WorldWideScience

Sample records for cationic ruthenium complex

  1. Luminescence quenching of trisbipyridyl ruthenium complex by oxopiperidine cation insodium dodecylsulfate and aerosol OT

    International Nuclear Information System (INIS)

    A study was made on the influence of effective electron acceptor-oxopiperidine cation, immobilized of the surface of micelle anion surfactants, on luminescence quenching of tristipyridyl ruthenium complex. It was revealed that this method enabled to determine reliably the critical concentration of micelle formation of anion surfactants

  2. Study of the emission oxidative reactions of ruthenium (II) complex by cationic compounds in anionic micelles

    International Nuclear Information System (INIS)

    The oxidative quenching of the emission of the tetraanionic complex tris (4,4' dicarboxylate - 2,2' - bipyridine ruthenium (II) in aqueous solution, by both organic and inorganic compounds in presence of anionic detergents, above and below the critical micelle concentration is studied. The organic cations, the inorganic ion and detergents used are shown. (M.J.C.)

  3. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: Structure and application as latent catalyst in olefin metathesis

    KAUST Repository

    Rouen, Mathieu

    2014-09-11

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions.

  4. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: structure and application as latent catalyst in olefin metathesis.

    Science.gov (United States)

    Rouen, Mathieu; Queval, Pierre; Falivene, Laura; Allard, Jessica; Toupet, Loïc; Crévisy, Christophe; Caijo, Frédéric; Baslé, Olivier; Cavallo, Luigi; Mauduit, Marc

    2014-10-13

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2 -NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions.

  5. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: structure and application as latent catalyst in olefin metathesis.

    Science.gov (United States)

    Rouen, Mathieu; Queval, Pierre; Falivene, Laura; Allard, Jessica; Toupet, Loïc; Crévisy, Christophe; Caijo, Frédéric; Baslé, Olivier; Cavallo, Luigi; Mauduit, Marc

    2014-10-13

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2 -NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions. PMID:25212827

  6. Arene ruthenium complexes as anticancer agents

    OpenAIRE

    Süss-Fink, Georg

    2012-01-01

    Neutral or cationic arene ruthenium complexes providing both hydrophilic as well as hydrophobic properties due to the robustness of the ruthenium–arene unit hold a high potential for the development of metal-based anticancer drugs. Mononuclear arene ruthenium complexes containing P- or N-donor ligands or N,N-, N,O- or O,O-chelating ligands, dinuclear arene ruthenium systems with adjustable organic linkers, trinuclear arene ruthenium clusters containing an oxo cap, tetranuclear arene ruthenium...

  7. Polycations XX: New Monodentate Cationic Ligands and Their Coordination with Ruthenium for the Construction of Complexes Expressing Enhanced Interaction with DNA

    Directory of Open Access Journals (Sweden)

    Leslie Babukutty

    2012-01-01

    Full Text Available Prior investigations from this laboratory concerned with the preparation of new types of organic cations for a variety of biological and nonbiological applications have been extended to the preparation of cation-bearing ligands with nitrogen coordinating sites for use in complexation reactions with ruthenium cores. The syntheses of new cationic ligands as well as ruthenium complexes bearing them are reported here. The introduction of these new types of ligands is intended to provide to the complexes an enhanced ability to interact with DNA, and thereby to have the potential to be enhanced antitumor agents. Preliminary observations of their interactions with DNA are presented.

  8. Cationic ruthenium-cyclopentadienyl-diphosphine complexes as catalysts for the allylation of phenols with allyl alcohol: relation between structure and catalytic performance in O- vs. C-allylation

    NARCIS (Netherlands)

    van Rijn, J.A.; Lutz, M.; von Chrzanowski, L.S.; Spek, A.L.; Bouwman, E.; Drent, E.

    2009-01-01

    A new catalytic method has been investigated to obtain either O- or C-allylated phenolic products using allyl alcohol or diallyl ether as the allyl donor. With the use of new cationic ruthenium(II) complexes as catalyst, both reactions can be performed with good selectivity. Active cationic Ru(II) c

  9. Lipid bilayers decorated with photosensitive ruthenium complexes

    OpenAIRE

    Bahreman, Azadeh

    2013-01-01

    In this thesis the thermal- and photo-substitution behavior of polypyridyl ruthenium complexes is described at the surface of lipid bilayers and in homogeneous solutions. It is shown that the successive thermal binding and light-induced unbinding of the cationic ruthenium complex at the surface of the lipid bilayer requires negatively charged liposomes and ruthenium complexes containing moderately hindered N-N bidentate ligands. Our results in homogeneous solution show that changing the steri...

  10. Lipid bilayers decorated with photosensitive ruthenium complexes

    NARCIS (Netherlands)

    Bahreman, Azadeh

    2013-01-01

    In this thesis the thermal- and photo-substitution behavior of polypyridyl ruthenium complexes is described at the surface of lipid bilayers and in homogeneous solutions. It is shown that the successive thermal binding and light-induced unbinding of the cationic ruthenium complex at the surface of t

  11. Cationic ruthenium alkylidene catalysts bearing phosphine ligands

    OpenAIRE

    Endo, Koji; Grubbs, Robert H.

    2016-01-01

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bear-ing bulky phosphine ligands. Simple ligand exchange using silver(I) salts of non-coordinating or weakly coordinating anions pro-vided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported...

  12. Pyrrolyl substituted allenylidene complexes of ruthenium

    OpenAIRE

    Winter, Rainer; Hartmann, Stephan; Sarkar, Biprajit; Lissner, Falk

    2004-01-01

    Pyrrolyl and indolyl substituted allenylidene complexes of ruthenium have been prepared from the trapping of cationic trans-[Cl(dppm)2Ru[double bond, length as m-dash]C[double bond, length as m-dash]C[double bond, length as m-dash]C[double bond, length as m-dash]CH2]+ with various pyrroles or N-methylindole. The reaction is rationalized as involving regioselective attack of the organometallic electrophile on the electron-rich heterocycle followed by proton migration to the terminal [double bo...

  13. Synthesis of cyclopentadienyl ruthenium complexes bearing pendant chelating picolinates through an electrophilic precursor

    OpenAIRE

    Streu, Craig; Carroll, Patrick J.; Kohli, Rakesh K.; Meggers, Eric

    2008-01-01

    This note reports the facile synthesis of two ruthenium cyclopentadienyl half-sandwich complexes functionalized with coordinating α-picolinates. The synthetic approach involves the (η5-chloromethylcyclopentadienyl)(η6-benzene)ruthenium(II) cation as a useful common building block for cyclopentadienyl complexes bearing anchored ligands.

  14. Synthesis and resolution of Planar-Chiral Ruthenium-Palladium complexes with ECE pincer ligands

    NARCIS (Netherlands)

    Bonnet, S.A.; Li, J.; Siegler, M.A.M.; von Chrzanowski, L.S.; Spek, A.L.; van Koten, G.; Klein Gebbink, R.J.M.

    2009-01-01

    Feel the pinch! Planar-chiral, cationic, ruthenium-palladium complexes based on 6,1-coordinated ECE pincer ligands are synthesized as racemic mixtures by reacting ECE-palladium complexes and [Ru(C5R5)(MeCN)3]+ arenophiles (R=H or Me). Chiral resolution of the cationic complexes was achieved by using

  15. Photochemically Induced Isomerisation of Ruthenium Polypyridyl Complexes

    OpenAIRE

    Fanni, Stefano; Weldon, Frances M.; Hammarström, Leif; Mukhtar, Emad; Browne, Wesley R.; Keyes, Tia E.; Vos, Johannes G.

    2001-01-01

    The synthesis and characterisation of a series of ruthenium polypyridyl complexes containing pyridyltriazole ligands in different coordination modes are described. The electrochemical and electronic properties of the compounds with respect to the coordination mode of the pyridyltriazole ligand are reported. Upon photolysis of the complex containing the 1-methyl-3-(pyridin-2-yl)-1,2,4-triazole ligand, irreversible ligand isomerisation is observed.

  16. Metallic ruthenium nanoparticles derived from arene ruthenium complexes: synthesis, characterization and applications

    OpenAIRE

    Khan, Farooq-Ahmad; Süss-Fink, Georg

    2012-01-01

    The present work deals with the preparation of ruthenium nanoparticles using an organometallic approach. In the first part, the synthesis of ruthenium nanoparticles stabilized by mesogenic isonicotinic ester ligands is presented. We have been interested in the use of long-chain isonicotinic esters as lipohilic components in order to increase the anticancer activity of arene ruthenium complexes, while using them as stabilizers for ruthenium nanoparticles with the aim of exploring self-organiz...

  17. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes

    DEFF Research Database (Denmark)

    Poulsen, Carina Storm; Madsen, Robert

    2003-01-01

    Enyne metathesis combines an alkene and an alkyne into a 1,3-diene. The first enyne metathesis reaction catalyzed by a ruthenium carbene complex was reported in 1994. This review covers the advances in this transformation during the last eight years with particular emphasis on methodology...

  18. Carbon nanotubes dispersed in aqueous solution by ruthenium(ii) polypyridyl complexes.

    Science.gov (United States)

    Huang, Kewei; Saha, Avishek; Dirian, Konstantin; Jiang, Chengmin; Chu, Pin-Lei E; Tour, James M; Guldi, Dirk M; Martí, Angel A

    2016-07-21

    Cationic ruthenium(ii) polypyridyl complexes with appended pyrene groups have been synthesized and used to disperse single-walled carbon nanotubes (SWCNT) in aqueous solutions. To this end, planar pyrene groups enable association by means of π-stacking onto carbon nanotubes and, in turn, the attachment of the cationic ruthenium complexes. Importantly, the ionic nature of the ruthenium complexes allows the formation of stable dispersions featuring individualized SWCNTs in water as confirmed in a number of spectroscopic and microscopic assays. In addition, steady-state photoluminescence spectroscopy was used to probe the excited state interactions between the ruthenium complexes and SWCNTs. These studies show that the photoluminescence of both, that is, of the ruthenium complexes and of SWCNTs, are quenched when they interact with each other. Pump-probe transient absorption experiments were performed to shed light onto the nature of the photoluminescence quenching, showing carbon nanotube-based bands with picosecond lifetimes, but no new bands which could be unambigously assigned to photoinduced charge transfer process. Thus, from the spectroscopic data, we conclude that quenching of the photoluminescence of the ruthenium complexes is due to energy transfer to proximal SWCNTs. PMID:27353007

  19. Half-sandwich trihydrido ruthenium complexes

    OpenAIRE

    Osipov, Alexandr L.; Gutsulyak, Dmitry V.; Kuzmina, Lyudmila G.; Judith A. K. Howard; Lemenovskii, Dmitry A.; Süss-Fink, Georg; Nikonov, Georgii I.

    2009-01-01

    This paper reports facile preparation of half-sandwich trihydrido complexes of ruthenium based on the reactions of the readily available precursors [Cp(R3P)Ru(NCCH3)2][PF6] with LiAlH4. The target complexes were characterized by spectroscopic methods and X-ray structure analysis of Cp(PhPri2P)RuH3.

  20. An asymmetric trihydrido-bridged arene ruthenium complex

    OpenAIRE

    Vieille-Petit, Ludovic; Therrien, Bruno; Süss-Fink, Georg

    2009-01-01

    Reaction of [Ru(η6-indane)(H2O)3]2+ and [Ru(η6-C6Me6)(H2O)3]2+ with NaBH4 in water gives a mixture of three triple hydrido-bridged arene ruthenium cations [(η6-arene)Ru(μ-H)3Ru(η6-arene′)]+ (arene=indane and hexamethylbenzene; arene′=indane and hexamethylbenzene). After treatment with NaBF4, the three complexes are separated by column chromatography and the asymmetrical [(η6-indane)Ru(μ-H)3Ru(η6-C6Me6)][BF4] (cation 1a) can be isolated in moderate yield. 1a decomposes in solution to give the ...

  1. Anticancer Activities of Mononuclear Ruthenium(II) Coordination Complexes

    OpenAIRE

    Motswainyana, William M.; Ajibade, Peter A.

    2015-01-01

    Ruthenium compounds are highly regarded as potential drug candidates. The compounds offer the potential of reduced toxicity and can be tolerated in vivo. The various oxidation states, different mechanism of action, and the ligand substitution kinetics of ruthenium compounds give them advantages over platinum-based complexes, thereby making them suitable for use in biological applications. Several studies have focused attention on the interaction between active ruthenium complexes and their po...

  2. Carbon nanotubes dispersed in aqueous solution by ruthenium(ii) polypyridyl complexes

    Science.gov (United States)

    Huang, Kewei; Saha, Avishek; Dirian, Konstantin; Jiang, Chengmin; Chu, Pin-Lei E.; Tour, James M.; Guldi, Dirk M.; Martí, Angel A.

    2016-07-01

    Cationic ruthenium(ii) polypyridyl complexes with appended pyrene groups have been synthesized and used to disperse single-walled carbon nanotubes (SWCNT) in aqueous solutions. To this end, planar pyrene groups enable association by means of π-stacking onto carbon nanotubes and, in turn, the attachment of the cationic ruthenium complexes. Importantly, the ionic nature of the ruthenium complexes allows the formation of stable dispersions featuring individualized SWCNTs in water as confirmed in a number of spectroscopic and microscopic assays. In addition, steady-state photoluminescence spectroscopy was used to probe the excited state interactions between the ruthenium complexes and SWCNTs. These studies show that the photoluminescence of both, that is, of the ruthenium complexes and of SWCNTs, are quenched when they interact with each other. Pump-probe transient absorption experiments were performed to shed light onto the nature of the photoluminescence quenching, showing carbon nanotube-based bands with picosecond lifetimes, but no new bands which could be unambigously assigned to photoinduced charge transfer process. Thus, from the spectroscopic data, we conclude that quenching of the photoluminescence of the ruthenium complexes is due to energy transfer to proximal SWCNTs.Cationic ruthenium(ii) polypyridyl complexes with appended pyrene groups have been synthesized and used to disperse single-walled carbon nanotubes (SWCNT) in aqueous solutions. To this end, planar pyrene groups enable association by means of π-stacking onto carbon nanotubes and, in turn, the attachment of the cationic ruthenium complexes. Importantly, the ionic nature of the ruthenium complexes allows the formation of stable dispersions featuring individualized SWCNTs in water as confirmed in a number of spectroscopic and microscopic assays. In addition, steady-state photoluminescence spectroscopy was used to probe the excited state interactions between the ruthenium complexes and SWCNTs

  3. New arene ruthenium complexes with planar chirality

    OpenAIRE

    Therrien, Bruno; Süss-Fink, Georg

    2009-01-01

    1,2,4-Trimethyl-cyclohexadiene reacts with RuCl3 • nH2O in refluxing ethanol to afford quantitatively [RuCl2(1,2,4-C6H3Me3)]2 (1), the coordination of 1,2,4-trimethylbenzene to the ruthenium atom introducing planar chirality at the η6-arene ligand. The dinuclear complex 1 reacts with two equivalents of triphenylphosphine (PPh3) to give quantitatively, as a racemic mixture of enantiomers, [RuCl2(1,2,4-C6H3Me3)(PPh3)] (2), the structure of which has been determined by a single-crystal X-ray str...

  4. Conversion of oxido-bridged dinuclear ruthenium complex to dicationic dinitrosyl ruthenium complex using proton and nitric oxide: completion of NO reduction cycle.

    OpenAIRE

    Arikawa, Yasuhiro; Matsumoto, Naoki; Asayama, Taiki; Umakoshi, Keisuke; Onishi, Masayoshi

    2011-01-01

    The hydroxido-bridged dinuclear ruthenium complex 4, which is supported by Tp ligands, has been prepared from protonation of the oxido-bridged dinuclear ruthenium complex 3. Additional protonation of 4, affording the aqua-bridged dinuclear ruthenium complex 5 in situ, and subsequent treatment with NO gave rise to the dicationic dinitrosyl complex 2. These indicate completion of the NO reduction cycle on the dinuclear ruthenium complex.

  5. Design and development of polynuclear ruthenium and platinum polypyridyl complexes in search of new anticancer agents

    OpenAIRE

    Schilden, Karlijn van der

    2006-01-01

    The research described in this Ph.D. Thesis has been devoted to the design and development of polynuclear polypyridyl ruthenium and ruthenium-platinum complexes in search of new anticancer agents. A variety of polynuclear ruthenium and ruthenium-platinum complexes has been synthesized with a long and flexible linker. The complexes are characterized and have been studied for anticancer activity. The ruthenium unit of the dinuclear complexes varies in molecular structure, which may result in di...

  6. Design and development of polynuclear ruthenium and platinum polypyridyl complexes in search of new anticancer agents

    NARCIS (Netherlands)

    Schilden, Karlijn van der

    2006-01-01

    The research described in this Ph.D. Thesis has been devoted to the design and development of polynuclear polypyridyl ruthenium and ruthenium-platinum complexes in search of new anticancer agents. A variety of polynuclear ruthenium and ruthenium-platinum complexes has been synthesized with a long an

  7. Agostic interaction and intramolecular proton transfer from the protonation of dihydrogen ortho metalated ruthenium complexes

    OpenAIRE

    Toner, Andrew; Matthes, Jochen; Gründemann, Stephan; Limbach, Hans-Heinrich; Chaudret, Bruno; Clot, Eric; Sabo-Etienne, Sylviane

    2007-01-01

    Protonation of the ortho-metalated ruthenium complexes RuH(H2)(X)(PiPr3)2 [X = 2-phenylpyridine (ph-py) (1), benzoquinoline (bq) (2)] and RuH(CO)(ph-py)(PiPr3)2 (3) with [H(OEt2)2]+[BAr′4]− (BAr′4 = [(3,5-(CF3)2C6H3)4B]) under H2 atmosphere yields the corresponding cationic hydrido dihydrogen ruthenium complexes [RuH(H2)(H-X)(PiPr3)2][BAr′4] [X = phenylpyridine (ph-py) (1-H); benzoquinoline (bq) (2-H)] and the carbonyl complex [RuH(CO)(H-ph-py)(PiPr3)2][BAr′4] (3-H). The complexes accommodate...

  8. Bimetallic ruthenium–tin chemistry: Synthesis and molecular structure of arene ruthenium complexes containing trichlorostannyl ligands

    OpenAIRE

    Therrien, Bruno; Thai, Trieu-Tien; Freudenreich, Julien; Süss-Fink, Georg; Shapovalov, Sergey S.; Pasynskii, Alexandr A.; Plasseraud, Laurent

    2012-01-01

    A series of neutral, anionic and cationic arene ruthenium complexes containing the trichlorostannyl ligand have been synthesised from SnCl2 and the corresponding arene ruthenium dichloride dimers [(η6-arene)Ru(μ2-Cl)Cl]2 (arene = C6H6, PriC6H4Me). While the reaction with triphenylphosphine and stannous chloride only gives the neutral mono(trichlorostannyl) complexes [(η6-C6H6)Ru(PPh3)(SnCl3)Cl] (1) and [(η6-PriC6H4Me)Ru(PPh3)(SnCl3)Cl] (2), the neutral di(trichlorostannyl) complex [(η6-PriC6H...

  9. Ruthenium-based light harvesting complexes

    OpenAIRE

    Breivogel, Aaron

    2014-01-01

    Polypyridylkomplexe von Ruthenium(II) besitzen eine Vielzahl von Anwendungen, z. B. in Farbstoff-sensibilisierten Solarzellen und als Photokatalysatoren. [Ru(bpy)3]2+ ist einer der prominentesten Ruthenium(II)-Komplexe und besitzt langlebige angeregte 3MLCT-Zustände mit einer Lebensdauer von 1 µs und einer Lumineszenz-Quantenausbeute von 10%. [Ru(bpy)3]2+ ist chiral und kann Stereoisomere bilden, wenn die Liganden unsymmetrisch substituiert sind oder im Falle von oligonuklearen rac/meso-Kompl...

  10. Molecular dinitrogen complexes of ruthenium(II) porphyrins

    International Nuclear Information System (INIS)

    The existence of both mono- and bis(nitrogen) complexes of ruthenium have been previously established. Details on a series of complexes are presented herein, and results of an x-ray crystallographic study of Ru(TMP) (THF) (N2) are reported. 30 references, 4 tables

  11. DNA three-way junction-ruthenium complex assemblies

    OpenAIRE

    Irvoas, Joris; Noirot, Arielle; Chouini-Lalanne, Nadia; Reynes, Olivier; Sartor, Valérie

    2013-01-01

    Three-way junction building blocks were designed to construct novel 2D ruthenium-DNA assemblies. Discrete three - branched DNA motifs were formed with 1 to 3 sticky ends of 14-, 20- and/or 24-mer nucleotides. Hybridization with the complementary mono Ru-DNA conjugates afforded the formation of a family of three-way assemblies with 1 to 3 peripheral ruthenium complexes. The use of sticky ends of different lengths allowed us to modulate the number of metallic complexes introduced and also to ex...

  12. Binuclear ruthenium(II) complexes for amyloid fibrils recognition

    Energy Technology Data Exchange (ETDEWEB)

    Hanczyc, Piotr, E-mail: piotr.hanczyc@chalmers.se

    2014-12-05

    Highlights: • Interactions of binuclear ruthenium(II) complexes with amyloid fibrils. • Dimer ruthenium(II) compounds are sensitive amyloid fibrils biomarkers. • Recognition of amyloid-chromophore adducts by two-photon excited emission. - Abstract: Metal–organic compounds represent a unique class of biomarkers with promising photophysical properties useful for imaging. Here interactions of insulin fibrils with two binuclear complexes [μ-(11,11′-bidppz)(phen){sub 4}Ru{sub 2}]{sup 4+} (1) and [μ-C4(cpdppz)(phen){sub 4}Ru{sub 2}]{sup 4+} (2) are studied by linear dichroism (LD) and fluorescence. These ruthenium(II) compounds could provide a new generation of amyloid binding chromophores with long lived lifetimes, good luminescence quantum yields for the bound molecules and photo-stability useful in multiphoton luminescence imaging.

  13. Nanoscaled carborane ruthenium(II)-arene complex inducing lung cancer cells apoptosis

    OpenAIRE

    Yan Hong; Ye Hongde; Wu Chunhui; Zhang Gen; Wang Xuemei

    2011-01-01

    Abstract Background The new ruthenium(II)-arene complex, which bearing a carborane unit, ruthenium and ferrocenyl functional groups, has a novel versatile synthetic chemistry and unique properties of the respective material at the nanoscale level. The ruthenium(II)-arene complex shows significant cytotoxicity to cancer cells and tumor-inhibiting properties. However, ruthenium(II)-arene complex of mechanism of anticancer activity are scarcely explored. Therefore, it is necessary to explore rut...

  14. Photodissociation Spectroscopy of Ruthenium Polypyridyl Complexes in Vacuo

    Science.gov (United States)

    Xu, Shuang; Smith, James; Weber, J. Mathias

    Photoelectrochemical water oxidation is a direct way to produce solar fuels from renewable sources. Since this reaction has a high reaction barrier, a cost-effective catalyst is necessary. Ruthenium polypyridyl complexes are promising catalysts for water oxidation. However, the mechanism of catalytic action is not well understood. One major difficulty of a mechanistic understanding is the complexity of reactive solutions under turnover conditions. To circumvent this problem, we applied electronic photodissociation spectroscopy in the UV and visible spectral range to a series of mass selected ruthenium polypyridyl complex ions in vacuo. The ions in this work are of the form [RuII-L]2+, where RuII represents ruthenium(II)-bipyridine-terpyridine, a prototype catalyst belonging to the ruthenium-polypyridyl family. By varying the ligand L, we were able to study the ligand influence on the photophysical properties of the complex. The cases where L = (H2O)1 , 2 , 3 are of particular interest because they are directly related to an intermediate in the catalytic cycle for water oxidation. Our experiment in vacuo is an essential complement to experiments in solution and provides unique information for understanding the photophysics and photochemistry of these complexes on a molecular level.

  15. Molecular Models of Ruthenium(II) Organometallic Complexes

    Science.gov (United States)

    Coleman, William F.

    2007-01-01

    This article presents the featured molecules for the month of March, which appear in the paper by Ozerov, Fafard, and Hoffman, and which are related to the study of the reactions of a number of "piano stool" complexes of ruthenium(II). The synthesis of compound 2a offers students an alternative to the preparation of ferrocene if they are only…

  16. Controlling the binding of dihydrogen using ruthenium complexes containing N-mono-functionalised 1,4,7-triazacyclononane ligand systems.

    Science.gov (United States)

    Gott, Andrew L; McGowan, Patrick C; Podesta, Thomas J

    2008-07-28

    Pendant arm macrocycles derived from 1,4,7-triazacyclononane were reacted with RuHCl(CO)(PPh(3))(3) and RuHCl(PPh(3))(3) to yield air-stable cationic ruthenium hydrides that were characterised by a variety of techniques, including X-ray crystallography. Protonation of the metal hydride complexes with a proton source yielded eta(2)-dihydrogen complexes. The lifetime of the dihydrogen ligand was effected by a judicious choice of ancillary ligands.

  17. Controlling the binding of dihydrogen using ruthenium complexes containing N-mono-functionalised 1,4,7-triazacyclononane ligand systems.

    Science.gov (United States)

    Gott, Andrew L; McGowan, Patrick C; Podesta, Thomas J

    2008-07-28

    Pendant arm macrocycles derived from 1,4,7-triazacyclononane were reacted with RuHCl(CO)(PPh(3))(3) and RuHCl(PPh(3))(3) to yield air-stable cationic ruthenium hydrides that were characterised by a variety of techniques, including X-ray crystallography. Protonation of the metal hydride complexes with a proton source yielded eta(2)-dihydrogen complexes. The lifetime of the dihydrogen ligand was effected by a judicious choice of ancillary ligands. PMID:18615220

  18. Arene ruthenium complexes with monoanionic carborane ligand [9-SMe2-7,8-C2B9H10]-

    International Nuclear Information System (INIS)

    Cation ruthenium complexes [(η-arene)Ru(η-9-SMe2-7,8-C2B9H10)]+ (arene = C6H6 (1), 1, 3, 5 - C6H3Me3 (2), Me = methyl), containing carborane ligand, were prepared with the yield of ∼ 50% by interaction between salt Na[9-SMe2-7,8-C2B9H10] and complexes [(η - arene)RuCl2]2. Products of the reactions were characterized by the methods of elementary analysis and 1H, 11B NMR. According to X-ray diffraction analysis data complex cation 1 has a sandwich structure. Distances from ruthenium atom to plane C2B3 in carborane ligand and to plane C6 of arene make up 1.630 and 1.732 A, respectively

  19. Agostic interaction and intramolecular proton transfer from the protonation of dihydrogen ortho metalated ruthenium complexes.

    Science.gov (United States)

    Toner, Andrew; Matthes, Jochen; Gründemann, Stephan; Limbach, Hans-Heinrich; Chaudret, Bruno; Clot, Eric; Sabo-Etienne, Sylviane

    2007-04-24

    Protonation of the ortho-metalated ruthenium complexes RuH(H(2))(X)(P(i)Pr(3))(2) [X = 2-phenylpyridine (ph-py) (1), benzoquinoline (bq) (2)] and RuH(CO)(ph-py)(P(i)Pr(3))(2) (3) with [H(OEt(2))(2)](+)[BAr'(4)](-) (BAr'(4) = [(3,5-(CF(3))(2)C(6)H(3))(4)B]) under H(2) atmosphere yields the corresponding cationic hydrido dihydrogen ruthenium complexes [RuH(H(2))(H-X)(P(i)Pr(3))(2)][BAr'(4)] [X = phenylpyridine (ph-py) (1-H); benzoquinoline (bq) (2-H)] and the carbonyl complex [RuH(CO)(H-ph-py)(P(i)Pr(3))(2)][BAr'(4)] (3-H). The complexes accommodate an agostic C H interaction characterized by NMR and in the case of 1-H by x-ray diffraction. Fluxional processes involve the hydride and dihydrogen ligands in 1-H and 2-H and the rotation of the phenyl ring displaying the agostic interaction in 1-H and 3-H. NMR studies (lineshape analysis of the temperature-dependent NMR spectra) and density functional theory calculations are used to understand these processes. Under vacuum, one equivalent of dihydrogen can be removed from 1-H and 2-H leading to the formation of the corresponding cationic ortho-metalated complexes [Ru(H(2))(THF)(X)(P(i)Pr(3))(2)](+) [X = ph-py (1-THF), bq (2-THF)]. The reaction is fully reversible. Density functional theory calculations and NMR data give information about the reversible mechanism of C H activation in these ortho-metalated ruthenium complexes. Our study highlights the subtle interplay between key ligands such as hydrides, sigma-dihydrogen, and agostic bonds, in C H activation processes. PMID:17360384

  20. Topoisomerase II poisoning by indazole and imidazole complexes of ruthenium

    Indian Academy of Sciences (India)

    Y N Vashisht Gopal; Anand K Kondapi

    2001-06-01

    Trans-imidazolium (bis imidazole) tetrachloro ruthenate (RuIm) and trans-indazolium (bis indazole) tetrachloro ruthenate (RuInd) are ruthenium coordination complexes, which were first synthesized and exploited for their anticancer activity. These molecules constitute two of the few most effective anticancer ruthenium compounds. The clinical use of these compounds however was hindered due to toxic side effects on the human body. Our present study on topoisomerase II poisoning by these compounds shows that they effectively poison the activity of topoisomerase II by forming a ternary cleavage complex of DNA, drug and topoisomerase II. The thymidine incorporation assays show that the inhibition of cancer cell proliferation correlates with topoisomerase II poisoning. The present study on topoisomerase II poisoning by these two compounds opens a new avenue for renewing further research on these compounds. This is because they could be effective lead candidates for the development of more potent and less toxic ruthenium containing topoisomerase II poisons. Specificity of action on this molecular target may reduce the toxic effects of these ruthenium-containing molecules and thus improve their therapeutic index.

  1. Ruthenium Complexes as NO Donors for Vascular Relaxation Induction

    Directory of Open Access Journals (Sweden)

    Renata Galvão de Lima

    2014-07-01

    Full Text Available Nitric oxide (NO donors are substances that can release NO. Vascular relaxation induction is among the several functions of NO, and the administration of NO donors is a pharmacological alternative to treat hypertension. This review will focus on the physicochemical description of ruthenium-derived NO donor complexes that release NO via reduction and light stimulation. In particular, we will discuss the complexes synthesized by our research group over the last ten years, and we will focus on the vasodilation and arterial pressure control elicited by these complexes. Soluble guanylyl cyclase (sGC and potassium channels are the main targets of the NO species released from the inorganic compounds. We will consider the importance of the chemical structure of the ruthenium complexes and their vascular effects.

  2. In Situ Catalyst Modification in Atom Transfer Radical Reactions with Ruthenium Benzylidene Complexes.

    Science.gov (United States)

    Lee, Juneyoung; Grandner, Jessica M; Engle, Keary M; Houk, K N; Grubbs, Robert H

    2016-06-01

    Ruthenium benzylidene complexes are well-known as olefin metathesis catalysts. Several reports have demonstrated the ability of these catalysts to also facilitate atom transfer radical (ATR) reactions, such as atom transfer radical addition (ATRA) and atom transfer radical polymerization (ATRP). However, while the mechanism of olefin metathesis with ruthenium benzylidenes has been well-studied, the mechanism by which ruthenium benzylidenes promote ATR reactions remains unknown. To probe this question, we have analyzed seven different ruthenium benzylidene complexes for ATR reactivity. Kinetic studies by (1)H NMR revealed that ruthenium benzylidene complexes are rapidly converted into new ATRA-active, metathesis-inactive species under typical ATRA conditions. When ruthenium benzylidene complexes were activated prior to substrate addition, the resulting activated species exhibited enhanced kinetic reactivity in ATRA with no significant difference in overall product yield compared to the original complexes. Even at low temperature, where the original intact complexes did not catalyze the reaction, preactivated catalysts successfully reacted. Only the ruthenium benzylidene complexes that could be rapidly transformed into ATRA-active species could successfully catalyze ATRP, whereas other complexes preferred redox-initiated free radical polymerization. Kinetic measurements along with additional mechanistic and computational studies show that a metathesis-inactive ruthenium species, generated in situ from the ruthenium benzylidene complexes, is the active catalyst in ATR reactions. Based on data from (1) H, (13)C, and (31)P NMR spectroscopy and X-ray crystallography, we suspect that this ATRA-active species is a RuxCly(PCy3)z complex.

  3. Evidence for Cation-Controlled Excited-State Localization in a Ruthenium Polypyridyl Compound.

    Science.gov (United States)

    Beauvilliers, Evan E; Meyer, Gerald J

    2016-08-01

    The visible absorption and photoluminescence (PL) properties of the four neutral ruthenium diimine compounds [Ru(bpy)2(dcb)] (B2B), [Ru(dtb)2(dcb)] (D2B), [Ru(bpy)2(dcbq)] (B2Q), and [Ru(dtb)2(dcbq)] (D2Q), where bpy is 2,2'-bipyridine, dcb is 4,4'-(CO2(-))2-bpy, dtb is 4,4'-(tert-butyl)2-bpy, and dcbq is 4,4'-(CO2(-))2-2,2'-biquinoline, are reported in the presence of Lewis acidic cations present in fluid solutions at room temperature. In methanol solutions, the measured spectra were insensitive to the presence of these cations, while in acetonitrile a significant red shift in the PL spectra (≤1400 cm(-1)) was observed consistent with stabilization of the metal-to-ligand charge transfer (MLCT) excited state through Lewis acid-base adduct formation. No significant spectral changes were observed in control experiments with the tetrabutylammonium cation. Titration data with Li(+), Na(+), Mg(2+), Ca(2+), Zn(2+), Al(3+), Y(3+), and La(3+) showed that the extent of stabilization saturated at high cation concentration with magnitudes that scaled roughly with the cation charge-to-size ratio. The visible absorption spectra of D2Q was particularly informative due to the presence of two well-resolved MLCT absorption bands: (1) Ru → bpy, λmax ≈ 450 nm; and (2) Ru → dcbq, λmax ≈ 540 nm. The higher-energy band blue-shifted and the lower-energy band red-shifted upon cation addition. The PL intensity and lifetime of the excited state of B2B first increased with cation addition without significant shifts in the measured spectra, behavior attributed to a cation-induced change in the localization of the emissive excited state from bpy to dcb. The importance of excited-state localization and stabilization for solar energy conversion is discussed. PMID:27391279

  4. Spectroscopic investigation on the interaction of ruthenium complexes with tumor specific lectin, jacalin

    Science.gov (United States)

    Ayaz Ahmed, Khan Behlol; Reshma, Elamvazhuthi; Mariappan, Mariappan; Anbazhagan, Veerappan

    2015-02-01

    Several ruthenium complexes are regarded as anticancer agents and considered as an alternative to the widely used platinum complexes. Owing to the preferential interaction of jacalin with tumor-associated T-antigen, we report the interaction of jacalin with four ruthenium complex namely, tris(1,10-phenanthroline)ruthenium(II)chloride, bis(1,10-phenanthroline)(N-[1,10]phenanthrolin-5-yl-pyrenylmethanimine)ruthenium(II)chloride, bis(1,10-phenanthroline)(dipyrido[3,2-a:2‧,3‧-c]-phenazine)ruthenium(II)chloride, bis(1,10-phenanthroline)(11-(9-acridinyl)dipyrido[3,2-a:2‧,3‧-c]phenazine)ruthenium(II) chloride. Fluorescence spectroscopic analysis revealed that the ruthenium complexes strongly quenched the intrinsic fluorescence of jacalin through a static quenching procedure, and a non-radiative energy transfer occurred within the molecules. Association constants obtained for the interaction of different ruthenium complexes with jacalin are in the order of 105 M-1, which is in the same range as those obtained for the interaction of lectin with carbohydrate and hydrophobic ligand. Each subunit of the tetrameric jacalin binds one ruthenium complex, and the stoichiometry is found to be unaffected by the presence of the specific sugar, galactose. In addition, agglutination activity of jacalin is largely unaffected by the presence of the ruthenium complexes, indicating that the binding sites for the carbohydrate and the ruthenium complexes are different. These results suggest that the development of lectin-ruthenium complex conjugate would be feasible to target malignant cells in chemo-therapeutics.

