparticles was confirmed by UV-VIS spectroscopic analysis which showed absorbance peak at 425 nm.  X-ray diffraction photograph indicated the face centered cubic structure of the synthesized AgNPs.  TEM has displayed the different dimensional images of biogenic silver nanoparticles with particle size distribution ranging from 15-40 nm with an average size of 32 nm. Silver particles are spherical in shape, clustered.  The EDX analysis was used to identify the elemental composition of synthesized AgNPs. Antibacterial activity of the synthesized AgNPs against three Gram positive and Gram negative bacteria strains like Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa carried out showed significant zones of inhibition. The cytotoxicity study by AgNPS also showed cytotoxicity on ovarian cancer cell line PA-1 and lung epithelial cancer cell line A549.  Conclusion: The present study confirms that the AgNPs have great promise as antibacterial, and anticancer agent.

  10. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    Science.gov (United States)

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  11. Corrosion processes of triangular silver nanoparticles compared to bulk silver

    Energy Technology Data Exchange (ETDEWEB)

    Keast, V. J., E-mail: vicki.keast@newcastle.edu.au; Myles, T. A. [University of Newcastle, School of Mathematical and Physical Sciences (Australia); Shahcheraghi, N.; Cortie, M. B. [University of Technology Sydney, Institute for Nanoscale Technology (Australia)

    2016-02-15

    Excessive corrosion of silver nanoparticles is a significant impediment to their use in a variety of potential applications in the biosensing, plasmonic and antimicrobial fields. Here we examine the environmental degradation of triangular silver nanoparticles (AgNP) in laboratory air. In the early stages of corrosion, transmission electron microscopy shows that dissolution of the single-crystal, triangular, AgNP (side lengths 50–120 nm) is observed with the accompanying formation of smaller, polycrystalline Ag particles nearby. The new particles are then observed to corrode to Ag{sub 2}S and after 21 days nearly full corrosion has occurred, but some with minor Ag inclusions remaining. In contrast, a bulk Ag sheet, studied in cross section, showed an adherent corrosion layer of only around 20–50 nm in thickness after over a decade of being exposed to ambient air. The results have implications for antibacterial properties and ecotoxicology of AgNP during corrosion as the dissolution and reformation of Ag particles during corrosion will likely be accompanied by the release of Ag{sup +} ions.

  12. Analysis of ancient silver coins

    International Nuclear Information System (INIS)

    Flament, Christophe; Marchetti, Patrick

    2004-01-01

    Writing from the numismatist point of view, the authors open this paper by reviewing critically the use of scientific methods for the studies of ancient coins. They also report about an application of the PIXE method at low incident proton energy to one of the most celebrated and known coinage in the ancient history: the Athenian silver coins of the fifth century BC. The results of those analyses indicate that the metallic composition of several coins usually taken as ancient imitations of Athenian coins does not differ from that of the genuine ones. Those analyses confirm what the authors have inferred from numismatic sources: These coins are probably genuinely Athenian

  13. Electrochemical solid-phase microextraction of anions and cations using polypyrrole coatings and an integrated three-electrode device.

    Science.gov (United States)

    Liljegren, Gustav; Pettersson, Jean; Markides, Karin E; Nyholm, Leif

    2002-05-01

    A method for the extraction, transfer and desorption of anions and cations under controlled potential conditions employing a new integrated three-electrode device is described. The device, containing working, reference and counter electrodes, was prepared from tubes that could be moved vertically with respect to each other. In this way, a small amount of solvent, held by capillary force, remained between the electrodes when the device was lifted out of a solution after an extraction. This design allowed the potential control to be maintained at all times. With the new integrated device, it was possible to perform potential controlled desorption into vials containing as little as 200 microl of solution. The required ion exchange capacity was obtained by electrodeposition of a polypyrrole coating on the surface of the glassy carbon working electrode. Solid-phase microextractions of several cations or anions were performed simultaneously under potentiostatic control by doping the polypyrrole coating with different anions such as perchlorate and p-toluenesulfonate. The efficiency of the extractions, which could be altered by varying the potential of the working electrode, could be increased by 150 to 200% compared to extractions using normal solid-phase microextraction conditions under open circuit conditions. A constant potential of +1.0 V and -0.5 V with respect to the silver pseudo reference electrode, was found to be well-suited for the extraction of samples containing ppm concentrations of anions (chloride, nitrite, bromide, nitrate, sulfate and phosphate) and cations (cadmium, cobalt and zinc), respectively.

  14. Nanopackaging of Silver using Spice Extract and their ...

    African Journals Online (AJOL)

    The aim of the present study was to synthesize silver nanoparticles using spice extracts as reducing agents and further evaluate their anti-microbial activities. Silver has been shown to possess antimicrobial activity. The silver nanoparticles were prepared by solvent evaporation method. The silver nanoparticles were ...

  15. Mycosynthesis of Silver Nanoparticles from Candida albicans and its ...

    African Journals Online (AJOL)

    Purpose: To produce and characterize silver nanoparticles using Candida albicans and evaluate its antibacterial properties. Methods: Extracellular silver nanoparticles were biosynthesized using C. albicans. The biomass obtained from cultures of C. albicans was used to synthesize silver nanoparticles in 1.5 mM silver ...

  16. Silver Uptake and Reuse of Biomass by Saccharomyces cerevisiae ...

    African Journals Online (AJOL)

    Studies were carried out on the recovery of bound silver and reuse of Chlorella emersonii and Saccharomyces cerevisiae biomass for further silver uptake after they were placed in contact with 20mg/l silver for 30 minutes to allow for maximum binding. It was found that 0.16M nitric acid gave the best recovery rates of silver.

  17. Suitsetamisega võitlemisel ei aita inimeste kiusamine / Silver Meikar

    Index Scriptorium Estoniae

    Meikar, Silver, 1978-

    2004-01-01

    Suitsetamise vastu võitlemisel ei tohiks kasutada rangelt seadusi vaid võimaldada soodsalt osta suitsetamisvastaseid vahendeid, leiab autor. Vt. ka: Silver Meikar: Olen valmis hoidma Eesti edu; Silver Meikar saatis lugejakirja Saksamaa päevalehtedele; Arvamusi Silver Meikarist; Silver Meikar loobus paberkandjale trükitud seaduseelnõudest

  18. 21 CFR 872.3840 - Endodontic silver point.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Endodontic silver point. 872.3840 Section 872.3840...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3840 Endodontic silver point. (a) Identification. An endodontic silver point is a device made of silver intended for use during endodontic therapy to...

  19. Green synthesis of silver nanoparticles from leaf extracts of ...

    African Journals Online (AJOL)

    In this work, metallic silver nanoparticles were synthesized from leaf extracts of Parquetina nigrescens and Synedrella nodiflora. Silver ion was reduced to metallic silver on treatment of AgNO solution with aqueous extracts of the 3 two plants within 30minutes. The effects of time and the volume of extract to silver salt solution ...

