WorldWideScience

Sample records for cationic silver clusters

  1. Latent image generation by soft landing of size-selected silver cluster cations

    International Nuclear Information System (INIS)

    We investigate the role of silver clusters in the photographic latent image generation. Silver cluster cations were produced in a sputtering arrangement, mass selected by a quadrupole mass filter and deposited with a well controlled kinetic energy onto photographic silver bromide crystals. The fraction of developed crystals after exposure of the samples to photographic developer was measured as a function of the size of the deposited clusters, the cluster coverage, the kinetic energy of the clusters, and the redox-potential of the developer. Development was observed after deposition of Ag4+ or larger aggregates, and, to a much lower extend, after deposition of the trimer. Silver monomers and dimers showed no photographic effect. Our data confirm that silver clusters above a critical size, which depends on the redox-potential of the developer, form the latent image in photography. (author)

  2. Pulsed EPR for studying silver clusters

    Science.gov (United States)

    Michalik, J.; Wasowicz, T.; Sadlo, J.; Reijerse, E. J.; Kevan, L.

    1996-01-01

    The cationic silver clusters of different nuclearity have been produced by radiolysis of zeolite A and SAPO molecular sieves containing Ag + as exchangeable cations. The pulsed EPR spectroscopy has been applied for studying the local environment of silver cluster in order to understand the mechanism of cluster formation and stabilization. The electron spin echo modulation (ESEM) results on Ag 6n+ cluster in dehydration zeolite A indicate that the hexameric silver is stabilized only in sodalite cages which are surrounded by α-cages containing no water molecules. Trimeric silver clusters formed in hydrated A zeolites strongly interact with water, thus the paramagnetic center can be considered as a cluster-water adduct. In SAPO-molecular sieves, silver clusters are formed only in the presence of adsorbed alcohol molecules. From ESEM it is determined that Ag 4n+ in SAPO-42 is stabilized in α-cages, where it is directly coordinated by two methanol molecules. Dimeric silver, Ag 2+ in SAPO-5 and SAPO-11 is located in 6-ring channels and interacts with three CH 3OH molecules, each in different 10-ring or 12-ring channels. The differences of Ag 2+ stability in SAPO-5 and SAPO-11 are also discussed.

  3. Pulsed EPR for studying silver clusters

    International Nuclear Information System (INIS)

    The cationic silver clusters of different nuclearity have been produced by radiolysis of zeolite A and SAPO molecular sieves containing Ag+ as exchangeable cations. The pulsed EPR spectroscopy has been applied for studying the local environment of silver cluster in order to understand the mechanism of cluster formation and stabilization. the electron spin echo modulation (ESEM) results on Ag6n+ cluster in dehydration zeolite A indicate that the hexameric silver is stabilized only in sodalite cages which are surrounded by α-cages containing no water molecules. Trimeric silver clusters formed in hydrated A zeolites strongly interact with water, thus the paramagnetic center can be considered as a cluster-water adduct. In SAPO-molecular sieves, silver clusters are formed only in the presence of adsorbed alcohol molecules. From ESEM it is determined that Ag4n+ in SAPO-42 is stabilized in α cages, where it is directly coordinated by two methanol molecules. Dimeric silver, Ag2+ in SAPO-5 and SAPO-11 is located in 6-ring channels and interacts with three CH3OH molecules, each in different 10 ring or 12 ring channels. The differences of Ag2+ stability in SAPO-5 and SAPO-11 are also discussed. (Author)

  4. Plasmon enhanced silver quantum cluster fluorescence for biochemical applications

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, J.P.; Mogensen, Klaus Bo

    2014-01-01

    Fluorescence microscopy of individual silver quantum clusters on the surface of silver nanoparticles reveals strong photoactivated emission under blue light excitation [1-4]. In this work, silver nanoparticles are produced by annealing silver thin films deposited on a glass substrate and silver q...... purposes. It was found, that in presence of a strong nucleophile (such as CN-), silver quantum clusters are dissolved into non-fluorescing AgCN complexes, resulting in a fast and observable decrease of the fluorescent signal.......Fluorescence microscopy of individual silver quantum clusters on the surface of silver nanoparticles reveals strong photoactivated emission under blue light excitation [1-4]. In this work, silver nanoparticles are produced by annealing silver thin films deposited on a glass substrate and silver...... quantum clusters are subsequently synthesized at the surface of the nanoparticles by photoactivation in presence of Ag+ cations in solution. The photogeneration of these silver quantum clusters leads to a great increase in the fluorescent signal. This photoactivated surface can then be used for sensing...

  5. The interaction of gold and silver nanoparticles with a range of anionic and cationic dyes

    OpenAIRE

    Kitching, H; Kenyon, A. J.; Parkin, I. P.

    2014-01-01

    We describe the synthesis of charge-stabilised gold and silver nanoparticles by a modified Turkevich method and their interaction with a selection of cationic and anionic dyes. It was found that gold nanoparticles interact strongly with cationic dyes and in some cases enhanced absorption was observed by UV-visible spectroscopy. It is also shown that addition of cationic dyes to gold nanoparticles triggers aggregation of the nanoparticles into large, micrometre-scale clusters. Simultaneous fra...

  6. Tuning Properties in Silver Clusters

    KAUST Repository

    Joshi, Chakra P

    2015-07-09

    The properties of Ag nanoclusters are not as well understood as those of their more precious Au cousins. However, a recent surge in the exploration of strategies to tune the physicochemical characteristics of Ag clusters addresses this imbalance, leading to new insights into their optical, luminescence, crystal habit, metal-core, ligand-shell and environmental properties. In this Perspective, we provide an overview of the latest strategies along with a brief introduction of the theoretical framework necessary to understand the properties of silver nanoclusters and the basis for their tuning. The advances in cluster research and the future prospects presented in this Perspective will eventually guide the next large systematic study of nanoclusters, resulting in a single collection of data similar to the periodic table of elements.

  7. Tuning Properties in Silver Clusters.

    Science.gov (United States)

    Joshi, Chakra P; Bootharaju, Megalamane S; Bakr, Osman M

    2015-08-01

    The properties of Ag nanoclusters are not as well understood as those of their more precious Au cousins. However, a recent surge in the exploration of strategies to tune the physicochemical characteristics of Ag clusters addresses this imbalance, leading to new insights into their optical, luminescence, crystal habit, metal-core, ligand-shell, and environmental properties. In this Perspective, we provide an overview of the latest strategies along with a brief introduction of the theoretical framework necessary to understand the properties of silver nanoclusters and the basis for their tuning. The advances in cluster research and the future prospects presented in this Perspective will eventually guide the next large systematic study of nanoclusters, resulting in a single collection of data similar to the periodic table of elements. PMID:26267198

  8. Anaerobic Toxicity of Cationic Silver Nanoparticles

    Science.gov (United States)

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...

  9. DNA templates silver clusters with magic sizes and colors for multi-cluster fluorescent assemblies

    Science.gov (United States)

    Copp, Stacy

    2015-03-01

    The natural inclusion of information in DNA, a vital part of life's rich complexity, can also be exploited to create diverse structures with multiple scales of complexity. Now emerging in novel photonic applications, DNA-stabilized silver clusters (AgN-DNA) are compelling examples of multi-scale DNA-directed assembly: individual fluorescent clusters, each templated by specific DNA base motifs, can then be arranged together in DNA-mediated multi-cluster assemblies with nanoscale precision. We discuss how DNA imbues AgN-DNA with unique features. Our optical data on pure AgN-DNA show that DNA base-cationic silver ligands impose rod-like shapes for neutral silver clusters, whose length primarily determines fluorescence color. This shape anisotropy leads to the aspherical AgN-DNA magic number cluster sizes and ``magic color'' groupings. We exploit DNA's sequence properties to extract multi-base motifs that select certain magic cluster sizes, using machine learning algorithms applied to large data sets. With these base motifs, we design DNA scaffolds to arrange multiple atomically precise AgN together in nanoscale proximity. We demonstrate that clusters are stable when held at separations below 10 nm, both in bicolor, dual cluster DNA clamp assemblies and in one-dimensional assemblies of atomically precise clusters arrayed on DNA nanotubes. Supported by NSF-CHE-1213895 and NSF-DMR-1309410. SMC acknowledges NSF-DGE-1144085, a NSF GRFP.

  10. Plasmon enhanced silver quantum cluster fluorescence for biochemical applications

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, Jörg P.; Mogensen, K. B.

    2014-01-01

    Fluorescence microscopy of individual silver quantum clusters on the surface of silver nanoparticles reveals strong photoactivated emission under blue light excitation [1-4]. In this work, silver nanoparticles are produced by annealing silver thin films deposited on a glass substrate and silver q...

  11. DNA-Protected Silver Clusters for Nanophotonics

    Directory of Open Access Journals (Sweden)

    Elisabeth Gwinn

    2015-02-01

    Full Text Available DNA-protected silver clusters (AgN-DNA possess unique fluorescence properties that depend on the specific DNA template that stabilizes the cluster. They exhibit peak emission wavelengths that range across the visible and near-IR spectrum. This wide color palette, combined with low toxicity, high fluorescence quantum yields of some clusters, low synthesis costs, small cluster sizes and compatibility with DNA are enabling many applications that employ AgN-DNA. Here we review what is known about the underlying composition and structure of AgN-DNA, and how these relate to the optical properties of these fascinating, hybrid biomolecule-metal cluster nanomaterials. We place AgN-DNA in the general context of ligand-stabilized metal clusters and compare their properties to those of other noble metal clusters stabilized by small molecule ligands. The methods used to isolate pure AgN-DNA for analysis of composition and for studies of solution and single-emitter optical properties are discussed. We give a brief overview of structurally sensitive chiroptical studies, both theoretical and experimental, and review experiments on bringing silver clusters of distinct size and color into nanoscale DNA assemblies. Progress towards using DNA scaffolds to assemble multi-cluster arrays is also reviewed.

  12. Supported silver clusters as nanoplasmonic transducers for protein sensing

    DEFF Research Database (Denmark)

    Fojan, Peter; Hanif, Muhammad; Bartling, Stephen; Hartmann, Hannes; Barke, Ingo; Popok, Vladimir

    2015-01-01

    Transducers for optical sensing of proteins are prepared using cluster beam deposition on quartz substrates. Surface plasmon resonance phenomenon of the supported silver clusters is used for the detection. It is shown that surface immobilisation procedure providing adhesion of the silver clusters...

  13. Magnetic Properties of Iron Clusters in Silver

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Al Rawas, A.; Yousif, A.; Gismelseed, A.; Rais, A.; Al-Omari, I.; Bouziane, K. [College of Science, Department of Physics (Oman); Widatallah, H. [Khartoum University, Department of Physics, Faculty of Science (Sudan)

    2004-12-15

    The discrete variational method is used to study the effect of interactions of iron impurities on the magnetic moments, hyperfine fields and isomer shifts at iron sites in silver. We study small clusters of iron atoms as they grow to form FCC phase that is coherent with the silver lattice. The effects of the lattice relaxation and the ferromagnetic and antiferromagnetic couplings are also considered. When Fe atoms congregate around a central Fe atom in an FCC arrangement under ferromagnetic coupling, the local magnetic moment and the contact charge density at the central atom hardly change as the cluster builds up, whereas the hyperfine field increases asymptotically as the number of Fe nearest neighbors increases. Introduction of antiferromagnetic coupling has minor effect on the local magnetic moments and isomer shifts, however it produces large reduction in the hyperfine field. The lattice relaxation of the surrounding Fe atoms towards a BCC phase around a central Fe atom leads to reduction in the magnetic moment accompanied by increase in the magnetic hyperfine field.

  14. Supported silver and copper clusters for photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Popok, Vladimir; Barke, Ingo; Neubauer, Antje; Lochbrunner, Stefan; Meiwes-Broer, Karl-Heinz [Institut fuer Physik, Universitaet Rostock, Universitaetsplatz 3, 18051 Rostock (Germany)

    2011-07-01

    Nanometer-sized metal particles deposited onto surfaces are of significant interest for applications in catalysis. In the current study, nanoparticles of silver and copper in the size range from ca. 5 to 18 nm were formed using arc-discharge and magnetron sputtering cluster ion sources and deposited on silica glass substrates. The prepared cluster-assembled samples have been studied in order to increase the efficiency of existing catalytic schemes for hydrogen production, which is of high practical importance. In particular, Ir photosensitizers (PS) in combination with palladium, platinum or iron catalysts are known to be promising systems for reduction of aqueous protons to hydrogen. We deposited the PS on cluster-covered samples and studied their optical properties. It is found that in presence of metal clusters the ligand-centered optical transitions of the PS are significantly increased accompanied by a change of the photoluminescence. These findings indicate considerable effect of the metal nanoparticles on the electronic structure of the PS, a fact that might be of relevance for the improvement of photo-catalytic reactions.

  15. Voltammetry of Lead Cations on a New Type of Silver Composite Electrode in the Presence of Other Cations

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Šebková, Světlana; Kopanica, M.

    2004-01-01

    Roč. 379, - (2004), s. 294-301. ISSN 1618-2642 Grant ostatní: GIT(AR) 101/02/U111/CZ Institutional research plan: CEZ:AV0Z4040901 Keywords : voltammetry * silver composite electrode * lead cations Subject RIV: CG - Electrochemistry Impact factor: 2.098, year: 2004

  16. Polyhexamethylene biguanide functionalized cationic silver nanoparticles for enhanced antimicrobial activity

    Science.gov (United States)

    Ashraf, Sumaira; Akhtar, Nasrin; Ghauri, Muhammad Afzal; Rajoka, Muhammad Ibrahim; Khalid, Zafar M.; Hussain, Irshad

    2012-05-01

    Polyhexamethylene biguanide (PHMB), a broad spectrum disinfectant against many pathogens, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles. The particles formed were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering, electrophoretic mobility, and TEM to measure their morphology and surface chemistry. PHMB-functionalized silver nanoparticles were then evaluated for their antimicrobial activity against a gram-negative bacterial strain, Escherichia coli. These silver nanoparticles were found to have about 100 times higher bacteriostatic and bactericidal activities, compared to the previous reports, due to the combined antibacterial effect of silver nanoparticles and PHMB. In addition to other applications, PHMB-functionalized silver nanoparticles would be extremely useful in textile industry due to the strong interaction of PHMB with cellulose fabrics.

  17. Blackbody-induced radiative dissociation of cationic SF 6 clusters

    DEFF Research Database (Denmark)

    Toker, Jonathan; Rahinov, I.; Schwalm, D.;

    2012-01-01

    The stability of cationic SF5+(SF6)n−1 clusters was investigated by measuring their blackbody-induced radiative dissociation (BIRD) rates. The clusters were produced in a supersonic expansion ion source and stored in an electrostatic ion-beam trap at room temperature, where their abundances and...... lifetimes were measured. Using the “master equation” approach, relative binding energies of an SF6 unit in the clusters could be extracted from the storage-time dependence of the survival probabilities. The results allow for a deeper insight into the effect of a localized charge on the structure and...... stability of SF6-based clusters....

  18. Structure, spectra and dynamics of alkali cation microhydration clusters

    OpenAIRE

    Schulz, Franziska

    2005-01-01

    The main focus of this work was the theoretical investigation of alkali cation microhydration clusters with sodium, potassium, and caesium as central ion and up to 24 water molecules per cluster. Structures were obtained applying global geometry optimisation, using a specialised version of genetic algorithms and the common TIP4P/OPLS model potential. The global and most important local minimum energy structures have been investigated and the results obtained constitute a first complete and sy...

  19. [6]Helicene as a novel molecular tweezer for the univalent silver cation: Experimental and theoretical study

    Czech Academy of Sciences Publication Activity Database

    Klepetářová, B.; Makrlík, E.; Jaklová Dytrtová, Jana; Böhm, S.; Vaňura, P.; Storch, Jan

    2015-01-01

    Roč. 1097, Oct 5 (2015), s. 124-128. ISSN 0022-2860 R&D Projects: GA ČR GP13-21409P; GA ČR GAP207/10/1124; GA TA ČR TA01010646; GA MPO FR-TI3/628 Institutional support: RVO:61388963 ; RVO:67985858 Keywords : univalent silver cation * [6]helicene * cation-pi interaction * structures Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.602, year: 2014

  20. THEORETICAL STUDY ON THE INTERACTION BETWEEN XENON AND POSITIVE SILVER CLUSTERS IN GAS PHASE AND ON THE (001) CHABAZITE SURFACE

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, D.

    2009-03-16

    A systematic study on the adsorption of xenon on silver clusters in the gas phase and on the (001) surface of silver-exchanged chabazite is reported. Density functional theory at the B3LYP level with the cluster model was employed. The results indicate that the dominant part of the binding is the {sigma} donation, which is the charge transfer from the 5p orbital of Xe to the 5s orbital of Ag and is not the previously suggested d{sub {pi}}-d{sub {pi}} back-donation. A correlation between the binding energy and the degree of {sigma} donation is found. Xenon was found to bind strongly to silver cluster cations and not to neutral ones. The binding strength decreases as the cluster size increases for both cases, clusters in the gas-phase and on the chabazite surface. The Ag{sup +} cation is the strongest binding site for xenon both in gas phase and on the chabazite surface with the binding energies of 73.9 and 14.5 kJ/mol, respectively. The results also suggest that the smaller silver clusters contribute to the negative chemical shifts observed in the {sup 129}Xe NMR spectra in experiments.

  1. Cationic guar gum orchestrated environmental synthesis for silver nano-bio-composite films.

    Science.gov (United States)

    Abdullah, Md Farooque; Ghosh, Sumanta Kumar; Basu, Sreyasree; Mukherjee, Arup

    2015-12-10

    This work is meant for environmentally friendly synthesis and functional evaluation of silver nanoparticles in a newer cationic guar biopolymer (GGAA). Assembly of molecules in lower size range (∼ 10 nm) was attained in a biopolymer entrapped bottom-up synthesis. Guar gum is a filming biopolymer. Nanoparticles encaged in cationic guar (GGAgnC) were preserved as films for months without any significant effect on particle size, distribution or plasmonic intensity. The new nano-bio-composite and films were characterized fully in FTIR, XRD, SEM and TEM studies. Silver nanoparticles induced surface water repellency remarkably and lowered moisture permeability. GGAgnC film water contact angle was recorded as 115° while, that in case of GGAA was 59°. GGAgnC expressed intense antimicrobial activity when tested against a range of microorganisms. Immobilized silver nanoparticles in GGAA can feasibly be used as filming microbicidals suitable for textiles, packaging and biomedical device applications. PMID:26428096

  2. Coalescence of silver clusters by immersion in diluted HF solution

    International Nuclear Information System (INIS)

    The galvanic displacement deposition of silver on H-terminated Si (100) in the time scale of seconds is instantaneous and characterized by a cluster density of 1011-1012 cm−2. The amount of deposited Ag follows a t1/2 dependence in agreement with a Cottrell diffusion limited mechanism. At the same time, during the deposition, the cluster density reduces by a factor 5. This behavior is in contrast with the assumption of immobile clusters. We show in the present work that coalescence and aggregation occur also in the samples immersed in the diluted hydrofluoric acid (HF) solution without the presence of Ag+. Clusters agglomerate according to a process of dynamic coalescence, typical of colloids, followed by atomic redistribution at the contact regions with the generation of multiple internal twins and stacking-faults. The normalized size distributions in terms of r/rmean follow also the prediction of the Smoluchowski ripening mechanism. No variation of the cluster density occurs for samples immersed in pure H2O solution. The different behavior might be associated to the strong attraction of clusters to oxide-terminated Si surface in presence of water. The silver clusters are instead weakly bound to hydrophobic H-terminated Si in presence of HF. HF causes then the detachment of clusters and a random movement on the silicon surface with mobility of about 10−13 cm2/s. Attractive interaction (probably van der Waals) among particles promotes coarsening

  3. DNA Scaffolded Silver Clusters: A Critical Study

    OpenAIRE

    Bidisha Sengupta; Christa Corley; Keith Cobb; Anthony Saracino; Steffen Jockusch

    2016-01-01

    Fluorescent silver nanoclusters (Ag-NCs) are in prominence as novel sensing materials due to their biocompatibility, photostability, and molecule-like optical properties. The present work is carried out on an array (17 sequences) of 16 bases long cytosine rich, single stranded DNA templates 5′-C3XiC3XiiC3XiiiC3Xiv-3′ where i, ii, iii, iv correspond to T/G/C deoxynucleobases (with default base A). Among all the oligonucleotides, a sequence C3AC3AC3TC3G (3T4G) has been identified, which grows t...

  4. Cation-Cation Complexes of Pentavalent Uranyl: From Disproportionation Intermediates to Stable Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Mougel, Victor; Horeglad, Pawel; Nocton, Gregory; Pecaut, Jacques; Mazzanti, Marinella [CEA, INAC, SCIB, Laboratoire de Reconnaissance Ionique et Chimie de Coordination, CEA-Grenoble, 38054 GRENOBLE, Cedex 09 (France)

    2010-07-01

    Three new cation cation complexes of pentavalent uranyl, stable with respect to the disproportionation reaction, have been prepared from the reaction of the precursor [(UO{sub 2}py{sub 5})-(KI{sub 2}py{sub 2})]{sub n} (1) with the Schiff base ligands salen{sup 2-}, acacen{sup 2-}, and salophen{sup 2-} (H{sub 2}salen N, N'-ethylene-bis(salicylidene-imine), H{sub 2}acacen=-N, N'-ethylenebis(acetylacetone-imine), H{sub 2}salophen=N, N'-phenylene-bis(salicylidene-imine)). The preparation of stable complexes requires a careful choice of counter ions and reaction conditions. Notably the reaction of 1 with salophen{sup 2-} in pyridine leads to immediate disproportionation, but in the presence of [18]crown-6 ([18]C-6) a stable complex forms. The solid-state structure of the four tetra-nuclear complexes ([UO{sub 2}-(acacen)]{sub 4}[{mu}{sub 8}-]{sub 2}[K([18]C-6)(py)]{sub 2}) (3) and ([UO{sub 2}(acacen)](4)[{mu}{sub 8}-]).2[K([222])(py)] (4) ([UO{sub 2}(salophen)](4)[{mu}{sub 8}-K]{sub 2}[mu(5)-KI]{sub 2}[(K([18]C-6)]).2 [K([18]C-6)-(thf){sub 2}].2I (5), and ([UO{sub 2}(salen)(4)][{mu}{sub 8}-Rb]{sub 2}[Rb([18]C-6)]{sub 2}) (9) ([222] = [222]cryptand, py =pyridine), presenting a T-shaped cation cation interaction has been determined by X-ray crystallographic studies. NMR spectroscopic and UV/Vis studies show that the tetra-nuclear structure is maintained in pyridine solution for the salen and acacen complexes. Stable mononuclear complexes of pentavalent uranyl are also obtained by reduction of the hexavalent uranyl Schiff base complexes with cobaltocene in pyridine in the absence of coordinating cations. The reactivity of the complex [U{sup V}O{sub 2}(salen)(py)][Cp*{sub 2}Co] with different alkali ions demonstrates the crucial effect of coordinating cations on the stability of cation cation complexes. The nature of the cation plays a key role in the preparation of stable cation cation complexes. Stable tetra-nuclear complexes form in the presence of K

  5. Helium clusters as cold, liquid matrix for the laser spectroscopy of silver atoms, silver clusters and C60 fullerenes

    International Nuclear Information System (INIS)

    One of the main obstacles in the study of gas phase metal clusters is their high temperature. Even cooling in a seeded beam is only of limited used, since the condensation continuously releases energy into the system. As a consequence, spectroscopic studies of free metal clusters typically yield broad structures, which are interpreted as plasma resonances of a free electron gas. An experiment on ionic sodium clusters has shown that low temperatures lead to a narrowing of the absorption bands and the appearance of additional structure, that can not be explained within the free electron model. Thus the need for cold clusters is evident. In principle the deposition of metal clusters into inert matrices eliminates the temperature problem but it can also inflict strong changes on the electronic spectra. Droplets of liquid helium serve as a much more gentle matrix that avoids many of the above problems. In this thesis the new technique of helium droplet spectroscopy is presented as a tool for the study of extremely cold metal clusters. Clusters of silver up to a mass greater than 7000 amu have been produced by pickup of single atoms by a beam of helium droplets. The droplets are formed in a supersonic expansion. The cluster's binding energy is removed by evaporative cooling and the system remains at 0.4 K. The doped droplets are probed by laser spectroscopy with a depletion technique or resonant two photon ionization. We were able to measure the first UV absorption spectrum of metal atoms (silver) inside helium droplets. Another experiment shows that a small fraction of the captured silver atoms resides on the surface of the droplet like alkali atoms. In a two photon process previously unobserved s- and d-Rydberg states of the free silver atom (20 left angle n left angle 80) were excited. The silver atoms, initially embedded in the helium droplets, are found to move to the surface and desorb when excited to the broadened 5p level. This is the first result showing laser

  6. Functionalization of carbon nanotubes with silver clusters

    Science.gov (United States)

    Cveticanin, Jelena; Krkljes, Aleksandra; Kacarevic-Popovic, Zorica; Mitric, Miodrag; Rakocevic, Zlatko; Trpkov, Djordje; Neskovic, Olivera

    2010-09-01

    In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.

  7. Functionalization of carbon nanotubes with silver clusters

    International Nuclear Information System (INIS)

    In this paper, an advanced method of one-step functionalization of single and multi walled carbon nanotubes (SWCNTs and MWCNTs) using γ-irradiation was described. Two synthesis procedures, related with different reduction species, were employed. For the first time, poly(vinyl alcohol) PVA is successfully utilized as a source to reduce silver (Ag) metal ions without having any additional reducing agents to obtain Ag nanoparticles on CNTs. The decoration of carbon nanotubes with Ag nanoparticles takes place through anchoring of (PVA) on nanotube's surface. Optical properties of as-prepared samples and mechanism responsible for the functionalization of carbon nanotubes were investigated using UV-vis and FTIR spectroscopy, respectively. Decorated carbon nanotubes were visualized using microscopic techniques: transmission electron microscopy and scanning tunneling microscopy. Also, the presence of Ag on the nanotubes was confirmed using energy dispersive X-ray spectroscopy. This simple and effective method of making a carbon nanotube type of composites is of interest not only for an application in various areas of technology and biology, but for investigation of the potential of radiation technology for nanoengineering of materials.

  8. Coalescence of silver clusters by immersion in diluted HF solution

    Energy Technology Data Exchange (ETDEWEB)

    Milazzo, R. G.; Mio, A. M.; D’Arrigo, G.; Spinella, C. [CNR-IMM Institute for Microelectronics and Microsystems, I-95121 Catania (Italy); Grimaldi, M. G. [Department of Physics and Astronomy, Università di Catania, I-95123 Catania (Italy); MATIS IMM-CNR, I-95123 Catania (Italy); Rimini, E. [CNR-IMM Institute for Microelectronics and Microsystems, I-95121 Catania (Italy); Department of Physics and Astronomy, Università di Catania, I-95123 Catania (Italy)

    2015-07-14

    The galvanic displacement deposition of silver on H-terminated Si (100) in the time scale of seconds is instantaneous and characterized by a cluster density of 10{sup 11}-10{sup 12} cm{sup −2}. The amount of deposited Ag follows a t{sup 1/2} dependence in agreement with a Cottrell diffusion limited mechanism. At the same time, during the deposition, the cluster density reduces by a factor 5. This behavior is in contrast with the assumption of immobile clusters. We show in the present work that coalescence and aggregation occur also in the samples immersed in the diluted hydrofluoric acid (HF) solution without the presence of Ag{sup +}. Clusters agglomerate according to a process of dynamic coalescence, typical of colloids, followed by atomic redistribution at the contact regions with the generation of multiple internal twins and stacking-faults. The normalized size distributions in terms of r/r{sub mean} follow also the prediction of the Smoluchowski ripening mechanism. No variation of the cluster density occurs for samples immersed in pure H{sub 2}O solution. The different behavior might be associated to the strong attraction of clusters to oxide-terminated Si surface in presence of water. The silver clusters are instead weakly bound to hydrophobic H-terminated Si in presence of HF. HF causes then the detachment of clusters and a random movement on the silicon surface with mobility of about 10{sup −13} cm{sup 2}/s. Attractive interaction (probably van der Waals) among particles promotes coarsening.

  9. Beyond Clusters: Supramolecular Networks Self-Assembled from Nanosized Silver Clusters and Inorganic Anions.

    Science.gov (United States)

    Wang, Zhi; Li, Xiao-Yu; Liu, Li-Wei; Yu, Si-Qi; Feng, Zhen-Yu; Tung, Chen-Ho; Sun, Di

    2016-05-10

    Assembly of small clusters into rigid bodies with precise shape and symmetry has been witnessed by the significant advances in cluster-based metal-organic frameworks (MOFs), however, nanosized silver cluster based MOFs remain largely unexplored. Herein, two anion-templated silver clusters, CO3 @Ag20 and SO4 @Ag22 , were ingeniously incorporated into a 2D sql lattice (1, [CO3 @Ag20 (iPrS)10 (NO3 )8 (DMF)2 ]n ) and an unprecedented 3D two-fold interpenetrated dia network (2, [SO4 @Ag22 (iPrS)12 (NO3 )6 ⋅2 NO3 ]n ), respectively, under mild solvothermal conditions. Their atomically precise structures were confirmed by single-crystal X-ray diffraction analysis and further consolidated by IR spectroscopy, thermogravimetric analysis (TGA), and elemental analysis. Each drum-like CO3 @Ag20 cluster is extended by twelve NO3 (-) ions to form the 2D sql lattice of 1, whereas each ball-shaped SO4 @Ag22 cluster with a twisted truncated tetrahedral geometry is pillared by four [Ag6 (NO3 )3 ] triangular prisms to form the 3D interpenetrated dia network of 2. Notably, 2 is the first interpenetrated 3D MOF constructed from silver clusters. These results demonstrate the dual role of the anions, which not only internally act as anion templates to induce the formation of silver thiolate clusters but also externally extend the cluster units into the rigid networks. The photoluminescent and electrochemical properties of 2 are discussed in detail. PMID:27006096

  10. Experimental and theoretical study on cation-pi interaction of the univalent silver cation with [7]helicene in the gas phase and in the solid state

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Klepetářová, Blanka; Sýkora, D.; Böhm, S.; Vaňura, P.; Storch, Jan

    2015-01-01

    Roč. 635, Aug 16 (2015), s. 355-359. ISSN 0009-2614 R&D Projects: GA ČR GP13-21409P; GA ČR GAP207/10/1124; GA TA ČR TA01010646; GA MPO FR-TI3/628 Institutional support: RVO:61388963 ; RVO:67985858 Keywords : [7]helicene * univalent silver cation * crystal structure Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.897, year: 2014

  11. Energy dependence of small silver clusters sputtered by 150 keV Ar+ ions

    International Nuclear Information System (INIS)

    The energy distribution of small neutral silver clusters Agn and of positively and negatively charged cluster ions Agn+ and Agn-(n=1–4) sputtered by 150 keV Ar+ ions was investigated. The measured energy distributions asymptotically drop off with E-x, where x increases with cluster size n.

  12. Carbon monoxide adsorption on neutral and cationic vanadium doped gold clusters

    OpenAIRE

    Le, Hai Thuy; Lang, Sandra M; de Haeck, Jorg; Lievens, Peter; Janssens, Ewald

    2012-01-01

    The effect of a single vanadium dopant atom on the reactivity of small gold clusters is studied in the gas phase. In particular we investigated carbon monoxide adsorption on vanadium doped gold clusters using a low-pressure collision cell. Employing this technique the reactivity of both neutral and cationic clusters was studied under the same experimental conditions. Analysis of the kinetic data as a function of the pressure in the reaction cell shows that the reaction mechanism is composed o...

  13. Thermochromic luminescent nest-like silver thiolate cluster.

    Science.gov (United States)

    Li, Bo; Huang, Ren-Wu; Qin, Jian-Hua; Zang, Shuang-Quan; Gao, Guang-Gang; Hou, Hong-Wei; Mak, Thomas C W

    2014-09-22

    A novel discrete open high-nuclearity nest-like silver thiolate cluster complex, [Ag33 S3 (StBu)16 (CF3 COO)9 (NO3 )(CH3 CN)2 ](NO3 ) (1), has been isolated with nitrate and S(2-) anions acting as structure-directing templates. Its similar nest-like structure has been assembled into an extended layer [Ag31 S3 (StBu)16 (NO3 )9 ]n (2) by adjustment of auxiliary ligand. More interestingly, both complexes exhibit temperature-dependent luminescence of high sensitivity with a large fluorescence enhancement (12-fold for 1, 21-fold for 2), which can be easily recognized by the naked-eye (dramatic red-shift Δ=104 nm for 1, larger Δ=113 nm for 2 at 77 K compared to those at 298 K). The correlation between luminescent thermochromism and temperature-dependent variation of the coordination modes of template NO3 (-) anion, Ag⋅⋅⋅S and Ag⋅⋅⋅Ag distances are also elucidated through variable-temperature single-crystal X-ray crystal structure (VT-SCXRD) analyses. PMID:25124942

  14. Simulation of molecular dynamics of silver subcritical nuclei and crystal clusters during solidification

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Molecular dynamics simulation is carried out to investigate the effects of cooling rate on the final configurations of silver after rapid solidification. The cooling rate for the formation of a silver amorphous phase is determined by analyzing its pair distribution function, H-A bond index, and the largest crystal cluster. Further, the equilibrium structures of the subcritical nuclei and crystal clusters are studied. The results show that the solidified microstructure is composed of a mixture of crystal clusters and amorphous phases at a certain cooling rate range. The size of the largest crystal cluster decreases with the increasing cooling rate, and it completely disappears when the cooling rate exceeds a critical value. The structures of the subcritical nuclei and the largest crystal cluster are composed of lamellar structures of fcc and hcp atoms, indicating that the lamellar structure of fcc and hcp atoms in the silver crystal originates from nucleation, and not from the growth of crystals.

  15. Thermal desorption of oxygen from near-stoichiometric cationic vanadium oxide clusters

    Science.gov (United States)

    Kurokawa, Hodaka; Mafuné, Fumitaka

    2016-05-01

    Oxygen desorption from cationic vanadium oxide clusters, VnOm+ (n = 2-10), composed of a near-stoichiometric (n:m = 2:5) frame with excess oxygen attached was investigated in a thermal energy region by time-of-flight mass spectrometry and thermal desorption spectrometry. Oxygen molecules were observed to desorb from the clusters during heating. The activation energy for desorption was estimated from the temperature dependence of different clusters and exhibited an even-odd alternation with respect to the cluster size, n. This alternation can be explained in terms of oxidation states of the vanadium atoms.

  16. Divalent Cation-Dependent Formation of Electrostatic PIP2 Clusters in Lipid Monolayers

    OpenAIRE

    Ellenbroek, WG Wouter; Wang, Y-H; Christian, DA; Discher, DE; Janmey, PA; Liu, AJ

    2011-01-01

    Polyphosphoinositides are among the most highly charged molecules in the cell membrane, and the most common polyphosphoinositide, phosphatidylinositol-4,5-bisphosphate (PIP2), is involved in many mechanical and biochemical processes in the cell membrane. Divalent cations such as calcium can cause clustering of the polyanionic PIP2, but the origin and strength of the effective attractions leading to clustering has been unclear. In addition, the question of whether the ion-mediated attractions ...

  17. High reactivity of nanosized niobium oxide cluster cations in methane activation: A comparison with vanadium oxides

    International Nuclear Information System (INIS)

    The reactions between methane and niobium oxide cluster cations were studied and compared to those employing vanadium oxides. Hydrogen atom abstraction (HAA) reactions were identified over stoichiometric (Nb2O5)N+ clusters for N as large as 14 with a time-of-flight mass spectrometer. The reactivity of (Nb2O5)N+ clusters decreases as the N increases, and it is higher than that of (V 2O5)N+ for N ≥ 4. Theoretical studies were conducted on (Nb2O5)N+ (N = 2–6) by density functional calculations. HAA reactions on these clusters are all favorable thermodynamically and kinetically. The difference of the reactivity with respect to the cluster size and metal type (Nb vs V) was attributed to thermodynamics, kinetics, the electron capture ability, and the distribution of the unpaired spin density. Nanosized Nb oxide clusters show higher HAA reactivity than V oxides, indicating that niobia may serve as promising catalysts for practical methane conversion

  18. Plasmon assisted synthesis of highly fluorescing silver quantum cluster / polymer composites for biochemical sensing

    DEFF Research Database (Denmark)

    Bernard, S.; Kutter, J.P.; Mogensen, Klaus Bo

    2014-01-01

    Plasmonics is combined with polymer synthesis for rapid fabrication of highly fluorescing silver quantum cluster / polymer composites inside microfluidic channels. UV-light assisted synthesis of polymers has been investigated by a number of groups previously [1], however, plasmon assisted synthesis...... has not been presented before. This should allow highly localized fabrication of porous polymers that are defined by the location of the nanoplasmonic metal film. Silver quantum clusters (AgQCs) consisting of 2-10 atoms can be highly fluorescing in the visible wavelength range and possess a much...

  19. Effect of particle clustering of silver nanoparticles on ultrathin silicon solar cell

    Science.gov (United States)

    Shokeen, Poonam; Jain, Amit; Kapoor, Avinashi; Gupta, Vinay

    2016-07-01

    Particle clustering is a major concern for uniform dispersal of nanoparticles in various deposition procedures. Well separated uniform distribution of metal nanoparticles is essential for effective coupling of surface plasmons. This work experimentally and theoretically, discusses the effect of nanoparticle clustering on the light trapping efficiency of silver nanoparticles. Pulsed laser deposition system has been used for deposition of silver nanoparticles, and substrate heating has been used to promote uniform distribution of nanoparticles. Pre-heated substrate depositions are compared with corresponding post-annealed samples. XRD, FESEM, Photoluminescence and UV-visible spectroscopy have been used to study the variations in their structural and optical properties. Mono-dispersal of silver nanoparticles for pre-heated substrates results in sharper surface plasmon resonance in comparison to post-annealed samples. Mie theory is used to estimate the particle size of the nanoparticles and findings are in accordance with quantitative analysis of FESEM images. Finite-difference time domain technique is used to discuss the effect of particle distribution on an ultrathin film silicon solar cell. Device degradation is observed as a result of clustering of silver nanoparticles. Hence, mono-dispersal of plasmonic nanostructures is important for required results and pre-heated deposition of metal nanoparticles by pulsed laser deposition can effectively solve the problem of particle clustering.

  20. Acid decomposition and thiourea leaching of silver from hazardous jarosite residues: Effect of some cations on the stability of the thiourea system.

    Science.gov (United States)

    Calla-Choque, D; Nava-Alonso, F; Fuentes-Aceituno, J C

    2016-11-01

    The recovery of silver from hazardous jarosite residues was studied employing thiourea as leaching agent at acid pH and 90°C. The stability of the thiourea in synthetic solutions was evaluated in the presence of some cations that can be present in this leaching system: cupric and ferric ions as oxidant species, and zinc, lead and iron as divalent ions. Two silver leaching methods were studied: the simultaneous jarosite decomposition-silver leaching, and the jarosite decomposition followed by the silver leaching. The study with synthetic solutions demonstrated that cupric and ferric ions have a negative effect on thiourea stability due to their oxidant properties. The effect of cupric ions is more significant than the effect of ferric ions; other studied cations (Fe(2+), Zn(2+), Pb(2+)) had no effect on the stability of thiourea. When the decomposition of jarosite and the silver leaching are carried out simultaneously, 70% of the silver can be recovered. When the acid decomposition was performed at pH 0.5 followed by the leaching step at pH 1, total silver recovery increased up to 90%. The zinc is completely dissolved with any of these processes while the lead is practically insoluble with these systems producing a lead-rich residue. PMID:27322901

  1. Enantiopure Radical Cation Salt Based on Tetramethyl-Bis(ethylenedithio-Tetrathiafulvalene and Hexanuclear Rhenium Cluster

    Directory of Open Access Journals (Sweden)

    Flavia Pop

    2016-01-01

    Full Text Available Electrocrystallization of the (S,S,S,S enantiomer of tetramethyl-bis(ethylenedithio-tetrathiafulvalene donor 1 in the presence of the dianionic hexanuclear rhenium (III cluster [Re6S6Cl8]2− affords a crystalline radical cation salt formulated as [(S-1]2·Re6S6Cl8, in which the methyl substituents of the donors adopt an unprecedented all-axial conformation. A complex set of intermolecular TTF···TTF and cluster···TTF interactions sustain an original tridimensional architecture.

  2. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    Science.gov (United States)

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.; Zimmermann, Kathryn J.; Blomquist, Byron W.; Huebert, Barry J.; Bertram, Timothy H.

    2016-04-01

    Benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt-1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion-molecule reactions likely proceed through a combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated (R2 > 0.95, 10 s averages) over a wide range of sampling conditions.

  3. Infrared Photodissociation Spectra of Mass-Selected Homoleptic Dinuclear Palladium Carbonyl Cluster Cations in the Gas Phase

    Institute of Scientific and Technical Information of China (English)

    崔洁铭; 邢小鹏; 池超贤; 王冠军; 刘智攀; 周鸣飞

    2012-01-01

    Infrared spectra of mass-selected homoleptic dinuclear palladium carbonyl cluster cations Pd2(CO)n (n=5 8) are measured via infrared photodissociation spectroscopy in the carbonyl stretching frequency region. The structures are established by comparison of the experimental spectra with simulated spectra derived from density functional calculations. The Pd2(CO)+ cation is characterized to have two weakly semibridging CO groups with C2 symmetry. The Pd2(CO)6+ and Pd2(CO)7+ cations are determined to involve one weakly semibridging CO group. The Pd2(CO)8+ cation is a CO coordination saturated cluster, which is determined to have a D2d structure with all of the carbonyl groups terminally bonded. Bonding analysis indicates that these cluster cations each has a Pd--Pd half bond. The Pd--Pd distance increases with the number of CO ligands.

  4. Poly(methyl methacrylate) Composites with Size-selected Silver Nanoparticles Fabricated Using Cluster Beam Technique

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Juluri, Raghavendra R.; Chirumamilla, Manohar;

    2016-01-01

    based on cluster beam technique allowing the formation of monocrystalline size-selected silver nanoparticles with a +/- 5-7% precision of diameter and controllable embedment into poly (methyl methacrylate). It is shown that the soft-landed silver clusters preserve almost spherical shape with a slight......An embedment of metal nanoparticles of well-defined sizes in thin polymer films is of significant interest for a number of practical applications, in particular, for preparing materials with tunable plasmonic properties. In this article, we present a fabrication route for metal-polymer composites...... tendency to flattening upon impact. By controlling the polymer hardness (from viscous to soft state) prior the cluster deposition and annealing conditions after the deposition the degree of immersion of the nanoparticles into polymer can be tuned, thus, making it possible to create composites with either...

  5. Long-lived charge-separated states in ligand-stabilized silver clusters

    KAUST Repository

    Pelton, Matthew

    2012-07-25

    Recently developed synthesis methods allow for the production of atomically monodisperse clusters of silver atoms stabilized in solution by aromatic thiol ligands, which exhibit intense absorption peaks throughout the visible and near-IR spectral regions. Here we investigated the time-dependent optical properties of these clusters. We observed two kinetic processes following ultrafast laser excitation of any of the absorption peaks: a rapid decay, with a time constant of 1 ps or less, and a slow decay, with a time constant that can be longer than 300 ns. Both time constants decrease as the polarity of the solvent increases, indicating that the two processes correspond to the formation and recombination, respectively, of a charge-separated state. The long lifetime of this state and the broad optical absorption spectrum mean that the ligand-stabilized silver clusters are promising materials for solar energy harvesting. © 2012 American Chemical Society.

  6. Infrared photodissociation spectroscopy of mass-selected silver and gold nitrosyl cation complexes.

    Science.gov (United States)

    Li, Yuzhen; Wang, Lichen; Qu, Hui; Wang, Guanjun; Zhou, Mingfei

    2015-04-16

    The [M(NO)n](+) cation complexes (M = Au and Ag) are studied for exploring the coordination and bonding between nitric oxide and noble metal cations. These species are produced in a laser vaporization supersonic ion source and probed by infrared photodissociation spectroscopy in the NO stretching frequency region using a collinear tandem time-of-flight mass spectrometer. The geometric and electronic structures of these complexes are determined by comparison of the distinctive experimental spectra with simulated spectra derived from density functional theory calculations. All of these noble metal nitrosyl cation complexes are characterized to have bent NO ligands serving as one-electron donors. The spectrum of [Au(NO)2Ar](+) is consistent with 2-fold coordination with a near linear N-Au-N arrangement for this ion. The [Au(NO)n](+) (n = 3-4) cations are determined to be a mixture of 2-fold coordinated form and 3- or 4-fold coordinated form. In contrast, the spectra of [Ag(NO)n](+) (n = 3-6) provide evidence for the completion of the first coordination shell at n = 5. The high [Au(NO)n](+) and [Ag(NO)n](+) (n ≥ 3 for Au, n ≥ 4 for Ag) complexes each involve one or more (NO)2 dimer ligands, as observed in the copper nitrosyl cation complexes, indicating that ligand-ligand coupling plays an important role in the structure and bonding of noble metal nitrosyl cation complexes. PMID:25811327

  7. Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hao-Bo [ORNL; Liang, Liyuan [ORNL; Parks, Jerry M [ORNL; Smith, Jeremy C [ORNL; Riccardi, Demian M [ORNL; Gu, Baohua [ORNL

    2013-01-01

    Understanding aqueous phase processes involving group 12 metal cations is relevant to both environmental and biological sciences. Here, quantum chemical methods and polarizable continuum models are used to compute the hydration free energies of a series of divalent group 12 metal cations (Zn2+, Cd2+, and Hg2+) together with Cu2+ and the anions OH , SH , Cl , and F . A cluster-continuum method is employed, in which gas-phase clusters of the ion and explicit solvent molecules are immersed in a dielectric continuum. Two approaches to define the size of the solute-water cluster are compared, in which the number of explicit waters used is either held constant or determined variationally as that of the most favorable hydration free energy. Results obtained with various polarizable continuum models are also presented. Each leg of the relevant thermodynamic cycle is analyzed in detail to determine how different contributions yield the observed mean signed error (MSE) and the standard deviation of the error (STDEV) between theory and experiment. The use of a constant number of water molecules for each set of ions is found to lead to predicted relative trends that benefit from error cancellation. Overall, the best results are obtained with MP2 and the Solvent Model D polarizable continuum model (SMD), with eight explicit water molecules for anions and ten for the metal cations, yielding a STDEV of 2.3 kcal/mol and MSE of 0.9 kcal/mol between theoretical to experimental hydration free energies, which range from -72.4 kcal/mol for SH to -505.9 kcal/mol for Cu2+. Using B3PW91 with DFT-D3 dispersion corrections (B3PW91-D) and SMD yields a STDEV of 3.3 kcal mol 1 and MSE of 1.6 kcal/mol, to which adding MP2 corrections from smaller divalent metal ion water molecule clusters yields very good agreement with the full MP2 results. Using B3PW91-D and SMD, with two explicit water molecules for anions and six for divalent metal cations also yields reasonable agreement with experiment

  8. Morphology and kinetics of aggregation of silver nanoparticles induced with regioregular cationic polythiophene

    Czech Academy of Sciences Publication Activity Database

    Kazim, Samrana; Jäger, Alessandro; Steinhart, Miloš; Pfleger, Jiří; Vohlídal, J.; Bondarev, D.; Štěpánek, Petr

    2016-01-01

    Roč. 32, č. 1 (2016), s. 2-11. ISSN 0743-7463 R&D Projects: GA ČR(CZ) GAP108/12/1143 Institutional support: RVO:61389013 Keywords : conjugated polyelectrolyte * silver nanoparticles * dynamic light scattering Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.457, year: 2014

  9. Ultraviolet photoelectron spectroscopy of supported mass selected silver clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wortmann, Ben; Mende, Kolja; Duffe, Stefanie; Groenhagen, Niklas; Hoevel, Heinz [Experimentelle Physik I, Technische Universitaet Dortmund (Germany); Issendorff, Bernd von [Fakultaet fuer Physik, Universitaet Freiburg (Germany)

    2010-05-15

    Ultraviolet photoelectron spectroscopy (UPS) was used to investigate size selected Ag{sub 923{+-}}{sub 9} and Ag{sub 55} clusters which were softlanded on a clean graphite substrate (HOPG) at 100 and 50 K, respectively. With increasing cluster coverage closer to the centre of the deposition spot a continuous change of the d-band signal is observed. Differences in the fine structure of the d-band and comparison to UPS spectra of clusters grown at nanopits on HOPG show that the clusters in the centre of the deposition spot coalesced. However, Ag{sub 55} spectra measured at the rim of the deposition spot indicate that the clusters stay separated in regions of lower coverage for a deposition temperature of 50 K. This is corroborated by scanning tunnelling microscopy (STM) images measured at 5 K using 1 monolayer (ML) Xe to fix the Ag{sub 55} clusters to the substrate, thus making them observable with STM. By comparison to UPS data taken on different sample positions in a 1 x 1 mm{sup 2} grid it was determined that at the rim of the deposition spot the coverage of 30 clusters per 100 x 100 nm{sup 2} was low enough for an UPS measurement of single separated Ag{sub 55} clusters. Differences in the spectra for the largest coverage of Ag{sub 55} and Ag{sub 923} clusters in the deposition spot centre indicate that the resulting Ag film has a partial (111) orientation for the deposition of Ag{sub 55} at 50 K whereas it is mostly polycrystalline for Ag{sub 923} deposited at 100 K. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Unique properties of silver cations in solid-acid catalysis by zeolites and heteropolyacids.

    Science.gov (United States)

    Ono, Yoshio; Baba, Toshihide

    2015-06-28

    Ag(+)-exchanged zeolites exhibit unique catalytic properties caused by the combination of their redox and acidic properties. Partial reduction of Ag(+) ions in zeolites with hydrogen leads to the formation of acidic protons and silver metal particles, which can be observed using X-ray powder diffraction patterns (XRD). By simply evacuating hydrogen from the system, the silver metal particles are returned back to Ag(+) ions and at the same time, acidic protons are eliminated. This interconversion of Ag(+) ions and silver metal or gaseous hydrogen and surface protons is reflexed in the catalytic activities of Ag(+)-exchanged zeolites for acid-catalyzed reactions: the activity of Ag(+)-exchanged Y zeolite (Ag-Y) reversibly changes with the partial pressure of hydrogen. Furthermore, the activity of Ag-Y in the presence of hydrogen is higher than that of H(+)-exchanged Y zeolite (H-Y). Similar phenomena are also observed for the silver salt of dodecatungstophosphoric acid (Ag3PW12O40). Ag(+)-exchanged ZSM-5 zeolite (Ag-ZSM-5) is a very selective catalyst for aromatization of alkanes, alkenes and methanol. Examination of the activation step of lower alkanes revealed that Ag(+) ions dramatically enhance the dehydrogenation of the alkanes via heterolytic dissociation of the alkanes into carbenium ions and hydride species. Ag(+)-exchanged zeolites can also activate methane. The reaction of methane with ethene and benzene gives propene and toluene, respectively. Ag-ZSM-5 is a very stable catalyst under hydrothermal conditions because of the interconversion properties of Ag(+) ions and silver metal in the zeolite. PMID:26018842

  11. Cd/Hg cationic substitution in magic-sized CdSe clusters: Optical characterization and theoretical studies

    International Nuclear Information System (INIS)

    Highlights: • HgSe magic-sized clusters were prepared via Cd/Hg cationic exchange in pyridine. • Upon cationic exchange CdSe clusters behave differently from quantum dots or rods. • Theoretical calculations of magic-sized clusters agree well with experimental data. - Abstract: We examine conversion of magic-sized CdSe clusters (MSCs) into HgSe ones by means of Cd/Hg cation exchange. With this procedure Cd8Cd17– and Cd32–selenide clusters can be converted into corresponding Hg8–, Hg17– and Hg32–selenide ones. Upon cationic exchange MSCs behavior differs from that of bulkier counterparts – larger (2–3 nm) quantum dots. Unlike CdSe colloidal quantum dots, magic-sized clusters are converted in fast and complete manner without a formation of intermediate mixed CdxHg1−x compounds that was established on the basis of optical absorption spectroscopy and chemical composition analysis. These assumptions were supported by DFT quantum chemical calculations performed for Cd8–, Cd17– and Hg8–, Hg17–selenide model clusters. Energies of experimental and calculated optical transitions were compared in order to prove the isostructural character of cationic substitution in magic-sized clusters

  12. Correlation between damage evolution, cluster formation and optical properties of silver implanted lithium niobate

    International Nuclear Information System (INIS)

    In the present contribution results of Ag cluster synthesis in lithium niobate (LiNbO3) by ion implantation and subsequent thermal annealing are presented. Silver ions were implanted into x-cut LiNbO3 with an ion energy of 380 keV at liquid nitrogen temperature, room temperature and 700 K to an ion fluence of 1 × 1017 cm−2, respectively. Damage and cluster size distributions in the implanted layers were analyzed by means of RBS and STEM/TEM after implantation and subsequent rapid thermal annealing in the temperature range of 573–1173 K. The layers are initially amorphous after implantation at liquid nitrogen or room temperature and recrystallize from the substrate towards the surface with increasing annealing temperature. The maximum radius of the initially formed silver clusters increases from about 3 to 20 nm under rapid thermal annealing. Optical transmission measurements show a red-shift of the surface plasmon resonance (SPR) peak with increasing annealing temperature. According to the Mie scattering theory the red-shift for annealing temperatures below 873 K is most likely due to the recrystallization of amorphous LiNbO3. For even higher annealing temperatures the further red-shift is connected with the growth of the silver clusters.

  13. High reactivity of nanosized niobium oxide cluster cations in methane activation: A comparison with vanadium oxides.

    Science.gov (United States)

    Ding, Xun-Lei; Wang, Dan; Wu, Xiao-Nan; Li, Zi-Yu; Zhao, Yan-Xia; He, Sheng-Gui

    2015-09-28

    The reactions between methane and niobium oxide cluster cations were studied and compared to those employing vanadium oxides. Hydrogen atom abstraction (HAA) reactions were identified over stoichiometric (Nb2O5)N(+) clusters for N as large as 14 with a time-of-flight mass spectrometer. The reactivity of (Nb2O5)N(+) clusters decreases as the N increases, and it is higher than that of (V 2O5)N(+) for N ≥ 4. Theoretical studies were conducted on (Nb2O5)N(+) (N = 2-6) by density functional calculations. HAA reactions on these clusters are all favorable thermodynamically and kinetically. The difference of the reactivity with respect to the cluster size and metal type (Nb vs V) was attributed to thermodynamics, kinetics, the electron capture ability, and the distribution of the unpaired spin density. Nanosized Nb oxide clusters show higher HAA reactivity than V oxides, indicating that niobia may serve as promising catalysts for practical methane conversion. PMID:26429016

  14. MODIFICATION OF TRANSITION METAL CATIONS TO POLYMER- STABILIZED PLATINUM COLLOIDAL CLUSTERS IN ENANTIOSELECTIVE HYDROGENATION OF METHYL PYRUVATE

    Institute of Scientific and Technical Information of China (English)

    Xiao-ping Yan; Bao-lin He; Jie Zhang; Han-fan Liu

    2005-01-01

    Modification of transition metal cations to polymer-stabilized Pt colloidal clusters modified with cinchonidine was studied in enantioselective hydrogenation of methyl pyruvate. Compared to the enantiomeric excess (e.e.) value (71.4%)obtained without the presence of metal cations, obvious e.e. enhancement (up to 82.5%) was resulted from the addition of Zn2+ but with a certain decrease in activity. The reaction parameters in the presence of Zn2+ were also studied. It was found that the Pt colloidal catalysts in the presence of metal cations performed very differently from that in the absence of metal cations.