  5. Gas-phase chemistry of ruthenium and rhodium carbonyl complexes.

    Science.gov (United States)

    Cao, Shiwei; Wang, Yang; Qin, Zhi; Fan, Fangli; Haba, Hiromitsu; Komori, Yukiko; Wu, Xiaolei; Tan, Cunmin; Zhang, Xin

    2016-01-01

    Short-lived ruthenium and rhodium isotopes were produced from a (252)Cf spontaneous fission (SF) source. Their volatile carbonyl complexes were formed in gas-phase reactions in situ with the carbon-monoxide containing gas. A gas-jet system was employed to transport the volatile carbonyls from the recoil chamber to the chemical separation apparatus. The gas-phase chemical behaviors of these carbonyl complexes were studied using an online low temperature isothermal chromatography (IC) technique. Long IC columns made up of FEP Teflon were used to obtain the chemical information of the high-volatile Ru and Rh carbonyls. By excluding the influence of precursor effects, short-lived isotopes of (109-110)Ru and (111-112)Rh were used to represent the chemical behaviours of Ru and Rh carbonyls. Relative chemical yields of about 75% and 20% were measured for Ru(CO)5 and Rh(CO)4, respectively, relative to the yields of KCl aerosols transported in Ar gas. The adsorption enthalpies of ruthenium and rhodium carbonyl complexes on a Teflon surface were determined to be around ΔHads = -33(+1)(-2) kJ mol(-1) and -36(+2)(-1) kJ mol(-1), respectively, by fitting the breakthrough curves of the corresponding carbonyl complexes with a Monte Carlo simulation program. Different from Mo and Tc carbonyls, a small amount of oxygen gas was found to be not effective for the chemical yields of ruthenium and rhodium carbonyl complexes. The general chemical behaviors of short-lived carbonyl complexes of group VI-IX elements were discussed, which can be used in the future study on the gas-phase chemistry of superheavy elements - Bh, Hs, and Mt carbonyls. PMID:26573993

  6. Thiocyanate linkage isomerism in a ruthenium polypyridyl complex.

    Science.gov (United States)

    Brewster, Timothy P; Ding, Wendu; Schley, Nathan D; Hazari, Nilay; Batista, Victor S; Crabtree, Robert H

    2011-12-01

    Ruthenium polypyridyl complexes have seen extensive use in solar energy applications. One of the most efficient dye-sensitized solar cells produced to date employs the dye-sensitizer N719, a ruthenium polypyridyl thiocyanate complex. Thiocyanate complexes are typically present as an inseparable mixture of N-bound and S-bound linkage isomers. Here we report the synthesis of a new complex, [Ru(terpy)(tbbpy)SCN][SbF(6)] (terpy = 2,2';6',2''-terpyridine, tbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine), as a mixture of N-bound and S-bound thiocyanate linkage isomers that can be separated based on their relative solubility in ethanol. Both isomers have been characterized spectroscopically and by X-ray crystallography. At elevated temperatures the isomers equilibrate, the product being significantly enriched in the more thermodynamically stable N-bound form. Density functional theory analysis supports our experimental observation that the N-bound isomer is thermodynamically preferred, and provides insight into the isomerization mechanism. PMID:22066656

  7. Synthesis and Characterization of Ruthenium Amidinate Complexes as Precursors for Vapor Deposition

    OpenAIRE

    Gordon, Roy Gerald; Lim, Booyong S.; Li, Zhengwen; Aaltonen, Titta; Li, Huazhi

    2008-01-01

    Three new ruthenium amidinate complexes were prepared: tris(diisopropylacetamidinato)-ruthenium(III), Ru(iPrNC(Me)NiPr)3 4; bis(diisopropyl-acetamidinato)ruthenium(II) dicarbonyl, Ru(iPrNC(Me)NiPr)2(CO)2 5; and bis(ditert- butylacetamidinato)ruthenium(II) dicarbonyl, Ru(tBuNC(Me)NtBu)2(CO)2 6. They have been synthesized and characterized by 1H NMR, TG and X-ray structure analysis. These three complexes were found to be monomeric and air stable. Compound 6 was found to have sufficient volatili...

  8. p-cymene based ruthenium complexes as catalysts

    OpenAIRE

    Fonseca, Joel David Avelino

    2011-01-01

    Tese de mestrado em Química Tecnológica (Química Tecnológica e Qualidade), apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2011 p-Cymene based ruthenium complexes were employed in the alkylation of tbutylamine with phenethyl alcohol by redox neutral alkylation and in the reduction of acetophenone and benzaldehyde by transfer hydrogenation. A range of in situ generated catalysts formed by [RuX2(p-cymene)]2 dimers (X=Cl or I) with dppf, DPEPhos, dippf or P(i- Bu)3 and...

  9. p-Cymene ruthenium thioether complexes

    OpenAIRE

    Winter, Rainer; Cubrilo, Jadranka; Hartenbach, Ingo; Lissner, Falk; Schleid, Thomas; Niemeyer, Mark

    2007-01-01

    Thioethers PhC2H4SMe, PhC3H6SiPr and MeSAllyl form substitutionally labile monomeric adducts (p-cymene)RuCl2(SRR′) (2a–c) upon treatment with the {(p-cymene)RuCl2}2 dimer (p-cymene = η6-MeC6H4iPr-1,4). Pure adducts were obtained by crystallization from CH2Cl2/Et2O, and 2a,c as well as the bis(thioether) complex View the MathML source (3) were studied by X-ray crystallography. The trichloro bridged diruthenium complex View the MathML source is formed as a byproduct in the preparation of 3 and ...

  10. Enantioselective olefin metathesis with cyclometalated ruthenium complexes.

    Science.gov (United States)

    Hartung, John; Dornan, Peter K; Grubbs, Robert H

    2014-09-17

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated.

  11. Enantioselective Olefin Metathesis with Cyclometalated Ruthenium Complexes

    Science.gov (United States)

    2015-01-01

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated. PMID:25137310

  12. Enantioselective olefin metathesis with cyclometalated ruthenium complexes.

    Science.gov (United States)

    Hartung, John; Dornan, Peter K; Grubbs, Robert H

    2014-09-17

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated. PMID:25137310

  13. Ruthenium Cumulenylidene Complexes Bearing Heteroscorpionate Ligands

    OpenAIRE

    Strinitz, Frank

    2014-01-01

    In previous work of the BURZLAFF group, the design of suitable N,N,O ligands for a wide variety of applications ranging from catalysis to bioinorganic model compounds has been extensively investigated. Especially the methyl substituted bis(3,5-dimethylpyrazol-1-yl) acetate (bdmpza) ligand has shown manifold chemistry, comparable to the anionic cyclopentadienyl (Cp) and hydridotris(pyrazol-1-yl)borato (Tp) ligand. In the first part of this thesis the new tricarbonylmanganese(I) complexes be...

  14. Nanoscaled carborane ruthenium(II-arene complex inducing lung cancer cells apoptosis

    Directory of Open Access Journals (Sweden)

    Yan Hong

    2011-02-01

    Full Text Available Abstract Background The new ruthenium(II-arene complex, which bearing a carborane unit, ruthenium and ferrocenyl functional groups, has a novel versatile synthetic chemistry and unique properties of the respective material at the nanoscale level. The ruthenium(II-arene complex shows significant cytotoxicity to cancer cells and tumor-inhibiting properties. However, ruthenium(II-arene complex of mechanism of anticancer activity are scarcely explored. Therefore, it is necessary to explore ruthenium(II-arene complex mechanism of anticancer activity for application in this area. Results In this study, the ruthenium(II-arene complex could significantly induce apoptosis in human lung cancer HCC827 cell line. At the concentration range of 5 μM-100 μM, ruthenium(II-arene complex had obvious cell cytotoxicity effect on HCC827 cells with IC50 values ranging 19.6 ± 5.3 μM. Additionally, our observations demonstrate that the ruthenium(II-arene complex can readily induce apoptosis in HCC827 cells, as evidenced by Annexin-V-FITC, nuclear fragmentation as well as DNA fragmentation. Treatment of HCC827 cells with the ruthenium(II-arene complex resulted in dose-dependent cell apoptosis as indicated by high cleaved Caspase-8,9 ratio. Besides ruthenium(II-arene complex caused a rapid induction of cleaved Caspase-3 activity and stimulated proteolytic cleavage of poly-(ADP-ribose polymerase (PARP in vitro and in vivo. Conclusion In this study, the ruthenium(II-arene complex could significantly induce apoptosis in human lung cancer HCC827 cell line. Treatment of HCC827 cells with the ruthenium(II-arene complex resulted in dose-dependent cell apoptosis as indicated by high cleaved Caspase-8,9 ratio. Besides ruthenium(II-arene complex caused a rapid induction of cleaved Caspase-3 activity and stimulated proteolytic cleavage of poly-(ADP-ribose polymerase (PARP in vitro and in vivo. Our results suggest that ruthenium(II-arene complex could be a candidate for further

  15. Water-soluble ruthenium complexes bearing activity against protozoan parasites.

    Science.gov (United States)

    Sarniguet, Cynthia; Toloza, Jeannette; Cipriani, Micaella; Lapier, Michel; Vieites, Marisol; Toledano-Magaña, Yanis; García-Ramos, Juan Carlos; Ruiz-Azuara, Lena; Moreno, Virtudes; Maya, Juan Diego; Azar, Claudio Olea; Gambino, Dinorah; Otero, Lucía

    2014-06-01

    Parasitic illnesses are major causes of human disease and misery worldwide. Among them, both amebiasis and Chagas disease, caused by the protozoan parasites, Entamoeba histolytica and Trypanosoma cruzi, are responsible for thousands of annual deaths. The lack of safe and effective chemotherapy and/or the appearance of current drug resistance make the development of novel pharmacological tools for their treatment relevant. In this sense, within the framework of the medicinal inorganic chemistry, metal-based drugs appear to be a good alternative to find a pharmacological answer to parasitic diseases. In this work, novel ruthenium complexes [RuCl2(HL)(HPTA)2]Cl2 with HL=bioactive 5-nitrofuryl containing thiosemicarbazones and PTA=1,3,5-triaza-7-phosphaadamantane have been synthesized and fully characterized. PTA was included as co-ligand in order to modulate complexes aqueous solubility. In fact, obtained complexes were water soluble. Their activity against T. cruzi and E. histolytica was evaluated in vitro. [RuCl2(HL4)(HPTA)2]Cl2 complex, with HL4=N-phenyl-5-nitrofuryl-thiosemicarbazone, was the most active compound against both parasites. In particular, it showed an excellent activity against E. histolytica (half maximal inhibitory concentration (IC50)=5.2 μM), even higher than that of the reference drug metronidazole. In addition, this complex turns out to be selective for E. histolytica (selectivity index (SI)>38). The potential mechanism of antiparasitic action of the obtained ruthenium complexes could involve oxidative stress for both parasites. Additionally, complexes could interact with DNA as second potential target by an intercalative-like mode. Obtained results could be considered a contribution in the search for metal compounds that could be active against multiple parasites. PMID:24740394

  16. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids

    Science.gov (United States)

    Naruto, Masayuki; Saito, Susumu

    2015-01-01

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)]+) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru–H]+, which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources. PMID:26314266

  17. Synthesis and catalytic activity of histidine-based NHC ruthenium complexes

    OpenAIRE

    Monney, Angèle; Venkatachalam, Galmari; Albrecht, Martin

    2011-01-01

    Main-chain C,N-protected histidine has been successfully alkylated at both side-chain nitrogens. The corresponding histidinium salt was metallated with ruthenium(II) by a transmetalation procedure, thus providing histidine-derived NHC ruthenium complexes. These bio-inspired comsxsxsplexes show appreciable activity in the catalytic transfer hydrogenation of ketones. peer-reviewed

  18. New nitric oxide donors based on ruthenium complexes

    Directory of Open Access Journals (Sweden)

    C.N. Lunardi

    2009-01-01

    Full Text Available Nitric oxide (NO donors produce NO-related activity when applied to biological systems. Among its diverse functions, NO has been implicated in vascular smooth muscle relaxation. Despite the great importance of NO in biological systems, its pharmacological and physiological studies have been limited due to its high reactivity and short half-life. In this review we will focus on our recent investigations of nitrosyl ruthenium complexes as NO-delivery agents and their effects on vascular smooth muscle cell relaxation. The high affinity of ruthenium for NO is a marked feature of its chemistry. The main signaling pathway responsible for the vascular relaxation induced by NO involves the activation of soluble guanylyl-cyclase, with subsequent accumulation of cGMP and activation of cGMP-dependent protein kinase. This in turn can activate several proteins such as K+ channels as well as induce vasodilatation by a decrease in cytosolic Ca2+. Oxidative stress and associated oxidative damage are mediators of vascular damage in several cardiovascular diseases, including hypertension. The increased production of the superoxide anion (O2- by the vascular wall has been observed in different animal models of hypertension. Vascular relaxation to the endogenous NO-related response or to NO released from NO deliverers is impaired in vessels from renal hypertensive (2K-1C rats. A growing amount of evidence supports the possibility that increased NO inactivation by excess O2- may account for the decreased NO bioavailability and vascular dysfunction in hypertension.

  19. In Situ Catalyst Modification in Atom Transfer Radical Reactions with Ruthenium Benzylidene Complexes.

    Science.gov (United States)

    Lee, Juneyoung; Grandner, Jessica M; Engle, Keary M; Houk, K N; Grubbs, Robert H

    2016-06-01

    Ruthenium benzylidene complexes are well-known as olefin metathesis catalysts. Several reports have demonstrated the ability of these catalysts to also facilitate atom transfer radical (ATR) reactions, such as atom transfer radical addition (ATRA) and atom transfer radical polymerization (ATRP). However, while the mechanism of olefin metathesis with ruthenium benzylidenes has been well-studied, the mechanism by which ruthenium benzylidenes promote ATR reactions remains unknown. To probe this question, we have analyzed seven different ruthenium benzylidene complexes for ATR reactivity. Kinetic studies by (1)H NMR revealed that ruthenium benzylidene complexes are rapidly converted into new ATRA-active, metathesis-inactive species under typical ATRA conditions. When ruthenium benzylidene complexes were activated prior to substrate addition, the resulting activated species exhibited enhanced kinetic reactivity in ATRA with no significant difference in overall product yield compared to the original complexes. Even at low temperature, where the original intact complexes did not catalyze the reaction, preactivated catalysts successfully reacted. Only the ruthenium benzylidene complexes that could be rapidly transformed into ATRA-active species could successfully catalyze ATRP, whereas other complexes preferred redox-initiated free radical polymerization. Kinetic measurements along with additional mechanistic and computational studies show that a metathesis-inactive ruthenium species, generated in situ from the ruthenium benzylidene complexes, is the active catalyst in ATR reactions. Based on data from (1) H, (13)C, and (31)P NMR spectroscopy and X-ray crystallography, we suspect that this ATRA-active species is a RuxCly(PCy3)z complex. PMID:27186790

  20. Near infrared electrochromic variable optical attenuator based on ruthenium complex and polycrystalline tungsten oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jidong; WU Xianguo; YU Hongan; YAN Donghang; WANG Zhiyuan

    2005-01-01

    A near infrared (NIR) electrochromic attenuator based on a dinuclear ruthenium complex and polycrystalline tungsten oxide was fabricated and characterized. The results show that the use of the NIR-absorbing ruthenium complex as a counter electrode material can improve the device performance. By replacing the visible electrochromic ferrocene with the NIR-absorbing ruthenium complex, the optical attenuation at 1550 nm was enhanced from 19.1 to 30.0 dB and color efficiency also increased from 29.2 to 121.2 cm2/C.

  1. Facile synthesis and electrochemical properties of two trinuclear ruthenium complexes based on star-shaped ter-pyridine derivatives

    International Nuclear Information System (INIS)

    Two trinuclear ruthenium complexes [{TolylTerpyRu}3(L3A)].(PF6)9 and [{TolylTerpyRu}3(L3B)].(PF6)9 containing the star-shaped ligands 1,3,5-tris{[4-(2,2:6,2-terpyridinyl)-1-pyridiniumyl]methyl-phenyl}benzene (L3A) and 2,4,6-tris{[4-(2,2:6,2-terpyridinyl)-1-pyridiniumyl]methyl}mesitylene (L3B), respectively, have been synthesized and characterized using electro-spray ionization mass spectrometry, UV-Vis spectroscopy, 1H and 13C NMR spectroscopy. These cationic ligands have been synthesized using a 1,3,5-tri-phenyl-benzene or a mesitylene core and the N-alkylation of the 4-pyridyl group of 4-(4-pyridyl)-2,2:6,2-ter-pyridine (terpy,py). The electrochemical properties of the two trinuclear ruthenium complexes have been compared to analogous dinuclear and mononuclear ruthenium complexes. (authors)

  2. Synthesis, structure and electrochemical properties of some thiosemicarbazone complexes of ruthenium

    OpenAIRE

    Datta, S.; Drew, Michael G B; Bhattacharya, S.

    2011-01-01

    Reaction of salicylaldehyde thiosemicarbazone (L-1), 2-hydroxyacetophenone thiosemicarbazone (L-2) and 2-hydroxynapthaldehyde thiosemicarbazone (L-3) with [Ru(dmso)(4)Cl-2] affords a family of three dimeric complexes (1), (2) and (3) respectively. Crystal structure of the complex (3) has been determined. In these complexes, each monomeric unit consists of one ruthenium center and two thiosemicarbazone ligands, one of which is coordinated to ruthenium as O,N,S-donor and the other as N,S-donor ...

  3. Arene-ruthenium(II) complexes with hydrophilic P-donor ligands: versatile catalysts in aqueous media.

    Science.gov (United States)

    Crochet, Pascale; Cadierno, Victorio

    2014-09-01

    In the last few years there has been increasing interest in the use of water as a reaction medium for catalysis, and therefore in designing water-soluble transition-metal catalysts. Half-sandwich (η(6)-arene)-ruthenium(ii) complexes are a versatile and well-known family of ruthenium compounds that exhibit a rich catalytic and coordination chemistry. This Perspective article focuses on the catalytic applications in aqueous media of (η(6)-arene)-ruthenium(ii) complexes containing water-soluble phosphines, and related hydrophilic P-donor ligands.

  4. Homobimetallic Ruthenium-N-Heterocyclic Carbene Complexes For Olefin Metathesis

    Science.gov (United States)

    Sauvage, Xavier; Demonceau, Albert; Delaude, Lionel

    In this chapter, the synthesis and catalytic activity towards olefin metathesis of homobimetallic ruthenium (Ru)-alkylidene, -cyclodiene or -arene complexes bearing phosphine or N-heterocyclic carbene (NHC) ligands are reviewed. Emphasis is placed on the last category of bimetallic compounds. Three representatives of this new type of molecular scaffold were investigated. Thus, [(p-cymene)Ru(m-Cl)3RuCl (h2-C2H4)(L)] complexes with L = PCy3 (15a), IMes (16a), or IMesCl2 (16b) were prepared. They served as catalyst precursors for cross-metathesis (CM) of various styrene derivatives. These experiments revealed the outstanding aptitude of complex 16a (and to a lesser extent of 16b) to catalyze olefin metathesis reactions. Contrary to monometallic Ru-arene complexes of the [RuCl2(p-cymene)(L)] type, the new homobimetallic species did not require the addition of a diazo compound nor visible light illumination to initiate the ring-opening metathesis of norbornene or cyclooctene. When diethyl 2,2-diallylmalonate and N,N-diallyltosylamide were exposed to 16a,b, a mixture of cycloisomerization and ring-closing metathesis (RCM) products was obtained in a nonselective way. Addition of phenylacetylene enhanced the metathetical activity while completely repressing the cycloisomerization process.

  5. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Concepcion Corbea, Javier Jesus; Chen, Zuofeng; Jurss, Jonah Wesley; Templeton, Joseph L; Hoertz, Paul; Meyer, Thomas J

    2014-10-28

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  6. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    Science.gov (United States)

    Corbea, Javier Jesus Concepcion; Chen, Zuofeng; Jurss, Jonah Wesley; Templeton, Joseph L.; Hoertz, Paul; Meyer, Thomas J.

    2013-09-03

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  7. Ruthenium or osmium complexes and their uses as catalysts for water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Corbea, Javier Jesus Concepcion; Chen, Zoufeng; Jurss, Jonah Wesley; Templeton, Joseph L.; Hoertz, Paul; Meyer, Thomas J.

    2016-06-07

    The present invention provides ruthenium or osmium complexes and their uses as a catalyst for catalytic water oxidation. Another aspect of the invention provides an electrode and photo-electrochemical cells for electrolysis of water molecules.

  8. Editorial of Special Issue Ruthenium Complex: The Expanding Chemistry of the Ruthenium Complexes

    Directory of Open Access Journals (Sweden)

    Ileana Dragutan

    2015-09-01

    Full Text Available Recent trends in Ru complex chemistry are surveyed with emphasis on the development of anticancer drugs and applications in catalysis, polymers, materials science and nanotechnology.

  9. Efficient energy conversion in photochromic ruthenium DMSO complexes.

    Science.gov (United States)

    Rachford, Aaron A; Petersen, Jeffrey L; Rack, Jeffrey J

    2006-07-24

    The photochromic compounds trans- and cis-[Ru(tpy)(Mepic)(dmso)](OSO2CF3) (2 and 3, respectively; tpy is 2,2':6',2"-terpyridine; Mepic is 6-methyl-2-pyridinecarboxylate; dmso is dimethyl sulfoxide) and cis-[Ru(tpy)(Brpic)(dmso)](PF6) (4; Brpic is 6-bromo-2-pyridinecarboxylate) were prepared and characterized by single-crystal X-ray crystallography, electrochemistry, NMR, IR, and UV-vis spectroscopy. The geometry labels refer to the relationship between the carboxylate oxygen of the picolinate ligand and dmso. Electrochemical studies reveal that only the trans isomer shows S-to-O isomerization following oxidation of Ru(II) and O-to-S isomerization following reduction of Ru(III). The cis isomers of both complexes feature reversible one-electron Ru(III/II) couples. All complexes undergo phototriggered S-to-O isomerization following MLCT (metal-to-ligand charge transfer) excitation with quantum yields (Phi(S-->O)) of 0.79 (2), 0.011 (3), and 0.014 (4). The methyl group in 2 promotes isomerization by hindering rotation of the dmso ligand about the Ru-S bond. Computational results support this role for the methyl group. Relative energy calculations show that the barrier to rotation is approximately 8 kcal mol(-1). These results suggest that rotation is an important vibration for isomerization in photochromic ruthenium-dmso complexes. PMID:16842000

  10. Sweetening ruthenium and osmium: organometallic arene complexes containing aspartame.

    Science.gov (United States)

    Gray, Jennifer C; Habtemariam, Abraha; Winnig, Marcel; Meyerhof, Wolfgang; Sadler, Peter J

    2008-09-01

    The novel organometallic sandwich complexes [(eta(6)-p-cymene)Ru(eta(6)-aspartame)](OTf)(2) (1) (OTf = trifluoromethanesulfonate) and [(eta(6)-p-cymene)Os(eta(6)-aspartame)](OTf)(2) (2) incorporating the artificial sweetener aspartame have been synthesised and characterised. A number of properties of aspartame were found to be altered on binding to either metal. The pK(a) values of both the carboxyl and the amino groups of aspartame are lowered by between 0.35 and 0.57 pH units, causing partial deprotonation of the amino group at pH 7.4 (physiological pH). The rate of degradation of aspartame to 3,6-dioxo-5-phenylmethylpiperazine acetic acid (diketopiperazine) increased over threefold from 0.12 to 0.36 h(-1) for 1, and to 0.43 h(-1) for 2. Furthermore, the reduction potential of the ligand shifted from -1.133 to -0.619 V for 2. For the ruthenium complex 1 the process occurred in two steps, the first (at -0.38 V) within a biologically accessible range. This facilitates reactions with biological reductants such as ascorbate. Binding to and activation of the sweet taste receptor was not observed for these metal complexes up to concentrations of 1 mM. The factors which affect the ability of metal-bound aspartame to interact with the receptor site are discussed.

  11. Use of laser induced photoacoustic spectroscopy (LIPAS) to determine equilibrium constants of cation-cation complexes

    International Nuclear Information System (INIS)

    Laser Induced PhotoAcoustic Spectroscopy (LIPAS) is a relatively new, photothermal technique to examine solutions. Studies in the past have shown it to be more sensitive than conventional absorption spectroscopy, while, yielding the same information thus allowing lower concentrations to be used. This study is using LIPAS to examine solutions to determine the equilibrium constants of cation-cation complexes. It has been found that actinyl(V) cations form cation-cation complexes with a variety of cations, including actinyl(VI) cations. The radioactive nature of the actinide elements requires special handling techniques and also require limits be placed on the amount of material that can be used. The sensitivity of some oxidation states of the actinides to oxygen also presents a problem. Preliminary results will be presented for actinyl(V)-actinyl(VI) cation-cation complexes that were studied using a remote LIPAS system incorporating fiber optics for transmission of laser signals

  12. Coordinatively unsaturated ruthenium complexes as efficient alkyneazide cycloaddition catalysts

    KAUST Repository

    Lamberti, Marina

    2012-01-23

    The performance of 16-electron ruthenium complexes with the general formula Cp*Ru(L)X (in which L = phosphine or N-heterocyclic carbene ligand; X = Cl or OCH2CF3) was explored in azidealkyne cycloaddition reactions that afford the 1,2,3- triazole products. The scope of the Cp*Ru(PiPr 3)Cl precatalyst was investigated for terminal alkynes leading to new 1,5-disubstituted 1,2,3-triazoles in high yields. Mechanistic studies were conducted and revealed a number of proposed intermediates. Cp*Ru- (PiPr3)(2-HCCPh)Cl was observed and characterized by 1H, 13C, and 31P NMR at temperatures between 273 and 213 K. A rare example of N,N-κ2-phosphazide complex, Cp*Ru(κ2- iPr3PN3Bn)Cl, was fully characterized, and a single-crystal X-ray diffraction structure was obtained. DFT calculations describe a complete map of the catalytic reactivity with phenylacetylene and/or benzylazide. © 2012 American Chemical Society.

  13. Dinuclear Ruthenium(III)-Ruthenium(IV) Complexes, Having a Doubly Oxido-Bridged and Acetato- or Nitrato-Capped Framework.

    Science.gov (United States)

    Suzuki, Tomoyo; Suzuki, Yutaka; Kawamoto, Tatsuya; Miyamoto, Ryo; Nanbu, Shinkoh; Nagao, Hirotaka

    2016-07-18

    Dinuclear ruthenium complexes in a mixed-valence state of Ru(III)-Ru(IV), having a doubly oxido-bridged and acetato- or nitrato-capped framework, [{Ru(III,IV)(ebpma)}2(μ-O)2(μ-L)](PF6)2 [ebpma = ethylbis(2-pyridylmethyl)amine; L = CH3COO(-) (1), NO3(-) (2)], were synthesized. In aqueous solutions, the diruthenium complex 1 showed multiple redox processes accompanied by proton transfers depending on the pH. The protonated complex of 1, which is described as 1H+, was obtained. PMID:27341408

  14. Tuning oxygen sensitivity of ruthenium complex exploiting silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Osman [Department of Chemistry, Faculty of Science, University of Dicle, Diyarbakır (Turkey); Oter, Ozlem [Department of Chemistry, Faculty of Science, University of Dokuz Eylul, 35397 Buca, Izmir (Turkey); Center for Fabrication and Application of Electronic Materials (EMUM), University of Dokuz Eylul, 35397 Buca, Tinaztepe, Izmir (Turkey); Department of Nanoscience and Nanoengineering, University of Dokuz Eylul, 35397 Buca, Tinaztepe, Izmir (Turkey); Yildirim, Serdar [Center for Fabrication and Application of Electronic Materials (EMUM), University of Dokuz Eylul, 35397 Buca, Tinaztepe, Izmir (Turkey); Department of Metallurgical and Materials Engineering, University of Dokuz Eylul, 35397 Buca, Tinaztepe, Izmir (Turkey); Subasi, Elif [Department of Chemistry, Faculty of Science, University of Dokuz Eylul, 35397 Buca, Izmir (Turkey); Department of Nanoscience and Nanoengineering, University of Dokuz Eylul, 35397 Buca, Tinaztepe, Izmir (Turkey); Ertekin, Kadriye, E-mail: kadriye.ertekin@deu.edu.tr [Department of Chemistry, Faculty of Science, University of Dokuz Eylul, 35397 Buca, Izmir (Turkey); Center for Fabrication and Application of Electronic Materials (EMUM), University of Dokuz Eylul, 35397 Buca, Tinaztepe, Izmir (Turkey); Department of Nanoscience and Nanoengineering, University of Dokuz Eylul, 35397 Buca, Tinaztepe, Izmir (Turkey); Celik, Erdal [Center for Fabrication and Application of Electronic Materials (EMUM), University of Dokuz Eylul, 35397 Buca, Tinaztepe, Izmir (Turkey); Department of Nanoscience and Nanoengineering, University of Dokuz Eylul, 35397 Buca, Tinaztepe, Izmir (Turkey); Department of Metallurgical and Materials Engineering, University of Dokuz Eylul, 35397 Buca, Tinaztepe, Izmir (Turkey); Temel, Hamdi [Department of Chemistry, Faculty of Science, University of Dicle, Diyarbakır (Turkey)

    2014-11-15

    In this study, we utilized silver nanoparticles (Ag NPs) along with ionic liquids as additives for fabrication of polymeric oxygen sensitive fibers. Plasticized polymethyl methacrylate and ethyl cellulose (EC) were used as matrix materials. Fibers and porous films were produced by electrospinning technique. Oxygen induced spectral response of the fluorescent tris(2,2′-bipyridyl) ruthenium(II) chloride (Ru(bipy){sub 3}{sup 2+}) was followed as the analytical signal. Utilization of silver nanoparticles in electrospun polymeric fibers for oxygen sensing purposes resulted with many advantages such as tuned sensitivity, linear calibration plot for larger concentration ranges, increased surface area and enhancement in all sensor dynamics. Linearity of the calibration plot for the offered composition was superior with respect to the previously reported ones. When stored at the ambient air of the laboratory there was no significant drift in intensity after 12 months. Our sensitivity and stability tests are still in progress. - Highlights: • Ag nanoparticles and Ru(II) complex doped together into polymers for the first time for O{sub 2} sensing. • The ionic liquid EMIMBF{sub 4} was used for matrix modification. • Fabricated electrospun nanofibers offered enhanced linearity for a large concentration range. • Exploited polymeric matrix materials and additives provided long-term stability. • Silver nanoparticles tuned oxygen sensitivity and facilitated fabrication process.

  15. A selective, long-lived deep-red emissive ruthenium(II) polypyridine complexes for the detection of BSA.

    Science.gov (United States)

    Babu, Eththilu; Muthu Mareeswaran, Paulpandian; Singaravadivel, Subramanian; Bhuvaneswari, Jayaraman; Rajagopal, Seenivasan

    2014-09-15

    A selective, label free luminescence sensor for bovine serum albumin (BSA) is investigated using ruthenium(II) complexes over the other proteins. Interaction between BSA and ruthenium(II) complexes has been studied using absorption, emission, excited state lifetime and circular dichroism (CD) spectral techniques. The luminescence intensity of ruthenium(II) complexes (I and II), has enhanced at 602 and 613 nm with a large hypsochromic shift of 18 and 5 nm respectively upon addition of BSA. The mode of binding of ruthenium(II) complexes with BSA has analyzed using computational docking studies.

  16. Reactions of a Ruthenium Complex with Substituted N-Propargyl Pyrroles.

    Science.gov (United States)

    Chia, Pi-Yeh; Huang, Shou-Ling; Liu, Yi-Hong; Lin, Ying-Chih

    2016-04-01

    In an investigation into the chemical reactions of N-propargyl pyrroles 1 a-c, containing aldehyde, keto, and ester groups on the pyrrole ring, with [Ru]-Cl ([Ru]=Cp(PPh3 )2 Ru; Cp=C5 H5 ), an aldehyde group in the pyrrole ring is found to play a crucial role in stimulating the cyclization reaction. The reaction of 1 a, containing an aldehyde group, with [Ru]-Cl in the presence of NH4 PF6 yields the vinylidene complex 2 a, which further reacts with allyl amine to give the carbene complex 6 a with a pyrrolizine group. However, if 1 a is first reacted with allyl amine to yield the iminenyne 8 a, then the reaction of 8 a with [Ru]-Cl in the presence of NH4 PF6 yields the ruthenium complex 9 a, containing a cationic pyrrolopyrazinium group, which has been fully characterized by XRD analysis. These results can be adequately explained by coordination of the triple bond of the propargyl group to the ruthenium metal center first, followed by two processes, that is, formation of a vinylidene intermediate or direct nucleophilic attack. Additionally, the deprotonation of 2 a by R4 NOH yields the neutral acetylide complex 3 a. In the presence of NH4 PF6 , the attempted alkylation of 3 a resulted in the formation the Fischer-type amino-carbene complex 5 a as a result of the presence of NH3 , which served as a nucleophile. With KPF6 , the alkylation of 3 a with ethyl and benzyl bromoacetates afforded the disubstituted vinylidene complexes 10 a and 11 a, containing ester groups, which underwent deprotonation reactions to give the furyl complexes 12 a and 13 a, respectively. For 13 a, containing an O-benzyl group, subsequent 1,3-migration of the benzyl group was observed to yield product 14 a with a lactone unit. Similar reactivity was not observed for the corresponding N-propargyl pyrroles 1 b and 1 c, which contained keto and ester groups, respectively, on the pyrrole ring. PMID:26865008

  17. Preparation and Characterization of A New Dinuclear Ruthenium Complex with BDPX Ligand and Its Catalytic Hydrogenation Reactions for Cinnamaldehyde

    Institute of Scientific and Technical Information of China (English)

    TANG,Yuan-You(唐元友); LI,Rui-Xiang(李瑞祥); LI,Xian-Jun(李贤均); WONG,Ning-Bew(黄宁表); TIN,Kim-Chung(田金忠); ZHANG,Zhe-Ying(张哲英); MAK,Thomas C.W.(麦松威)

    2004-01-01

    A new anionic dinuclear ruthenium complex bearing 1,2-bis(diphenylphosphinomethyl)benzene (BDPX)[NH2Et2][{RuCl (BDPX)}2(μ-Cl)3] (1) was synthesized and its structure was determined by an X-ray crystallographic analysis. This result indicated that complex 1 consisted of an anion dinuclear BDPX-Ru and a cationic diethylammonium. The crystal belonged to monoclinic system, C2/c space group with a=3.3552(7) nm, b= 1.8448(4)nm, c=2.4265(5) nm, β= 101.89(3)° and Z=8. The catalytic hydrogenation activities and selectivities of complex 1 for cinnamaldehyde were investigated.

  18. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  19. Cellular delivery of pyrenyl-arene ruthenium complexes by a water-soluble arene ruthenium metalla-cage.

    Science.gov (United States)

    Furrer, Mona Anca; Schmitt, Frédéric; Wiederkehr, Michaël; Juillerat-Jeanneret, Lucienne; Therrien, Bruno

    2012-06-28

    Three pyrenyl-arene ruthenium complexes (M(1)-M(3)) of the general formula [Ru(η(6)-arene-pyrenyl)Cl(2)(pta)] (pta = 1,3,5-triaza-7-phosphaadamantane) have been synthesised and characterised. Prior to the coordination to ruthenium, pyrene was connected to the arene ligand via an alkane chain containing different functional groups: ester (L(1)), ether (L(2)) and amide (L(3)), respectively. Furthermore, the pyrenyl moieties of the M(n) complexes were encapsulated within the hydrophobic cavity of the water soluble metalla-cage, [Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+) (tpt = 2,4,6-tri-(pyridin-4-yl)-1,3,5-triazine; donq = 5,8-dioxydo-1,4-naphthoquinonato), while the arene ruthenium end was pointing out of the cage, thus giving rise to the corresponding host-guest systems [M(n)⊂Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+) ([M(n)⊂cage](6+)). The antitumor activity of the pyrenyl-arene ruthenium complexes (M(n)) and the corresponding host-guest systems [M(n)⊂cage][CF(3)SO(3)](6) were evaluated in vitro in different types of human cancer cell lines (A549, A2780, A2780cisR, Me300 and HeLa). Complex M(2), which contains an ether group within the alkane chain, demonstrated at least a 10 times higher cytotoxicity than the reference compound [Ru(η(6)-p-cymene)Cl(2)(pta)] (RAPTA-C). All host-guest systems [M(n)⊂cage](6+) showed good anticancer activity with IC(50) values ranging from 2 to 8 μM after 72 h exposure. The fluorescence of the pyrenyl moiety allowed the monitoring of the cellular uptake and revealed an increase of uptake by a factor two of the M(2) complex when encapsulated in the metalla-cage [Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+). PMID:22506276

  20. Metal-metal interactions in linear tri-, penta-, hepta-, and nona-nuclear ruthenium string complexes.

    Science.gov (United States)

    Niskanen, Mika; Hirva, Pipsa; Haukka, Matti

    2012-05-01

    Density functional theory (DFT) methodology was used to examine the structural properties of linear metal string complexes: [Ru(3)(dpa)(4)X(2)] (X = Cl(-), CN(-), NCS(-), dpa = dipyridylamine(-)), [Ru(5)(tpda)(4)Cl(2)], and hypothetical, not yet synthesized complexes [Ru(7)(tpta)(4)Cl(2)] and [Ru(9)(ppta)(4)Cl(2)] (tpda = tri-α-pyridyldiamine(2-), tpta = tetra-α-pyridyltriamine(3-), ppta = penta-α-pyridyltetraamine(4-)). Our specific focus was on the two longest structures and on comparison of the string complexes and unsupported ruthenium backboned chain complexes, which have weaker ruthenium-ruthenium interactions. The electronic structures were studied with the aid of visualized frontier molecular orbitals, and Bader's quantum theory of atoms in molecules (QTAIM) was used to study the interactions between ruthenium atoms. The electron density was found to be highest and distributed most evenly between the ruthenium atoms in the hypothetical [Ru(7)(tpta)(4)Cl(2)] and [Ru(9)(ppta)(4)Cl(2)] string complexes.