  20. Laser Treatment of Cotton Fabric for Durable Antibacterial Properties of Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shirin Nourbakhsh

    2012-07-01

    Full Text Available In the present study, cotton fabric was exposed to laser exposure at different energy levels and then the silver nanoparticles were coated on untreated and laser treated cotton fabrics. Methylene blue dye was used to detect the presence of carboxylic acid groups (-COO on laser treated cotton and the dye absorption results were determined spectrophotometrically. ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy analysis and antibacterial tests were carried out to investigate the silver ion content and bactericidal properties of silver nanoparticles on cotton fabrics. Infrared spectroscopy (FTIR/ATR analysis and scanning electron microscopy (SEM were used to identify chemical changes and to study the morphology of the surface of the fibers. EDAX (Energy Dispersive X-ray Spectroscopy analysis was calculated for SEM micrographs. The results showed according to the higher uptake of methylene blue dye that the negative charge of the carboxylic acid groups had been created by laser treatment. Although the FTIR spectroscopy results did not show an increase in carboxylic acid groups, the cationic dye absorption increased. The durability of the Ag+ ion particles on repeated laundered laser treated cotton was proven by antibacterial and ICP tests, particularly when the laser energy was increased.

  1. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi, E-mail: yangdz@mail.buct.edu.cn

    2015-06-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO{sub 3} aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20–30 nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50 wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. - Highlights: • Silver mirror reaction was used to prepare nanofibers loaded with silver nanoparticles. • The SAED patterns demonstrated the monocrystallinity of silver nanocrystals. • The XRD results showed nanoparticles tended to be face-centered cubic single silver. • The material showed excellent antimicrobial activities against bacteria and fungi.

  2. Alternative Silver Production by Environmental Sound Processing of a Sulfo Salt Silver Mineral Found in Bolivia

    Directory of Open Access Journals (Sweden)

    Alexander Birich

    2018-02-01

    Full Text Available Very often, the production of silver causes devastating environmental issues, because of the use of toxic reagents like cyanide and mercury. Due to severe environmental damage caused by humans in the last decades, the social awareness regarding the sustainable production processes is on the rise. Terms like “sustainable” and “green” in product descriptions are becoming more and more popular and producers are forced to satisfy the rising environmental awareness of their customers. Within this work, an alternative environmental sound silver recovery process was developed for a vein type silver ore from Mina Porka, Bolivia. A foregoing characterization of the input material reveals its mineral composition. In the following mineral processing, around 92.9% silver was concentrated by separating 59.5 wt. % of non-silver minerals. Nitric acid leaching of the generated concentrate enabled a silver recovery of up to 98%. The dissolved silver was then separated via copper cementation to generate a metallic silver product of >99% purity. Summarizing all process steps, a silver yield of 87% was achieved in lab scale. A final upscaling trial was conducted to prove the process’ robustness. Within this trial, almost 4 kg of metallic silver with a purity of higher than 99.5 wt. % was produced.

  3. Presence of nanoparticles in wash water from conventional silver and nano-silver textiles.

    Science.gov (United States)

    Mitrano, Denise M; Rimmele, Elisa; Wichser, Adrian; Erni, Rolf; Height, Murray; Nowack, Bernd

    2014-07-22

    Questions about how to regulate nanoenhanced products regularly arise as researchers determine possible nanoparticle transformation(s). Focusing concern on the incorporation and subsequent release of nano-Ag in fabrics often overshadows the fact that many "conventional silver" antimicrobials such as ionic silver, AgCl, metallic Ag, and other forms will also form different species of silver. In this study we used a laboratory washing machine to simulate the household laundering of a number of textiles prepared with known conventional Ag or nano-Ag treatments and a commercially available fabric incorporating yarns coated with bulk metallic Ag. Serial filtration allowed for quantification of total Ag released in various size fractions (>0.45 μm, textiles, regardless of whether the treatment is "conventional" or "nano", can be a source of silver nanoparticles in washing solution when laundering fabrics. Indeed, in this study we observed that textiles treated with "conventional" silver have equal or greater propensity to form nano-silver particles during washing conditions than those treated with "nano"-silver. This fact needs to be strongly considered when addressing the risks of nano-silver and emphasizes that regulatory assessment of nano-silver warrants a similar approach to conventional silver.

  4. Diversity among galaxy clusters

    International Nuclear Information System (INIS)

    Struble, M.F.; Rood, H.J.

    1988-01-01

    The classification of galaxy clusters is discussed. Consideration is given to the classification scheme of Abell (1950's), Zwicky (1950's), Morgan, Matthews, and Schmidt (1964), and Morgan-Bautz (1970). Galaxies can be classified based on morphology, chemical composition, spatial distribution, and motion. The correlation between a galaxy's environment and morphology is examined. The classification scheme of Rood-Sastry (1971), which is based on clusters's morphology and galaxy population, is described. The six types of clusters they define include: (1) a cD-cluster dominated by a single large galaxy, (2) a cluster dominated by a binary, (3) a core-halo cluster, (4) a cluster dominated by several bright galaxies, (5) a cluster appearing flattened, and (6) an irregularly shaped cluster. Attention is also given to the evolution of cluster structures, which is related to initial density and cluster motion

  5. Copper-silver ionization at a US hospital: Interaction of treated drinking water with plumbing materials, aesthetics and other considerations.

    Science.gov (United States)

    Triantafyllidou, Simoni; Lytle, Darren; Muhlen, Christy; Swertfeger, Jeff

    2016-10-01

    Tap water sampling and surface analysis of copper pipe/bathroom porcelain were performed to explore the fate of copper and silver during the first nine months of copper-silver ionization (CSI) applied to cold and hot water at a hospital in Cincinnati, Ohio. Ions dosed by CSI into the water at its point of entry to the hospital were inadvertently removed from hot water by a cation-exchange softener in one building (average removal of 72% copper and 51% silver). Copper at the tap was replenished from corrosion of the building's copper pipes but was typically unable to reach 200 μg/L in first-draw and flushed hot and cold water samples. Cold water lines had >20 μg/L silver at most of the taps that were sampled, which further increased after flushing. However, silver plating onto copper pipe surfaces (in the cold water line but particularly in the hot water line) prevented reaching 20 μg/L silver in cold and/or hot water of some taps. Aesthetically displeasing purple/grey stains in bathroom porcelain were attributed to chlorargyrite [AgCl(s)], an insoluble precipitate that formed when CSI-dosed Ag(+) ions combined with Cl(-) ions that were present in the incoming water. Overall, CSI aims to control Legionella bacteria in drinking water, but plumbing material interactions, aesthetics and other implications also deserve consideration to holistically evaluate in-building drinking water disinfection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Preparation and stability of silver/kerosene nanofluids.

    Science.gov (United States)

    Li, Dan; Fang, Wenjun

    2012-07-02

    A series of silver nanoparticles surface-coated with di-n-dodecyldithiophosphate, di-n-cetyldithiophosphate, or di-n-octadecyldithiophosphate have been prepared and have good dispersity in alkanes or kerosene. Stable silver nanofluids can be formed in alkanes or kerosene with the surface-coated silver nanoparticles. Thermal stability of the silver nanofluids has been measured at different temperatures. The effects of the silver nanoparticles on the thermal oxidation of kerosene have been investigated at different temperatures. The coatings can be released from the surface of the silver nanoparticles above 150°C, giving oxygen access to the silver core and inhibiting the kerosene oxidized by oxygen.