  15. Charge-transfer interactions between TCNQ and silver clusters Ag20 and Ag13.

    Science.gov (United States)

    Chen, Jing; Zhang, Hanyu; Liu, Xianhu; Yuan, Chengqian; Jia, Meiye; Luo, Zhixun; Yao, Jiannian

    2016-03-14

    Interactions between tetracyanoquinodimethane (TCNQ) and two typical silver clusters Ag13 and Ag20 are studied by first-principles DFT calculations. Charge transfer (CT) from silver clusters to TCNQ molecules initiates the Ag-N bond formation at selective sites resulting in the formation of different isomers of Ag13-TCNQ and Ag20-TCNQ complexes. We show here a comprehensive spectroscopic analysis for the two CT complexes on the basis of Raman and infrared activities. Furthermore, frontier molecular orbital (FMO) and natural bond orbital (NBO) analysis of the complexes provides a vivid illustration of electron cloud overlap and interactions. The behavior of TCNQ adsorbed on the tetrahedral Ag20 cluster was even found in good agreement with the experimental measurement of TCNQ molecules on a single-crystal Ag(111) surface. This study not only endeavors to clarify the charge-transfer interactions of TCNQ with silver, but also presents a finding of enhanced charge transfer between Ag13 and TCNQ indicating potential for candidate building blocks of granular materials. PMID:26888771

  16. Experimental and theoretical study on interaction of the silver cation with nonactin

    Science.gov (United States)

    Makrlík, Emanuel; Vaňura, Petr

    2015-12-01

    From extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium ? occurring in the two-phase water-nitrobenzene system (1 = nonactin, aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log Kex (Ag+, 1 ṡ Na+) = 0.6 ± 0.1. Furthermore, the stability constant of the 1 ṡ Ag+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log βnb(1 ṡ Ag+) = 6.6 ± 0.2. Finally, employing quantum mechanical calculations, the most probable structure of the cationic complex species 1 ṡ Ag+ was derived. In the resulting complex, having a tennis-ball-seam conformation with the C2 symmetry, the 'central' cation Ag+ is bound by eight relatively strong bonding interactions to eight oxygen atoms of the parent nonactin ligand. The interaction energy of the considered 1 ṡ Ag+ complex was found to be -468.5 kJ/mol, confirming also the formation of this cationic species.

  17. Tuning of silver cluster emission from blue to red using a bio-active peptide in water.

    Science.gov (United States)

    Roy, Subhasish; Baral, Abhishek; Banerjee, Arindam

    2014-03-26

    Blue, green, and red emitting silver quantum clusters have been prepared through green chemical approach by using a bio-active peptide glutathione (reduced) in a 50 mM phosphate buffer at pH 7.46. This study describes fluorescence emission tuning of the silver clusters by making different sized Ag clusters using slightly different reaction conditions keeping the same stabilizing ligand, reducing agent, solvent system, and silver salt precursor. The preparation procedure of these silver quantum clusters is new and highly reproducible. Each of these clusters shows very interesting fluorescence properties with large stokes shifts, and the quantum yields of blue, green, and red clusters are 2.08%, 0.125%, and 1.39%, respectively. These silver quantum clusters have been characterized by using different techniques including fluorescence spectroscopy, UV-vis spectroscopy, field-emission gun transmission electron microscopic (FEG-TEM) imaging and MALDI-TOF MS analyses. MALDI-TOF MS analyses show that the size of these blue, green and red emitting silver clusters are Ag5 (NC1, nanoclusters 1), Ag8 (NC2, nanoclusters 2) and Ag13 (NC3, nanoclusters 3), respectively, by using 2,5-dihydroxybenzoic acid as a matrix. These clusters are stable in broad ranges of pH. The NC3 (red emitting) has been successfully utilized for selective and sensitive detection of toxic Hg(II) ions in water by using even naked eyes, fluorometric, and calorimetric studies. The lower limit of detection of Hg(II) ions in water has been estimated to be 126 and 245 nM from fluorometric and UV-vis analyses, respectively. Enthalpy change (ΔH) during this Hg(II) sensing process is 2508 KJ mol(-1). PMID:24568193

  18. Structure and annealing of cation Frenkel defects in silver halides after irradiation with thermal neutrons

    International Nuclear Information System (INIS)

    Polarised 110Ag(I=1,Tsub(1/2)=24.6s) nuclei were produced in the reaction 109Ag(nsub(pol),γ)110Ag in AgCl and AgBr single crystals. The hyperfine interaction of the 110Ag nuclei with radiation-induced point defects has been studied. Positions and shapes of nuclear magnetic resonance curves could be explained assuming a random distribution of positively and negatively charged point defects. From this analysis and from additionally measured migration enthalpies, derived from annealing stages, the defects could be identified as cation Frenkel pairs. The nuclear quadrupole moment of 110Ag was determined as Q=0.24x10-24cm2 by measuring the spin-lattice relaxation time of the 110Ag nuclei. (author)

  19. Experimental and theoretical studies of the reaction between cationic vanadium oxide clusters and acetylene

    Institute of Scientific and Technical Information of China (English)

    YIN Shi; MA YanPing; DU Lin; HE ShengGui; GE MaoFa

    2008-01-01

    The time of flight mass spectrometer coupled with a laser ablation/supersonic expansion cluster source and a fast flow reactor was adopted to study the reactivity of cationic vanadium oxide clusters (VmO+n) toward acetylene (C2H2) molecules under gas phase (P, ~ 1.14 kPa), under near room temperature (T, ~ 350 K) conditions. Association products, VmOnC2H+2 (m,n = 2,4; 2,6; 3,7-8; 4,9-11; 5,12-13;6,13-16, and 7,17), are observed. The oxidation of C2H2 by (V2O5)+n, (n = 1-3) is experimentally identified.The reactivity of (V2O5)+n decreases as n increases. Density functional theory (DFT) calculations were carried out to interpret the reaction mechanisms. The DFT results indicate that a terminal oxygen atom from V2O+5 can transfer overall barrierlessly to C2H2 at room temperature, which is in agreement with the experimental observation. Other experimental results such as the observation of V2O6C2H+2 and nonobservation of V2O7,8C2H+2 in the experiments are also well interpreted based on the DFT calculations.The reactivity of vanadium oxide clusters toward acetylene and other hydrocarbons may be considered in identifying molecular level mechanisms for related heterogeneous catalysis.

  20. Theoretical study of partial oxidation of ethylene by vanadium trioxide cluster cation

    Institute of Scientific and Technical Information of China (English)

    WANG ZheChen; DING XunLei; MA YanPing; CAO Hai; WU XiaoNan; ZHAO YanXia; HE ShengGui

    2009-01-01

    Density functional theory (DFT) study of reaction between vanadium trioxide cluster cation (VO+3) and ethylene (C2H4) to yield VO+2 + CH3CHO (acetaldehyde) and VO2CH+2 + HCHO (formaldehyde) is carried out.Structures of all reactants,products,intermediates,and transition state in the reaction have been optimized and characterized.The results show unexpected barriers in the reaction due to the existence of a η2-O2 moiety in the ground state structure of VO+3.The initial reaction steps combining ethylene adsorption,C=C activation and O-O cleavage are proposed as rate limiting processes.Comparison of reactions of VO+3 + C2H4 with VO3 + C2H4 and VO+2 + C2H4 in the previous studies is made in detail.The results of this work may shed light on the understanding of C=C bond cleavage in related heterogeneous catalysis.

  1. Highly stable polymer coated nano-clustered silver plates: A multimodal optical contrast agent for biomedical imaging

    OpenAIRE

    Ray, Aniruddha; Mukundan, Ananya; Xie, Zhixing; Karamchand, Leshern; Wang, Xueding; Kopelman, Raoul

    2014-01-01

    Here we present a new optical contrast agent, based on silver nanoplate clusters embedded inside a polymer nano matrix. Unlike nanosphere clusters, which have been well studied, nanoplate clusters have unique properties due to the different possible orientations of interaction between the individual plates, resulting in a significant broadening of the absorption spectra. These nanoclusters were immobilized inside a polymer cladding, so as to maintain their stability and optical properties und...

  2. First principle study of the interaction of elemental Hg with small neutral, anionic and cationic Pd ( = 1-6) clusters

    Indian Academy of Sciences (India)

    Shamoon Ahmad Siddiqui; Nadir Bouarissa

    2013-11-01

    Density functional theory (DFT)-based calculations have been performed so as to study the interaction of elemental mercury (Hg) with small neutral, cationic and anionic palladium clusters (Pd, = 1-6). Results of these calculations clearly indicate that frontier molecular orbital (FMO) theory is a useful method to predict the selectivity of Hg adsorption. Binding energies of Hg on cationic Pd clusters are generally found to be greater than those on neutral and anionic clusters. Results of natural bond orbital (NBO) analysis show that the flow of electrons in the neutral and charged complexes is mainly due to s orbitals of Hg. NBO analysis also indicates that, in most of the cases, the binding energies of Hg with Pdn clusters are directly proportional to charge transfer, i.e., greater the charge transfer, higher is the binding energy.

  3. Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters

    International Nuclear Information System (INIS)

    A study of the Surface Enhanced Raman Scattering (SERS) from micrometric metallic nanoparticle aggregates is presented. The sample is obtained from the self-assembly on glass slides of micro-clusters of silver nanoparticles (60 and 100 nm diameter), functionalized with the organic molecule 4-aminothiophenol in water solution. For nanoparticle clusters at the micron scale, a maximum enhancement factor of 109 is estimated from the SERS over the Raman intensity ratio normalized to the single molecule contribution. Atomic force microscopy, correlated to spatially resolved Raman measurements, allows highlighting the connection between morphology and efficiency of the plasmonic system. The correlation between geometric features and SERS response of the metallic structures reveals a linear trend of the cluster maximum scattered intensity as a function of the surface area of the aggregate. On given clusters, the intensity turns out to be also influenced by the number of stacking planes of the aggregate, thus suggesting a plasmonic waveguide effect. The linear dependence results weakened for the largest area clusters, suggesting 30 μm2 as the upper limit for exploiting the coherence over large scale of the plasmonic response.

  4. Dimensional scale effects on surface enhanced Raman scattering efficiency of self-assembled silver nanoparticle clusters

    Energy Technology Data Exchange (ETDEWEB)

    Fasolato, C. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena, 291, 00185 Rome (Italy); Domenici, F., E-mail: fabiodomenici@gmail.com, E-mail: paolo.postorino@roma1.infn.it; De Angelis, L.; Luongo, F.; Postorino, P., E-mail: fabiodomenici@gmail.com, E-mail: paolo.postorino@roma1.infn.it [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Sennato, S. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); CNR-IPCS UOS Roma, Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Mura, F. [Dip. Scienze di Base Applicate all' Ingegneria, Università Sapienza, Via A. Scarpa, 16, 00185 Rome (Italy); Costantini, F. [Dip. Ingegneria Astronautica Elettrica ed Energetica, Università Sapienza, Via Eudossiana, 18, 00184 Rome (Italy); Bordi, F. [Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy); Center for Life Nanoscience@Sapienza, Istituto Italiano di Tecnologia, V.le Regina Elena, 291, 00185 Rome (Italy); CNR-IPCS UOS Roma, Dip. Fisica, Università Sapienza, P.le Aldo Moro, 5, 00185 Rome (Italy)

    2014-08-18

    A study of the Surface Enhanced Raman Scattering (SERS) from micrometric metallic nanoparticle aggregates is presented. The sample is obtained from the self-assembly on glass slides of micro-clusters of silver nanoparticles (60 and 100 nm diameter), functionalized with the organic molecule 4-aminothiophenol in water solution. For nanoparticle clusters at the micron scale, a maximum enhancement factor of 10{sup 9} is estimated from the SERS over the Raman intensity ratio normalized to the single molecule contribution. Atomic force microscopy, correlated to spatially resolved Raman measurements, allows highlighting the connection between morphology and efficiency of the plasmonic system. The correlation between geometric features and SERS response of the metallic structures reveals a linear trend of the cluster maximum scattered intensity as a function of the surface area of the aggregate. On given clusters, the intensity turns out to be also influenced by the number of stacking planes of the aggregate, thus suggesting a plasmonic waveguide effect. The linear dependence results weakened for the largest area clusters, suggesting 30 μm{sup 2} as the upper limit for exploiting the coherence over large scale of the plasmonic response.

  5. Collision-induced dissociation of Co+n (n=2--18) with Xe: Bond energies of cationic and neutral cobalt clusters, dissociation pathways, and structures

    International Nuclear Information System (INIS)

    The kinetic energy dependence of collision-induced dissociation (CID) of Co+n (n=2--18) with xenon is studied by using a guided ion beam mass spectrometer. Examination of the general dissociation behavior over a broad collision energy range shows that cobalt cluster cations dissociate exclusively by loss of single atoms (cluster ''evaporation''), with no evidence found for elimination of molecular cluster fragments. Bond dissociation energies for cobalt cluster cations, Co+n (n=2--18), are determined from measurements of the CID thresholds. Bond energies for neutral cobalt clusters, Con (n=4--18), are derived by combining these cationic bond energies with ionization energies for Con from the literature. The dependence of binding energy on cluster size is similar to that observed for iron clusters, and inspires some speculation regarding cluster ion structures

  6. Ab initio calculations of optical properties of silver clusters: Cross-over from molecular to nanoscale behavior

    OpenAIRE

    Titantah, John T.; Karttunen, Mikko

    2016-01-01

    Electronic and optical properties of silver clusters were calculated using two different \\textit{ab initio} approaches: 1) based on all-electron full-potential linearized-augmented plane-wave method and 2) local basis function pseudopotential approach. Agreement is found between the two methods for small and intermediate sized clusters for which the former method is limited due to its all-electron formulation. The latter, due to non-periodic boundary conditions, is the more natural approach t...

  7. Nanoplasmonic electron acceleration in silver clusters studied by angular-resolved electron spectroscopy

    International Nuclear Information System (INIS)

    The nanoplasmonic field enhancement effects in the energetic electron emission from few-nm-sized silver clusters exposed to intense femtosecond dual pulses are investigated by high-resolution double differential electron spectroscopy. For moderate laser intensities of 1014 W cm−2, the delay-dependent and angular-resolved electron spectra show laser-aligned emission of electrons up to keV kinetic energies, exceeding the ponderomotive potential by two orders of magnitude. The importance of the nanoplasmonic field enhancement due to resonant Mie-plasmon excitation observed for optimal pulse delays is investigated by a direct comparison with molecular dynamics results. The excellent agreement of the key signatures in the delay-dependent and angular-resolved spectra with simulation results allows for a quantitative analysis of the laser and plasmonic contributions to the acceleration process. The extracted field enhancement at resonance verifies the dominance of surface-plasmon-assisted re-scattering. (paper)

  8. Ab initio calculations of optical properties of silver clusters: cross-over from molecular to nanoscale behavior

    Science.gov (United States)

    Titantah, John T.; Karttunen, Mikko

    2016-05-01

    Electronic and optical properties of silver clusters were calculated using two different ab initio approaches: (1) based on all-electron full-potential linearized-augmented plane-wave method and (2) local basis function pseudopotential approach. Agreement is found between the two methods for small and intermediate sized clusters for which the former method is limited due to its all-electron formulation. The latter, due to non-periodic boundary conditions, is the more natural approach to simulate small clusters. The effect of cluster size is then explored using the local basis function approach. We find that as the cluster size increases, the electronic structure undergoes a transition from molecular behavior to nanoparticle behavior at a cluster size of 140 atoms (diameter ~1.7 nm). Above this cluster size the step-like electronic structure, evident as several features in the imaginary part of the polarizability of all clusters smaller than Ag147, gives way to a dominant plasmon peak localized at wavelengths 350 nm ≤ λ ≤ 600 nm. It is, thus, at this length-scale that the conduction electrons' collective oscillations that are responsible for plasmonic resonances begin to dominate the opto-electronic properties of silver nanoclusters.

  9. Cation-interlinking network cluster approach in application to extended defects in covalent-bonded glassy semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, Oleh [Lviv Institute of Materials of SRC, Lviv (Ukraine); Institute of Physics, Jan Dlugosz University, Czestochowa (Poland); Boyko, Vitaliy [Lviv Institute of Materials of SRC, Lviv (Ukraine); Lviv Polytechnic National University (Ukraine); Hyla, Malgorzata [Institute of Physics, Jan Dlugosz University, Czestochowa (Poland)

    2009-08-15

    A principally new cation-interlinking network cluster approach (CINCA) was proposed to describe different types of glass-forming structural units in network covalent-bonded solids like to chalcogenide vitreous semiconductors. Within this approach, two (or three) interconnected cation-centered polyhedra form more stretched structural fragments conditionally named atomic clusters, reflecting in such a way whole backbone of covalent-bonded semiconductor multiply duplicated in a space. The probability of possible atomic clusters is estimated with numerical parameter giving average formation energy in respect to the number of atoms involved in the cluster and average coordination number. This approach was probed at the example of regular network clusters based on AsS{sub 3/2} pyramids mutually-interconnected through bridge -S- atom contrasted with irregular double-bond-based quasi-tetrahedral structural S=AsS{sub 3} defects within binary As-S system. The corresponding mathematical calculations confirming a preference of regularly-linked structural units over irregular ones was performed using HyperChem 7.5 program. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Stable compositions and geometrical structures of titanium oxide cluster cations and anions studied by ion mobility mass spectrometry

    Science.gov (United States)

    Ohshimo, Keijiro; Norimasa, Naoya; Moriyama, Ryoichi; Misaizu, Fuminori

    2016-05-01

    Geometrical structures of titanium oxide cluster cations and anions have been investigated by ion mobility mass spectrometry and quantum chemical calculations based on density functional theory. Stable cluster compositions with respect to collision induced dissociation were also determined by changing ion injection energy to an ion drift cell for mobility measurements. The TinO2n-1+ cations and TinO2n- anions were predominantly observed at high injection energies, in addition to TinO2n+ for cations and TinO2n+1- for anions. Collision cross sections of TinO2n+ and TinO2n+1- for n = 1-7, determined by ion mobility mass spectrometry, were compared with those obtained theoretically as orientation-averaged cross sections for the optimized structures by quantum chemical calculations. All of the geometrical structures thus assigned have three-dimensional structures, which are in marked contrast with other oxides of late transition metals. One-oxygen atom dissociation processes from TinO2n+ and TinO2n+1- by collisions were also explained by analysis of spin density distributions.

  11. Ethynide-stabilized high-nuclearity silver(i) sulfido molecular clusters assembled using organic sulfide precursors.

    Science.gov (United States)

    Chen, Zi-Yi; Tam, Dennis Y S; Mak, Thomas C W

    2016-05-01

    Inexpensive 1,1'-thiocarbonyldiimidazole and di(2-pyridyl) thionocarbonate have been used as respective sulfide precursors to assemble unprecedented high-nuclearity ethynide-stabilized silver(i) sulfido molecular clusters [Ag9S6@Ag36(C[triple bond, length as m-dash]C(t)Bu)32(H2O)2] [Ag(imidazole)(CH3OH)(H2O)](BF4)2·8H2O·2CH3OH (1) and [Ag120S24(PhC[triple bond, length as m-dash]C)52Cl4(2-pyridone)10(H2O)8](H3O)4(SiF6)8(BF4)4·CH3OH·22H2O (2), the latter being the largest isolated silver(i) ethynide cluster reported to date. PMID:27071972

  12. Coverage Dependent Charge Reduction of Cationic Gold Clusters on Surfaces Prepared Using Soft Landing of Mass-selected Ions

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2012-11-29

    The ionic charge state of monodisperse cationic gold clusters on surfaces may be controlled by selecting the coverage of mass-selected ions soft landed onto a substrate. Polydisperse diphosphine-capped gold clusters were synthesized in solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine in the presence of 1,3-bis(diphenylphosphino)propane. The polydisperse gold clusters were introduced into the gas phase by electrospray ionization and mass selection was employed to select a multiply charged cationic cluster species (Au11L53+, m/z = 1409, L = 1,3-bis(diphenylphosphino)propane) which was delivered to the surfaces of four different self-assembled monolayers on gold (SAMs) at coverages of 1011 and 1012 clusters/mm2. Employing the spatial profiling capabilities of in-situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) it is shown that, in addition to the chemical functionality of the monolayer (as demonstrated previously: ACS Nano, 2012, 6, 573) the coverage of cationic gold clusters on the surface may be used to control the distribution of ionic charge states of the soft-landed multiply charged clusters. In the case of a 1H,1H,2H,2H-perfluorodecanethiol SAM (FSAM) almost complete retention of charge by the deposited Au11L53+ clusters was observed at a lower coverage of 1011 clusters/mm2. In contrast, at a higher coverage of 1012 clusters/mm2, pronounced reduction of charge to Au11L52+ and Au11L5+ was observed on the FSAM. When soft landed onto 16- and 11-mercaptohexadecanoic acid surfaces on gold (16,11-COOH-SAMs), the mass-selected Au11L53+ clusters exhibited partial reduction of charge to Au11L52+ at lower coverage and additional reduction of charge to both Au11L52+ and Au11L5+ at higher coverage. The reduction of charge was found to be more pronounced on the surface of the shorter (thinner) C11 than the longer (thicker) C16-COOH-SAM. On the surface of the 1-dodecanethiol (HSAM) monolayer, the most abundant charge state

  13. The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter

    International Nuclear Information System (INIS)

    The formation and characterization of AgNPs (silver nanoparticles) formed from the reduction of Ag+ by SRNOM (Suwannee River natural organic matter) is reported. The images of SRNOM-formed AgNPs and the selected area electron diffraction (SAED) were captured by high resolution transmission electron microscopy (HRTEM). The colloidal and chemical stability of SRNOM- and SRHA (Suwannee River humic acid)-formed AgNPs in different ionic strength solutions of NaCl, KCl, CaCl2 and MgCl2 was investigated in an effort to evaluate the key fate and transport processes of these nanoparticles in natural aqueous environments. The aggregation state, stability and sedimentation rate of the AgNPs were monitored by Dynamic Light Scattering (DLS), zeta potential, and UV–vis measurements. The results indicate that both types of AgNPs are very unstable in high ionic strength solutions. Interestingly, the nanoparticles appeared more unstable in divalent cation solutions than in monovalent cation solutions at similar concentrations. Furthermore, the presence of SRNOM and SRHA contributed to the nanoparticle instability at high ionic strength in divalent metallic cation solutions, most likely due to intermolecular bridging with the organic matter. The results clearly suggest that changes in solution chemistry greatly affect nanoparticle long term stability and transport in natural aqueous environments. Highlights: ► Formation of SRNOM-AgNPs under environmentally relevant conditions ► Influence of monovalent versus divalent cations on SRHA- and SRNOM-AgNP stability ► Effect of AgNPs on organic matter removal from water columns

  14. Theoretical study of structural and optical properties of small silver and gold clusters at defect centers of MgO

    Energy Technology Data Exchange (ETDEWEB)

    Buergel, Christian; Bonacic-Koutecky, Vlasta [Department of Chemistry, Humboldt-Universitaet zu Berlin (Germany); Mitric, Roland [Fachbereich Physik, Freie Universitaet Berlin (Germany)

    2010-05-15

    In this contribution we present the structural and optical properties of small noble-metal clusters at the F{sub S}-center defect of the MgO (100) support. We focus on comparing absorption and emission properties of supported silver and gold clusters. It will be shown that the leading absorption features in the low energy regime are similar for supported silver and gold clusters of the same size, in spite of the direct involvement of d electrons from Au atoms due to strong relativistic effects. Molecular dynamics (MD) simulations in the excited electronic states allow us to unravel relaxation mechanism and to propose the smallest noble-metal clusters at the F{sub S}-center defect, Ag{sub 2,4} rate at F{sub 5c} and Au{sub 2,4} rate at F{sub 5c}, as good candidates for emissive centers. In contrast, larger supported Ag{sub 8} rate at {sub 5c} and Au{sub 8} rate at F{sub 5c} clusters are unlikely to fluoresce. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. Ultraviolet–visible absorption, Raman, vibration spectra of pure silver and Ag–Cu clusters: A density functional theory study

    International Nuclear Information System (INIS)

    The UV–visible absorption spectra of Agn and Agn−1Cu1 (n=2–8, 13, 20, 32) clusters were investigated in the framework of TD-DFT using LC-ωPBE (ω=0.40) and the Raman and vibration spectra of Agn and Agn−1Cu1 (n=2–8, 13, 20, 32, 55) clusters were calculated by the DFT/GGA/PBE. The UV–visible absorption, Raman, vibration spectra of pure silver and Ag–Cu clusters are related with their sizes, compositions and structures. Blueshifts are obviously observed as following: from Ag2 to Ag3, from Ag4 to Ag13, from Ag20 to Ag32, from Ag1Cu1 to Ag2Cu1, from Ag3Cu1 to Ag4Cu1, from Ag5Cu1 to Ag12Cu1, from Ag19Cu1 to Ag31Cu1, and from Agn to Agn−1Cu1 (n=2–8, 20, 32); redshifts obviously appear as following changes: from Ag3 to Ag4 and from Ag13 to Ag20, from Ag2Cu1 to Ag3Cu1, from Ag4Cu1 to Ag5Cu1, from Ag13Cu1 to Ag19Cu1, and from Ag13 to Ag12Cu1. On the whole, the wavelengths of the maximum Raman peaks of pure Ag and Ag–Cu clusters lower with increasing cluster size; the intensities of the maximum Raman peaks of pure Ag and Ag–Cu clusters are weakly wavy as clusters change from Ag2 to Ag8, from Ag1Cu1 to Ag7Cu1, then, they (except Ag12Cu1) gradually strengthen with increasing cluster size, however, the intensity of Ag12Cu1 is larger than that of Ag19Cu1. The wavenumbers and intensities of the maximum vibration peaks of pure Ag and Ag–Cu clusters fluctuate with increasing cluster size. The calculated vibrational and Raman spectroscopy of pure Ag and Ag–Cu clusters may be helpful in determining sizes and structures of experimental clusters. - Graphical abstract: The absorption spectra of silver and Ag-Cu clusters are related with their sizes and compositions. Blueshifts and redshifts are observed as sizes and compositions vary.

  16. Controlled Distribution and Clustering of Silver in Ag-DLC Nanocomposite Coatings Using a Hybrid Plasma Approach.

    Science.gov (United States)

    Cloutier, M; Turgeon, S; Busby, Y; Tatoulian, M; Pireaux, J-J; Mantovani, D

    2016-08-17

    Incorporation of selected metallic elements into diamond-like carbon (DLC) has emerged as an innovative approach to add unique functional properties to DLC coatings, thus opening up a range of new potential applications in fields as diverse as sensors, tribology, and biomaterials. However, deposition by plasma techniques of metal-containing DLC coatings with well-defined structural properties and metal distribution is currently hindered by the limited understanding of their growth mechanisms. We report here a silver-incorporated diamond-like carbon coating (Ag-DLC) prepared in a hybrid plasma reactor which allowed independent control of the metal content and the carbon film structure and morphology. Morphological and chemical analyses of Ag-DLC films were performed by atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. The vertical distribution of silver from the surface toward the coating bulk was found to be highly inhomogeneous due to top surface segregation and clustering of silver nanoparticles. Two plasma parameters, the sputtered Ag flux and ion energy, were shown to influence the spatial distribution of silver particles. On the basis of these findings, a mechanism for Ag-DLC growth by plasma was proposed. PMID:27454833

  17. Highly stable polymer coated nano-clustered silver plates: a multimodal optical contrast agent for biomedical imaging

    Science.gov (United States)

    Ray, Aniruddha; Mukundan, Ananya; Xie, Zhixing; Karamchand, Leshern; Wang, Xueding; Kopelman, Raoul

    2014-11-01

    Here, we present a new optical contrast agent based on silver nanoplate clusters embedded inside of a polymer nano matrix. Unlike nanosphere clusters, which have been well studied, nanoplate clusters have unique properties due to the different possible orientations of interaction between the individual plates, resulting in a significant broadening of the absorption spectra. These nanoclusters were immobilized inside of a polymer cladding so as to maintain their stability and optical properties under in vivo conditions. The polymer-coated silver nanoplate clusters show a lower toxicity compared to the uncoated nanoparticles. At high nanoparticle concentrations, cell death occurs mostly due to apoptosis. These nanoparticles were used for targeted fluorescence imaging in a rat glioma cell line by incorporating a fluorescent dye into the matrix, followed by conjugation of a tumor targeting an F3 peptide. We further used these nanoparticles as photoacoustic contrast agents in vivo to enhance the contrast of the vasculature structures in a rat ear model. We observed a contrast enhancement of over 90% following the nanoparticle injection. It is also shown that these NPs can serve as efficient contrast agents, with specific targeting abilities for broadband multimodal imaging that are usable for diagnostic applications and that extend into use as therapeutic agents as well.

  18. Highly stable polymer coated nano-clustered silver plates: a multimodal optical contrast agent for biomedical imaging

    International Nuclear Information System (INIS)

    Here, we present a new optical contrast agent based on silver nanoplate clusters embedded inside of a polymer nano matrix. Unlike nanosphere clusters, which have been well studied, nanoplate clusters have unique properties due to the different possible orientations of interaction between the individual plates, resulting in a significant broadening of the absorption spectra. These nanoclusters were immobilized inside of a polymer cladding so as to maintain their stability and optical properties under in vivo conditions. The polymer-coated silver nanoplate clusters show a lower toxicity compared to the uncoated nanoparticles. At high nanoparticle concentrations, cell death occurs mostly due to apoptosis. These nanoparticles were used for targeted fluorescence imaging in a rat glioma cell line by incorporating a fluorescent dye into the matrix, followed by conjugation of a tumor targeting an F3 peptide. We further used these nanoparticles as photoacoustic contrast agents in vivo to enhance the contrast of the vasculature structures in a rat ear model. We observed a contrast enhancement of over 90% following the nanoparticle injection. It is also shown that these NPs can serve as efficient contrast agents, with specific targeting abilities for broadband multimodal imaging that are usable for diagnostic applications and that extend into use as therapeutic agents as well. (paper)

  19. Methane Activation Mediated by a Series of Cerium-Vanadium Bimetallic Oxide Cluster Cations: Tuning Reactivity by Doping.

    Science.gov (United States)

    Ma, Jia-Bi; Meng, Jing-Heng; He, Sheng-Gui

    2016-04-18

    The reactions of cerium-vanadium cluster cations Cex Vy Oz (+) with CH4 are investigated by time-of-flight mass spectrometry and density functional theory calculations. (CeO2 )m (V2 O5 )n (+) clusters (m=1,2, n=1-5; m=3, n=1-4) with dimensions up to nanosize can abstract one hydrogen atom from CH4 . The theoretical study indicates that there are two types of active species in (CeO2 )m (V2 O5 )n (+) , V[(Ot )2 ](.) and [(Ob )2 CeOt ](.) (Ot and Ob represent terminal and bridging oxygen atoms, respectively); the former is less reactive than the latter. The experimentally observed size-dependent reactivities can be rationalized by considering the different active species and mechanisms. Interestingly, the reactivity of the (CeO2 )m (V2 O5 )n (+) clusters falls between those of (CeO2 )2-4 (+) and (V2 O5 )1-5 (+) in terms of C-H bond activation, thus the nature of the active species and the cluster reactivity can be effectively tuned by doping. PMID:26714587

  20. Ab initio study of the structural, magnetic, and electronic properties of copper and silver clusters and their alloys with one palladium atom

    Directory of Open Access Journals (Sweden)

    S. J Hashemifar

    2015-01-01

    Full Text Available In this paper, the structural, magnetic, and electronic properties of two- to nine-atom copper and silver clusters and their alloys with one palladium atom are investigated by using full-potential all-electron density functional computations. After calculating minimized energy of several structural isomers of every nanocluster, it is argued that the small size nanoclusters (up to size of 6, ‎ prefer planar structures, while by increasing size a 2D-3D structural transformation is observed. The structural transformation of pure and copper-palladium clusters occurs in the size of seven and that of silver-palladium cluster in happens at the size of six. The calculated second difference and dissociation energies confirm that the two- and eight- atom pure clusters and three- and seven- atom alloyed clusters are magic clusters. The electronic and magnetic properties of stable isomers are calculated and considered after applying many body based GW correction.

  1. A density functional study of silver clusters on a stepped graphite surface: formation of self-assembled nano-wires.

    Science.gov (United States)

    Singh, Akansha; Sen, Prasenjit

    2015-05-21

    Adsorption and diffusion of silver adatoms and clusters containing up to eight atoms on an HOPG substrate with an armchair step are studied using density functional methods. Step edges act as attractive sinks for adatoms and clusters. The diffusion barrier of an Ag adatom along the step edge is much larger than that on a clean terrace. At zero temperature, Ag clusters either distort or dissociate by forming covalent bonds with the edge C atoms. At 600 K, Ag5 and Ag8 clusters diffuse to the step edges, and then break up so as to maximize Ag-C bonds. The Ag atoms try to form a nanowire structure along the step edge. At such high temperatures, diffusion of clusters along the step edge involves diffusion of individual Ag atoms not bonded to the edge C atoms. Assumption of complete immobility of clusters trapped at step edges in the Gates-Robins model is not valid at high temperatures in this particular system. PMID:25903308

  2. A cationic copper(I) iodide cluster MOF exhibiting unusual ligand assisted thermochromism.

    Science.gov (United States)

    Yadav, Ashok; Srivastava, Anant Kumar; Balamurugan, Ayyakkalai; Boomishankar, Ramamoorthy

    2014-06-14

    By employing a tridentate thiophosphoramide ligand, [(NHAQ)3P[double bond, length as m-dash]S] (AQ = 3-quinolinyl), a cationic MOF, {[Cu6I5(L(1))2](OH)·3DMF·2.5MeOH}n, was synthesized. Photo-physical studies on the 2D-MOF showed an unusual thermochromic behaviour emitting a blue fluorescence at 298 K due to the AQ chromophore and an orange-yellow phosphorescence at 77 K due to the [Cu6I5](+) unit. PMID:24760039

  3. Crystal structure and solid-state properties of discrete hexa cationic trinuclear zinc triazole cluster

    Indian Academy of Sciences (India)

    Chatla Naga Babu; Paladugu Suresh; Arruri Sathyanarayana; Prasenjit Das; Ganesan Prabusankar

    2015-08-01

    A linear trinuclear cluster of the type [{Zn3 (HTrz)6 (H2O)6}6+ (NO$_{3}^{−}$)6 (H2O)] (ZnT) has been synthesized by one-pot reaction between 1,2,4-triazole and Zn(NO3).6H2O. Molecule consists of three Zn2+ ions linearly connected by 1,2,4-triazole with tri-fold symmetry. The coordination geometry around the zinc centre is octahedral with zinc-zinc separation of 3.810 Å. The coordination environment of central Zn2+ ion is satisfied by nitrogen atoms of six 1,2,4-triazoles, while the geometry of terminal Zn2+ ions is fulfilled by nitrogen atoms of three 1,2,4-triazoles and three water molecules. The thermal and absorption properties of ZnT have been reported for the first time.

  4. Synthesis and characterization of silver diethyldithiocarbamate cluster for the deposition of acanthite (Ag2S) thin films for photoelectrochemical applications

    International Nuclear Information System (INIS)

    Acanthite (Ag2S) thin films were fabricated on fluorine doped tin oxide coated conducting glass substrates by aerosol assisted chemical vapor deposition (AACVD) using silver cluster [Ag4{S2CN(C2H5)2}3(C5H5N)2]n·nNO3·2nH2O (1) [where (S2CN(C2H5)2) = diethyldithiocarbamate, C5H5N = pyridine] as a single source precursor. Cluster (1) was synthesized by the reaction of sodium diethyldithiocarbamate with silver nitrate in a mixture of acetone and pyridine. (1) was analyzed by melting point, elemental analysis, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, thermogravimetry and single crystal X-ray studies. Single crystal X-ray studies showed that (1) crystallizes in the triclinic crystal system with a = 11.4372(3), b = 11.6768(3), and c = 16.3672(4) Å and α = 105.817(3), β = 97.891(3), and γ = 93.274(3)° in the space group P-1. Thermogravimetric analysis revealed that (1) undergoes facile thermal decomposition at 400 °C to give a stable residual mass consistent with the formation of Ag2S. Thin films grown from a 0.02 M solution of (1) in pyridine at 350 and 400 °C using AACVD technique were characterized by powder X-ray diffraction, field emission scanning electron microscopy (FESEM), energy dispersive X-ray and ultraviolet-visible spectrophotometry. FESEM images of the films exhibited well-defined nanorods with length > 1000 nm and diameter 100–150 nm grown without any cracks, fractures or directional preference. A band gap of 1.05 eV was estimated by extrapolating the linear part of a Tauc plot recorded for the films. The photoelectrochemical (PEC) characteristics recorded under Air Mass 1.5 illumination indicated a photocurrent density of 220 μA cm−2 at 0.0 V vs Ag/AgCl/3 M KCl. The optical and PEC characteristics of the deposited thin films proved their suitability for PEC applications. - Highlights: • Synthesis and characterization of silver diethyl dithiocarbamate cluster • Fabrication of optically

  5. Photography: enhancing sensitivity by silver-halide crystal doping

    International Nuclear Information System (INIS)

    The physical chemistry of the silver photography processes, exposure, development and fixing, is briefly summarized. The mechanism of the autocatalytic development by the developer of the clusters produced in silver bromide crystals during the exposure which is controlled by the critical nuclearity of these clusters was understood from pulse radiolysis studies. The effective quantum yield PHIeff of photoinduced silver cluster formation in silver halide microcrystals is usually much lower than the photoionization theoretical limit PHItheor=1 electron-hole pair per photon absorbed, owing to a subsequent very fast intra-crystal recombination of a part of the electron-hole pairs. In order to inhibit this recombination and favor the silver reduction by photo-electrons, the AgX crystals were doped with the formate HCO2- as a specific hole scavenger. First, the dopant scavenges the photoinduced hole, thus enhancing the electron escape from the pair recombination. Second, the CO2·- radical so formed transfers an electron to another silver cation, so that the PHIeff limit may be of 2Ag0 per photon. This Photoinduced Bielectronic Transfer mechanism is strictly proportional to the light quanta absorbed and induces an exceptional efficiency for enhancing the radio- or photographic sensitivity insofar as it totally suppresses the electron-hole recombination

  6. Photography: enhancing sensitivity by silver-halide crystal doping

    Energy Technology Data Exchange (ETDEWEB)

    Belloni, Jacqueline

    2003-06-01

    The physical chemistry of the silver photography processes, exposure, development and fixing, is briefly summarized. The mechanism of the autocatalytic development by the developer of the clusters produced in silver bromide crystals during the exposure which is controlled by the critical nuclearity of these clusters was understood from pulse radiolysis studies. The effective quantum yield PHI{sub eff} of photoinduced silver cluster formation in silver halide microcrystals is usually much lower than the photoionization theoretical limit PHI{sub theor}=1 electron-hole pair per photon absorbed, owing to a subsequent very fast intra-crystal recombination of a part of the electron-hole pairs. In order to inhibit this recombination and favor the silver reduction by photo-electrons, the AgX crystals were doped with the formate HCO{sub 2}{sup -} as a specific hole scavenger. First, the dopant scavenges the photoinduced hole, thus enhancing the electron escape from the pair recombination. Second, the CO{sub 2}{sup {center_dot}}{sup -} radical so formed transfers an electron to another silver cation, so that the PHI{sub eff} limit may be of 2Ag{sup 0} per photon. This Photoinduced Bielectronic Transfer mechanism is strictly proportional to the light quanta absorbed and induces an exceptional efficiency for enhancing the radio- or photographic sensitivity insofar as it totally suppresses the electron-hole recombination.

  7. Adsorption of a single gold or silver atom on vanadium oxide clusters.

    Science.gov (United States)

    Ding, Xun-Lei; Wang, Dan; Li, Rui-Jie; Liao, Heng-Lu; Zhang, Yan; Zhang, Hua-Yong

    2016-03-30

    The bonding properties between a single atom and its support have a close relationship with the stability and reactivity of single-atom catalysts. As a model system, the structural and electronic properties of bimetallic oxide clusters MV3Oy(q) (M = Au or Ag, q = 0, ±1, and y = 6-8) are systematically studied using density functional theory. The single noble metal atom Au or Ag tends to be adsorbed on the periphery of the V oxide clusters. Au prefers V sites for oxygen-poor clusters and O sites for oxygen-rich clusters, while Ag prefers O sites for most cases. According to natural population analysis, Au may possess positive or negative charges in the bimetallic oxide clusters, while Ag usually possesses positive charges. The bonding between Au and V has relatively high covalent character according to the bond order analysis. This work may provide some clues for understanding the bonding properties of single noble metal atoms on the support in practical single-atom catalysts, and serve as a starting point for further theoretical studies on the reaction mechanisms of related catalytic systems. PMID:26984782

  8. Silver(I)-Catalyzed Addition of Phenols to Alkyne Cobalt Cluster Stabilized Carbocations.

    Science.gov (United States)

    Valderas, Carolina; Casarrubios, Luis; Lledos, Agusti; Ortuño, Manuel A; de la Torre, María C; Sierra, Miguel A

    2016-06-20

    A smooth catalytic method to use phenols as the nucleophilic partner in the Nicholas reaction has been developed. The method uses either Ag(I) or Au(I) catalysts with AgClO4 or AgBF4 as the most efficient catalysts tested. Neither additional additives nor cocatalysts were required and the formation of the corresponding phenol adducts occurred in excellent yields. The process has the single limitation of the inability of less nucleophilic phenols (4-nitrophenol) to generate the corresponding adducts. Additionally, the reaction is highly diastereoselective. DFT calculations allow a catalytic cycle to be proposed that involves trimetallic intermediates; the rate-determining step of the reaction is hydroxy-group elimination in a cobalt-silver trimetallic intermediate. PMID:27187529

  9. Silver clusters insert into polymer solar cell for enhancing light absorption

    Institute of Scientific and Technical Information of China (English)

    Guolong Li; Hongyu Zhen; Zhuoyin Huang; Kan Li; Weidong Shen; Xu Liu

    2012-01-01

    As an employment of surface plasmonic effect,the consequence of insertion of a layer of Ag clusters into polymer solar cell on the enhancement of light absorption and power conversion efficiency is investigated.Optical analysis based on the finite-difference time-domain (FDTD) is performed with experiments to evaluate the effect of the interaction between the Ag clusters and incident light on light absorption in polymer solar cell Ag clusters modify the light wave vector and the electromagnetic field inside the device is redistributed and enhanced.As a result,polymer solar cells achieve an overall increase in absorption,short-circuit current density,and power conversion efficiency.

  10. Media effects on the optical absorption spectra of silver clusters embedded in rara gas matrices

    International Nuclear Information System (INIS)

    The optical absorption of small mass selected Agn-clusters (n=7, 11, 15, 21) embedded in solid Ar, Kr and Xe has been measured. The absorption spectra show 1 to 3 major peaks between 3 and 4.5 eV, depending on the cluster size. Changing the matrix gas Ar→Kr→Xe induces a redshift which is comparable for all sizes studied and does not affect the main structure of the absorption spectra. We propose a scheme to estimate the gas phase value of the absorption energies which is in fair agreement with an estimation obtained by a simple model based on a Drude metal. (author). 10 refs, 2 figs

  11. Neutral and cationic free-space oxygen–silicon clusters SiO{sub n} (1

    Energy Technology Data Exchange (ETDEWEB)

    Forte, G. [Dipartimento di Scienze del Farmaco, Facoltà di Farmacia, Università di Catania, Viale A. Doria, 6, I-95126 Catania (Italy); Angilella, G.G.N., E-mail: giuseppe.angilella@ct.infn.it [Dipartimento di Fisica e Astronomia, Università di Catania, 64, Via S. Sofia, I-95123 Catania (Italy); Scuola Superiore di Catania, Università di Catania, Via S. Nullo, 5/i, I-95123 Catania (Italy); CNISM, UdR Catania, 64, Via S. Sofia, I-95123 Catania (Italy); INFN, Sezione di Catania, 64, Via S. Sofia, I-95123 Catania (Italy); Pittalà, V. [Dipartimento di Scienze del Farmaco, Facoltà di Farmacia, Università di Catania, Viale A. Doria, 6, I-95126 Catania (Italy); March, N.H. [Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Oxford University, Oxford (United Kingdom); Pucci, R. [Dipartimento di Fisica e Astronomia, Università di Catania, 64, Via S. Sofia, I-95123 Catania (Italy); CNISM, UdR Catania, 64, Via S. Sofia, I-95123 Catania (Italy)

    2012-01-09

    Motivated by the theoretical study of Saito and Ono (2011) on three crystalline forms of SiO{sub 2} under pressure, quantum-chemical calculations on various free-space clusters of SiO{sub n} and GeO{sub n} for 1cationic clusters have been examined, for both geometry and equilibrium bond lengths. Coupled clusters and correlation-corrected MP2 calculations are presented. For the cations, we emphasize especially the structural distortions occurring in removing degeneracies. -- Highlights: ► Geometry and structure of various SiO{sub n} and GeO{sub n} clusters. ► Both neutral and cationic clusters. ► Varying coordination numbers. ► Relevant for high pressure studies.

  12. Implications of hydrogen/halogen-bond in the stabilization of confined water and anion-water clusters by a cationic receptor

    Science.gov (United States)

    Hoque, Md. Najbul; Das, Gopal

    2016-03-01

    Anion complexation of benzene capped flexible tripodal receptor and solid state stabilization of discrete hybrid anion-water or infinite water clusters by various supramolecular interactions are reported here. The crystal structure of the receptor in protonated states shows all the three arms projected in one direction. We structurally demonstrate discrete fluoride-water cluster [F2-H2O]2- and square shaped chloride-water cluster [Cl2-(H2O)2]2- inside the cationic channel of the receptor. Structural analysis also reveals that these clusters are stabilized inside the channel through active participation of N/C/Ow‧H⋯Ow, N/C/Ow‧H⋯X- (X- = F-, Cl- and I-) H-bonds and electrostatic interactions. Moreover, C-H⋯π and π⋯π types weak intermolecular interactions appear to play crucial role in supramolecular assembly of receptor. Additionally, on treatment with hydroiodic acid (HI) L resulted zwitterionic iodide complex. Crystal structure reveals the presence of S···I halogen bonded dimer, I2···I halogen bond, 1D infinite water chain and neutral iodine molecules. It is comprehensible that ligand basal structure (benzene capped and N-bridge head in two tripodal) play crucial roles in the formation of diverse halide-water cluster. All structures were well examined by different techniques such as NMR, IR, TGA, DSC, PXRD and XRD.

  13. Investigation of the NH-π hydrogen bond interaction in the aniline-alkene (C2H4,C3H6,C4H8) cluster cations by infrared depletion spectroscopy

    International Nuclear Information System (INIS)

    The vibrational spectra of the NH stretching vibrations of aniline-alkene cluster cations have been measured using infrared depletion method. Aniline-ethene cation showed three strong absorption bands at 3448, 3314 and 3220 cm-1. The comparison with MO calculation has shown that the main intermolecular interaction is the NH-π type hydrogen bond between one of the NH bonds of aniline cation and π-electron of ethene, which is different from that observed for the neutral aniline-ethene cluster. The bands at 3448 and 3220 cm-1 have been assigned to the stretching vibrations of free NH and bonded NH, respectively, and the band at 3314 cm-1 to the binary overtone of the NH2 deformation vibration. Similar results have been obtained for aniline-propene and aniline-butene cluster cations. The red shift of the stretching vibration of free NH bond of aniline cation agreed with that expected from the correlation with the proton affinity of the acceptor molecule obtained for the aniline-aromatic cluster cations (NH-π type)

  14. Ordered and disordered models of local structure around Ag cations in silver borate glasses based on x-ray absorptio n near-edge structure spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej; Dalba, G.; Rocca, F.

    2004-01-01

    Roč. 69, - (2004), 134201/1-134201/16. ISSN 0163-1829 R&D Projects: GA ČR GA202/02/0841 Institutional research plan: CEZ:AV0Z1010914 Keywords : disordered systems * structural analysis * XANES * silver * borate glasses Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.075, year: 2004

  15. Design and synthesis of a cyclitol-derived scaffold with axial pyridyl appendages and its encapsulation of the silver(I) cation

    OpenAIRE

    Pierre-Marc Léo; Christophe Morin; Christian Philouze

    2010-01-01

    Conversion of a myo-inositol derivative into a scyllo-inositol-derived scaffold with C3v symmetry bearing three axial pyridyl appendages is presented. This pre-organized hexadentate ligand allows complexation of silver(I). The crystal structure of the complex was established.

  16. ToF-SIMS and laser-SNMS analysis of Madin-Darby canine kidney II cells with silver nanoparticles using an argon cluster ion beam.

    Science.gov (United States)

    Nees, Ricarda; Pelster, Andreas; Körsgen, Martin; Jungnickel, Harald; Luch, Andreas; Galla, Hans-Joachim; Arlinghaus, Heinrich F

    2016-06-01

    The use of nanoparticles is one of the fastest expanding fields in industrial as well as in medical applications, owing to their remarkable characteristics. Silver nanoparticles (AgNPs) are among the most-commercialized nanoparticles because of their antibacterial effects. Laser postionization secondary neutral mass spectrometry (laser-SNMS) and time-of-flight secondary ion mass spectrometry in combination with argon cluster ion sputtering was used for the first time to investigate the effects of AgNPs on Madin-Darby canine kidney (MDCK) II cells. Depth profiles and high-resolution three dimensional (3D) images of nanoparticles and organic compounds from cells were obtained using an Ar cluster ion beam for sputtering and Bi3 (+) primary ions for the analysis. The 3D distribution of AgNPs and other organic compounds in MDCK II cells could be readily detected with very high efficiency, sensitivity, and submicron lateral resolution. The argon cluster ion beam is well suited for the sputtering of biological samples. It enables a high sample removal rate along with low molecular degradation. The outer membrane, the cytoplasm, and the nuclei of the cells could be clearly visualized using the signals PO(+) and C3H8N(+) or CN(+) and C3H8N(+). The laser-SNMS images showed unambiguously that AgNPs are incorporated by MDCK II cells and often form silver aggregates with a diameter of a few micrometers, mainly close to the outside of the cell nuclei. PMID:26671480

  17. A comparative study on geometries, stabilities, and electronic properties between bimetallic AgnX (X=Au, Cu; n=1-8) and pure silver clusters

    Institute of Scientific and Technical Information of China (English)

    Ding Li-Ping; Kuang Xiao-Yu; Shao Peng; Zhao Ya-Ru; Li Yah-Fang

    2012-01-01

    Using the meta-generalized gradient approximation (meta-GGA) exchange correlation TPSS functional,the geometric structures,the relative stabilities,and the electronic properties of bimetallic AgnX (X=Au,Cu; n=l-8) clusters are systematically investigated and compared with those of pure silver clusters.The optimized structures show that the transition point from preferentially planar to three-dimensional structure occurs at n =6 for the AgnAu clusters,and at n =5 for AgnCu clusters.For different-sized AgnX clusters,one X (X=Au or Cu) atom substituted Agn+1 structure is a dominant growth pattern.The calculated fragmentation energies,second-order differences in energies,and the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gaps show interesting odd-even oscillation behaviours,indicating that Ag2,4,6,8 and Ag1,3,5,7X (X=Au,Cu) clusters keep high stabilities in comparison with their neighbouring clusters.The natural population analysis reveals that the charges transfer from the Agn host to the impurity atom except for the Ag2Cu cluster.Moreover,vertical ionization potential (VIP),vertical electronic affinity (VEA),and chemical hardness (η) are discussed and compared in depth.The same odd-even oscillations are found for the VIP and ηof the AgnX (X=Au,Cu; n=1-8) clusters.

  18. Photoionization of cold gas phase coronene and its clusters: Autoionization resonances in monomer, dimer, and trimer and electronic structure of monomer cation

    International Nuclear Information System (INIS)

    Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail. Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory

  19. Photoionization of cold gas phase coronene and its clusters: Autoionization resonances in monomer, dimer, and trimer and electronic structure of monomer cation

    Energy Technology Data Exchange (ETDEWEB)

    Bréchignac, Philippe, E-mail: philippe.brechignac@u-psud.fr; Falvo, Cyril; Parneix, Pascal; Pino, Thomas; Pirali, Olivier [Institut des Sciences Moléculaires d’Orsay, CNRS UMR8214, Univ Paris-Sud, F-91405 Orsay (France); Garcia, Gustavo A.; Nahon, Laurent [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, B.P. 48, F-91192 Gif-sur-Yvette (France); Joblin, Christine; Kokkin, Damian; Bonnamy, Anthony [IRAP, Université de Toulouse 3 - CNRS, 9 Av. Colonel Roche, B.P. 44346, F-31028 Toulouse Cedex 4 (France); Mulas, Giacomo [INAF - Osservatorio Astronomico di Cagliari, via della scienza 5, I-09047 Selargius (Italy)

    2014-10-28

    Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail. Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory.

  20. Photoionization of cold gas phase coronene and its clusters: autoionization resonances in monomer, dimer, and trimer and electronic structure of monomer cation.

    Science.gov (United States)

    Bréchignac, Philippe; Garcia, Gustavo A; Falvo, Cyril; Joblin, Christine; Kokkin, Damian; Bonnamy, Anthony; Parneix, Pascal; Pino, Thomas; Pirali, Olivier; Mulas, Giacomo; Nahon, Laurent

    2014-10-28

    Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail. Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory. PMID:25362317

  1. The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors.

    Science.gov (United States)

    Cussen, Edmund J

    2006-01-28

    The structure of the fast lithium-ion conducting garnets Li5La3M2O12 (M = Ta, Nb) reveals Li+ on both tetrahedral and octahedral sites and suggests that the latter are responsible for the observed Li+ mobility via a clustering mechanism. PMID:16493817

  2. 2D-3D Transition for Cationic and Anionic Gold Clusters: A Kinetic Energy Density Functional Study

    DEFF Research Database (Denmark)

    Ferrighi, Lara; Hammer, Bjørk; Madsen, Georg

    2009-01-01

    We present a density functional theory study of the energetics of isolated Aun+ (n = 5-10) and Aun- (n = 8-13) gold clusters. We compare our results to both theoretical and experimental values from the literature and find the use of meta-generalized gradient approximation (MGGA) functionals, in...

  3. Thermally induced morphological transition of silver fractals

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey; Kébaili, Nouari;

    2014-01-01

    We present both experimental and theoretical study of thermally induced morphological transition of silver nanofractals. Experimentally, those nanofractals formed from deposition and diffusion of preformed silver clusters on cleaved graphite surfaces exhibit dendritic morphologies that are highly...

  4. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO2+) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO2+; therefore, cation-cation complexes indicate something unique about AnO2+ cations compared to actinide cations in general. The first cation-cation complex, NpO2+·UO22+, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO2+ species, the cation-cation complexes of NpO2+ have been studied most extensively while the other actinides have not. The only PuO2+ cation-cation complexes that have been studied are with Fe3+ and Cr3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO2+·UO22+, NpO2+·Th4+, PuO2+·UO22+, and PuO2+·Th4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M-1

  5. A cation exchange method for separation of 111In from inactive silver, copper, traces of iron and radioactive gallium and zinc isotopes

    International Nuclear Information System (INIS)

    111In was produced by the 109Ag(α, 2n)111In reaction. A simple radiochemical separation technique, using Dowex-50 cation exchange resin (with prior removal of copper bulk, if present), has been employed to separate radioindium from inactive contaminants like Ag, Cu, Fe and active contaminant like 67Ga and 65Zn. The radiochemical separation yield was 90-99%. The radionuclide purity of 111In was >99% at 60 h after EOB. The level of all the inactive contaminants was <5 μg/mL in the final product. (Author)

  6. Electronic Structure and Bonding of Icosahedral Core-Shell Gold-Silver Nanoalloy Clusters Au_(144-x)Ag_x(SR)_60

    CERN Document Server

    Malola, Sami

    2011-01-01

    Atomically precise thiolate-stabilized gold nanoclusters are currently of interest for many cross-disciplinary applications in chemistry, physics and molecular biology. Very recently, synthesis and electronic properties of "nanoalloy" clusters Au_(144-x)Ag_x(SR)_60 were reported. Here, density functional theory is used for electronic structure and bonding in Au_(144-x)Ag_x(SR)_60 based on a structural model of the icosahedral Au_144(SR)_60 that features a 114-atom metal core with 60 symmetry-equivalent surface sites, and a protecting layer of 30 RSAuSR units. In the optimal configuration the 60 surface sites of the core are occupied by silver in Au_84Ag_60(SR)_60. Silver enhances the electron shell structure around the Fermi level in the metal core, which predicts a structured absorption spectrum around the onset (about 0.8 eV) of electronic metal-to-metal transitions. The calculations also imply element-dependent absorption edges for Au(5d) \\rightarrow Au(6sp) and Ag(4d) \\rightarrow Ag(5sp) interband transit...