  1. Ruthenium(II) multi carboxylic acid complexes: chemistry and application in dye sensitized solar cells.

    Science.gov (United States)

    Shahroosvand, Hashem; Nasouti, Fahimeh; Sousaraei, Ahmad

    2014-04-01

    Novel ruthenium multi carboxylic complexes (RMCCs) have been synthesized by using ruthenium nitrosyl nitrate, 1,2,4,5-benzenetetracarboxylic acid (H4btec) and 4,7-diphenyl-1,10-phenanthroline (BPhen) as photosensitizers for titanium dioxide semiconductor solar cells. The complexes were characterized by (1)H-NMR, FT-IR, UV-Vis, ICP and CHN analyses. The reaction details and features were then described. SEM analysis revealed that the penetration of dyes into the pores of the nanocrystalline TiO2 surface was improved by increasing the number of btec units. The solar energy to electricity conversion efficiency of complexes shows that the number of attached carboxylates on a dye has an influence on the photoelectrochemical properties of the dye-sensitized electrode. An incident photon-to-current conversion efficiency (IPCE) of 13% at 510 nm was obtained for ruthenium complexes with three btec units. PMID:24500312

  2. Ruthenium(II) complexes containing quinone based ligands: Synthesis, characterization, catalytic applications and DNA interaction

    Science.gov (United States)

    Anitha, P.; Manikandan, R.; Endo, A.; Hashimoto, T.; Viswanathamurthi, P.

    2012-12-01

    1,2-Naphthaquinone reacts with amines such as semicarbazide, isonicotinylhydrazide and thiosemicarbazide in high yield procedure with the formation of tridentate ligands HLn (n = 1-3). By reaction of ruthenium(II) starting complexes and quinone based ligands HLn (n = 1-3), a series of ruthenium complexes were synthesized and characterized by elemental and spectroscopic methods (FT-IR, electronic, 1H, 13C, 31P NMR and ESI-MS). The ligands were coordinated to ruthenium through quinone oxygen, imine nitrogen and enolate oxygen/thiolato sulfur. On the basis of spectral studies an octahedral geometry may be assigned for all the complexes. Further, the catalytic oxidation of primary, secondary alcohol and transfer hydrogenation of ketone was carried out. The DNA cleavage efficiency of new complexes has also been tested.

  3. PHOTOCHEMICAL CO2 REDUCTION BY RHENUIM AND RUTHENIUM COMPLEXES.

    Energy Technology Data Exchange (ETDEWEB)

    FUJITA,E.; MUCKERMAN, J.T.; TANAKA, K.

    2007-11-30

    Photochemical conversion of CO{sub 2} to fuels or useful chemicals using renewable solar energy is an attractive solution to both the world's need for fuels and the reduction of greenhouse gases. Rhenium(I) and ruthenium(II) diimine complexes have been shown to act as photocatalysts and/or electrocatalysts for CO{sub 2} reduction to CO. We have studied these photochemical systems focusing on the identification of intermediates and the bond formation/cleavage reactions between the metal center and CO{sub 2}. For example, we have produced the one-electron-reduced monomer (i.e. Re(dmb)(CO){sub 3}S where dmb = 4,4'-dimethy-2,2'-bipyridine and S = solvent) either by reductive quenching of the excited states of fac-[Re(dmb)(CO){sub 3}(CH{sub 3}CN)]PF{sub 6} or by photo-induced homolysis of [Re(dmb)(CO){sub 3}]{sub 2}. We previously found that: (1) the remarkably slow dimerization of Re(dmb)(CO){sub 3}S is due to the absence of a vacant coordination site for Re-Re bond formation, and the extra electron is located on the dmb ligand; (2) the reaction of Re(dmb)(CO){sub 3}S with CO{sub 2} forms a CO{sub 2}-bridged binuclear species (CO){sub 3}(dmb)Re-CO(O)-Re(dmb)(CO){sub 3} as an intermediate in CO formation; and (3) the kinetics and mechanism of reactions are consistent with the interaction of the CO{sub 2}-bridged binuclear species with CO{sub 2} to form CO and CO{sub 3}{sup 2-}.

  4. Transfer hydrogenation reactions catalyzed by chiral half-sandwich Ruthenium complexes derived from Proline

    Indian Academy of Sciences (India)

    ARUN KUMAR PANDIA KUMAR; ASHOKA G SAMUELSON

    2016-09-01

    Chiral ruthenium half-sandwich complexes were prepared using a chelating diamine made from proline with a phenyl, ethyl, or benzyl group, instead of hydrogen on one of the coordinating arms. Three of these complexes were obtained as single diastereoisomers and their configuration identified by X-ray crystallography. The complexes are recyclable catalysts for the reduction of ketones to chiral alcohols in water. A ruthenium hydride species is identified as the active species by NMR spectroscopy and isotopic labelling experiments.Maximum enantio-selectivity was attained when a phenyl group was directly attached to the primary amine on the diamine ligand derived from proline.

  5. New cytotoxic and water-soluble bis(2-phenylazopyridine)ruthenium(II) complexes.

    Science.gov (United States)

    Hotze, Anna C G; Bacac, Marina; Velders, Aldrik H; Jansen, Bart A J; Kooijman, Huub; Spek, Anthony L; Haasnoot, Jaap G; Reedijk, Jan

    2003-04-24

    New water-soluble bis(2-phenylazopyridine)ruthenium(II) complexes, all derivatives of the highly cytotoxic alpha-[Ru(azpy)(2)Cl(2)] (alpha denoting the coordinating pairs Cl, N(py), and N(azo) as cis, trans, cis, respectively) have been developed. The compounds 1,1-cyclobutanedicarboxylatobis(2-phenylazopyridine)ruthenium(II), alpha-[Ru(azpy)(2)(cbdca-O,O')] (1), oxalatobis(2-phenylazopyridine)ruthenium(II), alpha-[Ru(azpy)(2)(ox)] (2), and malonatobis(2-phenylazopyridine)ruthenium(II), alpha-[Ru(azpy)(2)(mal)] (3), have been synthesized and fully characterized. X-ray analyses of 1 and 2 are reported, and compound 1 is the first example in which the cbdca ligand is coordinated to a ruthenium center. The cytotoxicity of this series of water-soluble bis(2-phenylazopyridine) complexes has been determined in A2780 human ovarian carcinoma and A2780cisR, the corresponding cisplatin-resistant cell line. For comparison reasons, the cytotoxicity of the complexes alpha-[Ru(azpy)(2)Cl(2)], alpha-[Ru(azpy)(2)(NO(3))(2)], beta-[Ru(azpy)(2)Cl(2)] (beta indicating the coordinating pairs Cl, N(py), and N(azo) as cis, cis, cis, respectively), and beta-[Ru(azpy)(2)(NO(3))(2)] have been determined in this cell line. All the bis(2-phenylazopyridine)ruthenium(II) compounds display a promising cytotoxicity in the A2780 cell line (IC(50) = 0.9-10 microM), with an activity comparable to that of cisplatin and even higher than the activity of carboplatin. Interestingly, the IC(50) values of this series of ruthenium compounds (except the beta isomeric compounds) are similar in the cisplatin-resistant A2780cisR cell line compared to the normal cell line A2780, suggesting that the activity of these compounds might not be influenced by the multifactorial resistance mechanism that affect platinum anticancer agents. PMID:12699392

  6. ONO-pincer ruthenium complex-bound norvaline for efficient catalytic oxidation of methoxybenzenes with hydrogen peroxide.

    Science.gov (United States)

    Yoshida, Ryota; Isozaki, Katsuhiro; Yokoi, Tomoya; Yasuda, Nobuhiro; Sadakane, Koichiro; Iwamoto, Takahiro; Takaya, Hikaru; Nakamura, Masaharu

    2016-08-21

    The enhanced catalytic activity of ruthenium complex-bound norvaline Boc-l-[Ru]Nva-OMe 1, in which the ONO-pincer ruthenium complex Ru(pydc)(terpy) 2 is tethered to the α-side chain of norvaline, has been demonstrated for the oxidation of methoxybenzenes to p-benzoquinones with a wide scope of substrates and unique chemoselectivity. PMID:27314504

  7. Syntheses and Characterization of Ruthenium(II) Tetrakis(pyridine)complexes: An Advanced Coordination Chemistry Experiment or Mini-Project

    Science.gov (United States)

    Coe, Benjamin J.

    2004-01-01

    An experiment for third-year undergraduate a student is designed which provides synthetic experience and qualitative interpretation of the spectroscopic properties of the ruthenium complexes. It involves the syntheses and characterization of several coordination complexes of ruthenium, the element found directly beneath iron in the middle of the…

  8. Functionalisation of bolaamphiphiles with mononuclear bis(2,2 '-bipyridyl)ruthenium(II) complexes for application in self assembled monolayers

    NARCIS (Netherlands)

    Killeen, JS; Browne, WR; Skupin, M; Fuhrhop, JH; Vos, JG

    2003-01-01

    A novel ruthenium(II) polypyridyl complex connected covalently to a bolaamphiphile, containing amide linkages to provide rigidity via hydrogen bonding in the monolayer, has been prepared. The ruthenium( II) complexes of this ligand and of the intermediates in the synthesis were prepared by modi. cat

  9. Transient Spectroscopic Characterization of the Genesis of a Ruthenium Complex Catalyst Supported on Zeolite Y

    Energy Technology Data Exchange (ETDEWEB)

    Ogino, Isao; Gates, Bruce C.; (UCD)

    2010-01-12

    A mononuclear ruthenium complex anchored to dealuminated zeolite HY, Ru(acac)(C{sub 2}H{sub 4}){sup 2+} (acac = acetylacetonate, C{sub 5}H{sub 7}O{sup 2}{sup -}), was characterized in flow reactors by transient infrared (IR) spectroscopy and Ru K edge X-ray absorption spectroscopy. The combined results show how the supported complex was converted into a form that catalyzes ethene conversion to butene. The formation of these species resulted from the removal of acac ligands from the ruthenium (as shown by IR and extended X-ray absorption fine structure (EXAFS) spectra) and the simultaneous decrease in the symmetry of the ruthenium complex, with the ruthenium remaining mononuclear and its oxidation state remaining essentially unchanged (as shown by EXAFS and X-ray absorption near-edge structure spectra). The removal of anionic acac ligands from the ruthenium was evidently compensated by the bonding of other anionic ligands, such as hydride from H2 in the feed stream, to form species suggested to be Ru(H)(C{sub 2}H{sub 4}){sub 2}{sup +}, which is coordinatively unsaturated and inferred to react with ethene, leading to the observed formation of butene in a catalytic process.

  10. Dehydrogenative Synthesis of Imines from Alcohols and Amines Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Maggi, Agnese; Madsen, Robert

    2012-01-01

    A new method for the direct synthesis of imines from alcohols and amines is described where hydrogen gas is liberated. The reaction is catalyzed by the ruthenium N-heterocyclic carbene complex [RuCl2(IiPr)(p-cymene)] in the presence of the ligand DABCO and molecular sieves. The imination can...... to the aldehyde, which stays coordinated to ruthenium. Nucleophilic attack of the amine affords the hemiaminal, which is released from ruthenium and converted into the imine....

  11. New Ruthenium Complexes Based on Tetradentate Bipyridine Ligands for Catalytic Hydrogenation of Esters.

    Science.gov (United States)

    Wang, Fangyuan; Tan, Xuefeng; Lv, Hui; Zhang, Xumu

    2016-08-01

    New bipyridinemethanamine-containing tetradentate ligands and their corresponding ruthenium complexes have been synthesized. The synthesized complexes performed well in the hydrogenation of a variety of esters with high efficiency (TON up to 9700) giving alcohols in good yields. PMID:27385062

  12. Improved antiparasitic activity by incorporation of organosilane entities into half-sandwich ruthenium(II) and rhodium(III) thiosemicarbazone complexes.

    Science.gov (United States)

    Adams, Muneebah; de Kock, Carmen; Smith, Peter J; Land, Kirkwood M; Liu, Nicole; Hopper, Melissa; Hsiao, Allyson; Burgoyne, Andrew R; Stringer, Tameryn; Meyer, Mervin; Wiesner, Lubbe; Chibale, Kelly; Smith, Gregory S

    2015-02-01

    A series of ferrocenyl- and aryl-functionalised organosilane thiosemicarbazone compounds was obtained via a nucleophilic substitution reaction with an amine-terminated organosilane. The thiosemicarbazone (TSC) ligands were further reacted with either a ruthenium dimer [(η(6-i)PrC6H4Me)Ru(μ-Cl)Cl]2 or a rhodium dimer [(Cp*)Rh(μ-Cl)Cl]2 to yield a series of cationic mono- and binuclear complexes. The thiosemicarbazone ligands, as well as their metal complexes, were characterised using NMR and IR spectroscopy, and mass spectrometry. The molecular structure of the binuclear ruthenium(ii) complex was determined by single-crystal X-ray diffraction analysis. The thiosemicarbazones and their complexes were evaluated for their in vitro antiplasmodial activities against the chloroquine-sensitive (NF54) and chloroquine-resistant (Dd2) Plasmodium falciparum strains, displaying activities in the low micromolar range. Selected compounds were screened for potential β-haematin inhibition activity, and it was found that two Rh(iii) complexes exhibited moderate to good inhibition. Furthermore, the compounds were screened for their antitrichomonal activities against the G3 Trichomonas vaginalis strain, revealing a higher percentage of growth inhibition for the ruthenium and rhodium complexes over their corresponding ligand. PMID:25559246

  13. Dehydrogenative Coupling of Primary Alcohols To Form Esters Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Sølvhøj, Amanda Birgitte; Madsen, Robert

    2011-01-01

    The ruthenium complex [RuCl2(IiPr)(p-cymene)] catalyzes the direct condensation of primary alcohols into esters and lactones with the release of hydrogen gas. The reaction is most effective with linear aliphatic alcohols and 1,4-diols and is believed to proceed with a ruthenium dihydride as the c...

  14. Versatile ruthenium complexes based on 2,2'-bipyridine modified peptoids.

    Science.gov (United States)

    Baskin, Maria; Panz, Larisa; Maayan, Galia

    2016-08-16

    Helical peptoids bearing 2,2'-bipyridine form ruthenium complexes via intermolecular binding to linear peptoid strands or intramolecular binding to a cyclic scaffold. Ru(ii) binding promoted changes in the conformational order of the peptoids, and chiral induction from the peptoids to their metal center was observed. PMID:27349289

  15. Amide Synthesis from Alcohols and Amines Catalyzed by Ruthenium N-Heterocyclic Carbene Complexes

    DEFF Research Database (Denmark)

    Dam, Johan Hygum; Osztrovszky, Gyorgyi; Nordstrøm, Lars Ulrik Rubæk;

    2010-01-01

    The direct synthesis of amides from alcohols and amines is described with the simultaneous liberation of dihydrogen. The reaction does not require any stoichiometric additives or hydrogen acceptors and is catalyzed by ruthenium N-heterocyclic carbene complexes. Three different catalyst systems...

  16. Dinuclear ruthenium(II) polypyridyl complexes as single and two-photon luminescence cellular imaging probes.

    Science.gov (United States)

    Xu, Wenchao; Zuo, Jiarui; Wang, Lili; Ji, Liangnian; Chao, Hui

    2014-02-28

    A new series of dinuclear ruthenium(II) polypyridyl complexes, which possess larger π-conjugated systems, good water solubility and pH resistance, and high photostability, were developed to act as single and two-photon luminescence cellular imaging probes. PMID:24418839

  17. Hydrogenation of esters catalyzed by ruthenium PN3-Pincer complexes containing an aminophosphine arm

    KAUST Repository

    Chen, Tao

    2014-08-11

    Hydrogenation of esters under mild conditions was achieved using air-stable ruthenium PN3-pincer complexes containing an aminophosphine arm. High efficiency was achieved even in the presence of water. DFT studies suggest a bimolecular proton shuttle mechanism which allows H2 to be activated by the relatively stable catalyst with a reasonably low transition state barrier. © 2014 American Chemical Society.

  18. Biological properties of novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles

    KAUST Repository

    Novak, Maria S.

    2016-03-09

    Since the discovery that nitric oxide (NO) is a physiologically relevant molecule, there has been great interest in the use of metal nitrosyl compounds as antitumor pharmaceuticals. Particularly interesting are those complexes which can deliver NO to biological targets. Ruthenium- and osmium-based compounds offer lower toxicity compared to other metals and show different mechanisms of action as well as different spectra of activity compared to platinum-based drugs. Novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles were studied to elucidate their cytotoxicity and possible interactions with DNA. Apoptosis induction, changes of mitochondrial transmembrane potential and possible formation of reactive oxygen species were investigated as indicators of NO-mediated damage by flow cytometry. Results suggest that ruthenium- and osmium-nitrosyl complexes with the general formula (indazolium)[cis/trans-MCl4(NO)(1H-indazole)] have pronounced cytotoxic potency in cancer cell lines. Especially the more potent ruthenium complexes strongly induce apoptosis associated with depolarization of mitochondrial membranes, and elevated reactive oxygen species levels. Furthermore, a slight yet not unequivocal trend to accumulation of intracellular cyclic guanosine monophosphate attributable to NO-mediated effects was observed.

  19. Bulky N-Phosphino-Functionalized N-Heterocyclic Carbene Ligands: Synthesis, Ruthenium Coordination Chemistry, and Ruthenium Alkylidene Complexes for Olefin Metathesis.

    Science.gov (United States)

    Brown, Christopher C; Rominger, Frank; Limbach, Michael; Hofmann, Peter

    2015-11-01

    Ruthenium chemistry and applications in catalytic olefin metathesis based on N-phosphino-functionalized N-heterocyclic carbene ligands (NHCPs) are presented. Alkyl NHCP Ru coordination chemistry is described, and access to several potential synthetic precursors for ruthenium alkylidene complexes is outlined, incorporating both trimethylsilyl and phenyl alkylidenes. The Ru alkylidene complexes are evaluated as potential olefin metathesis catalysts and were shown to behave in a latent fashion. They displayed catalytic activity at elevated temperatures for both ring closing metathesis and ring opening metathesis polymerization. PMID:26479425

  20. Bulky N-Phosphino-Functionalized N-Heterocyclic Carbene Ligands: Synthesis, Ruthenium Coordination Chemistry, and Ruthenium Alkylidene Complexes for Olefin Metathesis.

    Science.gov (United States)

    Brown, Christopher C; Rominger, Frank; Limbach, Michael; Hofmann, Peter

    2015-11-01

    Ruthenium chemistry and applications in catalytic olefin metathesis based on N-phosphino-functionalized N-heterocyclic carbene ligands (NHCPs) are presented. Alkyl NHCP Ru coordination chemistry is described, and access to several potential synthetic precursors for ruthenium alkylidene complexes is outlined, incorporating both trimethylsilyl and phenyl alkylidenes. The Ru alkylidene complexes are evaluated as potential olefin metathesis catalysts and were shown to behave in a latent fashion. They displayed catalytic activity at elevated temperatures for both ring closing metathesis and ring opening metathesis polymerization.

  1. Spectroscopic, Thermal and Biological Studies on Some Trivalent Ruthenium and Rhodium NS Chelating Thiosemicarbazone Complexes

    Directory of Open Access Journals (Sweden)

    Vinod K. Sharma

    2007-03-01

    Full Text Available The synthetic, spectroscopic, and biological studies of sixteen ring-substituted 4-phenylthiosemicarbazones and 4-nitrophenyl-thiosemicarbazones of anisaldehyde, 4-chlorobenzaldehyde, 4-fluorobenzaldehyde, and vanillin with ruthenium(III and rhodium(III chlorides are reported here. Their structures were determined on the basis of the elemental analyses, spectroscopic data (IR, electronic, H1 and C13 NMR along with magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses. Electrical conductance measurement revealed a 1:3 electrolytic nature of the complexes. The resulting colored products are monomeric in nature. On the basis of the above studies, three ligands were suggested to be coordinated to each metal atom by thione sulphur and azomethine nitrogen to form low-spin octahedral complexes with ruthenium(III while forming diamagnetic complexes with rhodium(III. Both ligands and their complexes have been screened for their bactericidal activities and the results indicate that they exhibit a significant activity.

  2. Synthesis and Catalytic Activity of a Two-core Ruthenium Carbene Complex: a Unique Catalyst for Ring Closing Metathesis Reaction

    Institute of Scientific and Technical Information of China (English)

    SHAO Ming-bo; WANG Jian-hui

    2011-01-01

    The reaction of a ruthenium carbide complex RuCl2(C:)(PCy3)2 with [H(Et2O)x]+[BF4]- at a molar ratio of 1:2 produced a two-core ruthenium carbene complex,{[RuCl(=HPCy3)(PCy3)]2(μ-Cl)3}+[BF4]-,in the form of a yellow-green crystalline solid in a yield of 94%.This two-core ruthenium complex is a selective catalyst for ring closing metathesis of unsubstituted terminal dienes.More importantly,no isomerized byproduct was observed for N-substrates when the two-core ruthenium complex was used as the catalyst at an elevated temperature(137 ℃),indicating that the complex is a chemo-selective catalyst for ring closing metathesis reactions.

  3. Ruthenium(II) pincer complexes with oxazoline arms for efficient transfer hydrogenation reactions

    KAUST Repository

    Chen, Tao

    2012-08-01

    Well-defined P NN CN pincer ruthenium complexes bearing both strong phosphine and weak oxazoline donors were developed. These easily accessible complexes exhibit significantly better catalytic activity in transfer hydrogenation of ketones compared to their PN 3P analogs. These reactions proceed under mild and base-free conditions via protonation- deprotonation of the \\'NH\\' group in the aromatization-dearomatization process. © 2012 Elsevier Ltd. All rights reserved.

  4. Anionic/cationic complexes in hair care.

    Science.gov (United States)

    O'Lenick, Tony

    2011-01-01

    The formulation of cosmetic products is always more complicated than studying the individual components in aqueous solution. This is because there are numerous interactions between the components, which make the formulation truly more than the sum of the parts. This article will look at interactions between anionic and cationic surfactants and offer insights into how to use these interactions advantageously in making formulations.

  5. Synthesis, characterization and antibacterial studies of ruthenium(III) complexes derived from chitosan schiff base.

    Science.gov (United States)

    Vadivel, T; Dhamodaran, M

    2016-09-01

    Chitosan can be modified chemically by condensation reaction of deacetylated chitosan with aldehyde in homogeneous phase. This condensation is carried by primary amine (NH2) with aldehyde (CHO) to form corresponding schiff base. The chitosan biopolymer schiff base derivatives are synthesized with substituted aldehydes namely 4-hydroxy-3-methoxy benzaldehyde, 2-hydroxy benzaldehyde, and 2-hydroxy-3-methoxy benzaldehyde, becomes a complexing agent or ligand. The Ruthenium(III) complexes were obtained by complexation of Ruthenium with schiff base ligands and this product exhibits as an excellent solubility and more biocompatibility. The novel series of schiff base Ruthenium(III) complexes are characterized by Elemental analysis, FT-IR spectroscopy, and Thermo-gravimetric analysis (TGA). The synthesized complexes have been subjected to antibacterial study. The antibacterial results indicated that the antibacterial activity of the complexes were more effective against Gram positive and Gram negative pathogenic bacteria. These findings are giving suitable support for developing new antibacterial agent and expand our scope for applications. PMID:26562551

  6. Mononuclear ruthenium(III) complexes containing chelating thiosemicarbazones: Synthesis, characterization and catalytic property

    Science.gov (United States)

    Raja, N.; Ramesh, R.

    2010-02-01

    Mononuclear ruthenium(III) complexes of the type [RuX(EPh 3) 2(L)] (E = P or As; X = Cl or Br; L = dibasic terdentate dehydroacetic acid thiosemicarbazones) have been synthesized from the reaction of thiosemicarbazone ligands with ruthenium(III) precursors, [RuX 3(EPh 3) 3] (where E = P, X = Cl; E = As, X = Cl or Br) and [RuBr 3(PPh 3) 2(CH 3OH)] in benzene. The compositions of the complexes have been established by elemental analysis, magnetic susceptibility measurement, FT-IR, UV-vis and EPR spectral data. These complexes are paramagnetic and show intense d-d and charge transfer transitions in dichloromethane. The complexes show rhombic EPR spectra at LNT which are typical of low-spin distorted octahedral ruthenium(III) species. All the complexes are redox active and display an irreversible metal centered redox processes. Complex [RuCl(PPh 3) 2(DHA-PTSC)] ( 5) was used as catalyst for transfer hydrogenation of ketones in the presence of isopropanol/KOH and was found to be the active species.

  7. Cytotoxic hydrogen bridged ruthenium quinaldamide complexes showing induced cancer cell death by apoptosis.

    Science.gov (United States)

    Lord, Rianne M; Allison, Simon J; Rafferty, Karen; Ghandhi, Laura; Pask, Christopher M; McGowan, Patrick C

    2016-08-16

    This report presents the first known p-cymene ruthenium quinaldamide complexes which are stabilised by a hydrogen-bridging atom, [{(p-cym)Ru(II)X(N,N)}{H(+)}{(N,N)XRu(II)(p-cym)}][PF6] (N,N = functionalised quinaldamide and X = Cl or Br). These complexes are formed by a reaction of [p-cymRu(μ-X)2]2 with a functionalised quinaldamide ligand. When filtered over NH4PF6, and under aerobic conditions the equilibrium of NH4PF6 ⇔ NH3 + HPF6 enables incorporation of HPF6 and the stabilisation of two monomeric ruthenium complexes by a bridging H(+), which are counter-balanced by a PF6 counterion. X-ray crystallographic analysis is presented for six new structures with OO distances of 2.420(4)-2.448(15) Å, which is significant for strong hydrogen bonds. Chemosensitivity studies against HCT116, A2780 and cisplatin-resistant A2780cis human cancer cells showed the ruthenium complexes with a bromide ancillary ligand to be more potent than those with a chloride ligand. The 4'-fluoro compounds show a reduction in potency for both chloride and bromide complexes against all cell lines, but an increase in selectivity towards cancer cells compared to non-cancer ARPE-19 cells, with a selectivity index >1. Mechanistic studies showed a clear correlation between IC50 values and induction of cell death by apoptosis. PMID:27417660

  8. Visible-Light-Induced Morphological Changes of Giant Vesicles by Photoisomerization of a Ruthenium Aqua Complex.

    Science.gov (United States)

    Hirahara, Masanari; Tsukamoto, Akira; Goto, Hiroki; Tada, Shigeru; Yagi, Masayuki; Umemura, Yasushi

    2016-02-18

    Visible- and red-light responsive vesicles were prepared by incorporating a ruthenium aqua complex having two alkyl chains on tridentate and asymmetrical bidentate ligands (proximal-2: [Ru(C10 tpy)(C10 pyqu)OH2 ](2+) , C10 tpy=4'-decyloxy-2,2';6',2"-terpyridine, C10 pyqu=2-[2'-(6'-decyloxy)-pyridyl]quinoline). The ruthenium complex of proximal-2 with closed alkyl chain geometry and a cylinder-like molecular shape exhibited photoisomerization to distal-2 with an open alkyl chain geometry and a cone-like shape, both in an aqueous solution and in vesicle dispersions. We observed that light irradiation of giant vesicles containing proximal-2 induced diverse morphological changes. PMID:26711139

  9. Oxidation of Alcohols Catalyzed by Ruthenium Complexes with Iodosylbenzene as Oxidant

    Institute of Scientific and Technical Information of China (English)

    Zi Qiang LEI; Qiao Xiang KANG; Xiang Zhen BAI; Zhi Wang YANG; Qing Hua ZHANG

    2005-01-01

    Five ruthenium complexes such as Phen-Ru-Phen, Phen-Ru-Bipy, Phen-Ru-Quin,Quin-Ru-Quin and Bipy-Ru-Quin (where Phen=1, 10-phenanthroline, Quin=8-hydroxyquinoline,Bipy=2, 2′-bipyridine) were synthesized and used as catalysts for the oxidation of benzylic and primary aliphatic alcohols with iodosylbenzene as oxidant. The oxidations were carried out at room temperature, affording the corresponding aldehydes and ketones with high selectivity.

  10. Remarkable thermal stability of gold nanoparticles functionalised with ruthenium phthalocyanine complexes

    Science.gov (United States)

    King, Shirin R.; Shimmon, Susan; Gentle, Angus R.; Westerhausen, Mika T.; Dowd, Annette; McDonagh, Andrew M.

    2016-05-01

    A gold nanoparticle (AuNP) ruthenium phthalocyanine (RuPc) nanocomposite has been synthesised that exhibits high thermal stability. Electrical resistance measurements revealed that the nanocomposite is stable up to ∼320 °C. Examination of the nanocomposite and the RuPc stabiliser complex using thermogravimetric analysis and differential scanning calorimetry show that the remarkable thermal stability is due to the RuPc molecules, which provide an effective barrier to sintering of the AuNPs.

  11. Proton controlled intramolecular communication in dinuclear ruthenium(II) polypyridine complexes

    NARCIS (Netherlands)

    Pietro, Cinzia Di; Serroni, Scolastica; Campagna, Sebastiano; Gandolfi, Maria Teresa; Ballardini, Roberto; Fanni, Stefano; Browne, Wesley R.; Vos, Johannes G.

    2002-01-01

    The synthesis and characterization of two dinuclear ruthenium polypyridyl complexes based on the bridging ligands 5,5'-bis(pyridin-2"-yl)-3,3'-bis(1H-1,2,4-triazole) and 5,5'-bis(pyrazin-2"-yl)-3,3'-bis(1H-1,2,4-triazole) and of their mononuclear precursors are reported. The dinuclear compounds have

  12. Analysis of the cytotoxic effects of ruthenium-ketoconazole and ruthenium-clotrimazole complexes on cancer cells

    OpenAIRE

    Robles-Escajeda, Elisa; Martínez, Alberto; Varela-Ramirez, Armando; Sánchez-Delgado, Roberto A.; Aguilera, Renato J.

    2013-01-01

    Ruthenium-based compounds have intriguing anti-cancer properties and some of these novel compounds are currently in clinical trials. To continue the development of new metal-based drug combinations, we coupled ruthenium (Ru) with the azole compounds ketoconazole (KTZ) and clotrimazole (CTZ), which are well-known antifungal agents that also display anticancer properties. We report the activity of a series of twelve Ru-KTZ and Ru-CTZ compounds against three prostate tumor cell lines with differ...

  13. Radiosensitisation of human colorectal cancer cells by ruthenium(II) arene anticancer complexes

    Science.gov (United States)

    Carter, R; Westhorpe, A; Romero, MJ; Habtemariam, A; Gallevo, CR; Bark, Y; Menezes, N; Sadler, PJ; Sharma, RA

    2016-01-01

    Some of the largest improvements in clinical outcomes for patients with solid cancers observed over the past 3 decades have been from concurrent treatment with chemotherapy and radiotherapy (RT). The lethal effects of RT on cancer cells arise primarily from damage to DNA. Ruthenium (Ru) is a transition metal of the platinum group, with potentially less toxicity than platinum drugs. We postulated that ruthenium-arene complexes are radiosensitisers when used in combination with RT. We screened 14 ruthenium-arene complexes and identified AH54 and AH63 as supra-additive radiosensitisers by clonogenic survival assays and isobologram analyses. Both complexes displayed facial chirality. At clinically relevant doses of RT, radiosensitisation of cancer cells by AH54 and AH63 was p53-dependent. Radiation enhancement ratios for 5–10 micromolar drug concentrations ranged from 1.19 to 1.82. In p53-wildtype cells, both drugs induced significant G2 cell cycle arrest and apoptosis. Colorectal cancer cells deficient in DNA damage repair proteins, EME1 and MUS81, were significantly more sensitive to both agents. Both drugs were active in cancer cell lines displaying acquired resistance to oxaliplatin or cisplatin. Our findings broaden the potential scope for these drugs for use in cancer therapy, including combination with radiotherapy to treat colorectal cancer. PMID:26867983

  14. DNA binding and topoisomerase II inhibitory activity of water-soluble ruthenium(II) and rhodium(III) complexes.

    Science.gov (United States)

    Singh, Sanjay Kumar; Joshi, Shweta; Singh, Alok Ranjan; Saxena, Jitendra Kumar; Pandey, Daya Shankar

    2007-12-10

    Water-soluble piano-stool arene ruthenium complexes based on 1-(4-cyanophenyl)imidazole (CPI) and 4-cyanopyridine (CNPy) with the formulas [(eta6-arene)RuCl2(L)] (L = CPI, eta6-arene = benzene (1), p-cymene (2), hexamethylbenzene (3); L = CNPy, eta6-arene = benzene (4), p-cymene (5), hexamethylbenzene (6)) have been prepared by our earlier methods. The molecular structure of [(eta6-C6Me6)RuCl2(CNPy)] (6) has been determined crystallographically. Analogous rhodium(III) complex [(eta5-C5Me5)RhCl2(CPI)] (7) has also been prepared and characterized. DNA interaction with the arene ruthenium complexes and the rhodium complex has been examined by spectroscopic and gel mobility shift assay; condensation of DNA and B-->Z transition have also been described. Arene ruthenium(II) and EPh3 (E = P, As)-containing arene ruthenium(II) complexes exhibited strong binding behavior, however, rhodium(III) complexes were found to be Topo II inhibitors with an inhibition percentage of 70% (7) and 30% (7a). Furthermore, arene ruthenium complexes containing polypyridyl ligands also act as mild Topo II inhibitors (10%, 3c and 40%, 3d) in contrast to their precursor complexes. Complexes 4-6 also show significant inhibition of beta-hematin/hemozoin formation activity. PMID:18001110

  15. Condensation of nonstochiometric DNA/polycation complexes by divalent cations.

    Science.gov (United States)

    Budker, Vladimir; Trubetskoy, Vladimir; Wolff, Jon A

    2006-12-15

    This study found that divalent cations induced the further condensation of partially condensed DNA within nonstochiometric polycation complexes. The addition of a few mmol of a divalent cation such as calcium reduced by half the inflection point at which DNA became fully condensed by poly-L-lysine (PLL) and a variety of other polycations. The effect on DNA condensation was initially observed using a new method, which is based on the concentration-dependent self-quenching of fluorescent moieties (e.g., rhodamine) covalently linked to the DNA backbone at relatively high densities. Additional analyses, which employed ultracentrifugation, dynamic light scattering, agarose gel electrophoresis, and atomic force microscopy, confirmed the effect of divalent cations. These results provide an additional accounting of the process by which divalent cations induce greater chromatin compaction that is based on the representation of chromatin fibers as a nonstoichiometric polyelectrolyte complex. They also offer a new approach to assemble nonviral vectors for gene therapy.

  16. Synthesis and Spectrosopic Identification of Hybrid 3-(Triethoxysilyl)propylamine Phosphine Ruthenium(II) Complexes

    OpenAIRE

    Ismail Warad; Saud Al-Resayes; Zeid Al-Othman; Al-Deyab, Salem S.; El-Refaie Kenawy

    2010-01-01

    An investigation into the potential ruthenium(II) 1-3 complexes of type [RuCl2(P)2(N)2] using triphenylphosphine and 1,3-bis-diphenylphosphinepropane and 3-(triethoxysilyl)propylamine has been carried out at room temperature in dichloromethane under an inert atmosphere. The structural behaviors of the phosphine ligands in the desired complexes during synthesis were monitored by 31P{1H}-NMR. The structure of complexes 1-3 described herein has been deduced from elemental analyses, infrared, FAB...

  17. Exploring new avenues for Arene-Ruthenium complexes: coordination to [60]fullerene, hydrogen bonding assemblies and liquid-crystalline materials

    OpenAIRE

    Appavoo-Gupta, Divambal; Deschenaux, Robert

    2016-01-01

    The thesis aims at using arene-ruthenium complexes as building blocks for the synthesis of diverse compounds to obtain potential mesomorphic and/or biological properties. The thesis consists of three main projects. The first project deals with supramolecular assemblies. New supramolecular di- and tetranuclear ruthenium arrangements, the latter bearing a cavity, were designed. H-bonding was the key interaction involved in the synthesis of the spacer ligands, which exist as dimers. Different s...

  18. Carboxylate-assisted C(sp³)-H activation in olefin metathesis-relevant ruthenium complexes.

    Science.gov (United States)

    Cannon, Jeffrey S; Zou, Lufeng; Liu, Peng; Lan, Yu; O'Leary, Daniel J; Houk, K N; Grubbs, Robert H

    2014-05-01

    The mechanism of C-H activation at metathesis-relevant ruthenium(II) benzylidene complexes was studied both experimentally and computationally. Synthesis of a ruthenium dicarboxylate at a low temperature allowed for direct observation of the C-H activation step, independent of the initial anionic ligand-exchange reactions. A first-order reaction supports an intramolecular concerted metalation-deprotonation mechanism with ΔG(‡)(298K) = 22.2 ± 0.1 kcal·mol(-1) for the parent N-adamantyl-N'-mesityl complex. An experimentally determined ΔS(‡) = -5.2 ± 2.6 eu supports a highly ordered transition state for carboxylate-assisted C(sp(3))-H activation. Experimental results, including measurement of a large primary kinetic isotope effect (k(H)/k(D) = 8.1 ± 1.7), agree closely with a computed six-membered carboxylate-assisted C-H activation mechanism where the deprotonating carboxylate adopts a pseudo-apical geometry, displacing the aryl ether chelate. The rate of cyclometalation was found to be influenced by both the electronics of the assisting carboxylate and the ruthenium ligand environment.