  7. Mechanisms of Atmospherically Relevant Cluster Growth.

    Science.gov (United States)

    Bzdek, Bryan R; DePalma, Joseph W; Johnston, Murray V

    2017-08-15

    cluster growth involving sulfuric acid, ammonia, amines, and water. Charged or uncharged, cluster growth occurs primarily through an ammonium (or aminium) bisulfate coordinate. In these clusters, proton transfer is maximized between acids and bases to produce cations (ammonium, aminium) and anions (bisulfate), whereas additional molecules (water and unneutralized sulfuric acid) remain un-ionized. Experimental measurements suggest the growth of positively charged clusters occurs by successive acidification and neutralization steps. The acidification step is nearly barrierless, whereas the neutralization step exhibits a significant activation barrier in the case of ammonia. Bases are also incorporated into these clusters by displacement of one base for another. Base displacement is barrierless on the cluster surface but not within the cluster core. The favorability of amines relative to ammonia in charged clusters is governed by the trade-off between gas phase basicity and binding energetics. Computational studies indicate that water has a relatively small effect on cluster energetics. In short, amines are effective at assisting the formation and initial growth of clusters but become less important as cluster size increases, especially when hydration is considered. More generally, this work shows how experiment and computation can provide important, complementary information to address problems of environmental interest.

  8. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  9. Complexes of natural carbohydrates with metal cations

    International Nuclear Information System (INIS)

    Alekseev, Yurii E; Garnovskii, Alexander D; Zhdanov, Yu A

    1998-01-01

    Data on the interaction of natural carbohydrates (mono-, oligo-, and poly-saccharides, amino sugars, and natural organic acids of carbohydrate origin) with metal cations are surveyed and described systematically. The structural diversity of carbohydrate metal complexes, caused by some specific features of carbohydrates as ligands, is demonstrated. The influence of complex formation on the chemical properties of carbohydrates is discussed. It is shown that the formation of metal complexes plays an important role in the configurational and conformational analysis of carbohydrates. The practical significance of the coordination interaction in the series of carbohydrate ligands is demonstrated. The bibliography includes 571 references.

  10. Homogeneous cation exchange membrane by radiation grafting

    International Nuclear Information System (INIS)

    Kolhe, Shailesh M.; G, Agathian; Ashok Kumar

    2001-01-01

    Preparation of a strong cation exchange membrane by radiation grafting of styrene on to polyethylene (LDPE) film by mutual irradiation technique in the presence of air followed by sulfonation is described. The grafting has been carried out in the presence of air and without any additive. Low dose rate has been seen to facilitate the grafting. Further higher the grafting percentage more is the exchange capacity. The addition of a swelling agent during the sulfonation helped in achieving the high exchange capacity. The TGA-MASS analysis confirmed the grafting and the sulfonation. (author)

  11. Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam

    International Nuclear Information System (INIS)

    Niry, M. D.; Khalesifard, H. R.; Mostafavi-Amjad, J.; Ahangary, A.; Azizian-Kalandaragh, Y.

    2012-01-01

    Formation and motion of the silver nanoparticles inside an ion-exchanged soda-lime glass in the presence of a focused high intensity continuous wave Ar + laser beam (intensity: 9.2 x 10 4 W/cm 2 ) have been studied in here. One-dimensional diffusion equation has been used to model the diffusion of the silver ions into the glass matrix, and a two-dimensional reverse diffusion model has been introduced to explain the motion of the silver clusters and their migration toward the glass surface in the presence of the laser beam. The results of the mentioned models were in agreement with our measurements on thickness of the ion-exchange layer by means of optical microscopy and recorded morphology of the glass surface around the laser beam axis by using a Mirau interferometer. SEM micrographs were used to extract the size distribution of the migrated silver particles over the glass surface.

  12. Bioimaging TOF-SIMS of tissues by gold ion bombardment of a silver-coated thin section.

    Science.gov (United States)

    Nygren, Håkan; Johansson, Bengt R; Malmberg, Per

    2004-12-01

    The imaging time-of-flight secondary-ion-mass-spectrometry (TOF-SIMS) method was utilized to address the problem of cholesterol localization in rat tissues. Rat kidneys were fixed, cryoprotected by sucrose, frozen, sectioned by cryoultramicrotomy, and dried at room temperature. The samples were either covered with a thin silver layer or analyzed uncovered in an imaging TOF-SIMS instrument equipped with an Au1-3(+)-source. The yield of desorbed secondary ions for some species was up to 600-fold higher after silver coating of the samples. Reference samples of cholesterol were silver-coated and analyzed by TOF-SIMS to define significant peaks, specific for cholesterol. Such peaks were found at m/z = 386 (C27H46O+), m/z = 493 (C27H46O107Ag+), m/z = 495 (C27H46O109Ag+), m/z = 879 (C54H92O2 107Ag+), and m/z = 881 (C54H92O2 109Ag+). The silver-cationized cholesterol (493 SIMS in the kidney sections and showed a high cholesterol content in the kidney glomeruli. A more diffuse distribution of cholesterol was also found over areas representing the cytoplasm or plasma membrane of the epithelial cells in the proximal tubules of rat kidney. Copyright 2005 Wiley-Liss, Inc.

  13. Nanostructured Antibacterial Silver Deposited on Polypropylene Nonwovens

    Science.gov (United States)

    Hong-Bo, Wang; Jin-Yan, Wang; Qu-Fu, Wei; Jian-Han, Hong; Xiao-Yan, Zhao

    Nanostructured silver films were deposited on polypropylene (PP) nonwovens by RF magnetron sputter coating to obtain the antibacterial properties. Shake flask test was used to evaluate the antibacterial properties of the materials. Atomic force microscope (AFM) was utilized to observe the surface morphology. Energy-dispersive X-ray (EDX) was also employed to analyze the surface elemental compositions. The antibacterial results indicated that the prolonged deposition time led to a significant improvement in antibacterial effect, and sputtering power and argon pressure did not show obvious effect on antibacterial performance. It is believed that the total amount of silver ions released from the silver coating was increased as the deposition time increased. AFM images and quantitative analysis of EDX, respectively revealed that increase in deposition time led to the increased coverage of silver film and the increased silver weight percentage per unit surface, which provided evidences for the increased release rate of silver ions from the coating. Moreover, it was found that the optimum silver coating thickness was about 3 nm, taking antibacterial effect and cost of production into account.

  14. Clustering of correlated networks

    OpenAIRE

    Dorogovtsev, S. N.

    2003-01-01

    We obtain the clustering coefficient, the degree-dependent local clustering, and the mean clustering of networks with arbitrary correlations between the degrees of the nearest-neighbor vertices. The resulting formulas allow one to determine the nature of the clustering of a network.

  15. Cluster knockout reactions

    Indian Academy of Sciences (India)

    2014-04-07

    Apr 7, 2014 ... Cluster knockout reactions are expected to reveal the amount of clustering (such as that of , d and even of heavier clusters such as 12C, 16O etc.) in the target nucleus. In simple terms, incident medium high-energy nuclear projectile interacts strongly with the cluster (present in the target nucleus) as if it ...