  7. Formation and characterisation of the silver hydride nanocluster cation [Ag3H2((Ph2 P)2CH2)](+) and its release of hydrogen.

    Science.gov (United States)

    Girod, Marion; Krstić, Marjan; Antoine, Rodolphe; MacAleese, Luke; Lemoine, Jérome; Zavras, Athanasios; Khairallah, George N; Bonačić-Koutecký, Vlasta; Dugourd, Philippe; O'Hair, Richard A J

    2014-12-01

    Multistage mass spectrometry and density functional theory (DFT) were used to characterise the small silver hydride nanocluster, [Ag3 H2 L](+) (where L=(Ph2 P)2 CH2 ) and its gas-phase unimolecular chemistry. Collision-induced dissociation (CID) yields [Ag2 HL](+) as the major product while laser-induced dissociation (LID) proceeds via H2 formation and subsequent release from [Ag3 H2 L](+) , giving rise to [Ag3 L](+) as the major product. Deuterium labelling studies on [Ag3 D2 L](+) prove that the source of H2 is from the hydrides and not from the ligand. Comparison of TD-DFT absorption patterns obtained for the optimised structures with action spectroscopy results, allows assignment of the measured features to structures of precursors and products. Molecular dynamics "on the fly" reveal that AgH loss is favoured in the ground state, but H2 formation and loss is preferred in the first excited state S1 , in agreement with CID and LID experimental findings. This indicates favourable photo-induced formation of H2 and subsequent release from [Ag3 H2 L](+) , an important finding in context of metal hydrides as a hydrogen storage medium, which can subsequently be released by heating or irradiation with light. PMID:25324009

  8. Discrete magnesium hydride aggregates: a cationic Mg13H18 cluster stabilized by NNNN-type macrocycles.

    Science.gov (United States)

    Martin, Daniel; Beckerle, Klaus; Schnitzler, Silvia; Spaniol, Thomas P; Maron, Laurent; Okuda, Jun

    2015-03-23

    Large magnesium hydride aggregates [Mg13 (Me3 TACD)6 (μ2 -H12 )(μ3 -H6 )][A]2 ((Me3 TACD)H=1,4,7-trimethyl-1,4,7,10-tetraazacyclododecane; A=AlEt4 , AlnBu4 , B{3,5-(CF3 )2 C6 H3 }4 ) were synthesized stepwise from alkyl complexes [Mg2 (Me3 TACD)R3 ] (R=Et, nBu) and phenylsilane in the presence of additional Mg(II) ions. The central magnesium atom is octahedrally coordinated by six hydrides as in solid α-MgH2 of the rutile type. Further coordination to six magnesium atoms leads to a substructure of seven edge-sharing octahedra as found in the hexagonal layer of brucite (Mg(OH)2 ). Upon protonolysis in the presence of 1,2-dimethoxyethane (DME), this cluster was degraded into a tetranuclear dication [Mg2 (Me3 TACD)(μ-H)2 (DME)]2 [A]2 . PMID:25651417

  9. Silver Sulfadiazine

    Science.gov (United States)

    Silver sulfadiazine, a sulfa drug, is used to prevent and treat infections of second- and third-degree burns. It ... Silver sulfadiazine comes in a cream. Silver sulfadiazine usually is applied once or twice a day. Follow the directions ...

  10. Silver-doped germanium clusters AgCen(n=1∼17): Geometry, stability and electronic property

    International Nuclear Information System (INIS)

    Germanium cluster doped with an Ag atom has been systematically investigated by using density functional theory approach at B3LYP/LanL2DZ level. Different growth patterns appear between small-sized (n=1∼11) Ag-doped germanium clusters and relative larger-sized (n=12∼17) Ag-doped germanium clusters. For the most stable structures of AgGen (n=12∼17) clusters, the Ag atom would be completely surrounded by Ge atoms to form Ag-encapsulated Gen cages. According to the calculated fragmentation energy and the second-order difference of the total energy, we predict that the magic number of AgGen (n=1∼17) clusters should be 5, 10, 12 and 15. Mulliken population analysis shows that the direction of charge transfer depends on the size of the cluster and the doped transition metal.We research dynamical stability of cluster by analyzing vibrational spectra. The obvious infrared and Raman spectra characters can be used to distinguish the structure from experiments. (authors)

  11. A density functional study of small sized silver-doped silicon clusters: Ag2Sin (n = 1-13)

    Science.gov (United States)

    Yang, Cai; Hao Jia, Song; Ma, Mao Fen; Zhang, Shuai; Lu, Cheng; Li, Gen Quan

    2015-11-01

    The structures and electronic properties for global minimum geometric structures of small-sized neutral Ag2Sin (n = 1-13) clusters have been investigated using the CALYPSO structure searching method coupled with density functional theory calculations. A great deal of low-energy geometric isomers are optimised at the B3LYP / GENECP theory level. The optimised structures suggest that the ground state Ag2Sin clusters are visibly distorted compared with the corresponding pure silicon clusters and favor a three-dimensional configuration. Starting with Ag2Si12, one Ag atom is fully encapsulated by the Si outer cages. Based on the averaged binding energy, fragmentation energy, second-order energy difference and HOMO-LUMO energy gap, it is seen that Ag2Si2 and Ag2Si5 are tested to be the most stable clusters, and the chemical stabilities of pure Sin+2 clusters can be reduced to some extent after doping two Ag atoms. Additionally, natural population and natural electronic configuration are discussed and the results reveal that charges transfer from the Ag atoms to the silicon frames and the spd hybridisations are present in all Ag2Sin clusters. Lastly, the results of natural bonds show that the Ag-Si bond in Ag2Sin clusters is dominated by small ionic character. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2015-60404-1

  12. Spectroscopic Properties of Novel Aromatic Metal Clusters: NaM4 (M=Al, Ga, In) and their Cations and Anions

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, K; Zhao, C

    2004-03-17

    The ground and several excited states of metal aromatic clusters, namely NaM4 and NaM{sub 4}{sup {+-}} (M=Al, Ga, In) clusters have been investigated by employing complete activespace self-consistent-field (CASSCF) followed by Multi-reference singles and doubles configuration interaction (MRSDCI) computations that included up to 10 million configurations and other methods. The ground states NaM{sub 4}{sup -} of aromatic anions are found to be symmetric C{sub 4v} ({sup 1}A{sub 1}) electronic states with ideal square pyramid geometries. While the ground state of NaIn4 is also predicted to be a symmetric C{sub 4v} ({sup 2}A{sub 1}) square pyramid, the ground state of the NaAl4 cluster is found to have a C{sub 2v} ({sup 2}A{sub 1}) pyramid with a rhombus base and the ground state of NaGa{sub 4} possesses a C{sub 2v} ({sup 2}A{sub 1}) pyramid with a rectangle base. In general these structures exhibit 2 competing geometries, viz., an ideal C{sub 4v} structure and a distorted rhomboidal or rectangular pyramid structure (C{sub 2v}). All of the ground states of the NaM{sub 4}{sup +} (M= Al, Ga, In) cations are computed to be C{sub 2v} ({sup 3}A{sub 2}) pyramids with rhombus bases. The equilibrium geometries, vibrational frequencies, dissociation energies, adiabatic ionization potentials, adiabatic electron affinities for the electronic states of NaM{sub 4} (M=Al, Ga, In) and their ions are computed and compared with experimental results and other theoretical calculations. On the basis of our computed excited states energy separations, we have tentatively suggested assignments to the observed X and A states in the anion photoelectron spectra of Al{sub 4}Na{sup -} reported by Li et al. The X state can be assigned to a C{sub 2v} ({sup 2}A{sub 1}) rhomboidal pyramid. The A state observed in the anion spectrum is assigned to the first excited state ({sup 2}B{sub 1}) of the neutral NaAl{sub 4} with the C{sub 4v} symmetry. The assignments of the excited states are consistent with

  13. Electronic, magnetic and structural properties of neutral, cationic and anionic Fe{sub 2}S{sub 2}, Fe{sub 3}S{sub 4} and Fe{sub 4}S{sub 4} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Tazibt, S; Bouarab, S; Ziane, A [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, BP No 17 RP, 15000 Tizi-Ouzou (Algeria); Parlebas, J C [Institut de Physique et Chimie des Materiaux de Strasbourg, UMR 7504 CNRS-UDS, 23 rue du Loess, BP 43, 67034 Strasbourg cedex 2 (France); Demangeat, C, E-mail: sbouarab_said@mail.ummto.d [Institut de Physique, 3 rue de l' Universite 67000 Strasbourg (France)

    2010-08-28

    This work reports density functional calculations of geometric, electronic and magnetic properties of freestanding iron-sulfur Fe{sub 2}S{sub 2}, Fe{sub 3}S{sub 4} and Fe{sub 4}S{sub 4} clusters which are the ones most frequently contained in proteins. We investigate neutral, anionic and cationic clusters using a method that employs linear combinations of atomic orbitals as basis sets, nonlocal norm-conserving pseudopotentials and a generalized gradient approximation to exchange and correlation. The results are discussed in connection with available experimental data. We mainly show that the ground-state geometries of these free clusters are consistent with their structures in core proteins and they are the same in the neutral, anionic and cationic states, but with small distortions. In all cases, an antiferromagnetic order between Fe atoms is always preferred to ferromagnetic and paramagnetic ones. The geometric distortions induced by magnetism decrease with cluster size and the maximum deviation between Fe-Fe distances is 11% in Fe{sub 2}S{sub 2}, but only 4% in Fe{sub 3}S{sub 4} and 3% in Fe{sub 4}S{sub 4} clusters.

  14. Clustering

    Directory of Open Access Journals (Sweden)

    Jinfei Liu

    2013-04-01

    Full Text Available DBSCAN is a well-known density-based clustering algorithm which offers advantages for finding clusters of arbitrary shapes compared to partitioning and hierarchical clustering methods. However, there are few papers studying the DBSCAN algorithm under the privacy preserving distributed data mining model, in which the data is distributed between two or more parties, and the parties cooperate to obtain the clustering results without revealing the data at the individual parties. In this paper, we address the problem of two-party privacy preserving DBSCAN clustering. We first propose two protocols for privacy preserving DBSCAN clustering over horizontally and vertically partitioned data respectively and then extend them to arbitrarily partitioned data. We also provide performance analysis and privacy proof of our solution..

  15. Formation of small vacancy clusters in tungsten around silver and indium impurities studied by PAC and THDS

    Energy Technology Data Exchange (ETDEWEB)

    Post, K.; Pleiter, F.; Hosson, J.Th.M. de (Rijksuniversiteit Groningen (Netherlands)); Kolk, G.J. van der; Veen, A. van; Caspers, L.M. (Interuniversitair Reactor Inst., Delft (Netherlands))

    1983-12-01

    Vacancy clustering at Ag and In impurities in W was investigated combining Thermal Helium Desorption Spectrometry (THDS) and Perturbed Angular Correlation (PAC) measurements. The results of these experiments are compared with each other and with those obtained from Monte Carlo calculations.

  16. Dynamics and fragmentation of van der Waals and hydrogen bonded cluster cations: (NH3)n and (NH3BH3)n ionized at 10.51 eV

    Science.gov (United States)

    Yuan, Bing; Shin, Joong-Won; Bernstein, Elliot R.

    2016-04-01

    A 118 nm laser is employed as a high energy, single photon (10.51 eV/photon) source for study of the dynamics and fragmentation of the ammonia borane (NH3BH3) cation and its cluster ions through time of flight mass spectrometry. The behavior of ammonia ion and its cluster ions is also investigated under identical conditions in order to explicate the ammonia borane results. Charge distributions, molecular orbitals, and spin densities for (NH3BH3)n and its cations are explored at both the second-order perturbation theory (MP2) and complete active space self-consistent field (CASSCF) theory levels. Initial dissociation mechanisms and potential energy surfaces for ionized NH3BH3, NH3, and their clusters are calculated at the MP2/6-311++G(d,p) level. Protonated clusters (NH3)xH+ dominate ammonia cluster mass spectra: our calculations show that formation of (NH3)n-1H+ and NH2 from the nascent (NH3)n+ has the lowest energy barrier for the system. The only common features for the (NH3)n+ and (NH3BH3)n+ mass spectra under these conditions are found to be NHy+ (y = 0,…,4) at m/z = 14-18. Molecular ions with both 11B and 10B isotopes are observed, and therefore, product ions observed for the (NH3BH3)n cluster system derive from (NH3BH3)n clusters themselves, not from the NH3 moiety of NH3BH3 alone. NH3BH2+ is the most abundant ionization product in the (NH3BH3)n+ cluster spectra: calculations support that for NH3BH3+, an H atom is lost from the BH3 moiety with an energy barrier of 0.67 eV. For (NH3BH3)2+ and (NH3BH3)3+ clusters, a Bδ+⋯Hδ-⋯δ-H⋯δ+B bond can form in the respective cluster ions, generating a lower energy, more stable ion structure. The first step in the (NH3BH3)n+ (n = 2, 3) dissociation is the breaking of the Bδ+⋯Hδ-⋯δ-H⋯δ+B moiety, leading to the subsequent release of H2 from the latter cluster ion. The overall reaction mechanisms calculated are best represented and understood employing a CASSCF natural bond orbital

  17. Dynamics and fragmentation of van der Waals and hydrogen bonded cluster cations: (NH3)n and (NH3BH3)n ionized at 10.51 eV.

    Science.gov (United States)

    Yuan, Bing; Shin, Joong-Won; Bernstein, Elliot R

    2016-04-14

    A 118 nm laser is employed as a high energy, single photon (10.51 eV/photon) source for study of the dynamics and fragmentation of the ammonia borane (NH3BH3) cation and its cluster ions through time of flight mass spectrometry. The behavior of ammonia ion and its cluster ions is also investigated under identical conditions in order to explicate the ammonia borane results. Charge distributions, molecular orbitals, and spin densities for (NH3BH3)n and its cations are explored at both the second-order perturbation theory (MP2) and complete active space self-consistent field (CASSCF) theory levels. Initial dissociation mechanisms and potential energy surfaces for ionized NH3BH3, NH3, and their clusters are calculated at the MP2/6-311++G(d,p) level. Protonated clusters (NH3)xH(+) dominate ammonia cluster mass spectra: our calculations show that formation of (NH3)n-1H(+) and NH2 from the nascent (NH3)n(+) has the lowest energy barrier for the system. The only common features for the (NH3)n(+) and (NH3BH3)n(+) mass spectra under these conditions are found to be NHy(+) (y = 0,…,4) at m/z = 14-18. Molecular ions with both (11)B and (10)B isotopes are observed, and therefore, product ions observed for the (NH3BH3)n cluster system derive from (NH3BH3)n clusters themselves, not from the NH3 moiety of NH3BH3 alone. NH3BH2(+) is the most abundant ionization product in the (NH3BH3)n(+) cluster spectra: calculations support that for NH3BH3(+), an H atom is lost from the BH3 moiety with an energy barrier of 0.67 eV. For (NH3BH3)2(+) and (NH3BH3)3(+) clusters, a B(δ+)⋯H(δ-)⋯(δ-)H⋯(δ+)B bond can form in the respective cluster ions, generating a lower energy, more stable ion structure. The first step in the (NH3BH3)n(+) (n = 2, 3) dissociation is the breaking of the B(δ+)⋯H(δ-)⋯(δ-)H⋯(δ+)B moiety, leading to the subsequent release of H2 from the latter cluster ion. The overall reaction mechanisms calculated are best represented and understood employing a CASSCF

  18. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone,northeastern China

    Institute of Scientific and Technical Information of China (English)

    CHEN; Jiangfeng; YU; Gang; XUE; Chunji; QIAN; Hui; HE; Jian

    2005-01-01

    33 Pb isotopic analyses were reported for sulfide and hydrothermal carbonate minerals and marble of the Xiquegou lead-zinc, the Zhenzigou zinc-lead and the Gaojiapuzi silver deposits from the Qingchengzi ore field and the Beiwagou zinc-lead deposit in the west, Proterozoic Liaodong rift zone. Pb isotopic ratios of the marble from the Qingchengzi ore field range from 18.24 to 30.63 for 206Pb/204Pb, 15.59 to 17.05 for 207Pb/204Pb and 37.43 to 38.63 for 208Pb/204Pb. The marble gives a Pb-Pb isochron age of 1822±92 Ma, which is interpreted as the age of the metamorphism of the marble. Ore Pb, including Pb of sulfide and hydrothermal carbonate minerals, from the Qingchengzi ore field shows limited variation with 206Pb/204Pb=17.66-17.96, 207Pb/204Pb=15.60-15.74 and 208Pb/204Pb=37.94-38.60. In contrast, ore Pb from the Beiwagou deposit gives different Pb isotopic ratios with 206Pb/204Pb=15.68-15.81, 207Pb/204Pb= 15.34-15.45 and 208Pb/204Pb=35.30-35.68. Pb of all deposits from the Liaodong rift zone is derived from the upper crust. Ore Pb of the Qingchengzi deposits is derived from a young upper crust. The model Th/U ratios of 4.40 to 4.74 for ore Pb are significantly different from that of 1.7 to 4.4 given by the marble of the Qingchengzi ore field, suggesting that marble is not the source of the ore Pb. Ore Pb of the Beiwagou deposit is extracted from its source and the deposit is formed at the Paleoproterozoic era. Different Pb isotopic ratios of the Qingchengzi ore field and the Beiwagou deposit are due to different ages of the deposits and suggest that the two types of deposits are derived from different sources and are possibly formed by different ore-forming processes.

  19. Density functional study of structural and electronic properties of maximum-spin n+1Aun-1Ag clusters

    Science.gov (United States)

    Jiang, Zhen-Yi; Hou, Yu-Qin; Lee, Kuo-Hsing; Chu, San-Yan

    The structures and relative stabilities of high-spin n+1Aun-1Ag and nAun-1Ag+ (n = 2-8) clusters have been studied with density functional calculation. We predicted the existence of a number of previously unknown isomers. Our results revealed that all structures of high-spin neutral or cationic Aun-1Ag clusters can be understood as a substitution of an Au atom by an Ag atom in the high-spin neutral or cationic Aun clusters. The properties of mixed gold-silver clusters are strongly sized and structural dependence. The high-spin bimetallic clusters tend to be holding three-dimensional geometry rather than planar form represented in their low-spin situations. Silver atom prefers to occupy those peripheral positions until to n = 8 for high-spin clusters, which is different from its position occupied by light atom in the low-spin situations. Our theoretical calculations indicated that in various high-spin Aun-1Ag neutral and cationic species, 5Au3Ag, 3AuAg and 5Au4Ag+ hold high stability, which can be explained by valence bond theory.

  20. Cationic ruthenium alkylidene catalysts bearing phosphine ligands

    OpenAIRE

    Endo, Koji; Grubbs, Robert H.

    2016-01-01

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bear-ing bulky phosphine ligands. Simple ligand exchange using silver(I) salts of non-coordinating or weakly coordinating anions pro-vided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported...

  1. Silver Nanoparticles and Graphitic Carbon Through Thermal Decomposition of a Silver/Acetylenedicarboxylic Salt

    Directory of Open Access Journals (Sweden)

    Komninou Philomela

    2009-01-01

    Full Text Available Abstract Spherically shaped silver nanoparticles embedded in a carbon matrix were synthesized by thermal decomposition of a Ag(I/acetylenedicarboxylic acid salt. The silver nanoparticles, which are formed either by pyrolysis at 300 °C in an autoclave or thermolysis in xylene suspension at reflux temperature, are acting catalytically for the formation of graphite layers. Both reactions proceed through in situ reduction of the silver cations and polymerization of the central acetylene triple bonds and the exact temperature of the reaction can be monitored through DTA analysis. Interestingly, the thermal decomposition of this silver salt in xylene partly leads to a minor fraction of quasicrystalline silver, as established by HR-TEM analysis. The graphitic layers covering the silver nanoparticles are clearly seen in HR-TEM images and, furthermore, established by the presence of sp2carbon at the Raman spectrum of both samples.

  2. Separation of silver ions and starch modified silver nanoparticles using high performance liquid chromatography with ultraviolet and inductively coupled mass spectrometric detection

    Science.gov (United States)

    Hanley, Traci A.; Saadawi, Ryan; Zhang, Peng; Caruso, Joseph A.; Landero-Figueroa, Julio

    2014-10-01

    The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV-VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag+) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg- 1 detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm.

  3. Separation of silver ions and starch modified silver nanoparticles using high performance liquid chromatography with ultraviolet and inductively coupled mass spectrometric detection

    International Nuclear Information System (INIS)

    The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV–VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag+) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg−1 detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm

  4. Thermal Methane Activation by a Binary V-Nb Transition-Metal Oxide Cluster Cation: A Further Example for the Crucial Role of Oxygen-Centered Radicals

    Czech Academy of Sciences Publication Activity Database

    Wang, Z. C.; Liu, J. W.; Schlangen, M.; Weiske, T.; Schröder, Detlef; Sauer, J.; Schwarz, H.

    2013-01-01

    Roč. 19, č. 35 (2013), s. 11496-11501. ISSN 0947-6539 Institutional support: RVO:61388963 Keywords : binary oxide cluster * density functional calculations * mass spectrometry * methane activation * radical ions Subject RIV: CC - Organic Chemistry Impact factor: 5.696, year: 2013

  5. Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

    DEFF Research Database (Denmark)

    Hyllested, Jes Ærøe; Espina Palanco, Marta; Hagen, Nicolai;

    2015-01-01

    Chemicals typically available in plants have the capability to reduce silver and gold salts and to create silver and gold nanoparticles. We report the preparation of silver nanoparticles with sizes between 10 and 300 nm from silver nitrate using fruit extract collected from pineapples and oranges...... as reducing agents. The evolvement of a characteristic surface plasmon extinction spectrum in the range of 420 nm to 480 nm indicates the formation of silver nanoparticles after mixing silver nitrate solution and fruit extract. Shifts in plasmon peaks over time indicate the growth of nanoparticles...... of the plasmon absorption correlates with the decrease of absorption band in the UV. This confirms the evolution of silver nanoparticles from silver clusters. The presence of various silver clusters on the surface of the “green” plasmonic silver nanoparticles is also supported by a strong multi...

  6. Linear, branched and network polysilanes with thienyl/furyl substituted sila-alkyl side chains and their applications for the synthesis of fluorescent silver nanoparticles/clusters

    Indian Academy of Sciences (India)

    Ravi Shankar; Usharani Sahoo; Vandana Shahi; Manchal Chaudhary

    2012-11-01

    The scope of Wurtz coupling and catalytic dehydrocoupling methods for the synthesis of functional polysilanes of compositions, [RR'Si] (linear), [(PhMeSi)-co-(RSi)1−] (branched) and [RSi] (network) [R = Et3SiCH2CH2, 2-Fu/2-ThMe2SiCH2CH2 (Fu = Furyl, Th = Thienyl), -Hex or Ph; R' = H or Me] is presented. By virtue of -delocalized silicon backbone and variable HOMO-LUMO band gap energies, these polymers are found to be promising candidates as reducing agents for Ag(I) ions in toluene/cyclo-hexane and provide a simple approach for ‘size-controlled’ synthesis of silver nanoparticles (AgNPs) as well as fluorescent polymer-silver nanocomposites.

  7. Silver(I) imidazole perchlorate

    International Nuclear Information System (INIS)

    The crystal structure of silver(I) imidazole perchlorate reveals the presence of a planar (Ag+)6 cluster, in which three radiating pairs of Ag+ ions 3.051(1) A apart are disposed on the corners of an equilateral triangle, the inner Ag+ ions being 3.493(1) A apart. Each silver ion carries two linearly co-ordinated imidazole ligands, the whole unit has 32 (D3) symmetry. Exposure to 60Co γ-rays at 77 K results in electron addition to a group of three equivalent silver atoms. The 109Ag, 107Ag, and 14N hyperfine coupling constants show that the total 5s character of the unpaired electron is only ca. 0.55, and delocalisation onto six equivalent nitrogen ligands accounts for ca. 0.25. Low g values suggest that the remaining spin density is in 5p orbitals on silver. There is no indication of delocalisation onto the remaining three Ag+ ions in the cluster. Possible reasons for this selectivity are discussed. The electron-loss centre appears to be a normal Ag2+ complex. It is suggested that marked distortion results in the hole being trapped on one silver rather than being delocalised. (author)

  8. Carnosine induced formation of silver nanochains: A radiolytic study

    Science.gov (United States)

    Malkar, Vishwabharati V.; Mukherjee, Tulsi; Kapoor, Sudhir

    2015-02-01

    Interaction of carnosine with silver clusters and its nanoparticles is studied at pH 8.2 and 9.2. Using time resolved kinetic measurements we show that carnosine interacts with the charged silver clusters. Using ionizing radiation silver particles are also produced in aqueous solution. In the presence of carnosine distinct differences in the surface plasmon absorption band of Ag nanoparticles is observed with change in pH. The results suggest that silver nanochains get formed through dipole-dipole interaction due to weak interaction with carnosine. UV-Vis spectrophotometry and transmission electron microscopy are used to characterize the nanoparticles.

  9. Silver nanoclusters emitting weak NIR fluorescence biomineralized by BSA

    Science.gov (United States)

    Li, Baoshun; Li, Jianjun; Zhao, Junwu

    2015-01-01

    Noble metal (e.g., gold and silver) nanomaterials possess unique physical and chemical properties. In present work, silver nanoclusters (also known as silver quantum clusters or silver quantum dots) were synthesized by bovine serum albumin (BSA) biomineralization. The synthesized silver nanoclusters were characterized by UV-VIS absorption spectroscopy, fluorescence spectroscopy, upconversion emission spectroscopy, TEM, HRTEM and FTIR spectroscopy. TEM results showed that the average size of the silver nanoclusters was 2.23 nm. Fluorescence results showed that these silver nanoclusters could emit weak near-infrared (NIR) fluorescence (the central emission wavelength being about 765 nm). And the central excitation wavelength was about 395 nm, in the UV spectral region. These silver nanoclusters showed an extraordinarily large gap (about 370 nm) between the central excitation wavelength and central emission wavelength. In addition, it was found that these silver nanoclusters possess upconversion emission property. Upconversion emission results showed that the upconversion emission spectrum of the silver nanoclusters agreed well with their normal fluorescence emission spectrum. The synthesized silver nanoclusters showed high stability in aqueous solution and it was considered that they might be confined in BSA molecules. It was found that silver nanoclusters might enhance and broaden the absorption of proteins, and the protein absorption peak showed an obvious red shift (being 7 nm) after the formation of silver nanoclusters.

  10. Photodissociation of Cerium Oxide Nanocluster Cations.

    Science.gov (United States)

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A

    2016-04-21

    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)). PMID:27035210

  11. Synthesis of hollow silver spheres using poly-(styrene-methyl acrylic acid) as templates in the presence of sodium polyacrylate

    Science.gov (United States)

    Wang, Aili; Yin, Hengbo; Ge, Chen; Ren, Min; Liu, Yumin; Jiang, Tingshun

    2010-02-01

    Hollow silver spheres were successfully prepared by reducing AgNO 3 with ascorbic acid and using negatively charged poly-(styrene-methyl acrylic acid) (PSA) spheres as templates in the presence of sodium polyacrylate as a stabilizer. Firstly, silver cations adsorbed on the surface of PSA spheres via electrostatic attraction between the carboxyl groups and silver cations were reduced in situ by ascorbic acid. The silver nanoparticles deposited on the surface of PSA spheres served as seeds for the further growth of silver shells. After that, extra amount of AgNO 3 and ascorbic acid solutions were added to form PSA/Ag composites with thick silver shells. In order to obtain compact silver shells, the as-prepared PSA/Ag composites were heated at 150 °C for 3 h. Then hollow silver spheres were prepared by dissolving PSA templates with tetrahydrofuran.

  12. Silver nanoparticle catalysed redox reaction: An electron relay effect

    International Nuclear Information System (INIS)

    A silver cluster shows efficient catalytic activity in a redox reaction because the cluster acts as the electron relay centre behaving alternatively as an acceptor and as a donor of electrons. An effective transfer of electrons is possible when the redox potential of the cluster is intermediate between the electron donor and electron acceptor system

  13. Fluorescence Microscopy of Nanoscale Silver Oxide Thin Films

    Institute of Scientific and Technical Information of China (English)

    PAN Xin-Yu; JIANG Hong-Bing; LIU Chun-Ling; GONG Qi-Huang; ZHANG Xi-Yao; ZHANG Qi-Feng; XU Bei-Xue; WU Jin-Lei

    2003-01-01

    The experimental conditions for photoactivated intermittent fluorescence from nanoscale silver oxide were studied with fluorescence microscopy. Strong fluorescence was observed from the Ag?O particles with size of 10-20nm excited with both blue and green light. We observed the saturation of photoexcitation with blue light and explained the experimental results using the model of agglomeration of silver atoms to form small clusters and the fluorescence of Ag2 and Ags clusters.

  14. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim; Berg, Rolf W.; Bohr, Henrik

    2004-01-01

    Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  15. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    Science.gov (United States)

    Silver nanoparticles have antibacterial properties but their use has been a cause for concern because they persist in the environment. Here we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green a...

  16. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    NARCIS (Netherlands)

    Richter, Andries; Brown, J.S.; Bharti, B.; Wang, A.; Gangwal, S.; Houck, K.; Cohen Hubal, E.A.; Paunov, V.N.; Stoyanov, S.D.; Velev, O.D.

    2015-01-01

    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silv

  17. Electronic Structure and Bonding of Icosahedral Core-Shell Gold-Silver Nanoalloy Clusters Au_(144-x)Ag_x(SR)_60

    OpenAIRE

    Malola, Sami; Häkkinen, Hannu

    2011-01-01

    Atomically precise thiolate-stabilized gold nanoclusters are currently of interest for many cross-disciplinary applications in chemistry, physics and molecular biology. Very recently, synthesis and electronic properties of "nanoalloy" clusters Au_(144-x)Ag_x(SR)_60 were reported. Here, density functional theory is used for electronic structure and bonding in Au_(144-x)Ag_x(SR)_60 based on a structural model of the icosahedral Au_144(SR)_60 that features a 114-atom metal core with 60 symmetry-...

  18. Fluorescent DNA-templated silver nanoclusters

    Science.gov (United States)

    Lin, Ruoqian

    Because of the ultra-small size and biocompatibility of silver nanoclusters, they have attracted much research interest for their applications in biolabeling. Among the many ways of synthesizing silver nanoclusters, DNA templated method is particularly attractive---the high tunability of DNA sequences provides another degree of freedom for controlling the chemical and photophysical properties. However, systematic studies about how DNA sequences and concentrations are controlling the photophysical properties are still lacking. The aim of this thesis is to investigate the binding mechanisms of silver clusters binding and single stranded DNAs. Here in this thesis, we report synthesis and characterization of DNA-templated silver nanoclusters and provide a systematic interrogation of the effects of DNA concentrations and sequences, including lengths and secondary structures. We performed a series of syntheses utilizing five different sequences to explore the optimal synthesis condition. By characterizing samples with UV-vis and fluorescence spectroscopy, we achieved the most proper reactants ratio and synthesis conditions. Two of them were chosen for further concentration dependence studies and sequence dependence studies. We found that cytosine-rich sequences are more likely to produce silver nanoclusters with stronger fluorescence signals; however, sequences with hairpin secondary structures are more capable in stabilizing silver nanoclusters. In addition, the fluorescence peak emission intensities and wavelengths of the DNA templated silver clusters have sequence dependent fingerprints. This potentially can be applied to sequence sensing in the future. However all the current conclusions are not warranted; there is still difficulty in formulating general rules in DNA strand design and silver nanocluster production. Further investigation of more sequences could solve these questions in the future.

  19. Extraordinarily high conductivity of flexible adhesive films by hybrids of silver nanoparticle-nanowires.

    Science.gov (United States)

    Ajmal, C Muhammed; Menamparambath, Mini Mol; Choi, Hyouk Ryeol; Baik, Seunghyun

    2016-06-01

    Highly conductive flexible adhesive (CFA) film was developed using micro-sized silver flakes (primary fillers), hybrids of silver nanoparticle-nanowires (secondary fillers) and nitrile butadiene rubber. The hybrids of silver nanoparticle-nanowires were synthesized by decorating silver nanowires with silver nanoparticle clusters using bifunctional cysteamine as a linker. The dispersion in ethanol was excellent for several months. Silver nanowires constructed electrical networks between the micro-scale silver flakes. The low-temperature surface sintering of silver nanoparticles enabled effective joining of silver nanowires to silver flakes. The hybrids of silver nanoparticle-nanowires provided a greater maximum conductivity (54 390 S cm(-1)) than pure silver nanowires, pure multiwalled carbon nanotubes, and multiwalled carbon nanotubes decorated with silver nanoparticles in nitrile butadiene rubber matrix. The resistance change was smallest upon bending when the hybrids of silver nanoparticle-nanowires were employed. The adhesion of the film on polyethylene terephthalate substrate was excellent. Light emitting diodes were successfully wired to the CFA circuit patterned by the screen printing method for application demonstration. PMID:27109551

  20. Extraordinarily high conductivity of flexible adhesive films by hybrids of silver nanoparticle–nanowires

    Science.gov (United States)

    Muhammed Ajmal, C.; Mol Menamparambath, Mini; Ryeol Choi, Hyouk; Baik, Seunghyun

    2016-06-01

    Highly conductive flexible adhesive (CFA) film was developed using micro-sized silver flakes (primary fillers), hybrids of silver nanoparticle–nanowires (secondary fillers) and nitrile butadiene rubber. The hybrids of silver nanoparticle–nanowires were synthesized by decorating silver nanowires with silver nanoparticle clusters using bifunctional cysteamine as a linker. The dispersion in ethanol was excellent for several months. Silver nanowires constructed electrical networks between the micro-scale silver flakes. The low-temperature surface sintering of silver nanoparticles enabled effective joining of silver nanowires to silver flakes. The hybrids of silver nanoparticle–nanowires provided a greater maximum conductivity (54 390 S cm‑1) than pure silver nanowires, pure multiwalled carbon nanotubes, and multiwalled carbon nanotubes decorated with silver nanoparticles in nitrile butadiene rubber matrix. The resistance change was smallest upon bending when the hybrids of silver nanoparticle–nanowires were employed. The adhesion of the film on polyethylene terephthalate substrate was excellent. Light emitting diodes were successfully wired to the CFA circuit patterned by the screen printing method for application demonstration.

  1. The Silver Halides

    Science.gov (United States)

    Sahyun, M. R. V.

    1977-01-01

    Illustrates the type of fractional bonding for solid silver halides. Treats the silver halides as electron excess compounds, and develops a model of a localized bonding unit that may be iterated in three dimensions to describe the bulk phase. (MLH)

  2. Ground state of naphthyl cation: Singlet or triplet?

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Achintya Kumar; Vaval, Nayana, E-mail: np.vaval@ncl.res.in; Pal, Sourav, E-mail: s.pal@ncl.res.in [Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008 (India); Manohar, Prashant U. [Department of Chemistry, BITS Pilani, Pilani Campus (India)

    2014-03-21

    We present a benchmark theoretical investigation on the electronic structure and singlet-triplet(S-T) gap of 1- and 2-naphthyl cations using the CCSD(T) method. Our calculations reveal that the ground states of both the naphthyl cations are singlet, contrary to the results obtained by DFT/B3LYP calculations reported in previous theoretical studies. However, the triplet states obtained in the two structural isomers of naphthyl cation are completely different. The triplet state in 1-naphthyl cation is (π,σ) type, whereas in 2-naphthyl cation it is (σ,σ{sup ′}) type. The S-T gaps in naphthyl cations and the relative stability ordering of the singlet and the triplet states are highly sensitive to the basis-set quality as well as level of correlation, and demand for inclusion of perturbative triples in the coupled-cluster ansatz.

  3. Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

    Directory of Open Access Journals (Sweden)

    Jes Ærøe Hyllested

    2015-01-01

    Full Text Available Chemicals typically available in plants have the capability to reduce silver and gold salts and to create silver and gold nanoparticles. We report the preparation of silver nanoparticles with sizes between 10 and 300 nm from silver nitrate using fruit extract collected from pineapples and oranges as reducing agents. The evolvement of a characteristic surface plasmon extinction spectrum in the range of 420 nm to 480 nm indicates the formation of silver nanoparticles after mixing silver nitrate solution and fruit extract. Shifts in plasmon peaks over time indicate the growth of nanoparticles. Electron microscopy shows that the shapes of the nanoparticles are different depending on the fruit used for preparation. The green preparation process can result in individual nanoparticles with a very poor tendency to form aggregates with narrow gaps even when aggregation is forced by the addition of NaCl. This explains only modest enhancement factors for near-infrared-excited surface enhanced Raman scattering. In addition to the surface plasmon band, UV–visible absorption spectra show features in the UV range which indicates also the presence of small silver clusters, such as Ag42+. The increase of the plasmon absorption correlates with the decrease of absorption band in the UV. This confirms the evolution of silver nanoparticles from silver clusters. The presence of various silver clusters on the surface of the “green” plasmonic silver nanoparticles is also supported by a strong multicolor luminesce signal emitted by the plasmonic particles during 473 nm excitation.

  4. Host–guest properties of the trinuclear arene–ruthenium cluster cation [H3Ru3(C6H6)(C6Me6)2(O)]+

    OpenAIRE

    Therrien, Bruno; Vieille-Petit, Ludovic; Süss-Fink, Georg

    2009-01-01

    The trinuclear arene–ruthenium cluster cation [H3Ru3(C6H6)(C6Me6)2(O)]+, containing a μ3-oxo cap and three arene ligands that span a hydrophobic pocket above the metal skeleton, has been crystallised as tetrafluoroborate salt in the presence of various guest molecules. The host–guest complexes have been characterised by single-crystal X-ray structure analysis. With chloroform as the guest molecule, a CHCl3 molecule sits perfectly in the hydrophobic pocket, the hydrogen atom being encapsulated...

  5. Activity of Antimicrobial Silver Polystyrene Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Palomba

    2012-01-01

    Full Text Available A simple technique based on doping polymers with in situ generated silver nanoparticles (Ag/PS films has been developed. In particular, an antiseptic material has been prepared by dissolving silver 1,5-cyclooctadiene-hexafluoroacetylacetonate in amorphous polystyrene, and the obtained solid solution has been heated for ca. 10 s at a convenient temperature (180°C. Under such conditions the metal precursor decomposes producing silver atoms that diffuse into the polymer and clusterize. The antimicrobial characteristics of the resulting polystyrene-based material have been accurately evaluated toward Escherichia coli (E. coli comparing the cytotoxicity effect of 10 wt.% and 30 wt.% (drastic and mild annealing silver-doped polystyrene to the corresponding pure micrometric silver powder. Two different bacterial viability assays were performed in order to demonstrate the cytotoxic effect of Ag/PS films on cultured E. coli: (1 turbidimetric determination of optical density; (2 BacLight fluorescence-based test. Both methods have shown that silver-doped polystyrene (30 wt.% provides higher antibacterial activity than pure Ag powder, under similar concentration and incubation conditions.

  6. Novel types of tetra-, hexa-, octa-, and dodecanuclear silver clusters containing (2,7-Di-tert-butylfluoren-9-ylidene)methanedithiolate.

    Science.gov (United States)

    Vicente, José; González-Herrero, Pablo; García-Sánchez, Yolanda; Jones, Peter G

    2009-03-01

    The reaction of AgClO(4) with piperidinium 2,7-di-tert-butyl-9H-fluorene-9-carbodithioate (pipH)[S(2)C(t-Bu-Hfy)] (1) (t-Bu-Hfy = 2,7-di-tert-butylfluoren-9-yl) afforded [Ag(n){S(2)C(t-Bu-Hfy)}(n)] (2), which reacted with phosphines to give [Ag{S(2)C(t-Bu-Hfy)}L(2)] [L = PPh(3) (3a); L(2) = bis(diphenylphosphino)ethane (dppe, 3b), 1,1'-bis(diphenylphosphino)ferrocene (dppf, 3c). By reacting complex 2 with AgClO(4) and piperidine in a 1:1:1 molar ratio, the dodecanuclear cluster [Ag(12){S(2)C(t-Bu-fy)}(6)] (4) (t-Bu-fy = 2,7-di-tert-butylfluoren-9-ylidene) was obtained. Compound 4 can also be directly prepared from the reaction of 1 with AgClO(4) and piperidine in a 1:2:1 molar ratio. The reactions of 1 with AgClO(4), phosphines, and piperidine afforded the compounds [Ag(6){S(2)C(t-Bu-fy)}(3)L(5)] [1:2:2:1 molar ratio; L = PPh(3) (5a), P(p-To)(3) (5b)], [Ag(4){S(2)C(t-Bu-fy)}(2)(dppf)(2)] (6) (1:2:1:1 molar ratio), [Ag(n){S(2)C(t-Bu-fy)}(n/2){P(i-Pr)(3)}(n)] (7) (1:2:2:1 molar ratio), or [Ag(8){S(2)C(t-Bu-fy)}(4){P(i-Pr)(3)}(4)] (8) (1:2:1:1 molar ratio). Complexes 5a,b, 6, 7, and 8 can be also obtained by reacting 4 with the corresponding phosphine in the appropriate molar ratio. The crystal structures of 4, 5b, and 8 have been determined by X-ray diffraction studies. The nuclearity of complex 6 was established from its (31)P{(1)H} NMR data, which reveal a very fast dynamic process leading to an average coupling of each of the P atoms of the dppf ligands with four Ag atoms. PMID:19235967

  7. A Blue Photoluminescent Coordination Polymer Based on In Situ Generated Silver(Ⅰ) Cubane-like Clusters%含类立方烷银(Ⅰ)簇的光致蓝光配位聚合物的原位溶剂热合成

    Institute of Scientific and Technical Information of China (English)

    严冰; 吴涛; 李贞; 李丹

    2006-01-01

    A blue photoluminescent coordination polymer [Ag4Cl4(dppe)2]n has been prepared solvothermally and characterized structurally. The crystal structure was determined by single-crystal X-ray diffraction. The crystal is of tetragonal,space group I41/a,a=b=1.936 03(6) nm,c=1.465 63(8) nm,V=5.493 5(4) nm3,Z=4,Dcalcd=1.657 Mg·m-3, μ=1.749 mm-1. Reflections collected: 17 147, independent reflections: 3 247, Rint=0.021 1. Final R indices [I > 2σ(I)]: R1=0.044 8, wR2=0.111 0. The structure of [Ag4Cl4(dppe)2]n is a 3D-diamond highly symmetrical polymeric network containing Ag4Cl4 cubane-like clusters connected by 1,2-bis(diphenylphosphino)ethane (dppe). Each Ag4C14 cluster is composed of four silver and four chlorine atoms situated at alternate vertexes of a highly distorted cube with each silver atom being further coordinated to one phosphorus atom from a dppe ligand. The stripping of chloride ions from CHCl3 provides the source for chlorine in the formation of Ag(Ⅰ) clusters. In addition,the emission spectrum of the complex 1 in solid state has been studied. CCDC: 288080.

  8. The reduction process of phytic acid silver ion system: A pulse radiolysis study

    Science.gov (United States)

    Joshi, Ravi; Mukherjee, Tulsi

    2007-05-01

    Reduction of silver ion in a silver-phytic acid (1:1 ratio) system has been studied using pulse radiolysis technique. Time-resolved transformation of the intermediates, Ag +→Ag 0→Ag 2+→Ag 32+, has been clearly observed in the reduction of silver-phytic acid (1:1) system. The effect of phytic acid on the formation and decay of initial silver clusters has been also studied. The surface plasmon absorption band of stable silver nanoparticle (410 nm) and dynamic light scattering technique has been used to characterize the nanoparticles and measure the average size ( Rav=100 nm).

  9. The reduction process of phytic acid-silver ion system: A pulse radiolysis study

    International Nuclear Information System (INIS)

    Reduction of silver ion in a silver-phytic acid (1:1 ratio) system has been studied using pulse radiolysis technique. Time-resolved transformation of the intermediates, Ag+→Ag0→Ag2+→Ag32+, has been clearly observed in the reduction of silver-phytic acid (1:1) system. The effect of phytic acid on the formation and decay of initial silver clusters has been also studied. The surface plasmon absorption band of stable silver nanoparticle (410 nm) and dynamic light scattering technique has been used to characterize the nanoparticles and measure the average size (R av=100 nm)

  10. Polystyrene Based Silver Selective Electrodes

    Directory of Open Access Journals (Sweden)

    Shiva Agarwal

    2002-06-01

    Full Text Available Silver(I selective sensors have been fabricated from polystyrene matrix membranes containing macrocycle, Me6(14 diene.2HClO4 as ionophore. Best performance was exhibited by the membrane having a composition macrocycle : Polystyrene in the ratio 15:1. This membrane worked well over a wide concentration range 5.0×10-6–1.0×10-1M of Ag+ with a near-Nernstian slope of 53.0 ± 1.0 mV per decade of Ag+ activity. The response time of the sensor is <15 s and the membrane can be used over a period of four months with good reproducibility. The proposed electrode works well in a wide pH range 2.5-9.0 and demonstrates good discriminating power over a number of mono-, di-, and trivalent cations. The sensor has also been used as an indicator electrode in the potentiometric titration of silver(II ions against NaCl solution. The sensor can also be used in non-aqueous medium with no significant change in the value of slope or working concentration range for the estimation of Ag+ in solution having up to 25% (v/v nonaqueous fraction.

  11. Cation-cation interaction in neptunyl(V) compounds

    International Nuclear Information System (INIS)

    The original manuscript was prepared by Professor N.N. Krot of Institute of Physical Chemistry, Russian Academy of Sciences, in 1997. Saeki tried to translate that into Japanese and to add some new data since 1997. The contents include the whole picture of cation-cation interactions mainly in 5-valence neptunium compounds. Firstly, characteristic structures of neptunium are summarized of the cation-cation bonding in compounds. Secondly, it is mentioned how the cation-cation bonding affects physical and chemical properties of the compounds. Then, characterization-methods for the cation-cation bonding in the compounds are discussed. Finally, the cation-cation interactions in compounds of other actinide-ions are shortly reviewed. (author)

  12. Charge transfer properties of pentacene adsorbed on silver: DFT study

    International Nuclear Information System (INIS)

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices

  13. Femtosecond laser structuring of silver-containing glass: Silver redistribution, selective etching, and surface topology engineering

    International Nuclear Information System (INIS)

    Femtosecond direct laser writing in silver-containing phosphate glasses allows for the three-dimensional (3D) implementation of complex photonic structures. Sample translation along or perpendicular to the direction of the beam propagation has been performed, which led to the permanent formation of fluorescent structures, either corresponding to a tubular shape or to two parallel planes at the vicinity of the interaction voxel, respectively. These optical features are related to significant modifications of the local material chemistry. Indeed, silver depletion areas with a diameter below 200 nm were evidenced at the center of the photo-produced structures while photo-produced luminescence properties are attributed to the formation of silver clusters around the multiphoton interaction voxel. The laser-triggered oxidation-reduction processes and the associated photo-induced silver redistribution are proposed to be at the origin of the observed original 3D luminescent structures. Thanks to such material structuring, surface engineering has been also demonstrated. Selective surface chemical etching of the glass has been obtained subsequently to laser writing at the location of the photo-produced structures, revealing features with nanometric depth profiles and radial dimensions strongly related to the spatial distributions of the silver clusters

  14. Femtosecond laser structuring of silver-containing glass: Silver redistribution, selective etching, and surface topology engineering

    Energy Technology Data Exchange (ETDEWEB)

    Desmoulin, Jean-Charles; Petit, Yannick; Cardinal, Thierry, E-mail: thierry.cardinal@icmcb.cnrs.fr [CNRS, ICMCB, UPR 9048, F-33600 Pessac, France and Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Canioni, Lionel [Université Bordeaux, Centre Lasers Intenses et Applications–UMR 5107 CNRS, 351 cours de la Libération, 33405 Talence Cedex (France); Dussauze, Marc [Université de Bordeaux, Institut des Sciences Moléculaires, CNRS UMR 5255, 351 cours de la Libération, 33405 Talence Cedex (France); Lahaye, Michel [Université de Bordeaux, Placamat, avenue Docteur Albert Schweitzer, 33608 Pessac Cedex (France); Gonzalez, Hernando Magallanes; Brasselet, Etienne [Université Bordeaux, Laboratoire Ondes et Matière d' Aquitaine–UMR 5798, CNRS, 351 cours de la Libération, 33405 Talence Cedex (France)

    2015-12-07

    Femtosecond direct laser writing in silver-containing phosphate glasses allows for the three-dimensional (3D) implementation of complex photonic structures. Sample translation along or perpendicular to the direction of the beam propagation has been performed, which led to the permanent formation of fluorescent structures, either corresponding to a tubular shape or to two parallel planes at the vicinity of the interaction voxel, respectively. These optical features are related to significant modifications of the local material chemistry. Indeed, silver depletion areas with a diameter below 200 nm were evidenced at the center of the photo-produced structures while photo-produced luminescence properties are attributed to the formation of silver clusters around the multiphoton interaction voxel. The laser-triggered oxidation-reduction processes and the associated photo-induced silver redistribution are proposed to be at the origin of the observed original 3D luminescent structures. Thanks to such material structuring, surface engineering has been also demonstrated. Selective surface chemical etching of the glass has been obtained subsequently to laser writing at the location of the photo-produced structures, revealing features with nanometric depth profiles and radial dimensions strongly related to the spatial distributions of the silver clusters.

  15. Unexpected Ultrafast Silver Ion Reduction: Dynamics Driven by the Solvent Structure.

    Science.gov (United States)

    Balcerzyk, Anna; Schmidhammer, Uli; Horne, Gregory; Wang, Furong; Ma, Jun; Pimblott, Simon M; de la Lande, Aurélien; Mostafavi, Mehran

    2015-08-01

    Picosecond pulse radiolysis measurements have been performed in neutral and highly acidic aqueous solutions containing silver ions at different concentrations. Silver ion reduction is used to understand the ultrafast chemistry of irradiated water and aqueous solutions. The absorption band measured at the end of the 7-ps electron pulses has an intense band with a maximum at 360 nm due to the formation of silver atoms. Kinetics shows that the amount of silver atom formed at the end of the electron pulse in phosphoric acid solutions is greater than that in neutral water. This unexpectedly high yield of silver atom formation cannot be explained solely by the reaction between silver ions and solvated electrons in neutral solutions nor by the reaction with hydrogen atoms in phosphoric acid solutions. To explain the observed ultrafast reduction of silver ions, the presolvated electron, be it free or paired to the hydronium cation, must react very quickly with a silver ion, potentially competing with geminate recombination of the electron and its sibling radical cation. PMID:26158320

  16. Adduct formation of ionic and nanoparticular silver with amino acids and glutathione

    Energy Technology Data Exchange (ETDEWEB)

    Blaske, Franziska; Stork, Lisa; Sperling, Michael; Karst, Uwe, E-mail: uk@uni-muenster.de [University of Muenster, Institute of Inorganic and Analytical Chemistry (Germany)

    2013-09-15

    To investigate the interaction of ionic and nanoparticular silver with amino acids and small peptides, an electrospray ionization time-of-flight mass spectrometry method was developed. Monomeric and oligomeric silver adducts were formed with amino acids including cysteine (Cys), methionine, histidine, lysine, or the tripeptide glutathione (GSH). The obtained spectra for ionic silver show clusters in different ratios between Ag{sup +} and the reaction partners (X) including [Ag{sub n}X{sub m} - (n + 1)H]{sup -} (n = 1-4, m = 1-3). Regarding Cys, adduct clusters up to n = 5 and m = 4 were observed as well. Considering silver-GSH interactions, even doubly charged oligomers occur generating [Ag{sub (a+1)}GSH{sub a} - (a + 3)H]{sup 2-} (a = 5-7) and [Ag{sub b}GSH{sub b} - (b + 2)H]{sup 2-} (b = 4-8) ions. {sup 1}H NMR data of free GSH compared to that after treatment with Ag{sup +} confirm sulfur-metal interactions due to changing chemical shifts for the protons located adjacent to the thiol group. Density functional theory calculations for silver-GSH clusters may explain the formation of experimentally recorded large clusters due to cooperative effects between silver and carboxylic acid side chains. Both sets of experiments indicate the presence of these adducts in the liquid phase. For silver nanoparticles, the respective data confirm the release of silver ions and the subsequent adduct formation.

  17. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  18. Nanosecond (ns) laser transfer of silver nanoparticles from silver-exchanged soda-lime glass to transparent soda-lime glass and shock waves formation

    Science.gov (United States)

    Sow, Mohamed Chérif; Blondeau, Jean-Philippe; Sagot, Nadine; Ollier, Nadège; Tite, Teddy

    2015-05-01

    In this contribution, we showed for the first time in our knowledge a single-step process for silver clusters and nanoparticles growth and transfer from silver-exchanged soda-lime glass to un-exchanged soda-lime glass (transparent glass in visible and NIR domain) by nanosecond (ns) laser irradiation. The transferred silver nanoparticles in transparent glass are strongly linked to the glass surface. In addition, we point out the formation of shock waves, with selective silver clustering on the top wave. This technique provides an alternative and simple way to obtain metallic nanoparticles in different media which can be traversed by laser wavelength used. Moreover, this experiment is made at room temperature and air environment. It is worth noting that our technique requires a glass previously doped with the corresponding silver ions.

  19. Evaluation of Silver Distribution within the Silver Doped Hydroxyapatite

    OpenAIRE

    Dubņika, A; Loča, D; Jakovļevs, D; Bērziņa-Cimdiņa, L.

    2013-01-01

    Various researches of silver doped hydroxyapatite (HAp/Ag) synthesis and evaluation can be found, but scarce information can be found on evaluation of silver distribution within powders and pallets depending on the material preparation method. Silver distribution is essential parameter responsible for silver release and material in vitro properties.

  20. Room-temperature silver-containing liquid metal salts with nitrate anions

    OpenAIRE

    Schaltin, Stijn; Brooks, Neil R.; Sniekers, Jeroen; Depuydt, Daphne; Van Meervelt, Luc; Binnemans, Koen; Fransaer, Jan

    2013-01-01

    The synthesis, structural, thermal and electrochemical properties of fluorine-free silver-containing ionic liquids are presented. The ionic liquid cations are formed by a silver(I) ion surrounded by two 1-alkylimidazole ligands, with the counter anions being nitrate ions. Depending on the alkyl chain length, the complexes were found to be liquids at room temperature or melting slightly above this. For the solid compounds it was possible to elucidate the structure by single crystal X-ray analy...

  1. Quasielastic neutron scattering study of silver selenium halides

    CERN Document Server

    Major, A G; Barnes, A C; Howells, W S

    2002-01-01

    Both silver chalcogenides (Ag sub 2 S, Ag sub 2 Se, and Ag sub 2 Te) and silver halides (AgCl, AgBr, and AgI) are known to be fast-ion solids in which the silver ions can diffuse quickly in a sublattice formed by the other ions. To clarify whether mixtures of these materials (such as Ag sub 3 SeI) possess comparable properties and whether a systematic dependence on the cation-to-anion ratio can be observed, some of these mixtures were studied by quasielastic neutron scattering both in the solid and the liquid phases. To identify the diffusion mechanisms and constants, a new data-analysis method based on a two-dimensional maximum-likelihood fit is proposed. This method has the potential to give more reliable information on the diffusion mechanism than the traditional Bayesian method. (orig.)

  2. Biopolymer capped silver nanoparticles with potential for multifaceted applications.

    Science.gov (United States)

    Vanamudan, Ageetha; Sudhakar, P Padmaja

    2016-05-01

    A sustainable, green and low cost method for the synthesis of silver nanoparticles at room temperature has been developed using guargum as a reducing and stabilizing agent. The synthesized silver nanoparticles (GAg) were characterized by UV-vis spectroscopy, FTIR, EDS, Raman, XRD and TEM. The interaction of the functional groups present in the biopolymer Guargum (G) with the silver nanoparticles (GAg) were responsible for the nanoparticle surface to function as active substrates for Surface Enhanced Raman Spectroscopic (SERS) detection of cationic and anionic dyes. The catalytic degradation of a copper phthalocyanine based dye- Reactive blue - 21(RB-21), an azo dye- Reactive red 141(RR-141) and a xanthene dye- Rhodamine - 6G(Rh-6G) as well as binary mixtures of the three dyes was evaluated using the synthesized nanoparticles. The catalyst also caused a significant reduction in Total Organic Carbon (TOC) suggesting the formation of smaller degraded products. PMID:26800899

  3. High current density electrodeposition of silver from silver-containing liquid metal salts with pyridine-N-oxide ligands.