  19. Carboxylate-assisted C(sp³)-H activation in olefin metathesis-relevant ruthenium complexes.

    Science.gov (United States)

    Cannon, Jeffrey S; Zou, Lufeng; Liu, Peng; Lan, Yu; O'Leary, Daniel J; Houk, K N; Grubbs, Robert H

    2014-05-01

    The mechanism of C-H activation at metathesis-relevant ruthenium(II) benzylidene complexes was studied both experimentally and computationally. Synthesis of a ruthenium dicarboxylate at a low temperature allowed for direct observation of the C-H activation step, independent of the initial anionic ligand-exchange reactions. A first-order reaction supports an intramolecular concerted metalation-deprotonation mechanism with ΔG(‡)(298K) = 22.2 ± 0.1 kcal·mol(-1) for the parent N-adamantyl-N'-mesityl complex. An experimentally determined ΔS(‡) = -5.2 ± 2.6 eu supports a highly ordered transition state for carboxylate-assisted C(sp(3))-H activation. Experimental results, including measurement of a large primary kinetic isotope effect (k(H)/k(D) = 8.1 ± 1.7), agree closely with a computed six-membered carboxylate-assisted C-H activation mechanism where the deprotonating carboxylate adopts a pseudo-apical geometry, displacing the aryl ether chelate. The rate of cyclometalation was found to be influenced by both the electronics of the assisting carboxylate and the ruthenium ligand environment. PMID:24731019

  20. Complexation Between Cationic Diblock Copolymers and Plasmid DNA

    Science.gov (United States)

    Jung, Seyoung; Reineke, Theresa; Lodge, Timothy

    Deoxyribonucleic acids (DNA), as polyanions, can spontaneously bind with polycations to form polyelectrolyte complexes. When the polycation is a diblock copolymer with one cationic block and one uncharged hydrophilic block, the polyelectrolyte complexes formed with plasmid DNA (pDNA) are often colloidally stable, and show great promise in the field of polymeric gene therapy. While the resulting properties (size, stability, and toxicity to biological systems) of the complexes have been studied for numerous cationic diblocks, the fundamentals of the pDNA-diblock binding process have not been extensively investigated. Herein, we report how the cationic block content of a diblock influences the pDNA-diblock interactions. pDNA with 7164 base pairs and poly(2-deoxy-2-methacrylamido glucopyranose)-block-poly(N-(2-aminoethyl) methacrylamide) (PMAG-b-PAEMA) are used as the model pDNA and cationic diblock, respectively. To vary the cationic block content, two PMAG-b-PAEMA copolymers with similar PMAG block lengths but distinct PAEMA block lengths and a PAEMA homopolymer are utilized. We show that the enthalpy change from pDNA-diblock interactions is dependent on the cationic diblock composition, and is closely associated with both the binding strength and the pDNA tertiary structure.

  1. A fast-initiating ionically tagged ruthenium complex: a robust supported pre-catalyst for batch-process and continuous-flow olefin metathesis.

    Science.gov (United States)

    Borré, Etienne; Rouen, Mathieu; Laurent, Isabelle; Magrez, Magaly; Caijo, Fréderic; Crévisy, Christophe; Solodenko, Wladimir; Toupet, Loic; Frankfurter, René; Vogt, Carla; Kirschning, Andreas; Mauduit, Marc

    2012-12-14

    In this study, a new pyridinium-tagged Ru complex was designed and anchored onto sulfonated silica, thereby forming a robust and highly active supported olefin-metathesis pre-catalyst for applications under batch and continuous-flow conditions. The involvement of an oxazine-benzylidene ligand allowed the reactivity of the formed Ru pre-catalyst to be efficiently controlled through both steric and electronic activation. The oxazine scaffold facilitated the introduction of the pyridinium tag, thereby affording the corresponding cationic pre-catalyst in good yield. Excellent activities in ring-closing (RCM), cross (CM), and enyne metathesis were observed with only 0.5 mol % loading of the pre-catalyst. When this powerful pre-catalyst was immobilized onto a silica-based cationic-exchange resin, a versatile catalytically active material for batch reactions was generated that also served as fixed-bed material for flow reactors. This system could be reused at 1 mol % loading to afford metathesis products in high purity with very low ruthenium contamination under batch conditions (below 5 ppm). Scavenging procedures for both batch and flow processes were conducted, which led to a lowering of the ruthenium content to as little as one tenth of the original values.

  2. Ruthenium(II)-PNN pincer complex catalyzed dehydrogenation of benzyl alcohol to ester: A DFT study

    Science.gov (United States)

    Tao, Jingcong; Wen, Li; Lv, Xiaobo; Qi, Yong; Yin, Hailiang

    2016-04-01

    The molecular mechanism of the dehydrogenation of primary alcohol to ester catalyzed by the ruthenium(II)-PNN pincer complex Ru(H)(η2-BH4)(PNN), [PNN: (2-(di-tert-butylphosphinomethyl)-6-(diethlaminomethyl)-pyridine)] has been investigated using density functional theory calculations. The catalytic cycle includes three stages: (stage I) alcohol dehydrogenation to form aldehyde, (stage II) coupling of aldehyde with alcohol to give hemiacetal or ester, and (stage III) hemiacetal dehydrogenation to form ester. Two dehydrogenation reactions occur via the β-H elimination mechanism rather than the bifunctional double hydrogen transfer mechanism, which could be rationalized as the fluxional behavior of the BH4- ligand. At the second stage, the coupling reaction requires alcohol or the ruthenium catalyst as mediator. The formation of hemiacetal through the alcohol-mediated pathway is kinetically favorable than the ruthenium catalyst-mediated one, which may be attributed to the smaller steric hindrance when the aldehyde approaches the alcohol moiety in the reaction system. Our results would be helpful for experimental chemists to design more effective transition metal catalysts for dehydrogenation of alcohols.

  3. Bis(ortho-) chelated Monoanionic Bisphosphinoaryl Ruthenium(Ⅱ) Complexes:Synthesis,Characterization and Reactivity

    Institute of Scientific and Technical Information of China (English)

    van KLINK, Gerard P.M.; DANI, Paulo; van KOTEN, Gerard

    2002-01-01

    Bisphosphinoaryl ruthenium(Ⅱ) compounds are synthesized using two distinct synthetic routes. One route, direct cycloruthenation, consists of the reaction of the parent arene compound R-PCHP with [R uCl2(PPh)3] in chlorinated solvents. However, this route suffers from major drawbacks because HCl is formed as well as free triphenylphoshine. The other route, the transcyclometalation reaction, involves the interconversion of one cyclometalated ligand metal complex,[RuCl(NCN) (PPh3)], into another complex, [RuCl(RPCP) (PPh3) ], with concomitant consumption and formation of the corresponding arenes R-PCHP and NCHN, respectively.

  4. Synthesis, DNA-binding, photocleavage, cytotoxicity and antioxidant activity of ruthenium (II) polypyridyl complexes.

    Science.gov (United States)

    Liu, Yun-Jun; Zeng, Cheng-Hui; Huang, Hong-Liang; He, Li-Xin; Wu, Fu-Hai

    2010-02-01

    Two new ligands maip (1a), paip (1b) with their ruthenium (II) complexes [Ru(bpy)(2)(maip)](ClO(4))(2) (2a) and [Ru(bpy)(2)(paip)](ClO(4))(2) (2b) have been synthesized and characterized. The results show that complexes 2a and 2b interact with DNA through intercalative mode. The cytotoxicity of these compounds has been evaluated by MTT assay. The experiments on antioxidant activity show that these compounds exhibit good antioxidant activity against hydroxyl radical (OH). PMID:19932529

  5. Biological activity of ruthenium and osmium arene complexes with modified paullones in human cancer cells

    OpenAIRE

    Mühlgassner, Gerhard; Bartel, Caroline; Schmid, Wolfgang F.; Jakupec, Michael A.; Arion, Vladimir B; BERNHARD K. KEPPLER

    2012-01-01

    In an attempt to combine the ability of indolobenzazepines (paullones) to inhibit cyclin-dependent kinases (Cdks) and that of platinum-group metal ions to interact with proteins and DNA, ruthenium(II) and osmium(II) arene complexes with paullones were prepared, expecting synergies and an increase of solubility of paullones. Complexes with the general formula [MIICl(η 6-p-cymene)L]Cl, where M = Ru (1, 3) or Os (2, 4), and L = L 1 (1, 2) or L 2 (3, 4), L 1  = N-(9-bromo-7,12-dihydroindolo[3,2-d...

  6. Highly fluorous complexes of ruthenium and osmium and their solubility in supercritical carbon dioxide.

    Science.gov (United States)

    Berven, Bradley M; Koutsantonis, George A; Skelton, Brian W; Trengove, Robert D; White, Allan H

    2009-12-21

    A series of ruthenium and osmium complexes containing highly fluorous diphosphine ligands (F)P(wedge)P(F) = (F(13)C(6)C(6)H(4)-p)(2)P(CH(2))(2)P(p-C(6)H(4)C(6)F(13))(2) (dfppe) and (F(13)C(6)C(6)H(4)-p)(2)P(CH(2))(3)P(p-C(6)H(4)C(6)F(13))(2) (dfppp) has been prepared. The fluorous diphosphine ligands incorporate four C(6)F(13) "fluoro-ponytails", and these have been effective in solubilizing the complexes in supercritical carbon dioxide (scCO(2)). Precise solubility measurements in scCO(2) were performed for some of the complexes. The new complexes [MX(2)((F)P(wedge)P(F))(2)] and [MX((F)P(wedge)P(F))(eta-C(5)H(5))], M = Ru, Os, X = Cl, Br, have been characterized by a number of spectroscopic techniques and their electrochemical properties measured, three of the ruthenium complexes also being characterized by single-crystal X-ray studies. The noncovalent interactions observed in the X-ray structures have been analyzed by the Hirshfeld surface approach, putting them on a more solid footing. The fluorinated complexes show significantly different solvation properties from those of the analogous unfluorinated compounds, particularly with respect to their behavior in common organic solvents and their good scCO(2) solubility. PMID:19938863

  7. Ruthenium-Platinum Polypyridyl Complexes: Synthesis and Characterization

    OpenAIRE

    Williams, R. Lee

    2001-01-01

    A series of bimetallic (RuII, PtII) complexes were synthesized with the general formula [(tpy)RuCl(BL)PtCl2](PF6) (tpy = 2,2':6',2"-terpyridine and BL = bridging ligand) and their spectroscopic, electrochemical, and DNA binding properties studied. The bridging ligands used in these complexes were 2,3-bis(2'-pyridyl)pyrazine (dpp), 2,3-bis(2'-pyridyl)quinoxaline (dpq) and 2,3-bis(2'-pyridyl)benzoquinoxaline (dpb). These complexes combine light-absorbing RuII-polypyridyl chromophores and a c...

  8. Unusual dimer formation of cyclometalated ruthenium NHC p-cymene complexes.

    Science.gov (United States)

    Schleicher, David; Tronnier, Alexander; Leopold, Hendrik; Borrmann, Horst; Strassner, Thomas

    2016-02-28

    We present the synthesis and structural characterization of novel ruthenium complexes containing C^C* cyclometalated N-heterocyclic carbene ligands, η(6)-arene (p-cymene) ligands and one bridging chlorine ion. Complexes of the general formula [Ru(p-cymene)(C^C*)Cl] were prepared via a one-pot synthesis using in situ transmetalation from the correspondent silver NHC complexes. These complexes react with sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBAr(F)4) to form dinuclear complexes of the general structure [Ru(p-cymene)(C^C*)-μ-Cl-(p-cymene)(C^C*)Ru](+)[BAr(F)4](-). Solid-state structures confirm that the pseudo-tetrahedral coordination around the metal center with the η(6)-ligand aligned perpendicularly to the C^C* ligand and the i-Pr group "atop" is retained in the bimetallic complexes.

  9. EFFECT OF MORPHOLOGICAL STRUCTURE OF AMINOMETHYL POLYSTYRENE RESIN ON THE CATALYTIC PROPERTIES OF POLYMER-SUPPORTED RUTHENIUM COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    Ren-ren Wang; Jia-qin Wang; Ce Luo; Zhe Zhang; Bi-tao Su; Zi-qiang Lei

    2009-01-01

    Polymer-supported ruthenium complexes (p)-Phen-Ru-①,(p)-Phen-Ru-②,(P)-Phen-Ru-③,(p)-Phen-Ru-④,morphological structures as supports.A variety of alcohols were oxidized efficiently into the corresponding ketones,carboxylic acids or aldehydes with iodosylbenzene (PhIO) catalyzed by aminomethyl polystyrene-supported ruthenium complexes under mild reaction conditions in acetonitrile.The influences of morphological structure of the polymer supporters on the catalytic properties of these metal complexes were investigated in detail.

  10. Synthesis of Ruthenium Xanthate Complex and Its Electrocatalytic Activity for Tryptophan Oxidation

    Institute of Scientific and Technical Information of China (English)

    WU Fang-hui; CHEN Le; CHU Xiang-feng; WEI Xian-wen

    2013-01-01

    A new ruthenium complex containing bidentate xanthate ligands was synthesized in a good yield.This complex was characterized by elemental analysis,proton nuclear magnetic resonance(1H NMR),Fourier transform infrared(FTIR) and UV-Vis spectroscopies.The cyclic voltammetry of the complex revealed one quasi-redox wave centered at Ru(Ⅲ)/Ru(Ⅱ) couple,indicating its catalytic potential.So the preparation of a glass carbon electrode modified with ruthenium xanthate complex and its electrocatalytic activity toward the oxidation of tryptophan(Trp)were also studied.The experimental results show that the modified electrode had excellent electrocatalytic activity for the oxidation of tryptophan.Moreover,under the optimized conditions,the oxidation peak current was proportional to tryptophan concentration in a range of 2.5× 10-7 to 5.0× 10-5 mol/L with a correlation coefficient of 0.9928 and a detection limit of 8.3 × 10-8 mol/L(S/N=3).Using the proposed method,tryptophan was successfully determined in pharmaceutical samples with standard addition method.

  11. Electronic structures of ruthenium complexes encircling non-innocent ligand assembly

    Indian Academy of Sciences (India)

    Amit Das; Dipanwita Das; Tanaya Kundu; Goutam Kumar Lahiri

    2012-11-01

    Electronic structural forms of selected mononuclear and dinuclear ruthenium complexes encompassing redox non-innocent terminal as well as bridging ligands have been addressed. The sensitive valence and spin situations of the complexes have been established in the native and accessible redox states via detailed analysis of their crystal structures, electrochemistry, UV/VIS/NIR spectroelectrochemistry, EPR signatures at the paramagnetic states and DFT calculations. Mononuclear complexes exhibit significant variations in valence and spin distribution processes based on the simple modification of the non-innocent ligand frameworks as well as electronic nature of the co-ligands, -donating or -accepting. Dinuclear complexes with modified pyrazine, -quinone and azo-derived redox-active bridging ligands show complex features including redoxinduced electron-transfer (RIET), remote metal to metal spin-interaction in a three-spin metal-bridge-metal arrangement as well as electron-transfer driven chemical transformation (EC).

  12. Ruthenium (II) polypyridyl complexes as models for artificial photosynthesis: synthesis and characterisation

    OpenAIRE

    Killeen, Jonathan Scott

    2001-01-01

    This thesis presents a study on the synthesis and characterisation of a series of novel ruthenium (II) polypyridyl complexes, which are potentially models for artificial photosynthesis. Chapter 1, the introduction, highlights the literature relevant to the topic. In Chapter 2, the experimental conditions of the various methods of characterisation are described. The synthesis and characterisation of a range of novel 5-phenyI-3-(2- pyridyl)-1,2,4-triazoles, their Ru(bpy)2 and their Ru(dg-bp...

  13. Synthesis and photoelectrochemical characterization of a high molar extinction coefficient heteroleptic ruthenium(II) complex

    Indian Academy of Sciences (India)

    L Giribabu; Vrun Kumar Singh; M Srinivasu; Ch Vijay Kumar; V Gopal Reddy; Y Soujnya; P Yella Reddy

    2011-07-01

    A new high molar extinction coefficient heteroleptic ruthenium(II) complex (m-BL-1) that contains a 4,4'4"-tricaboxy-2,2':6’,2”-terpyridine, 4,4’-bis-[3,5-di-tert-butyl-phenyl)-vinyl]-[2,2']bipyridyl and a thiocyanate ligand in its molecular structure has been synthesized and completely characterized by CHN, Mass, 1H-NMR, UV-Vis, and fluorescence spectroscopies as well as cyclic voltammetry. The new sensitizer was tested in dye-sensitized solar cells using three different redox electrolytes and compared its performance to that of standard sensitizer black dye.

  14. Synthesis and Characterization of Novel Ruthenium(III Complexes with Histamine

    Directory of Open Access Journals (Sweden)

    Jakob Kljun

    2010-01-01

    Full Text Available Novel ruthenium(III complexes with histamine [RuCl4(dmso-S(histamineH]⋅O (1a and [RuCl4(dmso-S(histamineH] (1b have been prepared and characterized by X-ray structure analysis. Their crystal structures are similar and show a protonated amino group on the side chain of the ligand which is not very common for a simple heterocyclic derivative such as histamine. Biological assays to test the cytotoxicity of the compound 1b combined with electroporation were performed to determine its potential for future medical applications in cancer treatment.

  15. Synthesis and Characterization of Novel Ruthenium(III) Complexes with Histamine

    Science.gov (United States)

    Kljun, Jakob; Petriček, Saša; Žigon, Dušan; Hudej, Rosana; Miklavčič, Damijan; Turel, Iztok

    2010-01-01

    Novel ruthenium(III) complexes with histamine [RuCl4(dmso-S)(histamineH)] · H2O (1a) and [RuCl4(dmso-S)(histamineH)] (1b) have been prepared and characterized by X-ray structure analysis. Their crystal structures are similar and show a protonated amino group on the side chain of the ligand which is not very common for a simple heterocyclic derivative such as histamine. Biological assays to test the cytotoxicity of the compound 1b combined with electroporation were performed to determine its potential for future medical applications in cancer treatment. PMID:20631838

  16. Organometallic ruthenium complexes with thiosemicarbazone ligands: Synthesis, structure and cytotoxicity of [(η6-p-cymene)Ru(NS)Cl]+ (NS = 9-anthraldehyde thiosemicarbazones)

    Science.gov (United States)

    Beckford, Floyd A.; Leblanc, Gabriel; Thessing, Jeffrey; Shaloski, Michael; Frost, Brian J.; Li, Liya; Seeram, Navindra P.

    2009-01-01

    A series of half-sandwich arene-ruthenium complexes of the type [(η6-p-cymene) Ru(thiosemicarbazone)Cl]+ have been synthesized and their biological activity investigated. The first structurally characterized arene-ruthenium half-sandwich complex with a thiosemicarbazone ligand is reported. PMID:20160909

  17. Organometallic ruthenium complexes with thiosemicarbazone ligands: Synthesis, structure and cytotoxicity of [(η6-p-cymene)Ru(NS)Cl]+ (NS = 9-anthraldehyde thiosemicarbazones)

    OpenAIRE

    Beckford, Floyd A.; LeBlanc, Gabriel; Thessing, Jeffrey; Shaloski, Michael; Frost, Brian J.; LI, LIYA; Seeram, Navindra P.

    2009-01-01

    A series of half-sandwich arene-ruthenium complexes of the type [(η6-p-cymene) Ru(thiosemicarbazone)Cl]+ have been synthesized and their biological activity investigated. The first structurally characterized arene-ruthenium half-sandwich complex with a thiosemicarbazone ligand is reported.

  18. Electronic Spectra of Bare and Solvated Ruthenium Polypyridine Complexes

    Science.gov (United States)

    Xu, Shuang; Smith, James E. T.; Weber, J. Mathias

    2016-06-01

    We present work on a prototypical water oxidation catalyst, namely the aqua-complex [(bpy)(tpy)Ru-OH_2]2+ (2,2'-bpy = bipyridine, tpy = 2,2':6',2"-terpyridine), and its hydrated clusters [(bpy)(tpy)Ru-OH_2]2+ ·(H2O)_n, with n = 1 - 4. This complex is the starting species in a catalytic cycle for water oxidation. We couple electrospray ionization mass spectrometry with laser spectroscopy to circumvent challenges that arise in reactive solutions from speciation. Here, we report the electronic spectrum of [(bpy)(tpy)Ru-OH_2]2+ by photodissociation spectroscopy of mass selected, cryogenically prepared ions, and we examine effects of its microhydration environment on its electronic structure. In particular, we investigate the solvatochromic shift of the spectral envelope upon sequential addition of water molecules up to the tetrahydrate.

  19. New Ruthenium Complexes of Fullerene C60&C70

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The new complexes [Ru(NO)(PPh3)]2(η2-Cm)(m=60 1 or 70 2) have been prepared by heating a solution of C60(or C70) with [Ru(NO)2(PPh3)2] in toluene. They have been characterized by elemental analysis, IR, UV/VIS, XPS, 13C and 31P NMR spectroscopy. The photovaltaic effect for the new compounds has been studied.

  20. Mechanism of water oxidation by trivalent ruthenium trisdipyridyl complex

    International Nuclear Information System (INIS)

    Results of kinetic investigation of water oxidation reaction with photogenerated single-electron oxidizer-trisdipyridyl complex of Ru(3) are presented. CoCl2x6H2O within the concentration range of [Co2+]0=5x10-7 - 5x10-5 M was used as a reaction catalyst. The method of stopped flow with spectrophotometric recording was used in order to control the reaction kinetics

  1. Promising anticancer mono- and dinuclear ruthenium(III) dithiocarbamato complexes: systematic solution studies.

    Science.gov (United States)

    Nagy, Eszter Márta; Nardon, Chiara; Giovagnini, Lorena; Marchiò, Luciano; Trevisan, Andrea; Fregona, Dolores

    2011-11-28

    During the last decade, our research group has prepared a number of metal dithiocarbamato derivatives of Pt, Pd and Au that were expected to resemble the main features of cisplatin together with higher activity, improved selectivity and bioavailability, and lower side-effects. Furthermore, we have already published the synthesis, characterization and in vitro cytotoxicity studies of novel ruthenium(III) dithiocarbamato complexes such as [RuL(3)] monomers (11) and α-[Ru(2)L(5)]Cl dimers (12) with five different dithiocarbamate ligands. As both the monomer and the dinuclear complexes have shown significant antitumor activity in different human tumor cell lines, we decided to widen the characterization studies and to analyse thoroughly their behavior in physiological-like medium by UV-visible and CD spectroscopy. In the present paper we report on the crystal structure of [Ru(DMDT)(3)], [Ru(PDT)(3)] and [Ru(ESDT)(3)] complexes and we determine the spin state of the paramagnetic Ru(III) by means of Evans' method. Then, we discuss in detail the UV-visible spectral data of the complexes in different medium. All the studied complexes are stable in dimethyl sulfoxide, and show low solubility in phosphate buffered saline solution, particularly the monomer species, even at low concentration, while increased solubility for both types of complexes have been found in the presence of bovine serum albumin (BSA). Moreover, no changes on the coordination sphere of the metal, as well as no direct interaction between the BSA protein and the complex have been identified by UV-visible spectroscopy. However, some conformational changes on the BSA structure, induced by the ruthenium(III) complexes have been confirmed by CD spectroscopy, indicating a probable secondary electrostatic interaction between the metal complex and the peptide. In addition, no significant interaction has been demonstrated with the components of Dulbecco's Modified Eagle's Medium, used for the in vitro assays

  2. Incorporation of an n-Butylsulfonate Functionality To Induce Aqueous Solubility on Ruthenium(II) η6-Arene Complexes

    NARCIS (Netherlands)

    Virboul, M.A.N.; Klein Gebbink, R.J.M.

    2012-01-01

    The reaction of the new building block sodium n-butyl sulfonate cyclohexadiene 3 with RuCl3·xH2O leads to the formation of different dimeric halide-bridged ruthenium complexes, depending on the reaction conditions. Isolation of pure dimeric complexes from these mixtures was not successful. Changing

  3. Characterisation and application of new carboxylic acid-functionalised ruthenium complexes as dye-sensitisers for solar cells

    DEFF Research Database (Denmark)

    Duprez, Virginie; Biancardo, Matteo; Krebs, Frederik C

    2007-01-01

    A series of ruthenium complexes with and without TiO2, anchoring carboxylic acid groups have been synthesised and characterised using nuclear magnetic resonance (NMR), UV-vis and luminescence. These complexes were adsorbed on thin films of the wide band-gap semiconductor anatase and were tested...

  4. New carboxy-functionalized terpyridines as precursors for zwitterionic ruthenium complexes for polymer-based solar cells

    DEFF Research Database (Denmark)

    Duprez, V.; Krebs, Frederik C

    2006-01-01

    New carboxy-terpyridines selectively functionalized at the 4-, 4'- and 4"-positions were prepared in a three-step procedure with good yields using, the Krohnke reaction followed by saponification. Their complexation with ruthenium led to symmetric and unsymmetric terpyridinyl zwitterionic complexes...

  5. Enhanced photovoltaic effect of ruthenium complex-modified graphene oxide with P-type conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: jj_zw_js@sina.com.cn; Bai, Huicong; Zhang, Yu; Sun, Ying; Lin, Shen; Liu, Jian; Yang, Qi; Song, Xi-Ming, E-mail: songlab@lnu.edu.cn

    2014-10-15

    A graphene oxide nanocomposite with bis(1,10-phenanthroline)(N-(2-aminoethyl)-4-(4-methyl-2,2-bipyridine-4-yl) formamide) ruthenium (Ru(phen){sub 2}(bpy-NH{sub 2})(PF{sub 6}){sub 2}), a ruthenium complex, was synthesized by amidation reaction between amino group of the ruthenium complex and carboxyl group of GO. The as-prepared Ru(II)–GO composite was characterized by infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet–visible (UV–Vis) absorption spectra, fluorescence spectra, surface photovoltage (SPV) spectrum and transient photovoltage (TPV) technology. This nanocomposite showed a typical p-type character and an enhanced photovoltaic effect at long timescale of about 3 × 10{sup −3} s compared to GO alone. A reversible rise/decay of the photocurrent in response to the on/off illumination step was also observed in a photoelectrochemical cell of the Ru(II)–GO composite. The photocurrent response of the Ru(II)–GO film was remarkably higher than that of GO film. Therefore, this Ru(II)–GO composite is believed to be a promising p-type photoelectric conversion material for further photovoltaic applications. - Highlights: • A new dye-sensitized graphene oxide nanocomposite was reported. • A photo-induced charge transfer process in this nanocomposite was confirmed. • This composite showed a typical p-type conductivity. • This composite showed an enhanced photovoltaic effect at a long timescale.

  6. Interaction of ruthenium nitroso complexes with dimethyl sulfoxide

    International Nuclear Information System (INIS)

    The [(DMSO)2H][RuNO(DMSO)Cl4], (Bu4N)[RuNO(DMSO)Cl4], RuNO(DMSO)2Cl3 compounds are synthesized through interaction of RuNOCl3 · nH2O with DMSO. It is shown by IR-spectrometry and PMR methods that the DMSO coordination in the complexes is performed through oxygen atoms. The Na2[RuNO(NO2)4OH] · 2H2O interaction with DMSO in ethanol or chloroform results in formation of the Na2[RuNO(NO2)4OH] · 2DMSO solvates. (author)

  7. Mathematical modelling of brittle phase precipitation in complex ruthenium containing nickel-based superalloys

    International Nuclear Information System (INIS)

    A new model has been developed in this work which is capable of simulating the precipitation kinetics of brittle phases, especially TCP-phases (topologically close packed phases) in ruthenium containing superalloys. The model simultaneously simulates the nucleation and the growth stage of precipitation for any number of precipitating phases. The CALPHAD method (Calculation of Phase Diagrams) is employed to calculate thermodynamic properties, such as the driving force or phase compositions in equilibrium. For calculation of diffusion coefficients, kinetic mobility databases which are also based on the CALPHAD-method are used. The model is fully capable of handling multicomponent effects, which are common in complex superalloys. Metastable phases can be treated and will automatically be dissolved if they get unstable. As the model is based on the general CALPHAD method, it can be applied to a broad range of precipitation processes in different alloys as long as the relevant thermodynamic and kinetic databases are available. The developed model proves that the TCP-phases precipitate in a sequence of phases. The first phase that is often formed is the metastable σ-phase because it has the lowest interface energy due to low-energy planes at the interface between matrix and precipitate. After several hundred hours the stable μ- and P-phases start to precipitate by nucleating at the σ-phase which is energetically favourable. During the growth of these stable phases the sigma-phase is continuously dissolved. It can be shown by thermodynamic CALPHAD calculations that the sigma-phase has a lower Gibbs free enthalpy than the μ- and P-phase. All required parameters of the model, such as interface energy and nucleate densities, have been estimated. The mechanisms of suppression of TCP-phase precipitation in the presence of ruthenium in superalloys were investigated with the newly developed model. It is shown by the simulations that ruthenium mostly affects the nucleation

  8. Water-soluble phosphorescent ruthenium complex with a fluorescent coumarin unit for ratiometric sensing of oxygen levels in living cells.

    Science.gov (United States)

    Hara, Daiki; Komatsu, Hirokazu; Son, Aoi; Nishimoto, Sei-Ichi; Tanabe, Kazuhito

    2015-04-15

    Dual emission was applied to a molecular probe for the ratiometric sensing of oxygen concentration in a living system. We prepared ruthenium complexes possessing a coumarin unit (Ru-Cou), in which the (3)MLCT phosphorescence of the ruthenium complex was efficiently quenched by molecular oxygen, whereas the coumarin unit emitted constant fluorescence independent of the oxygen concentration. The oxygen status could be determined precisely from the ratio of phosphorescence to fluorescence. We achieved the molecular imaging of cellular oxygen levels using Ru-Cou possessing an alkyl chain, which provided appropriate lipophilicity to increase cellular uptake. PMID:25848851

  9. Organometallic cis-Dichlorido Ruthenium(II) Ammine Complexes

    OpenAIRE

    Betanzos-Lara, Soledad; Habtemariam, Abraha; Clarkson, Guy J.; Sadler, Peter J.

    2011-01-01

    Bifunctional neutral half-sandwich RuII complexes of the type [(η6-arene)Ru(NH3)Cl2] where arene is p-cym (1) or bip (2) were synthesised by the reaction of N,N-dimethylbenzylamine (dmba), NH4PF6 and the corresponding RuII arene dimer, and were fully characterised. X-ray crystallographic studies of [(η6-p-cym)Ru(NH3)Cl2]·{(dmba–H)(PF6)} (1a) and [(η6-bip)Ru(NH3)Cl2] (2) show extensive H-bond interactions in the solid state, mainly involving the NH3 and the Cl ligands, as well as weak aromatic...

  10. Controlling the Direction of the Molecular Axis of Rod-Shaped Binuclear Ruthenium Complexes on Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Ozawa, Hiroaki; Kosaka, Kazuma; Kita, Tomomi; Yoshikawa, Kai; Haga, Masa-aki

    2016-05-01

    We report the synthesis of a mixed-valence ruthenium complex, bearing pyrene moieties on one side of the ligands as anchor groups. Composites consisting of mixed-valence ruthenium complexes and SWNTs were prepared by noncovalent π-π interactions between the SWNT surface and the pyrene anchors of the Ru complex. In these composites, the long axis of the Ru complexes was aligned in parallel to the principal direction of the SWNT. The optimized conformation of these complexes on the SWNT surface was calculated by molecular mechanics. The composites were examined by UV/Vis absorption and FT-IR spectroscopy, XPS, and SEM analysis. Furthermore, their electrochemical properties were evaluated. Cyclic voltammograms of the composites showed reversible oxidation waves at peak oxidation potentials (Epox ) = 0.86 and 1.08 V versus Fc(+) /Fc, which were assigned to the Ru(II) -Ru(II) /Ru(II) -Ru(III) and the Ru(II) -Ru(III) /Ru(III) -Ru(III) oxidation events of the dinuclear ruthenium complex, respectively. Based on these observations, we concluded that the electrochemical properties and mixed-valence state of the dinuclear ruthenium complexes were preserved upon attachment to the SWNT surface. PMID:27010865

  11. Conformations of N-Heterocyclic Carbene Ligands in Ruthenium Complexes Relevant to Olefin Metathesis

    Science.gov (United States)

    Stewart, Ian C.; Benitez, Diego; O'Leary, Daniel J.; Tkatchouk, Ekaterina; Day, Michael W.; Goddard, William A.; Grubbs, Robert H.

    2009-01-01

    The structure of ruthenium-based olefin metathesis catalyst 3 and model π-complex 5 in solution and in the solid state are reported. The N-tolyl ligands, due to their lower symmetry than the traditional N-mesityl substituents, complicate this analysis, but ultimately provide explanation for the enhanced reactivity of 3 relative to standard catalyst 2. The tilt of the N-tolyl ring provides additional space near the ruthenium center, which is consistent with the enhanced reactivity of 3 towards sterically demanding substrates. Due to this tilt, the more sterically accessible face bears the two methyl substituents of the N-aryl rings. These experimental studies are supported by computational studies of these complexes by DFT. The experimental data provides a means to validate the accuracy of the B3LYP and M06 functionals. B3LYP provides geometries that match X-ray crystal structural data more closely, though it leads to slightly less (∼0.5 kcal mol−1) accuracy than M06 most likely because it underestimates attractive non-covalent interactions. PMID:19146414

  12. Ruthenium(II) hydrazone Schiff base complexes: Synthesis, spectral study and catalytic applications

    Science.gov (United States)

    Manikandan, R.; Viswanathamurthi, P.; Muthukumar, M.

    2011-12-01

    Ruthenium(II) hydrazone Schiff base complexes of the type [RuCl(CO)(B)(L)] (were B = PPh 3, AsPh 3 or Py; L = hydrazone Schiff base ligands) were synthesized from the reactions of hydrazone Schiff base ligand (obtained from isonicotinoylhydrazide and different hydroxy aldehydes) with [RuHCl(CO)(EPh 3) 2(B)] (where E = P or As; B = PPh 3, AsPh 3 or Py) in 1:1 molar ratio. All the new complexes have been characterized by analytical and spectral (FT-IR, electronic, 1H, 13C and 31P NMR) data. They have been tentatively assigned an octahedral structure. The synthesized complexes have exhibited catalytic activity for oxidation of benzyl alcohol to benzaldehyde and cyclohexanol to cyclohexanone in the presence of N-methyl morpholine N-oxide (NMO) as co-oxidant. They were also found to catalyze the transfer hydrogenation of aliphatic and aromatic ketones to alcohols in KOH/Isopropanol.

  13. X-Ray structure and cytotoxic activity of a picolinate ruthenium(II–arene complex

    Directory of Open Access Journals (Sweden)

    IVANKA IVANOVIĆ

    2011-01-01

    Full Text Available A ruthenium(II–arene complex with picolinic acid, [(η6-p-cymeneRuCl(pico]∙H2O, was prepared by the reaction of [(η6-p-cymeneRuCl2]2 with picolinic acid in a 1:2 molar ratio in 2-propanol. The compound was characterized by elemental analysis, and IR and NMR spectroscopy. X-ray diffraction analysis showed that the molecule adopts a “three-leg piano-stool” geometry, which is common for this type of complexes. The cytotoxic activity of the complex was tested in two human cancer cell lines HeLa (cervix and FemX (melanoma by MTT assay. The IC50 values were at 82.0 and 36.2 µmol dm-3 for HeLa and FemX cells, respectively.

  14. Ruthenium(II) complexes containing bidentate Schiff bases and triphenylphosphine or triphenylarsine

    Indian Academy of Sciences (India)

    P Viswanathamurthi; R Karvembu; V Tharaneeswaran; K Natarajan

    2005-05-01

    Reactions of ruthenium(II) complexes [RuHX(CO)(EPh3)2(B)] (X = H or Cl; B = EPh3, pyridine (py) or piperidine (pip); E = P or As) with bidentate Schiff base ligands derived by condensing - hydroxyacetophenone with aniline, - or -methylaniline have been carried out. The products were characterized by analytical, IR, electronic and 1H-NMR spectral studies and are formulated as [Ru(X)(CO) (L)(EPh3)(B)] (L = Schiff base anion; X = H or Cl; B = EPh3, py or pip; E = P or As). An octahedral structure has been tentatively proposed for the new complexes. The new complexes were tested for their catalytic activities in the oxidation of benzyl alcohol to benzaldehyde.