  16. What Makes Clusters Decline?

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    2015-01-01

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark. The longit...

  17. Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism.

    Science.gov (United States)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias

    2016-06-01

    We have analyzed the structure and bonding of gas-phase Cl-X and [HCl-X](+) complexes for X(+)= H(+), CH3 (+), Li(+), and Na(+), using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl(-) and HCl for the various cations. The Cl-X bond becomes longer and weaker along X(+) = H(+), CH3 (+), Li(+), and Na(+). Our main purpose is to understand the heterolytic bonding mechanism behind the intrinsic (i.e., in the absence of solvent) alkali metal cation affinities (AMCA) and how this compares with and differs from those of the proton affinity (PA) and methyl cation affinity (MCA). Our analyses are based on Kohn-Sham molecular orbital (KS-MO) theory in combination with a quantitative energy decomposition analysis (EDA) that pinpoints the importance of the different features in the bonding mechanism. Orbital overlap appears to play an important role in determining the trend in cation affinities.

  18. Comparison of bioconcentration of ionic silver and silver nanoparticles in zebrafish eleutheroembryos.

    Science.gov (United States)

    López-Serrano, A; Muñoz-Olivas, R; Sanz-Landaluze, J; Olasagasti, M; Rainieri, S; Cámara, C

    2014-08-01

    The production of silver nanoparticles has reached nowadays high levels. Bioconcentration studies, information on persistence and toxicity are fundamental to assess their global risk and thus necessary to establish legislations regarding their use. Previous studies on silver nanoparticle toxicity have determined a clear correlation between their chemical stability and toxicity. In this work, experimental conditions able to assure silver nanoparticles stability have been optimized. Then, zebrafish (Danio rerio) eleutheroembryos were exposed to ionic silver and to Ag NPs for comparison purposes. A protocol alternative to the OECD 305 technical guideline was used. To determine silver concentration in both the eleutheroembryos and the exposure media, an analytical method consisting in ultrasound assisted extraction, followed by inductively coupled plasma mass spectrometry and graphite furnace atomic absorption spectrometry, was developed. Then, bioconcentration factors were calculated. The results revealed that ionic silver was more accumulative for zebrafish eleutheroembryos than nanoparticles at the levels tested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Shape selectivity using ionic liquids for the preparation of silver and silver sulphide nanomaterials.

    Science.gov (United States)

    Patil, Amol B; Bhanage, Bhalchandra M

    2014-02-21

    Electrodeposition of silver and silver sulphide was carried out from two protic ionic liquids. A change of the anion moiety of ionic liquid was found to bring about significant changes in the morphology of the nanocrystalline silver and silver sulphide deposits obtained. Effects of various parameters like deposition overpotential, change of the substrate, deposition time, etc. on the particle size and shape were studied. It was found that a change of anions of the ionic liquid from acetate to nitrate results in a wide difference in the morphology of the deposits obtained. Acetate containing ionic liquids result in globular nanocrystalline deposits whereas nitrate containing ionic liquids result in flat plates or sheets of silver deposits. Similar results were obtained for silver sulphide nanocrystals.

  20. Electron beam induced cationic polymerization of epoxy resins. Dependence of Tg on conversion

    International Nuclear Information System (INIS)

    Degrand, H.; Cazaux, F.; Coqueret, X.

    2002-01-01

    Complete text of publication follows. The high-energy radiation curing of monomer blends polymerizing by a free radical or by a cationic mechanism receives increasing attention in the perspective of high performance composite materials. In the present work, we have focused our attention on epoxy formulations as models of the matrices polymerizing by a cationic mechanism that could be used in fiber-reinforced composites for aerospace applications. We have examined the progress of the electron beam (EB) induced polymerization of diglycidylether of bisphenol A (DGEBA) in the presence of a diaryliodonium salt (DAIS) by FTIR spectroscopy and by dynamic mechanical thermal analysis (DMA). The obtained results allow to draw the gradual increase of the temperature for the network thermomechanical transition (T a , associated with the glass transition temperature T g ) over a broad range of conversion (p) and reveal a peculiar behavior at high conversion. In this domain (p > 0.90), the material's T g is shown to decrease when conversion approaches unity. Moreover, the post-irradiation thermal treatment of the materials, that generally yields effective 'dark curing', appears to induce a decrease of T g , with an amplitude correlated with the amount of DAIS in the formulation. Owing to the particular nature of the propagating centers in cationic polymerisation, the thermal relaxation of ionic clusters trapped in the glassy matrix can be reasonably invoked as a possible cause for this behavior

  1. Host-guest interactions between octa acid and cations/nucleobases.

    Science.gov (United States)

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2018-01-30

    The nature of host-guest interaction in between octa acid cavitand (OA) and some representative cationic guests (Li + , Na + , K + , Be +2 , Mg +2 , Ca +2 , Li 3 O + , Na 3 O + , K 3 O + ) as well as heterocyclic moieties like [adenine (A), guanine (G), cytosine (C), thymine (T), uracil (U), and tetrathiafulvalene (TTF)] has been examined with the aid of density functional theory (DFT)-based computations. Thermochemical results indicate that all the guests bind with OA in a thermodynamically favorable fashion at 298.15 K temperature and one atmospheric pressure. OA exhibits high selectivity in binding the lighter cations/metal cluster cations as compared to the heavier congeners along each given series. Moreover, OA exhibits enhanced affinity as well as selectivity in binding A/G/TTF molecules as compared to C/T/U. Noncovalent interaction and energy decomposition analyses reveal that in addition to the van der Waals interaction, significant contribution from electrostatic as well as orbital interactions dictate the outcome in all the host-guest complexes. Time dependent DFT calculations have been carried out to assess the role of the guests in tuning the electronic properties as well as absorption spectrum of OA. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Preparation of glasses and glass ceramics of heavy metal oxides containing silver: optical, structural and electrochemical properties

    International Nuclear Information System (INIS)

    Bregadiolli, Bruna A.; Souza, Ernesto R.; Sigoli, Fernando A.; Caiut, Jose M.A.; Alencar, Monica A.S.; Benedetti, Assis V.; Nalin, Marcelo

    2012-01-01

    Silver containing heavy metal oxide glasses and glass ceramics of the system WO 3 -SbPO 4 -PbO-AgCl with different AgCl contents have been prepared and their thermal, structural and optical properties characterized. Glass ceramics containing metallic silver nanoparticles have been prepared by annealing glass samples at temperatures above the glass transition and analyzed by transmission electron microscopy and energy dispersive X-ray microanalysis. The presence of the metallic clusters has been also confirmed by the observation of a surface plasmon resonance band in the visible range. Cyclic voltammetric measurements indicated the presence of metallic silver into the glasses, even before to perform the thermal treatment. (author)

  3. Preparation of glasses and glass ceramics of heavy metal oxides containing silver: optical, structural and electrochemical properties

    Directory of Open Access Journals (Sweden)

    Bruna A. Bregadiolli

    2012-01-01

    Full Text Available Silver containing heavy metal oxide glasses and glass ceramics of the system WO3-SbPO4-PbO-AgCl with different AgCl contents have been prepared and their thermal, structural and optical properties characterized. Glass ceramics containing metallic silver nanoparticles have been prepared by annealing glass samples at temperatures above the glass transition and analyzed by transmission electron microscopy and energy dispersive X-ray microanalysis. The presence of the metallic clusters has been also confirmed by the observation of a surface plasmon resonance band in the visible range. Cyclic voltammetric measurements indicated the presence of metallic silver into the glasses, even before to perform the thermal treatment.