    Science.gov (United States)

    Sniekers, Jeroen; Brooks, Neil R; Schaltin, Stijn; Van Meervelt, Luc; Fransaer, Jan; Binnemans, Koen

    2014-01-28

    New cationic silver-containing ionic liquids were synthesized and used as non-aqueous electrolytes for the electrodeposition of silver layers. In the liquid state of these ionic liquids, a silver (i) cation is coordinated by pyridine-N-oxide (py-O) ligands in a 1 : 3 metal-to-ligand ratio, although in some cases a different stoichiometry of the silver center crystallized out. As anions, bis(trifluoromethanesulfonyl)imide (Tf2N), trifluoromethanesulfonate (OTf), methanesulfonate (OMs) and nitrate were used, yielding compounds with the formulae [Ag(py-O)3][Tf2N], [Ag(py-O)3][OTf], [Ag(py-O)3][OMs] and [Ag(py-O)3][NO3], respectively. The compounds were characterized by CHN analysis, FTIR, NMR, DSC, TGA and the electrodeposition of silver was investigated by cyclic voltammetry, linear potential scans, scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDX). With the exception of [Ag(py-O)3][Tf2N], which melts at 108 °C, all the silver(i) compounds have a melting point below 80 °C and were tested as electrolytes for silver electrodeposition. Interestingly, very high current densities were observed at a potential of -0.5 V vs. Ag/Ag(+) for the compounds with fluorine-free anions, i.e. [Ag(py-O)3][NO3] (current density of -10 A dm(-2)) and [Ag(py-O)3][OMs] (-6.5 A dm(-2)). The maximum current density of the compound with the fluorinated anion trifluoromethanesulfonate, [Ag(py-O)3][OTf], was much lower: -2.5 A dm(-2) at -0.5 V vs. Ag/Ag(+). Addition of an excess of ligand to [Ag(py-O)3][OTf] resulted in the formation of the room-temperature ionic liquid [Ag(py-O)6][OTf]. A current density of -5 A dm(-2) was observed at -0.5 V vs. Ag/Ag(+) for this low viscous silver salt. The crystal structures of several silver complexes could be determined by X-ray diffraction, and it was found that several of them had a stoichiometry different from the 1 : 3 metal-to-ligand ratio used in their synthesis. This indicates that the compounds form crystals

  4. PIXE analysis of medieval silver coins

    International Nuclear Information System (INIS)

    We applied the proton-induced X-ray emission (PIXE) analytical technique to twenty-eight medieval silver coins, selected from the Tunisian treasury. The purpose is to study the fineness evolution from the beginning of the 7th to the 15th centuries AD. Each silver coin was cleaned with a diluted acid solution and then exposed to a 3 MeV proton beam from a 1.7 MV tandem accelerator. To allow the simultaneous detection of light and heavy elements, a funny aluminum filter was positioned in front of the Si(Li) detector entrance which is placed at 135o to the beam direction. The elements Cu, Pb, and Au were observed in the studied coins along with the major component silver. The concentration of Ag, presumably the main constituent of the coins, varies from 55% to 99%. This significant variation in the concentration of the major constituent reveals the economical difficulties encountered by each dynasty. It could be also attributed to differences in the composition of the silver mines used to strike the coins in different locations. That fineness evolution also reflects the poor quality of the control practices during this medieval period. In order to verify the ability of PIXE analytical method to distinguish between apparently similar coins, we applied hierarchical cluster analysis to our results to classify them into different subgroups of similar elemental composition.

  5. Study of chemical processes involved in silver staining of gold nanostructures by Raman scattering

    Science.gov (United States)

    Ji, Xiaohui; Yang, Wensheng

    2016-05-01

    Strong Raman enhancement contributed by ``hot spots'' in directly fused gold dimers offer a selective and sensitive tool for understanding the surface processes involved in the silver staining of gold nanostructures. These processes include the interactions of cations, effects of surface adsorbed Cl- ions, surface replacement of ligands, and reduction of silver ions on the surface of the gold nanocrystals. Results show that in the commonly applied silver staining scheme for gold nanostructures, i.e., the addition of the Raman probe after the deposition of the silver shell, the Raman signals of the probe (p-mercaptobenzoic acid) were weakened greatly, due to the pre-existence of the Cl--Ag+-citrate bridges on the surface of the gold. A new scheme was developed for silver deposition after pre-adsorption of the probe, which achieved a Raman enhancement factor as high as ~5 × 108.Strong Raman enhancement contributed by ``hot spots'' in directly fused gold dimers offer a selective and sensitive tool for understanding the surface processes involved in the silver staining of gold nanostructures. These processes include the interactions of cations, effects of surface adsorbed Cl- ions, surface replacement of ligands, and reduction of silver ions on the surface of the gold nanocrystals. Results show that in the commonly applied silver staining scheme for gold nanostructures, i.e., the addition of the Raman probe after the deposition of the silver shell, the Raman signals of the probe (p-mercaptobenzoic acid) were weakened greatly, due to the pre-existence of the Cl--Ag+-citrate bridges on the surface of the gold. A new scheme was developed for silver deposition after pre-adsorption of the probe, which achieved a Raman enhancement factor as high as ~5 × 108. Electronic supplementary information (ESI) available: Fig. S1-S3. See DOI: 10.1039/c6nr01208f

  6. Silver enhancement of nanogold and undecagold

    Energy Technology Data Exchange (ETDEWEB)

    Hainfield, J.F.; Furuya, F.R.

    1995-07-01

    A recent advance in immunogold technology has been the use of molecular gold instead of colloidal gold. A number of advantages are realized by this approach, such as stable covalent, site-specific attachment, small probe size and absence of aggregates for improved penetration. Silver enhancement has led to improved and unique results for electron and light microscopy, as well as their use with blots and gels. Most previous work with immunogold silver staining has been done with colloidal gold particles. More recently, large gold compounds (``clusters``) having a definite number of gold atoms and defined organic shell, have been used, frequently with improved results. These gold dusters, large compared to simple compounds, are, however, at the small end of the colloidal gold scale in size; undecagold is 0.8 nm and Nanogold is 1.4 nm. They may be used in practically all applications where colloidal gold is used (Light and electron microscopy, dot blots, etc.) and in some unique applications, where at least the larger colloidal golds don`t work, such as running gold labeled proteins on gels (which are later detected by silver enhancement). The main differences between gold clusters and colloidal golds are the small size of the dusters and their covalent attachment to antibodies or other molecules.

  7. Laser-Cluster-Interaction in a Nanoplasma-Model with Inclusion of Lowered Ionization Energies

    OpenAIRE

    Hilse, Paul; Moll, Max; Schlanges, Manfred; Bornath, Thomas

    2008-01-01

    The interaction of intense laser fields with silver and argon clusters is investigated theoretically using a modified nanoplasma model. Single pulse and double pulse excitations are considered. The influence of the dense cluster environment on the inner ionization processes is studied including the lowering of the ionization energies. There are considerable changes in the dynamics of the laser-cluster interaction. Especially, for silver clusters, the lowering of the ionization energies leads ...

  8. Magnetron sputtering cluster apparatus for formation and deposition of size-selected metal nanoparticles

    OpenAIRE

    Hanif, Muhammad; Popok, Vladimir

    2015-01-01

    The experimental setup utilizing a DC magnetron sputtering source for production of metal clusters, their size (mass) selection and following deposition in high vacuum is described. The source is capable to form clusters of various metals, for example, copper, silver, gold etc. Cluster size selection is achieved using an electrostatic quadrupole mass selector. The deposited silver clusters are studied using atomic force microscopy. The height distributions show typical relative standard size ...

  9. Nanosecond (ns) laser transfer of silver nanoparticles from silver-exchanged soda-lime glass to transparent soda-lime glass and shock waves formation

    International Nuclear Information System (INIS)

    Highlights: • Silver nanoparticles growth by nanosecond laser irradiation of silver exchanged soda-lime glasses. • Silver nanoparticles transfer. • Nanosecond laser induced shock waves formation on glass. - Abstract: In this contribution, we showed for the first time in our knowledge a single-step process for silver clusters and nanoparticles growth and transfer from silver-exchanged soda-lime glass to un-exchanged soda-lime glass (transparent glass in visible and NIR domain) by nanosecond (ns) laser irradiation. The transferred silver nanoparticles in transparent glass are strongly linked to the glass surface. In addition, we point out the formation of shock waves, with selective silver clustering on the top wave. This technique provides an alternative and simple way to obtain metallic nanoparticles in different media which can be traversed by laser wavelength used. Moreover, this experiment is made at room temperature and air environment. It is worth noting that our technique requires a glass previously doped with the corresponding silver ions

  10. Nanosecond (ns) laser transfer of silver nanoparticles from silver-exchanged soda-lime glass to transparent soda-lime glass and shock waves formation

    Energy Technology Data Exchange (ETDEWEB)

    Sow, Mohamed Chérif, E-mail: mohamed-cherif.sow@univ-orleans.fr [Laboratoire CEMTHI UPR CNRS 3079, Université d’Orléans, IUT de Chartres, 28000 Chartres (France); Blondeau, Jean-Philippe; Sagot, Nadine [Laboratoire CEMTHI UPR CNRS 3079, Université d’Orléans, IUT de Chartres, 28000 Chartres (France); Ollier, Nadège; Tite, Teddy [Laboratoire Hubert Curien UMR CNRS 5516, Université de Lyon, Université Jean Monnet, 42000 Saint-Etienne (France)

    2015-05-01

    Highlights: • Silver nanoparticles growth by nanosecond laser irradiation of silver exchanged soda-lime glasses. • Silver nanoparticles transfer. • Nanosecond laser induced shock waves formation on glass. - Abstract: In this contribution, we showed for the first time in our knowledge a single-step process for silver clusters and nanoparticles growth and transfer from silver-exchanged soda-lime glass to un-exchanged soda-lime glass (transparent glass in visible and NIR domain) by nanosecond (ns) laser irradiation. The transferred silver nanoparticles in transparent glass are strongly linked to the glass surface. In addition, we point out the formation of shock waves, with selective silver clustering on the top wave. This technique provides an alternative and simple way to obtain metallic nanoparticles in different media which can be traversed by laser wavelength used. Moreover, this experiment is made at room temperature and air environment. It is worth noting that our technique requires a glass previously doped with the corresponding silver ions.

  11. Cationic Antimicrobial Peptide Cytotoxicity

    OpenAIRE

    Laverty, Garry; Gilmore, Brendan

    2014-01-01

    Fluorescence microscopy serves as a valuable tool for assessing the structural integrity and viability of eukaryotic cells. Through the use of calcein AM and the DNA stain 4,6-diamidino-2 phenylindole (DAPI), cell viability and membrane integrity can be qualified. Our group has previously shown the ultra-short cationic antimicrobial peptide H-OOWW-NH2; the amphibian derived 27-mer peptide Maximin-4and the ultra-short lipopeptide C12-OOWW-NH2 to be effective against a range of bacterial biofil...

  12. Dual-color control and inhibition of direct laser writing in silver-containing phosphate glasses.

    Science.gov (United States)

    Petit, Yannick; Mishchik, Konstantin; Varkentina, Nadezda; Marquestaut, Nicolas; Royon, Arnaud; Manek-Hönninger, Inka; Cardinal, Thierry; Canioni, Lionel

    2015-09-01

    We report on dual-color control of femtosecond direct laser writing (DLW) in a noncommercial silver-containing zinc phosphate glass, thanks to an additional illumination with a cw (continuous wave) UV laser, either after the femtosecond irradiation or simultaneously. By tuning the cw UV power, we demonstrate the tunable control and inhibition of the production efficiency of laser-induced fluorescent silver clusters, leading up to 100% inhibition for simultaneous co-illumination when the laser writing is performed close enough to the permanent structuring threshold. The role of the cw UV illumination is discussed in terms of inhibition of the silver cluster precursors or of dissolution of the laser-induced silver clusters. These results show the ability of laser writing inhibition in our photosensitive silver-containing phosphate glass, which is a necessary step to further develop super-resolution laser writing approaches, such as STED-like DLW, either of fluorescent silver clusters or of silver metallic nanoparticles with plasmonic properties. PMID:26368730

  13. Electroless Functionalization of Silver Films by Its Molecular Doping.

    Science.gov (United States)

    Naor, Hadas; Avnir, David

    2015-12-01

    We present a methodology which by far extends the potential applications of thin conductive silver films achieved by an electroless molecular doping process of the metal with any of the endless functional molecules that the large library of organic molecules offer. The resulting metallic films within which the molecule is entrapped--molecule@Ag--carry both the classical chemical and physical properties of silver films, as well as the function of the entrapped molecule. Raman measurements of the organic molecules from within the silver films provide the first spectroscopic observations from within silver, and clearly show that entrapment, a three-dimensional process, and adsorption, a two-dimensional process, on silver films are distinctly different processes. Three organic molecules, the cationic Neutral red, the anionic Congo red, and the antibacterial agent chlorhexidine digluconate (CH), were used to demonstrate the generality of this method for various types of molecules. We studied the sensitivity of the film conductivity to the type of the molecule entrapped within the film, to its concentration, and to temperature. Dual functionality was demonstrated with CH@Ag films, which are both conductive and have prolonged and high antibacterial activity, a combination of properties that has been unknown so far. PMID:26571199

  14. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    Directory of Open Access Journals (Sweden)

    Runa Ghosh Auddy

    2013-01-01

    Full Text Available Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA for wound healing applications. Biologically synthesized silver nanoparticles (Agnp were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P<0.05. Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation.

  15. Silver ion release from antimicrobial polyamide/silver composites

    OpenAIRE

    Kumar, Radhesh; Münstedt, Helmut

    2005-01-01

    Silver ion (Ag+) the versatile antimicrobial species was released in a steady and prolonged manner from a silver-filled polyamide composite system. Metallic silver powder having varying specific surface area (SSA) has been used as a resource of biocide in polyamide. Strong evidences are found showing the release of the antimicrobial species from the resulting composite upon soaking it in water due to the interaction of the diffused water molecules with the dispersed silver powder wit...

  16. Small angle neutron scattering analysis of chitosan- silver nanocomposite films

    International Nuclear Information System (INIS)

    Recently biopolymers are extensively studied for the development of solid polymer electrolytes. Studies relating to interaction of nanoparticles with biopolymers are essential to furthering research in solid polymer electrolytes. In our research we have tried to understand the interaction between chitosan and silver nanoparticles during reduction process. Chitosan is linear polysaccharides obtained from the deacetylation of chitin. It is soluble in acidic medium and the D-glucosamine unit gets protonated leading to poly cationic polymer. It has wide potential applications in medical, water engineering, sensors, and in micro device fabrication due to its unique physiochemical properties including biocompatibility and non toxicity. It also acts as both reducing and stabilizing agent for the metal ions via ion pair interaction. Silver nanoparticles are used as filler due to its well-known effectiveness in biomedical, electronic, catalytic and optical applications. In this research we have synthesized chitosan - silver films. The films were synthesized by solution casting method and polymer films of thickness ~ 100 μm were obtained. The chitosan - silver films were also dipped in hydrazine hydrate for comparison. Various characterizations techniques such as XRD, FTIR, SEM, TEM and SANS were used. SEM and TEM showed structural modifications in the chitosan- silver film which is enhanced when dipped in hydrazine hydrate. Interestingly, Small angle neutron scattering (SANS) showed that fractals were formed in the chitosan- silver films both dipped and undipped in hydrazine hydrate. Electrical characterization studies showed that the conductivity was affected due to formation of silver nanoparticles. These films have potential application in solid batteries.

  17. Silver selective electrodes based on thioether functionalized calix[4]arenes as ionophores

    NARCIS (Netherlands)

    Malinowska, Elz˙bieta; Brzozka, Zbigniew; Kasiura, Krzysztof; Egberink, Richard J.M.; Reinhoudt, David N.

    1994-01-01

    Silver selective electrodes based on thioether functionalized calix[4]arenes 1 and 2 as ionophores were investigated. For both ionophores the selectivity coefficients (log kAg,M) were lower than −2.2 for Hg(II) and lower than −4.6 for other cations tested. The best results were obtained with membran

  18. Leaching of Silver from Silver-Impregnated Food Storage Containers

    Science.gov (United States)

    Hauri, James F.; Niece, Brian K.

    2011-01-01

    The use of silver in commercial products has proliferated in recent years owing to its antibacterial properties. Food containers impregnated with micro-sized silver promise long food life, but there is some concern because silver can leach out of the plastic and into the stored food. This laboratory experiment gives students the opportunity to…

  19. Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity

    Science.gov (United States)

    Ashraf, Sumaira; Chatha, Mariyam Asghar; Ejaz, Wardah; Janjua, Hussnain Ahmed; Hussain, Irshad

    2014-10-01

    Lysozyme, an antibacterial enzyme, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles adopting various strategies. The synthesized particles were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering (DLS), and TEM to observe their morphology and surface chemistry. The silver nanoparticles were evaluated for their antimicrobial activity against several bacterial species and various bacterial strains within the same species. The cationic silver nanoparticles were found to be more effective against Pseudomonas aeruginosa 3 compared to other bacterial species/strains investigated. Some of the bacterial strains of the same species showed variable antibacterial activity. The difference in antimicrobial activity of these particles has led to the conclusion that antimicrobial products formed from silver nanoparticles may not be equally effective against all the bacteria. This difference in the antibacterial activity of silver nanoparticles for different bacterial strains from the same species may be due to the genome islands that are acquired through horizontal gene transfer (HGT). These genome islands are expected to possess some genes that may encode enzymes to resist the antimicrobial activity of silver nanoparticles. These silver nanoparticles may thus also be used to differentiate some bacterial strains within the same species due to variable silver resistance of these variants, which may not possible by simple biochemical tests.

  20. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    Science.gov (United States)

    Richter, Alexander P.; Brown, Joseph S.; Bharti, Bhuvnesh; Wang, Amy; Gangwal, Sumit; Houck, Keith; Cohen Hubal, Elaine A.; Paunov, Vesselin N.; Stoyanov, Simeon D.; Velev, Orlin D.

    2015-09-01

    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles.

  1. Spectroscopic, microscopic and catalytic properties of silver nanoparticles synthesized using Saraca indica flower

    Science.gov (United States)

    Vidhu, V. K.; Philip, Daizy

    2014-01-01

    The bioprospective field is dynamic area of research in the recent years. The present article reports a green synthetic route for the production of highly stable, bio-inspired silver nanoparticles using dried Saraca indica flower. The method is facile, cost effective, simple and reproducible. The reduction of silver ions and the formation of silver nanoparticles has been monitored using UV-visible spectroscopy. The TEM, SAED and XRD result reveal that the silver nanoparticles are crystalline in nature. FTIR spectra are used to identify the biomolecules that bind on the surface of silver nanoparticles, which increased the stability of the particles. S. indica flower extract plays its role as an excellent reducing agent of silver ions and the biosynthesized silver nanoparticles are safer to environment. Also the size dependent catalytic activity of silver nanoparticles in the reduction of cationic dye, Methylene blue by NaBH4 is studied by UV-visible spectroscopy. The efficiency of synthesized nanoparticles as an excellent catalyst is proved by the reduction of Methylene blue which is confirmed by the decrease in the absorbance with time and is attributed to electron relay effect.

  2. Theoretical Investigation on the Adsorption of Ag+ and Hydrated Ag+ Cations on Clean Si(111)Surface

    Institute of Scientific and Technical Information of China (English)

    SHENG Yong-Li; LI Meng-Hua; WANG Zhi-Guo; LIU Yong-Jun

    2008-01-01

    In this paper,the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111)surface were investigated by using cluster(Gaussian 03)and periodic(DMol3)ab initio calculations.Si(111)surface was described with cluster models(Si14H17 and Si22H21)and a four-silicon layer slab with periodic boundary conditions.The effect of basis set superposition error(BSSE)was taken into account by applying the counterpoise correction.The calculated results indicated that the binding energies between hydrated Ag+ cations and clean Si(111)surface are large,suggesting a strong interaction between hydrated Ag+ cations and the semiconductor surface.With the increase of number,water molecules form hydrogen bond network with one another and only one water molecule binds directly to the Ag+ cation.The Ag+ cation in aqueous solution will safely attach to the clean Si(111)surface.

  3. Dynamics of Ag clusters on complex surfaces: Molecular dynamics simulations

    Science.gov (United States)

    Alkis, S.; Krause, J. L.; Fry, J. N.; Cheng, H.-P.

    2009-03-01

    We study the diffusion of silver nanoparticles on self-assembled monolayers (SAMs). Silver clusters Agn of sizes n=55 , 147, and 1289 were evolved in contact with an alkanethiol (12 carbon, dodecanethiol) SAM deposited on a gold (111) surface. Analysis based on classical molecular dynamics simulations reveals that these systems exhibit a rich variety of behaviors, from superdiffusive for the lightest cluster to pinned for the heaviest, evolution self-similar in lengths and times for the lightest cluster but with characteristic time scales and directional anisotropies emerging for the heavier clusters.

  4. Ion exchange behaviour of polymeric zirconium cations

    International Nuclear Information System (INIS)

    Polymeric zirconium cations formed in weakly acid solutions (pH2) are taken up strongly into macroporous cation exchange resins, while uptake into normal cation exchange resins (pore diameter about 1 nm) is low. Macroporous cation exchange resins loaded with polymeric Zr cations are shown to function as ligand exchange sorbents. (Authors)

  5. Investigation of electrochemical intrusion of cations by the method of contact electric resistance

    International Nuclear Information System (INIS)

    Paper shows the possibility and prospects of application of contact electric resistance technique (CER) to study in-situ the initial stages of electrochemical admission of cations (ECA). ECA is shown to increase CER of metals. It enables to determine ECA potential and to investigate kinetics of this process. Using ECA in copper, silver and zinc from alkali solutions as an example one has shown that CER technique enables to obtain results that do not contradict well-known published data. Potentials of ECA cations from acid and neutral solutions in copper, platinum, iron, titanium and tungsten are determined

  6. Synthesis of Silver Nanoparticles Using Hydroxyl Functionalized Ionic Liquids and Their Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Young Key Shim

    2008-05-01

    Full Text Available We report a new one phase method for the synthesis of uniform monodisperse crystalline Ag nanoparticles in aqueous systems that has been developed by using newly synthesized mono and dihydroxylated ionic liquids and cationic surfactants based on 1,3-disubstituted imidazolium cations and halogens anions. The hydroxyl functionalized ionic liquids (HFILs and hydroxyl functionalized cationic surfactants (HFCSs also simultaneously acts both as the reductant and protective agent. By changing the carbon chain length, alcohol structure and anion of the 1,3-imidazolium based HFILs and HFCSs the particle size, uniform and dispersibility of nanoparticles in aqueous solvents could be controlled. Transmission electron microscopy (TEM, electron diffraction, UV-Vis and NMR, were used for characterization of HFILs, HFCSs and silver nanoparticles. TEM studies on the solution showed representative spherical silver nanoparticles with average sizes 2-8 nm, particularly 2.2 nm and 4.5 nm in size range and reasonable narrow particle size distributions (SD-standard distribution 0.2 nm and 0.5 nm respectively. The all metal nanoparticles are single crystals with face centered cubic (fcc structure. The silver nanoparticles surface of plasmon resonance band (λmax around 420 nm broadened and little moved to the long wavelength region that indicating the formation of silver nanoparticles dispersion with broad absorption around infrared (IR region. Silver complexes of these HFILs as well as different silver nanoparticles dispersions have been tested in vitro against several gram positive and gram negative bacteria and fungus. The silver nanoparticles providing environmentally friendly and high antimicrobial activity agents.

  7. Silver accumulation in macrofungi

    Czech Academy of Sciences Publication Activity Database

    Borovička, Jan; Kotrba, P.; Gryndler, Milan

    Elsevier. Roč. 72, č. 12 (2008), A99-A99. ISSN 0016-7037. [8th Annual V M Goldschmidt Conference. xx.07.2008, Vancouver] R&D Projects: GA AV ČR(CZ) IAA600480801 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z50200510 Keywords : silver * macrofungi Subject RIV: CH - Nuclear ; Quantum Chemistry

  8. Potted Silver Carp

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Ingredients: 4 silver carp of about 200 grams each, mushrooms, winter bamboo shoots, minced ginger root and scallions, cooking wine, broth, salt and MSG (optional). Method: 1. After cleaning the carp place them in a pot; add in all other ingredients and some broth, Seal the opening of the pot with kraft paper

  9. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    Energy Technology Data Exchange (ETDEWEB)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 77146 Olomouc (Czech Republic); Kolar, M, E-mail: ales.panacek@upol.cz [Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77520 Olomouc (Czech Republic)

    2011-07-06

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  10. Correlation between the Increasing Conductivity of Aqueous Solutions of Cation Chlorides with Time and the “Salting-Out” Properties of the Cations

    Directory of Open Access Journals (Sweden)

    Nada Verdel

    2016-02-01

    Full Text Available The time-dependent role of cations was investigated by ageing four different aqueous solutions of cation chlorides. A linear correlation was found between the cations’ Setchenov coefficient for the salting-out of benzene and the increase in the conductivity with time. The conductivity of the structure-breaking cations or the chaotropes increased more significantly with time than the conductivity of the kosmotropes. Since larger water clusters accelerate the proton or hydroxyl hopping mechanism, we propose that the structuring of the hydration shells of the chaotropes might be spontaneously enhanced over time.

  11. The reduction process of phytic acid-silver ion system: A pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ravi [Radiation and Photochemistry Division, Chemistry Group, Bhabha Atomic Research Center, Mumbai 400 085 (India)]. E-mail: rjudrin@yahoo.com; Mukherjee, Tulsi [Radiation and Photochemistry Division, Chemistry Group, Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2007-05-15

    Reduction of silver ion in a silver-phytic acid (1:1 ratio) system has been studied using pulse radiolysis technique. Time-resolved transformation of the intermediates, Ag{sup +{yields}}Ag{sup 0{yields}}Ag{sub 2} {sup +{yields}}Ag{sub 3} {sup 2+}, has been clearly observed in the reduction of silver-phytic acid (1:1) system. The effect of phytic acid on the formation and decay of initial silver clusters has been also studied. The surface plasmon absorption band of stable silver nanoparticle (410 nm) and dynamic light scattering technique has been used to characterize the nanoparticles and measure the average size (R {sub av}=100 nm)

  12. Two new polyoxovanadate clusters templated through cysteamine

    Indian Academy of Sciences (India)

    K Pavani; S Upreti; A Ramanan

    2006-03-01

    Two new fully oxidized polyoxovanadate cluster-based solids (C4N2S2H14)2[H2V10O28]$\\cdot$4H2O, 1 and (C4N2S2H14)5[H4V15O42]2.10H2O, 2 are crystallized under self-assembly process in the presence of cysteamine. In both 1 and 2, cysteamines are oxidized forming disulphide linkages and occur as counter cations. The organic cations assemble around V10O28 cluster anions in 1 whereas they aggregate around V15O42 clusters in 2. pH appears to be the structure determinant in the occurrence of decavanadate cluster in 1 and pentadecavanadate in 2, with the same counter cation.

  13. Molecular modeling of organic corrosion inhibitors: why bare metal cations are not appropriate models of oxidized metal surfaces and solvated metal cations.

    Science.gov (United States)

    Kokalj, Anton

    2014-01-01

    The applicability of various models of oxidized metal surfaces - bare metal cations, clusters of various size, and extended (periodic) slabs - that are used in the field of quantum-chemical modeling of corrosion inhibitors is examined and discussed. As representative model systems imidazole inhibitor, MgO surface, and solvated Mg(2+) ion are considered by means of density-functional-theory calculations. Although the results of cluster models are prone to cluster size and shape effects, the clusters of moderate size seem useful at least for qualitative purposes. In contrast, the bare metal cations are useless not only as models of oxidized surfaces but also as models of solvated cations, because they bind molecules several times stronger than the more appropriate models. In particular, bare Mg(2+) binds imidazole by 5.9 eV, while the slab model of MgO(001) by only 0.35 eV. Such binding is even stronger for 3+ cations, e.g., bare Al(3+) binds imidazole by 17.9 eV. The reasons for these fantastically strong binding energies are discussed and it is shown that the strong bonding is predominantly due to electron charge transfer from molecule to metal cation, which stems from differences between molecular and metal ionization potentials. PMID:25125117

  14. Rapid and size-controlled preparation of highly concentrated silver nanoparticle colloids under microwave irradiation

    International Nuclear Information System (INIS)

    analysis (JCPDS card No. 1-30). The precipitated silver citrate was dissolved after stirring for ca. 10 min, and the reaction solution became clear and colorless even after the addition of formaldehyde (1.0 M), suggesting that citrate anions at a high concentration stabilized silver cations to form solvated complexes. The yields of silver nanocrystallites in the preparation of samples Al and A3 were 53% and 74%, respectively. On the other hand, only trace amount of metal silver was formed after MW irradiation of a silver nitrate -trisodium citrate (A7) or a silver nitrate - formaldehyde (A8) reaction solution for 1 min, respectively, showing the necessity of the coexistence of both sodium citrate and formaldehyde for the reduction of silver cations to form metal silver colloids. MW heating (A1) resulted in the formation of silver nanoparticles with a narrow size distribution and a quite large average particle size when compared to conventional heating (A3) with the same reactant composition. In general, crystal size and size distribution are determined by the both processes of nucleation and crystal growth, which are greatly affected by reaction temperature. MW irradiation can cause a homogeneous (i.e., molecular level) temperature distribution in the reaction solution due to its penetration characteristics, giving uniform nucleation and rapid crystal growth to form narrow size distributed crystallites. It can be concluded that MW irradiation results in the formation of a quite plenty of nuclei by homogeneous and rapid heating of the silver citrate colloids via reduction with formaldehyde to produce small-sized silver crystallites in the successive process of crystal growth by epitaxy

  15. Efficacy of silver coated surgical sutures on bacterial contamination, cellular response and wound healing.

    Science.gov (United States)

    Gallo, Anna Lucia; Paladini, Federica; Romano, Alessandro; Verri, Tiziano; Quattrini, Angelo; Sannino, Alessandro; Pollini, Mauro

    2016-12-01

    The resistance demonstrated by many microorganisms towards conventional antibiotics has stimulated the interest in alternative antimicrobial agents and in novel approaches for prevention of infections. Silver, a natural braod-spectrum antimicrobial agent known since antiquity, has been widely employed in biomedical field due to its recognized antibacterial, antifungal and antiviral properties. In this work, antibacterial silver coatings were deposited on absorbable surgical sutures through the in situ photo-chemical deposition of silver clusters. Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX) and thermo-gravimetric analysis (TGA) were performed in order to investigate the presence and distribution of the silver clusters on the substrate. The amounts of silver deposited and released by the silver treated sutures were calculated through Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS), and the results were related to the biodegradation of the material. The microbiological properties and the potential cytotoxicity of the silver-treated sutures were investigated in relation with hydrolysis experiments, in order to determine the effect of the degradation on antibacterial properties and biocompatibility. PMID:27612783

  16. Cluster Automorphisms

    OpenAIRE

    Assem, Ibrahim; Schiffler, Ralf; Shramchenko, Vasilisa

    2010-01-01

    In this article, we introduce the notion of cluster automorphism of a given cluster algebra as a $\\ZZ$-automorphism of the cluster algebra that sends a cluster to another and commutes with mutations. We study the group of cluster automorphisms in detail for acyclic cluster algebras and cluster algebras from surfaces, and we compute this group explicitly for the Dynkin types and the Euclidean types.

  17. Surface characterization of silver and palladium modified glassy carbon

    Indian Academy of Sciences (India)

    Aleksandra A Perić-Grujić; Olivera M Nešković; Miomir V Veljković; Zoran V Laušević; Mila D Laušević

    2007-12-01

    In this work, the influence of silver and palladium on the surface of undoped, boron doped and phosphorus doped glassy carbon has been studied. The silver and palladium concentrations in solution, after metal deposition, were measured by atomic absorption spectrophotometer. The morphology of metal coatings was characterized by scanning electron microscopy. In order to investigate the nature and thermal stability of surface oxygen groups, temperature-programmed desorption method combined with mass spectrometric analyses, was performed. The results obtained have shown that silver and palladium spontaneously deposit from their salt solutions at the surface of glassy carbon samples. Silver deposits have dendrite structure, whilst palladium forms separate clusters. The highest amount of both silver and palladium deposits at the surface of sample containing the highest quantity of surface oxide complexes. It has been concluded that carboxyl groups and structure defects are responsible for metal reduction. Calculated desorption energies have shown that the surface modification by metal deposition leads to the formation of more stable surface of undoped and doped glassy carbon samples.

  18. Silver against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Kirketerp-Møller, K.; Kristiansen, S.;

    2007-01-01

    bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa, but that the...... silver concentration is important. A concentration of 5-10 ig/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 ig/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate...... planktonic bacteria. These observations strongly indicate that the concentration of silver in currently available wound dressings is much too low for treatment of chronic biofilm wounds. It is suggested that clinicians and manufacturers of the said wound dressings consider whether they are treating wounds...

  19. Extraction of Silver by Glucose.

    Science.gov (United States)

    Baksi, Ananya; Gandi, Mounika; Chaudhari, Swathi; Bag, Soumabha; Gupta, Soujit Sen; Pradeep, Thalappil

    2016-06-27

    Unprecedented silver ion leaching, in the range of 0.7 ppm was seen when metallic silver was heated in water at 70 °C in presence of simple carbohydrates, such as glucose, making it a green method of silver extraction. Extraction was facilitated by the presence of anions, such as carbonate and phosphate. Studies confirm a two-step mechanism of silver release, first forming silver ions at the metal surface and later complexation of ionic silver with glucose; such complexes have been detected by mass spectrometry. Extraction leads to microscopic roughening of the surface making it Raman active with an enhancement factor of 5×10(8) . PMID:27119514

  20. Synthesis, characterization, and in vivo efficacy of shell cross-linked nanoparticle formulations carrying silver antimicrobials as aerosolized therapeutics.

    Science.gov (United States)

    Shah, Parth N; Lin, Lily Yun; Smolen, Justin A; Tagaev, Jasur A; Gunsten, Sean P; Han, Daniel S; Heo, Gyu Seong; Li, Yali; Zhang, Fuwu; Zhang, Shiyi; Wright, Brian D; Panzner, Matthew J; Youngs, Wiley J; Brody, Steven L; Wooley, Karen L; Cannon, Carolyn L

    2013-06-25

    The use of nebulizable, nanoparticle-based antimicrobial delivery systems can improve efficacy and reduce toxicity for treatment of multi-drug-resistant bacteria in the chronically infected lungs of cystic fibrosis patients. Nanoparticle vehicles are particularly useful for applying broad-spectrum silver-based antimicrobials, for instance, to improve the residence time of small-molecule silver carbene complexes (SCCs) within the lung. Therefore, we have synthesized multifunctional, shell cross-linked knedel-like polymeric nanoparticles (SCK NPs) and capitalized on the ability to independently load the shell and core with silver-based antimicrobial agents. We formulated three silver-loaded variants of SCK NPs: shell-loaded with silver cations, core-loaded with SCC10, and combined loading of shell silver cations and core SCC10. All three formulations provided a sustained delivery of silver over the course of at least 2-4 days. The two SCK NP formulations with SCC10 loaded in the core each exhibited excellent antimicrobial activity and efficacy in vivo in a mouse model of Pseudomonas aeruginosa pneumonia. SCK NPs with shell silver cation-load only, while efficacious in vitro, failed to demonstrate efficacy in vivo. However, a single dose of core SCC10-loaded SCK NPs (0.74 ± 0.16 mg Ag) provided a 28% survival advantage over sham treatment, and administration of two doses (0.88 mg Ag) improved survival to 60%. In contrast, a total of 14.5 mg of Ag(+) delivered over 5 doses at 12 h intervals was necessary to achieve a 60% survival advantage with a free-drug (SCC1) formulation. Thus, SCK NPs show promise for clinical impact by greatly reducing antimicrobial dosage and dosing frequency, which could minimize toxicity and improve patient adherence. PMID:23718195

  1. Liquid-solid extraction of cationic metals by cationic amphiphiles

    International Nuclear Information System (INIS)

    In the field of selective separation for recycling of spent nuclear fuel, liquid-liquid extraction processes are widely used (PUREX, DIAMEX..) in industrial scale. In order to guarantee a sustainable nuclear energy for the forthcoming generations, alternative reprocessing techniques are under development. One of them bases on the studies from Heckmann et al in the 80's and consists in selectively precipitating actinides from aqueous waste solutions by cationic surfactants (liquid-solid extraction). This technique has some interesting advantages over liquid-liquid extraction techniques, because several steps are omitted like stripping or solvent washing. Moreover, the amount of waste is decreased considerably, since no contaminated organic solvent is produced. In this thesis, we have carried out a physico-chemical study to understand the specific interactions between the metallic cations with the cationic surfactant. First, we have analysed the specific effect of the different counter-ions (Cl-, NO3-, C2O42-) and then the effect of alkaline cations on the structural properties of the surfactant aggregation in varying thermodynamical conditions. Finally, different multivalent cations (Cu2+, Zn2+, UO22+, Fe3+, Nd3+, Eu3+, Th4+) were considered; we have concluded that depending on the anionic complex of these metals formed in acidic media, we can observe either an adsorption at the micellar interface or not. This adsorption has a large influence of the surfactant aggregation properties and determines the limits of the application in term of ionic strength, temperature and surfactant concentration. (author)

  2. Investigation of Silver Doped Hydroxyapatite

    OpenAIRE

    Dubņika, A; Loča, D; Mālniece, L

    2012-01-01

    Biomaterials based on calcium phosphate ceramics are used as implants in human/animal body due to their excellent biocompatibility. Silver containing materials have a very broad spectrum of antibacterial activity; therefore silver doped hydroxyapatite can be used in medicine as antibacterial implant material. The aim of this work was to synthesize monophasic and biphasic silver doped hydroxyapatite and evaluate the differences in their physical and antibacterial properties.

  3. Silver Ink For Jet Printing

    Science.gov (United States)

    Vest, R. W.; Singaram, Saraswathi

    1989-01-01

    Metallo-organic ink containing silver (with some bismuth as adhesion agent) applied to printed-circuit boards and pyrolized in air to form electrically conductive patterns. Ink contains no particles of silver, does not have to be mixed during use to maintain homogeneity, and applied to boards by ink-jet printing heads. Consists of silver neodecanoate and bismuth 2-ethylhexanoate dissolved in xylene and/or toluene.

  4. Star-like superalkali cations featuring planar pentacoordinate carbon.

    Science.gov (United States)

    Guo, Jin-Chang; Tian, Wen-Juan; Wang, Ying-Jin; Zhao, Xue-Feng; Wu, Yan-Bo; Zhai, Hua-Jin; Li, Si-Dian

    2016-06-28

    Superalkali cations, known to possess low vertical electron affinities (VEAs), high vertical detachment energies, and large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, are intriguing chemical species. Thermodynamically, such species need to be the global minima in order to serve as the promising targets for experimental realization. In this work, we propose the strategies of polyhalogenation and polyalkalination for designing the superalkali cations. By applying these strategies, the local-minimum planar pentacoordinate carbon (ppC) cluster CBe5 can be modified to form a series of star-like superalkali ppC or quasi-ppC CBe5X5 (+) (X = F, Cl, Br, Li, Na, K) cations containing a CBe5 moiety. Polyhalogenation and polyalkalination on the CBe5 unit may help eliminate the high reactivity of bare CBe5 molecule by covering the reactive Be atoms with noble halogen anions and alkali cations. Computational exploration of the potential energy surfaces reveals that the star-like ppC or quasi-ppC CBe5X5 (+) (X = F, Cl, Br, Li, Na, K) clusters are the true global minima of the systems. The predicted VEAs for CBe5X5 (+) range from 3.01 to 3.71 eV for X = F, Cl, Br and 2.12-2.51 eV for X = Li, Na, K, being below the lower bound of the atomic ionization potential of 3.89 eV in the periodic table. Large HOMO-LUMO energy gaps are also revealed for the species: 10.76-11.07 eV for X = F, Cl, Br and 4.99-6.91 eV for X = Li, Na, K. These designer clusters represent the first series of superalkali cations with a ppC center. Bonding analyses show five Be-X-Be three-center two-electron (3c-2e) σ bonds for the peripheral bonding, whereas the central C atom is associated with one 6c-2e π bond and three 6c-2e σ bonds, rendering (π and σ) double aromaticity. Born-Oppenheimer molecular dynamics simulations indicate that the CBe5 motif is robust in the clusters. As planar hypercoordination carbon species are often thermodynamically

  5. Star-like superalkali cations featuring planar pentacoordinate carbon

    Science.gov (United States)

    Guo, Jin-Chang; Tian, Wen-Juan; Wang, Ying-Jin; Zhao, Xue-Feng; Wu, Yan-Bo; Zhai, Hua-Jin; Li, Si-Dian

    2016-06-01

    Superalkali cations, known to possess low vertical electron affinities (VEAs), high vertical detachment energies, and large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, are intriguing chemical species. Thermodynamically, such species need to be the global minima in order to serve as the promising targets for experimental realization. In this work, we propose the strategies of polyhalogenation and polyalkalination for designing the superalkali cations. By applying these strategies, the local-minimum planar pentacoordinate carbon (ppC) cluster CBe5 can be modified to form a series of star-like superalkali ppC or quasi-ppC CBe5X5+ (X = F, Cl, Br, Li, Na, K) cations containing a CBe5 moiety. Polyhalogenation and polyalkalination on the CBe5 unit may help eliminate the high reactivity of bare CBe5 molecule by covering the reactive Be atoms with noble halogen anions and alkali cations. Computational exploration of the potential energy surfaces reveals that the star-like ppC or quasi-ppC CBe5X5+ (X = F, Cl, Br, Li, Na, K) clusters are the true global minima of the systems. The predicted VEAs for CBe5X5+ range from 3.01 to 3.71 eV for X = F, Cl, Br and 2.12-2.51 eV for X = Li, Na, K, being below the lower bound of the atomic ionization potential of 3.89 eV in the periodic table. Large HOMO-LUMO energy gaps are also revealed for the species: 10.76-11.07 eV for X = F, Cl, Br and 4.99-6.91 eV for X = Li, Na, K. These designer clusters represent the first series of superalkali cations with a ppC center. Bonding analyses show five Be-X-Be three-center two-electron (3c-2e) σ bonds for the peripheral bonding, whereas the central C atom is associated with one 6c-2e π bond and three 6c-2e σ bonds, rendering (π and σ) double aromaticity. Born-Oppenheimer molecular dynamics simulations indicate that the CBe5 motif is robust in the clusters. As planar hypercoordination carbon species are often thermodynamically unstable and

  6. Polyaniline - silver composites

    Czech Academy of Sciences Publication Activity Database

    Bober, Patrycja; Stejskal, Jaroslav; Trchová, Miroslava; Prokeš, J.

    Atlanta : Center for Organic Photonics and Electronics - Georgia Institute of Technology, 2012. s. 345. [International Conference on Science and Technology of Synthetic Metals 2012 - ICSM 2012. 08.07.2012-13.07.2012, Atlanta] R&D Projects: GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : polyaniline * silver * composites Subject RIV: BK - Fluid Dynamics

  7. Daniel Silver: Openings

    OpenAIRE

    Williams, Gilda

    2008-01-01

    MUCH OF LONDON-BASED SCULPTOR Daniel Silver’s work occupies an in-between state—between complete and incomplete, between handmade and mass-produced, between artistic object and castoff. For an exhibition at Ibid Projects in London this past winter, for example, Silver acquired several discarded marble copies of Roman and Greek statuary, recently carved in Carrara, Italy, that had been tossed aside by local artisans because the sculptures were cracked, chipped, or rendered crooked during their...

  8. Silver Studio textile project.

    OpenAIRE

    Hendon, Zoë

    2007-01-01

    This talk outlined the phased process by which the Museum of Domestic Design & Architecture improved the storage and documentation of its Silver Studio textile collection. Several small allocations of external funding were used to lever in a larger AHRB award. This talk outlined both the problem and the solution to museum professionals as part of a training day aimed at encouraging museums to achieve Accreditation.

  9. Characterization of Electrochemically Generated Silver

    Science.gov (United States)

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  10. Cationic speciation in nonaqueous media

    International Nuclear Information System (INIS)

    Electronic spectra of solutions of d transition elements in the superacids HF, H2SO4, HSO3F, and CF3SO3H and in chloroaluminate melts indicate that in acidic monaqueous media the elements are present as solvated cations, whereas in basic media the speciation is anionic, the same situation as in aqueous solutions. Further, in very highly acidic media, cations in very low oxidation states are stable (e.g., Ti2+), but these disproportionate on addition of base to the system. In this paper spectra, where available, of U, Np, and Pu in oxidation states III and IV in aqueous media, in protonic superacids, and in chloroaluminates are presented to postulate cationic speciation of these early actinides in highly acidic media

  11. Ionic liquids of bis(alkylethylenediamine)silver(I) salts and the formation of silver(0) nanoparticles from the ionic liquid system.

    Science.gov (United States)

    Iida, Masayasu; Baba, Chihiro; Inoue, Michiko; Yoshida, Hibiki; Taguchi, Eiji; Furusho, Hirotoshi

    2008-01-01

    We have prepared novel ionic liquids of bis(N-2-ethylhexylethylenediamine)silver(I) nitrate ([Ag(eth-hex-en)(2)]NO(3) and bis(N-hexylethylenediamine)silver(I) hexafluorophosphate ([Ag(hex-en)(2)]PF(6)), which have transition points at -54 and -6 degrees C, respectively. Below these transition temperatures, both the silver complexes assume amorphous states, in which the extent of the vitrification is larger for the eth-hex-en complex than for the hex-en complex. The diffusion coefficients of both the complex cations, measured between 30 (or 35) and 70 degrees C, are largely dependent on temperature; the dependence is particularly large in the case of the eth-hex-en complex cation below 40 degrees C. Small-angle X-ray scattering studies showed that the bilayer structure of the metal complex is formed in the liquid state for both the silver complexes. A direct observation of the yellowish [Ag(eth-hex-en)(2)]NO(3) liquid by transmission electron microscopy (TEM) indicates the presence of nanostructures, as a microemulsion, of less than 5 nm. Such structures were not clearly observed in the [Ag(hex-en)(2)]PF(6) liquid. Although the [Ag(eth-hex-en)(2)]NO(3) liquid is sparingly soluble in bulk water, it readily incorporates a small amount of water up to [water]/[metal complex] = 7:1. Homogeneous and uniformly sized silver(0) nanoparticles in water were created by the reduction of the [Ag(eth-hex-en)(2)]NO(3) liquid with aqueous NaBH(4), whereas silver(0) nanoparticles were not formed from the [Ag(hex-en)(2)]PF(6) liquid in the same way. PMID:18399524

  12. Corrosion protection for silver reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Paul N. (Los Alamos, NM); Scott, Marion L. (Los Alamos, NM)

    1991-12-31

    A method of protecting silver reflectors from damage caused by contact with gaseous substances which are often present in the atmosphere and a silver reflector which is so protected. The inventive method comprises at least partially coating a reflector with a metal oxide such as aluminum oxide to a thickness of 15 .ANG. or less.

  13. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions.

    Science.gov (United States)

    Kaveh, Rashid; Li, Yue-Sheng; Ranjbar, Sibia; Tehrani, Rouzbeh; Brueck, Christopher L; Van Aken, Benoit

    2013-09-17

    The release of silver nanoparticles (AgNPs) in the environment has raised concerns about their effects on living organisms, including plants. In this study, changes in gene expression in Arabidopsis thaliana exposed to polyvinylpyrrolidone-coated AgNPs and silver ions (Ag(+)) were analyzed using Affymetrix expression microarrays. Exposure to 5 mg/L AgNPs (20 nm) for 10 days resulted in upregulation of 286 genes and downregulation of 81 genes by reference to nonexposed plants. Exposure to 5 mg/L Ag(+) for 10 days resulted in upregulation of 84 genes and downregulation of 53 genes by reference to nonexposed plants. Many genes differentially expressed by AgNPs and Ag(+) were found to be involved in the response of plants to various stresses: upregulated genes were primarily associated with the response to metals and oxidative stress (e.g., vacuolar cation/proton exchanger, superoxide dismutase, cytochrome P450-dependent oxidase, and peroxidase), while downregulated genes were more associated with response to pathogens and hormonal stimuli [e.g., auxin-regulated gene involved in organ size (ARGOS), ethylene signaling pathway, and systemic acquired resistance (SAR) against fungi and bacteria]. A significant overlap was observed between genes differentially expressed in response to AgNPs and Ag(+) (13 and 21% of total up- and downregulated genes, respectively), suggesting that AgNP-induced stress originates partly from silver toxicity and partly from nanoparticle-specific effects. Three highly upregulated genes in the presence of AgNPs, but not Ag(+), belong to the thalianol biosynthetic pathway, which is thought to be involved in the plant defense system. Results from this study provide insights into the molecular mechanisms of the response of plants to AgNPs and Ag(+). PMID:23962165

  14. Magnetron sputtering cluster apparatus for formation and deposition of size-selected metal nanoparticles

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir

    The experimental setup utilizing a DC magnetron sputtering source for production of metal clusters, their size (mass) selection and following deposition in high vacuum is described. The source is capable to form clusters of various metals, for example, copper, silver, gold etc. Cluster size...... capability in formation of supported size-selected metal nanoparticles with controllable coverage for various practical applications....

  15. Laser desorption/ionization mass spectrometry of lipids using etched silver substrates.

    Science.gov (United States)

    Schnapp, Andreas; Niehoff, Ann-Christin; Koch, Annika; Dreisewerd, Klaus

    2016-07-15

    Silver-assisted laser desorption/ionization mass spectrometry can be used for the analysis of small molecules. For example, adduct formation with silver cations enables the molecular analysis of long-chain hydrocarbons, which are difficult to ionize via conventional matrix-assisted laser desorption ionization (MALDI). Here we used highly porous silver foils, produced by etching with nitric acid, as sample substrates for LDI mass spectrometry. As model system for the analysis of complex lipid mixtures, cuticular extracts of fruit flies (Drosophila melanogaster) and worker bees (Apis mellifera) were investigated. The mass spectra obtained by spotting extract onto the etched silver substrates demonstrate the sensitive detection of numerous lipid classes such as long-chain saturated and unsaturated hydrocarbons, fatty acyl alcohols, wax esters, and triacylglycerols. MS imaging of cuticular surfaces with a lateral resolution of a few tens of micrometers became possible after blotting, i.e., after transferring lipids by physical contact with the substrate. The examples of pheromone-producing male hindwings of the squinting bush brown butterfly (Bicyclus anynana) and a fingermark are shown. Because the substrates are also easy to produce, they provide a viable alternative to colloidal silver nanoparticles and other so far described silver substrates. PMID:26827933

  16. Vacancies in silver

    International Nuclear Information System (INIS)

    Resistivity and positron lifetime measurements were performed to follow the annealing of the vacancy defects in quenched or irradiated high purity silver. For quench temperatures in the range 4000C to 5000C, the quenched-in resistivity is restored in one single stage centered at 400C. An activation energy of 0.64 +- 0.06 eV is inferred for the migration of the single vacancies. This result together with the information derived from the evolution of positron lifetime spectra leads to the conclusion that stage III is to be assigned to monovacancy migration. Further results obtained in α-AgZn solid solutions support this view. (author)

  17. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.

  18. Oral toxicity of silver ions, silver nanoparticles and colloidal silver – a review

    DEFF Research Database (Denmark)

    Hadrup, Niels; Lam, Henrik Rye

    2014-01-01

    Orally administered silver has been described to be absorbed in a range of 0.4-18% in mammals with a human value of 18%. Based on findings in animals, silver seems to be distributed to all of the organs investigated, with the highest levels being observed in the intestine and stomach. In the skin...

  19. Liquid-solid extraction of metallic cations by cationic amphiphiles

    International Nuclear Information System (INIS)

    In the field of selective metal ion separation, liquid-liquid extraction is usually conducted through an emulsion mixing of hydrophobic complexants dispersed in an organic phase and acidic water containing the ionic species. Recently, it has been shown that amphiphilic complexants could influence strongly extraction efficiency by enhancing the interfacial interaction between the metal ion in the aqueous and the complexant in the organic phase. Moreover, these amphiphiles can also substitute the organic phase if an appropriate aliphatic chain is chosen. The dispersion of such amphiphilic complexants in an aqueous solution of salt mixtures is not only attractive for studying specific interactions but also to better the understanding of complex formation in aqueous solution of multivalent metal ions, such as lanthanides and actinides. This understanding is of potential interest for a broad range of industries including purification of rare earth metals and pollute treatment e.g. of fission byproducts. This principle can also be applied to liquid-solid extraction, where the final state of the separation is a solid phase containing the selectively extracted ions. Indeed, a novel solid-liquid extraction method exploits the selective precipitation of metal ions from an aqueous salt mixture using a cationic surfactant, below its Krafft point (temperature below which the long aliphatic chains of surfactant crystallize). This technique has been proven to be highly efficient for the separation of actinides and heavy metal using long chain ammonium or pyridinium amphiphiles. The most important point in this process is the recognition of cationic metal ions by cationic surfactants. By computing the free energy of the polar head group per micelle as a function of the different counter-anions, we have demonstrated for the first time that different interactions exist between the micellar surface and the ions. These interactions depend on the nature of the cation but also on

  20. Cluster emission under femtosecond laser ablation of silicon

    OpenAIRE

    Bulgakov, Alexander,; Ozerov, Igor; Marine, Wladimir

    2003-01-01

    Rich populations of clusters have been observed after femtosecond laser ablation of bulk silicon in vacuum. Size and velocity distributions of the clusters as well as their charge states have been analyzed by reflectron time-of-flight mass spectrometry. An efficient emission of both neutral silicon clusters Sin (up to n = 6) and their cations Sin+ (up to n = 10) has been observed. The clusters are formed even at very low laser fluences, below ablation threshold, and their relative yield incre...

  1. Thermal stability of PLD grown silver nanoparticles

    Science.gov (United States)

    Shokeen, Poonam; Jain, Amit; Kapoor, Avinashi

    2016-05-01

    Present work discusses the stability of silver nanoparticles at different annealing temperatures. Air muffle furnace annealing is performed to study the thermal stability of pulsed laser deposited silver nanoparticles. Silver reacts with atmospheric oxygen to form silver oxide at annealing temperatures below 473K and thermal decomposition of silver oxide takes place at temperatures above 473K. Oxide formation results in core shrinkage of silver, which in turn affects the surface plasmon resonance of silver nanoparticles. With increase in annealing temperature, the surface plasmon effect of nanoparticles starts to fade. SEM, XRD and UV-vis spectroscopy have been performed to analysis various structural and optical properties.

  2. A Silver DNAzyme.

    Science.gov (United States)

    Saran, Runjhun; Liu, Juewen

    2016-04-01

    Silver is a very common heavy metal, and its detection is of significant analytical importance. DNAzymes are DNA-based catalysts; they typically recruit divalent and trivalent metal ions for catalysis. Herein, we report a silver-specific RNA-cleaving DNAzyme named Ag10c obtained after six rounds of in vitro selection. Ag10c displays a catalytic rate of 0.41 min(-1) with 10 μM Ag(+) at pH 7.5 with 200 mM NaNO3, while its activity is completely inhibited with the same concentration of NaCl. Ag10c is highly specific for Ag(+) among all the tested metals. A catalytic beacon biosensor is designed by labeling a fluorophore and a quencher on the DNAzyme. Fluorescence enhancement is observed in the presence of Ag(+) with a detection limit of 24.9 nM Ag(+). The sensor shows a similar analytical performance in Lake Huron water. This is the first monovalent transition metal dependent RNA-cleaving DNAzyme. Apart from its biosensor application, this study strengthens the idea of exploring beyond the traditional understanding of multivalent ion dependent DNAzyme catalysis. PMID:26977895

  3. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina;

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both the...... partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  4. Cluster Headache

    OpenAIRE

    Frederick G Freitag

    1985-01-01

    Learning Objectives: Review the current understanding of the pathophysiology of cluster headache Be able to recognize the clinical features of cluster headache Be able to develop a strategy for treatment of cluster headache Cluster headache is divided into multiple subtypes under the IHC classification criteria. The vast majority of patients present with episodic cluster headache (3.1.1). This will be the focus of the presentation. The syndrome is characterized by repeated at...