  15. RutheniumII Complexes bearing Fused Polycyclic Ligands: From Fundamental Aspects to Potential Applications

    Directory of Open Access Journals (Sweden)

    Ludovic Troian-Gautier

    2014-04-01

    Full Text Available In this review, we first discuss the photophysics reported in the literature for mononuclear ruthenium complexes bearing ligands with extended aromaticity such as dipyrido[3,2-a:2',3'-c]phenazine (DPPZ, tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]-phenazine (TPPHZ,  tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]acridine (TPAC, 1,10-phenanthrolino[5,6-b]1,4,5,8,9,12-hexaazatriphenylene (PHEHAT 9,11,20,22-tetraaza- tetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (TATPP, etc. Photophysical properties of binuclear and polynuclear complexes based on these extended ligands are then reported. We finally develop the use of binuclear complexes with extended π-systems for applications such as photocatalysis.

  16. Synthesis and Catalytic Activity of Ruthenium-Indenylidene Complexes for Olefin Metathesis: Microscale Experiments for the Undergraduate Inorganic or Organometallic Laboratories

    Science.gov (United States)

    Pappenfus, Ted M.; Hermanson, David L.; Ekerholm, Daniel P.; Lilliquist, Stacie L.; Mekoli, Megan L.

    2007-01-01

    A series of experiments for undergraduate laboratory courses (e.g., inorganic, organometallic or advanced organic) have been developed. These experiments focus on understanding the design and catalytic activity of ruthenium-indenylidene complexes for olefin metathesis. Included in the experiments are the syntheses of two ruthenium-indenylidene…

  17. A trinuclear ruthenium complex as a highly efficient molecular catalyst for water oxidation.

    Science.gov (United States)

    Zhang, L L; Gao, Y; Liu, Z; Ding, X; Yu, Z; Sun, L C

    2016-03-01

    A trinuclear ruthenium complex, 3, was designed and synthesized with the ligand 2,2'-bipyridine-6,6'-dicarboxylic acid (bda) and we found that this complex could function as a highly efficient molecular catalyst for water oxidation in homogeneous systems. This trinuclear molecular water oxidation catalyst, 3, displayed much higher efficiencies in terms of turnover numbers and initial oxygen evolution rate than its counterparts, a binuclear catalyst, 2, and a mononuclear catalyst, 1, in both chemically driven and photochemically driven water oxidation based on either the whole catalytic molecules or just the active Ru centers. The reasons for the superior performance of catalyst 3 were discussed and we believe that multiple Ru centers in a single molecule are indeed beneficial for increasing the probability of the formation of O-O bonds through an intramolecular radical coupling pathway.

  18. A Ruthenium(II) Complex Supported by Trithiacyclononane and Aromatic Diimine Ligand as Luminescent Switch-On Probe for Biomolecule Detection and Protein Staining

    Science.gov (United States)

    Wong, Chun-Yuen; Chung, Lai-Hon; Lin, Sheng; Chan, Daniel Shiu-Hin; Ma, Dik-Lung

    2014-01-01

    A new ruthenium(II) complex has been developed for detection of biomolecules. This complex is highly selective for histidine over other amino acids and has been applied to protein staining in an SDS-PAGE gel. PMID:25409703

  19. Reactivity studies of eta sup (6)-p-cymene ruthenium(II) carboxylato complexes towards azide some neutral ligands

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, K.S.; Kollipara, M.R.

    Mono and di-nuclear eta sup (6)-p-cymene ruthenium(II) complexes containing carboxylato ligand of formulation [(eta sup (6)-p-cymene)Ru(pa)Cl] and [{(eta sup (6)-p-cymene)RuCl}2 (mu-LL)] [where, pa = O sub (2)CC sub (6)H sub (4)-p-OMe (1), LL = C...

  20. Atmospheric Hydrogenation of Esters Catalyzed by PNP-Ruthenium Complexes with an N-Heterocyclic Carbene Ligand.

    Science.gov (United States)

    Ogata, Osamu; Nakayama, Yuji; Nara, Hideki; Fujiwhara, Mitsuhiko; Kayaki, Yoshihito

    2016-08-01

    New pincer ruthenium complexes bearing a monodentate N-heterocyclic carbene ligand were synthesized and demonstrated as powerful hydrogenation catalysts. With an atmospheric pressure of hydrogen gas, aromatic, heteroaromatic, and aliphatic esters as well as lactones were converted into the corresponding alcohols at 50 °C. This reaction protocol offers reliable access to alcohols using an easy operational setup. PMID:27439106

  1. A Hexakis Terpyridine-Fullerene Ligand in Six-Fold Ruthenium, Iridium, and Iron Complexes: Synthesis and Electrochemical Properties.

    Science.gov (United States)

    Yan, Weibo; Réthoré, Céline; Menning, Sebastian; Brenner-Weiß, Gerald; Muller, Thierry; Pierrat, Philippe; Bräse, Stefan

    2016-08-01

    An unprecedented straightforward route to six-fold terpyridine ligands around C60 , the latter being regioselectively functionalized in pseudo-octahedral positions using a six-fold Bingel reaction, is reported. Ruthenium, iridium, and iron complexes have been synthesized, and unambiguously characterized by NMR, MS, and cyclic voltammetry. PMID:27189254

  2. Tandem olefin metathesis/hydrogenation at ambient temperature: activation of ruthenium carbene complexes by addition of hydrides.

    Science.gov (United States)

    Schmidt, Bernd; Pohler, Michael

    2003-07-21

    Sodium hydride activates ruthenium carbene complexes to catalyze hydrogenation reactions subsequent to ring closing olefin metathesis. Under these conditions, hydrogenation of cyclopentenols proceeds smoothly at ambient temperature and under 1 atm of hydrogen in toluene. An alternative protocol was developed that involves the formation of hydrogen in situ by reaction of excess sodium hydride with protic functional groups and water. PMID:12956069

  3. Atmospheric Hydrogenation of Esters Catalyzed by PNP-Ruthenium Complexes with an N-Heterocyclic Carbene Ligand.

    Science.gov (United States)

    Ogata, Osamu; Nakayama, Yuji; Nara, Hideki; Fujiwhara, Mitsuhiko; Kayaki, Yoshihito

    2016-08-01

    New pincer ruthenium complexes bearing a monodentate N-heterocyclic carbene ligand were synthesized and demonstrated as powerful hydrogenation catalysts. With an atmospheric pressure of hydrogen gas, aromatic, heteroaromatic, and aliphatic esters as well as lactones were converted into the corresponding alcohols at 50 °C. This reaction protocol offers reliable access to alcohols using an easy operational setup.

  4. Spectroscopy and interactions of metal and metal cation complexes

    OpenAIRE

    Plowright, Richard J.

    2010-01-01

    The work in this thesis looks at the spectroscopy and interactions of metals and metal cation complexes. There are two aspects of this vast subject that are considered: the electronic spectroscopy of Au-RG complexes and the ion-molecule chemistry of metals important in the mesosphere-lower thermosphere (MLT) region of the atmosphere. The spectroscopy of the molecular states in the vicinity of the strong Au 2P3/2, 1/2 ← 2S1/2 atomic transition, have been studied for the Au-RG (RG = Ne, Ar...

  5. Arene Ruthenium Cages: Boxes Full of Surprises

    OpenAIRE

    Therrien, Bruno

    2010-01-01

    Self-assembly of polypyridyl ligands with dinuclear arene ruthenium building blocks bridged by chlorido, oxalato or benzoquinonato ligands has allowed the construction of a wide range of cationic metalla complexes possessing different architectures and functionalities: (i) metalla-rectangles showing host-guest possibilities and allowing intramolecular template-controlled photochemical [2 + 2] dimerisation reactions; (ii) metalla-prisms allowing encapsulation of molecules and giving rise to po...

  6. Formation, Isolation and Characterization of a New Ruthenium Complex in Reaction of Acetone Masked Terminal Alkynone with Transfer Hydrogenation Catalyst

    Institute of Scientific and Technical Information of China (English)

    郭敏捷; 李到; 孙延辉; 成江; 张兆国

    2004-01-01

    Reaction of [1S,2S-(Ts-diphen)Ru(Ⅱ)(p-cymene)] (1S,2S-Ts-diphen= 1S,2S-N-tosyl-1,2-diphenylethylenediamine) and 2-hydroxy-2-methyl-non-3-yn-5-one under transfer hydrogenation condition gave a ruthenium complex bearing a 2,5-dihydrofuran moiety. The complex was characterized and a possible mechanism for the formation of the complex was proposed.

  7. Host–guest properties of the trinuclear arene–ruthenium cluster cation [H3Ru3(C6H6)(C6Me6)2(O)]+

    OpenAIRE

    Therrien, Bruno; Vieille-Petit, Ludovic; Süss-Fink, Georg

    2009-01-01

    The trinuclear arene–ruthenium cluster cation [H3Ru3(C6H6)(C6Me6)2(O)]+, containing a μ3-oxo cap and three arene ligands that span a hydrophobic pocket above the metal skeleton, has been crystallised as tetrafluoroborate salt in the presence of various guest molecules. The host–guest complexes have been characterised by single-crystal X-ray structure analysis. With chloroform as the guest molecule, a CHCl3 molecule sits perfectly in the hydrophobic pocket, the hydrogen atom being encapsulated...

  8. Novel pyrazolylphosphite- and pyrazolylphosphinite-ruthenium(ii) complexes as catalysts for hydrogenation of acetophenone.

    Science.gov (United States)

    Amenuvor, Gershon; Obuah, Collins; Nordlander, Ebbe; Darkwa, James

    2016-09-14

    The new compounds and potential ligands 2-(3,5-di-tert-butyl-1H-pyrazol-1-yl)ethyldiphenlyphosphinite (L1), 2-(3,5-di-tert-butyl-1H-pyrazol-1-yl)ethyldiethylphosphite (L2), 2-(3,5-di-tert-butyl-1H-pyrazol-1-yl)ethyl-diethylphosphite (L3) and 2-(3,5-diphenyl-1H-pyrazol-1-yl)ethyldiethylphosphite (L4) were prepared from the reaction of (3,5-(disubstituted)pyrazol-1H-yl)ethanol and the appropriate phosphine chloride. The phosphinite (L1) and phosphites (L2-L4) and 2-(3,5-diphenyl-1H-pyrazol-1-yl)ethyldiphenylphosphinite (L5) were reacted with [Ru(p-cymene)Cl2]2 to afford the ruthenium(ii) complexes [Ru(p-cymene)Cl2(L1)] (1), [Ru(p-cymene)Cl2(L2)] (2), [Ru(p-cymene)Cl2(L3)] (3), [Ru(p-cymene)Cl2(L4)] (4), and [Ru(p-cymene)Cl2(L5)] (5). All ruthenium complexes were characterized by a combination of NMR spectroscopy, elemental analysis and, in selected cases, by single crystal X-ray crystallography. Complexes 1-5 and [Ru(p-cymene)Cl2(L6)] (6) (prepared from 2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyldiphenylphosphinite (L6)) were investigated as catalysts for both transfer and molecular hydrogenation of acetophenone to 1-phenylethanol. At 80 °C the percent conversion of acetophenone in transfer hydrogenation was moderate to high over 10 h (42-87%); for molecular hydrogenation acetophenone, conversions were as high as 98% in 6 h. PMID:27504937

  9. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The ruthenium(II) complex [Ru(bpy){sub 2}-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus.

  10. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    International Nuclear Information System (INIS)

    The ruthenium(II) complex [Ru(bpy)2-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus

  11. Ruthenium (II) complexes of thiosemicarbazone: synthesis, biosensor applications and evaluation as antimicrobial agents.

    Science.gov (United States)

    Yildirim, Hatice; Guler, Emine; Yavuz, Murat; Ozturk, Nurdan; Kose Yaman, Pelin; Subasi, Elif; Sahin, Elif; Timur, Suna

    2014-11-01

    A conformationally rigid half-sandwich organoruthenium (II) complex [(η(6)-p-cymene)RuClTSC(N-S)]Cl, (1) and carbonyl complex [Ru(CO)Cl(PPh3)2TSC(N-S)] (2) have been synthesized from the reaction of [{(η(6)-p-cymene)RuCl}2(μ-Cl)2] and [Ru(H)(Cl)(CO)(PPh3)3] with thiophene-2-carboxaldehyde thiosemicarbazon (TSC) respectively and both novel ruthenium (II) complexes have been characterized by elemental analysis, FT-IR and NMR spectroscopy. The peripheral TSC in the complexes acts as an electrochemical coupling unit providing the ability to carry out electrochemical deposition (ED) and to form an electro-deposited film on a graphite electrode surface. The biosensing applicability of complexes 1 and 2 was investigated by using glucose oxidase (GOx) as a model enzyme. Electrochemical measurements at -0.9V versus Ag/AgCl electrode by following the ED Ru(II) reduction/oxidation due to from the enzyme activity, in the presence of glucose substrate. The designed biosensor showed a very good linearity for 0.01-0.5mM glucose. The in vitro antimicrobial activities of complexes 1 and 2 were also investigated against nine bacterial strains and one fungus by the disc diffusion test method. No activity was observed against the Gram-negative strains and fungus, whereas complex 1 showed moderate antibacterial activities against Gram-positive bacterial strains. PMID:25280673

  12. Synthesis, characterization; DNA binding and antitumor activity of ruthenium(II) polypyridyl complexes.

    Science.gov (United States)

    Srishailam, A; Gabra, Nazar Mohammed; Kumar, Yata Praveen; Reddy, Kotha Laxma; Devi, C Shobha; Anil Kumar, D; Singh, Surya S; Satyanarayana, S

    2014-12-01

    Three new ruthenium(II) polypyridyl complexes [Ru(phen)2BrIPC](2+) (1), [Ru(bpy)2 BrIPC](2+) (2) and [Ru(dmb)2BrIPC](2+) (3) where, BrIPC = (6-bromo-3-(1H-imidazo[4,5-f] [1,10]-phenanthroline, phen = 1,10-phenanthroline, bpy = 2,2' bipyridine, dmb = 4,4'-dimethyl 2,2' bipyridine, were synthesised and characterised. DNA-binding nature was investigated by spectroscopic titrations and mode of binding was assessed by viscosity measurements. The DNA-binding constants Kb of complexes 1, 2 and 3 were determined to be in the order of 10(5). Experimental results showed that these complexes interact with CT-DNA by intercalative mode. Photocleavage and antimicrobial activities were complex concentration dependent, at high concentration, high activity and vice versa. MTT assay was performed on HeLa cell lines, IC50 values of complexes in the order of 3 > 2 > 1 > cisplatin. From comet assay, cellular uptake studies, we observed that complexes could enter into the cell membrane and accumulate inside the nucleus. Molecular docking studies support the DNA binding affinity with hydrogen bonding and van der Waals attractions between base pairs and phosphate backbone of DNA with metal complexes. PMID:25318017

  13. Synthesis, spectroscopic characterization and catalytic oxidation properties of ONO/ONS donor Schiff base ruthenium(III) complexes containing PPh3/AsPh3

    Indian Academy of Sciences (India)

    Priyarega; M Muthu Tamizh; R Karvembu; R Prabhakaran; K Natarajan

    2011-05-01

    Six different ruthenium(III) complexes of Schiff bases derived from 2-hydroxy-1-naphthaldehyde and -aminophenol/-aminothiophenol have been synthesized. The compounds with the general formula [RuX(EPh3)2(L)] (X = Cl or Br; E = P or As; L = bifunctional tridentate ONO/ONS donor Schiff base ligand) were characterized by infrared, electronic, electron paramagnetic resonance spectroscopy and elemental analyses. Spectroscopic investigation reveals coordination of Schiff base ligand through ONO/ONS donor atoms and octahedral geometry around ruthenium metal. Redox property of complexes has been examined by using cyclic voltammetry. The catalytic oxidation property of ruthenium(III) complexes were also investigated.

  14. Synergistic oxygen atom transfer by ruthenium complexes with non-redox metal ions.

    Science.gov (United States)

    Lv, Zhanao; Zheng, Wenrui; Chen, Zhuqi; Tang, Zhiming; Mo, Wanling; Yin, Guochuan

    2016-07-28

    Non-redox metal ions can affect the reactivity of active redox metal ions in versatile biological and heterogeneous oxidation processes; however, the intrinsic roles of these non-redox ions still remain elusive. This work demonstrates the first example of the use of non-redox metal ions as Lewis acids to sharply improve the catalytic oxygen atom transfer efficiency of a ruthenium complex bearing the classic 2,2'-bipyridine ligand. In the absence of Lewis acid, the oxidation of ruthenium(ii) complex by PhI(OAc)2 generates the Ru(iv)[double bond, length as m-dash]O species, which is very sluggish for olefin epoxidation. When Ru(bpy)2Cl2 was tested as a catalyst alone, only 21.2% of cyclooctene was converted, and the yield of 1,2-epoxycyclooctane was only 6.7%. As evidenced by electronic absorption spectra and EPR studies, both the oxidation of Ru(ii) by PhI(OAc)2 and the reduction of Ru(iv)[double bond, length as m-dash]O by olefin are kinetically slow. However, adding non-redox metal ions such as Al(iii) can sharply improve the oxygen transfer efficiency of the catalyst to 100% conversion with 89.9% yield of epoxide under identical conditions. Through various spectroscopic characterizations, an adduct of Ru(iv)[double bond, length as m-dash]O with Al(iii), Ru(iv)[double bond, length as m-dash]O/Al(iii), was proposed to serve as the active species for epoxidation, which in turn generated a Ru(iii)-O-Ru(iii) dimer as the reduced form. In particular, both the oxygen transfer from Ru(iv)[double bond, length as m-dash]O/Al(iii) to olefin and the oxidation of Ru(iii)-O-Ru(iii) back to the active Ru(iv)[double bond, length as m-dash]O/Al(iii) species in the catalytic cycle can be remarkably accelerated by adding a non-redox metal, such as Al(iii). These results have important implications for the role played by non-redox metal ions in catalytic oxidation at redox metal centers as well as for the understanding of the redox mechanism of ruthenium catalysts in the oxygen atom

  15. Organic-Ruthenium(II Polypyridyl Complex Based Sensitizer for Dye-Sensitized Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Lingamallu Giribabu

    2011-01-01

    Full Text Available A new high molar extinction coefficient organic-ruthenium(II polypyridyl complex sensitizer (RD-Cou that contains 2,2,6,6-tetramethyl-9-thiophene-2-yl-2,3,5,6,6a,11c-hexahydro1H,4H-11oxa-3a-aza-benzoanthracene-10-one as extended -conjugation of ancillary bipyridine ligand, 4,4-dicaboxy-2,26,2-bipyridine, and a thiocyanate ligand in its molecular structure has been synthesized and completely characterized by CHN, Mass, 1H-NMR, UV-Vis, and fluorescence spectroscopies as well as cyclic voltammetry. The new sensitizer was tested in dye-sensitized solar cells using a durable redox electrolyte and compared its performance to that of standard sensitizer Z-907.

  16. Redox-Active-Ligand-Mediated Formation of an Acyclic Trinuclear Ruthenium Complex with Bridging Nitrido Ligands.

    Science.gov (United States)

    Bagh, Bidraha; Broere, Daniël L J; Siegler, Maxime A; van der Vlugt, Jarl Ivar

    2016-07-11

    Coordination of a redox-active pyridine aminophenol ligand to Ru(II) followed by aerobic oxidation generates two diamagnetic Ru(III) species [1 a (cis) and 1 b (trans)] with ligand-centered radicals. The reaction of 1 a/1 b with excess NaN3 under inert atmosphere resulted in the formation of a rare bis(nitrido)-bridged trinuclear ruthenium complex with two nonlinear asymmetrical Ru-N-Ru fragments. The spontaneous reduction of the ligand centered radical in the parent 1 a/1 b supports the oxidation of a nitride (N(3-) ) to half an equivalent of N2 . The trinuclear omplex is reactive toward TEMPO-H, tin hydrides, thiols, and dihydrogen. PMID:27321547

  17. Synthesis of Ruthenium Carbonyl Complexes with Phosphine or Substituted Cp Ligands, and Their Activity in the Catalytic Deoxygenation of 1,2-Propanediol

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, R.M.; Ghosh, P.; Fagan, P.J.; Marshall, W.J.; Hauptman, E.

    2009-07-20

    A ruthenium hydride with a bulky tetra-substituted Cp ligand, (Cp{sup iPr{sub 4}})Ru(CO){sub 2}H (Cp{sup iPr{sub 4}} = C{sub 5}(i-C{sub 3}H{sub 7}){sub 4}H) was prepared from the reaction of Ru{sub 3}(CO){sub 12} with 1,2,3,4-tetraisopropylcyclopentadiene. The molecular structure of (Cp{sup iPr{sub 4}})Ru(CO){sub 2}H was determined by X-ray crystallography. The ruthenium hydride complex (C{sub 5}Bz{sub 5})Ru(CO){sub 2}H (Bz = CH{sub 2}Ph) was similarly prepared. The Ru-Ru bonded dimer, [(1,2,3-trimethylindenyl)Ru(CO){sub 2}]{sub 2}, was produced from the reaction of 1,2,3-trimethylindene with Ru{sub 3}(CO){sub 12}, and protonation of this dimer with HOTf gives {l_brace}[(1,2,3-trimethylindenyl)Ru(CO){sub 2}]{sub 2}-({mu}-H){r_brace}{sup +}OTf{sup -}. A series of ruthenium hydride complexes CpRu(CO)(L)H [L = P(OPh){sub 3}, PCy{sub 3}, PMe{sub 3}, P(p-C{sub 6}H{sub 4}F){sub 3}] were prepared by reaction of Cp(CO){sub 2}RuH with added L. Protonation of (Cp{sup iPr{sub 4}})Ru(CO){sub 2}H, Cp*Ru(CO){sub 2}H, or CpRu(CO)[P-(OPh){sub 3}]H by HOTf at -80 C led to equilibria with the cationic dihydrogen complexes, but H{sub 2} was released at higher temperatures. Protonation of CpRu[P(OPh){sub 3}]{sub 2}H with HOTf gave an observable dihydrogen complex, {l_brace}CpRu[P-(OPh){sub 3}]{sub 2}({eta}{sup 2}-H{sub 2}){r_brace}+OTf{sup -} that was converted at -20 C to the dihydride complex {l_brace}CpRu[P(OPh){sub 3}]{sub 2}(H){sub 2}{r_brace}{sup +}OTf{sup -}. These Ru complexes serve as catalyst precursors for the catalytic deoxygenation of 1,2-propanediol to give n-propanol. The catalytic reactions were carried out in sulfolane solvent with added HOTf under H{sub 2} (750 psi) at 110 C.

  18. Synthesis of Ruthenium Carbonyl Complexes with Phosphine or Substituted Cp Ligands, and Their Activity in the Catalytic Deoxygenation of 1,2-Propanediol

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Prasenjit; Fagan, Paul J.; Marshall, William J.; Hauptman, Elisabeth; Bullock, R. Morris

    2009-07-20

    A ruthenium hydride with a bulky substituted Cp ligand, (CpiPr4)Ru(CO)2H (CpiPr4 = C5(i-C3H7)4H) was prepared from the reaction of Ru3(CO)12 with 1,2,3,4-tetraisopropylcyclopentadiene. The molecular structure of (CpiPr4)Ru(CO)2H was determined by x-ray crystallography. The ruthenium hydride complex (C5Bz5)Ru(CO)2H (Bz = CH2Ph) was similarly prepared. The Ru-Ru bonded dimer, [(1,2,3-trimethylindenyl)Ru(CO)2]2, was produced from the reaction of 1,2,3-trimethylindene with Ru3(CO)12, and protonation of this dimer with HOTf gives {[(1,2,3-trimethylindenyl)Ru(CO)2]2(μ H)}+OTf –. A series of ruthenium hydride complexes CpRu(CO)(L)H [L = P(OPh)3, PCy3, PMe3, P(p C6H4F)3] were prepared by reaction of Cp(CO)2RuH with added L. Protonation of (CpiPr4)Ru(CO)2H, Cp*Ru(CO)2H or CpRu(CO)[P(OPh)3]H by HOTf 80 °C led to equilibria with the cationic dihydrogen complexes, but H2 was released at higher temperatures. Protonation of CpRu[P(OPh)3]2H with HOTf gave an observable dihydrogen complex, {CpRu[P(OPh)3]2(η2 H2)}+OTf – that was converted at -20 °C to the dihydride complex {CpRu[P(OPh)3]2(H)2}+OTf –. These Ru complexes serve as catalyst precursors for the catalytic deoxygenation of 1,2-propanediol to give n-propanol. The catalytic reactions were carried out in sulfolane solvent with added HOTf under H2 (750 psi) at 110 °C. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. Pacific Northwest National Laboratory is operated by Battelle for DOE.

  19. Osmium, ruthenium, iridium and uranium in silicates and chromite from the eastern Bushveld Complex, South Africa

    Science.gov (United States)

    Gijbels, R.h.; Millard, H.T., Jr.; Desborough, G.A.; Bartel, A.J.

    1974-01-01

    Osmium, ruthenium, iridium and uranium contents were determined in eight ortho pyroxene, seven plagioclase, and three chromite mineral separates from the eastern Bushveld Complex. Neutron activation analysis was used to measure the platinum metals, and uranium was determined by a fission track technique. The platinum metals were found to be present within each mine??ral in the proportions Os:Ru:Ir = 1:7:1, while the concentrations of these metals in the minerals are in the ratios orthopyroxene:plagioclase:chromite = 1:16:700. The concentration of uranium was found to range from 11 to 66 ppb (parts per billion) and not to vary significantly from mineral to mineral. The data for the platinum metals are consistent with a model in which the eastern Bushveld Complex was formed by the fractional crystallization of two separately injected magmas. A computer fit of this model to these data indicates that the initial concentrations of Os, Ru and Ir in the first magma were 0.24, 2.0 and 0.21 ppb and in the second magma were 0.16, 1.1 and 0.18 ppb, respectively. The fit also yields the distribution coefficients for the partitioning between the liquid and cumulus orthopyroxene, cumulus plagioclase and cumulus chromite. These coefficients (mineral/liquid) for osmium are 4.5, 66 and 2700; for ruthenium, they are 5, 65 and 2700; and for iridium, they are 4, 60 and 1600. To make this fit, it was necessary to hypothesize the existence of two types of chromite: one type with a large distribution coefficient, presumably formed as a cumulus phase at high temperature, and another, more prevalent type with a smaller distribution coefficient, which may have been formed by postcumulus growth at a lower temperature. This hypothesis is supported by data for coexisting chromite-silicate pairs, which indicate that the chromite grains expelled these platinum metals as they cooled. ?? 1974.

  20. Preparation, spectroscopy, EXAFS, electrochemistry and pharmacology of new ruthenium(II) carbonyl complexes containing ferrocenylthiosemicarbazone and triphenylphosphine/arsine

    Science.gov (United States)

    Prabhakaran, R.; Anantharaman, S.; Thilagavathi, M.; Kaveri, M. V.; Kalaivani, P.; Karvembu, R.; Dharmaraj, N.; Bertagnolli, H.; Dallemer, F.; Natarajan, K.

    2011-02-01

    A new series of new hetero-bimetallic complexes containing iron and ruthenium of the general formula [RuCl(CO)(B)(EPh 3)(L)] (where E = P or As; B = PPh 3, AsPh 3, py or pip; L = ferrocene derived monobasic bidentate thiosemicarbazone ligand) have been synthesized by the reaction between ferrocene-derived thiosemicarbazones and ruthenium(II) complexes of the type [RuHCl(CO)(B)(EPh 3) 2] (where E = P or As; B = PPh 3, AsPh 3, py or pip). The new complexes have been characterized by elemental analyses, IR, electronic, NMR ( 1H, 13C and 31P), EXAFS (extended X-ray absorption fine structure spectroscopy) and cyclic voltammetric techniques. Antibacterial activity of the new complexes has been screened against Escherichia coli, Vibrio cholerae, and Pseudomonas aeruginosa species.

  1. Arene ruthenium chemistry

    OpenAIRE

    Bates, Richard Simon

    1990-01-01

    This thesis describes the synthesis and reactivity studies of new arene-ruthenium(II) and arene-ruthenium(O) complexes. Ultrasound has been investigated as an alternative energy source, with the overall aim of synthesising arene ruthenium clusters. Chapter 1 gives an introduction and summary of the known arene ruthenium chemistry reported to date. Chapter 2 reports the synthesis of (CGH6)Ru(C2H4)2 and (MeC6H4CHMe2)Ru(C2H4)2. Low temperature protonation studies generated (C6H6)Ru(H)(CZH4...

  2. Ruthenium(II) chalconate complexes: Synthesis, characterization, catalytic, and biological studies

    Science.gov (United States)

    Muthukumar, M.; Viswanathamurthi, P.

    2009-10-01

    A series of new hexa-coordinated ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh 3)(B)(L)] (E = P or As; B = PPh 3, AsPh 3 or Py; L = 2'-hydroxychalcones) have been prepared by reacting [RuHCl(CO)(EPh 3) 2(B)] (E = P or As; B = PPh 3, AsPh 3 or Py) with 2'-hydroxychalcones in benzene under reflux. The new complexes have been characterized by analytical and spectral (IR, electronic, 1H, 31P and 13C NMR) data. Based on the above data, an octahedral structure has been assigned for all the complexes. The new complexes exhibit catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine- N-oxide (NMO) as co-oxidant and also found efficient catalyst in the transfer hydrogenation of ketones. The antifungal properties of the complexes have also been examined and compared with standard Bavistin.

  3. A functional ruthenium(ii) complex for imaging biothiols in living bodies.

    Science.gov (United States)

    Ye, Zhiqiang; Gao, Quankun; An, Xin; Song, Bo; Yuan, Jingli

    2015-05-01

    A unique ruthenium(ii) complex, [Ru(bpy)2(DNS-bpy)](PF6)2 [bpy: 2,2'-bipyridine, DNS-bpy: 4-(2,4-dinitrophenylthio)-2,2'-bipyridine], that can act as a probe for the recognition and luminescence sensing of biothiols has been designed and synthesized. Due to the presence of effective photo-induced electron transfer (PET) from the potent electron donor (Ru-bpy centre) to the strong electron acceptor (2,4-dinitrophenyl moiety), the Ru(ii) complex itself is weakly luminescent. Reaction of [Ru(bpy)2(DNS-bpy)](PF6)2 with biothiols leads to the replacement of the 2,4-dinitrophenyl moiety by biothiols, which results in the loss of PET within the complex, to allow recovery of the MLCT-based emission of the Ru(ii) complex with an 80-fold increase in luminescence intensity. Taking advantage of the high specificity and sensitivity, and the excellent photophysical properties of Ru(ii) complexes, [Ru(bpy)2(DNS-bpy)](PF6)2 was successfully applied to the luminescence imaging of biothiols in living Daphnia magna. The results demonstrated the practical applicability of [Ru(bpy)2(DNS-bpy)](PF6)2 as a luminescent probe for the monitoring of biothiols in living bodies. PMID:25851565

  4. Ruthenium(II) carbonyl complexes containing chalconates and triphenylphosphine/arsine

    Indian Academy of Sciences (India)

    P Viswanathamurthi; M Muthukumar

    2011-09-01

    A series of new hexa-coordinated ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh3)(B)(L1−4)] (4-15) (E = P or As; B = PPh3, AsPh3 or Py; L = 2'-hydroxychalcone) were synthesized from the reaction of [RuHCl(CO)(EPh3)2(B)] (1-3) (E = P or As; B = PPh3, AsPh3 or Py) with equimolar chalcone in benzene under reflux. The new complexes have been characterized by analytical and spectroscopic (IR, electronic, 1H, 31P{1H}, and 13C NMR) methods. On the basis of data obtained, an octahedral structure has been assigned for all the complexes. The complexes exhibit catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of -methylmorpholine--oxide (NMO) as co-oxidant and were also found to be efficient transfer hydrogenation catalysts. The antifungal properties of the ligands and their complexes have also been examined and compared with standard Bavistin.

  5. Synthesis, characterization luminiscence studies and microbial activity of ethylenediamine ruthenium (II) complexes with dipyridophenazine ligands.

    Science.gov (United States)

    Shilpa, Mynam; Nagababu, Penumaka; Kumar, Y Praveen; Latha, J Naveena Lavanya; Reddy, M Rajender; Karthikeyan, K S; Gabra, Nazar Md; Satyanarayana, Sirasani

    2011-05-01

    Three symmetric ligands 7-methyl dipyrido-[3,2-a;2',3'-c]phenazine (dppz-CH(3)), 7-nitro dipyrido-[3,2-a;2',3'-c]phenazine (dppz-NO(2)) and benzo[i]dipyrido-[3,2-a;2',3'-c]phenazine (dppn) and their ruthenium(II) complexes [Ru(en)(2)(L)][ClO(4)](2) (en= ethylenediamine), L= dppz-CH(3), dppz-NO(2) and dppn have been synthesized and characterized by IR, (1)H, (13)C NMR and Mass spectra. The interactions of these complexes with calf thymus DNA have been investigated by spectrophotometric, spectrofluorimetric, circular dichroism, viscosity and thermal denaturation studies. As the planar extension of the intercalative ligand increases, the interaction of the complex with DNA increases, indicating that the size and shape of the intercalalative ligand has a marked effect on the strength of interaction. The plot of log K versus log [Na(+)] yield a slope of -1.26, -1.53, -1.60 for the complexes 1, 2 and 3 respectively. These three complexes have been found to promote the cleavage of plasmid pBR 322 DNA upon irradiation. PMID:21181246

  6. Highly efficient oxidation of alcohols using Oxone(R) as oxidant catalyzed by ruthenium complex under mild reaction conditions

    Institute of Scientific and Technical Information of China (English)

    Zi Qiang Lei; Jian Qiang Wang; Peng Hua Yan

    2008-01-01

    Aromatic and alkyl alcohols were oxidized to the corresponding aldehydes or ketones at room temperature with high conversion and selectivity using Oxone (2KHSO5·KHSO4·K2SO4) as oxidant catalyzed by ruthenium complex Quin-Ru-Quin (where Quin = 8-hydroxyquinoline). The reaction time is very short and the preparation of complex is simple. 2008 Zi Qiang Lei. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  7. Discovery of a dual-targeting organometallic ruthenium complex with high activity inducing early stage apoptosis of cancer cells.

    Science.gov (United States)

    Du, Jun; Zhang, Erlong; Zhao, Yao; Zheng, Wei; Zhang, Yang; Lin, Yu; Wang, Zhaoying; Luo, Qun; Wu, Kui; Wang, Fuyi

    2015-12-01

    Ruthenium based complexes are promising antitumour candidates due to their lower toxicity and better water-solubility compared to the platinum antitumour complexes. An epidermal growth factor receptor (EGFR) has been found to be overexpressed in a large set of tumour cells. In this work, a series of organoruthenium complexes containing EGFR-inhibiting 4-anilinoquinazoline pharmacophores were synthesised and characterised. These complexes exhibited excellent inhibitory activity against EGFR and high affinity to interact with DNA via minor groove binding, featuring dual-targeting properties. In vitro screening demonstrated that the as-prepared ruthenium complexes are anti-proliferating towards a series of cancer cell lines, in particular the non-small-cell lung cancer cell line A549. Fluorescence-activated cell sorting analysis and fluorescence microscopy revealed that the most active complex 3 induced much more early-stage cell apoptosis than its cytotoxic arene ruthenium analogue and the EGFR-inhibiting 4-anilinoquinazolines, verifying the synergetic effect of the two mono-functional pharmacophores. PMID:26446567

  8. Modification of multiwall carbon nanotubes with ruthenium(II) terpyridine complex

    Energy Technology Data Exchange (ETDEWEB)

    Li Huayang [Clark Atlanta University, Chemistry Department (United States); Wu Jie [Georgia Institute of Technology, School of Materials Science and Engineering (United States); Jeilani, Yassin A. [Spelman College, Department of Chemistry (United States); Ingram, Conrad W.; Harruna, Issifu I., E-mail: iharruna@cau.edu [Clark Atlanta University, Chemistry Department (United States)

    2012-06-15

    Multiwall carbon nanotubes (MWCNTs, 1-3 {mu}M in length and 20-25 nm in diameter) were initially functionalized with a 2,2 Prime :6 Prime 2 Double-Prime -terpyridine-chelated ruthenium(II) complex by covalent amidation. The resulting functionalized ruthenium MWCNTs (RuMWCNTs, 1-2 {mu}M in length and 10-20 nm in diameter) were characterized by thermogravimetric analysis, X-ray photoelectronic spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM). Thermogravimetric experiments of RuMWCNTs show that the functional group coverage of terpyridine-rutheniun-terpyridine (tpy-Ru-tpy) is 0.7036 mmol/1.0 g carbon. The XPS results show N1s and Ru3d{sup 5/5} signals, confirming the presence of tpy-Ru-tpy groups on the surface of MWCNTs. The FTIR spectra of the RuMWCNTs display the typical stretching mode of the carboxyl group (amide I) and a combination of amide N-H and C-N stretching mode (amide II). The Raman D- and G-line peak intensity ratio of RuMWCNTs (ID/IG 2.21) exceeds that of pristine MWCNTs (ID/IG 1.93), suggesting covalent bonding of tpy-Ru-tpy to MWCNTs and supporting the disruption of the graphitic integrity due to the proposed covalent functionalization. High-resolution SEM images confirm that tpy-Ru-tpy moieties are interconnected or attached as aggregated structures (100-200-nm range) on the surfaces of the carbon nanotubes after functionalization. The electrical property of RuMWCNTs depicts higher resistance (10.10 M Ohm-Sign ) than that of OX-MWCNTs (15.38 k Ohm-Sign ).