  4. Cationic Antimicrobial Polymers and Their Assemblies

    Science.gov (United States)

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  5. Cobalt 60 cation exchange with mexican clays

    International Nuclear Information System (INIS)

    Nava Galve, R.G.

    1993-01-01

    Mexican clays can be used to remove radioactive elements from contaminated aqueous solutions. Cation exchange experiments were performed with 60 Co radioactive solution. In the present work the effect of contact time on the sorption of Co 2+ was studied. The contact time in hydrated montmorillonite was from 5 to 120 minutes and in dehydrated montmorillonite 5 to 1400 minutes. The Co 2+ uptake value was, in hydrated montmorillonite, between 0.3 to 0.85 m eq/g and in dehydrated montmorillonite, between 0.6 to 1.40 m eq/g. The experiments were done in a pH 5.1 to 5.7 and normal conditions. XRD patterns were used to characterize the samples. The crystallinity was determined by X-ray Diffraction and it was maintained before and after the cation exchange. DTA thermo grams showed the temperatures of the lost humidity and crystallization water. Finally, was observed that dehydrated montmorillonite adsorb more cobalt than hydrated montmorillonite. (Author)

  6. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2013-05-01

    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  7. Silver Flakes and Silver Dendrites for Hybrid Electrically Conductive Adhesives with Enhanced Conductivity

    Science.gov (United States)

    Ma, Hongru; Li, Zhuo; Tian, Xun; Yan, Shaocun; Li, Zhe; Guo, Xuhong; Ma, Yanqing; Ma, Lei

    2018-03-01

    Silver dendrites were prepared by a facile replacement reaction between silver nitrate and zinc microparticles of 20 μm in size. The influence of reactant molar ratio, reaction solution volume, silver nitrate concentration, and reaction time on the morphology of dendrites was investigated systematically. It was found that uniform tree-like silver structures are synthesized under the optimal conditions. Their structure can be described as a trunk, symmetrical branches, and leaves, which length scales of 5-10, 1-2 μm, and 100-300 nm, respectively. All features were systematically characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and x-ray powder diffraction. A hybrid fillers system using silver flakes and dendrites as electrically conductive adhesives (ECAs) exhibited excellent overall performance. This good conductivity can be attributed mainly to the synergy between the silver microflakes (5-20 μm sized irregular sheet structures) and dendrites, allowing more conductive pathways to be formed between the fillers. In order to further optimize the overall electrical conductivity, various mixtures of silver microflakes and silver dendrites were tested in ECAs, with results indicating that the highest conductivity was shown when the amounts of silver microflakes, silver dendrites and the polymer matrix were 69.4 wt.% (20.82 vol.%), 0.6 wt.% (0.18 vol.%), and 30.0 wt.% (79.00 vol.%), respectively. The corresponding mass ratio of silver flakes to silver dendrites was 347:3. The resistivity of ECAs reached as low as 1.7 × 10-4 Ω cm.

  8. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Petala, M., E-mail: petala@civil.auth.gr [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Tsiridis, V. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Mintsouli, I. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Pliatsikas, N. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Spanos, Th. [Department of Petroleum and Mechanical Engineering Sciences, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 (Greece); Rebeyre, P. [ESA/ESTEC, P.O.Box 299, 2200 AG, Noordwijk (Netherlands); Darakas, E. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Patsalas, P.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece)

    2017-02-28

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  9. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    International Nuclear Information System (INIS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-01-01

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  10. Formation of silver microbelt structures by laser irradiation of silver nanoparticles in ethanol

    OpenAIRE

    Zamiri, Reza; Zakaria, Azmi; Husin, Mohd Shahril; Wahab, Zaidan Abd; Nazarpour, Forough Kalaei

    2011-01-01

    Reza Zamiri1, Azmi Zakaria1,2, Mohd Shahril Husin1, Zaidan Abd Wahab1, Forough Kalaei Nazarpour3 1Department of Physics, Faculty of Science, 2Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, 3Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Abstract: In the present work, we prepared silver nanoparticles by laser ablation of pure silver plate in ethanol and then irradiated the silver nanoparticles using a 532 nm Q-switched Nd:Y...

  11. Silver-Russell Syndrome: A Case Report

    Science.gov (United States)

    Kumar, Sunil; Jain, AP; Agrawal, Sachin; Chandran, Sindu

    2008-01-01

    A 15-year-old male boy with hemihypertrophy (left side) of the body was admitted in the hospital with the history of repeated attacks of convulsion. The patient was diagnosed as Silver-Russell syndrome on clinical ground. Silver-Russell syndrome (SRS) is a very rare genetic disorder that appears no later than early childhood. This is usually characterized by asymmetry in the size of the two halves or other parts of the body. Silver-Russell Syndrome occurs mostly in isolated cases because of sporadic genetic changes (mutations) for no apparent reason. For lack of facilities we were not able to do genetic study. PMID:18992170

  12. Clustering in analytical chemistry.

    Science.gov (United States)

    Drab, Klaudia; Daszykowski, Michal

    2014-01-01

    Data clustering plays an important role in the exploratory analysis of analytical data, and the use of clustering methods has been acknowledged in different fields of science. In this paper, principles of data clustering are presented with a direct focus on clustering of analytical data. The role of the clustering process in the analytical workflow is underlined, and its potential impact on the analytical workflow is emphasized.

  13. Noncovalent cation-π interactions – their role in nature

    Directory of Open Access Journals (Sweden)

    Krzysztof Fink

    2014-11-01

    Full Text Available Non-covalent interactions play an extremely important role in organisms. The main non-covalent interactions in nature are: ion-ion interactions, dipole-dipole interactions, hydrogen bonds, and van der Waals interactions. A new kind of intermolecular interactions – cation-π interactions – is gaining increasing attention. These interactions occur between a cation and a π system. The main contributors to cation-π interactions are electrostatic, polarization and, to a lesser extent, dispersion interactions. At first, cation-π interactions were studied in a gas phase, with metal cation–aromatic system complexes. The characteristics of these complexes are as follows: an increase of cation atomic number leads to a decrease of interaction energy, and an increase of cation charge leads to an increase of interaction energy. Aromatic amino acids bind with metal cations mainly through interactions with their main chain. Nevertheless, cation-π interaction with a hydrophobic side chain significantly enhances binding energy. In water solutions most cations preferentially interact with water molecules rather than aromatic systems. Cation-π interactions occur in environments with lower accessibility to a polar solvent. Cation-π interactions can have a stabilizing role on the secondary, tertiary and quaternary structure of proteins. These interactions play an important role in substrate or ligand binding sites in many proteins, which should be taken into consideration when the screening of effective inhibitors for these proteins is carried out. Cation-π interactions are abundant and play an important role in many biological processes.