  5. Biosynthesis of Silver Nanoparticles Using Marine Sponge

    OpenAIRE

    Mahta Rezazaeh Hamed; Mohammad Hadi Givianrad; Ali Mashinchian Moradi

    2015-01-01

    Biosynthesis of silver nanoparticles using marine sponge extract Haliclona was carried out. Marine sponges' extracts are responsible for the reduction of silver nitrate solution. Silver nanoparticles synthesized using fresh and dry marine sponge. Experimental factors including, time duration, pH, temperature were optimized. Silver nanoparticles were characterized by UV-Visible spectrophotometry. The sizes of synthesis silver nanoparticles were 27-46 nm and confirmed by scanning electron micro...

  6. The fabrication of polycrystalline silver nanowires via self-assembled nanotubes at controlled temperature

    International Nuclear Information System (INIS)

    We report a novel method for the fabrication of silver nanowires under controlled conditions. Silver nanoparticles were synthesized using a surfactant of octanoic acid via a reverse micelle technique. Hollow nanotubes were prepared under various controlled conditions through self-assembly of surfactant clusters of reversed micelles containing silver nanoparticles. These organized nanotubes were used as a structure-directing template for the preparation of silver nanowires. This is a bottom-up technique for the fabrication of silver nanowires. Self-assembled nanotube construction and the cross section of the nanotubes were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. From the results, reasonable schematic representations of the formation of self-assembled nanoparticles and nanowires were proposed. Further sintering treatment at 500 deg. C burned away the organic compounds and left silver nanowires. The construction of the nanowires was confirmed using SEM, x-ray diffraction (XRD), and energy dispersive x-ray analysis (EDXA). This paper demonstrates that silver nanowires can be fabricated via self-assembled nanoparticles at a controlled low temperature.

  7. The fabrication of polycrystalline silver nanowires via self-assembled nanotubes at controlled temperature

    Science.gov (United States)

    Liu, Jui-Hsiang; Tsai, Ching-Yi; Chiu, Yi-Hong; Hsieh, Feng-Ming

    2009-01-01

    We report a novel method for the fabrication of silver nanowires under controlled conditions. Silver nanoparticles were synthesized using a surfactant of octanoic acid via a reverse micelle technique. Hollow nanotubes were prepared under various controlled conditions through self-assembly of surfactant clusters of reversed micelles containing silver nanoparticles. These organized nanotubes were used as a structure-directing template for the preparation of silver nanowires. This is a bottom-up technique for the fabrication of silver nanowires. Self-assembled nanotube construction and the cross section of the nanotubes were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. From the results, reasonable schematic representations of the formation of self-assembled nanoparticles and nanowires were proposed. Further sintering treatment at 500 °C burned away the organic compounds and left silver nanowires. The construction of the nanowires was confirmed using SEM, x-ray diffraction (XRD), and energy dispersive x-ray analysis (EDXA). This paper demonstrates that silver nanowires can be fabricated via self-assembled nanoparticles at a controlled low temperature.

  8. Antibacterial effect of silver modified TiO2/PECVD films

    Science.gov (United States)

    Hájková, P.; Patenka, P. Å.; Krumeich, J.; Exnar, P.; Kolouch, A.; Matoušek, J.; Kočí, P.

    2009-08-01

    This paper deals with photocatalytic activity of silver treated TiO2 films. The TiO2 films were deposited on glass substrates by plasma enhanced chemical vapor deposition (PECVD) in a vacuum reactor with radio frequency (RF) low temperature plasma discharge in the mixture of oxygen and titanium isopropoxide vapors (TTIP). The depositions were performed under different deposition conditions. Subsequently, the surface of TiO2 films was modified by deposition of silver nanoparticles. Photocatalytic activity of both silver modified and unmodified TiO2 films was determined by decomposition of the model organic matter (acid orange 7). Selected TiO2 samples were used for tests of antibacterial activity. These tests were performed on Gram-negative bacteria Escherichia coli. The results clearly proved that presence of silver clusters resulted in enhancement of the photocatalytic activity, which was up to four times higher than that for pure TiO2 films.

  9. MOD silver metallization for photovoltaics

    Science.gov (United States)

    Vest, G. M.; Vest, R. W.

    1985-01-01

    The feasibility of utilizing metallo-organic decomposition (MOD) silver inks were investigated for front contact metallization of solar cells. Generic synthesis procedures were developed for all metallo-organic compounds investigated. Silver neodecanoate was found to be the most suitable silver metallo-organic compound for use in thick film inks, but the quality of the inks was found to be highly dependent on its purity. Although neither the process nor inks were completely optimized for solar cell front contact metallization, they show great promise for this application.

  10. Orientation of glycine on silver nanoparticles: SERS studies

    Science.gov (United States)

    Parameswari, A.; Benial, A. Milton Franklin

    2016-05-01

    Surface enhanced Raman scattering (SERS) studies of glycine (Gly) adsorbed on silver nanoparticles (AgNPs) was investigated by experimental and density functional theory approach. The AgNPs were prepared and characterized. The molecular structure of the Gly and Gly adsorbed on silver cluster were optimized by the DFT/B3PW91 method with LanL2DZ basis set. The calculated and observed vibrational frequencies were assigned on the basis of potential energy distribution calculation. The perpendicular orientation of Gly on the silver surface was predicted from the enhanced Raman signal correspond to the C=O and C-H stretching vibrational modes. The frontier molecular orbitals analysis and molecular electrostatic potential calculation were carried out. The reduced band gap value was obtained for Gly adsorbed on silver nanoparticles, which paves the way for designing the bio molecular devices. The first order hyperpolarizability value for Ag-Gly is 461 times greater than the urea. Thus, Ag-Gly is a promising candidate for NLO materials.

  11. Polyelectrolyte Condensation Induced by Linear Cations

    OpenAIRE

    Guáqueta, Camilo; Luijten, Erik

    2007-01-01

    We examine the role of the condensing agent in the formation of polyelectrolyte bundles, via grand-canonical Monte Carlo simulations. Following recent experiments we use linear, rigid divalent cations of various lengths to induce condensation. Our results clarify and explain the experimental results for short cations. For longer cations we observe novel condensation behavior owing to alignment of the cations. We also study the role of the polyelectrolyte surface charge density, and find a non...

  12. Structural evolution in the crystallization of rapid cooling silver melt

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z.A., E-mail: ze.tian@gmail.com [School of Physics and Electronics, Hunan University, Changsha 410082 (China); Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Dong, K.J.; Yu, A.B. [Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2015-03-15

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald’s rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperature range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid–solid phase transition. - Highlights: • A comprehensive structural analysis is conducted focusing on crystallization. • The involved atoms in our analysis are more than 90% for all samples concerned. • A series of distinct intermediate states are found in crystallization of silver melt. • A novelty icosahedron-saturated state breeds the metastable bcc state.

  13. Structural evolution in the crystallization of rapid cooling silver melt

    International Nuclear Information System (INIS)

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald’s rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperature range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid–solid phase transition. - Highlights: • A comprehensive structural analysis is conducted focusing on crystallization. • The involved atoms in our analysis are more than 90% for all samples concerned. • A series of distinct intermediate states are found in crystallization of silver melt. • A novelty icosahedron-saturated state breeds the metastable bcc state.

  14. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  15. Organometallic cation-exchanged phyllosilicates

    OpenAIRE

    Fleming, Shay

    1991-01-01

    Organotin (IV) complexes formed between 0 01 M dimethyltin dichloride solutions prepared at pH 2 6 and 4 0, and trimethyltin chloride prepared at pH 3 4, with Na- 119 montmori 1lonite clay have been characterised using Sn Mflssbauer spectroscopy, X-ray diffraction, thermogravimetric analysis and water sorption isotherms Following cation exchange, Mttssbauer spectroscopy identified two tin species in the dimethyltin (IV)-exchanged clay prepared at pH 2 6 A cis specie...

  16. Calorimetric study of cationic photopolymerization

    International Nuclear Information System (INIS)

    The photopolymerization of penta-erythritol tetra-glycidyl ether (initiator Degacure KI-85) was studied by a du Pont 910 type DSC. From our experimental results the following conclusions can be drawn: (1) During the cationic polymerization reaction the lifetime of the initiating centers are long compared to the lifetime of free radicals in case of radical polymerization. (2) The rate of deactivation of the initiating centers increases with increasing temperature. (author)

  17. A facile synthesis of fluorescent silver nanoclusters with human ferritin as a synthetic and interfacing ligand.

    Science.gov (United States)

    Lee, In Hwan; Ahn, Byungjun; Lee, Jeong Min; Lee, Chang Soo; Jung, Yongwon

    2015-05-21

    Water-soluble fluorescent silver nanoclusters (NCs) formed on biomolecule ligands have been extensively studied due to their great potential as new biocompatible fluorescent materials for biosensors. As synthetic ligands, proteins in particular can provide unique structures and functions to the assembled fluorescent silver clusters. A key challenge, however, is to develop appropriate protein ligands and synthetic approaches for cluster formation, especially using native aqueous solutions, to fully preserve the valuable properties of the protein templates. Here we report a human ferritin-templated synthesis of fluorescent silver NCs under neutral aqueous buffer conditions. The unique metal binding property of ferritin and an optimized silver ion reduction allowed us to produce highly stable fluorescent silver NCs that are steadily assembled in the cage-like ferritin proteins. The fluorescent clusters were also successfully assembled on genetically engineered ferritin with antibody-binding protein G. The resulting protein G-ferritin-silver NC complex fully retained the ferritin structure as well as the antibody binding ability. The present silver nanoclusters on ferritin (Ft-Ag NCs) also showed highly specific Cu(2+)-induced fluorescence quenching. By exploiting the large but stable nature of ferritin, we fabricated a highly robust and porous hydrogel sensor system for rapid Cu(2+) detection, where the Ft-Ag NCs were stably encapsulated in surface-bound hydrogels with large pore sizes. Our Ft-Ag NCs that are formed under native aqueous conditions will have great potential as a new fluorescent material with the high structural and functional diversities of ferritin. PMID:25848642

  18. Silver matrix composites reinforced with galvanically silvered particles

    Directory of Open Access Journals (Sweden)

    J. Śleziona

    2007-08-01

    Full Text Available Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powder layer with the silver or copper coats was proposed.Design/methodology/approach: For silver coating the method of non-current deposition from the solution was used.Findings: Conducted investigations allowed such a selection of non-current coating parameters that durable and qualitatively satisfactory coats on the iron particles surface could be obtained.Research limitations/implications: In the course of the researches it was stated that the temperature of the bath, the time of the spread and the intensity of the stirring were the most important parameters of the deposition method itself that guaranteed the obtaining of the coat. The conducted investigations allow to state that the most favourably from the quality of the obtained composite point of view were the applications of the silver coat on the surface of the iron particles and copper coat for glass carbon covering.Originality/value: Selection of the deposited galvanic coats allows to obtain the good quality of the connection on the reinforcing particle sliver matrix interface.

  19. Antimicrobial effects of silver zeolite, silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Sirikamon Saengmee-anupharb; Toemsak Srikhirin; Boonyanit Thaweboon; Sroisiri Thaweboon; Taweechai Amornsakchai; Surachai Dechkunakorn; Theeralaksna Suddhasthira

    2013-01-01

    Objective: To evaluate the antimicrobial activities of silver inorganic materials, including silver zeolite (AgZ), silver zirconium phosphate silicate (AgZrPSi) and silver zirconium phosphate (AgZrP), against oral microorganisms. In line with this objective, the morphology and structure of each type of silver based powders were also investigated. Methods: The antimicrobial activities of AgZ, AgZrPSi and AgZrP were tested against Streptococcus mutans, Lactobacillus casei, Candidaalbicans and Staphylococcus aureus using disk diffusion assay as a screening test. The minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) were determined using the modified membrane method. Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials. Results: All forms of silver inorganic materials could inhibit the growth of all test microorganisms. The MIC of AgZ, AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L. In terms of morphology and structure, AgZrPSi and AgZrP had smaller sized particles (1.5-3.0 µm) and more uniformly shaped than AgZ. Conclusions: Silver inorganic materials in the form of AgZ, AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers. These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  20. Comparative electron spin resonance and optical absorption studies of silver-exchanged sodium Y zeolites: silver centers formed on dehydration, oxidation, and subsequent γ-irradiation

    International Nuclear Information System (INIS)

    Paramagnetic silver centers have been generated in Ag-exchanged zeolite Y with various silver loading by 77 K γ-irradiation of the zeolites (a) in its hydrated form, (b) following vacuum dehydration at 5000C, and (c) following subsequent O2 treatment at 5000C. The paramagnetic silver centers have been identified by ESR. The data have been interpreted in terms of the silver centers formed during the dehydration and oxidation of Ag-exchanged zeolite Y. The data indicate that dehydration results in extensive clustering of silver species. Subsequent oxidation causes most of the Ag+ ions to revert to isolated locations in the lattice, although the generation of Ag2+ and Ag32+ on irradiation suggests significant occupancy, by Ag+, of adjacent sites. Diffuse reflectance spectra, recorded at room temperature on the same γ-irradiated samples, allowed some correlations to be made between optical bands and ESR identifiable silver electron capture centers. An absorption at 345 nm, generated on irradiation of oxidized Ag-exchanged zeolite, has been assigned to Ag2+. Some doubt is expressed about previous assignments of optical bands to Ag0 atoms in Ag-exchanged zeolite Y. 27 references, 4 figures

  1. DRDO Silver Jubilee Celebrations

    Directory of Open Access Journals (Sweden)

    Director DESIDOC

    2002-01-01

    Full Text Available DESIDOC actively participated in the DRDO Silver Jubilee Celebrations and made valuable contributions through the publicity programmes of the celebrations. as the Centre was entrusted with the responsibility . A colour-documentary film on the role of DRDO for Defence was arranged with Delhi Doordarshan. The TV documentary on DRDO was telecast on 14 Jan 1984 in the National Programme. The film was highly appreciated by the Scientific Adviser to Raksha Mantri, the Chief Controllers of R&D and several Directors of DR DO Labs/ Estts. A number of articles were prepared by DESIDOC on the achievements of DRDO in various fields, for publication in Sainik Samachar, R&D Digest and for circulation to the media. Other publicity materials like calendars, stickers, exhibition posters were also designed , printed and distributed by DESIDOC. It also participated in 'DRDO Exposition' held at Pragati Maida n, New Delhi from 13-29 Jan 1984.

  2. Electrodeposition of silver nanodendrites

    Energy Technology Data Exchange (ETDEWEB)

    Kaniyankandy, Sreejith [Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India); Nuwad, J [Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India); Thinaharan, C [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai (India); Dey, G K [Materials Science Division, Bhabha Atomic Research Centre, Mumbai (India); Pillai, C G S [Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India)

    2007-03-28

    Nanodendrites of silver were synthesized by electrodeposition using AgNO{sub 3} as the source in ammoniacal solution. The method was remarkably fast, simple and scalable. X-ray diffraction (XRD) studies confirmed the formation of a cubic phase of silver. Scanning electron microscopy (SEM) revealed the formation of well-shaped dendrites. The nanodendrites were hyperbranched with lengths of the order of a few micrometres. The concentration of NH{sub 3} in the electrolyte solution was found to have remarkable influence on the morphology, crystallite size and formation of branched nanodendrites. The branchings were found to occur at regular intervals of {approx}50 nm along the main stem. Transmission electron microscopy (TEM) studies confirmed the SEM observation and revealed the 2D nature of the dendrites. Selected area electron diffraction (SAED) revealed that the dendrites were single crystalline in nature and the branching could have a crystalline origin. The direction of growth as inferred from SAED was <110>. UV-vis spectra showed a single broad band centred on {approx}380 nm indicating the spherical shape of the individual crystallites. The intrinsic size effect of the metal surface plasmon was used to explain the increase in the broadening on addition of NH{sub 3}. The asymmetry of the band was explained on the basis of agglomeration of crystallites. The nanodendrites prepared by this method showed extension of the plasmon band through the entire visible region, indicating potential use in detection of single molecules based on enhanced Raman scattering. The deposition mechanism is described using the diffusion-limited aggregation model.

  3. Silver metallization stability and reliability

    CERN Document Server

    Adams, Daniel; Mayer, James W

    2007-01-01

    Anyone involved in circuit technology will find this an absolute must-read. It's the first book to discuss the current understanding of silver metallization and its potential as a future interconnect material for integrated circuit technology.

  4. Discovery of the Silver Isotopes

    OpenAIRE

    Schuh, A.; A. Fritsch; Ginepro, J. Q.; Heim, M.; SHORE, A.; Thoennessen, M

    2009-01-01

    Thirty-eight silver isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  5. Blue, green and red emissive silver nanoclusters formed in organic solvents

    OpenAIRE

    Díez, Isabel

    2012-01-01

    Strongly luminescent silver nanoclusters with tunable emission are directly synthesized in organic polar and apolar solvents. We show that an amphiphilic polystyrene-block-poly(methacrylic acid) block copolymer can be universally used as their support medium. A remarkable similarity in spectroscopic properties is observed between these clusters and charge-transfer organic dyes. This journal is © 2012 The Royal Society of Chemistry.

  6. Cluster headache

    Science.gov (United States)

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache ... Doctors do not know exactly what causes cluster headaches. They ... (chemical in the body released during an allergic response) or ...

  7. Isotopic clusters

    International Nuclear Information System (INIS)

    Spectra of isotopically mixed clusters (dimers of SF6) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  8. Weighted Clustering

    OpenAIRE

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina; Loker, David

    2012-01-01

    We investigate a natural generalization of the classical clusteringproblem, considering clustering tasks in which differentinstances may have different weights.We conduct the firstextensive theoretical analysis on the influence of weighteddata on standard clustering algorithms in both the partitionaland hierarchical settings, characterizing the conditions underwhich algorithms react to weights. Extending a recent frameworkfor clustering algorithm selection, we propose intuitiveproperties that...

  9. Meaningful Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  10. Redox potential tuning by redox-inactive cations in nature's water oxidizing catalyst and synthetic analogues.

    Science.gov (United States)

    Krewald, Vera; Neese, Frank; Pantazis, Dimitrios A

    2016-04-20

    The redox potential of synthetic oligonuclear transition metal complexes has been shown to correlate with the Lewis acidity of a redox-inactive cation connected to the redox-active transition metals of the cluster via oxo or hydroxo bridges. Such heterometallic clusters are important cofactors in many metalloenzymes, where it is speculated that the redox-inactive constituent ion of the cluster serves to optimize its redox potential for electron transfer or catalysis. A principal example is the oxygen-evolving complex in photosystem II of natural photosynthesis, a Mn4CaO5 cofactor that oxidizes water into dioxygen, protons and electrons. Calcium is critical for catalytic function, but its precise role is not yet established. In analogy to synthetic complexes it has been suggested that Ca(2+) fine-tunes the redox potential of the manganese cluster. Here we evaluate this hypothesis by computing the relative redox potentials of substituted derivatives of the oxygen-evolving complex with the cations Sr(2+), Gd(3+), Cd(2+), Zn(2+), Mg(2+), Sc(3+), Na(+) and Y(3+) for two sequential transitions of its catalytic cycle. The theoretical approach is validated with a series of experimentally well-characterized Mn3AO4 cubane complexes that are structural mimics of the enzymatic cluster. Our results reproduce perfectly the experimentally observed correlation between the redox potential and the Lewis acidities of redox-inactive cations for the synthetic complexes. However, it is conclusively demonstrated that this correlation does not hold for the oxygen evolving complex. In the enzyme the redox potential of the cluster only responds to the charge of the redox-inactive cations and remains otherwise insensitive to their precise identity, precluding redox-tuning of the metal cluster as a primary role for Ca(2+) in biological water oxidation. PMID:26762578

  11. Formation of colloidal silver nanoparticles: Capping action of citrate

    International Nuclear Information System (INIS)

    Colloidal silver sols of long-time stability are formed in the γ-irradiation of 1.0 x 10-4 M AgClO4 solutions, which also contain 0.3 M 2-propanol, 2.5 x 10-2 M N2O, and sodium citrate in various concentrations. The reduction of Ag+ in these solutions is brought about by the 1-hydroxyalkyl radical generated in the radiolysis of 2-propanol; citrate does not act as a reductant but solely as a stabilizer of the colloidal particles formed. Its concentration is varied in the range from 5.0 x 10-5 to 1.5 x 10-3 M, and the size and size distribution of the silver particles are studied by electron microscopy. At low citrate concentration, partly agglomerated large particles are formed that have many imperfections. In an intermediate range (a few 10-4 M), well-separated particles with a rather narrow size distribution and little imperfections are formed, the size slightly decreasing with increasing citrate concentration. At high citrate concentrations, large lumps of coalesced silver particles are present, due to destabilization by the high ionic strength of the solution. These findings are explained by two growth mechanisms: condensation of small silver clusters (type-1 growth), and reduction of Ag+ on silver particles via radical-to-particle electron transfer (type-2 growth). The particles formed in the intermediate range of citrate concentration were studied by high-resolution electron microscopy and computer simulations. They constitute icosahedra and cuboctahedra

  12. The influence of paper coating content on room temperature sintering of silver nanoparticle ink

    International Nuclear Information System (INIS)

    The resistance of inkjet printed lines using a silver nanoparticle based ink can be very dependent on the substrate. A very large difference in resistivity was observed for tracks printed on paper substrates with aluminum oxide based coatings compared to silica based coatings. Silica based coatings are often cationized with polymers using chloride as a counter ion. It is suggested that the precipitation of silver salts is the cause of the high resistivity, since papers pretreated with salt solutions containing ions that precipitate silver salts gave a high resistance. Silver nitrate has a high solubility and paper pretreated with nitrate ions gave a low resistivity without sintering. The results obtained show that, by choosing the correct type of paper substrate, it is possible to manufacture printed structures, such as interconnects on paper, without the need for, or at least to reduce the need for, post-print sintering. This phenomenon is, of course, ink specific. Inks without or with a low silver ion content are not expected to behave in this manner. In some sensor applications, a high resistivity is desired and, by using the correct combination of ink and paper, these types of sensors can be facilitated. (paper)

  13. Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity

    Science.gov (United States)

    Hanim, Siti Aishah Mohd; Malek, Nik Ahmad Nizam Nik; Ibrahim, Zaharah

    2016-01-01

    Amine-functionalized, silver-exchanged zeolite NaY (ZSA) were prepared with three different concentrations of 3-aminopropyltriethoxysilane (APTES) (0.01, 0.20 and 0.40 M) and four different concentrations of silver ions (25%, 50%, 100% and 200% from zeolite cation exchange capacity (CEC)). The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), surface area analysis, thermogravimetric analysis (TGA) and zeta potential (ZP) analysis. The FTIR results indicated that the zeolite was functionalized by APTES and that the intensity of the peaks corresponding to APTES increased as the concentration of APTES used was increased. The antibacterial activities of the silver-exchanged zeolite NaY (ZS) and ZSA were studied against Escherichia coli ATCC11229 and Staphylococcus aureus ATCC6538 using the disc diffusion technique (DDT) and minimum inhibitory concentration (MIC). The antibacterial activity of ZSA increased with the increase in APTES on ZS, and E. coli was more susceptible towards the sample compared to S. aureus. The FESEM micrographs of the bacteria after contact with the ZSA suggested different mechanisms of bacterial death for these two bacteria due to exposure to the studied sample. The functionalization of ZS with APTES improved the antibacterial activity of the silver-zeolite, depending on the concentration of silver ions and APTES used during modification.

  14. The influence of paper coating content on room temperature sintering of silver nanoparticle ink.

    Science.gov (United States)

    Andersson, H; Manuilskiy, A; Lidenmark, C; Gao, J; Öhlund, T; Forsberg, S; Örtegren, J; Schmidt, W; Nilsson, H-E

    2013-11-15

    The resistance of inkjet printed lines using a silver nanoparticle based ink can be very dependent on the substrate. A very large difference in resistivity was observed for tracks printed on paper substrates with aluminum oxide based coatings compared to silica based coatings. Silica based coatings are often cationized with polymers using chloride as a counter ion. It is suggested that the precipitation of silver salts is the cause of the high resistivity, since papers pretreated with salt solutions containing ions that precipitate silver salts gave a high resistance. Silver nitrate has a high solubility and paper pretreated with nitrate ions gave a low resistivity without sintering. The results obtained show that, by choosing the correct type of paper substrate, it is possible to manufacture printed structures, such as interconnects on paper, without the need for, or at least to reduce the need for, post-print sintering. This phenomenon is, of course, ink specific. Inks without or with a low silver ion content are not expected to behave in this manner. In some sensor applications, a high resistivity is desired and, by using the correct combination of ink and paper, these types of sensors can be facilitated. PMID:24129403

  15. Cation coordination in oxychloride glasses

    Science.gov (United States)

    Johnson, J. A.; Holland, D.; Bland, J.; Johnson, C. E.; Thomas, M. F.

    2003-02-01

    Glasses containing mixtures of cations and anions of nominal compositions [Sb2O3]x - [ZnCl2]1-x where x = 0.25, 0.50, 0.75, and 1.00, have been studied by means of neutron diffraction and Raman and Mössbauer spectroscopy. There is preferential bonding within the system with the absence of Sb-Cl bonds. Antimony is found to be threefold coordinated to oxygen, and zinc fourfold coordinated. The main contributing species are of the form [Sb(OSb)2(OZn)] and [Zn(ClZn)2(OSb)2].

  16. Cation coordination in oxychloride glasses

    International Nuclear Information System (INIS)

    Glasses containing mixtures of cations and anions of nominal compositions [Sb2O3]x - [ZnCl2]1-x where x = 0.25, 0.50, 0.75, and 1.00, have been studied by means of neutron diffraction and Raman and Moessbauer spectroscopy. There is preferential bonding within the system with the absence of Sb-Cl bonds. Antimony is found to be threefold coordinated to oxygen, and zinc fourfold coordinated. The main contributing species are of the form [Sb(OSb)2(OZn)] and [Zn(ClZn)2(OSb)2

  17. Cation coordination in oxychloride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J A [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States); Holland, D [Physics Department, Warwick University, Coventry (United Kingdom); Bland, J [Physics Department, University of Liverpool, PO Box 147, Liverpool (United Kingdom); Johnson, C E [Physics Department, Northern Illinois University, DeKalb, IL (United States); Thomas, M F [Physics Department, University of Liverpool, PO Box 147, Liverpool (United Kingdom)

    2003-02-19

    Glasses containing mixtures of cations and anions of nominal compositions [Sb{sub 2}O{sub 3}]{sub x} - [ZnCl{sub 2}]{sub 1-x} where x = 0.25, 0.50, 0.75, and 1.00, have been studied by means of neutron diffraction and Raman and Moessbauer spectroscopy. There is preferential bonding within the system with the absence of Sb-Cl bonds. Antimony is found to be threefold coordinated to oxygen, and zinc fourfold coordinated. The main contributing species are of the form [Sb(OSb){sub 2}(OZn)] and [Zn(ClZn){sub 2}(OSb){sub 2}].

  18. Detection of target DNA using fluorescent cationic polymer and peptide nucleic acid probes on solid support

    Directory of Open Access Journals (Sweden)

    Leclerc Mario

    2005-04-01

    Full Text Available Abstract Background Nucleic acids detection using microarrays requires labelling of target nucleic acids with fluorophores or other reporter molecules prior to hybridization. Results Using surface-bound peptide nucleic acids (PNA probes and soluble fluorescent cationic polythiophenes, we show a simple and sensitive electrostatic approach to detect and identify unlabelled target nucleic acid on microarray. Conclusion This simple methodology opens exciting possibilities for applied genetic analysis for the diagnosis of infections, identification of genetic mutations, and forensic inquiries. This electrostatic strategy could also be used with other nucleic acid detection methods such as electrochemistry, silver staining, metallization, quantum dots, or electrochemical dyes.

  19. A tetrakis(amido)phosphonium cation containing 2-pyridyl (2Py) substituents,[P(NH2Py)4]+ and its reactivity studies with Ag(I) salts

    Indian Academy of Sciences (India)

    Arvind K Gupta; Anant Kumar Srivastava; Ramamoorthy Boomishankar

    2015-04-01

    Poly-imido analogues of various phosphorus oxo anions have gained recent attention in inorganic chemistry. Current methods to obtain these anions require strong organometallic deprotonating agents in reaction with phosphonium salt like [(NHPh)4P]Cl or phosphoramides such as [(RNH)3P=E] (E = NSiMe3, O, S or Se) in non-polar solvents. Recently, employing salts of soft and reactive transition metal ions, we have developed methods to obtain these anions in polar and protic solvents. Herein, we have described a facile anion exchange route that stabilizes the highly labile tetrakis(2-pyridylamino)phosphonium cation as its nitrate salt, [P(NH2Py)4]NO3. This molecule exhibits a double chain structure mediated by H-bonding interactions of the pyridylamino segments (N-H...N). The phosphonium salt upon reaction with excess silver triflate results in a pentanuclear Ag(I) complex, {Ag5[P(N2Py)2(NH2Py)2]}·(F3CSO3)3, stabilized by two imido-phosphinate [P(N2Py)2(NH2Py)2]− ligands. Formation of a similar penta-nuclear cluster has been observed before when AgClO4 was used as a base. Our previous results with the related phosphate precursor, [PO(NH2Py)3], in reaction with various Ag(I) salts have shown to yield complexes of the corresponding neutral, mono- and dianionic ligands. However, the stability of the Ag5-cluster within the mono-anionic casing of the [P(N2Py)2(NH2Py)2]− ligand have seemingly overwhelmed the subtle reactivity changes offered by various Ag(I) salts.

  20. Investigation on silver complexes of novel 1,2,3-triazole linked crown ethers by NMR analysis

    Indian Academy of Sciences (India)

    Piotr Seliger; Natalia Gutowska; Monika Stefaniak; Jarosław Romański

    2015-10-01

    The novel derivatives of 1,2,3-triazole linked crown ethers were investigated towards silver(I) ion coordination. The NMR measurements in deuterated methanol in different ratios of ligand and silver cation were studied. The experiments were performed in order to examine the way of binding Ag(I) ion by the selected ligands. The results are presented for complexes with the Ag:L stoichiometry 0.5:1, 1:1 and 2:1, respectively. Depending on the type of crown ether moiety incorporated into the macrocyclic skeleton, interesting differences in the mode of stepwise coordination of the ion were noticed.

  1. Cluster Lenses

    CERN Document Server

    Kneib, Jean-Paul; 10.1007/s00159-011-0047-3

    2012-01-01

    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining...

  2. Use of laser induced photoacoustic spectroscopy (LIPAS) to determine equilibrium constants of cation-cation complexes

    International Nuclear Information System (INIS)

    Laser Induced PhotoAcoustic Spectroscopy (LIPAS) is a relatively new, photothermal technique to examine solutions. Studies in the past have shown it to be more sensitive than conventional absorption spectroscopy, while, yielding the same information thus allowing lower concentrations to be used. This study is using LIPAS to examine solutions to determine the equilibrium constants of cation-cation complexes. It has been found that actinyl(V) cations form cation-cation complexes with a variety of cations, including actinyl(VI) cations. The radioactive nature of the actinide elements requires special handling techniques and also require limits be placed on the amount of material that can be used. The sensitivity of some oxidation states of the actinides to oxygen also presents a problem. Preliminary results will be presented for actinyl(V)-actinyl(VI) cation-cation complexes that were studied using a remote LIPAS system incorporating fiber optics for transmission of laser signals

  3. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate

    OpenAIRE

    Mortensen Alicja; Vogel Ulla; Gao Xueyun; Larsen Agnete; Qvortrup Klaus; Hadrup Niels; Loeschner Katrin; Lam Henrik; Larsen Erik H

    2011-01-01

    Abstract Background The study investigated the distribution of silver after 28 days repeated oral administration of silver nanoparticles (AgNPs) and silver acetate (AgAc) to rats. Oral administration is a relevant route of exposure because of the use of silver nanoparticles in products related to food and food contact materials. Results AgNPs were synthesized with a size distribution of 14 ± 4 nm in diameter (90% of the nanoparticle volume) and stabilized in aqueous suspension by the polymer ...

  4. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.

    2010-03-01

    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  5. SERS Substrates by the Assembly of Silver Nano cubes: High-Throughput and Enhancement Reliability Considerations

    International Nuclear Information System (INIS)

    Small clusters of nanoparticles are ideal substrates for SERS measurements, but the SERS signal enhancement by a particular cluster is strongly dependent on its structural characteristics and the measurement conditions. Two methods for high-throughput assembly of silver nano cubes into small clusters at predetermined locations on a substrate are presented. These fabrication techniques make it possible to study both the structure and the plasmonic properties of hundreds of nanoparticle clusters. The variations in SERS enhancement factors from cluster to cluster were analyzed and correlated with cluster size and configuration, and laser frequency and polarization. Using Raman instruments with 633 nm and 785 nm lasers and linear clusters of nano cubes, an increase in the reproducibility of the enhancement and an increase in the average enhancement values were achieved by increasing the number of nano cubes in the cluster, up to 4 nano cubes per cluster. By examining the effect of cluster configuration, it is shown that linear clusters with nano cubes attached in a face-to-face configuration are not as effective SERS substrates as linear clusters in which nano cubes are attached along an edge

  6. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.).

    Science.gov (United States)

    Zouzelka, Radek; Cihakova, Pavlina; Rihova Ambrozova, Jana; Rathousky, Jiri

    2016-05-01

    Despite the extensive research, the mechanism of the antimicrobial and biocidal performance of silver nanoparticles has not been unequivocally elucidated yet. Our study was aimed at the investigation of the ability of silver nanoparticles to suppress the growth of three types of algae colonizing the wetted surfaces or submerged objects and the mechanism of their action. Silver nanoparticles exhibited a substantial toxicity towards Chlorococcales Scenedesmus quadricauda, Chlorella vulgaris, and filamentous algae Klebsormidium sp., which correlated with their particle size. The particles had very good stability against agglomeration even in the presence of multivalent cations. The concentration of silver ions in equilibrium with nanoparticles markedly depended on the particle size, achieving about 6 % and as low as about 0.1 % or even less for the particles 5 nm in size and for larger ones (40-70 nm), respectively. Even very limited proportion of small particles together with larger ones could substantially increase concentration of Ag ions in solution. The highest toxicity was found for the 5-nm-sized particles, being the smallest ones in this study. Their toxicity was even higher than that of silver ions at the same silver concentration. When compared as a function of the Ag(+) concentration in equilibrium with 5-nm particles, the toxicity of ions was at least 17 times higher than that obtained by dissolving silver nitrite (if not taking into account the effect of nanoparticles themselves). The mechanism of the toxicity of silver nanoparticles was found complex with an important role played by the adsorption of silver nanoparticles and the ions released from the particles on the cell surface. This mechanism could be described as some sort of synergy between nanoparticles and ions. While our study clearly showed the presence of this synergy, its detailed explanation is experimentally highly demanding, requiring a close cooperation between materials scientists

  7. Enhanced Bonding of Silver Nanoparticles on Oxidized TiO2(110)

    DEFF Research Database (Denmark)

    Hansen, Jonas Ørbæk; Salazar, Estephania Lira; Galliker, Patrick;

    2010-01-01

    The nucleation and growth of silver nanoclusters on TiO2(110) surfaces with on-top O adatoms (oxidized TiO2), surface O vacancies and H adatoms (reduced TiO2) have been studied. From the interplay of scanning tunneling microscopy/photoelectron spectroscopy experiments and density functional theory...... calculations, it is found that silver clusters are much more strongly bonded to oxidized TiO2(110) surfaces than to reduced TiO2(110) model supports. It is shown that electronic charge can be transferred from silver clusters to the oxidized TiO2(110) surface as evidenced by the reappearance of the Ti3d defect...... state upon silver exposure. Furthermore, from both scanning tunneling microscopy data and density functional theory calculations the most favorable adsorption site of silver monomers on oxidized TiO2(110) is one that bridges between on-top O adatoms and regular surface O atoms nearby....

  8. Mechanism of adhesion of electroless-deposited silver on poly(ether urethane)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.E. [Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road Sudbury, Ontario, P3E 2C6 (Canada)]. E-mail: jgray@laurentian.ca; Norton, P.R. [Department of Chemistry and Interface Science Western, University of Western Ontario, London, Ontario, N6A 5B (Canada)]. E-mail: pnorton@uwo.ca; Griffiths, K. [Department of Chemistry and Interface Science Western, University of Western Ontario, London, Ontario, N6A 5B (Canada)

    2005-07-22

    Bacterial growth on medical implants and devices is a common source of infection. There is a great deal of interest in the surface modification of polymeric materials to decrease infection rates without altering properties that affect their function. One possibility is to coat the material with an antibacterial agent such as silver. This paper explores the feasibility of depositing adherent silver films onto biomedical poly(ether urethanes) by an electroless plating process. The surface chemistry of the deposition process and the effect of a plasma treatment on the metal/polymer adhesion have been explored. The silver films produced on an unmodified poly(ether urethane) surface consist predominantly of micron-sized clusters that form in solution and are poorly adhered to the surface. However, some small adherent clusters are also deposited on the polymer surface and X-ray photoelectron spectroscopy of the metal/polymer interface shows evidence of chemical interaction between silver and surface carbonyl groups. An air plasma treatment of the polymer to increase the number of carbonyl containing groups at the surface has been shown to significantly improve the metal/polymer adhesion and to decrease the porosity of the silver films. This paper illustrates the importance of chemical bonding in the electroless metallization of polymers.

  9. Mechanism of adhesion of electroless-deposited silver on poly(ether urethane)

    International Nuclear Information System (INIS)

    Bacterial growth on medical implants and devices is a common source of infection. There is a great deal of interest in the surface modification of polymeric materials to decrease infection rates without altering properties that affect their function. One possibility is to coat the material with an antibacterial agent such as silver. This paper explores the feasibility of depositing adherent silver films onto biomedical poly(ether urethanes) by an electroless plating process. The surface chemistry of the deposition process and the effect of a plasma treatment on the metal/polymer adhesion have been explored. The silver films produced on an unmodified poly(ether urethane) surface consist predominantly of micron-sized clusters that form in solution and are poorly adhered to the surface. However, some small adherent clusters are also deposited on the polymer surface and X-ray photoelectron spectroscopy of the metal/polymer interface shows evidence of chemical interaction between silver and surface carbonyl groups. An air plasma treatment of the polymer to increase the number of carbonyl containing groups at the surface has been shown to significantly improve the metal/polymer adhesion and to decrease the porosity of the silver films. This paper illustrates the importance of chemical bonding in the electroless metallization of polymers

  10. Structure Determination of Noble Metal Clusters by Trapped Ion Electron Diffraction

    Science.gov (United States)

    Schooss, Detlef

    2006-03-01

    The structures of noble metal cluster ions have been studied by the recently developed technique of trapped ion electron diffraction (TIED)^1. In brief, cluster ions are generated by a magnetron sputter source and injected into a cooled (95 K) quadrupole ion trap. After mass selection and thermalization, the trapped ions are irradiated with a 40 keV electron beam. The resulting diffraction pattern is integrated with a CCD detector. The assignment of the structural motif is done via a comparison of the experimental and simulated scattering function, calculated from density functional theory structure calculations. The structures of mass selected silver cluster cations Ag19^+, Ag38^+, Ag55^+, Ag59^+, Ag75^+ and Ag79^+ have been investigated^2. The resulting experimental data are best described by structures based on the icosahedral motif, while closed packed structures could be ruled out. Additionally, we present a comparison of the structures of Cu20^+/-, Ag20^+/- and Au20^+/-. Our findings show unambiguously that the structure of Au20^- is predominantly given by a tetrahedron in agreement with the results of L.S. Wang et al.^3 In contrast, structures of Ag20^- and Cu20^- based on the icosahedral motif agree best with the experimental data. Small structural differences between the charge states are observed. The possibilities and limitations of the TIED method are discussed. (1) M. Maier-Borst, D. B. Cameron, M. Rokni, and J. H. Parks, Physical Review A 59 (5), R3162 (1999); S. Krückeberg, D. Schooss, M. Maier-Borst, and J. H. Parks, Physical Review Letters 85 (21), 4494 (2000). (2) D. Schooss, M.N. Blom, B. v. Issendorff, J. H. Parks, and M.M. Kappes, Nano Letters 5 (10), 1972 (2005). (3) J. Li, X. Li, H. J. Zhai, and L. S. Wang, Science 299, 864 (2003)

  11. Bosonic helium droplets with cationic impurities: Onset of electrostriction and snowball effects from quantum calculations

    International Nuclear Information System (INIS)

    Variational Monte Carlo and diffusion Monte Carlo calculations have been carried out for cations such as Li+, Na+, and K+ as dopants of small helium clusters over a range of cluster sizes up to about 12 solvent atoms. The interaction has been modeled through a sum-of-potential picture that disregards higher order effects beyond atom-atom and atom-ion contributions. The latter were obtained from highly correlated ab initio calculations over a broad range of interatomic distances. This study focuses on two of the most striking features of the microsolvation in a quantum solvent of a cationic dopant: electrostriction and snowball effects. They are discussed here in detail and in relation with the nanoscopic properties of the interaction forces at play within a fully quantum picture of the cluster features

  12. Bosonic Helium droplets with cationic impurities: onset of electrostriction and snowball effects from quantum calculations

    CERN Document Server

    Coccia, E; Marinetti, F; Gianturco, F A; Yildrim, E; Yurtsever, M; Yurtsever, E

    2007-01-01

    Variational MonteCarlo and Diffusion MonteCarlo calculations have been carried out for cations like Li$^+$, Na$^+$ and K$^+$ as dopants of small helium clusters over a range of cluster sizes up to about 12 solvent atoms. The interaction has been modelled through a sum-of-potential picture that disregards higher order effects beyond atom-atom and atom-ion contributions. The latter were obtained from highly correlated ab-initio calculations over a broad range of interatomic distances. This study focuses on two of the most striking features of the microsolvation in a quantum solvent of a cationic dopant: electrostriction and snowball effects. They are here discussed in detail and in relation with the nanoscopic properties of the interaction forces at play within a fully quantum picture of the clusters features.

  13. Optical properties and electrochemical dealloying of Gold-Silver alloy nanoparticles immobilized on composite thin-film electrodes

    Science.gov (United States)

    Starr, Christopher A.

    Gold-silver alloy nanoparticles (NPs) capped with adenosine 5'-triphosphate were synthesized by borohydride reduction of dilute aqueous metal precursors. High-resolution transmission electron microscopy showed the as-synthesized particles to be spherical with average diameters ~4 nm. Optical properties were measured by UV-Visible spectroscopy (UV-Vis), and the formation of alloy NPs was verified across all gold:silver ratios by a linear shift in the plasmon band maxima against alloy composition. The molar absorptivities of the NPs decreased non-linearly with increasing gold content from 2.0 x 108 M-1 cm-1 (lambdamax = 404 nm) for pure silver to 4.1 x 107 M-1 cm -1 (lambdamax = 511 nm) for pure gold. The NPs were immobilized onto transparent indium-tin oxide composite electrodes using layer-by-layer (LbL) deposition with poly(diallyldimethylammonium) acting as a cationic binder. The UV-Vis absorbance of the LbL film was used to calculate the surface coverage of alloy NPs on the electrode. Typical preparations had average NP surface coverages of 2.8 x 10-13 mol NPs/cm2 (~5% of cubic closest packing) with saturated films reaching ~20% of ccp for single-layer preparations (1.0 ~ 10-12 mol NPs/cm2). X-ray photoelectron spectroscopy confirmed the presence of alloy NPs in the LbL film and showed silver enrichment of the NP surfaces by ~9%. Irreversible oxidative dissolution (dealloying) of the less noble silver atoms from the NPs on LbL electrodes was performed by cyclic voltammetry (CV) in sulfuric acid. Alloy NPs with higher gold content required larger overpotentials for silver dealloying. Dealloying of the more-noble gold atoms from the alloy NPs was also achieved by CV in sodium chloride. The silver was oxidized first to cohesive silver chloride, and then gold dealloyed to soluble HAuCl 4- at higher potentials. Silver oxidation was inhibited during the first oxidative scan, but subsequent cycles showed typical, reversible silver-to-silver chloride voltammetry. The

  14. Silver Modified Degussa P25 for the Photocatalytic Removal of Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Neil Bowering

    2007-01-01

    Full Text Available A study of the photocatalytic behaviour of silver modified titanium dioxide materials for the decomposition and reduction of nitric oxide (NO gas has been carried out. The effects of silver loading, calcination temperature, and reaction conditions have been investigated. Prepared photocatalysts were characterised using XRD, TEM, and XPS. A continuous flow reactor was used to determine the photocatalytic activity and selectivity of NO decomposition in the absence of oxygen as well as NO reduction using CO as the reducing agent, over the prepared photocatalysts. XRD and TEM analysis of the photocatalysts showed that crystalline silver nitrate particles were present on the titanium dioxide surface after calcination at temperatures of up to 200∘C. The silver nitrate particles are thermally decomposed to form metallic silver clusters at higher temperatures. XPS analysis of the photocatalysts showed that for each of the temperatures used, both Ag+ and Ag0 were present and that the Ag0/Ag+ ratio increased with increasing calcination temperature. The presence of metallic silver species on the TiO2 surface dramatically increased the selectivity for N2 formation of both decomposition and reduction reactions. When CO was present in the reaction gas, selectivities of over 90% were observed for all the Ag-TiO2 photocatalysts that had been calcined at temperatures above 200∘C. Unfortunately these high selectivities were at the expense of photocatalytic activity, with lower NO conversion rates than those achieved over unmodified TiO2 photocatalysts.

  15. Anti-inflammatory activity of cationic lipids

    OpenAIRE

    Filion, Mario C; Phillips, Nigel C

    1997-01-01

    The effect of liposome phospholipid composition has been assumed to be relatively unimportant because of the presumed inert nature of phospholipids.We have previously shown that cationic liposome formulations used for gene therapy inhibit, through their cationic component, the synthesis by activated macrophages of the pro-inflammatory mediators nitric oxide (NO) and tumour necrosis factor-α (TNF-α).In this study, we have evaluated the ability of different cationic lipids to reduce footpad inf...

  16. Data Clustering

    Science.gov (United States)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  17. The properties of small Ag clusters bound to DNA bases

    Science.gov (United States)

    Soto-Verdugo, Víctor; Metiu, Horia; Gwinn, Elisabeth

    2010-05-01

    We study the binding of neutral silver clusters, Agn (n=1-6), to the DNA bases adenine (A), cytosine (C), guanine (G), and thymine (T) and the absorption spectra of the silver cluster-base complexes. Using density functional theory (DFT), we find that the clusters prefer to bind to the doubly bonded ring nitrogens and that binding to T is generally much weaker than to C, G, and A. Ag3 and Ag4 make the stronger bonds. Bader charge analysis indicates a mild electron transfer from the base to the clusters for all bases, except T. The donor bases (C, G, and A) bind to the sites on the cluster where the lowest unoccupied molecular orbital has a pronounced protrusion. The site where cluster binds to the base is controlled by the shape of the higher occupied states of the base. Time-dependent DFT calculations show that different base-cluster isomers may have very different absorption spectra. In particular, we find new excitations in base-cluster molecules, at energies well below those of the isolated components, and with strengths that depend strongly on the orientations of planar clusters with respect to the base planes. Our results suggest that geometric constraints on binding, imposed by designed DNA structures, may be a feasible route to engineering the selection of specific cluster-base assemblies.

  18. 21 CFR 73.2500 - Silver.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Silver. 73.2500 Section 73.2500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... agglomeration of crystals and the formation of amorphous silver. (2) Color additive mixtures of silver...

  19. Fluorescent silver nanoclusters stabilized by DNA scaffolds.

    Science.gov (United States)

    Yuan, Zhiqin; Chen, Ying-Chieh; Li, Hung-Wen; Chang, Huan-Tsung

    2014-09-01

    Fluorescent silver nanoclusters, in particular DNA stabilized (templated) silver nanoclusters, have attracted much attention because of their molecule-like optical properties, strong fluorescence and good biocompatibility. In this feature article, we summarize the DNA stabilized silver nanoclusters from the viewpoints of synthesis, optical properties, as well as recent applications in biological detection and imaging. PMID:24901353

  20. The global k-means clustering algorithm

    OpenAIRE

    Likas, Aristidis; Vlassis, Nikos; Verbeek, Jakob

    2003-01-01

    We present the global k-means algorithm which is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure consisting of N (with N being the size of the data set) executions of the k-means algorithm from suitable initial positions. We also propose modi2cations of the method to reduce the computational load without signi2cantly a3ecting solution quality. The proposed clustering methods are tested on well-known data ...

  1. Anti-inflammatory activity of cationic lipids.

    Science.gov (United States)

    Filion, M C; Phillips, N C

    1997-10-01

    1. The effect of liposome phospholipid composition has been assumed to be relatively unimportant because of the presumed inert nature of phospholipids. 2. We have previously shown that cationic liposome formulations used for gene therapy inhibit, through their cationic component, the synthesis by activated macrophages of the pro-inflammatory mediators nitric oxide (NO) and tumour necrosis factor-alpha (TNF-alpha). 3. In this study, we have evaluated the ability of different cationic lipids to reduce footpad inflammation induced by carrageenan and by sheep red blood cell challenge. 4. Parenteral (i.p. or s.c) or local injection of the positively charged lipids dimethyldioctadecylammomium bromide (DDAB), dioleyoltrimethylammonium propane (DOTAP), dimyristoyltrimethylammonium propane (DMTAP) or dimethylaminoethanecarbamoyl cholesterol (DC-Chol) significantly reduced the inflammation observed in both models in a dose-dependent manner (maximum inhibition: 70-95%). 5. Cationic lipids associated with dioleyol- or dipalmitoyl-phosphatidylethanolamine retained their anti-inflammatory activity while cationic lipids associated with dipalmitoylphosphatidylcholine (DPPC) or dimyristoylphosphatidylglycerol (DMPG) showed no anti-inflammatory activity, indicating that the release of cationic lipids into the macrophage cytoplasm is a necessary step for anti-inflammatory activity. The anti-inflammatory activity of cationic lipids was abrogated by the addition of dipalmitoylphosphatidylethanolamine-poly(ethylene)glycol-2000 (DPPE-PEG2000) which blocks the interaction of cationic lipids with macrophages. 6. Because of the significant role of protein kinase C (PKC) in the inflammatory process we have determined whether the cationic lipids used in this study inhibit PKC activity. The cationic lipids significantly inhibited the activity of PKC but not the activity of a non-related protein kinase, PKA. The synthesis of interleukin-6 (IL-6), which is not dependent on PKC activity for its

  2. Mechanisms of Silver Nanoparticle Toxicity

    DEFF Research Database (Denmark)

    Foldbjerg, Rasmus

    rendering them potentially more reactive than larger particles. Accordingly, there are strong indications that particle surface area and surface chemistry are responsible for observed responses in cell cultures and animals. Silver nanoparticles (Ag NPs) are among the most commonly utilized nanomaterials due...... environment. Specific concerns have been raised about the possible toxicity of engineered nanoparticles (NPs) supported by studies which indicated that NPs are more toxic than larger particles on a mass for mass basis. As a consequence of their small size, NPs have a very high surface to volume ratio...... profiling and 32P postlabeling. Several lines of evidence indicated that both Ag NPs and silver ions from silver nitrate were able to induce cell death by apoptosis in correlation to increased levels of reactive oxygen species (ROS). The mechanism of cell death was related to loss of mitochondrial membrane...

  3. Cluster Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Cansisting of eight scientists from the State Key Laboratory of Physical Chemistry of Solid Surfaces and Xiamen University, this creative research group is devoted to the research of cluster chemistry and creation of nanomaterials.After three-year hard work, the group scored a series of encouraging progresses in synthesis of clusters with special structures, including novel fullerenes, fullerene-like metal cluster compounds as well as other related nanomaterials, and their properties study.

  4. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick

    2010-01-01

    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  5. Antituberculous effect of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kreytsberg, G N; Gracheva, I E [Limited Liability Company ' Scientific and Production Association (NPO)' Likom' , 150049, Yaroslavl, Magistralnaya str., 32 (Russian Federation); Kibrik, B S [Yaroslavl State Medical Academy Russia, 150000, Yaroslavl, Revolutsionnaya str., 5 (Russian Federation); Golikov, I V, E-mail: likomm@yaroslavl.ru [Yaroslavl State Technical University Russia, 150023, Yaroslavl, Moskovskiy avenue, 88 (Russian Federation)

    2011-04-01

    The in vitro experiment, involving 1164 strains of the tuberculosis mycobacteria, exhibited a potentiating effect of silver nanoparticles on known antituberculous preparations in respect of overcoming drug-resistance of the causative agent. The in vitro experiment, based on the model of resistant tuberculosis, was performed on 65 white mice. An evident antituberculous effect of the nanocomposite on the basis of silver nanoparticles and isoniazid was proved. Toxicological assessment of the of nanopreparations was carried out. The performed research scientifically establishes efficacy and safety of the nanocomposite application in combination therapy of patients suffering from drug-resistant tuberculosis.

  6. Silver-Palladium Surfaces Inhibit Biofilm Formation

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Schroll, Casper; Hilbert, Lisbeth Rischel;

    2009-01-01

    Undesired biofilm formation is a major concern in many areas. In the present study, we investigated biofilm-inhibiting properties of a silver-palladium surface that kills bacteria by generating microelectric fields and electrochemical redox processes. For evaluation of the biofilm inhibition...... efficacy and study of the biofilm inhibition mechanism, the silver-sensitive Escherichia coli J53 and the silver-resistant E. coli J53[pMG101] strains were used as model organisms, and batch and flow chamber setups were used as model systems. In the case of the silver-sensitive strain, the silver...

  7. Selective flotation of zinc(II) and silver(I) ions from dilute aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Charewicz, W.A.; Holowiecka, B.A.; Walkowiak, W. [Wroclaw Univ. of Tech. (Poland)

    1999-09-01

    An experimental investigation is presented of the batch competitive flotation of zinc(II) and silver(I) ions from dilute aqueous solutions with sodium dodecylsulfate and ammonium tetradecysulfonate as anionic surfactants and with cetylpyridinium chloride as a cationic surfactant. The sequence of growing affinity of metal cations to anionic surfactants is the same as the sequence of ionic potential values of the studied cations: AG{sup +} < Zn{sup 2+}. The presence of potassium sulfate in aqueous solution has a negative influence of Zn{sup 2+} foam separation with a anionic surfactant which is due to competition for the surfactant between Zn{sup 2+} and K{sup +} cations. Also, the effect of inorganic ligands (i.e., thiosulfates, thiocyanates, and cyanides) on the selectivity of ion flotation of Zn(II) and Ag(I) is established. Results are discussed in terms of the complex species of zinc(II) and silver(I). At a total S{sub 2}O{sub 3}{sup 2{minus}} concentration of 3 {times} 10{sup {minus}6} M, the silver(I) is floated as a mixture of anions [Ag(S{sub 2}O{sub 3})]{sup {minus}} and [Ag(S{sub 2}O{sub 3}){sub 2}]{sup 3{minus}}, whereas zinc(II) remains in the aqueous phase as Zn{sup 2+}. At total concentrations of SCN{sup {minus}} from 1 {times} 10{sup {minus}4} to 2 {times} 10{sup {minus}3} M, silver(I) is floated as a mixture of [Ag(SCN){sub 2}]{sup {minus}} and AgSCN species. Partial separation of zinc(II) from silver(I) can be achieved in the presence of CN{sup {minus}} ligands at total concentrations varying from 2.5 {times} 10{sup {minus}4} to 1.0 {times} 10{sup {minus}3} M. The affinity of the studied cyanide complexes to cetylpyridinium chloride follows the order [Ag(CN){sub 2}]{sup {minus}} < [Zn(CN){sub 4}]{sup 2{minus}} + [Zn(CN){sub 3}]{sup {minus}}.