  9. Ruthenium (II) complexes of thiosemicarbazone: Synthesis, biosensor applications and evaluation as antimicrobial agents

    International Nuclear Information System (INIS)

    A conformationally rigid half-sandwich organoruthenium (II) complex [(η6-p-cymene)RuClTSCN–S]Cl, (1) and carbonyl complex [Ru(CO)Cl(PPh3)2TSCN–S] (2) have been synthesized from the reaction of [{(η6-p-cymene)RuCl}2(μ-Cl)2] and [Ru(H)(Cl)(CO)(PPh3)3] with thiophene-2-carboxaldehyde thiosemicarbazon (TSC) respectively and both novel ruthenium (II) complexes have been characterized by elemental analysis, FT-IR and NMR spectroscopy. The peripheral TSC in the complexes acts as an electrochemical coupling unit providing the ability to carry out electrochemical deposition (ED) and to form an electro-deposited film on a graphite electrode surface. The biosensing applicability of complexes 1 and 2 was investigated by using glucose oxidase (GOx) as a model enzyme. Electrochemical measurements at − 0.9 V versus Ag/AgCl electrode by following the ED Ru(II) reduction/oxidation due to from the enzyme activity, in the presence of glucose substrate. The designed biosensor showed a very good linearity for 0.01–0.5 mM glucose. The in vitro antimicrobial activities of complexes 1 and 2 were also investigated against nine bacterial strains and one fungus by the disc diffusion test method. No activity was observed against the Gram-negative strains and fungus, whereas complex 1 showed moderate antibacterial activities against Gram-positive bacterial strains. - Highlights: • Novel Ru (II) thiosemicarbazone complexes were synthesized and characterized. • Electrochemical depositions were performed. • Rigid half-sandwich Ru (II) complex showed enhanced antibacterial activity

  10. Ruthenium (II) complexes of thiosemicarbazone: Synthesis, biosensor applications and evaluation as antimicrobial agents

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Hatice [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey); Guler, Emine [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Yavuz, Murat, E-mail: myavuz@dicle.edu.tr [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Dicle University, Faculty of Science, Department of Chemistry, 21280 Diyarbakir (Turkey); Ozturk, Nurdan; Kose Yaman, Pelin [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey); Subasi, Elif; Sahin, Elif [Dokuz Eylul University, Faculty of Science, Department of Chemistry, 35160 Buca, Izmir (Turkey); Timur, Suna [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Ege University, Institute on Drug Abuse, Toxicology and Pharmaceutical Science (BATI), 35100 Bornova, Izmir (Turkey)

    2014-11-01

    A conformationally rigid half-sandwich organoruthenium (II) complex [(η{sup 6}-p-cymene)RuClTSC{sup N–S}]Cl, (1) and carbonyl complex [Ru(CO)Cl(PPh{sub 3}){sub 2}TSC{sup N–S}] (2) have been synthesized from the reaction of [{(η"6-p-cymene)RuCl}{sub 2}(μ-Cl){sub 2}] and [Ru(H)(Cl)(CO)(PPh{sub 3}){sub 3}] with thiophene-2-carboxaldehyde thiosemicarbazon (TSC) respectively and both novel ruthenium (II) complexes have been characterized by elemental analysis, FT-IR and NMR spectroscopy. The peripheral TSC in the complexes acts as an electrochemical coupling unit providing the ability to carry out electrochemical deposition (ED) and to form an electro-deposited film on a graphite electrode surface. The biosensing applicability of complexes 1 and 2 was investigated by using glucose oxidase (GOx) as a model enzyme. Electrochemical measurements at − 0.9 V versus Ag/AgCl electrode by following the ED Ru(II) reduction/oxidation due to from the enzyme activity, in the presence of glucose substrate. The designed biosensor showed a very good linearity for 0.01–0.5 mM glucose. The in vitro antimicrobial activities of complexes 1 and 2 were also investigated against nine bacterial strains and one fungus by the disc diffusion test method. No activity was observed against the Gram-negative strains and fungus, whereas complex 1 showed moderate antibacterial activities against Gram-positive bacterial strains. - Highlights: • Novel Ru (II) thiosemicarbazone complexes were synthesized and characterized. • Electrochemical depositions were performed. • Rigid half-sandwich Ru (II) complex showed enhanced antibacterial activity.

  11. Immobilization and electrochemical properties of ruthenium and iridium complexes on carbon electrodes

    Science.gov (United States)

    Gupta, Ayush; Blakemore, James D.; Brunschwig, Bruce S.; Gray, Harry B.

    2016-03-01

    We report the synthesis and surface immobilization of two new pyrene-appended molecular metal complexes: a ruthenium tris(bipyridyl) complex (1) and a bipyridyl complex of [Cp*Ir] (2) (Cp*  =  pentamethylcyclopentadienyl). X-ray photoelectron spectroscopy confirmed successful immobilization on high surface area carbon electrodes, with the expected elemental ratios for the desired compounds. Electrochemical data collected in acetonitrile solution revealed a reversible reduction of 1 near  -1.4 V, and reduction of 2 near  -0.75 V. The noncovalent immobilization, driven by association of the appended pyrene groups with the surface, was sufficiently stable to enable studies of the molecular electrochemistry. Electroactive surface coverage of 1 was diminished by only 27% over three hours soaking in electrolyte solution as measured by cyclic voltammetry. The electrochemical response of 2 resembled its soluble analogues, and suggested that ligand exchange occurred on the surface. Together, the results demonstrate that noncovalent immobilization routes are suitable for obtaining fundamental understanding of immobilized metal complexes and their reductive electrochemical properties.

  12. Synthesis, spectroscopic studies and reactivity of triphenylphosphine ruthenium (II) complexes with N-heterocyclic ligands

    International Nuclear Information System (INIS)

    Reported is the chemistry of triphenylphosphine ruthenium (II) complexes of general formula RuCl2(PPh3)2L2 and RuCl2(PPh3)2A, obtained from the reaction of RuCl2(PPh3)3 with N-heterocyclic ligands L, or A (of ambidentate nature). The electronic spectra exhibit two strong metal-to-ligand charge-transfer bands, ascribed to the b1(dxz)->b1(pi) and a2(dxy)->a2(pi) transitions, and a third, weak band ascribed to the b2(dyz)->a2(pi) transition. The electronic states and the vibrational modes of the complexes were characterized by means of their resonance Raman and infrared absorption spectra. Thermogravimetric and thermodifferential analysis indicated that the melting process is succeeded by an exothermic reaction, and that the weigh loss starts to occur only after this step. The complexes dissociated in CHCl3 solution, showing preferential labilization of the phosphine ligands, as in the case of the hydrogenation catalyst Ru(PPh3)3Cl2. In the presence of CO, RuCl2(CO)2L2 complexes were gennerated. Several derivatives were isolated and characterized. (author)

  13. Immobilization and electrochemical properties of ruthenium and iridium complexes on carbon electrodes

    International Nuclear Information System (INIS)

    We report the synthesis and surface immobilization of two new pyrene-appended molecular metal complexes: a ruthenium tris(bipyridyl) complex (1) and a bipyridyl complex of [Cp*Ir] (2) (Cp*  =  pentamethylcyclopentadienyl). X-ray photoelectron spectroscopy confirmed successful immobilization on high surface area carbon electrodes, with the expected elemental ratios for the desired compounds. Electrochemical data collected in acetonitrile solution revealed a reversible reduction of 1 near  −1.4 V, and reduction of 2 near  −0.75 V. The noncovalent immobilization, driven by association of the appended pyrene groups with the surface, was sufficiently stable to enable studies of the molecular electrochemistry. Electroactive surface coverage of 1 was diminished by only 27% over three hours soaking in electrolyte solution as measured by cyclic voltammetry. The electrochemical response of 2 resembled its soluble analogues, and suggested that ligand exchange occurred on the surface. Together, the results demonstrate that noncovalent immobilization routes are suitable for obtaining fundamental understanding of immobilized metal complexes and their reductive electrochemical properties. (paper)

  14. In vitro cytotoxicity, apoptosis, DNA-binding, and antioxidant activity studies of ruthenium (II) complexes.

    Science.gov (United States)

    Huang, Hong-Liang; Liu, Yun-Jun; Zeng, Cheng-Hui; He, Li-Xin; Wu, Fu-Hai

    2010-05-01

    Two new ligands maip (1) (maip = 2-(3-aminophenyl)imizado[4,5-f][1,10]phenanthroline), paip (2) (paip = 2-(4-aminophenyl)imidazo[4,5-f][1,10]phenanthroline), and their ruthenium (II) complexes [Ru(phen)(2)(maip)](ClO(4))(2) (3) and [Ru(phen)(2)(paip)](ClO(4))(2) (4) (phen = 1,10-phenanthroline) have been synthesized and characterized. The cytotoxicity of these compounds was evaluated by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The apoptosis assay was carried out with acridine orange/ethidium bromide staining methods. The DNA-binding behaviors of complexes 3 and 4 were investigated by viscosity measurements, thermal denaturation, photocleavage, and spectroscopic methods. The results show that the two complexes intercalate into the base pairs of DNA. In the presence of a complex, apoptosis of BEL-7402 cells was observed. Experiments show that these compounds exhibit antioxidant activity against hydroxyl radicals. PMID:20307189

  15. Synthesis and spectrosopic identification of hybrid 3-(triethoxysilyl)propylamine phosphine ruthenium(II) complexes.

    Science.gov (United States)

    Warad, Ismail; Al-Resayes, Saud; Al-Othman, Zeid; Al-Deyab, Salem S; Kenawy, El-Refaie

    2010-05-01

    An investigation into the potential ruthenium(II) 1-3 complexes of type [RuCl(2)(P)(2)(N)(2)] using triphenylphosphine and 1,3-bis-diphenylphosphinepropane and 3-(triethoxysilyl)propylamine has been carried out at room temperature in dichloromethane under an inert atmosphere. The structural behaviors of the phosphine ligands in the desired complexes during synthesis were monitored by (31)P{(1)H}-NMR. The structure of complexes 1-3 described herein has been deduced from elemental analyses, infrared, FAB-MS and (1)H-, (13)C- and (31)P-NMR spectroscopy. Xerogels X1-X3 were synthesized by simple sol-gel process of complexes 1-3 using tetraethoxysilane as co-condensation agent in methanol/THF/water solution. Due to their lack of solubility, the structures of X1-X3 were determined by solid state (13)C-, (29)Si- and (31)P-NMR spectroscopy, infrared spectroscopy and EXAFS. PMID:20657503

  16. Synthesis and Spectrosopic Identification of Hybrid 3-(Triethoxysilylpropylamine Phosphine Ruthenium(II Complexes

    Directory of Open Access Journals (Sweden)

    Ismail Warad

    2010-05-01

    Full Text Available An investigation into the potential ruthenium(II 1-3 complexes of type [RuCl2(P2(N2] using triphenylphosphine and 1,3-bis-diphenylphosphinepropane and 3-(triethoxysilylpropylamine has been carried out at room temperature in dichloromethane under an inert atmosphere. The structural behaviors of the phosphine ligands in the desired complexes during synthesis were monitored by 31P{1H}-NMR. The structure of complexes 1-3 described herein has been deduced from elemental analyses, infrared, FAB-MS and 1H-, 13C- and 31P-NMR spectroscopy. Xerogels X1-X3 were synthesized by simple sol-gel process of complexes 1-3 using tetraethoxysilane as co-condensation agent in methanol/THF/water solution. Due to their lack of solubility, the structures of X1-X3 were determined by solid state 13C-, 29Si- and 31P-NMR spectroscopy, infrared spectroscopy and EXAFS.

  17. A Selective Chemosensor for Mercuric Ions Based on 4-Aminothiophenol-Ruthenium(II Bis(bipyridine Complex

    Directory of Open Access Journals (Sweden)

    Amer A. G. Al Abdel Hamid

    2011-01-01

    Full Text Available A new ruthenium(II complex (cis-ruthenium-bis[2,2′-bipyridine]-bis[4-aminothiophenol]-bis[hexafluorophosphate] has been synthesized and characterized using standard analytical and spectroscopic techniques, FTIR, 1H and 13C-NMR, UV/vis, elemental analysis, conductivity measurements, and potentiometric titration. Investigation of the synthesized complex with metal ions showed that this complex has photochemical properties that are selective and sensitive toward the presence of mercuric ion in aqueous solution. The detection limit for mercuric ions using UV/vis spectroscopy was estimated to be ~ 0.4 ppm. The results presented herein may have an important implication in the development of a spectroscopic selective detection for mercuric ions in aqueous solution.

  18. Ruthenium complexes of chelating amido-functionalized N-heterocyclic carbene ligands: Synthesis, structure and DFT studies

    Indian Academy of Sciences (India)

    Sachin Kumar; Anantha Narayanan; Mitta Nageswar Rao; Mobin M Shaikh; Prasenjit Ghosh

    2011-11-01

    Synthesis, structure and density functional theory (DFT) studies of a series of new ruthenium complexes, [1-(R)-3--(benzylacetamido)imidazol-2-ylidene]RuCl(-cymene) [R = Me (1c), -Pr (2c), CH2Ph (3c); -cymene = 4--propyltoluene] supported over /-functionalized N-heterocyclic carbene (NHC) ligands are reported. In particular, the ruthenium (1-3)c complexes were synthesized from the respective silver complexes, [1-(R)-3--(benzylacetamido)imidazol-2-ylidene]2Ag+Cl− [R = Me (1b), -Pr (2b), CH2Ph (3b)] by the treatment with [Ru(-cymene)Cl2]2 in 65-76% yields. The molecular structures of (1-3)c revealed the chelation of the N-heterocylic carbene ligand through the carbene center and an amido sidearm of the ligand in all of the three complexes. The density functional theory studies on the ruthenium (1-3)c complexes indicated strong binding of the NHC ligand to the metal center as was observed from the deeply buried NHC-Ru -bonding molecular orbitals.

  19. A dinuclear ruthenium(II) complex as turn-on luminescent probe for hypochlorous acid and its application for in vivo imaging

    Science.gov (United States)

    Liu, Zonglun; Gao, Kuo; Wang, Beng; Yan, Hui; Xing, Panfei; Zhong, Chongmin; Xu, Yongqian; Li, Hongjuan; Chen, Jianxin; Wang, Wei; Sun, Shiguo

    2016-06-01

    A dinuclear ruthenium(II) complex Ruazo was designed and synthesized, in which oxidative cyclization of the azo and o-amino group was employed for the detection of hypochlorous acid (HClO) in aqueous solution. The non-emissive Ruazo formed highly luminescent triazole-ruthenium(II) complex in presence of HClO and successfully imaged HClO in living cell and living mouse.

  20. A dinuclear ruthenium(II) complex as turn-on luminescent probe for hypochlorous acid and its application for in vivo imaging

    Science.gov (United States)

    Liu, Zonglun; Gao, Kuo; Wang, Beng; Yan, Hui; Xing, Panfei; Zhong, Chongmin; Xu, Yongqian; Li, Hongjuan; Chen, Jianxin; Wang, Wei; Sun, Shiguo

    2016-01-01

    A dinuclear ruthenium(II) complex Ruazo was designed and synthesized, in which oxidative cyclization of the azo and o-amino group was employed for the detection of hypochlorous acid (HClO) in aqueous solution. The non-emissive Ruazo formed highly luminescent triazole-ruthenium(II) complex in presence of HClO and successfully imaged HClO in living cell and living mouse. PMID:27356618

  1. Ruthenium (II) complexes containing quinone based ligands: synthesis, characterization and catalytic applications

    International Nuclear Information System (INIS)

    A series of ruthenium (II) complexes containing ONS and ONO donor ligands of general formula (RuX(CO)(B)(L)) (X = H or Cl; B = PPh3, AsPh3 or Py; L = mono negative tridentate ligand) were synthesized from the reactions of tridentate ligand with (RuHX(CO)(EPh3)2(B)) (X = H or Cl; E = P or As; B = PPh3, AsPh3 or Py) in 1:1 molar ratio. All the new complexes have been characterized by analytical and spectral (FT-IR, electronic, 1H, 13C and 31PNMR) data. They have been tentatively assigned an octahedral structure. The synthesized complexes have exhibited catalytic activity for oxidation of benzyl alcohol to benzaldehyde and cyclohexanol to cyclohexanone in the presence of N-methyl morpholine N-oxide (NMO) as co-oxidant. They were also found to catalyze the transfer hydrogenation of aliphatic and aromatic ketones to alcohols in KOH/lsopropanol. (author)

  2. Bis(allyl)-ruthenium(iv) complexes with phosphinous acid ligands as catalysts for nitrile hydration reactions.

    Science.gov (United States)

    Tomás-Mendivil, Eder; Francos, Javier; González-Fernández, Rebeca; González-Liste, Pedro J; Borge, Javier; Cadierno, Victorio

    2016-09-14

    Several mononuclear ruthenium(iv) complexes with phosphinous acid ligands [RuCl2(η(3):η(3)-C10H16)(PR2OH)] have been synthesized (78-86% yield) by treatment of the dimeric precursor [{RuCl(μ-Cl)(η(3):η(3)-C10H16)}2] (C10H16 = 2,7-dimethylocta-2,6-diene-1,8-diyl) with 2 equivalents of different aromatic, heteroaromatic and aliphatic secondary phosphine oxides R2P([double bond, length as m-dash]O)H. The compounds [RuCl2(η(3):η(3)-C10H16)(PR2OH)] could also be prepared, in similar yields, by hydrolysis of the P-Cl bond in the corresponding chlorophosphine-Ru(iv) derivatives [RuCl2(η(3):η(3)-C10H16)(PR2Cl)]. In addition to NMR and IR data, the X-ray crystal structures of representative examples are discussed. Moreover, the catalytic behaviour of complexes [RuCl2(η(3):η(3)-C10H16)(PR2OH)] has been investigated for the selective hydration of organonitriles in water. The best results were achieved with the complex [RuCl2(η(3):η(3)-C10H16)(PMe2OH)], which proved to be active under mild conditions (60 °C), with low metal loadings (1 mol%), and showing good functional group tolerance. PMID:27510460

  3. Synthesis, Characterization, and Reactivity of Dicationic Dihydrogen Complexes of Osmium and Ruthenium.

    Science.gov (United States)

    Luther, Thomas A.; Heinekey, D. Michael

    1998-01-12

    The dicationic complexes [Os(H(2))(PR(3))(2)(bpy)(CO)](2+) [PR(3) = PPh(3), PMePh(2) (2a,b)], [Os(H(2))(PPh(3))(2)(phen)(CO)](2+) (2c), and [Ru(H(2))(PPh(3))(2)(bpy)(CO)](2+) (4) (bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline) have been prepared by the protonation of the corresponding monocationic hydrides using an excess of trifluoromethanesulfonic acid. The presence of a bound dihydrogen ligand is indicated by short T(1) minimum values consistent with H-H distances of 0.92-1.04 Å. For the partially deuterated derivatives, J(HD) values of 25.1-31.0 Hz were observed. The dicationic complexes are strong acids, indicating that the bound H(2) is substantially activated toward heterolytic cleavage. The H(2) ligand is tightly bound to the metal center and does not undergo exchange with D(2) over the course of several weeks. The complex [Os(H(2))(PPh(3))(2)(bpy)(CO)](2+) (2a) has been shown to be very stable in solution at room temperature. In contrast, the ruthenium analogue, [Ru(H(2))(PPh(3))(2)(bpy)(CO)](2+) (4), decomposes in solution at room temperature but is relatively stable at temperatures less than 245 K. PMID:11670270

  4. Werner-type Cobalt Complexes and Ruthenium Complexes with Substituted 2-Guanidinobenzimidazole Ligands as Catalysts for Michael and Friedel Crafts Reactions

    OpenAIRE

    Ganzmann, Carola

    2010-01-01

    In this thesis, chiral cobalt(III) complexes with en ligands (en = ethylenediamine) and ruthenium complexes with 2-guanidinobenzimidazole (GBI) and N-(2-benzimidazolyl)thiourea (BITU) ligands are developed. Their efficiency as catalysts for Friedel Crafts and Michael reactions are assayed. Chapter 1 provides an overview of the development of bifunctional thiourea catalysts and analyzes crystal structures of previously reported [Co(diamine)3]3+ complexes as well as GBI systems and correspondin...

  5. SYNTHESIS OF RUTHENIUM(0) DIENES FROM ([2.2]PARACYCLOPHANE)(ARENE) RUTHENIUM(II) COMPLEXES AND THEIR SUBSEQUENT REACTIONS TO FORM HIGHLY FLUXIONAL AGOSTICS

    OpenAIRE

    Steed, J. W.; Tocher, D. A.

    1994-01-01

    Action of Na[BH4] on the ([2.2]Paracyclophane)(arene)ruthenium(II) complexes [Ru(eta6-C16H16)(n6-arene)][BF4]2 (arene = p-cymene 1a, durene 1b, pentamethylbenzene 1c, and hexamethylbenzene 1d) results exclusively in reduction of the metal centre and addition of two hydrides to the non-cyclophane ring, giving the neutral 1,3-diene compounds [Ru(0)(eta6-C16H16)(eta4-diene)](diene = MeC6H6CHMe2 2a, C6Me4H4 2b, C6Me5H3 2c, C6Me6H2 2d). These results contrast with several previous studies on Ru(II...

  6. Synthesis, characterization and anticancer activity studies of ruthenium(II) polypyridyl complexes on A549 cells.

    Science.gov (United States)

    Zeng, Chuan-Chuan; Jiang, Guang-Bin; Lai, Shang-Hai; Zhang, Cheng; Yin, Hui; Tang, Bing; Wan, Dan; Liu, Yun-Jun

    2016-08-01

    Four new ruthenium(II) polypyridyl complexes [Ru(N-N)2(bddp)](ClO4)21-4 (N-N=dmb: 4,4'-dimethyl-2,2'-bipyridine 1, bpy: 2,2'-bipyridine 2, phen: 1,10-phenanthroline 3 and dmp: 2,9-dimethyl-1,10-phenanthroline 4, bddp=benzilo[2,3-b]-1,4-diazabenzo[i]dipyrido[3,2-a:2',3'-c]phenazine) were synthesized and characterized by elemental analysis, ESI-MS and (1)H NMR. The cytotoxicity in vitro of the complexes against BEL-7402, HeLa, MG-63 and A549 cell lines was investigated by MTT method. The complexes show high cytotoxic activity toward the selected cell lines with an IC50 value ranging from 5.3±0.6 to 15.7±3.6μM. The apoptosis was studied with acridine orange (AO)/ethdium bromide (EB) and Hoechst 33258 staining methods. The cellular uptake was investigated with DAPI staining method. The reactive oxygen species (ROS) and mitochondrial membrane potential were performed under fluorescent microscope and flow cytometry. The complexes can induce an increase in the ROS levels and a decrease in the mitochondrial membrane potential. The comet assay was studied with fluorescent microscope. The percentage in apoptotic and necrotic cells and cell cycle arrest were assayed by flow cytometry. The effects of the complexes on the expression of caspases and Bcl-2 family proteins were studied by western blot analysis. The results show that the complexes induce apoptosis in A549 cells through an ROS-mediated mitochondrial dysfunction pathway, which was accompanied by regulating the expression of Bcl-2 family proteins. PMID:27288660

  7. Excited state decay of cyclometalated polypyridine ruthenium complexes: insight from theory and experiment.

    Science.gov (United States)

    Kreitner, Christoph; Heinze, Katja

    2016-09-21

    Deactivation pathways of the triplet metal-to-ligand charge transfer ((3)MLCT) excited state of cyclometalated polypyridine ruthenium complexes with [RuN5C](+) coordination are discussed on the basis of the available experimental data and a series of density functional theory calculations. Three different complex classes are considered, namely with [Ru(N^N)2(N^C)](+), [Ru(N^N^N)(N^C^N)](+) and [Ru(N^N^N)(N^N^C)](+) coordination modes. Excited state deactivation in these complex types proceeds via five distinct decay channels. Vibronic coupling of the (3)MLCT state to high-energy oscillators of the singlet ground state ((1)GS) allows tunneling to the ground state followed by vibrational relaxation (path A). A ligand field excited state ((3)MC) is thermally accessible via a (3)MLCT →(3)MC transition state with the (3)MC state being strongly coupled to the (1)GS surface via a low-energy minimum energy crossing point (path B). Furthermore, a (3)MLCT →(1)GS surface crossing point directly couples the triplet and singlet potential energy surfaces (path C). Charge transfer states either with higher singlet character or with different orbital parentage and intrinsic symmetry restrictions are thermally populated which promote non-radiative decay via tunneling to the (1)GS state (path D). Finally, the excited state can decay via phosphorescence (path E). The dominant deactivation pathways differ for the three individual complex classes. The implications of these findings for isoelectronic iridium(iii) or iron(ii) complexes are discussed. Ultimately, strategies for optimizing the emission efficiencies of cyclometalated polypyridine complexes of d(6)-metal ions, especially Ru(II), are suggested.

  8. New π-arene ruthenium(II) piano-stool complexes with nitrogen ligands.

    Science.gov (United States)

    Grau, Jordi; Noe, Verónica; Ciudad, Carles; Prieto, Maria J; Font-Bardia, Mercè; Calvet, Teresa; Moreno, Virtudes

    2012-04-01

    The synthesis, characterization, DNA interaction and antiproliferative behavior of new π-arene ruthenium(II) piano-stool complexes with nitrogen ligands are described. Three series of organometallic compounds of formulae [RuCl(2)(η(6)-p-cym)L] were synthesized (with L=2-, 3- or 4-methylpyridine; L=2,3-, 2,4-, 2,5-, 3,4-, 3,5-dimethylpyridine and L=1,2-, 1,3- 1,4-methylaminobenzene). The crystal structures of [RuCl(2)(p-cym)(4-methylpyridine)], [RuCl(2)(p-cym)(3,4-dimethylpyridine)] and [RuCl(2)(p-cym)(1,4-methylaminobenzene)] were resolved and the characterization was completed by spectroscopic UV-vis, FT-IR and (1)H NMR studies. Electrochemical experiments were performed by cyclic voltammetry to estimate the redox potential of the Ru(II)/Ru(III) couple. The interaction with plasmid pBR322 DNA was studied through the examination of the electrophoretical mobility and atomic force microscopy, and interaction with ct-DNA by circular dichroism, viscosity measurements and fluorescence studies based on the DNA-ethidium bromide complex. The antiproliferative behavior of the series with L=methylpyridine was assayed against two tumor cell lines, i.e. LoVo and MiaPaca. The results revealed a moderate cytotoxicity with a higher activity for the LoVo cell line compared to the MiaPaca one. PMID:22387934

  9. Dipicolinate complexes of main group metals with hydrazinium cation

    Indian Academy of Sciences (India)

    K Saravanan; S Govindarajan

    2002-02-01

    Some new coordination complexes of hydrazinium main group metal dipicolinate hydrates of formulae (N2H5)2M(dip)2.H2O (where, M =Ca, Sr, Ba or Pb and = 0, 2, 4 and 3 respectively and dip = dipicolinate), N2H5Bi(dip)2.3H2O and (N2H5)3Bi(dip)3.4H2O have been prepared and characterized by physico-chemical techniques. The infrared spectra of the complexes reveal the presence of tridentate dipicolinate dianions and non-coordinating hydrazinium cations. Conductance measurements show that the mono, di and trihydrazinium complexes behave as 1:1, 2:1 and 3:1 electrolytes respectively, in aqueous solution. Thermal decomposition studies show that these compounds lose water followed by endothermic decomposition of hydrazine to give respective metal hydrogendipicolinate intermediates, which further decompose exothermically to the final product of either metal carbonates (Ca, Sr, Ba and Pb) or metal oxycarbonates (Bi). The coordination numbers around the metal ions differ from compound to compound. The various coordination numbers exhibited by these metals are six (Ca), seven (Ba), eight (Sr) and nine (Pb and Bi). In all the complexes the above coordination number is attained by tridentate dipicolinate dianions and water molecules. The X-ray diffraction patterns of these compounds differ from one another suggesting that they are not isomorphous.

  10. Cyclometallated ruthenium complex-modified upconversion nanophosphors for selective detection of Hg2+ ions in water

    Science.gov (United States)

    Li, Xianghong; Wu, Yongquan; Liu, Yi; Zou, Xianmei; Yao, Liming; Li, Fuyou; Feng, Wei

    2013-12-01

    Upconversion detection nanocomposites were assembled for the selective luminescent detection of mercury ions in water. A hydrophobic cyclometallated ruthenium complex [RuII(bpy)2(thpy)]PF6 (abbreviated as Ru1; bpy = 2,2'-bipyridine and thpy = 2-(2-thienyl)pyridine) is employed as a chemodosimeter to assemble on amphiphilic polymer-coating upconversion nanophosphors (UCNPs) based on the hydrophobic-hydrophobic interaction. Upon addition of Hg2+, the nanocomposite not only exhibits a remarkable color change from deep-red to yellow, but also an enhanced upconversion luminescence (UCL) emission by hindering the luminescent resonance energy transfer (LRET) process from the upconversion emission of UCNPs to Ru1. Using the ratiometric UCL emission as a detection signal, the detection limit of Hg2+ for this nanoprobe in aqueous solution is 8.2 ppb, which is much lower than that (329 ppb) determined by UV/Vis technology. Such an Hg2+-tunable LRET process provides a general strategy for fabricating a water-soluble upconversion-based nanoprobe for some special analyte.Upconversion detection nanocomposites were assembled for the selective luminescent detection of mercury ions in water. A hydrophobic cyclometallated ruthenium complex [RuII(bpy)2(thpy)]PF6 (abbreviated as Ru1; bpy = 2,2'-bipyridine and thpy = 2-(2-thienyl)pyridine) is employed as a chemodosimeter to assemble on amphiphilic polymer-coating upconversion nanophosphors (UCNPs) based on the hydrophobic-hydrophobic interaction. Upon addition of Hg2+, the nanocomposite not only exhibits a remarkable color change from deep-red to yellow, but also an enhanced upconversion luminescence (UCL) emission by hindering the luminescent resonance energy transfer (LRET) process from the upconversion emission of UCNPs to Ru1. Using the ratiometric UCL emission as a detection signal, the detection limit of Hg2+ for this nanoprobe in aqueous solution is 8.2 ppb, which is much lower than that (329 ppb) determined by UV/Vis technology

  11. Synthesis and spectral and redox properties of three triply bridged complexes of ruthenium

    Science.gov (United States)

    Llobet, A.; Curry, M.E.; Evans, H.T.; Meyer, T.J.

    1989-01-01

    Syntheses are described for the ligand-bridged complexes [(tpm)RuIII(??-O)(??-L)2RuIII(tpm) n+ (L = O2P(O)(OH), n = 0 (1); L = O2CO, n = 0 (2); L = O2CCH3, n = 2 (3); tpm is the tridentate, facial ligand tris(1-pyrazolyl)methane. The X-ray crystal structure of [(tpm)Ru(??-O)(??-O2P(O)(OH))2Ru(tpm)]??8H 2O was determined from three-dimensional X-ray counter data. The complex crystallizes in the trigonal space group P3221 with three molecules in a cell of dimensions a = 18.759 (4) A?? and c = 9.970 (6) A??. The structure was refined to a weighted R factor of 0.042 based on 1480 independent reflections with I ??? 3??(I). The structure reveals that the complex consists of two six-coordinate ruthenium atoms that are joined by a ??-oxo bridge (rRU-O = 1.87 A??; ???RuORu = 124.6??) and two ??-hydrogen phosphato bridges (average rRu-O = 2.07 A??) which are capped by two tpm ligands. The results of cyclic voltammetric and coulometric experiments show that the complexes undergo both oxidative and reductive processes in solution. Upon reduction, the ligand-bridged structure is lost and the monomer [(tpm)Ru(H2O)3]2+ appears quantitatively. All three complexes are diamagnetic in solution. The diamagnetism is a consequence of strong electronic coupling between the low-spin d5 Ru(III) metal ions through the oxo bridge and the relatively small Ru-O-Ru angle. ?? 1989 American Chemical Society.

  12. Rapid continuous separation procedures for arsenic and ruthenium from complex reaction product mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Skarnemark, G.; Broden, K.; Kaffrell, N.; Trautmann, N.; Mao Yun

    1983-01-01

    Continuous methods for the chemical separation of short-lived nuclides of arsenic and ruthenium from fission product mixtures are described. The multistage solvent extraction procedures are performed with the centrifuge facility ''SISAK 2'' connected to a gas jet recoil transport system. The average delay time between production and measurement is 3 and 6 s for arsenic and ruthenium, respectively.

  13. Alkali metal cation complexation and solvent interactions by robust chromium(III) fluoride complexes

    DEFF Research Database (Denmark)

    Birk, T.; Magnussen, M.J.; Piligkos, Stergios;

    2010-01-01

    Interaction of robust chromium(III) fluoride complexes with sodium or lithium cations in solution lead to hypsochromic spectral shifts of increasing magnitude along the series: trans-[CrF2(py)(4)](+), mer-[CrF3(terpy)], and fac-[CrF3(Me(3)tacn)]. Crystalline products isolated from solution exhibi...

  14. Highly stable ECL active films formed by the electrografting of a diazotized ruthenium complex generated in situ from the amine.

    Science.gov (United States)

    Piper, David J E; Barbante, Gregory J; Brack, Narelle; Pigram, Paul J; Hogan, Conor F

    2011-01-01

    The electrodeposition of the electrochemiluminescent (ECL) ruthenium complex, bis(2,2'-bipyridyl)(4'-(4-aminophenyl)-2,2'-bipyridyl)ruthenium(II), [Ru(bpy)(2)(apb)](2+), via the in situ formation of a diazonium species from aqueous media is reported. Surface characterization undertaken using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) determined that the layer is bound to the substrate via azo bonding. The layer displays good ECL activity and is stable over a long period of time. The excellent potential of this system for ECL sensing applications is demonstrated using the well-known ECL coreactant 2-(dibutylamino)ethanol (DBAE) as a model analyte, which can be detected to a level of 10 nM with a linear range between 10(-8) and 10(-4) M. PMID:21117679

  15. Carboxylate-Assisted C(sp3)–H Activation in Olefin Metathesis-Relevant Ruthenium Complexes

    Science.gov (United States)

    2015-01-01

    The mechanism of C–H activation at metathesis-relevant ruthenium(II) benzylidene complexes was studied both experimentally and computationally. Synthesis of a ruthenium dicarboxylate at a low temperature allowed for direct observation of the C–H activation step, independent of the initial anionic ligand-exchange reactions. A first-order reaction supports an intramolecular concerted metalation–deprotonation mechanism with ΔG⧧298K = 22.2 ± 0.1 kcal·mol–1 for the parent N-adamantyl-N′-mesityl complex. An experimentally determined ΔS⧧ = −5.2 ± 2.6 eu supports a highly ordered transition state for carboxylate-assisted C(sp3)–H activation. Experimental results, including measurement of a large primary kinetic isotope effect (kH/kD = 8.1 ± 1.7), agree closely with a computed six-membered carboxylate-assisted C–H activation mechanism where the deprotonating carboxylate adopts a pseudo-apical geometry, displacing the aryl ether chelate. The rate of cyclometalation was found to be influenced by both the electronics of the assisting carboxylate and the ruthenium ligand environment. PMID:24731019

  16. Strong DNA deformation required for extremely slow DNA threading intercalation by a binuclear ruthenium complex

    Science.gov (United States)

    Almaqwashi, Ali A.; Paramanathan, Thayaparan; Lincoln, Per; Rouzina, Ioulia; Westerlund, Fredrik; Williams, Mark C.

    2014-01-01

    DNA intercalation by threading is expected to yield high affinity and slow dissociation, properties desirable for DNA-targeted therapeutics. To measure these properties, we utilize single molecule DNA stretching to quantify both the binding affinity and the force-dependent threading intercalation kinetics of the binuclear ruthenium complex Δ,Δ-[μ‐bidppz‐(phen)4Ru2]4+ (Δ,Δ-P). We measure the DNA elongation at a range of constant stretching forces using optical tweezers, allowing direct characterization of the intercalation kinetics as well as the amount intercalated at equilibrium. Higher forces exponentially facilitate the intercalative binding, leading to a profound decrease in the binding site size that results in one ligand intercalated at almost every DNA base stack. The zero force Δ,Δ-P intercalation Kd is 44 nM, 25-fold stronger than the analogous mono-nuclear ligand (Δ-P). The force-dependent kinetics analysis reveals a mechanism that requires DNA elongation of 0.33 nm for association, relaxation to an equilibrium elongation of 0.19 nm, and an additional elongation of 0.14 nm from the equilibrium state for dissociation. In cells, a molecule with binding properties similar to Δ,Δ-P may rapidly bind DNA destabilized by enzymes during replication or transcription, but upon enzyme dissociation it is predicted to remain intercalated for several hours, thereby interfering with essential biological processes. PMID:25245944

  17. Assemblies composed of oligothiophene–ruthenium complexes bound to CdSe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bair, Nathan; Hancock, Jared M.; Simonson, Cameron J. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Thalman, Scott W.; Colton, John S. [Department of Physics and Astronomy,Brigham Young University, Provo, UT 84602 (United States); Asplund, Matthew C. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Harrison, Roger G., E-mail: roger_harrison@byu.edu [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States)

    2015-02-15

    Molecular conjugates are important to link light sensitized materials to electron acceptors. We have synthesized oligothiophenes and oligothiophene–ruthenium complexes and bound them to CdSe nanoparticles. The absorption and fluorescence properties of the oligothiophenes bound to CdSe were measured. Steady-state luminescence and time correlated single photon counting were used to observe the effects on fluorescence and fluorescence lifetimes before and after binding. It was found that fluorescence of CdSe nanoparticles was quenched when they were bound to the oligothiophenes, and that the fluorescence of the oligothiophenes was also quenched. The fluorescence lifetimes of the quenched species were shortened and suggest electron transfer from oligothiophene to nanoparticle is on the order of one nanosecond. Orbital energy calculations predict that the Ru bound oligothiophenes have HOMO–LUMO energies of correct energy to allow electron and hole transfer. These experiments show that the oligothiophenes efficiently transfer optical energy between CdSe nanoparticles and could potentially be used as charge transfer junctions. - Highlights: • Ru bound thiophenes attached to CdSe nanoparticles. • Luminescence quenching of CdSe nanoparticles. • Molecular conjugates for photosensitized materials.