  14. Stability and recovery of DNA origami structure with cation concentration

    Science.gov (United States)

    Chen, Yi; Wang, Ping; Liu, Yang; Liu, Ting; Xu, Yan; Zhu, Shanshan; Zhu, Jun; Ye, Kai; Huang, Guang; Dannong, He

    2018-01-01

    We synthesized triangular and rectangular DNA origami nanostructures and investigated the stability and recovery of them under low cation concentration. Our results demonstrated that the origami nanostructures would melt when incubated in low cation concentration, and recover whilst kept in the concentration for less than 10 min. However, extending the incubation time would lead to irreversible melting. Our results show the possibility of application of DNA origami nanostructures for things such as a sensor for cation concentration response, etc.

  15. Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method

    International Nuclear Information System (INIS)

    Tien, D.-C.; Tseng, K.-H.; Liao, C.-Y.; Huang, J.-C.; Tsung, T.-T.

    2008-01-01

    As a result of mankind's over-reliance on antibiotics, germs are becoming more drug-resistant every year. The gradual but inexorable decline in the efficacy of traditional antibiotics is forcing scientists and doctors to search for new weapons in the fight against germs. Metallic silver nanoparticle (Ag 0 ) and ionic silver (Ag + ) are the future of the post-antibiotic era, with the latter playing perhaps the central role in this fight. Using the arc discharge method (ADM), our research has allowed us to fabricate silver nanoparticle suspension (SNPS) in deionized water with no added surfactants. Most related research in this field is confined to explore the composition of nanoparticle, ignoring ions. However, we aim to identify and measure the proportion of ionic silver in ADM-SNPS, using conductivity meters, centrifuges, titrator, and atomic absorption spectrophotometer (AA). The results of our experiments show that SNPS fabricated by means of ADM with no added surfactants contains metallic silver nanoparticle and ionic silver. The fabrication consumes silver rods at a rate of 100 mg/min, yielding metallic silver nanoparticle and ionic silver with concentrations of approximately 11 ppm and 19 ppm, respectively

  16. Micro-CT imaging of denatured chitin by silver to explore honey bee and insect pathologies.

    Directory of Open Access Journals (Sweden)

    Peter R Butzloff

    Full Text Available BACKGROUND: Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term "denatured chitin" calls attention to structural and property changes to the internal membranes and external carapace of organisms so that some properties affecting biological activities are diminished. METHODOLOGY/PRINCIPAL FINDINGS: A case study was performed on honey bees using silver staining and microscopic computer-tomographic x-ray radiography (micro-CT. Silver nitrate formed counter-ion complexes with labile ammonium cations and reacted with amine hydrochloride. Silver was concentrated in the peritrophic membrane, on the abdomen, in the glossa, at intersegmental joints (tarsi, at wing attachments, and in tracheal air sacs. Imaged mono-esters and fatty acids from cuticle coating on external surfaces were apparently reduced by an alcohol pretreatment. CONCLUSIONS/SIGNIFICANCE: The technique provides 3-dimensional and sectional images of individual honey bees consistent with the chemistries of silver reaction and complex formation with denatured chitin. Environmental exposures and influences such as gaseous nitric oxide intercalant, trace oxidants such as ozone gas, oligosachharide salt conversion, exposure to acid rain, and chemical or biochemical denaturing by pesticides may be studied using this technique. Peritrophic membranes, which protect against food abrasion, microorganisms, and permit efficient digestion, were imaged. Apparent surface damage to the corneal lenses of compound eyes by dilute acid exposure consistent with chitin amine hydrochloride formation was imaged. The technique can contribute to existing insect pathology research, and may

  17. The formation of singly and doubly cationized oligomers in SIMS

    International Nuclear Information System (INIS)

    Delcorte, A.; Wojciechowski, I.; Gonze, X.; Garrison, B.J.; Bertrand, P.

    2003-01-01

    The cationization of sputtered organic species via metal particle adduction is investigated using poly-4-methylstyrene molecules in combination with Cu, Pd, Ag and Au substrates. Metal-cationization occurs for these four substrates. The cationized molecule yields vary with the considered substrate and they are not correlated with the metal ion yields. In addition, double cationization with two metal particles is observed with a very significant intensity for Cu, Ag and Au supports. We interpret the results with an emission scheme in which excited molecules and metal atoms recombine above the surface and decay via electron emission, thereby locking the complex in the ionic state

  18. Molecular crowding has no effect on the dilution thermodynamics of the biologically relevant cation mixtures.

    Science.gov (United States)

    Głogocka, Daria; Przybyło, Magdalena; Langner, Marek

    2017-04-01

    The ionic composition of intracellular space is rigorously maintained in the expense of high-energy expenditure. It has been recently postulated that the cytoplasmic ionic composition is optimized so the energy cost of the fluctuations of calcium ion concentration is minimized. Specifically, thermodynamic arguments have been produced to show that the presence of potassium ions at concentrations higher than 100 mM reduce extend of the energy dissipation required for the dilution of calcium cations. No such effect has been measured when sodium ions were present in the solution or when the other divalent cation magnesium was diluted. The experimental observation has been interpreted as the indication of the formation of ionic clusters composed of calcium, chloride and potassium. In order to test the possibility that such clusters may be preserved in biological space, the thermodynamics of ionic mixtures dilution in solutions containing albumins and model lipid bilayers have been measured. Obtained thermograms clearly demonstrate that the energetics of calcium/potassium mixture is qualitatively different from calcium/sodium mixture indicating that the presence of the biologically relevant quantities of proteins and membrane hydrophilic surfaces do not interfere with the properties of the intracellular aqueous phase.

  19. Effect of Chemical Stabilizers in Silver Nanoparticle Suspensions on Nanotoxicity

    International Nuclear Information System (INIS)

    Bae, Eun Joo; Park, Hee Jin; Park, Jun Su; Yoon, Je Yong; Yi, Jong Heop; Kim, Young Hun; Choi, Kyung Hee

    2011-01-01

    Colloidal silver nanoparticles (AgNPs) have been commercialized as the typically stabilized form via the addition of a variety of surfactants or polymers. Herein, to examine the effects of stabilizing AgNPs in suspension, we modified the surface of bare AgNPs with four type of surfactants (NaDDBS, SDS, TW80, CTAB) and polymers (PVP, PAA, PAH, CMC). The modified AgNPs was applied to compare suspension stability and nanotoxicity test using Escherichia coli (E. coli) as a model organism. Modification of AgNPs surface using chemical stabilizer may be not related with molecular weight, but chemical structure such as ionic state and functional group of stabilizer. In this study, it is noteworthy that AgNPs modified with a cationic stabilizer (CTAB, PAH) were importantly toxic to E. coli, rather than anionic stabilizers (NaDDBS, SDS). Comparing similar anionic stabilizer, i.e., NaDDBS and SDS, the result showed that lipophilicity of chemical structure can affect on E. coli, because NaDDBS, which contains a lipophilic benzene ring, accelerated the cytotoxicity of AgNPs. Interestingly, none of the stabilizers tested, including biocompatible nonionic stabilizers (i.e., TW80 and cellulose) caused a reduction in AgNP toxicity. This showed that toxicity of AgNPs cannot be reduced using stabilizers