  8. Detection of silver(I) ion based on mixed surfactant-adsorbed CdS quantum dots

    International Nuclear Information System (INIS)

    Mixed cationic and anionic surfactants were adsorbed on cadmium sulfide quantum dots (CdS QDs) capped with mercaptoacetic acid. The CdS QDs can be extracted into acetonitrile with 98 % efficiency in a single step. Phase separation only occurs at a molar ratio of 1:1.5 between cationic and anionic surfactants. The surfactant-adsorbed QDs in acetonitrile solution display stronger and more stable photoluminescence than in water solution. The method was applied for determination of silver(I) ion based on its luminescence enhancement of the QDs. Under the optimum conditions, the relative fluorescence intensity is linearly proportional to the concentration of silver(I) ion in the range between 50 pmol L−1and 4 μmol L−1, with a 20 pmol L−1 detection limit. The relative standard deviation was 1.93 % for 9 replicate measurements of a 0.2 μmol L−1 solution of Ag(I). (author)

  9. Chemistry of silver(II): a cornucopia of peculiarities†.

    Science.gov (United States)

    Grochala, Wojciech; Mazej, Zoran

    2015-03-13

    Silver is the heavier congener of copper in the Periodic Table, but the chemistry of these two elements is very different. While Cu(II) is the most common cationic form of copper, Ag(II) is rare and its compounds exhibit a broad range of peculiar physico-chemical properties. These include, but are not limited to: (i) uncommon oxidizing properties, (ii) unprecedented large mixing of metal and ligand valence orbitals, (iii) strong spin-polarization of neighbouring ligands, (iv) record large magnetic superexchange constants, (v) ease of thermal decomposition of its salts with O-, N- or C-ligands, as well as (vi) robust Jahn-Teller effect which is preserved even at high pressure. These intriguing features of the compounds of Ag(II) will be discussed here together with (vii) a possibility of electromerism (electronic tautomerism) for a certain class of Ag(II) salts. PMID:25666068

  10. Silver metal colloidal film on a flexible polymer substrate

    Science.gov (United States)

    del Rocío Balaguera Gelves, Marcia; El Burai-Félix, Alia; De La Cruz-Montoya, Edwin; Jeréz Rozo, Jaqueline I.; Hernández-Rivera, Samuel P.

    2006-05-01

    A method to prepare metallic nanoparticles films in the presence of a hydrophilic copolymer with the aim of inhibiting the formation of clusters in the nanoparticles has been developed. Thin films prepared could be used in applications such as sensors development and substrates for surface-enhanced Raman spectroscopy. The synthesis of colloidal solutions of silver nanoparticles was achieved by the reduction AgNO 3 using sodium citrate with thermal treatment which results in a robust fabrication of gold and silver films. The polymeric films were prepared by polymerization 2-hydroxyethyl methacrylate with methacrylic acid (method 1). The other procedure employed (method 2) incorporated the use of polyvinyl pyrrolidone and polyethylene glycol as copolymers. A scanning electron microscope was used to provide microstructural information of coverage achieved. The ability to tune the nanocoating structure and spectral and electronic properties can be used for applications such as sensors used in the detection of explosives. Silver nanoparticles were also characterized by surface-enhanced Raman scattering (SERS), which integrates high chemical sensitivity with spectroscopic identification and has enormous potential for applications involving ultra-sensitive chemical detection. Spectra were obtained using a Renishaw RM2000 Raman Microspectrometer system operating in the visible region excitation (532 nm).

  11. Cancer Clusters

    Science.gov (United States)

    ... of cancer. Cancer clusters can help scientists identify cancer-causing substances in the environment. For example, in the early 1970s, a cluster ... the area and time period over which the cancers were diagnosed. They also ask about specific environmental hazards or concerns in the affected area. If ...

  12. Gravimetric and volumetric determination of the purity of electrolytically refined silver and the produced silver nitrate

    Directory of Open Access Journals (Sweden)

    Ačanski Marijana M.

    2007-01-01

    Full Text Available Silver is, along with gold and the platinum-group metals, one of the so called precious metals. Because of its comparative scarcity, brilliant white color, malleability and resistance to atmospheric oxidation, silver has been used in the manufacture of coins and jewelry for a long time. Silver has the highest known electrical and thermal conductivity of all metals and is used in fabricating printed electrical circuits, and also as a coating for electronic conductors. It is also alloyed with other elements such as nickel or palladium for use in electrical contacts. The most useful silver salt is silver nitrate, a caustic chemical reagent, significant as an antiseptic and as a reagent in analytical chemistry. Pure silver nitrate is an intermediate in the industrial preparation of other silver salts, including the colloidal silver compounds used in medicine and the silver halides incorporated into photographic emulsions. Silver halides become increasingly insoluble in the series: AgCl, AgBr, AgI. All silver salts are sensitive to light and are used in photographic coatings on film and paper. The ZORKA-PHARMA company (Sabac, Serbia specializes in the production of pharmaceutical remedies and lab chemicals. One of its products is chemical silver nitrate (argentum-nitricum (l. Silver nitrate is generally produced by dissolving pure electrolytically refined silver in hot 48% nitric acid. Since the purity of silver nitrate, produced in 2002, was not in compliance with the p.a. level of purity, there was doubt that the electrolytically refined silver was pure. The aim of this research was the gravimetric and volumetric determination of the purity of electrolytically refined silver and silver nitrate, produced industrially and in a laboratory. The purity determination was carried out gravimetrically, by the sedimentation of silver(I ions in the form of insoluble silver salts: AgCl, AgBr and Agi, and volumetrically, according to Mohr and Volhardt. The

  13. Influence of injected silver content on synthesis of silver coated nickel particles by DC thermal plasma

    Science.gov (United States)

    Park, Si Taek; Kim, Tae-Hee; Park, Dong-Wha

    2016-06-01

    Silver nanoparticle-coated spherical nickel particles were prepared from a mixture of micro-sized silver and nickel as raw materials by DC thermal plasma treatment. The mixture of micro-sized silver and nickel powders was injected into the high-temperature region of an argon thermal plasma jet. Although the silver, with its very high thermal conductivity and relatively low boiling point, was thoroughly evaporated by this process, nickel was not evaporated perfectly because of its comparatively low thermal conductivity and high boiling point. The rough nickel powder was spheroidized as it melted. Finally, silver evaporated by the thermal plasma quickly condensed into nanoparticles on the surfaces of the micro-sized spherical nickel particles, aided by the sharp temperature gradient of the thermal plasma jet. With varying the ratios of silver to nickel feedstock from 1:10 to 5:1, the products synthesized in each condition were examined by XRD, XPS, FE-SEM, and FE-TEM. More silver nanoparticles were attached on the nickel by increasing the injected feedstock to 9.8 at% silver. Meanwhile, a decrease of silver in the products was observed when larger amounts of silver were introduced to the thermal plasma jet. The exposed silver components decreased with greater proportions of silver feedstock because of the metal's dendritic structure and the formation of silver-coated silver particles.

  14. Tripodal Receptors for Cation and Anion Sensors

    Directory of Open Access Journals (Sweden)

    David N. Reinhoudt

    2006-08-01

    Full Text Available This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  15. Advancements in Anion Exchange Membrane Cations

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Long, Hai [National Renewable Energy Lab. (NREL), Golden, CO (United States); Park, Andrew M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pivovar, Bryan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-15

    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  16. Clustering processes

    CERN Document Server

    Ryabko, Daniil

    2010-01-01

    The problem of clustering is considered, for the case when each data point is a sample generated by a stationary ergodic process. We propose a very natural asymptotic notion of consistency, and show that simple consistent algorithms exist, under most general non-parametric assumptions. The notion of consistency is as follows: two samples should be put into the same cluster if and only if they were generated by the same distribution. With this notion of consistency, clustering generalizes such classical statistical problems as homogeneity testing and process classification. We show that, for the case of a known number of clusters, consistency can be achieved under the only assumption that the joint distribution of the data is stationary ergodic (no parametric or Markovian assumptions, no assumptions of independence, neither between nor within the samples). If the number of clusters is unknown, consistency can be achieved under appropriate assumptions on the mixing rates of the processes. (again, no parametric ...

  17. Evaluation of the influence of sulfur-based functional groups on the embedding of silver nanoparticles into the pores of MCM-41

    Science.gov (United States)

    Oliveira, Roselaine da S.; Camilo, Fernanda F.; Bizeto, Marcos A.

    2016-03-01

    The incorporation of noble metals in the pores of mesoporous silicas might produce materials with interesting catalytic and sensing capabilities, but the proper control of pore filling and the avoidance of nanoparticles migration to outside the pores are processes not yet completely understood. In this work, we evaluated the role of -SH and -SO3H groups post-grafted into MCM-41 on the production of silver nanoparticles by using 1-butanol as reducing agent. Thiol groups were the most efficient on promoting the formation of nanoparticles within the pores. Conversely, sulfonic groups establish electrostatic interactions with silver cations that preclude the formation of nanoparticle in yields comparable to thiol groups. MCM-41 without functional groups did not have good affinity to silver and the nanoparticles are produced outside the pores. This study showed the importance on selecting an adequate surface functional group in order to obtain silver nanoparticles filling the pores of MCM-41.

  18. Conducting polymer-silver composites

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav

    2013-01-01

    Roč. 67, č. 8 (2013), s. 814-848. ISSN 0366-6352 R&D Projects: GA TA ČR TE01020022 Institutional support: RVO:61389013 Keywords : polyaniline * polypyrrole * silver Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.193, year: 2013

  19. A new alternative for the decontamination of PWR primary circuits for radioactive cesium and silver by insoluble ferrocyanides

    International Nuclear Information System (INIS)

    The optimal recovery conditions of radioactive cesium and silver from PWR primary circuits were determined on two types of nickel and zinc ferrocyanides. The studied products have been prepared by a slow growth on solid alkaline ferrocyanide particles placed in a concentrated nickel or zinc salt solution. Columns of these products do not react with water or lithium borate solutions as well as with organic solvents. The decontamination factor for cesium or silver is over 1000 for synthetic solutions. The presence of other alkaline ions does not modify these results. In the case of nuclear liquid wastes, the decontamination remains high for cesium. Silver is retained with a good efficiency if it is not under a complex form. This complex is destroyed by acidification. The setting of concrete is not significantly modified by the presence of ferrocyanides. The drawback of this method is a slight elution of some cations composing the ferrocyanides

  20. Solid phase extraction of ultra traces silver(I) using octadecyl silica membrane disks modified by 1,3-bis(2-cyanobenzene) triazene (CBT) ligand prior to determination by flame atomic absorption

    Energy Technology Data Exchange (ETDEWEB)

    Rofouei, Mohammad Kazem, E-mail: rofouei@tmu.ac.ir [Faculty of Chemistry, Tarbiat Moalem University, Tehran (Iran, Islamic Republic of); Payehghadr, Mahmood [Department of Chemistry, Payame Noor University (PNU) (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Ahmadalinezhad, Asieh [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)

    2009-09-15

    A simple, reliable and rapid method for preconcentration and determination of the ultra trace amount of silver using octadecyl silica membrane disk modified by a recently synthesized triazene ligand, 1,3-bis(2-cyanobenzene)triazene (CBT), and flame atomic absorption spectrometry is presented. Various parameters including pH of aqueous solution, flow rates, the amount of ligand and the type of stripping solvents were optimized. The breakthrough volume was greater than 1800 ml with an enrichment factor of more than 360 and 6.0 ng l{sup -1} detection limit. The capacity of the membrane disks modified by 5 mg of the ligand was found to be 1070 {mu}g of silver. The effects of various cationic interferences on the percent recovery of silver ion were studied. The method was successfully applied to the determination of silver ion in different samples, especially determination of ultra trace amount of silver in the presence of large amount of lead.

  1. Solid phase extraction of ultra traces silver(I) using octadecyl silica membrane disks modified by 1,3-bis(2-cyanobenzene) triazene (CBT) ligand prior to determination by flame atomic absorption

    International Nuclear Information System (INIS)

    A simple, reliable and rapid method for preconcentration and determination of the ultra trace amount of silver using octadecyl silica membrane disk modified by a recently synthesized triazene ligand, 1,3-bis(2-cyanobenzene)triazene (CBT), and flame atomic absorption spectrometry is presented. Various parameters including pH of aqueous solution, flow rates, the amount of ligand and the type of stripping solvents were optimized. The breakthrough volume was greater than 1800 ml with an enrichment factor of more than 360 and 6.0 ng l-1 detection limit. The capacity of the membrane disks modified by 5 mg of the ligand was found to be 1070 μg of silver. The effects of various cationic interferences on the percent recovery of silver ion were studied. The method was successfully applied to the determination of silver ion in different samples, especially determination of ultra trace amount of silver in the presence of large amount of lead.

  2. Structural anomalies induced by the metal deposition methods in 2D silver nanoparticle arrays prepared by nanosphere lithography

    International Nuclear Information System (INIS)

    Silver nanoparticle arrays with 2-dimensional hexagonal arrangement were fabricated on the silicon substrates by nanosphere lithography. The silver film was deposited either by thermal evaporation or by magnetron sputtering under different conditions. The nanostructures of the achieved sphere template and the array units were characterized by scanning electron microscopy and atomic force microscopy, and were found to be anomalous under different deposition parameters. Comparative study indicated that the formation of the various 2-dimensional silver nanoparticle array structures was dominated by the thermal energy (temperature), kinetic energy and deposition direction of the deposited metal atoms as well as the size and nanocurvature of the colloidal particles and the metal clusters. - Highlights: • Silver nanoparticle arrays with different nanostructures on silicon substrates. • Various deposition parameters in arrays formation systematically examined. • Possible mechanisms and optimization of nanostructures formation addressed

  3. The new silver borate Ag3B5O9

    International Nuclear Information System (INIS)

    Single crystals of Ag3B5O9 were obtained via high-pressure synthesis at 3 GPa and 600 °C, using a Walker-type multianvil high-pressure device. Ag3B5O9 crystalizes with a=674.7(2), b=943.5(2), c=1103.5(2) pm, V=0.7025(2) nm3, and Z=4 in the noncentrosymmetric space group P212121 (no. 19). The orthorhombic structure was refined from 3740 independent reflections with R1=0.0496 and wR2=0.587 (all data). It is built up from infinite corner-sharing chains of BO4 tetrahedra along the a axis, which are interconnected by BO3 groups to form a network. In the structure, three crystallographically independent sites are occupied with Ag+ cations exhibiting argentophillic interactions. The synthetic conditions as well as the results of the single crystal structure analysis are presented. - Graphical abstract: Noncentrosymmetric silver borate: During investigations in the system Ag–B–O, a new noncentrosymmetric silver borate Ag3B5O9 was discovered. The new structure type is built up from corner-sharing BO3 and BO4 groups, forming a network. Argentophillic interactions are clearly indicated by the Ag+⋯Ag+ distances present in the structure. - Highlights: • A noncentrosymmetric borate Ag3B5O9 is accessible via high-pressure synthesis. • Ag3B5O9 is the second high-pressure silver borate. • Ag+⋯Ag+ distances in Ag3B5O9 clearly indicate the presence of argentophillic interactions

  4. PVDF membranes containing hybrid nanoparticles for adsorbing cationic dyes: physical insights and mechanism

    Science.gov (United States)

    Sharma, Maya; Madras, Giridhar; Bose, Suryasarathi

    2016-07-01

    In this study, Fe (iron) and Ag (silver) based adsorbents were synthesized using solution combustion and in situ reduction techniques. The synthesized adsorbents were comprehensively characterized by different techniques including electron microscopy, BET, XRD, Zeta potential etc. Three chlorinated cationic dyes used were malachite green, methyl violet and pyronin Y. These dyes were adsorbed on various synthesized adsorbents [iron III oxide (Fe2O3)], iron III oxide decorated silver nanoparticles by combustion synthesis technique [Fe2O3–Ag(C)] and iron III oxide decorated silver nanoparticles using in situ reduction, [Fe2O3–Ag (S)]. The isotherm and the adsorption kinetics have been studied systematically. The kinetic data can be explained by the pseudo second order model and the adsorption equilibrium followed Langmuir isotherm. The equilibrium and kinetics results suggest that Fe2O3–Ag(S) nanoparticles showed the maximum adsorption among all the adsorbents. Hence, Polyvinylidene fluoride based membranes containing Fe2O3–Ag(S) nanoparticles were prepared via phase inversion (precipitation immersion using DMF/water) technique. The adsorption kinetics were studied in detail and it was observed that the composite membrane showed synergistic improvement in dye adsorption. Such membranes can be used for water purification.

  5. Growth process of nanostructured silver films pulsed laser ablated in high-pressure inert gas

    International Nuclear Information System (INIS)

    The growth process of silver thin films deposited by pulsed laser ablation in a controlled inert gas atmosphere was investigated. A pure silver target was ablated in Ar atmosphere, at pressures ranging between 10 and 100 Pa, higher than usually adopted for thin film deposition, at different numbers of laser shots. All of the other experimental conditions such as the laser (KrF, wavelength 248 nm), the fluence of 2.0 J cm-2, the target to substrate distance of 35 mm, and the temperature (295 K) of the substrates were kept fixed. The morphological properties of the films were investigated by transmission and scanning electron microscopies (TEM, SEM). Film formation results from coalescence on the substrate of near-spherical silver clusters landing as isolated particles with size in the few nanometers range. From a visual inspection of TEM pictures of the films deposited under different conditions, well-separated stages of film growth are identified.

  6. Antimicrobial Properties of a Novel Silver-Silica Nanocomposite Material▿

    Science.gov (United States)

    Egger, Salome; Lehmann, Rainer P.; Height, Murray J.; Loessner, Martin J.; Schuppler, Markus

    2009-01-01

    Nanotechnology enables development and production of novel silver-based composite materials. We used in vitro tests to demonstrate the antimicrobial activity of a silver-silica nanocomposite compared to the activities of conventional materials, such as silver nitrate and silver zeolite. A silver-silica-containing polystyrene material was manufactured and shown to possess strong antimicrobial properties. PMID:19270121

  7. Antimicrobial Properties of a Novel Silver-Silica Nanocomposite Material▿

    OpenAIRE

    Egger, Salome; Lehmann, Rainer P.; Height, Murray J.; Loessner, Martin J; Schuppler, Markus

    2009-01-01

    Nanotechnology enables development and production of novel silver-based composite materials. We used in vitro tests to demonstrate the antimicrobial activity of a silver-silica nanocomposite compared to the activities of conventional materials, such as silver nitrate and silver zeolite. A silver-silica-containing polystyrene material was manufactured and shown to possess strong antimicrobial properties.

  8. Clustering analysis

    International Nuclear Information System (INIS)

    Cluster analysis is the name of group of multivariate techniques whose principal purpose is to distinguish similar entities from the characteristics they process.To study this analysis, there are several algorithms that can be used. Therefore, this topic focuses to discuss the algorithms, such as, similarity measures, and hierarchical clustering which includes single linkage, complete linkage and average linkage method. also, non-hierarchical clustering method, which is popular name K-mean method' will be discussed. Finally, this paper will be described the advantages and disadvantages of every methods

  9. Cluster editing

    DEFF Research Database (Denmark)

    Böcker, S.; Baumbach, Jan

    2013-01-01

    The Cluster Editing problem asks to transform a graph into a disjoint union of cliques using a minimum number of edge modifications. Although the problem has been proven NP-complete several times, it has nevertheless attracted much research both from the theoretical and the applied side. The...... algorithms for biological problems. © 2013 Springer-Verlag....... problem has been the inspiration for numerous algorithms in bioinformatics, aiming at clustering entities such as genes, proteins, phenotypes, or patients. In this paper, we review exact and heuristic methods that have been proposed for the Cluster Editing problem, and also applications of these...

  10. Cluster analysis

    CERN Document Server

    Everitt, Brian S; Leese, Morven; Stahl, Daniel

    2011-01-01

    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  11. Cationic Bolaamphiphiles for Gene Delivery

    Science.gov (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  12. Spitzer Clusters

    Science.gov (United States)

    Krick, Kessica

    This proposal is a specific response to the strategic goal of NASA's research program to "discover how the universe works and explore how the universe evolved into its present form." Towards this goal, we propose to mine the Spitzer archive for all observations of galaxy groups and clusters for the purpose of studying galaxy evolution in clusters, contamination rates for Sunyaev Zeldovich cluster surveys, and to provide a database of Spitzer observed clusters to the broader community. Funding from this proposal will go towards two years of support for a Postdoc to do this work. After searching the Spitzer Heritage Archive, we have found 194 unique galaxy groups and clusters that have data from both the Infrared array camera (IRAC; Fazio et al. 2004) at 3.6 - 8 microns and the multiband imaging photometer for Spitzer (MIPS; Rieke et al. 2004) at 24microns. This large sample will add value beyond the individual datasets because it will be a larger sample of IR clusters than ever before and will have sufficient diversity in mass, redshift, and dynamical state to allow us to differentiate amongst the effects of these cluster properties. An infrared sample is important because it is unaffected by dust extinction while at the same time is an excellent measure of both stellar mass (IRAC wavelengths) and star formation rate (MIPS wavelengths). Additionally, IRAC can be used to differentiate star forming galaxies (SFG) from active galactic nuclei (AGN), due to their different spectral shapes in this wavelength regime. Specifically, we intend to identify SFG and AGN in galaxy groups and clusters. Groups and clusters differ from the field because the galaxy densities are higher, there is a large potential well due mainly to the mass of the dark matter, and there is hot X-ray gas (the intracluster medium; ICM). We will examine the impact of these differences in environment on galaxy formation by comparing cluster properties of AGN and SFG to those in the field. Also, we will

  13. Conductive silver patterns via ethylene glycol vapor reduction of ink-jet printed silver nitrate tracks on a polyimide substrate

    International Nuclear Information System (INIS)

    In this paper, we report using ethylene glycol vapor reduction approach to fabricate conductive silver tracks directly from silver nitrate solution by ink-jet printing. The silver nitrate precursor can be reduced in ethylene glycol vapor to form silver at low temperatures. X-ray diffraction, thermogravimetric analysis, and energy dispersive spectrometric analysis results indicate that the silver nitrate has been converted to silver completely. Using a high concentration silver nitrate solution, continuous silver conductive lines with a resistivity of 7.314 x 10-5 Ω cm have been produced, which is relatively close to the resistivity of bulk silver.

  14. Conjugated cationic polythiophene polyelectrolyte induced aggregation of silver nanoparticles and its application to SERS

    Czech Academy of Sciences Publication Activity Database

    Kazim, Samrana; Pfleger, Jiří; Bondarev, M.; Vohlídal, J.; Procházka, M.; Jäger, Eliezer; Štěpánek, Petr

    Prague : Charles University, 2010. P2.5. [Conference of the European Colloid and Interface Society /24./. 05.09.2010-10.09.2010, Prague] R&D Projects: GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505 Keywords : nanoparticles * polyelectrolyte s Subject RIV: CF - Physical ; Theoretical Chemistry

  15. Morphological dependence of silver electrodeposits investigated by changing the ionic liquid solvent and the deposition parameters.

    Science.gov (United States)

    Figueredo-Sobrinho, Francisco A A; Santos, Luis P M; Leite, Davi S; Craveiro, Diego C; Santos, Samir H; Eguiluz, Katlin I B; Salazar-Banda, Giancarlo R; Maciel, Cleiton D; Coutinho-Neto, Maurício D; Homem-de-Mello, Paula; de Lima-Neto, Pedro; Correia, Adriana N

    2016-03-14

    The low toxicity and environmentally compatible ionic liquids (ILs) are alternatives to the toxic and harmful cyanide-based baths used in industrial silver electrodeposition. Here, we report the successful galvanostatic electrodeposition of silver films using the air and water stable ILs 1-ethyl-3-methylimidazolium trifluoromethylsulfonate ([EMIM]TfO) and 1-H-3-methylimidazolium hydrogen sulphate ([HMIM(+)][HSO4(-)]) as solvents and AgTfO as the source of silver. The electrochemical deposition parameters were thoughtfully studied by cyclic voltammetry before deposition. The electrodeposits were characterized by scanning electron microscopy coupled with X-ray energy dispersive spectroscopy and X-ray diffraction. Molecular dynamics (MD) simulations were used to investigate the structural dynamic and energetic properties of AgTfO in both ILs. Cyclic voltammetry experiments revealed that the reduction of silver is a diffusion-controlled process. The morphology of the silver coatings obtained in [EMIM]TfO is independent of the applied current density, resulting in nodular electrodeposits grouped as crystalline clusters. However, the current density significantly influences the morphology of silver electrodeposits obtained in [HMIM(+)][HSO4(-)], thus evolving from dendrites at 15 mA cm(-2) to the coexistence of dendrites and columnar shapes at 30 mA cm(-2). These differences are probably due to the greater interaction of Ag(+) with [HSO4(-)] than with TfO(-), as indicated by the MD simulations. The morphology of Ag deposits is independent of the electrodeposition temperature for both ILs, but higher values of temperature promoted increased cluster sizes. Pure face-centred cubic polycrystalline Ag was deposited on the films with crystallite sizes on the nanometre scale. The morphological dependence of Ag electrodeposits obtained in the [HMIM(+)][HSO4(-)] IL on the current density applied opens up the opportunity to produce different and predetermined Ag deposits. PMID

  16. Environmentally friendly preparation of gold and silver nanoparticles for SERS applications using biopolymer pectin

    International Nuclear Information System (INIS)

    A facile, one-step, and environmentally friendly fabrication of anisotropic gold nanostructures and size-controlled spherical silver nanoparticles (NP) using biopolymer pectin is reported. The reduction of Au and Ag ions was carried out at room temperature using an increasing concentration of pectin, which acts as the single source of reducing and stabilizing agent. The as-formed NPs were studied by UV-vis, infrared Fourier transform and surface-enhanced Raman spectroscopies, as well as transmission electron microscopy and energy dispersive X-ray spectroscopy. A high yield of anisotropic gold nanostructures was observed at low concentrations of pectin, while its increase results in the formation of smaller sharp edged perfect triangles with a considerable number of quasi-spherically shaped gold NP. On the other hand, the size of spherical silver NP decreased as the biopolymer concentration in the solution increased. The surface-enhanced Raman scattering enhancement of different NPs was evaluated using a Cu-complex of cationic tetrakis(4-N-methylpyridyl)porphyrin as a probe molecule at 441.6 and 532 nm excitation. Great enhancement of Raman signal was obtained with a pectin–silver NP and for most of them their levels were higher than that for the routinely synthesized citrate silver NP. (authors)

  17. Environmentally Friendly Preparation of Gold and Silver Nanoparticles for Sers Applications Using Biopolymer Pectin

    Science.gov (United States)

    Balachandran, Y. L.; Panarin, A. Y.; Khodasevich, I. A.; Terekhov, S. N.; Gutleb, A. C.; Girijaa, S.

    2015-01-01

    A facile, one-step, and environmentally friendly fabrication of anisotropic gold nanostructures and size-controlled spherical silver nanoparticles (NP) using biopolymer pectin is reported. The reduction of Au and Ag ions was carried out at room temperature using an increasing concentration of pectin, which acts as the single source of reducing and stabilizing agent. The as-formed NPs were studied by UV-vis, infrared Fourier transform and surface-enhanced Raman spectroscopies, as well as transmission electron microscopy and energy dispersive X-ray spectroscopy. A high yield of anisotropic gold nanostructures was observed at low concentrations of pectin, while its increase results in the formation of smaller sharp edged perfect triangles with a considerable number of quasi-spherically shaped gold NP. On the other hand, the size of spherical silver NP decreased as the biopolymer concentration in the solution increased. The surface-enhanced Raman scattering enhancement of different NPs was evaluated using a Cu-complex of cationic tetrakis(4-N-methylpyridyl)porphyrin as a probe molecule at 441.6 and 532 nm excitation. Great enhancement of Raman signal was obtained with a pectin-silver NP and for most of them their levels were higher than that for the routinely synthesized citrate silver NP.

  18. Mechanistic study of silver-mediated furan formation by oxidative coupling.

    Science.gov (United States)

    Daru, János; Benda, Zsuzsanna; Póti, Ádám; Novák, Zoltán; Stirling, András

    2014-11-17

    Density functional calculations and experiments have been carried out to unravel the mechanism of a silver-mediated furan formation by oxidative coupling. Various possible reaction paths were considered and the most favorable channel has been identified on the basis of the calculated solvent-corrected Gibbs free-energy profiles. The mechanism represented by this route consists of a radical and a subsequent ionic route. The silver cation has a double role in the mechanism: it is the oxidant in the radical steps and the catalyst for the ionic steps, which is in accordance with the experimental observations. The two most important aspects of the optimal route are the formation of a silver-acetylide, reacting subsequently with the enolate radical, and the aromatic furan-ring formation in a single step at the latter, ionic segment of the reaction path. Our findings could explain several experimental observations, including the "key-promoter role" of silver, the preference for ionic cyclization, and the reduced reactivity of internal acetylides. PMID:25284602

  19. Facile Preparation of Silver Nanoparticles and Application to Silver Coating Using Latent Reductant from a Silver Carbamate Complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyunga; Cha, Jaeryung; Gong, Myoungseon [Dankook Univ. Graduate School, Chungnam (Korea, Republic of)

    2013-02-15

    A low temperature (65 .deg. C) thermal deposition process was developed for depositing a silver coating on thermally sensitive polymeric substrates. This low temperature deposition was achieved by chemical reduction of a silver alkylcarbamate complex with latent reducing agent. The effects of acetol as a latent reducing agent for the silver 2-ethylhexylcarbamate (Ag-EHCB) complex and their blend solutions were investigated in terms of reducing mechanism, and the size and shape of silver nanoparticles (Ag-NPs) as a function of reduced temperature and time, and PVP stabilizer concentration were determined. Low temperature deposition was achieved by combining chemical reduction with thermal heating at 65 .deg. C. A range of polymer film, sheet and molding product was coated with silver at thicknesses of 100 nm. The effect of process parameters and heat treatment on the properties of silver coatings was investigated.

  20. Cluster Bulleticity

    OpenAIRE

    Massey, Richard; Kitching, Thomas D.; Nagai, Daisuke

    2010-01-01

    The unique properties of dark matter are revealed during collisions between clusters of galaxies, like the bullet cluster (1E 0657-56) and baby bullet (MACSJ0025-12). These systems provide evidence for an additional, invisible mass in the separation between the distribution of their total mass, measured via gravitational lensing, and their ordinary 'baryonic' matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by th...

  1. Cluster Bulleticity

    OpenAIRE

    Massey, R; Kitching, T.; Nagai, D.

    2010-01-01

    The unique properties of dark matter are revealed during collisions between clusters of galaxies, such as the bullet cluster (1E 0657−56) and baby bullet (MACS J0025−12). These systems provide evidence for an additional, invisible mass in the separation between the distributions of their total mass, measured via gravitational lensing, and their ordinary ‘baryonic’ matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by their rarity. C...

  2. Cluster generator

    Science.gov (United States)

    Donchev, Todor I.; Petrov, Ivan G.

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  3. Cation substitution in two coccolithophore species

    OpenAIRE

    Melteig, Hanna Elina

    2016-01-01

    Few things would be better than getting rid of CO2 while producing useful materials. Coccolithophores use CO2 in their photorespiration, in addition to using CO2 to produce coccoliths – small platelets made of calcite. Ca is a central cation in this process, and the goal of this project is to investigate to what extent other divalent cations can partially substitute for Ca and become part of the growing coccolith. The long term goal is to enable algae to harvest cations and produce mate...

  4. Synthesis, characterization, and antibacterial activity of silver-doped silica nanocomposite particles.

    Science.gov (United States)

    Chen, Guo-Shu; Chen, Chun-Nan; Tseng, Tzu-Tsung; Wei, Ming-Hsiung; Hsieh, J H; Tseng, Wenjea J

    2011-01-01

    Silver nanoparticles were adsorbed preferentially on silica surface to form composite particles using a reverse micelle process that stabilizes the silver particles by an anionic sodium bis(2-ethylhexyl) sulfosuccinate (AOT) surfactant in isooctane solvent together with the silica particles in which their surface being mediated by a cationic poly(allylamine hydrochloride) (PAH) polyelectrolyte. The heterogeneous adsorption was rendered by both electrostatic attraction and hydrophilic/hydrophobic interaction, and was carried out in multiple deposition cycles. The resulting nanocomposite particles were characterized by zeta-potential measurement, electron microscopy, X-ray diffractometry, field-emission electron spectroscopy for chemical analysis (ESCA), and inductively coupled plasma analysis, respectively. In addition, antibacterial activity of the composite particles was examined against Escherichia coli (E. coli) in aqueous environment. PMID:21446411

  5. Boron nitride nanosheets decorated with silver nanoparticles through mussel-inspired chemistry of dopamine

    International Nuclear Information System (INIS)

    Boron nitride nanosheet (BNNS) decorated with silver nanoparticles (AgNPs) was successfully synthesized via mussel-inspired chemistry of dopamine. Poly(dopamine)-functionalized BNNS (PDA-BNNS) was prepared by adding dopamine into the aqueous dispersion of hydroxylated BNNS (OH-BNNS) at alkaline condition. AgNPs were decorated on PDA-BNNS through spontaneous reduction of silver cations by catechol moieties of a PDA layer on BNNS, resulting in AgNP-BNNS with good dispersion stability. Incorporation of PDA on BNNS not only played a role as a surface functionalization method of BNNS, but also provided a molecular platform for creating very sophisticated two-dimensional (2D) BNNS-based hybrid nanomaterials such as metal nanoparticle-decorated BNNS. (paper)

  6. FY 1997 research and development of fusion domains. Part 1. Studies on cluster science; 1997 nendo seika hokokusho (yugo ryoiki kenkyu kaihatsu). 1. Cluster Science no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Studies were made on clusters which are thought to play important roles in status changes in substances (coagulation, crystallization and phase segregation) and chemical reactions (combustion, aqueous solution reaction and catalytic reaction). In the study of clusters by using infrared spectra, a method was developed to detect by using mass analyzer the cluster ion amount produced by dual resonance between resonantly enhanced multiphoton ionization (REMPI) and infrared lights. Fabrication of a Terahertz spectrometer was planned to enable high-resolution and high-accuracy observation on molecular clusters. Clusters consisting of silver atoms and ammonia molecules were successfully observed. A method was developed to investigate size dependence of cluster reactivity by using a Fourier converted ion cyclotron resonant mass analyzer. In addition, studies were conducted on clusters in liquids and aqueous solutions, clusters frozen in surface and matrix, and clusters stabilized in micro-space. 96 refs., 34 figs., 2 tabs.

  7. Field-assisted patterned dissolution of silver nanoparticles in phosphate glass

    Science.gov (United States)

    Andreyuk, A.; Albert, J.

    2014-09-01

    Phosphate glass samples doped with silver ions through a Na+-Ag+ ion-exchange process were treated in a hydrogen atmosphere at temperatures near 430 °C for durations ranging from 4 to 5 h. Such treatment causes metallic silver precipitation at the surface as well as nanoclustering of silver atoms under the surface under conditions very similar to those used for silicate glasses. The presence of silver clusters resulted in a characteristic coloring of the glass and was verified by the observation of a plasmon resonance peak near 410-420 nm in the absorption spectra. Applying a DC voltage between 1.4 and 2 kV at temperatures between 120 and 130 °C led to dissolution of the clusters in the area under the positive electrode, thereby bleaching the glass color. The use of a patterned doped-silicon electrode further led to the formation of a 300 nm thick surface relief on the glass surface and of a volume complex permittivity grating extending at least 4 μm under the surface. Such volume complex refractive index gratings may find applications in passive or active (laser) photonic devices in rare-earth doped phosphate glasses, where conventional bulk grating formation techniques have limited applicability.

  8. Field-assisted patterned dissolution of silver nanoparticles in phosphate glass

    International Nuclear Information System (INIS)

    Phosphate glass samples doped with silver ions through a Na+-Ag+ ion-exchange process were treated in a hydrogen atmosphere at temperatures near 430 °C for durations ranging from 4 to 5 h. Such treatment causes metallic silver precipitation at the surface as well as nanoclustering of silver atoms under the surface under conditions very similar to those used for silicate glasses. The presence of silver clusters resulted in a characteristic coloring of the glass and was verified by the observation of a plasmon resonance peak near 410–420 nm in the absorption spectra. Applying a DC voltage between 1.4 and 2 kV at temperatures between 120 and 130 °C led to dissolution of the clusters in the area under the positive electrode, thereby bleaching the glass color. The use of a patterned doped-silicon electrode further led to the formation of a 300 nm thick surface relief on the glass surface and of a volume complex permittivity grating extending at least 4 μm under the surface. Such volume complex refractive index gratings may find applications in passive or active (laser) photonic devices in rare-earth doped phosphate glasses, where conventional bulk grating formation techniques have limited applicability.

  9. Polyamide/silver antimicrobials: Effect of filler types on the silver ion release

    OpenAIRE

    Kumar, Radhesh; Howdle, Steve; Münstedt, Helmut

    2005-01-01

    Abstract: The efficiency of various silver-based antimicrobial fillers (elementary silver and silver substituted materials) in polyamide (PA) toward their silver ion (Ag�) release characteristics in an aqueous medium was investigated and discussed. Anode stripping voltammetry (ASV) was used for the quantitative estimation of Ag� release from these composites. The biocidal (Ag�) release from the composites was found to be dependent on the time of soaking in water and the nature ...

  10. Application of Silver and Silver Oxide Nanoparticles Impregnated on Activated Carbon to the Degradation of Bromate.

    Science.gov (United States)

    Choi, J S; Lee, H; Park, Y K; Kim, S J; Kim, B J; An, K H; Kim, B H; Jung, S C

    2016-05-01

    Silver and silver oxide nanoparticles were impregnated on the surface of powdered activated carbon (PAC) using a single-step liquid phase plasma (LPP) method. Spherical silver and silver oxide nanoparticles of 20 to 100 nm size were dipersed evenly on the surface of PAC. The impregnated PAC exhibited a higher activity for the decomposition of bromate than bare PAC. The XPS, Raman and EDX analyses showed that the Ag/PAC composites synthesized by the LPP process. PMID:27483780

  11. Silver nanocluster catalytic microreactors for water purification

    Science.gov (United States)

    Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.

    2016-07-01

    A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.

  12. Risk assessment of silver nanoparticles

    Science.gov (United States)

    Shipelin, V. A.; Gmoshinski, I. V.; Khotimchenko, S. A.

    2015-11-01

    Nanoparticles of metallic silver (Ag) are among the most widely used products of nanotechnology. Nanosized colloidal silver (NCS) is presented in many kinds of production as solutions of particles with diameter less than 100 nm. NCS is used in a variety of fields, including food supplements, medicines, cosmetics, packaging materials, disinfectants, water filters, and many others. Problems of toxicity and related safety of NCS for humans and environmental systems are recently overestimated basing on data of numerous toxicological studies in vitro and in vivo. The article discusses the results of current studies in recent years and the data of author's own experiments on studying the safety of NCS, that allows to move on to risk assessment of this nanomaterial presented in consumer products and environmental samples.

  13. 'Magnetic' phase transition in silver

    International Nuclear Information System (INIS)

    Experimental and theoretical investigations of the magnetic susceptibility near the phase transition into the Condon domain state in silver are presented. We report about the precursor of the Condon instability of an electron gas by using data of the measurement of the magnetic field-dependence of the susceptibility. Experimental results are explained theoretically within the framework of the Lifshitz-Kosevich-Shoenberg theory. A good agreement between the theory and the experiment is obtained when de Haas-van Alphen oscillations are only originated from 'belly' oscillations, and as a result of this, the spherical modelling of the Fermi surface in silver is justified. It is shown that the phase transition into the Condon domain state is the critical point of the liquid-gas type at which the isothermal susceptibility does not diverge but possesses a finite value due to the nonzero demagnetization factor

  14. Aligned Layers of Silver Nano-Fibers

    OpenAIRE

    Golovin, Andrii B.; Liubov Kreminska; Jeremy Stromer

    2012-01-01

    We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polariz...

  15. Recycle silver metal from radiographic film waste

    International Nuclear Information System (INIS)

    The laboratory techniques described herein refer to the possible recovery of silver metal from used photographic films. Recovery of silver from x-ray film involves two steps: the separation of metallic component from the processed radiographic films (organic component), and the recovery of silver. The present paper reports a method for separating the inorganic component by treating the processed radiographic film with heated sodium hydroxide solution. (Author)

  16. Fluorescent silver nanoclusters as DNA probes

    Science.gov (United States)

    Obliosca, Judy M.; Liu, Cong; Yeh, Hsin-Chih

    2013-08-01

    Fluorescent silver nanoclusters (few atoms, quantum sized) have attracted much attention as promising substitutes for conventional fluorophores. Due to their unique environmental sensitivities, new fluorescent probes have been developed based on silver nanoclusters for the sensitive and specific detection of DNA. In this review we present the recent discoveries of activatable and color-switchable properties of DNA-templated silver nanoclusters and discuss the strategies to use these new properties in DNA sensing.

  17. Atomistic Potentials for Palladium-Silver Hydrides

    OpenAIRE

    Hale, L. M.; Wong, B. M.; Zimmerman, J. A.; Zhou, X.

    2013-01-01

    New EAM potentials for the ternary palladium-silver-hydrogen system are developed by extending a previously developed palladium-hydrogen potential. The ternary potentials accurately capture the heat of mixing and structural properties associated with solid solution alloys of palladium-silver. Stable hydrides are produced with properties that smoothly transition across the compositions. Additions of silver to palladium are predicted to alter the properties of the hydrides by decreasing the mis...

  18. Immobilization of silver nanoparticles on polyethylene terephthalate

    OpenAIRE

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Svorcik, Vaclav

    2014-01-01

    Two different procedures of grafting with silver nanoparticles (AgNP) of polyethylene terephthalate (PET), activated by plasma treatment, are studied. In the first procedure, the PET foil was grafted with biphenyl-4,4′-dithiol and subsequently with silver nanoparticles. In the second one, the PET foil was grafted with silver nanoparticles previously coated with the same dithiol. X-ray photoelectron spectroscopy and electrokinetic analysis were used for characterization of the polymer surface ...

  19. Silver staining of proteins in polyacrylamide gels

    OpenAIRE

    Chevallet, Mireille; Luche, Sylvie; Rabilloud, Thierry

    2006-01-01

    International audience Silver staining is used to detect proteins after electrophoretic separation on polyacrylamide gels. It combines excellent sensitivity (in the low nanogram range) with the use of very simple and cheap equipment and chemicals. It is compatible with downstream processing, such as mass spectrometry analysis after protein digestion. The sequential phases of silver staining are protein fixation, then sensitization, then silver impregnation and finally image development. Se...

  20. Cationization of heparin for film applications

    Czech Academy of Sciences Publication Activity Database

    Šimkovic, I.; Mendichi, R.; Kelnar, Ivan; Filip, J.; Hricovíni, M.

    2015-01-01

    Roč. 115, 22 January (2015), s. 551-558. ISSN 0144-8617 Institutional support: RVO:61389013 Keywords : heparin * cationization * NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.074, year: 2014

  1. Organic non-aqueous cation-based redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai; Zhang, Lu; Brushett, Fikile R.

    2016-03-29

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.

  2. Structures of Aln, its anions and cations up to n=34: A theoretical investigation

    International Nuclear Information System (INIS)

    A systematic density functional study has been performed for neutral and singly charged clusters of aluminum with up to 34 atoms. A thorough search for global minimum structures has been carried out for Aln employing genetic algorithm and basin-hopping procedures. For Aln this confirms results of previous investigations up to n=22; new global minima have been located for n=23-31, 33. Structures for singly charged cations and anions have been obtained by reoptimization of the pool of 40 low-energy structures of the neutral clusters. The global minima of charged and neutral clusters are always low-spin states with the possible exception of a triplet state of Al28, which is isoenergetic with a singlet. The cluster structures are mostly quite irregular and do not resemble fractions of the fcc bulk phase. High symmetries are found only for the global minimum of Al23 and the triplet state of Al28.

  3. Cation locations and dislocations in zeolites

    Science.gov (United States)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  4. Yield, Purity and Mobility of a Silver-DNA Fluorophore in Solution

    Science.gov (United States)

    O'Neill, Patrick; Velazquez, Lourdes; Goodwin, Peter; Driehorst, Til; Pennathur, Sumita; Fygenson, Deborah

    2010-03-01

    Chemical reduction of DNA oligonucleotide:Ag+ mixtures leads to the formation of fluorescent few-atom Ag clusters stabilized by the DNA. This reaction typically produces many species, some of which are fluorescent, with emission wavelengths and stabilities that vary widely with DNA sequence. While most DNA sequences studied produce many different Ag:DNA products, we identify a specific DNA sequence that strongly favors the formation of a green 11Ag cluster, stable for months under ambient conditions. We generate pure solutions of this emitter by synthesizing in the presence of excess silver and then removing free silver from solution. We report on results enabled by the purity of these samples, including determination of the extinction coefficient (using FCS), diffusion coefficient (using microfluidics) and bulk chemical yield of this fluorophore, and comment on the challenges that remain on the path to production of sufficient quantity and purity for high-resolution structure determination.

  5. Synthesis and Characterization of Optically Active Fractal Seed Mediated Silver Nickel Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Joseph Adeyemi Adekoya

    2014-01-01

    Full Text Available The synthesis of new seed mediated AgNi allied bimetallic nanocomposites was successfully carried out by the successive reduction of the metal ions in diethylene glycol, ethylene glycol, glycerol, and pentaerythritol solutions, with concomitant precipitation of Ag/Ni bimetal sols. The optical measurement revealed the existence of distinct band edge with surface plasmon resonance (SPR in the region of 400–425 nm and excitonic emission with maximum peak at 382 nm which were reminiscent of cluster-in-cluster surface enriched bimetallic silver-nickel sols. The morphological characterization by transmission electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction analyses complimented by surface scan using X-ray photoelectron spectroscopy strongly supported the formation of intimately alloyed face-centered silver/nickel nanoclusters.

  6. Cycloaliphatic epoxide resins for cationic UV - cure

    International Nuclear Information System (INIS)

    This paper introduces the cyclo - aliphatic epoxide resins used for the various applications of radiation curing and their comparison with acrylate chemistry. Radiation curable coatings and inks are pre - dominantly based on acrylate chemistry but over the last few years, cationic chemistry has emerged successfully with the unique properties inherent with cyclo - aliphatic epoxide ring structures. Wide variety of cationic resins and diluents, the formulation techniques to achieve the desired properties greatly contributes to the advancement of UV - curing technology

  7. Test procedure for cation exchange chromatography

    International Nuclear Information System (INIS)

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction

  8. Silica-based cationic bilayers as immunoadjuvants

    OpenAIRE

    Carmona-Ribeiro Ana M; da Costa Maria; Faquim-Mauro Eliana; Santana Mariana RA; Lincopan Nilton

    2009-01-01

    Abstract Background Silica particles cationized by dioctadecyldimethylammonium bromide (DODAB) bilayer were previously described. This work shows the efficiency of these particulates for antigen adsorption and presentation to the immune system and proves the concept that silica-based cationic bilayers exhibit better performance than alum regarding colloid stability and cellular immune responses for vaccine design. Results Firstly, the silica/DODAB assembly was characterized at 1 mM NaCl, pH 6...

  9. Cations and activated sludge floc structure

    OpenAIRE

    Park, Chul

    2002-01-01

    This research was designed to investigate the effect of cations on activated sludge characteristics and also to determine their influence on digestion performance. For this purpose, cations in solution and in floc were evaluated along with various activated sludge characteristics and the collected waste activated sludge underwent both anaerobic and aerobic digestion. It was found that large amounts of biopolymer (protein + polysaccharide) remained in the effluent of WWTP that received high in...

  10. Cationic Closo-carboranes 2. Do computed 11B and 13C NMR chemical shifts support their experimental availability?

    Czech Academy of Sciences Publication Activity Database

    Hnyk, Drahomír; Jayasree, E.G.

    2013-01-01

    Roč. 34, č. 8 (2013), s. 656-661. ISSN 0192-8651 R&D Projects: GA ČR GAP208/10/2269 Institutional support: RVO:61388980 Keywords : boron clusters * weakly-coordinating cations * 11B NMR * dynamic electron correlation Subject RIV: CA - Inorganic Chemistry Impact factor: 3.601, year: 2013

  11. Microwave assisted template synthesis of silver nanoparticles

    Indian Academy of Sciences (India)

    K J Sreeram; M Nidhin; B U Nair

    2008-12-01

    Easier, less time consuming, green processes, which yield silver nanoparticles of uniform size, shape and morphology are of interest. Various methods for synthesis, such as conventional temperature assisted process, controlled reaction at elevated temperatures, and microwave assisted process have been evaluated for the kind of silver nanoparticles synthesized. Starch has been employed as a template and reducing agent. Electron microscopy, photon correlation spectroscopy and surface plasmon resonance have been employed to characterize the silver nanoparticles synthesized. Compared to conventional methods, microwave assisted synthesis was faster and provided particles with an average particle size of 12 nm. Further, the starch functions as template, preventing the aggregation of silver nanoparticles.

  12. Silver sources of archaic Greek coinage

    International Nuclear Information System (INIS)

    The authors report on new chemical and lead isotopic results and interpretations of archaic Greek silver coins from the Asyut hoard which was buried around 475 B.C. Aeginetan coins were of central interest in this study. Possible ancient silver mines were explored in the Aegean region in the course of several geologic expeditions, and chemically and isotopically investigated. Some of the silver sources in Greece were traced by combination of the analytical methods and questions of provenance were solved. In addition, processes of silver smelting and refining were studied. Results and implications of this work are summarized in the final section on Conclusions. (orig.)

  13. Fluorescent Thiol-Derivatized Gold Clusters Embedded in Polymers

    Directory of Open Access Journals (Sweden)

    G. Carotenuto

    2013-01-01

    Full Text Available Owing to aurophilic interactions, linear and/or planar Au(I-thiolate molecules spontaneously aggregate, leading to molecular gold clusters passivated by a thiolate monolayer coating. Differently from the thiolate precursors, such cluster compounds show very intensive visible fluorescence characteristics that can be tuned by alloying the gold clusters with silver atoms or by conjugating the electronic structure of the metallic core with unsaturated electronic structures in the organic ligand through the sulphur atom. Here, the photoluminescence features of some examples of these systems are shortly described.

  14. Denominators of cluster variables

    OpenAIRE

    Buan, Aslak Bakke; Marsh, Robert J.; Reiten, Idun

    2007-01-01

    Associated to any acyclic cluster algebra is a corresponding triangulated category known as the cluster category. It is known that there is a one-to-one correspondence between cluster variables in the cluster algebra and exceptional indecomposable objects in the cluster category inducing a correspondence between clusters and cluster-tilting objects. Fix a cluster-tilting object T and a corresponding initial cluster. By the Laurent phenomenon, every cluster variable can be written as a Laurent...

  15. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation

    Science.gov (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-01

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  16. Cluster Bulleticity

    CERN Document Server

    Massey, Richard; Nagai, Daisuke

    2010-01-01

    The unique properties of dark matter are revealed during collisions between clusters of galaxies, like the bullet cluster (1E 0657-56) and baby bullet (MACSJ0025-12). These systems provide evidence for an additional, invisible mass in the separation between the distribution of their total mass, measured via gravitational lensing, and their ordinary 'baryonic' matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by their rarity. Constraints on the properties of dark matter, such as its interaction cross-section, are therefore restricted by uncertainties in the individual systems' impact velocity, impact parameter and orientation with respect to the line of sight. Here we develop a complementary, statistical measurement in which every piece of substructure falling into every massive cluster is treated as a bullet. We define 'bulleticity' as the mean separation between dark matter and ordinary matter, and we measure a positive signal in hydrodynamical si...

  17. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  18. Selective extraction of copper, mercury, silver and palladium ions from water using hydrophobic ionic liquids

    International Nuclear Information System (INIS)

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]+, 1-methyl-1-octylpyrrolidinium [MOPYRRO]+ or 1-methyl-1-octylpiperidinium [MOPIP]+, and anions tetrafluoroborate [BF4]+, trifluoromethyl sulfonate [TfO]+ or nonafluorobutyl sulfonate [NfO]+. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium

  19. Silver behenate and silver stearate powders for calibration of SAS instruments

    International Nuclear Information System (INIS)

    The possibilities of calibrations by silver behenate [CH3(CH2)20COOAg] and silver stearate [CH3 (CH2)16CO2Ag] for the small angle scattering (SAS) technique are considered. It was shown that the long-period spacing of the silver compounds allow us to check the parameters of time-of-flight (TOF) method. Results of the data obtained from small angle neutron scattering (SANS) measurements performed with the silver behenate and the silver stearate powders are presented and compared with small angle X-ray scattering (SAXS) measurements.

  20. Synthesis and antimicrobial effects of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    S kheybari

    2010-09-01

    Full Text Available "n  "n "nBackground and the purpose of the study:The most prominent nanoparticles for medical uses are nanosilver particles which are famous for their high anti-microbial activity. Silver ion has been known as a metal ion that exhibit anti-mold, anti-microbial and anti-algal properties for a long time. In particular, it is widely used as silver nitrate aqueous solution which has disinfecting and sterilizing actions. The purpose of this study was to evaluate the antimicrobial activity as well as physical properties of the silver nanoparticles prepared by chemical reduction method. "nMethods:Silver nanoparticles (NPs were prepared by reduction of silver nitrate in the presence of a reducing agent and also poly [N-vinylpyrolidone] (PVP as a stabilizer. Two kinds of NPs were synthesized by ethylene glycol (EG and glucose as reducing agent. The nanostructure and particle size of silver NPs were confirmed by scanning electron microscopy (SEM and laser particle analyzer (LPA. The formations of the silver NPs were monitored using ultraviolet-visible spectroscopy. The anti-bacterial activity of silver NPs were assessed by determination of their minimum inhibitory concentrations (MIC against the Gram positive (Staphylococcus aureus and Staphylococcus epidermidis as well as Gram-negative (Escherichia coli and Pseudomonas aeruginosa bacteria. "nResults and Conclusion:The silver nanoparticles were spherical with particle size between 10 to 250 nm. Analysis of the theoretical (Mie light scattering theory and experimental results showed that the silver NPs in colloidal solution had a diameter of approximately 50 nm. "nBoth colloidal silver NPs showed high anti-bacterial activity against Gram positive and Gram negative bacteria. Glucose nanosilver colloids showed a shorter killing time against most of the tested bacteria which could be due to their nanostructures and uniform size distribution patterns.