  18. Positional and compositional disorder in a ruthenium(II) piano-stool complex.

    Science.gov (United States)

    Guzei, Ilia A; Dolinar, Brian S; Khumalo, Nozipho; Darkwa, James

    2013-08-01

    In (η⁶-p-cymene)(difluorophosphinato-κO){2-[(1H-pyrazol-1-yl)methyl-κN²]pyridine-κN}ruthenium(II) 0.85-hexafluorophosphate 0.15-tetrafluoroborate, [Ru(PO₂F₂)(C₁₀H₁₄)(C₉H₉N₃)](PF₆)0.85(BF₄)0.15, (I), the [PO₂F₂]⁻ ligand exhibits positional disorder due to one F atom and one O atom sharing the same two positions related by a mirror reflection across the O-P-F plane. The correct composition of this coordinated anion was successfully determined to be [PO₂F₂]⁻ by refining the complex with various tetrahedral anions in which terminal atoms have similar atomic form factors. The noncoordinated counter-ion is compositionally disordered between [PF₆]⁻ and [BF₄]⁻. The difficulty in determining the correct composition of this anion illustrates the importance of a crystallographer remaining impartial and open to encountering unexpected moieties in the process of elucidating a structure. PMID:23907873

  19. A tetranuclear ruthenium complex with bridging pyridine-2,4-dicarboxylato ligands forming a square metallamacrocycle

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu-Feng; Jia, Ai-Quan; Zhu, Hang; Shi, Hua-Tian; Zhang, Qian-Feng [Anhui Univ. of Technology (China). Inst. of Molecular Engineering and Applied Chemistry

    2016-04-01

    Treatment of [RuCl{sub 2}(PPh{sub 3}){sub 3}] with equimolar amounts of 2,4-pyridinedicarboxylic acid (2,4-dipicH{sub 2}) in the presence of Et{sub 3}N afforded a tetranuclear complex [Ru(μ-2,4-dipic)(PPh{sub 3}){sub 2}]{sub 4} (1) as red crystals. The crystal and molecular structure of [Ru(μ-2,4-dipic)(PPh{sub 3}){sub 2}]{sub 4}.CHCl{sub 3}.8H{sub 2}O (1.CHCl{sub 3}.8H{sub 2}O) was determined by single-crystal X-ray diffraction. Each ruthenium center in 1 is six-coordinated with two phosphorus atoms from triphenylphosphine ligands, one nitrogen atom from a pyridyl moiety and three oxygen atoms from two 2,4-dipic{sup 2-} ligands. 2,4-Pyridinedicarboxylate dianions (2,4-dipic{sup 2-}) act as bridging ligands to form the stable tetranuclear metallamacrocyclic compound. The electrochemical properties of 1 were also investigated.

  20. SANS study on the complex of cationic micelles and anionic polyelectrolytes

    International Nuclear Information System (INIS)

    We investigated the complex of cationic micelles and anionic polyelectrolytes. The cationic micelles have the composition of nonionic surfactant, Octa-ethyleneglycol mono n-tetradecyl ether (C14E8) and cationic surfactant, Tetradecyltrimethylammonium Bromide (TTAB), and the polyelectrolyte is Poly Styrene Sulfonic Acid, Sodium Salt (Mw.= 73900, PSS80k). By the charge interaction, they formed the complexes in the aqueous solution. This complex was studied by Small Angle Neutron Scattering (SANS). SANS study showed that the size distribution changed by the cationic surfactant-to-polyelectrolyte charge ratio. The structure of this complex was also studied

  1. Using inclusion complexes with cyclodextrins to explore the aggregation behavior of a ruthenium metallosurfactant.

    Science.gov (United States)

    Iza, Nerea; Guerrero-Martínez, Andrés; Tardajos, Gloria; Ortiz, María José; Palao, Eduardo; Montoro, Teresa; Radulescu, Aurel; Dreiss, Cécile A; González-Gaitano, Gustavo

    2015-03-10

    The aggregation behavior of a chiral metallosurfactant, bis(2,2'-bipyridine)(4,4'-ditridecyl-2,2'-bipyridine)ruthenium(II) dichloride (Ru2(4)C13), synthesized as a racemic mixture was characterized by small-angle neutron scattering, light scattering, NMR, and electronic spectroscopies. The analysis of the SANS data indicates that micelles are prolate ellipsoids over the range of concentrations studied, with a relatively low aggregation number, and the micellization takes place gradually with increasing concentration. The presence of cyclodextrins (β-CD and γ-CD) induces the breakup of the micelles and helps to establish that micellization occurs at a very slow exchange rate compared to the NMR time scale. The open structure of this metallosurfactant enables the formation of very stable complexes of 3:1 stoichiometry, in which one CD threads one of the hydrocarbon tails and two CDs the other, in close contact with the polar head. The complex formed with β-CD, more stable than the one formed with the wider γ-CD, is capable of resolving the Δ and Λ enantiomers at high CD/surfactant molar ratios. The chiral recognition is possible due to the very specific interactions taking place when the β-CD covers-via its secondary rim-part of the diimine moiety connected to the hydrophobic tails. A SANS model comprising a binary mixture of hard spheres (complex + micelles) was successfully used to study quantitatively the effect of the CDs on the aggregation of the surfactant.

  2. Biological activity of ruthenium and osmium arene complexes with modified paullones in human cancer cells.

    Science.gov (United States)

    Mühlgassner, Gerhard; Bartel, Caroline; Schmid, Wolfgang F; Jakupec, Michael A; Arion, Vladimir B; Keppler, Bernhard K

    2012-11-01

    In an attempt to combine the ability of indolobenzazepines (paullones) to inhibit cyclin-dependent kinases (Cdks) and that of platinum-group metal ions to interact with proteins and DNA, ruthenium(II) and osmium(II) arene complexes with paullones were prepared, expecting synergies and an increase of solubility of paullones. Complexes with the general formula [M(II)Cl(η(6)-p-cymene)L]Cl, where M=Ru (1, 3) or Os (2, 4), and L=L(1) (1, 2) or L(2) (3, 4), L(1)=N-(9-bromo-7,12-dihydroindolo[3,2-d][1]-benzazepin-6(5H)-yliden-N'-(2-hydroxybenzylidene)azine and L(2)=N-(9-bromo-7,12-dihydroindolo[3,2-d][1]benzazepin-6-yl)-N'-[3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl-methylene]azinium chloride (L(2)(*)HCl), were now investigated regarding cytotoxicity and accumulation in cancer cells, impact on the cell cycle, capacity of inhibiting DNA synthesis and inducing apoptosis as well as their ability to inhibit Cdk activity. The MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) assay yielded IC(50) values in the nanomolar to low micromolar range. In accordance with cytotoxicity data, the BrdU assay showed that 1 is the most and 4 the least effective of these compounds regarding inhibition of DNA synthesis. Effects on the cell cycle are minor, although concentration-dependent inhibition of Cdk2/cyclin E activity was observed in cell-free experiments. Induction of apoptosis is most pronounced for complex 1, accompanied by a low fraction of necrotic cells, as observed by annexin V-fluorescein isothiocyanate/propidium iodide staining and flow cytometric analysis. PMID:23037896

  3. Biological effects of ruthenium, osmium and copper complexes with tumour inhibiting ligands

    International Nuclear Information System (INIS)

    Many substances active against neoplastic cells lack solubility and bioavailability. Standard therapies using well-known platin analogues, among them cisplatin, can only cure a few types of malignances and have serious side effects. A major problem with many tumours is the occurrence of acquired and/or intrinsic resistance. In this study as an alternative to platinum agents, new complexes of ruthenium, osmium and copper complexes with pronouncedly biologically active ligands (indolobenzazepines, indolochinolines, chinoxalinones, flavones and benzimidazolyl-pyrazolo-pyridines) were under investigation in order to improve the desired destructive impact on cancer cells. Formulation complexes with transition metal centers which are binding to DNA or other biomolecules and biologically active ligands may yield synergistic effects, enhance the solubility of ligands and act against cancer cells in two ways. Modification of these complexes by changing the metal center and different ligands as well as an alteration of substituents were investigated in order to find a stable, well soluble and optimal structure for biomolecule interaction. The cell cycle regulated by cyclin-dependent kinases (Cdks) and their modulators is a major target of cancer therapy. Many ATP antagonists were synthesized, but among them there are only a few that have reached the stage of clinical trials. All complexes investigated here were tested as to their cytotoxic potency with three cancer cell lines (A549, CH1, SW480), some of them with three additional ones (LNCaP, T47D, N87) by an MTT assay. The results of structure-activity relationships of different cell lines were compared. All compounds under investigation showed cytotoxic potency with IC50 values in the micromolar to nanomolar range. Results with respect to selected compounds were then compared as to their influence on the cell cycle which was in most cases rather weak, and as to the induction of apoptosis (Annexin/PI stain), both measured

  4. SOLVENT EXTRACTION OF RUTHENIUM

    Science.gov (United States)

    Hyman, H.H.; Leader, G.R.

    1959-07-14

    The separation of rathenium from aqueous solutions by solvent extraction is described. According to the invention, a nitrite selected from the group consisting of alkali nitrite and alkaline earth nitrite in an equimolecular quantity with regard to the quantity of rathenium present is added to an aqueous solution containing ruthenium tetrantrate to form a ruthenium complex. Adding an organic solvent such as ethyl ether to the resulting mixture selectively extracts the rathenium complex.

  5. Water oxidation chemistry of a synthetic dinuclear ruthenium complex containing redox-active quinone ligands.

    Science.gov (United States)

    Isobe, Hiroshi; Tanaka, Koji; Shen, Jian-Ren; Yamaguchi, Kizashi

    2014-04-21

    We investigated theoretically the catalytic mechanism of electrochemical water oxidation in aqueous solution by a dinuclear ruthenium complex containing redox-active quinone ligands, [Ru2(X)(Y)(3,6-tBu2Q)2(btpyan)](m+) [X, Y = H2O, OH, O, O2; 3,6-tBu2Q = 3,6-di-tert-butyl-1,2-benzoquinone; btpyan =1,8-bis(2,2':6',2″-terpyrid-4'-yl)anthracene] (m = 2, 3, 4) (1). The reaction involves a series of electron and proton transfers to achieve redox leveling, with intervening chemical transformations in a mesh scheme, and the entire molecular structure and motion of the catalyst 1 work together to drive the catalytic cycle for water oxidation. Two substrate water molecules can bind to 1 with simultaneous loss of one or two proton(s), which allows pH-dependent variability in the proportion of substrate-bound structures and following pathways for oxidative activation of the aqua/hydroxo ligands at low thermodynamic and kinetic costs. The resulting bis-oxo intermediates then undergo endothermic O-O radical coupling between two Ru(III)-O(•) units in an anti-coplanar conformation leading to bridged μ-peroxo or μ-superoxo intermediates. The μ-superoxo species can liberate oxygen with the necessity for the preceding binding of a water molecule, which is possible only after four-electron oxidation is completed. The magnitude of catalytic current would be limited by the inherent sluggishness of the hinge-like bending motion of the bridged μ-superoxo complex that opens up the compact, hydrophobic active site of the catalyst and thereby allows water entry under dynamic conditions. On the basis of a newly proposed mechanism, we rationalize the experimentally observed behavior of electrode kinetics with respect to potential and discuss what causes a high overpotential for water oxidation by 1.

  6. High spectral response heteroleptic ruthenium (II) complexes as sensitizers for dye sensitized solar cells

    Indian Academy of Sciences (India)

    M Chandrasekharam; Ch Srinivasarao; T Suresh; M Anil Reddy; M Raghavender; G Rajkumar; M Srinivasu; P Yella Reddy

    2011-01-01

    Heteroleptic ruthenium(II) bipyridyl complex, cis-Ru(II)(4,4'-bis(4-tert-butylstyryl)-2,2'-bipyridyl) (4,4'-dicarboxy-2,2'-bipyridyl) (NCS2) (H112) was synthesized and characterized by 1H-NMR, MASS, Spectrofluorometer and UV-Vis spectroscopes. The photo-voltaic performance of the sensitizer was evaluated in Dye Sensitized Solar Cell (DSSC) under irradiation of AM 1.5 G solar light and the photovoltaic characteristics were compared with those of reference cells of HRS1 and N719 fabricated under comparable conditions. Compared to N719, H112 sensitizer showed enhanced molar extinction coefficient and relatively better monochromatic incident photon-to-current conversion efficiency (IPCE) across the spectral range of 400 to 800 nm with solar energy-to-electrical conversion efficiency () of 2.43% [open circuit photovoltage (VOC) = 0.631V, short-circuit photocurrent density (JSC) = 8.96 mA/cm2, fill factor (ff) = 0.430], while values of 2.51% (VOC = 0.651V, JSC = 9.41 mA/cm2, ff = 0.410) and 2.74% (VOC = 0.705 V, JSC = 8.62 mA/cm2, ff = 0.455) were obtained for HRS1 and N719 sensitized solar cells respectively. The introduction of 4,4'-bis(4-tert-butylstyryl) moieties on one of the bipyridine moieties of N719 complex shows higher light absorption abilities, IPCE and JSC.

  7. Synthesis and Single-Molecule Conductance Study of Redox-Active Ruthenium Complexes with Pyridyl and Dihydrobenzo[b]thiophene Anchoring Groups.

    Science.gov (United States)

    Ozawa, Hiroaki; Baghernejad, Masoud; Al-Owaedi, Oday A; Kaliginedi, Veerabhadrarao; Nagashima, Takumi; Ferrer, Jaime; Wandlowski, Thomas; García-Suárez, Víctor M; Broekmann, Peter; Lambert, Colin J; Haga, Masa-Aki

    2016-08-26

    The ancillary ligands 4'-(4-pyridyl)-2,2':6',2''-terpyridine and 4'-(2,3-dihydrobenzo[b]thiophene)-2,2'-6',2"-terpyridine were used to synthesize two series of mono- and dinuclear ruthenium complexes differing in their lengths and anchoring groups. The electrochemical and single-molecular conductance properties of these two series of ruthenium complexes were studied experimentally by means of cyclic voltammetry and the scanning tunneling microscopy-break junction technique (STM-BJ) and theoretically by means of density functional theory (DFT). Cyclic voltammetry data showed clear redox peaks corresponding to both the metal- and ligand-related redox reactions. Single-molecular conductance demonstrated an exponential decay of the molecular conductance with the increase in molecular length for both the series of ruthenium complexes, with decay constants of βPY =2.07±0.1 nm(-1) and βBT =2.16±0.1 nm(-1) , respectively. The contact resistance of complexes with 2,3-dihydrobenzo[b]thiophene (BT) anchoring groups is found to be smaller than the contact resistance of ruthenium complexes with pyridine (PY) anchors. DFT calculations support the experimental results and provided additional information on the electronic structure and charge transport properties in those metal|ruthenium complex|metal junctions. PMID:27472889

  8. Synthesis, characterization, DNA interaction, antioxidant and anticancer activity of new ruthenium(II) complexes of thiosemicarbazone/semicarbazone bearing 9,10-phenanthrenequinone.

    Science.gov (United States)

    Anitha, Panneerselvam; Chitrapriya, Nataraj; Jang, Yoon Jung; Viswanathamurthi, Periasamy

    2013-12-01

    A new series of octahedral ruthenium(II) complexes supported by tridentate ligands derived from phenanthrenequinone and derivatives of thiosemicarbazide/semicarbazide and other co-ligands have been synthesized and characterized. DNA binding experiments indicated that ruthenium(II) complexes can interact with DNA through non-intercalation and the apparent binding constant value (Kb) of [RuCl(CO)(PPh₃)(L₃)] (3) at room temperature was calculated to be 2.27 × 10(3)M(-1). The DNA cleavage studies showed that the complexes have better cleavage of pBR 322 DNA. Antioxidative activity proved that the complexes have significant radical scavenging activity against free radicals. Cytotoxic activities showed that the ruthenium(II) complexes exhibited more effective cytotoxic activity against selected cancer cells. PMID:24144689

  9. Efficient transfer hydrogenation reaction Catalyzed by a dearomatized PN 3P ruthenium pincer complex under base-free Conditions

    KAUST Repository

    He, Lipeng

    2012-03-01

    A dearomatized complex [RuH(PN 3P)(CO)] (PN 3PN, N′-bis(di-tert-butylphosphino)-2,6-diaminopyridine) (3) was prepared by reaction of the aromatic complex [RuH(Cl)(PN 3P)(CO)] (2) with t-BuOK in THF. Further treatment of 3 with formic acid led to the formation of a rearomatized complex (4). These new complexes were fully characterized and the molecular structure of complex 4 was further confirmed by X-ray crystallography. In complex 4, a distorted square-pyramidal geometry around the ruthenium center was observed, with the CO ligand trans to the pyridinic nitrogen atom and the hydride located in the apical position. The dearomatized complex 3 displays efficient catalytic activity for hydrogen transfer of ketones in isopropanol. © 2011 Elsevier B.V. All rights reserved.

  10. Theoretical study on photooxidation mechanism of ruthenium complex [Ru(II)-(bpy)2 (TMBiimH2 )](2+) with molecular oxygen.

    Science.gov (United States)

    Liu, Li-Hong; Wu, Dan; Xia, Shu-Hua; Cui, Ganglong

    2016-09-15

    Photoinduced reactions of ruthenium complexes with molecular oxygen have attracted a lot of experimental attention; however, the reaction mechanism remains elusive. In this work, we have used the density functional theory method to scrutinize the visible-light induced photooxidation mechanism of the ruthenium complex [Ru(II)-(bpy)2 (TMBiimH2 )](2+) (bpy: 2, 2-bipyridine and TMBiimH2 : 4, 5, 4, 5-tetramethyl-2, 2-biimidazole) initiated by the attack of molecular oxygen. The present computational results not only explain very well recent experiments, also provide new mechanistic insights. We found that: (1) the triplet energy transfer process between the triplet molecular oxygen and the metal-ligand charge transfer triplet state of the ruthenium complex, which leads to singlet molecular oxygen, is thermodynamically favorable; (2) the singlet oxygen addition process to the S0 ruthenium complex is facile in energy; (3) the chemical transformation from endoperoxide to epidioxetane intermediates can be either two- or one-step reaction (the latter is energetically favored). These findings contribute important mechanistic information to photooxidation reactions of ruthenium complexes with molecular oxygen. © 2016 Wiley Periodicals, Inc. PMID:27384925

  11. A High Molar Extinction Coefficient Mono-Anthracenyl Bipyridyl Heteroleptic Ruthenium(II Complex: Synthesis, Photophysical and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2011-06-01

    Full Text Available In our quest to develop good materials as photosensitizers for photovoltaic dye-sensitized solar cells (DSSCs, cis-dithiocyanato-4-(2,3-dimethylacrylic acid-2,2'-bipyridyl-4-(9-anthracenyl-(2,3-dimethylacrylic-2,2'-bipyridyl ruthenium(II complex, a high molar extinction coefficient charge transfer sensitizer, was designed, synthesized and characterized by spectroscopy and electrochemical techniques. Earlier studies on heteroleptic ruthenium(II complex analogues containing functionalized oligo-anthracenyl phenanthroline ligands have been reported and documented. Based on a general linear correlation between increase in the length of π-conjugation bond and the molar extinction coefficients, herein, we report the photophysical and electrochemical properties of a Ru(II bipyridyl complex analogue with a single functionalized anthracenyl unit. Interestingly, the complex shows better broad and intense metal-to ligand charge transfer (MLCT band absorption with higher molar extinction coefficient (λmax = 518 nm, e = 44900 M−1cm−1, and appreciable photoluminescence spanning the visible region than those containing higher anthracenyl units. It was shown that molar absorption coefficient of the complexes may not be solely depended on the extended π-conjugation but are reduced by molecular aggregation in the molecules.

  12. New ruthenium(II) carbonyl complexes bearing disulfide Schiff base ligands and their applications as catalyst for some organic transformations

    Science.gov (United States)

    Prakash, Govindan; Viswanathamurthi, Periasamy

    2014-08-01

    Schiff base disulfide ligands (H2L1-6) were synthesized from the condensation of cystamine with salicylaldehyde(H2L1), 5-chlorosalicylaldehyde(H2L2), o-vanillin(H2L3), 2-hydroxyacetophenone(H2L4), 3-methyl-2-hydroxyacetophenone(H2L5), and 2-hydroxy-1-naphthaldehyde(H2L6). H2L1-6 reacts with the ruthenium precursor complex [RuHCl(CO)(PPh3)3] in benzene giving rise to six new ruthenium(II) complexes of general formula [Ru(CO)L1-6]. Characterization of the new complexes was carried out by using elemental and spectral (IR, UV-Vis, NMR (1H and 13C) and Mass) techniques. An octahedral geometry was assigned for all the complexes based on the spectral data obtained. The catalytic efficiency of the new complexes in aldehyde to amide conversion in the presence of NaHCO3, N-alkylation of aniline in the presence of t-BuOK, and transfer hydrogenation of ketones in the presence of iPrOH/KOH reactions were studied. Furthermore, the effect of solvents and catalyst/substrate ratio on the catalytic aldehyde to amide conversion were also discussed.

  13. Cyclometallated ruthenium(II) carbonyl complexes with 1-pyrenaldehyde 4-R-3-thiosemicarbazones: Regioselective ruthenation of the 1-pyrenyl group

    Indian Academy of Sciences (India)

    Rupesh Narayana Prabhu; Samudranil Pal

    2015-04-01

    A facile method for the synthesis of a series of cyclometallated ruthenium(II) carbonyl complexes with 1-pyrenaldehyde 4-R-3-thiosemicarbazones (H2Ln where the two H’s represent the dissociable thioamide and pyrenyl protons; R = H, Me and Ph) has been described. The characterization of the complexes having the general molecular formula trans-[Ru(Ln)(CO)(EPh33)2] (where E = P or As) were accomplished by elemental (CHN) analysis, magnetic susceptibility and spectroscopic (ESI-MS, IR, UV-Vis, emission and 1H-NMR) measurements. Electronic spectra of the complexes display multiple strong absorptions in the range 440–224 nm due to intraligand transitions. All the complexes exhibit emission bands that are characteristic of ligand centred emissive states. X-ray diffraction studies with representative complexes reveal a pincer-like 5,5-membered fused chelate rings forming CNS coordination mode of the thiosemicarbazonate ligand (Ln)2− via regioselective activation of 1-pyrenyl ortho C–H and formation of a distorted octahedral C2NSE2 coordination sphere around the ruthenium(II) centre.

  14. Highly Efficient Process for Production of Biofuel from Ethanol Catalyzed by Ruthenium Pincer Complexes.

    Science.gov (United States)

    Xie, Yinjun; Ben-David, Yehoshoa; Shimon, Linda J W; Milstein, David

    2016-07-27

    A highly efficient ruthenium pincer-catalyzed Guerbet-type process for the production of biofuel from ethanol has been developed. It produces the highest conversion of ethanol (73.4%, 0.02 mol% catalyst) for a Guerbet-type reaction, including significant amounts of C4 (35.8% yield), C6 (28.2% yield), and C8 (9.4% yield) alcohols. Catalyst loadings as low as 0.001 mol% can be used, leading to a record turnover number of 18 209. Mechanistic studies reveal the likely active ruthenium species and the main deactivation process. PMID:27399841

  15. Sorption extraction of green ruthenium (4) sulfate from sulfuric acid solutions by complexing type ionite

    International Nuclear Information System (INIS)

    The possibility is studied of ruthenium sorption eXtraction on ionites of polyamino- and aminocarboxyle types from equilibrium solutions in the sulfuric acid concentration ranga from 0.05 to 2 g. eq./l at 20 and 85 deg C A temperature increase affects only the sorption kinetics. The AN-31, AV-16G- and ANKB-1 ionites reduce Ru(4) to Ru(3) which is absorbed by ionites, while the ampholyte ANKB-2 possesses no reducing properties. The ruthenium extraction by ionites proceeds following the mechanism of intraspheric substitution

  16. Functionalized arene-ruthenium(II) complexes: dangling vs. tethering side chain.

    Science.gov (United States)

    Lastra-Barreira, Beatriz; Díez, Josefina; Crochet, Pascale; Fernández, Israel

    2013-04-21

    The reactivity of compounds [RuCl2(η(6)-C6H5OCH2CH2OH)(L)] (L = phosphine or phosphite) towards the chloride abstractor AgSbF6 has been investigated. Thus, the treatment of the triphenylphosphite complex [RuCl2(η(6)-C6H5OCH2CH2OH){P(OPh)3}] with one equivalent of AgSbF6 gave rise to the formation of the dinuclear dichloro-bridged species [{Ru(μ-Cl)(η(6)-C6H5OCH2CH2OH){P(OPh)3}}2](2+) as the hexafluoroantimonate salt. On the other hand, the triphenylphosphine analog [RuCl2(η(6)-C6H5OCH2CH2OH)(PPh3)] led, under the same experimental conditions, to the di-ruthenium derivative [{RuCl(η(6)-C6H5OCH2CH2OH)(PPh3)}2(μ-Cl)][SbF6] containing only one Cl-bridge. In sharp contrast, treatment of precursors [RuCl2(η(6)-C6H5CH2CH2CH2OH)(L)] (L = P(OPh)3, PPh3, P(OEt)3) with AgSbF6 resulted in the clean formation of the tethered compounds [RuCl{η(6):κ(1)(O)-C6H5CH2CH2CH2OH}(L)][SbF6]. The differences in reactivity observed have been rationalized by theoretical calculations.

  17. Titania modification with a ruthenium(II) complex and gold nanoparticles for photocatalytic degradation of organic compounds.

    Science.gov (United States)

    Zheng, Shuaizhi; Wei, Zhishun; Yoshiiri, Kenta; Braumüller, Markus; Ohtani, Bunsho; Rau, Sven; Kowalska, Ewa

    2016-01-01

    Titania of fine anatase nanoparticles (ST01) was modified successively with two components, i.e., a ruthenium(II) complex with phosphonic anchoring groups [Ru(bpy)2(4,4'-(CH2PO3H2)2bpy)](2+) bpy = 2,2'-bipyridine (Ru(II)CP) and gold nanoparticles (Au). Various compositions of two titania modifiers were investigated, i.e., Au, Au + Ru(II)CP, Au + 0.5Ru(II)CP, Ru(II)CP, 0.5Ru(II)CP and 0.25Ru(II)CP, where Au and Ru(II)CP correspond to 0.81 mol% and 0.34 mol% (with respect to titania), respectively. In the case of hybrid photocatalysts, the sequence of modification (ruthenium(II) complex adsorption or gold deposition) was investigated to check its influence on the resultant properties and thus photocatalytic performance. Diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM) were applied to characterize the structural properties of the prepared photocatalysts, which confirmed the successful introduction of modifiers of the ruthenium(II) complex and/or gold NPs. Different distributions of gold particle sizes and chemical compositions were obtained for the hybrid photocatalysts prepared with an opposite sequence. It was found that photocatalytic activities depended on the range of used irradiation (UV/vis or vis) and the kind of modifier in different ways. Gold NPs improved the photocatalytic activities, while Ru(II)CP inhibited the reactions under UV/vis irradiation, i.e., methanol dehydrogenation and acetic acid degradation. Oppositely, Ru(II)CP greatly enhanced the photocatalytic activities for 2-propanol oxidation under visible light irradiation. PMID:26661372

  18. Exploring new generations of ruthenium olefin metathesis catalysts: The reactivity of a bis-ylidene ruthenium complex by DFT

    KAUST Repository

    Poater, Albert

    2013-01-01

    Density functional theory calculations were used to predict the behaviour of a potential novel architecture of olefin metathesis catalysts, in which one of the neutral ligands of classical Ru-based catalysts, e.g. a phosphine or an N-heterocyclic carbene, is replaced by an alkylidene group. Introduction of a second alkylidene ligand favors dissociation of the remaining phosphine and the overall energy profile for the metathesis using ethylene as the probe substrate reveals that the proposed bis-alkylidene complexes might match the requirements of a good performing olefin metathesis catalyst. © 2013 The Royal Society of Chemistry.

  19. Synthesis, interaction with DNA, cytotoxicity, cell cycle arrest and apoptotic inducing properties of ruthenium(II) molecular "light switch" complexes.

    Science.gov (United States)

    Shobha Devi, C; Anil Kumar, D; Singh, Surya S; Gabra, Nazar; Deepika, N; Kumar, Y Praveen; Satyanarayana, S

    2013-06-01

    In an endeavor toward the development of metal-based anticancer drugs, we present here the design, synthesis and characterization of three ruthenium(II) functionalized phenanthroline complexes with extended π-conjugation. These complexes have been shown to act as promising CT-DNA intercalators as evidenced by UV-visible, luminescence, emission quenching by [Fe(CN)6](4-), DNA competitive binding with ethidium bromide and salt dependent studies. All three complexes [Ru(Hdpa)2PPIP](2+) (1), [Ru(Hdpa)2PIP](2+) (2), [Ru(Hdpa)24HEPIP](2+) (3) clearly demonstrated that they can bind to DNA through the intercalation mode. Cell viability experiments indicated that all complexes showed significant dose dependent cytotoxicity in selected cell lines. The apoptosis and cell cycle arrest were also investigated. The complexes were docked into DNA-base-pairs using the 'GOLD' (Genetic Optimization for Ligand Docking), docking program. PMID:23665797

  20. MIXED-METAL COMPLEXES OF MIXED-VALENT DINUCLEAR RUTHENIUM(II,III CARBOXYLATE AND TETRACYANIDONICKELATE(II

    Directory of Open Access Journals (Sweden)

    Masahiro Mikuriya

    2014-06-01

    Full Text Available Mixed-metal chain complexes constructed from lantern-type dinuclear ruthenium(II,III carboxylate unit and tetracyanidonickelate(II, (PPh4n[Ru2(O2CCH34Ni(CN4]n•nH2O (1 and (PPh4n[Ru2{O2CC(CH33}4]3n[Ni(CN4]2n•2nH2O (2, where very weak antiferromagnetic interaction is operating, were synthesized and characterized by elemental analysis and IR and UV-vis spectroscopies and temperature dependence of magnetic susceptibilities (4.5—300K.

  1. Combining Ruthenium(II) Complexes with Metal-Organic Frameworks to Realize Effective Two-Photon Absorption for Singlet Oxygen Generation.

    Science.gov (United States)

    Zhang, Wenxiang; Li, Bin; Ma, Heping; Zhang, Liming; Guan, Yunlong; Zhang, Yihe; Zhang, Xindan; Jing, Pengtao; Yue, Shumei

    2016-08-24

    Singlet oxygen ((1)O2), as a reactive oxygen species, has garnered serious attention in physical, chemical, and biological studies. In this paper, we designed and synthesized a new type of singlet-oxygen generation system by exchanging cationic ruthenium complexes (RCs) into anionic bio-MOF-1. The resulting bio-MOF-1&RCs can be used as effective photocatalysts for generation of singlet oxygen under both single-photon and two-photon excitation. Especially, the excellent two-photon absorption (TPA) behavior of bio-MOF-1&RCs aroused our interest greatly because their two-photon absorption band lies in the optical window of biological tissue. Here, we measured the ability of bio-MOF-1&RCs to generate (1)O2 by irradiation under both 490 and 800 nm wavelength light in DMF. 1,3-Diphenylisobenzofuran (DPBF) and 2',7'-dichlorofluorescein (DCFH) were used as typical (1)O2 traps to detect and evaluate the efficiency of generation of (1)O2 under single-photon and two-photon excitation, respectively. Results indicated that bio-MOF-1&[Ru(phen)3](2+) was able to effectively generate (1)O2 under both conditions. Our work creates a novel synergistic TPA system with the excellent photophysical properties of RCs and the unique microporous structure benefit of MOFs, which may open a new avenue for creation of a cancer treatment system with both photodynamic therapy and chemotherapy. PMID:27483010

  2. An Electrochemical and Raman Spectroscopy Study of the Surface Behaviour of Mononuclear Ruthenium and Osmium Polypyridyl Complexes Based on Pyridyl- and Thiophene-Based Linkers

    NARCIS (Netherlands)

    Halpin, Yvonne; Logtenberg, Hella; Cleary, Laura; Schenk, Stephan; Schulz, Martin; Draksharapu, Apparao; Browne, Wesley R.; Vos, Johannes G.

    2013-01-01

    The utility of a thiophene anchor unit as an alternative for thiols in the immobilisation of ruthenium and osmium complexes on gold and platinum is examined with special attention focused on the relative contributions of physi- and chemisorption of the complexes and the chemical stability of the thi

  3. Fast Electron Transfer Exchange at Self-Assembled Monolayers of Organometallic Ruthenium(II) σ-Arylacetylide Complexes.

    Science.gov (United States)

    Mulas, Andrea; Hervault, Yves-Marie; He, Xiaoyan; Di Piazza, Emmanuel; Norel, Lucie; Rigaut, Stéphane; Lagrost, Corinne

    2015-06-30

    A new series of ruthenium organometallic carbon-rich complexes, exhibiting fast electron transfer kinetics combined to a low oxidation potential, was synthesized for self-assembled monolayer (SAM) formation on gold surfaces. The molecules consist of highly conjugated ruthenium(II) mono(σ-arylacetylide) or bis(σ-arylacetylide) complexes functionalized with different bridge units with specific (protected) anchoring groups that possess high affinity for gold, such as thiol, carbodithioate, and isocyanide. Single component and mixed SAMs were prepared and fully characterized by wettability studies, infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS), and electrochemical analyses. By applying the Laviron's formalism, fast electron transfer kinetics (≈10(4) s(-1)) were found at the derived self-assemblies while no significant effect could have been evidenced with variation of the bridging unit and of the anchoring moiety. Interestingly, a hexyl aliphatic spacer in the bridging unit with a thiol group and dilution with suitable nonelectroactive thiols lead to better SAM organization and packing, in comparison with undiluted complexes with shorter spacers. Such features make these compounds suitable alternatives to the widely used ferrocene center as redox-active building blocks for reversible charge storage devices. PMID:26053314

  4. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    Energy Technology Data Exchange (ETDEWEB)

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Heng, Lee Yook; Karim, Nurul Huda Abd [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia); Ahmad, Haslina; Harun, Siti Norain [Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor (Malaysia)

    2014-09-03

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy){sub 2}(PIP)]{sup 2+}, (bpy = 2,2′bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy){sub 2}(PIP)]{sup 2+} was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy){sub 2}(PIP)]{sup 2+} with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  5. A sulfhydryl-reactive ruthenium (II complex and its conjugation to protein G as a universal reagent for fluorescent immunoassays.

    Directory of Open Access Journals (Sweden)

    Jing-Tang Lin

    Full Text Available To develop a fluorescent ruthenium complex for biosensing, we synthesized a novel sulfhydryl-reactive compound, 4-bromophenanthroline bis-2,2'-dipyridine Ruthenium bis (hexafluorophosphate. The synthesized Ru(II complex was crosslinked with thiol-modified protein G to form a universal reagent for fluorescent immunoassays. The resulting Ru(II-protein G conjugates were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. The emission peak wavelength of the Ru(II-protein G conjugate was 602 nm at the excitation of 452 nm which is similar to the spectra of the Ru(II complex, indicating that Ru(II-protein G conjugates still remain the same fluorescence after conjugation. To test the usefulness of the conjugate for biosensing, immunoglobulin G (IgG binding assay was conducted. The result showed that Ru(II-protein G conjugates were capable of binding IgG and the more cross-linkers to modify protein G, the higher conjugation efficiency. To demonstrate the feasibility of Ru(II-protein G conjugates for fluorescent immunoassays, the detection of recombinant histidine-tagged protein using the conjugates and anti-histidine antibody was developed. The results showed that the histidine-tagged protein was successfully detected with dose-response, indicating that Ru(II-protein G conjugate is a useful universal fluorescent reagent for quantitative immunoassays.