  20. Effect of Chemical Stabilizers in Silver Nanoparticle Suspensions on Nanotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Eun Joo; Park, Hee Jin; Park, Jun Su; Yoon, Je Yong; Yi, Jong Heop [Seoul National University, Seoul (Korea, Republic of); Kim, Young Hun [Kwangwoon University, Seoul (Korea, Republic of); Choi, Kyung Hee [National Institute of Environmental Research, Incheon (Korea, Republic of)

    2011-02-15

    Colloidal silver nanoparticles (AgNPs) have been commercialized as the typically stabilized form via the addition of a variety of surfactants or polymers. Herein, to examine the effects of stabilizing AgNPs in suspension, we modified the surface of bare AgNPs with four type of surfactants (NaDDBS, SDS, TW80, CTAB) and polymers (PVP, PAA, PAH, CMC). The modified AgNPs was applied to compare suspension stability and nanotoxicity test using Escherichia coli (E. coli) as a model organism. Modification of AgNPs surface using chemical stabilizer may be not related with molecular weight, but chemical structure such as ionic state and functional group of stabilizer. In this study, it is noteworthy that AgNPs modified with a cationic stabilizer (CTAB, PAH) were importantly toxic to E. coli, rather than anionic stabilizers (NaDDBS, SDS). Comparing similar anionic stabilizer, i.e., NaDDBS and SDS, the result showed that lipophilicity of chemical structure can affect on E. coli, because NaDDBS, which contains a lipophilic benzene ring, accelerated the cytotoxicity of AgNPs. Interestingly, none of the stabilizers tested, including biocompatible nonionic stabilizers (i.e., TW80 and cellulose) caused a reduction in AgNP toxicity. This showed that toxicity of AgNPs cannot be reduced using stabilizers.

  1. Orange-red silver emitters for sensing application and bio-imaging.

    Science.gov (United States)

    Ganguly, Mainak; Jana, Jayasmita; Das, Bodhisatwa; Dhara, Santanu; Pal, Anjali; Pal, Tarasankar

    2015-07-07

    Highly fluorescent Au(I)@Ag particles (emission maximum at 635 nm) have been obtained from a mixture of AgNO3, HAuCl4 and glutathione. Au(I)@Ag particles containing Ag2 and Ag3 clusters are produced when the reaction mixture is subjected to a modified hydrothermolysis (MHT) reaction. The silver clusters make the solution intensely fluorescent and the Au(I) moiety provides long term stability to the silver clusters by withdrawing electron density from the silver clusters. The vacuum-dried aqueous fluorescent solution leaves a yellow solid that exhibits higher emissive properties when re-dispersed in non-aqueous solvents. Fluorescent Au(I)@Ag particles have been found to be cytocompatible and efficient candidates for live cell imaging. Addition of S(2-) ions selectively and successively quenches the fluorescence of Au(I)@Ag particles without any significant interference from common anions. Thus, sensitive detection of S(2-) is possible with the fluorescent Au(i)@Ag particles in water and water-miscible non-aqueous solvents. Furthermore, Pb(ii) induced fluorescence enhancement of the solution containing Au(I)@Ag particles has been used to enable S(2-) detection free from interference by S2O3(2-) and I(-). The possibility of naked eye detection of S(2-) is also an additional advantage of this method as an orange color solution is developed exclusively with the S(2-) ion. Fluorometric determination of S(2-) has been rationalized for real environmental samples.

  2. Investigating solvent effects on aggregation behaviour, linear and nonlinear optical properties of silver nanoclusters

    Science.gov (United States)

    Bhavitha, K. B.; Nair, Anju K.; Perumbilavil, Sreekanth; Joseph, Saju; Kala, M. S.; Saha, Abhijit; Narayanan, R. Aravinda; Hameed, Nishar; Thomas, Sabu; Oluwafemi, Oluwatobi S.; Kalarikkal, Nandakumar

    2017-11-01

    We herein report the solvent effects on the aggregation, linear and nonlinear optical properties of silver nanoclusters synthesised using three solvents namely; ethanol, acetone and isopropanol. The Ag clusters were characterized using UV-Visible (UV-vis) and photoluminescence (PL) spectroscopy, Fourier transform-infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), small angle X-ray scattering (SAXS), dynamic light scattering (DLS), and open aperture Z-Scan measurements. Density functional theory (DFT) calculations at the B3PW91 level of theory, were done to compute the electric dipole, quadrupole, octapole and hexadecapole moment of mercaptosuccinic acid and mercaptosuccinic acid-Ag9 cluster in three solvents. Linear optical properties show characteristic absorption profile with quantum confinement at different wavelengths for all the three clusters. The Open aperture Z-scan measurement in Ag clusters establishes the optical limiting properties which arise mostly from excited state absorption (ESA) and relatively weak saturable absorption (SA). The nonlinear optical behaviour varies within the three clusters with maximum optical limiting value obtained for the clusters synthesised using acetone. The theoretically computed hyperpolarizabilities together with z-scan measurements establish the solvent effect on the clusters and their potential applications in optical limiting devices.

  3. Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide.

    Directory of Open Access Journals (Sweden)

    Nancy L Martin

    Full Text Available Huwa-San peroxide (hydrogen peroxide; HSP is a NSF Standard 60 (maximum 8 mg/L(-1 new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP and sodium hypochlorite at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K(+ and divalent (Ca(+2 cations (0.005-0.05M reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent

  4. Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide.

    Science.gov (United States)

    Martin, Nancy L; Bass, Paul; Liss, Steven N

    2015-01-01

    Huwa-San peroxide (hydrogen peroxide; HSP) is a NSF Standard 60 (maximum 8 mg/L(-1)) new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT) relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP) and sodium hypochlorite) at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively) and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K(+)) and divalent (Ca(+2)) cations (0.005-0.05M) reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent concentrations of

  5. Structural and optical properties of Si-doped Ag clusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-03-06

    The structural and optical properties of AgN and Ag N-1Si1 (neutral, cationic, and anionic) clusters (N = 5 to 12) are systematically investigated using the density functional based tight binding method and time-dependent density functional theory, providing insight into recent experiments. The gap between the highest occupied and lowest unoccupied molecular orbitals and therefore the optical spectrum vary significantly under Si doping, which enables flexible tuning of the chemical and optical properties of Ag clusters. © 2014 American Chemical Society.

  6. Management of cluster headache

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer C; Jensen, Rigmor H

    2012-01-01

    The prevalence of cluster headache is 0.1% and cluster headache is often not diagnosed or misdiagnosed as migraine or sinusitis. In cluster headache there is often a considerable diagnostic delay - an average of 7 years in a population-based survey. Cluster headache is characterized by very severe...... or severe orbital or periorbital pain with a duration of 15-180 minutes. The cluster headache attacks are accompanied by characteristic associated unilateral symptoms such as tearing, nasal congestion and/or rhinorrhoea, eyelid oedema, miosis and/or ptosis. In addition, there is a sense of restlessness...... and agitation. Patients may have up to eight attacks per day. Episodic cluster headache (ECH) occurs in clusters of weeks to months duration, whereas chronic cluster headache (CCH) attacks occur for more than 1 year without remissions. Management of cluster headache is divided into acute attack treatment...