  1. Chitosan-coated anisotropic silver nanoparticles as a SERS substrate for single-molecule detection

    International Nuclear Information System (INIS)

    Surface-enhanced Raman spectroscopy (SERS) is a technique that has become widely used for identifying and providing structural information about molecular species in low concentration. There is an ongoing interest in finding optimum particle size, shape and spatial distribution for optimizing the SERS substrates and pushing the sensitivity toward the single-molecule detection limit. This work reports the design of a novel, biocompatible SERS substrate based on small clusters of anisotropic silver nanoparticles embedded in a film of chitosan biopolymer. The SERS efficiency of the biocompatible film is assessed by employing Raman imaging and spectroscopy of adenine, a significant biological molecule. By combining atomic force microscopy with SERS imaging we find that the chitosan matrix enables the formation of small clusters of silver nanoparticles, with junctions and gaps that greatly enhance the Raman intensities of the adsorbed molecules. The study demonstrates that chitosan-coated anisotropic silver nanoparticle clusters are sensitive enough to be implemented as effective plasmonic substrates for SERS detection of nonresonant analytes at the single-molecule level. (paper)

  2. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate

    Directory of Open Access Journals (Sweden)

    Mortensen Alicja

    2011-06-01

    Full Text Available Abstract Background The study investigated the distribution of silver after 28 days repeated oral administration of silver nanoparticles (AgNPs and silver acetate (AgAc to rats. Oral administration is a relevant route of exposure because of the use of silver nanoparticles in products related to food and food contact materials. Results AgNPs were synthesized with a size distribution of 14 ± 4 nm in diameter (90% of the nanoparticle volume and stabilized in aqueous suspension by the polymer polyvinylpyrrolidone (PVP. The AgNPs remained stable throughout the duration of the 28-day oral toxicity study in rats. The organ distribution pattern of silver following administration of AgNPs and AgAc was similar. However the absolute silver concentrations in tissues were lower following oral exposure to AgNPs. This was in agreement with an indication of a higher fecal excretion following administration of AgNPs. Besides the intestinal system, the largest silver concentrations were detected in the liver and kidneys. Silver was also found in the lungs and brain. Autometallographic (AMG staining revealed a similar cellular localization of silver in ileum, liver, and kidney tissue in rats exposed to AgNPs or AgAc. Using transmission electron microscopy (TEM, nanosized granules were detected in the ileum of animals exposed to AgNPs or AgAc and were mainly located in the basal lamina of the ileal epithelium and in lysosomes of macrophages within the lamina propria. Using energy dispersive x-ray spectroscopy it was shown that the granules in lysosomes consisted of silver, selenium, and sulfur for both AgNP and AgAc exposed rats. The diameter of the deposited granules was in the same size range as that of the administered AgNPs. No silver granules were detected by TEM in the liver. Conclusions The results of the present study demonstrate that the organ distribution of silver was similar when AgNPs or AgAc were administered orally to rats. The presence of silver

  3. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna

    Directory of Open Access Journals (Sweden)

    Asghari Saba

    2012-04-01

    Full Text Available Abstract Background To better understand the potential ecotoxicological impacts of silver nanoparticles released into freshwater environments, the Daphnia magna 48-hour immobilization test was used. Methods The toxicities of silver nitrate, two types of colloidal silver nanoparticles, and a suspension of silver nanoparticles were assessed and compared using standard OECD guidelines. Also, the swimming behavior and visible uptake of the nanoparticles by Daphnia were investigated and compared. The particle suspension and colloids used in the toxicity tests were well-characterized. Results The results obtained from the exposure studies showed that the toxicity of all the silver species tested was dose and composition dependent. Plus, the silver nanoparticle powders subsequently suspended in the exposure water were much less toxic than the previously prepared silver nanoparticle colloids, whereas the colloidal silver nanoparticles and AgNO3 were almost similar in terms of mortality. The silver nanoparticles were ingested by the Daphnia and accumulated under the carapace, on the external body surface, and connected to the appendages. All the silver species in this study caused abnormal swimming by the D. magna. Conclusion According to the present results, silver nanoparticles should be classified according to GHS (Globally Harmonized System of classification and labeling of chemicals as "category acute 1" to Daphnia neonates, suggesting that the release of nanosilver into the environment should be carefully considered.

  4. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    International Nuclear Information System (INIS)

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD)

  5. Glass frits coated with silver nanoparticles for silicon solar cells

    Science.gov (United States)

    Li, Yingfen; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-01

    Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

  6. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent

    Science.gov (United States)

    Holtz, R. D.; Souza Filho, A. G.; Brocchi, M.; Martins, D.; Durán, N.; Alves, O. L.

    2010-05-01

    In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin.

  7. Reaction Diffusion in the Silver-Zinc and Silver-Aluminum Systems

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Japnell D.; Powell, Gordon W.

    1971-10-01

    Multiphase diffusion was investigated in the silver-zinc and silver-aluminum binary systems using metallographic and electron microprobe techniques. Diffusion couples in the silver-zinc system were prepared by electroplating silver onto coupons of a AgZn alloy (62.2% Ag), and diffusion behavior was studied at 600 and 650 degrees C. Couples in the silver-aluminum system were prepared by electroplating silver onto coupons of a AgAl alloy (87.7% Ag) and diffusion measurements were made between 400-600 degrees C. Significant deviations from equilibrium compositions were observed at the moving interphase boundary in each couple. The nucleation of a non-equilibrium silver-rich phase was observed at the location of the initial interface in many of the couples.

  8. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, R D; Souza Filho, A G; Alves, O L [Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica, Universidade Estadual de Campinas, CP 6154, 13081-970, Campinas-SP (Brazil); Brocchi, M; Martins, D [Departamento de Genetica, Evolucao and Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas-SP (Brazil); Duran, N, E-mail: rholtz@iqm.unicamp.br, E-mail: agsf@fisica.ufc.br, E-mail: oalves@iqm.unicamp.br [Laboratorio de Quimica Biologica, Instituto de Quimica, Universidade Estadual de Campinas, Campinas-SP (Brazil)

    2010-05-07

    In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin.

  9. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent

    International Nuclear Information System (INIS)

    In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin.

  10. Accelerators for forming cationic technetium complexes useful as radiodiagnostic images

    International Nuclear Information System (INIS)

    This invention relates to compositions for making cationic radiodiagnostic agents and, in particular, to accelerator compounds for labelling such cationic radiodiagnostic agents, kits for preparing such 99mTc-labelled cationic radiodiagnostic agents with technetium, and methods for labelling such cationic radiodiagnostic agents with technetium

  11. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan;

    2000-01-01

    and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones...

  12. Silver ion recognition using potentiometric sensor based on recently synthesized isoquinoline-1,3-dione derivatives

    Directory of Open Access Journals (Sweden)

    AJAR KAMAL

    2012-08-01

    Full Text Available The four derivatives of isoquinoline-1,3-dione based on β-lactum (I-IV, have been explored as neutral ionophores for preparing poly(vinylchloride based polymeric membrane electrodes (PME selective to silver(I ions. The addition of sodium tetraphenylborate (NaTPB and dioctylsebacate (DOS as a plasticizer was found to improve the performance of ion selective electrodes. The best performance was obtained with PME-1 based on ionophore I having composition: ionophore (9.2 mg, PVC (100.1 mg, DOS (201.1 mg and NaTPB (1.5 mg in 5 mL tetrahydrofuran. The electrode response was linear with Nernstian slope of 58.44 mV/decade in the concentration range of 1.0 x 10-1 M to 5.0 x 10-6 M and detection limit of 5.83 x 10-6 M. It performs satisfactorily over wide pH range of 1.0-5.5. The proposed sensor can be used over a period of more than three months without any significant drift in potential and shows good selectivity to silver(I ion over a number of cations especially with no interference of mercury(II ions. Sharp end point was obtained when the sensor was used as an indicator electrode for the potentiometric titration of silver(I ions with chloride ions and therefore this electrode (PME-1 could be used for quantitative determination of silver(I ion in synthetic water, silver foil and dental amalgam samples.

  13. Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas.

    Science.gov (United States)

    Hoheisel, Sarah M; Diamond, Steve; Mount, David

    2012-11-01

    The increasing use of nanosilver in consumer products and the likelihood of environmental exposure warrant investigation into the toxicity of nanosilver to aquatic organisms. A series of studies were conducted comparing the potency of nanosilver to ionic silver (Ag(+)) at acute and sublethal levels using two test organisms (Daphnia magna and Pimephales promelas). The 48-h D. magna median lethal concentration (LC50) of multiple sizes (10, 20, 30, and 50 nm) of commercially prepared nanosilver (nanoComposix) ranged from 4.31 to 30.36 µg total Ag L(-1) with increasing toxicity associated with decreasing particle size. A strong relationship between estimated specific particle surface area and acute toxicity was observed. Nanosilver suspensions (10 nm) treated with cation exchange resin to reduce the concentration of Ag(+) associated with it were approximately equally toxic to D. magna compared to untreated nanosilver (48-h LC50s were 2.15 and 2.79 µg total Ag L(-1), respectively). The 96-h LC50 and 7-d sublethal 20% effective concentrations (EC20s) for P. promelas were 89.4 and 46.1 µg total Ag L(-1), respectively, for 10 nm nanosilver and 4.70 and 1.37 µg total Ag L(-1), respectively, for Ag(+); the resulting ratios of 96-h LC50 to 7-d EC20 were not significantly different for nanosilver and ionic silver. Overall, these studies did not provide strong evidence that nanosilver either acts by a different mechanism of toxicity than ionic silver, or is likely to cause acute or lethal toxicity beyond that which would be predicted by mass concentration of total silver. This in turn suggests that regulatory approaches based on the toxicity of ionic silver to aquatic life would not be underprotective for environmental releases of nanosilver. PMID:22887018

  14. Radiation stimulated photochromism in glasses containing silver

    International Nuclear Information System (INIS)

    New type of photochromous transformations, occuring without halogen but with preliminary radiation stimulation, are detected in silver-activated glasses. Reversible variation of γ-irradiated glass color under the effect of UV exposure is shown to be linked with electron phototransfer between Ag2+ silver molecular ion and PO42- ion radical

  15. Topical silver for preventing wound infection

    NARCIS (Netherlands)

    M.N. Storm-Versloot; C.G. Vos; D.T. Ubbink; H. Vermeulen

    2010-01-01

    BACKGROUND: Silver-containing treatments are popular and used in wound treatments to combat a broad spectrum of pathogens, but evidence of their effectiveness in preventing wound infection or promoting healing is lacking. OBJECTIVES: To establish the effects of silver-containing wound dressings and

  16. Properties of silver chloride track detectors

    International Nuclear Information System (INIS)

    The experiments on preparation of silver chloride track detectors and their properties are described. The results of X-ray structural analysis and data on sensitivity to charged particles and actinic light of silver chloride crystals, doped with several elements, are presented. (orig.)

  17. Movie Director Bags a Silver Bear

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Chinese director and film writer Wang Xiaoshuai has walked away with the Silver Bear award at the 58th Berlin International Film Festival for best script of Zuo You, or In Love We Trust. Back in 2001, Wang won his first Silver Bear award for directing Beijing

  18. Quotients of cluster categories

    OpenAIRE

    Jorgensen, Peter

    2007-01-01

    Higher cluster categories were recently introduced as a generalization of cluster categories. This paper shows that in Dynkin types A and D, half of all higher cluster categories are actually just quotients of cluster categories. The other half can be obtained as quotients of 2-cluster categories, the "lowest" type of higher cluster categories. Hence, in Dynkin types A and D, all higher cluster phenomena are implicit in cluster categories and 2-cluster categories. In contrast, the same is not...

  19. Physiological response to acute silver exposure in the freshwater crayfish (Cambarus diogenes diogenes) - a model invertebrate?

    DEFF Research Database (Denmark)

    Grosell, Martin Hautopp; Brauner, C.J.; Kelly, S.P.; McGeer, J.C.; Bianchini, A.; Wood, C. M.

    Crayfish, Silver toxicity, Osmoregulatory disturbance, Silver accumulation, Unidirectional Na+ flux......Crayfish, Silver toxicity, Osmoregulatory disturbance, Silver accumulation, Unidirectional Na+ flux...

  20. Regional Innovation Clusters

    Data.gov (United States)

    Small Business Administration — The Regional Innovation Clusters serve a diverse group of sectors and geographies. Three of the initial pilot clusters, termed Advanced Defense Technology clusters,...

  1. One-Pot Silver Nanoring Synthesis

    Directory of Open Access Journals (Sweden)

    Drogat Nicolas

    2009-01-01

    Full Text Available Abstract Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.

  2. Fluorescent silver nanoparticles via exploding wire technique

    Indian Academy of Sciences (India)

    Alqudami Abdullah; S Annapoorni

    2005-11-01

    Aqueous solution containing spherical silver nanoparticles of 20–80 nm size have been generated using a newly developed novel electro-exploding wire (EEW) technique where thin silver wires have been exploded in double distilled water. Structural properties of the resulted nanoparticles have been studied by means of X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The absorption spectrum of the aqueous solution of silver nanoparticles showed the appearance of a broad surface plasmon resonance (SPR) peak centered at a wavelength of 390 nm. The theoretically generated SPR peak seems to be in good agreement with the experimental one. Strong green fluorescence emission was observed from the water-suspended silver nanoparticles excited with light of wavelengths 340, 360 and 390 nm. The fluorescence of silver nanoparticles could be due to the excitation of the surface plasmon coherent electronic motion with the small size effect and the surface effect considerations.

  3. Effect of silver nitrate concentration of silver nanowires synthesized using a polyol method and their application as transparent conductive films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jian-Yang [Department of Electronic Engineering, National Yunlin University of Science and Technology, Yunlin 640, Taiwan (China); Hsueh, Yu-Lee [Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Yunlin 640, Taiwan (China); Huang, Jung-Jie, E-mail: jjhuang@mail.dyu.edu.tw [Department of Industrial Engineering and Management, DaYeh University, Changhua 51591, Taiwan (China); Wu, Jia-Rung [Department of Computer Science and Information Engineering, Asia University, Taichung 413, Taiwan (China)

    2015-06-01

    Silver nanowires were synthesized using a polyol process by employing ethylene glycol, poly(N-vinylpyrrolidone), and silver nitrate as precursors. The concentration of silver nitrate was varied to study the resulting changes in aspect ratios of silver nanowires. The experimental results indicated that the growth characteristics of silver nanowires were affected by the synthesis temperature, the concentration of silver nitrate, and the rate at which silver nitrate was added. Field-emission scanning electron microscopy, UV–visible spectrophotometry, and X-ray diffractometry were employed to characterize the silver nanowires. As the concentration of silver nitrate was reduced, the diameters of the silver nanowires decreased, increasing the aspect ratio. The optimal diameter and length of the silver nanowires were 100 nm and 20 μm, respectively. A thin film composed of silver nanowires exhibited average transmittance of 92.15% at visible wavelengths and a sheet resistance of 20 Ω/sq; such a film could be used as a transparent conductive film in commercial applications. - Highlights: • Using a polyol method to synthesize of silver nanowire • Concentration effect of silver nitrate on the synthesis was discussed. • Seed precursors are not used during the silver nanowire synthesizing. • The silver nanowire diameter and length were 100 nm and 20 μm, respectively. • High transmittance and low sheet resistance of silver nanowire film can be obtained.

  4. Effect of silver nitrate concentration of silver nanowires synthesized using a polyol method and their application as transparent conductive films

    International Nuclear Information System (INIS)

    Silver nanowires were synthesized using a polyol process by employing ethylene glycol, poly(N-vinylpyrrolidone), and silver nitrate as precursors. The concentration of silver nitrate was varied to study the resulting changes in aspect ratios of silver nanowires. The experimental results indicated that the growth characteristics of silver nanowires were affected by the synthesis temperature, the concentration of silver nitrate, and the rate at which silver nitrate was added. Field-emission scanning electron microscopy, UV–visible spectrophotometry, and X-ray diffractometry were employed to characterize the silver nanowires. As the concentration of silver nitrate was reduced, the diameters of the silver nanowires decreased, increasing the aspect ratio. The optimal diameter and length of the silver nanowires were 100 nm and 20 μm, respectively. A thin film composed of silver nanowires exhibited average transmittance of 92.15% at visible wavelengths and a sheet resistance of 20 Ω/sq; such a film could be used as a transparent conductive film in commercial applications. - Highlights: • Using a polyol method to synthesize of silver nanowire • Concentration effect of silver nitrate on the synthesis was discussed. • Seed precursors are not used during the silver nanowire synthesizing. • The silver nanowire diameter and length were 100 nm and 20 μm, respectively. • High transmittance and low sheet resistance of silver nanowire film can be obtained

  5. Corrosion processes of triangular silver nanoparticles compared to bulk silver

    Energy Technology Data Exchange (ETDEWEB)

    Keast, V. J., E-mail: vicki.keast@newcastle.edu.au; Myles, T. A. [University of Newcastle, School of Mathematical and Physical Sciences (Australia); Shahcheraghi, N.; Cortie, M. B. [University of Technology Sydney, Institute for Nanoscale Technology (Australia)

    2016-02-15

    Excessive corrosion of silver nanoparticles is a significant impediment to their use in a variety of potential applications in the biosensing, plasmonic and antimicrobial fields. Here we examine the environmental degradation of triangular silver nanoparticles (AgNP) in laboratory air. In the early stages of corrosion, transmission electron microscopy shows that dissolution of the single-crystal, triangular, AgNP (side lengths 50–120 nm) is observed with the accompanying formation of smaller, polycrystalline Ag particles nearby. The new particles are then observed to corrode to Ag{sub 2}S and after 21 days nearly full corrosion has occurred, but some with minor Ag inclusions remaining. In contrast, a bulk Ag sheet, studied in cross section, showed an adherent corrosion layer of only around 20–50 nm in thickness after over a decade of being exposed to ambient air. The results have implications for antibacterial properties and ecotoxicology of AgNP during corrosion as the dissolution and reformation of Ag particles during corrosion will likely be accompanied by the release of Ag{sup +} ions.

  6. Corrosion processes of triangular silver nanoparticles compared to bulk silver

    International Nuclear Information System (INIS)

    Excessive corrosion of silver nanoparticles is a significant impediment to their use in a variety of potential applications in the biosensing, plasmonic and antimicrobial fields. Here we examine the environmental degradation of triangular silver nanoparticles (AgNP) in laboratory air. In the early stages of corrosion, transmission electron microscopy shows that dissolution of the single-crystal, triangular, AgNP (side lengths 50–120 nm) is observed with the accompanying formation of smaller, polycrystalline Ag particles nearby. The new particles are then observed to corrode to Ag2S and after 21 days nearly full corrosion has occurred, but some with minor Ag inclusions remaining. In contrast, a bulk Ag sheet, studied in cross section, showed an adherent corrosion layer of only around 20–50 nm in thickness after over a decade of being exposed to ambient air. The results have implications for antibacterial properties and ecotoxicology of AgNP during corrosion as the dissolution and reformation of Ag particles during corrosion will likely be accompanied by the release of Ag+ ions

  7. Ferroelectricity in Silver Perovskite Oxides

    OpenAIRE

    Fu, Desheng; Itoh, Mitsuru

    2011-01-01

    There are two silver perovskite oxides: AgNbO3 and AgTaO3. AgNbO3 has a noncentrosymmetric group of Pmc21 at room temperature with a ferri-electric ordering of polarization. Such a ferri-electric state with small polarization can be changed into a ferroelectric state with very large polarization by a high electric field or by a chemical modification. The induced ferroelectric phase shows promising electromechanical response for applications in piezoelectric devices. In contrast, AgTaO3 is a q...

  8. Plasma Catalytic Synthesis of Silver Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-Tao; GUO Ying; MA Teng-Cai

    2011-01-01

    We present the experimental results of plasma catalytic synthesis of colloidal silver nanoparticles, using AgNO3 as the precursor, ethanol as the solvent and reducing agent, and poly vinyl pyrrolidone (PVP) as the macromolecular surfactant. The plasma is generated by an atmospheric argon dielectric barrier discharge jet. Silver nanoparticles are produced instantly once the plasma is ignited. The system is not heated so it is necessary to use traditional chemical methods. The samples are characterized by UV-visible absorbance and transmission electron microscopy. For glow discharge mode no obvious silver nanoparticles are observed. For low voltage filamentary streamer discharge mode a lot of silver nanoparticles with the mean diameter of ~3.5nm are generated and a further increase of the voltage causes the occurrence of agglomeration.%We present the experimental results of plasma catalytic synthesis of colloidal silver nanoparticles,using AgNO3 as the precursor,ethanol as the solvent and reducing agent,and poly vinyl pyrrolidone (PVP) as the macromolecular surfactant.The plasma is generated by an atmospheric argon dielectric barrier discharge jet.Silver nanoparticles are produced instantly once the plasma is ignited.The system is not heated so it is necessary to use traditional chemical methods.The samples are characterized by UV-visible absorbance and transmission electron microscopy.For glow discharge mode no obvious silver nanoparticles are observed.For low voltage filamentary streamer discharge mode a lot of silver nanoparticles with the mean diameter of ~3.5nm are generated and a further increase of the voltage causes the occurrence of agglomeration.The study of silver nanoparticles has been an extremely active area in recent years because of their important physical and chemical properties as a catalyst and antimicrobial reagent,for example.A number of methods for silver nanoparticle preparation have been developed,[1-3] among them chemical reduction is

  9. Single pass kernel -means clustering method

    Indian Academy of Sciences (India)

    T Hitendra Sarma; P Viswanath; B Eswara Reddy

    2013-06-01

    In unsupervised classification, kernel -means clustering method has been shown to perform better than conventional -means clustering method in identifying non-isotropic clusters in a data set. The space and time requirements of this method are $O(n^2)$, where is the data set size. Because of this quadratic time complexity, the kernel -means method is not applicable to work with large data sets. The paper proposes a simple and faster version of the kernel -means clustering method, called single pass kernel k-means clustering method. The proposed method works as follows. First, a random sample $\\mathcal{S}$ is selected from the data set $\\mathcal{D}$. A partition $\\Pi_{\\mathcal{S}}$ is obtained by applying the conventional kernel -means method on the random sample $\\mathcal{S}$. The novelty of the paper is, for each cluster in $\\Pi_{\\mathcal{S}}$, the exact cluster center in the input space is obtained using the gradient descent approach. Finally, each unsampled pattern is assigned to its closest exact cluster center to get a partition of the entire data set. The proposed method needs to scan the data set only once and it is much faster than the conventional kernel -means method. The time complexity of this method is $O(s^2+t+nk)$ where is the size of the random sample $\\mathcal{S}$, is the number of clusters required, and is the time taken by the gradient descent method (to find exact cluster centers). The space complexity of the method is $O(s^2)$. The proposed method can be easily implemented and is suitable for large data sets, like those in data mining applications. Experimental results show that, with a small loss of quality, the proposed method can significantly reduce the time taken than the conventional kernel -means clustering method. The proposed method is also compared with other recent similar methods.

  10. Cationically polymerizable monomers derived from renewable sources

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.V.

    1991-10-01

    The objective of this project is to make use of products obtained from renewable plant sources as monomers for the direct production of polymers which can be used for a wide range of plastic applications. In this report is described progress in the synthesis and polymerization of cationically polymerizable monomers and oligomers derived from botanical oils, terpenes, natural rubber, and lignin. Nine different botanical oils were obtained from various sources, characterized and then epoxidized. Their photopolymerization was carried out using cationic photoinitiators and the mechanical properties of the resulting polymers characterized. Preliminary biodegradation studies are being conducted on the photopolymerized films from several of these oils. Limonene was cationically polymerized to give dimers and the dimers epoxidized to yield highly reactive monomers suitable for coatings, inks and adhesives. The direct phase transfer epoxidation of squalene and natural rubber was carried out. The modified rubbers undergo facile photocrosslinking in the presence of onium salts to give crosslinked elastomers. 12 refs., 3 figs., 10 tabs.

  11. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    Energy Technology Data Exchange (ETDEWEB)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K. [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States); MacCuspie, Robert I. [National Institute of Standards and Technology (NIST), Materials Measurement Science Division (United States); Jeerage, Kavita M., E-mail: jeerage@boulder.nist.gov [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States)

    2015-07-15

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  12. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    International Nuclear Information System (INIS)

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  13. Morphosynthesis of cubic silver cages on monolithic activated carbon.

    Science.gov (United States)

    Wang, Fei; Zhao, Hong; Lai, Yijian; Liu, Siyu; Zhao, Binyuan; Ning, Yuesheng; Hu, Xiaobin

    2013-11-14

    Cubic silver cages were prepared on monolithic activated carbon (MAC) pre-absorbed with Cl(-), SO4(2-), or PO4(3-) anions. Silver insoluble salts served as templates for the morphosynthesis of silver cages. The silver ions were reduced by reductive functional groups on MAC micropores through a galvanic cell reaction mechanism. PMID:24080952

  14. Suitsetamisega võitlemisel ei aita inimeste kiusamine / Silver Meikar

    Index Scriptorium Estoniae

    Meikar, Silver, 1978-

    2004-01-01

    Suitsetamise vastu võitlemisel ei tohiks kasutada rangelt seadusi vaid võimaldada soodsalt osta suitsetamisvastaseid vahendeid, leiab autor. Vt. ka: Silver Meikar: Olen valmis hoidma Eesti edu; Silver Meikar saatis lugejakirja Saksamaa päevalehtedele; Arvamusi Silver Meikarist; Silver Meikar loobus paberkandjale trükitud seaduseelnõudest

  15. Electrospun polyacrylonitrile nanofibers loaded with silver nanoparticles by silver mirror reaction

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yongzheng; Li, Yajing; Zhang, Jianfeng; Yu, Zhongzhen; Yang, Dongzhi, E-mail: yangdz@mail.buct.edu.cn

    2015-06-01

    The silver mirror reaction (SMR) method was selected in this paper to modify electrospun polyacrylonitrile (PAN) nanofibers, and these nanofibers loaded with silver nanoparticles showed excellent antibacterial properties. PAN nanofibers were first pretreated in AgNO{sub 3} aqueous solution before the SMR process so that the silver nanoparticles were distributed evenly on the outer surface of the nanofibers. The final PAN nanofibers were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscopy (TEM), TEM-selected area electron diffraction (SAED), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). SEM, TEM micrographs and SAED patterns confirmed homogeneous dispersion of the silver nanoparticles which were composed of monocrystals with diameters 20–30 nm. EDS and XRD results showed that these monocrystals tended to form face-centered cubic single silver. TGA test indicated that the nanoparticles loaded on the nanofibers reached above 50 wt.%. This material was also evaluated by the viable cell-counting method. The results indicated that PAN nanofibers loaded with silver nanoparticles exhibited excellent antimicrobial activities against gram-negative Escherichia coli (E. coli), gram-positive Staphylococcus aureus (S. aureus) and the fungus Monilia albicans. Thus, this material had many potential applications in biomedical fields. - Highlights: • Silver mirror reaction was used to prepare nanofibers loaded with silver nanoparticles. • The SAED patterns demonstrated the monocrystallinity of silver nanocrystals. • The XRD results showed nanoparticles tended to be face-centered cubic single silver. • The material showed excellent antimicrobial activities against bacteria and fungi.

  16. Cation Effect on Copper Chemical Mechanical Polishing

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; LIU Bo; SONG Zhi-Tang; FENG Song-Lin

    2009-01-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demon-strates the worst performance. These results reveal a mechanism that sma//molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  17. Antimicrobial effects of silver zeolite,silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms

    Institute of Scientific and Technical Information of China (English)

    Sirikamon; Saengmee-anupharb; Toemsak; Srikhirin; Boonyanit; Thaweboon; Sroisiri; Thaweboon; Taweechai; Amornsakchai; Surachai; Dechkunakorn; Theeralaksna; Suddhasthira

    2013-01-01

    Objective:To evaluate the antimicrobial activities of silver inorganic materials,including silver zeolite(AgZ),silver zirconium phosphate silicate(AgZrPSi)and silver zirconium phosphate(AgZrp),against oral microorganisms.In line with this objective,the morphology and structure of each type of silver based powders were also investigated.Methods:The antimicrobial activities of AgZ,AgZrPSi and AgZrP were tested against Streptococcus mutans,Lactobacillus casei,Candida albicans and Staphylococcus aureus using disk diffusion assay as a screening test.The minimum inhibitory concentration(MIC)and minimum lethal concentration(MLC)were determined using the modified membrane method.Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials.Results:All forms of silver inorganic materials could inhibit the growth of all test microorganisms.The MIC of AgZ,AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0-60.0 g/L.In terms of morphology and structure.AgZrPSi and AgZrP had smaller sized particles(1.5-3.0μm)and more uniformly shaped than AgZ.Conclusions:Silver inorganic materials in the form of AgZ,AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers.These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection.

  18. Clustering experiments

    CERN Document Server

    Wang, Zhengwei; Tan, Ken; Di, Zengru; Roehner, Bertrand M

    2011-01-01

    It is well known that bees cluster together in cold weather, in the process of swarming (when the ``old'' queen leaves with part of the colony) or absconding (when the queen leaves with all the colony) and in defense against intruders such as wasps or hornets. In this paper we describe a fairly different clustering process which occurs at any temperature and independently of any special stimulus or circumstance. As a matter of fact, this process is about four times faster at 28 degree Celsius than at 15 degrees. Because of its simplicity and low level of ``noise'' we think that this phenomenon can provide a means for exploring the strength of inter-individual attraction between bees or other living organisms. For instance, and at first sight fairly surprisingly, our observations showed that this attraction does also exist between bees belonging to different colonies. As this study is aimed at providing a comparative perspective, we also describe a similar clustering experiment for red fire ants.

  19. Comparative Assessment of Antimicrobial Efficiency of Ionic Silver, Silver Monoxide, and Metallic Silver Incorporated onto an Aluminum Oxide Nanopowder Carrier

    OpenAIRE

    Agnieszka Maria Jastrzębska; Ewa Karwowska; Andrzej R. Olszyna; Antoni R. Kunicki

    2013-01-01

    The present paper provides comparative assessment of antimicrobial efficiency of ionic silver (Ag+), silver monoxide (Ag2O), and metallic silver (Ag) incorporated onto an aluminum oxide nanopowder carrier (Al2O3). The deposition of Ag+ ions, Ag2O nanoparticles, and Ag nanoparticles on an different phases of aluminum oxide nanopowder carrier was realized using consecutive stages of dry sol-gel method. The Al2O3-Ag+, Al2O3-Ag2O, and Al2O3-Ag nanopowders were widely characterized qualitatively a...

  20. Factor PD-Clustering

    OpenAIRE

    Gettler Summa, Mireille; Palumbo, Francesco; Tortora, Cristina

    2012-01-01

    Factorial clustering methods have been developed in recent years thanks to the improving of computational power. These methods perform a linear transformation of data and a clustering on transformed data optimizing a common criterion. Factorial PD-clustering is based on Probabilistic Distance clustering (PD-clustering). PD-clustering is an iterative, distribution free, probabilistic, clustering method. Factor PD-clustering make a linear transformation of original variables into a reduced numb...

  1. Evaluation of optimal silver amount for the removal of methyl iodide on silver-impregnated adsorbents

    International Nuclear Information System (INIS)

    The adsorption characteristics of methyl iodide generated from the simulated off-gas stream on various adsorbents such as silver-impregnated zeolite (AgX), zeocarbon and activated carbon were investigated. An extensive evaluation was made on the optimal silver impregnation amount for the removal of methyl iodide at temperatures up to 300 deg. C. The degree of adsorption efficiency of methyl iodide on silver-impregnated adsorbent is strongly dependent on impregnation amount and process temperature. A quantitative comparison of adsorption efficiencies on three adsorbents in a fixed bed was investigated. The influence of temperature, methyl iodide concentration and silver impregnation amount on the adsorption efficiency is closely related to the pore characteristics of adsorbents. It shows that the effective impregnation ratio was about 10wt%, based on the degree of silver utilization for the removal of methyl iodide. The practical applicability of silver-impregnated zeolite for the removal of radioiodine generated from the DUPIC process was consequently proposed. (author)

  2. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1996-12-31

    The problems associated with the disposal of toxic metals in an environmentally acceptable manner continues to plague industry. Such metals as nickel, vanadium, molybdenum, cobalt, iron, and antimony present physiological and ecological challenges that are best addressed through minimization of exposure and dispersion. A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate.

  3. Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam

    International Nuclear Information System (INIS)

    Formation and motion of the silver nanoparticles inside an ion-exchanged soda-lime glass in the presence of a focused high intensity continuous wave Ar+ laser beam (intensity: 9.2 x 104 W/cm2) have been studied in here. One-dimensional diffusion equation has been used to model the diffusion of the silver ions into the glass matrix, and a two-dimensional reverse diffusion model has been introduced to explain the motion of the silver clusters and their migration toward the glass surface in the presence of the laser beam. The results of the mentioned models were in agreement with our measurements on thickness of the ion-exchange layer by means of optical microscopy and recorded morphology of the glass surface around the laser beam axis by using a Mirau interferometer. SEM micrographs were used to extract the size distribution of the migrated silver particles over the glass surface.

  4. X-ray Absorption Spectra Analysis for the Investigation of the Retardation Mechanism of Iodine Migration by the Silver Ion Added to Bentonite

    International Nuclear Information System (INIS)

    Most of iodine was captured by the block when NaI solution flowed through a bentonite block sorbed silver to retard the migration of iodine released from high-level radioactive wastes. In order to understand in detail the mechanism for the retardation of the iodine by the silver ion, X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectra of the silver sorbed bentonite before and after the contact with iodide were compared with those of AgO, Ag2O and AgI as references. This examination suggests that the silver ion sorbed on the bentonite is desorbed, and then it retards the migration of iodine by forming the cluster of AgI precipitate

  5. Room-temperature silver-containing liquid metal salts with nitrate anions.

    Science.gov (United States)

    Schaltin, Stijn; Brooks, Neil R; Sniekers, Jeroen; Depuydt, Daphne; Van Meervelt, Luc; Binnemans, Koen; Fransaer, Jan

    2013-11-21

    The synthesis, structural, thermal and electrochemical properties of fluorine-free silver-containing ionic liquids are presented. The ionic liquid cations are formed by a silver(i) ion surrounded by two 1-alkylimidazole ligands, with the counter anions being nitrate ions. Depending on the alkyl chain length, the complexes were found to be liquids at room temperature or melting slightly above this. For the solid compounds it was possible to elucidate the structure by single crystal X-ray analysis. The ionic liquids are electroactive, have good mass transport properties and can be used for the electrodeposition of silver at high current densities. The thermal properties and stability of these compounds were tested by differential scanning calorimetry and thermogravimetric analysis. The viscosity of the ionic liquids follows a Vogel-Tamman-Fulcher relationship as a function of temperature. The electrochemical properties of the complexes were tested by cyclic voltammetry and the resulting electrodeposits were examined using scanning electron microscopy and atomic force microscopy. PMID:24097139

  6. Effects of electrolytes and surfactants on the morphology and stability of advanced silver nano-materials

    International Nuclear Information System (INIS)

    Highlights: ► Stoichiometric ratio of S2O32− and Ag+ ions are responsible to the formation of prefect transparent yellow colored silver sol. ► Higher S2O32− concentrations has damping effect. ► Head group of the surfactants and nature of the electrolytes have significant effect on the stability of silver nanoparticles. - Abstract: The impact of electrolytes, stabilizing and/or capping agents on morphology of colloidal silver nano-materials (AgNPs) has been studied spectroscopically. Sodium thiosulfate acts as reducing-, stabilizing- and damping-agents. Stoichiometric ratios of S2O32− and Ag+ ions were responsible to the formation stable and prefect transparent dark yellow colored AgNPs. The S2O32−-stabilized AgNPs were significantly more stable in inorganic electrolytes (NaNO3, Na2SO4, Na2CO3 and KBr). S2O32− is adsorbed more strongly than the used other anions. The addition of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS) has significant effects on the absorbance of S2O32−-stabilized AgNPs which can be rationalized in terms of electrostatic attraction and repulsion between the adsorbed S2O32− ions on to the surface of AgNPs and cationic and/or anionic head groups of used surfactants, respectively. Transmission electron microscopy images suggest that AgNPs are polydispersed, spherical and exhibiting an interesting irregular morphology

  7. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.;

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural and...

  8. Sorption of alkylammonium cations on montmorillonite

    Czech Academy of Sciences Publication Activity Database

    Navrátilová, Z.; Wojtowicz, P.; Vaculíková, Lenka; Šugárková, Věra

    2007-01-01

    Roč. 4, 3/147/ (2007), s. 59-65. ISSN 1214-9705 R&D Projects: GA ČR GA205/05/0871 Institutional research plan: CEZ:AV0Z30860518 Keywords : montmorillonite * adsorption * alkylammonium cations Subject RIV: CB - Analytical Chemistry, Separation

  9. Cationic flotation of some lithium ores

    International Nuclear Information System (INIS)

    The cationic flotation of some lithium ores (spodumene, amblygonite, petalite, lepidolite) is studied by the measure of zeta potential and micro-flotation tests in Hallimond tube. The effect of some modifier agents (corn starch, meta sodium silicate) on the lithium flotation is studied. (M.A.C.)

  10. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.;

    2003-01-01

    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M alk...

  11. Preparation of silver powder through glycerol process

    Indian Academy of Sciences (India)

    Amit Sinha; B P Sharma

    2005-06-01

    High purity fine silver powder with uniform particle morphology was prepared through glycerol process. The process involves reduction of silver nitrate by glycerol under atmospheric conditions at a temperature below 175°C. Glycerol, in this process, acts as a solvent as well as a reducing agent. The powders prepared through this process were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and chemical analysis. The powders were well crystalline and contained oxygen, carbon and hydrogen as impurities. Overall purity was better than 99.9%. The yield of silver powder was better than 99%.

  12. Synthesis and characterization of nanophased silver tungstate

    Indian Academy of Sciences (India)

    Thresiamma George; Sunny Joseph; Suresh Mathew

    2005-11-01

    Silver tungstate (Ag2WO4) nanoparticles in two different morphologies are prepared by controlling the reaction kinetics of aqueous precipitation. X-ray diffraction studies reveal that the silver tungstate nanoparticles are in the -phase. SEM images show the rod-like and fiber-like morphologies of the nanoparticles with high aspect ratios. The TGA and DTA studies show the high thermal stability of the nanorods. The average crystallite sizes (20–30 nm) of the rod-like silver tungstate estimated from TEM is consistent with the XRD results.

  13. Interaction of (-)-epigallocatechin gallate with silver nanoparticles

    CERN Document Server

    Chandra, Goutam Kumar; Dasgupta, Swagata; Roy, Anushree

    2010-01-01

    Interactions between silver nanoparticles and (-)-epigallocatechin gallate (EGCG) have been investigated. Prior to the addition of EGCG molecules the silver particles are stabilized by borate ions. Studies on the surface plasmon resonance band of silver particles suggest that the EGCG molecules remove the borate ions from the surface of the metal particles due to the chelating property of the ions. The complex formation by EGCG and borate ions has been confirmed by NMR studies and pH titration. A possible scheme of interaction between the two has been proposed.

  14. Preparation of Silver Nanostructures from Bicontinuous Microemulsions

    OpenAIRE

    Pedroza-Toscano, M. A.; Rabelero-Velasco, M.; Díaz de León, R.; H. Saade; R. G. López; E. Mendizábal; Puig, J. E.

    2012-01-01

    Precipitation of silver nanoparticles at 70°C was carried out by dosing a 1.3 M sodium borohydride aqueous solution over bicontinuous microemulsions formed with a mixture of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and sodium dodecylsulfate (SDS) as surfactants, a 0.5 M silver nitrate aqueous solution, and toluene. Weight ratios of 2.5/1 and 3/1 AOT/SDS were used in the precipitation reactions. Silver nanoparticles were characterized by transmission electronic microscopy, X-ray diffracti...

  15. Polyamide/silver antimicrobials: effect of crystallinity on the silver ion release

    OpenAIRE

    Kumar, Radhesh; Münstedt, Helmut

    2005-01-01

    Abstract: Polyamide/silver (PA/Ag) compositematerials are regarded as potential antimicrobials by virtue of their efficacy to release the Ag+ ions in an aqueous medium. The effects of the matrix crystallinity on the Ag+ ion release characteristics of PA/Ag composites are discussed. It is found that matrix crystallinity is very decisive for the silver ion releasing properties and hence the antimicrobial efficacy of silver-based antimicrobial polyamides. The crystallinities of the c...

  16. Synthesis of silver nanoparticles and antibacterial property of silk fabrics treated by silver nanoparticles

    OpenAIRE

    ZHANG, GUANGYU; Liu, Yan; Gao, Xiaoliang; Chen, Yuyue

    2014-01-01

    A silver nanoparticle solution was prepared in one step by mixing AgNO3 and a multi-amino compound (RSD-NH2) solution under ambient condition. RSD-NH2 was in-house synthesized by methacrylate and polyethylene polyamine in methanol, which has abundant amino and imino groups. However, the characterization of silver nanoparticles indicated that these nanoparticles are easy to agglomerate in solution. Therefore, an in situ synthesis method of silver nanoparticles on the silk fabrics was developed...

  17. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp

    OpenAIRE

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surfa...

  18. Comparison of bioconcentration of ionic silver and silver nanoparticles in zebrafish eleutheroembryos

    International Nuclear Information System (INIS)

    The production of silver nanoparticles has reached nowadays high levels. Bioconcentration studies, information on persistence and toxicity are fundamental to assess their global risk and thus necessary to establish legislations regarding their use. Previous studies on silver nanoparticle toxicity have determined a clear correlation between their chemical stability and toxicity. In this work, experimental conditions able to assure silver nanoparticles stability have been optimized. Then, zebrafish (Danio rerio) eleutheroembryos were exposed to ionic silver and to Ag NPs for comparison purposes. A protocol alternative to the OECD 305 technical guideline was used. To determine silver concentration in both the eleutheroembryos and the exposure media, an analytical method consisting in ultrasound assisted extraction, followed by inductively coupled plasma mass spectrometry and graphite furnace atomic absorption spectrometry, was developed. Then, bioconcentration factors were calculated. The results revealed that ionic silver was more accumulative for zebrafish eleutheroembryos than nanoparticles at the levels tested. - Highlights: • Silver nanoparticles stability study in aqueous media. • Evidence of the high divergence in the bioaccumulation studies already published. • Possible alternative to the Bioconcentration Test OECD 305. - Different patterns on accumulation by zebrafish eleutheroembryos of ionic silver and silver nanoparticles have been observed following OECD 305 technical guidelines

  19. Ultrastructural localization of silver in rat testis and organ distribution of radioactive silver in the rat

    DEFF Research Database (Denmark)

    Ernst, E; Rungby, J; Baatrup, E

    1992-01-01

    , concentrations in organs remained almost stable throughout the experimental period. Silver was especially abundant in interstitial macrophages and in the basement membrane. Deposits of silver were found in all cell types of spermatogenesis and in the lysosomes of the Sertoli cells. Udgivelsesdato: 1991-Oct......The deposition of silver after a single intravenous injection (2 micrograms Ag g-1 body weight) was studied in the testes of Wistar rats 24 h and 1 and 2 weeks after dosing with radiolabelled 110AgNo3 (2 micrograms Ag and 1.2 kBq g-1 body weight). Also, the temporal accumulation of silver during...

  20. Preparations and characterization of alginate/silver composite films: Effect of types of silver particles.

    Science.gov (United States)

    Shankar, Shiv; Wang, Long-Feng; Rhim, Jong-Whan

    2016-08-01

    Alginate-based films reinforced with different types of silver particles such as metallic silver (AgM), silver zeolite (AgZ), citrate reduced silver nanoparticles (AgNP(C)), laser ablated silver nanoparticles (AgNP(LA)), and silver nitrate (AgNO3) were prepared using a solvent casting method and the effect of silver particles on the optical, mechanical, water vapor barrier, and antimicrobial properties the composite films was evaluated. Size and shape of the silver particles were varied depending on the types of silver source and the preparation method. The alginate films incorporated with AgNP(C), AgNP(LA), and AgNO3 showed a characteristic surface plasmon resonance absorption peaks of AgNPs around 420nm. Film properties such as mechanical, optical, and water vapor barrier properties were greatly influenced by the types of AgNPs used. Alginate/AgNPs composite films except AgM and AgNP(LA) incorporated ones exhibited strong antimicrobial activity against two food-borne pathogenic bacteria, Escherichia coli and Listeria monocytogenes. The developed films have a high potential for the application as antimicrobial food packaging films. PMID:27112867

  1. Preparation and characterization of nanosized silver phosphate loaded hydroxyapatite by single step co-conversion process

    International Nuclear Information System (INIS)

    The preparation and characterization of silver phosphate nanoparticles loaded hydroxyapatite aiming to enhance the bactericidal performance by a single step co-conversion technique using low temperature phosphorization in the presence of various silver nitrate concentration (AgNO3, ranging 0.001–0.1 M) was performed. Characterization by using X-ray diffraction, infrared spectroscopy and transmission electron microscopy showed that hydroxyapatite and silver phosphate were the main phases in all converted samples and the microstructure comprised the distribution of spherical-shaped silver phosphate nanoparticles within the cluster of hydroxyapatite nanocrystals. Total silver content (ranging 0.09–5.6%) in the converted samples was found to increase with increasing silver nitrate content. Flexural modulus and strength of converted samples remained unchanged for samples using silver nitrate between 0.001 and 0.01 M, but decreased at greater silver nitrate concentration. Antibacterial activity of two selected samples (0.001 and 0.005 M AgNO3) against two bacterial strains (Pseudomonas aeruginosa and Staphylococcus aureus) was observed since 100% reduction of viable cells after 24 h contact was detected. Cytotoxic potential by MTT assay of sample using 0.001 M AgNO3 was only observed at 24 h extraction, but was seen at all extraction periods (24–72 h) for sample using 0.005 M AgNO3. Highlights: ► Low temperature and single step process for producing nanosized Ag3PO4/HA. ► Ag3PO4 content (0.09–5.6%) increased with increasing AgNO3 (0.001–0.1 M). ► Mean particle size of formed Ag3PO4 was less than 5 nm. ► Flexural properties of Ag3PO4/HA was comparable to HA when using AgNO3 3PO4/HA showed antibacterial activity against gram positive and negative strains.

  2. Cluster automorphisms and compatibility of cluster variables

    OpenAIRE

    Assem, Ibrahim; Schiffler, Ralf; Shramchenko, Vasilisa

    2013-01-01

    In this paper, we introduce a notion of unistructural cluster algebras, for which the set of cluster variables uniquely determines the clusters. We prove that cluster algebras of Dynkin type and cluster algebras of rank 2 are unistructural, then prove that if $\\mathcal{A}$ is unistructural or of Euclidean type, then $f: \\mathcal{A}\\to \\mathcal{A}$ is a cluster automorphism if and only if $f$ is an automorphism of the ambient field which restricts to a permutation of the cluster variables. In ...

  3. Globular Cluster Formation in the Virgo Cluster

    CERN Document Server

    Moran, C Corbett; Lake, G

    2014-01-01

    Metal poor globular clusters (MPGCs) are a unique probe of the early universe, in particular the reionization era. Systems of globular clusters in galaxy clusters are particularly interesting as it is in the progenitors of galaxy clusters that the earliest reionizing sources first formed. Although the exact physical origin of globular clusters is still debated, it is generally admitted that globular clusters form in early, rare dark matter peaks (Moore et al. 2006; Boley et al. 2009). We provide a fully numerical analysis of the Virgo cluster globular cluster system by identifying the present day globular cluster system with exactly such early, rare dark matter peaks. A popular hypothesis is that that the observed truncation of blue metal poor globular cluster formation is due to reionization (Spitler et al. 2012; Boley et al. 2009; Brodie & Strader 2006); adopting this view, constraining the formation epoch of MPGCs provides a complementary constraint on the epoch of reionization. By analyzing both the l...

  4. Land cover classification using reformed fuzzy C-means

    Indian Academy of Sciences (India)

    B Sowmya; B Sheelarani

    2011-04-01

    This paper explains the task of land cover classification using reformed fuzzy C means. Clustering is the assignment of objects into groups called clusters so that objects from the same cluster are more similar to each other than objects from different clusters. The most basic attribute for clustering of an image is its luminance amplitude for a monochrome image and colour components for a colour image. Since there are more than 16 million colours available in any given image and it is difficult to analyse the image on all of its colours, the likely colours are grouped together by clustering techniques. For that purpose reformed fuzzy C means algorithm has been used. The segmented images are compared using image quality metrics. The image quality metrics used are peak signal to noise ratio (PSNR), error image and compression ratio. The time taken for image segmentation is also used as a comparison parameter. The techniques have been applied to classify the land cover.

  5. Solid state and aqueous behavior of uranyl peroxide cage clusters

    Science.gov (United States)

    Pellegrini, Kristi Lynn

    Uranyl peroxide cage clusters include a large family of more than 50 published clusters of a variety of sizes, which can incorporate various ligands including pyrophosphate and oxalate. Previous studies have reported that uranyl clusters can be used as a method to separate uranium from a solid matrix, with potential applications in reprocessing of irradiated nuclear fuel. Because of the potential applications of these novel structures in an advanced nuclear fuel cycle and their likely presence in areas of contamination, it is important to understand their behavior in both solid state and aqueous systems, including complex environments where other ions are present. In this thesis, I examine the aqueous behavior of U24Pp 12, as well as aqueous cluster systems with added mono-, di-, and trivalent cations. The resulting solutions were analyzed using dynamic light scattering and ultra-small angle X-ray scattering to evaluate the species in solution. Precipitates of these systems were analyzed using powder X-ray diffraction, X-ray fluorescence spectrometry, and Raman spectroscopy. The results of these analyses demonstrate the importance of cation size, charge, and concentration of added cations on the aqueous behavior of uranium macroions. Specifically, aggregates of various sizes and shapes form rapidly upon addition of cations, and in some cases these aggregates appear to precipitate into an X-ray amorphous material that still contains U24Pp12 clusters. In addition, I probe aggregation of U24Pp12 and U60, another uranyl peroxide cage cluster, in mixed solvent water-alcohol systems. The aggregation of uranyl clusters in water-alcohol systems is a result of hydrogen bonding with polar organic molecules and the reduction of the dielectric constant of the system. Studies of aggregation of uranyl clusters also allow for comparison between the newer uranyl polyoxometalate family and century-old transition metal polyoxometalates. To complement the solution studies of uranyl

  6. Shaped gold and silver nanoparticles

    Science.gov (United States)

    Sun, Yugang; An, Changhua

    2011-03-01

    Advance in the synthesis of shaped nanoparticles made of gold and silver is reviewed in this article. This review starts with a new angle by analyzing the relationship between the geometrical symmetry of a nanoparticle shape and its internal crystalline structures. According to the relationship, the nanoparticles with well-defined shapes are classified into three categories: nanoparticles with single crystallinity, nanoparticles with angular twins, and nanoparticles with parallel twins. Discussion and analysis on the classical methods for the synthesis of shaped nanoparticles in each category are also included and personal perspectives on the future research directions in the synthesis of shaped metal nanoparticles are briefly summarized. This review is expected to provide a guideline in designing the strategy for the synthesis of shaped nanoparticles and analyzing the corresponding growth mechanism.

  7. Cation-cation interactions, magnetic communication and reactivity of the pentavalent uraniumion [U(NR)2]+

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Liam P [Los Alamos National Laboratory; Schelter, Eric J [Los Alamos National Laboratory; Boncella, James M [Los Alamos National Laboratory; Yang, Ping [Los Alamos National Laboratory; Gsula, Robyn L [NON LANL; Scott, Brian L [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory; Kiplinger, Jacqueline L [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory

    2009-01-01

    The dimeric bis(imido) uranium complex [{l_brace}U(NtBu)2(I)(tBu2bpy){r_brace}2] (see picture; U green, N blue, I red) has cation-cation interactions between [U(NR)2]+ ions. This f1-f1 system also displays f orbital communication between uranium(V) centers at low temperatures, and can be oxidized to generate uranium(VI) bis(imido) complexes.

  8. Neutron scattering and models: Silver

    International Nuclear Information System (INIS)

    Differential neutron elastic-scattering cross sections of elemental silver were measured from 1.5 → 10 MeV at ∼ 100 keV intervals up to 3 MeV, at ∼ 200 keV intervals from 3 → 4 MeV, and at ∼ 500 keV intervals above 4 MeV. At ≤ 4 MeV the angular range of the measurements was ∼ 200 → 1600 with 10 measured values below 3 MeV and 20 from 3 → 4 MeV at each incident energy. Above 4 MeV ≥ 40 scattering angles were used distributed between ∼ 170 and 160 All of the measured elastic distributions included some contributions due to inelastic scattering. Below 4 MeV the measurements determined cross sections for ten inelastically-scattered neutron groups corresponding to observed excitations of 328 ± 13, 419 ± 50, 748 ± 25, 908 ± 26, 115 ± 38, 1286 ± 25, 1507 ± 20, 1632 ± 30, 1835 ± 20 and 1944 ± 26 keV. All of these inelastic groups probably were composites of contributions from the two isotopes 107Ag and 109Ag. The experimental results were interpreted in terms of the spherical optical model and of rotational and vibrational coupled-channels models, and physical implications are discussed. In particular, the neutron-scattering results are consistent with a ground-state rotational band with a quadrupole deformation Β2 = 0.20 ± ∼ 10% for both of the naturally-occurring silver isotopes

  9. Green synthesis of silver nanoparticles using tannins

    Science.gov (United States)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  10. Ellipsometric Studies on Silver Telluride Thin Films

    Directory of Open Access Journals (Sweden)

    M. Pandiaraman

    2011-01-01

    Full Text Available Silver telluride thin films of thickness between 45 nm and 145 nm were thermally evaporated on well cleaned glass substrates at high vacuum better than 10 – 5 mbar. Silver telluride thin films are polycrystalline with monoclinic structure was confirmed by X-ray diffractogram studies. AFM and SEM images of these films are also recorded. The phase ratio and amplitude ratio of these films were recorded in the wavelength range between 300 nm and 700 nm using spectroscopic ellipsometry and analysed to determine its optical band gap, refractive index, extinction coefficient, and dielectric functions. High absorption coefficient determined from the analysis of recorded spectra indicates the presence of direct band transition. The optical band gap of silver telluride thin films is thickness dependent and proportional to square of reciprocal of thickness. The dependence of optical band gap of silver telluride thin films on film thickness has been explained through quantum size effect.

  11. Sealed Cylindrical Silver/Zinc Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — RBC Technologies has significanly improved the cycle life and wet life of silver/zinc battery technology through novel separator and anode formulations. This...

  12. Tartu on Eesti Boston / Silver Meikar

    Index Scriptorium Estoniae

    Meikar, Silver, 1978-

    2007-01-01

    Tartu eeldustest kujuneda hariduse, innovaatilise tootmise, pärimuskultuuri ja linnaruumi tasakaalustatud kasutamise südameks. Ettevõtluse, transpordi ja turismi arengust. Lisa: Silver Meikari Lõuna-Eesti edu top 10

  13. Realistic Silver Optical Constants for Plasmonics.

    Science.gov (United States)

    Jiang, Yajie; Pillai, Supriya; Green, Martin A

    2016-01-01

    Silver remains the preferred conductor for optical and near-infrared plasmonics. Many high-profile studies focus exclusively on performance simulation in such applications. Almost invariably, these use silver optical data either from Palik's 1985 handbook or, more frequently, an earlier Johnson and Christy (J&C) tabulation. These data are inconsistent, making it difficult to ascertain the reliability of the simulations. The inconsistency stems from challenges in measuring representative properties of pristine silver, due to tarnishing on air exposure. We demonstrate techniques, including use of silicon-nitride membranes, to access the full capabilities of multiple-angle, spectrometric-ellipsometry to generate an improved data set, representative of overlayer-protected, freshly-deposited silver films on silicon-nitride and glass. PMID:27470307

  14. Alternative Plasmonic Materials: Beyond Gold and Silver

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Shalaev, Vladimir M.; Boltasseva, Alexandra

    2013-01-01

    as gold and silver, that exhibit metallic properties and provide advantages in device performance, design flexibility, fabrication, integration, and tunability. This review explores different material classes for plasmonic and metamaterial applications, such as conventional semiconductors...

  15. Adaptive Evolutionary Clustering

    OpenAIRE

    Xu, Kevin S.; Kliger, Mark; Hero III, Alfred O.

    2011-01-01

    In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term trends while being robust to short-term variations. Several evolutionary clustering algorithms have recently been proposed, often by adding a temporal smoothness penalty to the cost function of a st...

  16. Relational visual cluster validity

    OpenAIRE

    Ding, Y.; Harrison, R F

    2007-01-01

    The assessment of cluster validity plays a very important role in cluster analysis. Most commonly used cluster validity methods are based on statistical hypothesis testing or finding the best clustering scheme by computing a number of different cluster validity indices. A number of visual methods of cluster validity have been produced to display directly the validity of clusters by mapping data into two- or three-dimensional space. However, these methods may lose too much information to corre...

  17. 'Chrysanthemum petal' arrangements of silver nano wires.

    Science.gov (United States)

    Cui, Hui-Wang; Jiu, Jin-Ting; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki; Uchida, Hiroshi

    2014-12-01

    Highly ordered 'Chrysanthemum petal' arrangements of silver nano wires were fabricated in a biodegradable polymer of polyvinyl alcohol using a simple one-step blending method without any template. The degree of the arrangement increased with the decreasing content of polyvinyl alcohol. The mechanism for the formation of these 'Chrysanthemum petal' arrangements was discussed specifically. These 'Chrysanthemum petal' arrangements will be helpful to increase the electrical conductivity of silver nano wires films. PMID:25397618

  18. Electrocatalytic activity of bismuth doped silver electrodes

    CERN Document Server

    Amjad, M

    2002-01-01

    Investigation of redox reactions on silver, and bismuth doped silver electrodes in aqueous KOH solutions, by using potentiostatic steady-state polarization technique, has been carried out. The redox wave potential and current displacements along with multiplicity of the latter have been examined. These electrodes were employed for the oxidation of organic molecules such as ethylamine in alkaline media. Subsequently, these electrodes were ranked with respect to their activity for the redox reactions. (author)

  19. Gold and Silver as Monetary Metals

    OpenAIRE

    John Cooper

    2006-01-01

    Commodity money systems, based upon gold or silver, provided relative economic stability for centuries. On the other hand, our modern paper money system, based upon unbacked government liabilities, is particularly vulnerable to abuse. The various financial crises during the twentieth century bear witness to that. This paper seeks to explain the mechanics of the former Gold and Silver Standards and provides an overview of America’s experience with its bimetallic system.

  20. Selective Electroless Silver Deposition on Graphene Edges

    DEFF Research Database (Denmark)

    Durhuus, D.; Larsen, M. V.; Andryieuski, Andrei;

    2015-01-01

    We demonstrate a method of electroless selective silver deposition on graphene edges or between graphene islands without covering the surface of graphene. Modifications of the deposition recipe allow for decoration of graphene edges with silver nanoparticles or filling holes in damaged graphene...... on silica substrate and thus potentially restoring electric connectivity with minimal influence on the overall graphene electrical and optical properties. The presented technique could find applications in graphene based transparent conductors as well as selective edge functionalization and can be extended...

  1. Characterisations of collagen-silver-hydroxyapatite nanocomposites

    Science.gov (United States)

    Ciobanu, C. S.; Popa, C. L.; Petre, C. C.; Jiga, G.; Trusca, R.; Predoi, D.

    2016-05-01

    The XRD analysis were performed to confirm the formation of hydroxyapatite structure in collagen-silver-hydroxyapatite nanocomposites. The molecular interaction in collagen-hydroxyapatite nanocomposites was highlighted by Fourier transform infrared spectroscopy (FTIR) analysis. The SEM showed a nanostructure of collagen-silverhydroxyapatite nanocomposites composed of nano needle-like particles in a veil with collagen texture. The presence of vibrational groups characteristics to the hydroxyapatite structure in collagen-silver-hydroxyapatite (AgHApColl) nanocomposites was investigated by FTIR.

  2. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev

    2014-03-01

    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  3. Adsorption of iodine on silver wire

    International Nuclear Information System (INIS)

    It is an important process in which iodine is adsorbed on silver wire during the preparation of 125I seed sources. In this paper, a technique of adsorption of iodine on silver wire was studied. The influence of several factors, such as the type of reagent for halogenation, the time for halogenation, the time for adsorption, pH value, ion concentration, carrier iodine and so on, on the utilization rate of 131I was investigated, and the effectiveness of our proposed technique for adsorption of iodine on silver wire was confirmed. The procedure is summarized as follows: silver wire acidification: using 4 mol/L HNO3 as halogenation agent, stirring acidified for 20 min; silver wire halogenation: used 2 mol/L NaClO3 as halogenated agent, halogenation for 3 h; adsorption of iodine on silver wire: room temperature, pH value for the reaction is about 3, the time for adsorption is 30 min, carrier iodine is 27.5 μg. Original radioactivity of reaction solution was determined based on radioactivity of source-core that user required. (authors)

  4. Towards conducting inks: Polypyrrole–silver colloids

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Composite colloidal particles combining conducting polymer and metal have been prepared. • Conducting colloids are suitable for printing applications. • Polypyrrole/silver colloids are prepared in a single reaction step. • The conductivity control is discussed and still needs improvement. - Abstract: The oxidation of pyrrole with silver nitrate in the presence of suitable water-soluble polymers yields composite polypyrrole–silver colloids. The polypyrrole–silver nanoparticles stabilized with poly(N-vinylpyrrolidone) have a typical size around 350 nm and polydispersity index 0.20, i.e. a moderate polydispersity in size. Similar results have been obtained with poly(vinyl alcohol) as stabilizer. The effect of stabilizer concentration on the particle size is marginal. In the present study, several types of stabilizers have been tested in addition to currently used poly(N-vinylpyrrolidone). Transmission electron microscopy and optical microscopy revealed the gemini morphology of polypyrrole and silver colloidal nanoparticles and confirmed their size and size-distribution determined by dynamic light scattering. The use of colloidal dispersions provides an efficient tool for the UV–vis and FT Raman spectroscopic characterization of polypyrrole, including the transition between polypyrrole salt and corresponding polypyrrole base. The dispersions were used for the preparation of coatings on polyethylene terephthalate foils, and the properties for polypyrrole–silver composites have been compared with those produced from polypyrrole colloids alone

  5. Micro-CT imaging of denatured chitin by silver to explore honey bee and insect pathologies.

    Directory of Open Access Journals (Sweden)

    Peter R Butzloff

    Full Text Available BACKGROUND: Chitin and cuticle coatings are important to the environmental and immune defense of honey bees and insect pollinators. Pesticides or environmental effects may target the biochemistry of insect chitin and cuticle coating. Denaturing of chitin involves a combination of deacetylation, intercalation, oxidation, Schweiger-peeling, and the formation of amine hydrochloride salt. The term "denatured chitin" calls attention to structural and property changes to the internal membranes and external carapace of organisms so that some properties affecting biological activities are diminished. METHODOLOGY/PRINCIPAL FINDINGS: A case study was performed on honey bees using silver staining and microscopic computer-tomographic x-ray radiography (micro-CT. Silver nitrate formed counter-ion complexes with labile ammonium cations and reacted with amine hydrochloride. Silver was concentrated in the peritrophic membrane, on the abdomen, in the glossa, at intersegmental joints (tarsi, at wing attachments, and in tracheal air sacs. Imaged mono-esters and fatty acids from cuticle coating on external surfaces were apparently reduced by an alcohol pretreatment. CONCLUSIONS/SIGNIFICANCE: The technique provides 3-dimensional and sectional images of individual honey bees consistent with the chemistries of silver reaction and complex formation with denatured chitin. Environmental exposures and influences such as gaseous nitric oxide intercalant, trace oxidants such as ozone gas, oligosachharide salt conversion, exposure to acid rain, and chemical or biochemical denaturing by pesticides may be studied using this technique. Peritrophic membranes, which protect against food abrasion, microorganisms, and permit efficient digestion, were imaged. Apparent surface damage to the corneal lenses of compound eyes by dilute acid exposure consistent with chitin amine hydrochloride formation was imaged. The technique can contribute to existing insect pathology research, and may

  6. Cytotoxicity and antibacterial property of titanium alloy coated with silver nanoparticle-containing polyelectrolyte multilayer

    International Nuclear Information System (INIS)

    Silver nanoparticle (AgNP) was incorporated into dopamine-modified alginate/chitosan (DAL/CHI) polyelectrolyte multilayer to modify the surface of titanium alloy and improve its antibacterial property. Scanning electron microscopy showed that AgNP with the size of 50 nm embedded in DAL/CHI multilayers homogeneously. X-ray photoelectron spectroscopy analysis indicated that the nanoparticles were silver (0) with peaks at 368.4 and 374.4 eV, respectively. The formation of silver (0) without the addition of reductants was due to the self-polymerization of dopamine, which can reduce the silver cation into neutral metal. The polyelectrolyte multilayer coating enhanced the wettability of titanium alloy and promoted the fibroblast proliferation significantly, which could be attributed to the excellent biocompatibility of DAL/CHI. Despite the slight fall of L929 cell activity after AgNP incorporation, AgNP-DAL/CHI multilayer inhibited the growth of both Escherichia coli and Staphylococcus aureus. The above results demonstrate that dopamine decoration is a simple and effective way to induce the in-situ formation of AgNP within polyelectrolyte multilayer. Furthermore, the AgNP-containing multilayer considerably enhances the antibacterial activity of titanium alloy. The fabrication of AgNP-DAL/CHI multilayer on the surface of titanium implant might have great potential in orthopedic use. - Highlights: • Polyelectrolyte multilayer was fabricated through layer-by-layer assembly. • AgNP was formed in-situ and embedded within polyelectrolyte multilayer. • Surface of titanium was modified by AgNP-DAL/CHI multilayer with a facile method. • AgNP-DAL/CHI multilayer enhanced antibacterial activity of titanium alloy

  7. Gold Doping of Silver Nanoclusters: A 26-Fold Enhancement in the Luminescence Quantum Yield.

    Science.gov (United States)

    Soldan, Giada; Aljuhani, Maha A; Bootharaju, Megalamane S; AbdulHalim, Lina G; Parida, Manas R; Emwas, Abdul-Hamid; Mohammed, Omar F; Bakr, Osman M

    2016-05-01

    A high quantum yield (QY) of photoluminescence (PL) in nanomaterials is necessary for a wide range of applications. Unfortunately, the weak PL and moderate stability of atomically precise silver nanoclusters (NCs) suppress their utility. Herein, we accomplished a ≥26-fold PL QY enhancement of the Ag29 (BDT)12 (TPP)4 cluster (BDT: 1,3-benzenedithiol; TPP: triphenylphosphine) by doping with a discrete number of Au atoms, producing Ag29-x Aux (BDT)12 (TPP)4 , x=1-5. The Au-doped clusters exhibit an enhanced stability and an intense red emission around 660 nm. Single-crystal XRD, mass spectrometry, optical, and NMR spectroscopy shed light on the PL enhancement mechanism and the probable locations of the Au dopants within the cluster. PMID:27060602

  8. UV Treatment of the Stabilizing Shell for Improving the Photostability of Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Silvia Rinaldi

    2016-01-01

    Full Text Available Silver nanoparticles or nanoclusters are quite sensitive to light exposure. In particular, irradiation in the localized surface plasmon resonance (LSPR region brings about a drastic modification of their optical properties due to growth and reshaping of the nanoparticles. In order to obtain luminescent colloids, small silver colloidal nanoparticles were prepared in chloroform using vinylpyrrolidone oligomers as capping agent and their luminescence properties were used to control their stability upon prolonged exposure to visible light. The polymeric shell around the metal clusters was hardened through photo-cross-linking by UV light. This process did not alter the morphology and the optical properties of the nanoparticles but greatly improved the particle photostability as confirmed also by confocal laser scanning microscopy measurements. The data clearly show that UV curing of the stabilizing layer could be a simple postsynthetic procedure to obtain materials with stable properties.

  9. The effect of electron beam irradiation on silver-sodium ion exchange in silicate glasses

    Science.gov (United States)

    Sidorov, Alexander I.; Prosnikov, Mikhail A.

    2016-04-01

    It is shown experimentally that electron irradiation of sodium-silicate glasses makes possible the control of the subsequent ion exchange Ag+ ↔ Na+ process in a salt melt. The reason of this effect is the negatively charged regions formation in a glass volume during electron irradiation. The electric field, produced by these regions in glass volume, results in positive Na+ ions field migration into them. The spatial redistribution of Na+ ions results in the decrease of the ion exchange efficiency, or the ion exchange can be even blocked. This led to the decrease of the luminescence intensity of neutral silver molecular clusters in the irradiated zone, and effect on the silver nanoparticles formation during the subsequent thermal treatment. The observed effects can be used for the control of ion exchange processes during integrated optics devices fabrication, and for the electron-beam recording of optical information.

  10. In situ Investigation of the Silver-CTAB system

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J J; Orme, C A; Du, D; Srolovitz, D

    2007-04-16

    Recent research has shown that biologically inspired approaches to materials synthesis and self-assembly, hold promise of unprecedented atomic level control of structure and interfaces. In particular, the use of organic molecules to control the production of inorganic technological materials has the potential for controlling grain structure to enhance material strength; controlling facet expression for enhanced catalytic activity; and controlling the shape of nanostructured materials to optimize optical, electrical and magnetic properties. In this work, we use organic molecules to modify silver crystal shapes towards understanding the metal-organic interactions that lead to nanoparticle shape control. Using in situ electrochemical AFM (EC-AFM) as an in situ probe, we study the influence of a cationic surfactant cetyltrimethylamminobromide (CTAB) on Ag growth during electrochemical deposition on Ag(100). The results show that the organic surfactant promotes the growth of steps on the (100) surface and changes the surface evolution from island nucleation to step flow growth. Overall, this leads to a smoother, faster growing (100) surface, which may promote plate-formation.

  11. Structurally Distinct Cation Channelrhodopsins from Cryptophyte Algae.

    Science.gov (United States)

    Govorunova, Elena G; Sineshchekov, Oleg A; Spudich, John L

    2016-06-01

    Microbial rhodopsins are remarkable for the diversity of their functional mechanisms based on the same protein scaffold. A class of rhodopsins from cryptophyte algae show close sequence homology with haloarchaeal rhodopsin proton pumps rather than with previously known channelrhodopsins from chlorophyte (green) algae. In particular, both aspartate residues that occupy the positions of the chromophore Schiff base proton acceptor and donor, a hallmark of rhodopsin proton pumps, are conserved in these cryptophyte proteins. We expressed the corresponding polynucleotides in human embryonic kidney (HEK293) cells and studied electrogenic properties of the encoded proteins with whole-cell patch-clamp recording. Despite their lack of residues characteristic of the chlorophyte cation channels, these proteins are cation-conducting channelrhodopsins that carry out light-gated passive transport of Na(+) and H(+). These findings show that channel function in rhodopsins has evolved via multiple routes. PMID:27233115

  12. Radiation chemistry of aromatic dimer radical cations

    International Nuclear Information System (INIS)

    π-π Interactions of aromatic molecules are paid attention much in many fields, especially biology, chemistry, and applied physics, represented as protein, DNA, electron donor-accepter complexes, charge transfers, and self assembly molecules. Aromatic molecules including benzene rings are the simplest case to study the π-π interactions. To interpret the charge resonance (CR) structure in the dimer radical cations, spectroscopic and ESR methods have been carried out. The spectroscopic study on the dimer radical ion of molecules with two chromophores would be profitable to identify the electronic and configurational properties. In this article, dynamics of the dimer radical cation of benzenes, polystyrenes, and resist polymers is described on the basis of direct observation of CR band by the nanosecond pulse radiolysis and low temperature γ-radiolysis methods. (author)

  13. Mechanism of adsorption of cations onto rocks

    International Nuclear Information System (INIS)

    Adsorption behavior of cations onto granite was investigated. The distribution coefficient (Kd) of Sr2+ and Ba2+ onto granite was determined in the solution of which pH was ranged from 3.5 to 11.3 and ionic strength was set at 10-2 and 10-1. The Kd values were found to increase with increasing pH and with deceasing ionic strength. The obtained data were successfully analyzed by applying an electrical double layer model. The optimum parameter values of the double layer electrostatics and adsorption reactions were obtained, and the mechanism of adsorption of cations onto granite was discussed. Feldspar was found to play an important role in their adsorption. (author)

  14. Planar Chiral, Ferrocene-Stabilized Silicon Cations.

    Science.gov (United States)

    Schmidt, Ruth K; Klare, Hendrik F T; Fröhlich, Roland; Oestreich, Martin

    2016-04-01

    The preparation of a series of planar chiral, ferrocenyl-substituted hydrosilanes as precursors of ferrocene-stabilized silicon cations is described. These molecules also feature stereogenicity at the silicon atom. The generation and (29) Si NMR spectroscopic characterization of the corresponding silicon cations is reported, and problems arising from interactions of the electron-deficient silicon atom and adjacent C(sp(3) )-H bonds or aromatic π donors are discussed. These issues are overcome by tethering another substituent at the silicon atom to the ferrocene backbone. The resulting annulation also imparts conformational rigidity and steric hindrance in such a way that the central chirality at the silicon atom is set with complete diastereocontrol. These chiral Lewis acid catalysts were then tested in difficult Diels-Alder reactions, but no enantioinduction was seen. PMID:26929105

  15. Ultrafast dynamics of water in cationic micelles.

    Science.gov (United States)

    Dokter, Adriaan M; Woutersen, Sander; Bakker, Huib J

    2007-03-28

    The effect of confinement on the dynamical properties of liquid water is investigated for water enclosed in cationic reverse micelles. The authors performed mid-infrared ultrafast pump-probe spectroscopy on the OH-stretch vibration of isotopically diluted HDO in D(2)O in cetyltrimethylammonium bromide (CTAB) reverse micelles of various sizes. The authors observe that the surfactant counterions are inhomogeneously distributed throughout the reverse micelle, and that regions of extreme salinity occur near the interfacial Stern layer. The authors find that the water molecules in the core of the micelles show similar orientational dynamics as bulk water, and that water molecules in the counterion-rich interfacial region are much less mobile. An explicit comparison is made with the dynamics of water confined in anionic sodium bis(2-ethythexyl) sulfosuccinate (AOT) reverse micelles. The authors find that interfacial water in cationic CTAB reverse micelles has a higher orientational mobility than water in anionic AOT reverse micelles. PMID:17411144

  16. Ultrafast dynamics of water in cationic micelles

    Science.gov (United States)

    Dokter, Adriaan M.; Woutersen, Sander; Bakker, Huib J.

    2007-03-01

    The effect of confinement on the dynamical properties of liquid water is investigated for water enclosed in cationic reverse micelles. The authors performed mid-infrared ultrafast pump-probe spectroscopy on the OH-stretch vibration of isotopically diluted HDO in D2O in cetyltrimethylammonium bromide (CTAB) reverse micelles of various sizes. The authors observe that the surfactant counterions are inhomogeneously distributed throughout the reverse micelle, and that regions of extreme salinity occur near the interfacial Stern layer. The authors find that the water molecules in the core of the micelles show similar orientational dynamics as bulk water, and that water molecules in the counterion-rich interfacial region are much less mobile. An explicit comparison is made with the dynamics of water confined in anionic sodium bis(2-ethythexyl) sulfosuccinate (AOT) reverse micelles. The authors find that interfacial water in cationic CTAB reverse micelles has a higher orientational mobility than water in anionic AOT reverse micelles.

  17. Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide.

    Directory of Open Access Journals (Sweden)

    Nancy L Martin

    Full Text Available Huwa-San peroxide (hydrogen peroxide; HSP is a NSF Standard 60 (maximum 8 mg/L(-1 new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP and sodium hypochlorite at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K(+ and divalent (Ca(+2 cations (0.005-0.05M reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent

  18. Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide.

    Science.gov (United States)

    Martin, Nancy L; Bass, Paul; Liss, Steven N

    2015-01-01

    Huwa-San peroxide (hydrogen peroxide; HSP) is a NSF Standard 60 (maximum 8 mg/L(-1)) new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT) relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP) and sodium hypochlorite) at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively) and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K(+)) and divalent (Ca(+2)) cations (0.005-0.05M) reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent concentrations of

  19. Relaxation of the Silver/Silver Iodide Electrode in Aqueous Solution

    NARCIS (Netherlands)

    Peverelli, K.J.

    1979-01-01

    The aim of this study is to detect and characterize relaxation processes on silver/silver iodide electrodes in aqueous electrolyte solution. The information obtained is to be used for an estimation of the consequences of similar processes on colloidal AgI particles during encounter.In chapter 1 a ge

  20. Preparation of silver nanoparticles in solution from a silver salt by laser irradiation.

    Science.gov (United States)

    Abid, J P; Wark, A W; Brevet, P F; Girault, H H

    2002-04-01

    A new method is proposed for the fabrication of a well-defined size and shape distribution of silver nanoparticles in solution; the method employs direct laser irradiation of an aqueous solution containing a silver salt and a surfactant in the absence of reducing agents. PMID:12119726

  1. Preparation of sintered silver nanosheets by coating technique using silver carbamate complex

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hee-Yong; Cha, Jae-Ryung; Gong, Myoung-Seon, E-mail: msgong@dankook.ac.kr

    2015-03-01

    This study describes a coating technique approach for large-scale preparation of sintered silver nanosheets whose lateral dimensions were controlled in the thickness range of 50–65 nm. These procedures involved coating water-soluble poly (vinyl alcohol) (PVA) and silver 2-ethylhexylcarbamate (Ag-EHC), as well as thermal reduction of a silver precursor by heating at 150 °C, followed by dissolving away the PVA layer with alcoholic water. When the silver carbamate layer on the PVA layer was heated to 150 °C, the silver carbamate layer was thermally reduced and directed to grow into uniform sintered nanosheets with aspect ratios as high as 1000. The multi-stacked PVA/Ag structures and sintered silver nanosheets were confirmed by scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Measurements of the conductive property at room temperature indicated that these nanosheets were electrically continuous with a resistivity of approximately 7.3 × 10{sup −6} Ω cm. - Highlights: • A coating technique is used to make sintered Ag nanosheets. • PVA and silver carbamate act as a separation layer and a silver precursor. • The Ag nanosheets have thickness width 50–60 nm and width up to hundred μm. • The Ag nanosheets showed a resistivity of ca. 7.3 × 10{sup −6} Ω cm.

  2. Proton dynamics investigation for dimethyl ammonium cation

    International Nuclear Information System (INIS)

    Proton dynamics in dimethyl ammonium cation has been investigated by means of NMR and spin echo methods in polycrystalline salts [NH2(CH3)2]+Bi2J9- and [NH2(CH3)2]+SbJ9-. Spin-lattice relaxation time as well as second moment of NMR line have been measured for influence study of crystal structure changes on proton dynamics

  3. Alkaline earth cation extraction from acid solution

    Science.gov (United States)

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  4. Rabbit cationic protein enhances leukocyte adhesiveness.

    OpenAIRE

    Oseas, R S; Allen, J; Yang, H. H.; Baehner, R. L.; Boxer, L A

    1981-01-01

    Cationic protein purified from rabbit peritoneal polymorphonuclear leukocytes (PMN) was demonstrated to incite autoaggregation of the rabbit PMN and promote adhesiveness of human PMN to endothelial cells. PMN aggregation induced by supernatants derived from secretory PMN was blocked by a specific anticationic protein antibody. These studies reveal that a positively charged protein derived from the PMN can alter surface properties of the PMN itself and imply a role for this protein in PMN immo...

  5. Orbital symmetry as a tool for understanding the bonding in Krossing's cation.

    Science.gov (United States)

    Deubel, Dirk V

    2002-10-16

    The geometric and electronic structure of Krossing's cation, Ag(eta(2)-P(4))(2)(+), which shows an unexpected planar coordination environment at the metal center and D(2)(h) symmetry both in solution and in the solid state, have been investigated using density functional theory and orbital-symmetry-based energy decomposition. The analysis reveals that the contribution from electrostatic interactions to the bond energy is greater than that of orbital interactions. Partitioning of the latter term into the irreducible representations shows that, in addition to the 5s orbital, 5p orbitals of silver act as acceptor orbitals for electron donation from sigma(P-P) orbitals (a(1)(g), b(1)(u)) and n(P) orbitals (b(3)(u)). Back-donation from the 4d(10) closed shell of Ag into sigma orbitals of the pnictogen cages (b(2)(g)) is also important. However, this contribution is shown not to determine the D(2)(h) structure, contradicting conclusions from the pioneering study of the title cation (J. Am. Chem.Soc. 2001, 123, 4603). The contributions from the irreducible representations to the stabilizing orbital interactions in the D(2)(h) structure and in its D(2)(d)-symmetric conformer are analogous, indicating that the planar coordination environment at the metal center in Ag(eta(2)-P(4))(2)(+) is induced by intermolecular rather than by intramolecular interactions. Because ethylene coordination to a metal ion is an elementary reaction step in industrial processes, the bonding in Ag(C(2)H(4))(2)(+) has been analyzed as well and compared to that in Krossing's cation. Surprisingly, similar contributions to the bond energies and an involvement of metal 4d and 5p orbitals have been found, whereas a recent atoms in molecules analysis suggested that the metal-ligand interactions in silver(I) olefin complexes fundamentally differ from those in tetrahedro P(4) complexes. The only qualitative difference between the bonding patterns in Ag(eta(2)-P(4))(2)(+) and Ag(C(2)H(4))(2)(+) is the

  6. Limited data speaker identification

    Indian Academy of Sciences (India)

    H S Jayanna; S R Mahadeva Prasanna

    2010-10-01

    In this paper, the task of identifying the speaker using limited training and testing data is addressed. Speaker identification system is viewed as four stages namely, analysis, feature extraction, modelling and testing. The speaker identification performance depends on the techniques employed in these stages. As demonstrated by different experiments, in case of limited training and testing data condition, owing to less data, existing techniques in each stage will not provide good performance. This work demonstrates the following: multiple frame size and rate (MFSR) analysis provides improvement in the analysis stage, combination of mel frequency cepstral coefficients (MFCC), its temporal derivatives $(\\Delta,\\Delta \\Delta)$, linear prediction residual (LPR) and linear prediction residual phase (LPRP) features provides improvement in the feature extraction stage and combination of learning vector quantization (LVQ) and gaussian mixture model – universal background model (GMM–UBM) provides improvement in the modelling stage. The performance is further improved by integrating the proposed techniques at the respective stages and combining the evidences from them at the testing stage. To achieve this, we propose strength voting (SV), weighted borda count (WBC) and supporting systems (SS) as combining methods at the abstract, rank and measurement levels, respectively. Finally, the proposed hierarchical combination (HC) method integrating these three methods provides significant improvement in the performance. Based on these explorations, this work proposes a scheme for speaker identification under limited training and testing data.

  7. Low cation coordination in oxide melts

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Lawrie [State University of New York, Stony Brook; Benmore, Chris J [Argonne National Laboratory (ANL); Du, Jincheng [University of North Texas; Weber, Richard [Argonne National Laboratory (ANL); Neuefeind, Joerg C [ORNL; Tumber, Sonia [Materials Development, Inc., Evanston, IL; Parise, John B [Stony Brook University (SUNY)

    2014-01-01

    The complete set of Faber-Ziman partial pair distribution functions for a rare earth oxide liquid were measured for the first time by combining aerodynamic levitation, neutron diffraction, high energy x-ray diffraction and isomorphic substitution using Y2 O3 and Ho2 O3 melts. The average Y- O coordination is measured to be 5.5(2), which is significantly less than the octahedral coordination of crystalline Y2 O3 (or Ho2 O3 ). Investigation of high temperature La2 O3 , ZrO2 , SiO2 , and Al2 O3 melts by x-ray diffraction and molecular dynamics simulations also show lower-than-crystal cation- oxygen coordination. These measurements suggest a general trend towards lower M-O coordination compared to their crystalline counterparts. It is found that this coordination number drop is larger for lower field strength, larger radius cations and is negligible for high field strength (network forming) cations. These findings have broad implications for predicting the local structure and related physical properties of metal-oxide melts and oxide glasses.

  8. Cation-Exchange Equilibria with Fused Salts

    International Nuclear Information System (INIS)

    Solute distributions of alkali metal, alkaline- earth, transition metal, and actinide ions have been studied in fused salt-cation exchanger systems. The fused salts employed were alkali halides and nitrates. The cation exchangers used were natural zeolites, synthetic zeolites, high-porosity glasses, and molten oxide mixtures. The molten exchangers were composed of Na2O and B2O3 in various proportions. The relative quantities not only determined the exchanger capacity and electrolyte penetration but also produced distribution coefficients for a given solute which varied over several orders of magnitude. Moreover, they produced marked reversals in the selectivity series. Additional studies on the anion distributions, miscibility diagrams, vapour pressures and diffusion rates in these systems have elucidated the mechanisms involved and the relation of selectivity to solute properties, system thermodynamics, exchanger structure and available functional groups. In the region of high Na2O composition, the distribution coefficients for mono-, di- and trivalent cations in NaCl have not only the same order of selectivity found in Dowex 50-HCl systems but also similar values for the distribution coefficients. The results are summarized qualitatively and compared to behaviour in aqueous systems (Table VII). (author)

  9. Silver nanoparticles from silver halide photography to plasmonics

    CERN Document Server

    Tani, Tadaaki

    2015-01-01

    This book provides systematic knowledge and ideas on nanoparticles of Ag and related materials. While Ag and metal nanoparticles are essential for plasmonics, silver halide (AgX) photography relies to a great extent on nanoparticles of Ag and AgX which have the same crystal structure and have been studied extensively for many years. This book has been written to combine the knowledge of nanoparticles of Ag and related materials in plasmonics and AgX photography in order to provide new ideas for metal nanoparticles in plasmonics. Chapters 1–3 of this book describe the structure and formation of nanoparticles of Ag and related materials. Systematic descriptions of the structure and preparation of Ag, Au, and noble-metal nanoparticles for plasmonics are followed by and related to those of nanoparticles of Ag and AgX in AgX photography. Knowledge of the structure and preparation of Ag and AgX nanoparticles in photography covers nanoparticles with widely varying sizes, shapes, and structures, and formation proce...

  10. Silver diffusion and isotope effect in silver rubidium iodide

    International Nuclear Information System (INIS)

    The diffusion coefficient of silver in RbAg4I5 was measured in both superionic phases using radiotracer Ag-110m and serial sectioning with a low temperature sectioning apparatus. The activation energies for diffusion in alpha-RbAg4I5 and beta-RbAg4I5, respectively, are 0.11 +- 0.01 eV and 0.20 +- 0.04 eV. An isotope effect for diffusion was also measured in both superionic phases. Ag-105 and Ag-110m radioisotopes were used with gamma spectroscopy and energy discrimination. The effect is small, with no significant temperature variation, with the value at 3330K being 0.12 +- 0.01. The second-order phase transition at 2080K has a small effect, if any, on the magnitude of the effect. The data suggest that a highly cooperative transport mechanism is responsible for the unusually high values of both the conductivity and diffusion coefficient. Although it is not possible to deduce the particular mechanism involved, theories inolving ionic polarons, or cooperative motion, such as crowdions or solitons, seem consistent with the observed results

  11. Separation of silver from silver-manganese ore with cellulose as reductant

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-yun; TIAN Xue-da; ZHANG Dong-fang

    2006-01-01

    The silver in some silver-manganese ore with a grade of 3.15 × 10-4 was concentrated by a combined beneficiation technique including magnetic separation, flotation, reducing leaching and gravity desliming. The major silver contained in manganese ore as isomorphism was concentrated by magnetic separation, while around 8.50% of the silver individual minerals were separated by flotation. The manganese in the mixed concentrate of both magnetic separation and flotation was dissolved in a reducing leaching, in which some cellulose reductant named CMK was used. Part of the slime contained in leach residue was removed by a laboratory desliming equipment. A silver concentrate with a grade of 4.96 × 10-3 Ag and a recovery of 84.25% were obtained.

  12. Silver-plated carbon nanotubes for silver/conducting polymer composites

    Science.gov (United States)

    Oh, Youngseok; Suh, Daewoo; Kim, Youngjin; Lee, Eungsuek; Mok, Jee Soo; Choi, Jaeboong; Baik, Seunghyun

    2008-12-01

    Carbon nanotubes (CNTs) have advantages as conductive fillers due to their large aspect ratio and excellent conductivity. In this study, a novel silver/conducting polymer composite was developed by the incorporation of silver-plated CNTs. It is important to achieve a homogeneous dispersion of nanotubes and to improve the interfacial bonding to utilize the excellent properties of reinforcements in the matrix material. The homogeneous dispersion of nanotubes was achieved by an acid treatment process, and the interfacial contact was improved by electroless silver plating around nanotubes. The resistivity of the silver/conducting polymer composite was decreased by 83% by the addition of silver-plated single-walled carbon nanotubes. Conductive bumps were also screen-printed to demonstrate the capability of the composite as electrical interconnects for multi-layer printed circuit boards.

  13. Silver-plated carbon nanotubes for silver/conducting polymer composites

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) have advantages as conductive fillers due to their large aspect ratio and excellent conductivity. In this study, a novel silver/conducting polymer composite was developed by the incorporation of silver-plated CNTs. It is important to achieve a homogeneous dispersion of nanotubes and to improve the interfacial bonding to utilize the excellent properties of reinforcements in the matrix material. The homogeneous dispersion of nanotubes was achieved by an acid treatment process, and the interfacial contact was improved by electroless silver plating around nanotubes. The resistivity of the silver/conducting polymer composite was decreased by 83% by the addition of silver-plated single-walled carbon nanotubes. Conductive bumps were also screen-printed to demonstrate the capability of the composite as electrical interconnects for multi-layer printed circuit boards.

  14. 生物法制备纳米银溶胶的稳定性%Stability of Colloidal Silver Nanoparticles Prepared by Bioreduction

    Institute of Scientific and Technical Information of China (English)

    孙道华; 李清彪; 何宁; 黄加乐; 王惠璇

    2011-01-01

    利用生物还原法制备纳米银溶胶,借助于UV-Vis表征技术对其热稳定性和化学稳定性进行考察.结果表明:生物法制备的纳米银溶胶在100℃下加热6 h,UV-Vis谱图未发生明显变化;H+和具有高价阳离子的电解质对其稳定性的影响明显;OH-对银溶胶的稳定性影响相对较弱.生物法制备的纳米银溶胶在热稳定性、化学稳定性方面均略优于柠檬酸三钠法制得的银溶胶.%The thermal and chemical statoilities of the colloid silver nanoparticles prepared by bioreduction were investigated in virtue of UV-Vis spectrometer.The results indicate that UV-Vis spectra of silver colloid prepared by bioreduction have not significant change after heat treatment at 100 ℃ for 6 h.Hydrogen ion and the electrolyte with multivalent cation markedly influence stabilities of the silver colloid, while hydroxide anion has a weak influence on its stability.Thermal and chemical stabilities of the silver colloid prepared by bioreduction are superior to that of the silver colloid prepared by the sodium citrate reduction method.

  15. Glass frits coated with silver nanoparticles for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingfen, E-mail: lyf350857423@163.com; Gan, Weiping; Zhou, Jian; Li, Biyuan

    2015-06-30

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells.

  16. Glass frits coated with silver nanoparticles for silicon solar cells

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Silver-coated glass frits for solar cells were prepared by electroless plating. • Gum Arabic was used as the activating agent of glass frits. • Silver-coated glass frits can improve the photovoltaic performances of solar cells. - Abstract: Glass frits coated with silver nanoparticles were prepared by electroless plating. Gum Arabic (GA) was used as the activating agent of glass frits without the assistance of stannous chloride or palladium chloride. The silver-coated glass frits prepared with different GA dosages were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA). The characterization results indicated that silver-coated glass frits had the structures of both glass and silver. Spherical silver nanoparticles were distributed on the glass frits evenly. The density and particle size of silver nanoparticles on the glass frits can be controlled by adjusting the GA dosage. The silver-coated glass frits were applied to silver pastes to act as both the densification promoter and silver crystallite formation aid in the silver electrodes. The prepared silver-coated glass frits can improve the photovoltaic performances of solar cells

  17. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Dirk; Diendorf, Joerg; Ristig, Simon [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Greulich, Christina [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Li Zian; Farle, Michael [University of Duisburg-Essen, Faculty of Physics, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Koeller, Manfred [Ruhr-University of Bochum, Bergmannsheil University Hospital/Surgical Research (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Department of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-10-15

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly(N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 {mu}g mL{sup -1} induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  18. [Antioxidant activity of cationic whey protein isolate].

    Science.gov (United States)

    titova, M E; Komolov, S A; Tikhomirova, N A

    2012-01-01

    The process of lipid peroxidation (LPO) in biological membranes of cells is carried out by free radical mechanism, a feature of which is the interaction of radicals with other molecules. In this work we investigated the antioxidant activity of cationic whey protein isolate, obtained by the cation-exchange chromatography on KM-cellulose from raw cow's milk, in vitro and in vivo. In biological liquids, which are milk, blood serum, fetal fluids, contains a complex of biologically active substances with a unique multifunctional properties, and which are carrying out a protective, antimicrobial, regenerating, antioxidant, immunomodulatory, regulatory and others functions. Contents of the isolate were determined electrophoretically and by its biological activity. Cationic whey protein isolate included lactoperoxidase, lactoferrin, pancreatic RNase, lysozyme and angeogenin. The given isolate significantly has an antioxidant effect in model experimental systems in vitro and therefore may be considered as a factor that can adjust the intensity of lipid oxidation. In model solutions products of lipid oxidation were obtained by oxidation of phosphatidylcholine by hydrogen peroxide in the presence of a source of iron. The composition of the reaction mixture: 0,4 mM H2O2; 50 mcM of hemin; 2 mg/ml L-alpha-phosphatidylcholine from soybean (Sigma, German). Lipid peroxidation products were formed during the incubation of the reaction mixture for two hours at 37 degrees C. In our studies rats in the adaptation period immediately after isolation from the nest obtained from food given orally native cationic whey protein isolate at the concentration three times higher than in fresh cow's milk. On the manifestation of the antioxidant activity of cationic whey protein isolate in vivo evidence decrease of lipid peroxidation products concentration in the blood of rats from the experimental group receipt whey protein isolate in dos 0,6 mg/g for more than 20% (pwhey protein isolate has an

  19. Entropy-Driven Clustering in Tetrahedrally Bonded Multinary Materials

    Science.gov (United States)

    Zawadzki, Paweł; Zakutayev, Andriy; Lany, Stephan

    2015-03-01

    Compositional inhomogeneities in multielemental materials typically form due to lowering of the energy relative to the homogeneous phase. Here, we demonstrate an entropy-driven mechanism in the zinc-blende derived cation-substituted multinary compounds Cu2SnS3 (CTS) and Cu2ZnSnS4 (CZTS). Using a motif-based model Hamiltonian and Monte Carlo simulations, we find that disorder leads to a redistribution of the structural motifs in such a way to create cation clustering. The associated formation of (sub-) nanometer-scale compositional inhomogeneities can cause potential fluctuations with detrimental consequences for photovoltaic applications.

  20. Cation distribution and mixing thermodynamics in Fe/Ni thiospinels

    Science.gov (United States)

    Haider, Saima; Grau-Crespo, Ricardo; Devey, Antony J.; de Leeuw, Nora H.

    2012-07-01

    The structural analogy between Ni-doped greigite minerals (Fe3S4) and the (Fe, Ni)S clusters present in biological enzymes has led to suggestions that these minerals could have acted as catalysts for the origin of life. However, little is known about the distribution and stability of Ni dopants in the greigite structure. We present here a theoretical investigation of mixed thiospinels (Fe1-xNix)3S4, using a combination of density functional theory (DFT) calculations and Monte Carlo simulations. We find that the equilibrium distribution of the cations deviates significantly from a random distribution: at low Ni concentrations, Ni dopants are preferably located in octahedral sites, while at higher Ni concentrations the tetrahedral sites become much more favourable. The thermodynamic mixing behaviour between greigite and polydymite (Ni3S4) is dominated by the stability field of violarite (FeNi2S4), for which the mixing enthalpy exhibits a deep negative minimum. The analysis of the free energy of mixing shows that Ni doping of greigite is very unstable with respect to the formation of a separate violarite phase. The calculated variation of the cubic cell parameter with composition is found to be non-linear, exhibiting significant deviation from Vegard’s law, but in agreement with experiment.

  1. Nanostructured silver and platinum modified carbon fiber microelectrodes coated with nafion for H2O2 determination

    OpenAIRE

    Vladimir Halouzka; Petr Jakubec; Cenek Gregor; Dalibor Jancik; Gabriela Valaskova; Kyriakos Papadopoulos; Theodor Triantis; Jan Hrbac

    2010-01-01

    Carbon fiber microelectrodes equipped with nanostructured metals(platinum and silver) and covered with a Nafion layer constitutesensitive H2O2 sensors. Metallic layers on carbon fibers wereprepared by surfactant assisted electrodeposition. In the case ofsilver, the procedure leads to coating which is composed of porous,partially aggregated and crystalline deposits containing silvernanoparticles. The electrodeposition of platinum leads to carbonfiber decorated with clusters of platinum nanopar...

  2. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  3. Small angle neutron scattering studies on the interaction of cationic surfactants with bovine serum albumin

    Indian Academy of Sciences (India)

    Nuzhat Gull; S Chodankar; V K Aswal; Kabir-Ud-Din

    2008-11-01

    The structure of the protein–surfactant complex of bovine serum albumin (BSA) and cationic surfactants has been studied by small angle neutron scattering. At low concentrations, the CTAB monomers are observed to bind to the protein leading to an increase in its size. On the other hand at high concentrations, surfactant molecules aggregate along the unfolded polypeptide chain of the protein resulting in the formation of a fractal structure representing a necklace model of micelle-like clusters randomly distributed along the polypeptide chain. The fractal dimension as well as the size and number of micelles attached to the complex have been determined.

  4. A complementary palette of NanoCluster Beacons.

    Science.gov (United States)

    Obliosca, Judy M; Babin, Mark C; Liu, Cong; Liu, Yen-Liang; Chen, Yu-An; Batson, Robert A; Ganguly, Mainak; Petty, Jeffrey T; Yeh, Hsin-Chih

    2014-10-28

    NanoCluster Beacons (NCBs), which use few-atom DNA-templated silver clusters as reporters, are a type of activatable molecular probes that are low-cost and easy to prepare. While NCBs provide a high fluorescence enhancement ratio upon activation, their activation colors are currently limited. Here we report a simple method to design NCBs with complementary emission colors, creating a set of multicolor probes for homogeneous, separation-free detection. By systematically altering the position and the number of cytosines in the cluster-nucleation sequence, we have tuned the activation colors of NCBs to green (C8-8, 460 nm/555 nm); yellow (C5-5, 525 nm/585 nm); red (C3-4, 580 nm/635 nm); and near-infrared (C3-3, 645 nm/695 nm). At the same NCB concentration, the activated yellow NCB (C5-5) was found to be 1.3 times brighter than the traditional red NCB (C3-4). Three of the four colors (green, yellow, and red) were relatively spectrally pure. We also found that subtle changes in the linker sequence (down to the single-nucleotide level) could significantly alter the emission spectrum pattern of an NCB. When the length of linker sequences was increased, the emission peaks were found to migrate in a periodic fashion, suggesting short-range interactions between silver clusters and nucleobases. Size exclusion chromatography results indicated that the activated NCBs are more compact than their native duplex forms. Our findings demonstrate the unique photophysical properties and environmental sensitivities of few-atom DNA-templated silver clusters, which are not seen before in common organic dyes or luminescent crystals. PMID:25299363

  5. Silver and Co-Ni sulphoarsenides from the Kongsberg silver deposit, Norway

    Science.gov (United States)

    Kullerud, Kåre; Kotková, Jana; Škoda, Radek

    2015-04-01

    The historical silver mines at Kongsberg, Norway, are world-famous for spectacular samples of thread silver exhibited at numerous mineralogical museums. More than 100 minerals have been reported from the deposit, including native elements (Ag, Au, As, Cu, S, C), sulphides, sulphosalts, selenides, arsenides, carbonates, sulphates, arsenates and halides, in addition to a range of silicate minerals (Neumann, 1944; Johnsen, 1986, 1987; Bancroft et al., 2001). However, documentation of the minerals using state-of-the-art methods such as electron microprobe, with implications for the genesis of the deposit, is largely missing. In our contribution, we present new data on the compositional variations of silver and sulphoarsenides from the silver deposit. Most of the ore minerals studied here occur in calcite veins in the hosting gneiss. For some samples, however, fluorite is the dominating vein mineral associated with the ore minerals. Mineral textures show that native silver formed during at least two separate stages. The earliest generation of native silver is typically represented by euhedral to subhedral crystals, up to 1 mm long. These crystals frequently contain rounded inclusions of acanthite, chalcopyrite and polybasite, and they are commonly rimmed by a zone consisting of Co-Ni-Fe bearing sulphoarsenides. The later generation of native silver occurs as fracture fillings, often enclosing the earlier Ag generation with its rim of sulphoarsenides. Native silver shows significant variations in Hg, Au and Sb contents. Concentrations of up to 20 wt% Hg and up to 2.7 wt% Sb in silver have been measured during the present study. Dyscrasite and allargentum have also been observed in association with native silver. Neumann (1944) reported auriferous silver with up to 50 % Au. The sulphoarsenides rimming the crystals of the first silver generation vary in composition along the cobaltite-gersdorffite series with approximate limiting compositions Ni0.8Fe0.2AsS and Co0.51Ni0

  6. Cluster Evaluation of Density Based Subspace Clustering

    OpenAIRE

    Sembiring, Rahmat Widia; Zain, Jasni Mohamad

    2010-01-01

    Clustering real world data often faced with curse of dimensionality, where real world data often consist of many dimensions. Multidimensional data clustering evaluation can be done through a density-based approach. Density approaches based on the paradigm introduced by DBSCAN clustering. In this approach, density of each object neighbours with MinPoints will be calculated. Cluster change will occur in accordance with changes in density of each object neighbours. The neighbours of each object ...

  7. Clustering with Spectral Methods

    OpenAIRE

    Gaertler, Marco

    2002-01-01

    Grouping and sorting are problems with a great tradition in the history of mankind. Clustering and cluster analysis is a small aspect in the wide spectrum. But these topics have applications in most scientific disciplines. Graph clustering is again a little fragment in the clustering area. Nevertheless it has the potential for new pioneering and innovative methods. One such method is the Markov Clustering presented by van Dongen in 'Graph Clustering by Flow Simulation'. We investigated the qu...

  8. Sparse Convex Clustering

    OpenAIRE

    Wang, Binhuan; Zhang, Yilong; Sun, Wei; Fang, Yixin

    2016-01-01

    Convex clustering, a convex relaxation of k-means clustering and hierarchical clustering, has drawn recent attentions since it nicely addresses the instability issue of traditional nonconvex clustering methods. Although its computational and statistical properties have been recently studied, the performance of convex clustering has not yet been investigated in the high-dimensional clustering scenario, where the data contains a large number of features and many of them carry no information abo...

  9. Transparent conducting silver nanowire networks

    CERN Document Server

    van de Groep, Jorik; Polman, Albert; 10.1021/nl301045a

    2013-01-01

    We present a transparent conducting electrode composed of a periodic two-dimensional network of silver nanowires. Networks of Ag nanowires are made with wire diameters of 45-110 nm and pitch of 500, 700 and 1000 nm. Anomalous optical transmission is observed, with an averaged transmission up to 91% for the best transmitting network and sheet resistances as low as 6.5 {\\Omega}/sq for the best conducting network. Our most dilute networks show lower sheet resistance and higher optical transmittance than an 80 nm thick layer of ITO sputtered on glass. By comparing measurements and simulations we identify four distinct physical phenomena that govern the transmission of light through the networks: all related to the excitation of localized surface plasmons and surface plasmon polaritons on the wires. The insights given in this paper provide the key guidelines for designing high-transmittance and low-resistance nanowire electrodes for optoelectronic devices, including thin-film solar cells. For these latter, we disc...

  10. Silver Nanoparticles and Mitochondrial Interaction

    Directory of Open Access Journals (Sweden)

    Eriberto Bressan

    2013-01-01

    Full Text Available Nanotechnology has gone through a period of rapid growth, thus leading to the constant increase in the application of engineered nanomaterials in daily life. Several different types of nanoparticles have been engineered to be employed in a wide array of applications due to their high surface to volume ratio that leads to unique physical and chemical properties. So far, silver nanoparticles (AgNps have been used in many more different medical devices than any other nanomaterial, mainly due to their antimicrobial properties. Despite the promising advantages posed by using AgNps in medical applications, the possible health effects associated with the inevitable human exposure to AgNps have raised concerns as to their use since a clear understanding of their specific interaction with biological systems has not been attained yet. In light of such consideration, aim of the present work is the morphological analysis of the intracellular behavior of AgNps with a diameter of 10 nm, with a special attention to their interaction with mitochondria.

  11. In vitro percutaneous penetration and characterization of silver from silver-containing textiles

    Directory of Open Access Journals (Sweden)

    Bianco C

    2015-03-01

    Full Text Available Carlotta Bianco,1 Sanja Kezic,2 Matteo Crosera,1 Vesna Svetličić,3 Suzana Šegota,3 Giovanni Maina,4 Canzio Romano,5 Francesca Larese,6,7 Gianpiero Adami11Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy; 2Academic Medical Center, Coronel Institute, University of Amsterdam, Amsterdam, the Netherlands; 3Laboratory for Bioelectrochemistry and Surface Imaging, Division for Marine and Environmental Research, Ruder Boškovic Institute, Zagreb, Croatia; 4Department of Clinical and Biological Sciences, University of Turin, Turin, Italy; 5Department of Public and Pediatric Health Sciences, University of Turin, Turin, Italy; 6Unit of Occupational Medicine, University of Trieste, Trieste, Italy; 7Department of Medical Sciences, University of Trieste, Trieste, ItalyAbstract: The objective of this study was to determine the in vitro percutaneous penetration of silver and characterize the silver species released from textiles in different layers of full thickness human skin. For this purpose, two different wound dressings and a garment soaked in artificial sweat were placed in the donor compartments of Franz cells for 24 hours. The concentration of silver in the donor phase and in the skin was determined by an electrothermal atomic absorption spectrometer (ET-AAS and by inductively coupled plasma mass spectrometer (ICP-MS. The characterization of silver species in the textiles and in the skin layers was made by scanning electron microscopy with integrated energy dispersive X-ray spectroscopy (SEM-EDX. Additionally, the size distribution of silver nanoparticles in the textiles was performed by atomic force microscopy (AFM. On the surface of all investigated materials, silver nanoparticles of different size and morphology were found. Released silver concentrations in the soaking solutions (ie, exposure concentration ranged from 0.7 to 4.7 µg/mL (0.6–4.0 µg/cm2, fitting the bactericidal range. Silver and silver

  12. Sintered silver joints via controlled topography of electronic packaging subcomponents

    Science.gov (United States)

    Wereszczak, Andrew A.

    2014-09-02

    Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device.

  13. In situ SU-8 silver nanocomposites

    Directory of Open Access Journals (Sweden)

    Søren V. Fischer

    2015-07-01

    Full Text Available Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post-exposure soft bake steps at 95 °C. A further high-temperature treatment at 300 °C resulted in the formation of densely homogeneously distributed silver nanoparticles in the photoresist matrix. No particle growth or agglomeration of nanoparticles is observed at this point. The reported new in situ silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5 µm is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concentration. The fabricated silver nanocomposites exhibit high plasmonic responses suitable for the development of new optoelectronic and optical sensing devices.

  14. Cytotoxicity and genotoxicity of biogenic silver nanoparticles

    Science.gov (United States)

    Lima, R.; Feitosa, L. O.; Ballottin, D.; Marcato, P. D.; Tasic, L.; Durán, N.

    2013-04-01

    Biogenic silver nanoparticles with 40.3 ± 3.5 nm size and negative surface charge (- 40 mV) were prepared with Fusarium oxysporum. The cytotoxicity of 3T3 cell and human lymphocyte were studied by a TaliTM image-based cytometer and the genotoxicity through Allium cepa and comet assay. The results of BioAg-w (washed) and BioAg-nw (unwashed) biogenic silver nanoparticles showed cytotoxicity exceeding 50 μg/mL with no significant differences of response in 5 and 10 μg/mL regarding viability. Results of genotoxicity at concentrations 5.0 and 10.0 ug/mL show some response, but at concentrations 0.5 and 1.0 μg/mL the washed and unwashed silver nanoparticles did not present any effect. This in an important result since in tests with different bacteria species and strains, including resistant, MIC (minimal inhibitory concentration) had good answers at concentrations less than 1.9 μg/mL. This work concludes that biogenic silver nanoparticles may be a promising option for antimicrobial use in the range where no cyto or genotoxic effect were observed. Furthermore, human cells were found to have a greater resistance to the toxic effects of silver nanoparticles in comparison with other cells.

  15. Silver superlens using antisymmetric surface plasmon modes.

    Science.gov (United States)

    Lee, Wook-Jae; Kim, Jae-Eun; Park, Hae Yong; Lee, Myung-Hyun

    2010-03-15

    Silver lenses having super-resolution are analyzed in terms of antisymmetric modes of surface plasmon which have the ability to amplify evanescent waves in UV region. Antisymmetric surface plasmon modes excited by subwavelength grating enhances the resolution and contrast of silver superlens. By using a 20 nm-thick silver superlens, the half-pitch resolution of approximately lambda(0)/8 can be achieved with good contrast at a free space wavelength of 435 nm. The resolution of silver superlens can also be improved using shorter illumination wavelength. We show that the thinner the lens, the better the imaging ability of the silver superlens due to the excitation of antisymmetric surface plasmon modes of higher propagation wave vectors. The thickness of lens is varied from 20 to 40 nm in a three layer system, SiO(2)-Ag-SiO(2). Obtained results illustrate that practical application for patterning periodic structures with good contrast and penetration depth can be achieved by using antisymmetric surface plasmon modes. PMID:20389562

  16. Characterization of antibacterial silver coated yarns.

    Science.gov (United States)

    Pollini, M; Russo, M; Licciulli, A; Sannino, A; Maffezzoli, A

    2009-11-01

    Surface treatments of textile fibers and fabrics significantly increase their performances for specific biomedical applications. Nowadays, silver is the most used antibacterial agent with a number of advantages. Among them, it is worth to note the high degree of biocompatibility, an excellent resistance to sterilization conditions, antibacterial properties with respect to different bacteria associated with a long-term of antibacterial efficiency. However, there are only a few antibacterial fibres available, mainly synthetic with high production cost and limited effectiveness. Cotton yarns with antimicrobial properties are most suitable for wound healing applications and other medical treatments thanks to their excellent moisture absorbance while synthetic based fibres are most suitable for industrial applications such as automotive tapestry and air filters. The silver-coated fibers were developed applying an innovative and low cost silver deposition technique for natural and synthetic fibers or yarns. The structure and morphology of the silver nanoclusters on the fibers was observed by scanning electron microscopy (SEM), atomic force microscopy analysis (AFM) and XRD analysis, and quantitatively confirmed by thermogravimetric analysis (TGA) measurements. Good silver coating stability has been confirmed performing several industrial washing. Antimicrobial tests with Escherichia coli were performed. PMID:19526328

  17. The Antimicrobial Action of Silver Halides in Calcium Phosphate

    OpenAIRE

    Kalniņa, D; Gross, K; Onufrijevs, P.; Daukšta, E; Nikolajeva, V; Stankeviciute, Z; Kareiva, A.

    2015-01-01

    Silver halides represent a yet unexplored avenue for imparting antimicrobial activity to calcium phosphates. Negtively charged silver halide colloids (AgI, AgBr and AgCl) were added to synthesized amorphous calcium phosphate. Concurrent melting of silver halides and crystallization to carbonated apatite at 700 oC increased the silver halide surface area available to bacteria and formed a lower solubility apatite. The effect of the matrix solubility on antimicrobial response could ...

  18. SURFACE ENHANCED RAMAN SPECTRA FROM OXYGEN ON SILVER

    OpenAIRE

    Pettenkofer, C.; Pockrand, I.; Otto, A.

    1983-01-01

    Silver is an important catalyst for the epoxidation of ethylene and the production of formaldehyd from methanol. It is not yet known with certainty which form of adsorbed oxygen on silver is the catalytically active one. Therefore we have started to study the adsorption of oxygen on silver films by Raman spectroscopy. From previous investigations, especially from UPS work /1/, we know that at low exposures of ground state molecular oxygen, oxygen sticks on evaporated silver films only at defe...

  19. Nanoscale characterization of thin immersion silver coatings on copper substrates

    OpenAIRE

    Török, T. I.; Csik, A.; Hakl, J.; Vad, K.; KÖvÉr, L.; Tóth, J.; Mészáros, S.; Kun, É.; Sós, D.

    2015-01-01

    Microelectronic-grade copper foils were immersion silver plated in a home-made non-cyanide alkaline silver nitrate - thiosulfate solution and in two commercially available industrial baths via contact reductive precipitation. The concentration depth profiles of the freshly deposited silver layers were afterwards analyzed at nanoscale resolution by means of Secondary Neutral Mass Spectrometry (SNMS) and Glow Discharge Optical Emission Spectroscopy (GDOES). The thickness of deposited silver lay...

  20. Morphology and mechanical properties of antimicrobial polyamide/silver composites

    OpenAIRE

    Radheshkumar, C.; Münstedt, Helmut

    2005-01-01

    Silver filled antimicrobial polymers were produced from composites comprising polyamide and elementary silver powder possessing various specific surface area (SSA) by melt compounding. Different concentrations (2%, 4% and 8%) of the silver powder were incorporated in the polyamide to investigate the effect of silver loading on the mechanical properties. As the water uptake imparts antimicrobial properties, the influence of the diffused water on the mechanical properties of the compos...