  7. Silver-hafnium braze alloy

    Science.gov (United States)

    Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.

    2003-12-16

    A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.

  8. Biological synthesis and characterization of silver nanoparticles ...

    Indian Academy of Sciences (India)

    Biological synthesis and characterization of silver nanoparticles using. Eclipta alba leaf extract and evaluation of its cytotoxic and antimicrobial potential. PARAMASIVAM PREMASUDHA1, MUDILI VENKATARAMANA2,∗, MARRIAPPAN ABIRAMI3,. PERIYASAMY VANATHI4, KADIRVELU KRISHNA2 and RAMASAMY ...

  9. Silver Biocide Analysis & Control Device, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Rapid, accurate measurement and process control of silver ion biocide concentrations in future space missions is needed. The purpose of the Phase I program is to...

  10. Electrolytic silver ion cell sterilizes water supply

    Science.gov (United States)

    Albright, C. F.; Gillerman, J. B.

    1968-01-01

    Electrolytic water sterilizer controls microbial contamination in manned spacecraft. Individual sterilizer cells are self-contained and require no external power or control. The sterilizer generates silver ions which do not impart an unpleasant taste to water.

  11. Large silver-cadmium technology program

    Science.gov (United States)

    Charlip, S.; Lerner, S.

    1971-01-01

    The effects of varying cell design on operation factors on the electrochemical performance of sealed, silver-cadmium cells were determined. A factorial experiment was conducted for all test cells constructed with organic separators. Three operating factors were evaluated: temperature, depth of discharge, and charge rate. The six construction factors considered were separator, absorber, electrolyte quantity, cadmium electrode type, cadmium-to-silver ratio, and auxiliary electrode. Test cells of 4 ampere-hour capacity were fabricated and cycled. The best performing cells, on a 94 minute orbit, at 40% depth of discharge, were those containing silver-treated fibrous sausage casings as the separator, and Teflon-ated, pressed cadmium electrodes. Cycling data of cells with inorganic separators (Astroset) are given. Best performance was shown by cells with nonwoven nylon absorbers. Rigid inorganic separators provided the best barrier to silver migration.

  12. Tartu on Eesti Boston / Silver Meikar

    Index Scriptorium Estoniae

    Meikar, Silver, 1978-

    2007-01-01

    Tartu eeldustest kujuneda hariduse, innovaatilise tootmise, pärimuskultuuri ja linnaruumi tasakaalustatud kasutamise südameks. Ettevõtluse, transpordi ja turismi arengust. Lisa: Silver Meikari Lõuna-Eesti edu top 10

  13. Low-Temperature Properties of Silver

    Science.gov (United States)

    Smith, David R.; Fickett, F. R.

    1995-01-01

    Pure silver is used extensively in the preparation of high-temperature superconductor wires, tapes, films, and other configurations in which the silver not only shields the superconducting material from the surrounding materials, but also provides a degree of flexibility and strain relief, as well as stabilization and low-resistance electrical contact. Silver is relatively expensive, but at this stage of superconductor development, its unique combination of properties seems to offer the only reasonable means of achieving usable lengths of conductor. In this role, the low-temperature physical (electrical, thermal, magnetic, optical) and mechanical properties of the silver all become important. Here we present a collection of properties data extracted from the cryogenic literature and, to the extent possible, selected for reliability. PMID:29151733

  14. Silver behaviour in InSb

    International Nuclear Information System (INIS)

    Khlystovskaya, M.D.; Kirichenko, L.S.; Popkov, A.N.; Kiseleva, E.V.

    1976-01-01

    Specimens of InSb, alloyed with silver at concentrations of 2.4x10 14 to 1.1x10 15 cm -3 , have been obtained and investigated. The distribution of Ag along the length of ingots was studied. The effective coefficient of silver distribution in InSb was found to be equal to 5.7x10 -6 . The limit solubility of silver was evaluated by the disturbance of the smooth front of solidification and the appearance of cubstructures and second phases on polished sections, said solubility corresponds to the concentration of approximately 1x10 15 cm -3 of silver. The properties of InSb, alloyed with Ag with various degrees of compensation by residual donors and tellurium were investigated. It was found that in the p-n junction range the specific resistance of specimens rises to 2.3x10 3 Ohm.cm

  15. Silver Biocide Analysis & Control Device, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Rapid, accurate measurement and process control of silver ion biocide concentrations in future space missions is needed. The purpose of the Phase II program is to...

  16. Silver nanowires - unique templates for functional nanostructures

    Science.gov (United States)

    Sun, Yugang

    2010-09-01

    This feature article reviews the synthesis and application of silver nanowires with the focus on a polyol process that is capable of producing high quality silver nanowires with high yield. The as-synthesized silver nanowires can be used as both physical templates for the synthesis of metal/dielectric core/shell nanowires and chemical templates for the synthesis of metal nanotubes as well as semiconductor nanowires. Typical examples including Ag/SiO2 coaxial nanocables, single- and multiple-walled nanotubes made of Au-Ag alloy, AgCl nanowires and AgCl/Au core/shell nanowires are discussed in detail to illustrate the versatility of nanostructures derived from silver nanowire templates. Novel properties associated with these one-dimensional nanostructures are also briefly discussed to shed the light on their potential applications in electronics, photonics, optoelectronics, catalysis, and medicine.

  17. Alternative Plasmonic Materials: Beyond Gold and Silver

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Shalaev, Vladimir M.; Boltasseva, Alexandra

    2013-01-01

    such as gold and silver, that exhibit metallic properties and provide advantages in device performance, design flexibility, fabrication, integration, and tunability. This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors, transparent...

  18. Silver nasal sprays: misleading Internet marketing.

    Science.gov (United States)

    Gaslin, Michael T; Rubin, Cory; Pribitkin, Edmund A

    2008-04-01

    Long-term use of silver-containing products is associated with a permanent bluish-gray discoloration of the skin known as argyria, but they remain widely available despite several measures by the FDA to regulate them. Several recent case reports have described the occurrence of argyria as a result of using these "natural" products. We used the five most common Internet search engines to find Web sites providing information on silver-containing nasal sprays. Of 49 Web sites analyzed, only 2 (4%) mentioned argyria as a possible complication, although 30 (61%) did caution against long-term use. Eight sites (16%) made specific claims about the health benefits of the product. All 49 sites (100%) provided direct or indirect links to buy silver-containing nasal sprays. We conclude that information about silver-containing nasal sprays on the Internet is misleading and inaccurate. Therefore, otolaryngologists should be aware of the misinformation their patients may be receiving about these products.

  19. Green synthesis of silver nanoparticles using tannins

    Science.gov (United States)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  20. In situ SU-8 silver nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Søren Vang; Uthuppu, Basil; Jakobsen, Mogens Havsteen

    2015-01-01

    Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution...... to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post...... silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5 mu m is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concentration. The fabricated silver nanocomposites...