  6. Development of a ruthenium(II) complex based luminescent probe for imaging nitric oxide production in living cells.

    Science.gov (United States)

    Zhang, Run; Ye, Zhiqiang; Wang, Guilan; Zhang, Wenzhu; Yuan, Jingli

    2010-06-18

    A unique ruthenium(II) complex, bis(2,2'-bipyridine)(4-(3,4-diaminophenoxy)-2,2'-bipyridine)ruthenium(II) hexafluorophosphate ([(Ru(bpy)(2)(dabpy)][PF(6)](2)), has been designed and synthesized as a highly sensitive and selective luminescence probe for the imaging of nitric oxide (NO) production in living cells. The complex can specifically react with NO in aqueous buffers under aerobic conditions to yield its triazole derivative with a high reaction rate constant at the 10(10) M(-1) s(-1) level; this reaction is accompanied by a remarkable increase of the luminescence quantum yield from 0.13 to 2.2 %. Compared with organic probes, the new Ru(II) complex probe shows the advantages of a large Stokes shift (>150 nm), water solubility, and a wide pH-availability range (pH independent at pH>5). In addition, it was found that the new probe could be easily transferred into both living animal cells and plant cells by the coincubation method, whereas the triazole derivative was cell-membrane impermeable. The probe was successfully used for luminescence-imaging detection of the exogenous NO in mouse macrophage cells and endogenous NO in gardenia cells. The results demonstrated the efficacy and advantages of the new probe for NO detection in living cells. PMID:20458707

  7. Synthesis, characterization, and DNA binding of new water-soluble cyclopentadienyl ruthenium(II) complexes incorporating phosphines.

    Science.gov (United States)

    Romerosa, Antonio; Campos-Malpartida, Tatiana; Lidrissi, Chaker; Saoud, Mustapha; Serrano-Ruiz, Manuel; Peruzzini, Maurizio; Garrido-Cárdenas, Jose Antonio; García-Maroto, Federico

    2006-02-01

    The new water-soluble ruthenium(II) chiral complexes [RuCpX(L)(L')](n+) (X = Cl, I. L = PPh3; L' = PTA, mPTA; L = L' = PTA, mPTA) (PTA = 1,3,5-triaza-7-phosphaadamantane; mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane) have been synthesized and characterized by NMR and IR spectroscopy and elemental analysis. The salt mPTA(OSO2CF3) was also prepared and fully characterized by spectroscopic techniques. X-ray crystal structures of [RuClCp(PPh3)(PTA)] (2), [RuCpI(PPh3)(PTA)] (3), and [RuCpI(mPTA)(PPh3)](OSO2CF3) (9) have been determined. The binding properties toward DNA of the new hydrosoluble complexes have been studied using the mobility shift assay. The ruthenium chloride complexes interact with DNA depending on the hydrosoluble phosphine bonded to the metal, while the corresponding compounds with iodide, [RuCpI(PTA)2] (1), [RuCpI(PPh3)(PTA)] (3), [RuCpI(mPTA)2](OSO2CF3)2 (6), and [RuCpI(mPTA)(PPh3)](OSO2CF3) (9), do not bind to DNA. PMID:16441141

  8. Chemical Swarming: Depending on Concentration, an Amphiphilic Ruthenium Polypyridyl Complex Induces Cell Death via Two Different Mechanisms.

    Science.gov (United States)

    Siewert, Bianka; van Rixel, Vincent H S; van Rooden, Eva J; Hopkins, Samantha L; Moester, Miriam J B; Ariese, Freek; Siegler, Maxime A; Bonnet, Sylvestre

    2016-07-25

    The crystal structure and in vitro cytotoxicity of the amphiphilic ruthenium complex [3](PF6 )2 are reported. Complex [3](PF6 )2 contains a Ru-S bond that is stable in the dark in cell-growing medium, but is photosensitive. Upon blue-light irradiation, complex [3](PF6 )2 releases the cholesterol-thioether ligand 2 and an aqua ruthenium complex [1](PF6 )2 . Although ligand 2 and complex [1](PF6 )2 are by themselves not cytotoxic, complex [3](PF6 )2 was unexpectedly found to be as cytotoxic as cisplatin in the dark, that is, with micromolar effective concentrations (EC50 ), against six human cancer cell lines (A375, A431, A549, MCF-7, MDA-MB-231, and U87MG). Blue-light irradiation (λ=450 nm, 6.3 J cm(-2) ) had little influence on the cytotoxicity of [3](PF6 )2 after 6 h of incubation time, but it increased the cytotoxicity of the complex by a factor 2 after longer (24 h) incubation. Exploring the unexpected biological activity of [3](PF6 )2 in the dark elucidated an as-yet unknown bifaceted mode of action that depended on concentration, and thus, on the aggregation state of the compound. At low concentration, it acts as a monomer, inserts into the membrane, and can deliver [1](2+) inside the cell upon blue-light activation. At higher concentrations (>3-5 μm), complex [3](PF6 )2 forms supramolecular aggregates that induce non-apoptotic cell death by permeabilizing cell membranes and extracting lipids and membrane proteins. PMID:27373895

  9. Synthesis, characterization, DNA binding studies, photocleavage, cytotoxicity and docking studies of ruthenium(II) light switch complexes.

    Science.gov (United States)

    Gabra, Nazar Mohammed; Mustafa, Bakheit; Kumar, Yata Praveen; Devi, C Shobha; Srishailam, A; Reddy, P Venkat; Reddy, Kotha Laxma; Satyanarayana, S

    2014-01-01

    A new ligand 3-(1H-imidazo[4,5-f][1,10]phenanthrolin-2yl)phenylboronic acid and its (IPPBA) three ruthenium(II) complexes [Ru(phen)2(IPPBA)](ClO4)2 (1), [Ru(bpy)2(IPPBA)](ClO4)2 (2) and [Ru(dmb)2(IPPBA)](ClO4)2 (3) have been synthesized and characterized by elemental analysis, UV/VIS, IR, (1)H-NMR,(13)C-NMR and mass spectra. The binding behaviors of the three complexes to calf thymus DNA were investigated by absorption spectra, emission spectroscopy, viscosity measurements, thermal denaturation and photoactivated cleavage. The DNA-binding constants for complexes 1, 2 and 3 have been determined to be 7.9 × 10(5) M(-1), 6.7 × 10(5) M(-1) and 2.9 × 10(5) M(-1). The results suggest that these complexes bound to double-stranded DNA in an intercalation mode. Upon irradiation at 365 nm, three ruthenium complexes were found to promote the cleavage of plasmid pBR322 DNA from super coiled form І to nicked form ІІ. Further in the presence of Co(2+), the emission of DNA-Ru(ΙΙ) complexes can be quenched. And when EDTA was added, the emission was recovered. The experimental results show that all three complexes exhibited the "on-off-on" properties of molecular "light switch". The highest Cytotoxicity potential of the complex1 was observed on the Human alveolar adenocarcinoma (A549) cell line. Good agreement was generally found between the spectroscopic techniques and molecular docked model which provides further evidence of groove binding. PMID:23982735

  10. Photochemical, electrochemical, and photoelectrochemical water oxidation catalyzed by water-soluble mononuclear ruthenium complexes.

    Science.gov (United States)

    Li, Ting-Ting; Zhao, Wei-Liang; Chen, Yong; Li, Fu-Min; Wang, Chuan-Jun; Tian, Yong-Hua; Fu, Wen-Fu

    2014-10-20

    Two mononuclear ruthenium complexes [Ru(H2tcbp)(isoq)2] (1) and [Ru(H2tcbp)(pic)2] (2) (H4tcbp=4,4',6,6'-tetracarboxy-2,2'-bipyridine, isoq=isoquinoline, pic=4-picoline) are synthesized and fully characterized. Two spare carboxyl groups on the 4,4'-positions are introduced to enhance the solubility of 1 and 2 in water and to simultaneously allow them to tether to the electrode surface by an ester linkage. The photochemical, electrochemical, and photoelectrochemical water oxidation performance of 1 in neutral aqueous solution is investigated. Under electrochemical conditions, water oxidation is conducted on the deposited indium-tin-oxide anode, and a turnover number higher than 15,000 per water oxidation catalyst (WOC) 1 is obtained during 10 h of electrolysis under 1.42 V vs. NHE, corresponding to a turnover frequency of 0.41 s(-1). The low overpotential (0.17 V) of electrochemical water oxidation for 1 in the homogeneous solution enables water oxidation under visible light by using [Ru(bpy)3](2+) (P1) (bpy=2,2'-bipyridine) or [Ru(bpy)2(4,4'-(COOEt)2-bpy)](2+) (P2) as a photosensitizer. In a three-component system containing 1 or 2 as a light-driven WOC, P1 or P2 as a photosensitizer, and Na2S2O8 or [CoCl(NH3)5]Cl2 as a sacrificial electron acceptor, a high turnover frequency of 0.81 s(-1) and a turnover number of up to 600 for 1 under different catalytic conditions are achieved. In a photoelectrochemical system, the WOC 1 and photosensitizer are immobilized together on the photoanode. The electrons efficiently transfer from the WOC to the photogenerated oxidizing photosensitizer, and a high photocurrent density of 85 μA cm(-2) is obtained by applying 0.3 V bias vs. NHE. PMID:25205065

  11. Ruthenium Complex with Benznidazole and Nitric Oxide as a New Candidate for the Treatment of Chagas Disease

    Science.gov (United States)

    Sesti-Costa, Renata; Carneiro, Zumira A.; Silva, Maria C.; Santos, Maíta; Silva, Grace K.; Milanezi, Cristiane; da Silva, Roberto S.; Silva, João S.

    2014-01-01

    Background Chagas disease remains a serious medical and social problem in Latin America and is an emerging concern in nonendemic countries as a result of population movement, transfusion of infected blood or organs and congenital transmission. The current treatment of infected patients is unsatisfactory due to strain-specific drug resistance and the side effects of the current medications. For this reason, the discovery of safer and more effective chemotherapy is mandatory for the successful treatment and future eradication of Chagas disease. Methods and Findings We investigated the effect of a ruthenium complex with benznidazole and nitric oxide (RuBzNO2) against Trypanosoma cruzi both in vitro and in vivo. Our results demonstrated that RuBzNO2 was more effective than the same concentrations of benznidazole (Bz) in eliminating both the extracellular trypomastigote and the intracellular amastigote forms of the parasite, with no cytotoxic effect in mouse cells. In vivo treatment with the compound improved the survival of infected mice, inhibiting heart damage more efficiently than Bz alone. Accordingly, tissue inflammation and parasitism was significantly diminished after treatment with RuBzNO2 in a more effective manner than that with the same concentrations of Bz. Conclusions The complexation of Bz with ruthenium and nitric oxide (RuBzNO2) increases its effectiveness against T. cruzi and enables treatment with lower concentrations of the compound, which may reduce the side effects of Bz. Our findings provide a new potential candidate for the treatment of Chagas disease. PMID:25275456

  12. Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols and Hydroxide Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Santilli, Carola; Makarov, Ilya; Fristrup, Peter;

    2016-01-01

    Primary alcohols have been reacted with hydroxide and the ruthenium complex [RuCl2(IiPr)(p-cymene)] to afford carboxylic acids and dihydrogen. The dehydrogenative reaction is performed in toluene, which allows for a simple isolation of the products by precipitation and extraction. The transformat......Primary alcohols have been reacted with hydroxide and the ruthenium complex [RuCl2(IiPr)(p-cymene)] to afford carboxylic acids and dihydrogen. The dehydrogenative reaction is performed in toluene, which allows for a simple isolation of the products by precipitation and extraction...... reaction is most likely involved in this case. The kinetic isotope effect was determined to be 0.67 using 1-butanol as the substrate. A plausible catalytic cycle was characterized by DFT/B3LYP-D3 and involved coordination of the alcohol to the metal, β-hydride elimination, hydroxide attack...... on the coordinated aldehyde, and a second β-hydride elimination to furnish the carboxylate....

  13. Ruthenium complex with benznidazole and nitric oxide as a new candidate for the treatment of chagas disease.

    Directory of Open Access Journals (Sweden)

    Renata Sesti-Costa

    2014-10-01

    Full Text Available Chagas disease remains a serious medical and social problem in Latin America and is an emerging concern in nonendemic countries as a result of population movement, transfusion of infected blood or organs and congenital transmission. The current treatment of infected patients is unsatisfactory due to strain-specific drug resistance and the side effects of the current medications. For this reason, the discovery of safer and more effective chemotherapy is mandatory for the successful treatment and future eradication of Chagas disease.We investigated the effect of a ruthenium complex with benznidazole and nitric oxide (RuBzNO2 against Trypanosoma cruzi both in vitro and in vivo. Our results demonstrated that RuBzNO2 was more effective than the same concentrations of benznidazole (Bz in eliminating both the extracellular trypomastigote and the intracellular amastigote forms of the parasite, with no cytotoxic effect in mouse cells. In vivo treatment with the compound improved the survival of infected mice, inhibiting heart damage more efficiently than Bz alone. Accordingly, tissue inflammation and parasitism was significantly diminished after treatment with RuBzNO2 in a more effective manner than that with the same concentrations of Bz.The complexation of Bz with ruthenium and nitric oxide (RuBzNO2 increases its effectiveness against T. cruzi and enables treatment with lower concentrations of the compound, which may reduce the side effects of Bz. Our findings provide a new potential candidate for the treatment of Chagas disease.

  14. Half-sandwich ruthenium-arene complexes with thiosemicarbazones: Synthesis and biological evaluation of [(η6-p-cymene)Ru(piperonal thiosemicarbazones)Cl]Cl complexes

    OpenAIRE

    Beckford, Floyd; Dourth, Deidra; Shaloski, Michael; Didion, Jacob; Thessing, Jeffrey; Woods, Jason; Crowell, Vernon; Gerasimchuk, Nikolay; Gonzalez-Sarrías, Antonio; Seeram, Navindra P.

    2011-01-01

    The synthesis and characterization of a number of organometallic ruthenium(II) complexes containing a series of bidentate thiosemicarbazone ligands derived from piperonal is reported. The structure of compounds have been confirmed by spectroscopic analysis (IR and NMR) as well as X-ray crystallographic analysis of [(η6-p-cymene)Ru(pPhTSC)Cl]Cl (4) (pPhTSC is piperonal-N(4)-phenylthiosemicarbazone). The interaction of the complexes ([(η6-p-cymene)Ru(pEtTSC)Cl]Cl) (3) (pEtTSC is piperonal-N(4)-...

  15. Anticancer activity of ruthenium(II) arene complexes bearing 1,2,3,4-tetrahydroisoquinoline amino alcohol ligands.

    Science.gov (United States)

    Chelopo, Madichaba P; Pawar, Sachin A; Sokhela, Mxolisi K; Govender, Thavendran; Kruger, Hendrik G; Maguire, Glenn E M

    2013-08-01

    Ruthenium complexes offer potential reduced toxicity compared to current platinum anticancer drugs. 1,2,3,4-tetrahydrisoquinoline amino alcohol ligands were synthesised, characterised and coordinated to an organometallic Ru(II) centre. These complexes were evaluated for activity against the cancer cell lines MCF-7, A549 and MDA-MB-231 as well as for toxicity in the normal cell line MDBK. They were observed to be moderately active against only the MCF-7 cells with the best IC₅₀ value of 34 μM for the cis-diastereomeric complex C4. They also displayed excellent selectivity by being relatively inactive against the normal MDBK cell line with SI values ranging from 2.3 to 7.4.

  16. Highly Charged Ruthenium(II) Polypyridyl Complexes as Lysosome-Localized Photosensitizers for Two-Photon Photodynamic Therapy.

    Science.gov (United States)

    Huang, Huaiyi; Yu, Bole; Zhang, Pingyu; Huang, Juanjuan; Chen, Yu; Gasser, Gilles; Ji, Liangnian; Chao, Hui

    2015-11-16

    Photodynamic therapy (PDT) is a noninvasive medical technique that has received increasing attention over the last years and been applied for the treatment of certain types of cancer. However, the currently clinically used PDT agents have several limitations, such as low water solubility, poor photostability, and limited selectivity towards cancer cells, aside from having very low two-photon cross-sections around 800 nm, which limits their potential use in TP-PDT. To tackle these drawbacks, three highly positively charged ruthenium(II) polypyridyl complexes were synthesized. These complexes selectively localize in the lysosomes, an ideal localization for PDT purposes. One of these complexes showed an impressive phototoxicity index upon irradiation at 800 nm in 3D HeLa multicellular tumor spheroids and thus holds great promise for applications in two-photon photodynamic therapy. PMID:26447888

  17. Magnetically Recoverable Ruthenium Catalysts in Organic Synthesis

    OpenAIRE

    Dong Wang; Didier Astruc

    2014-01-01

    Magnetically recyclable catalysts with magnetic nanoparticles (MNPs) are becoming a major trend towards sustainable catalysts. In this area, recyclable supported ruthenium complexes and ruthenium nanoparticles occupy a key place and present great advantages compared to classic catalysts. In this micro-review, attention is focused on the fabrication of MNP-supported ruthenium catalysts and their catalytic applications in various organic syntheses.

  18. Spectroscopic, Thermal and Biological Studies on Some Trivalent Ruthenium and Rhodium NS Chelating Thiosemicarbazone Complexes

    OpenAIRE

    Vinod K Sharma; Shipra Srivastava; Ankita Srivastava

    2007-01-01

    The synthetic, spectroscopic, and biological studies of sixteen ring-substituted 4-phenylthiosemicarbazones and 4-nitrophenyl-thiosemicarbazones of anisaldehyde, 4-chlorobenzaldehyde, 4-fluorobenzaldehyde, and vanillin with ruthenium(III) and rhodium(III) chlorides are reported here. Their structures were determined on the basis of the elemental analyses, spectroscopic data (IR, electronic, 1H and 13C NMR) along with magnetic susceptibility measurements, molar conductivity and thermogravimetr...

  19. Binuclear ruthenium(III) bis(thiosemicarbazone) complexes: Synthesis, spectral, electrochemical studies and catalytic oxidation of alcohol

    Science.gov (United States)

    Mohamed Subarkhan, M.; Ramesh, R.

    2015-03-01

    A new series of binuclear ruthenium(III) thiosemicarbazone complexes of general formula [(EPh3)2(X)2Ru-L-Ru(X)2(EPh3)2] (where E = P or As; X = Cl or Br; L = NS chelating bis(thiosemicarbazone ligands) has been synthesized and characterized by analytical and spectral (FT-IR, UV-Vis and EPR). IR spectra show that the thiosemicarbazones behave as monoanionic bidentate ligands coordinating through the azomethine nitrogen and thiolate sulphur. The electronic spectra of the complexes indicate that the presence of d-d and intense LMCT transitions in the visible region. The complexes are paramagnetic (low spin d5) in nature and all the complexes show rhombic distortion around the ruthenium ion with three different 'g' values (gx ≠ gy ≠ gz) at 77 K. All the complexes are redox active and exhibit an irreversible metal centered redox processes (RuIII-RuIII/RuIV-RuIV; RuIII-RuIII/RuII-RuII) within the potential range of 0.38-0.86 V and -0.39 to -0.66 V respectively, versus Ag/AgCl. Further, the catalytic efficiency of one of the complexes [Ru2Cl2(AsPh3)4(L1)] (4) has been investigated in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide(NMO) as co-oxidant. The formation of high valent RuVdbnd O species is proposed as catalytic intermediate for the catalytic cycle.

  20. Pharmacological Activities of Ruthenium Complexes Related to Their NO Scavenging Properties.

    Science.gov (United States)

    Castellarin, Anna; Zorzet, Sonia; Bergamo, Alberta; Sava, Gianni

    2016-01-01

    Angiogenesis is considered responsible for the growth of primary tumours and of their metastases. With the present study, the effects of three ruthenium compounds, potassiumchlorido (ethylendiamminotetraacetate)rutenate(III) (RuEDTA), sodium (bis-indazole)tetrachloro-ruthenate(III), Na[trans-RuCl₄Ind₂] (KP1339) and trans-imidazoledimethylsulphoxidetetrachloro-ruthenate (NAMI-A), are studied in vitro in models mimicking the angiogenic process. The ruthenium compounds reduced the production and the release of nitrosyls from either healthy macrophages and immortalized EA.hy926 endothelial cells. The effects of NAMI-A are qualitatively similar and sometimes quantitatively superior to those of RuEDTA and KP1339. NAMI-A reduces the production and release of nitric oxide (NO) by the EA.hy926 endothelial cells and correspondingly inhibits their invasive ability; it also strongly inhibits the angiogenesis in matrigel sponges implanted subcutaneously in healthy mice. Taken together, these data support the anti-angiogenic activity of the tested ruthenium compounds and they contribute to explain the selective activity of NAMI-A against solid tumour metastases, the tumour compartment on which angiogenesis is strongly involved. This anti-angiogenic effect may also contribute to the inhibition of the release of metastatic cells from the primary tumour. Investigations on the anti-angiogenic effects of NAMI-A at this level will increase knowledge of its pharmacological properties and it will give a further impulse to the development of this class of innovative metal-based drugs. PMID:27490542

  1. Nanoformulation improves activity of the (pre)clinical anticancer ruthenium complex KP1019.

    Science.gov (United States)

    Heffeter, P; Riabtseva, A; Senkiv, Y; Kowol, C R; Körner, W; Jungwith, U; Mitina, N; Keppler, B K; Konstantinova, T; Yanchuk, I; Stoika, R; Zaichenko, A; Berger, W

    2014-05-01

    Ruthenium anticancer drugs belong to the most promising non-platinum anticancer metal compounds in clinical evaluation. However, although the clinical results are promising regarding both activity and very low adverse effects, the clinical application is currently hampered by the limited solubility and stability of the drug in aqueous solution. Here, we present a new nanoparticle formulation based on polymer-based micelles loaded with the anticancer lead ruthenium compound KP1019. Nanoprepared KP1019 was characterised by enhanced stability in aqueous solutions. Moreover, the nanoparticle formulation facilitated cellular accumulation of KP1019 (determined by ICP-MS measurements) resulting in significantly lowered IC50 values. With regard to the mode of action, increased cell cycle arrest in G2/M phase (PI-staining), DNA damage (Comet assay) as well as enhanced levels of apoptotic cell death (caspase 7 and PARP cleavage) were found in HCT116 cells treated with the new nanoformulation of KP1019. Summarizing, we present for the first time evidence that nanoformulation is a feasible strategy for improving the stability as well as activity of experimental anticancer ruthenium compounds. PMID:24734541

  2. Pyrithione-based ruthenium complexes as inhibitors of aldo-keto reductase 1C enzymes and anticancer agents.

    Science.gov (United States)

    Kljun, Jakob; Anko, Maja; Traven, Katja; Sinreih, Maša; Pavlič, Renata; Peršič, Špela; Ude, Žiga; Codina, Elisa Esteve; Stojan, Jure; Lanišnik Rižner, Tea; Turel, Iztok

    2016-08-01

    Four ruthenium complexes of clinically used zinc ionophore pyrithione and its oxygen analog 2-hydroxypyridine N-oxide were prepared and evaluated as inhibitors of enzymes of the aldo-keto reductase subfamily 1C (AKR1C). A kinetic study assisted with docking simulations showed a mixed type of inhibition consisting of a fast reversible and a slow irreversible step in the case of both organometallic compounds 1A and 1B. Both compounds also showed a remarkable selectivity towards AKR1C1 and AKR1C3 which are targets for breast cancer drug design. The organoruthenium complex of ligand pyrithione as well as pyrithione itself also displayed toxicity on the hormone-dependent MCF-7 breast cancer cell line with EC50 values in the low micromolar range. PMID:27357845

  3. (Eta6-arene) ruthenium(II) complexes and metallo-papain hybrid as Lewis acid catalysts of Diels-Alder reaction in water.

    OpenAIRE

    Talbi, Barisa; Haquette, Pierre; Martel, Annie; Montigny, Frédéric de; Fosse, Céline; Cordier, Stéphane; Roisnel, Thierry; Jaouen, Gérard; Salmain, Michèle

    2010-01-01

    International audience Covalent embedding of a (eta(6)-arene) ruthenium(II) complex into the protein papain gives rise to a metalloenzyme displaying a catalytic efficiency for a Lewis acid-mediated catalysed Diels-Alder reaction enhanced by two orders of magnitude in water.

  4. Visible-Light-Driven Photoisomerization and Increased Rotation Speed of a Molecular Motor Acting as a Ligand in a Ruthenium(II) Complex

    NARCIS (Netherlands)

    Wezenberg, Sander J; Chen, Kuang-Yen; Feringa, Ben L

    2015-01-01

    Toward the development of visible-light-driven molecular rotary motors, an overcrowded alkene-based ligand and the corresponding ruthenium(II) complex is presented. In our design, a 4,5-diazafluorenyl coordination motif is directly integrated into the motor function. The photochemical and thermal is

  5. Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus-Nitrogen PN(3) -Pincer Ligand.

    Science.gov (United States)

    Pan, Yupeng; Pan, Cheng-Ling; Zhang, Yufan; Li, Huaifeng; Min, Shixiong; Guo, Xunmun; Zheng, Bin; Chen, Hailong; Anders, Addison; Lai, Zhiping; Zheng, Junrong; Huang, Kuo-Wei

    2016-05-01

    An unsymmetrically protonated PN(3) -pincer complex in which ruthenium is coordinated by one nitrogen and two phosphorus atoms was employed for the selective generation of hydrogen from formic acid. Mechanistic studies suggest that the imine arm participates in the formic acid activation/deprotonation step. A long life time of 150 h with a turnover number over 1 million was achieved.

  6. Enhanced optical oxygen sensing using a newly synthesized ruthenium complex together with oxygen carriers.

    Science.gov (United States)

    Ertekin, Kadriye; Kocak, Suleyman; Sabih Ozer, M; Aycan, Sule; Cetinkaya, Bekir

    2003-11-12

    In this article, an emission based, simple and fast method is proposed for the determination of gaseous oxygen. A newly synthesized fluorophore, dichloro-{2,6-bis[1-(4-dimethylamino-phenylimino) ethyl]pyridine}ruthenium(II) has been used for oxygen sensing together with oxygen carrier perfluorochemicals (PFCs) in silicon matrix. It should be noted that the solubility of oxygen in fluorocarbons is about three to ten times large as that observed in the parent hydrocarbons or in water, respectively. Employed PFCs are chemically and biochemically inert, have high dissolution capacities for oxygen, and, once doped into sensing film, considerably enhance the response of sensing agent. PMID:18969220

  7. Highly efficient redox isomerization of allylic alcohols at ambient temperature catalyzed by novel ruthenium-cyclopentadienyl complexes--new insight into the mechanism.

    Science.gov (United States)

    Martín-Matute, Belén; Bogár, Krisztián; Edin, Michaela; Kaynak, F Betül; Bäckvall, Jan-E

    2005-10-01

    A range of ruthenium cyclopentadienyl (Cp) complexes have been prepared and used for isomerization of allylic alcohols to the corresponding saturated carbonyl compounds. Complexes bearing CO ligands show higher activity than those with PPh3 ligands. The isomerization rate is highly affected by the substituents on the Cp ring. Tetra(phenyl)methyl-substituted catalysts rapidly isomerize allylic alcohols under very mild reaction conditions (ambient temperature) with short reaction times. Substituted allylic alcohols have been isomerized by employing Ru-Cp complexes. A study of the isomerization catalyzed by [Ru(Ph5Cp)(CO)2H] (14) indicates that the isomerization catalyzed by ruthenium hydrides partly follows a different mechanism than that of ruthenium halides activated by KOtBu. Furthermore, the lack of ketone exchange when the isomerization was performed in the presence of an unsaturated ketone (1 equiv), different from that obtained by dehydrogenation of the starting allylic alcohol, supports a mechanism in which the isomerization takes place within the coordination sphere of the ruthenium catalyst. PMID:16028298

  8. Coordination behavior of ligand based on NNS and NNO donors with ruthenium(III) complexes and their catalytic and DNA interaction studies

    Science.gov (United States)

    Manikandan, R.; Viswnathamurthi, P.

    2012-11-01

    Reactions of 2-acetylpyridine-thiosemicarbazone HL1, 2-acetylpyridine-4-methyl-thiosemicarbazone HL2, 2-acetylpyridine-4-phenyl-thiosemicarbazone HL3 and 2-acetylpyridine-semicarbazone HL4 with ruthenium(III) precursor complexes were studied and the products were characterized by analytical and spectral (FT-IR, electronic, EPR and EI-MS) methods. The ligands coordinated with the ruthenium(III) ion via pyridine nitrogen, azomethine nitrogen and thiolate sulfur/enolate oxygen. An octahedral geometry has been proposed for all the complexes based on the studies. All the complexes are redox active and display an irreversible and quasireversible metal centered redox processes. Further, the catalytic activity of the new complexes has been investigated for the transfer hydrogenation of ketones in the presence of isopropanol/KOH and the Kumada-Corriu coupling of aryl halides with aryl Grignard reagents. The DNA cleavage efficiency of new complexes has also been tested.

  9. Synthesis and Structural Characterization of a Ruthenium Complex: trans-RuCl2(COD)Py2

    Institute of Scientific and Technical Information of China (English)

    WANG Fang; LIU Jun-Hua; YIN Yuan-Qi; XU Xian-Lun

    2008-01-01

    A new ruthenium complex trans-RuCl2(COD)Py2 has been synthesized and charac- terized by elemental analysis, IR, 1H NMR and single-crystal X-ray diffraction. Crystal data: trans- RuCl2(COD)Py2, Mr = 438.35, monoclinic, space group P21/c, a = 8.9116(9), b = 14.6175(15), c = 13.7582(14)(A), β= 101.994(1)° V = 1753.1(3) (A)3, Z = 4, Dc = 1.661 g/cm3 , F(000) = 888, μ= 1.199 mm-1, R = 0.0376 and wR = 0.0789 for 2492 observed reflections with I > 2δ(I).

  10. Characterization of the Initial Intermediate Formed during Photoinduced Oxygenation of the Ruthenium(II) Bis(bipyridyl)flavonolate Complex.

    Science.gov (United States)

    Han, Xiaozhen; Klausmeyer, Kevin K; Farmer, Patrick J

    2016-08-01

    A ruthenium(II) flavonolate complex, [Ru(II)(bpy)2fla][BF4], was synthesized to model the reactivity of the flavonol dioxygenases. The treatment of dry CH3CN solutions of [Ru(II)(bpy)2fla][BF4] with dioxygen under light leads to the oxidative O-heterocyclic ring opening of the coordinated substrate flavonolate, resulting in the formation of [Ru(II)(bpy)2(carboxylate)][BF4] (carboxylate = O-benzoylsalicylate or benzoate) species, as determined by electrospray ionization mass spectrometry. Moderation of the excitation and temperature allowed isolation and characterization of an intermediate, [Ru(II)(bpy)2bpg][BF4] (bpg = 2-benzoyloxyphenylglyoxylate), generated by the 1,2-addition of dioxygen to the central flavonolate ring. PMID:27437831

  11. Effect of principal and secondary ligands on the electronic structures and spectra of a series of ruthenium(II complexes

    Directory of Open Access Journals (Sweden)

    Zhang Yanli

    2016-01-01

    Full Text Available A DFT(density functional theory/TDDFT(time-dependent density functional theory investigation is performed to study the ground-state geometries, electronic structures, and absorption spectra of twelve ruthenium(II thiosemicarbazone complexes [Ru(CO(C(Ln], where Ln=derivatives of dibasic tetradentate Schiff-base ligand and X=AsPh3/PPh3/Py. The ground-state geometries are optimized at the B3LYP/6-31G(d-LANL2DZ level, and the spectra are simulated by means of TD-B3LYP/6-31G(d-LANL2DZ method on the basis of the optimized geometries. The influence of principal and secondary ligands (Ln and X on transition characters and absorption peak positions is evaluated.

  12. Titania modification with a ruthenium(II) complex and gold nanoparticles for photocatalytic degradation of organic compounds

    OpenAIRE

    Zheng, Shuaizhi; Wei, Zhishun; Yoshiiri, Kenta; Braumueller, Markus; Ohtani, Bunsho; Rau, Sven; Kowalska, Ewa

    2016-01-01

    Titania of fine anatase nanoparticles (ST01) was modified successively with two components, i.e., a ruthenium(II) complex with phosphonic anchoring groups [Ru(bpy)(2)(4,4'-(CH2PO3H2)(2)bpy)](2+) bpy = 2,2'-bipyridine ((RuCP)-C-II) and gold nanoparticles (Au). Various compositions of two titania modifiers were investigated, i.e., Au, Au + (RuCP)-C-II, Au + 0.5Ru(II)CP, (RuCP)-C-II, 0.5Ru(II)CP and 0.25Ru(II)CP, where Au and (RuCP)-C-II correspond to 0.81 mol% and 0.34 mol% (with respect to tit...

  13. Electropolymerization of a Ruthenium(II) Bis(pyrazolyl)pyridine Complex to Form a Novel Ru-Containing Conducting Metallopolymer.

    Science.gov (United States)

    Zhu, Xun Jin; Holliday, Bradley J

    2010-05-12

    A new derivative of 2,6-bis(pyrazol-1-yl)pyridine (bpp) symmetrically substituted with 3,4-ethylenedioxy-thienyl (EDOT) substituent groups, and the corresponding ruthenium(II) complex was synthesized and characterized by NMR spectroscopy, elemental analysis, mass spectrometry, and single-crystal X-ray diffraction. A new linear conducting metallopolymer consisting of [Ru(bpp-(EDOT)(2) )(terpy)](2+) fragments was deposited directly on to electrode surfaces as a transparent, deep red film by electrochemical coupling of the pendant EDOT moieties. XPS analysis reveals that the film has the expected structure consisting of monomer repeats without degradation or loss of metal ions. Additionally, the absorption spectrum of the polymer film shows a broad absorption range from 310 to 700 nm. PMID:21590986

  14. DNA binding, DNA cleavage, antioxidant and cytotoxicity studies on ruthenium(II) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones

    Science.gov (United States)

    Sampath, Krishnan; Sathiyaraj, Subbaiyan; Jayabalakrishnan, Chinnasamy

    2013-03-01

    Four new ruthenium(II) complexes with N(4)-methyl thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-methylhydrazinecarbothioamide (HL1) and (E)-N-methyl-2-(2-nitrobenzylidene)hydrazinecarbothioamide (HL2), were prepared and fully characterized by various spectro-analytical techniques. The Schiff bases act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the compounds was investigated by absorption spectroscopy which indicated that the complexes bind to DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant studies of the ligands and complexes showed the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes against MCF-7 cell line was assayed which showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  15. Permanent Encapsulation or Host–Guest Behavior of Aromatic Molecules in Hexanuclear Arene Ruthenium Prisms

    OpenAIRE

    Freudenreich, Julien; Barry, Nicolas P. E.; Süss-Fink, Georg; Therrien, Bruno

    2012-01-01

    Cationic arene ruthenium metallaprisms of the general formula [Ru6(p-cymene)6(tpt)2(OO∩OO)3]6+ {tpt = 2,4,6-tris(4-pyridyl)-1,3,5-triazine; OO∩OO = 9,10-dioxo-9,10-dihydroanthracene-1,4-diolato [1]6+, 6,11-dioxo-6,11-dihydronaphthacene-5,12-diolato [2]6+} have been obtained from the corresponding dinuclear arene ruthenium complexes [Ru2(p-cymene)2(OO∩OO)Cl2] by reaction with tpt and silver trifluoromethanesulfonate. Aromatic molecules (phenanthrene, pyrene, triphenylene, coronene) present dur...

  16. Electrochemiluminescent determination of nicotine based on tri(2,2'-bipyridyl) ruthenium (II) complex through flow injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin Mengshan [Department of Chemistry, Tamkang University, Tamsui 25137, Taiwan (China)], E-mail: mslin@mail.tku.edu.tw; Wang Junsheng; Lai Chienhung [Department of Chemistry, Tamkang University, Tamsui 25137, Taiwan (China)

    2008-11-01

    This paper describes the electrogenerated chemiluminescence (ECL) processes of Ru(bpy){sub 3}{sup 2+}/nicotine system at ITO working electrode. An ECL-based method for rapid and sensitive detection of nicotine in phosphate buffer solution at pH 8.0 is established. Strong ECL emission was observed at a positive potential of 1.4 V vs. Ag/AgCl. A possible ECL mechanism is proposed for the Ru(bpy){sub 3}{sup 2+}/nicotine system, the oxidation product of nicotine at the electrode surface reacts with the 3+ state of ruthenium bipyridyl (2+) complex and form ruthenium complex exited state ions and thus releases photons. Effect of pH (medium/electrolyte), working potential, buffer composition, buffer concentration, reactant and co-reactant (nicotine) concentration, flow rate and loop size on the ECL spectrum of the Ru(bpy){sub 3}{sup 2+}/nicotine were studied. At the optimized experimental conditions, lower detection limit for nicotine was observed as 1.2 nmol L{sup -1} (S/N = 3). Linear relationship between ECL current and concentration of nicotine was observed (up to 100 {mu}mol L{sup -1}) with R-value of 0.997. The relative standard deviation with 5 {mu}mol L{sup -1} concentration of nicotine for 20 analyses was only 1.4%. A 94% recovery rate was observed in a real sample analysis without any complications/disturbance in measurement. Interferences of humid acid, camphor and SDS were not observed in their presence in the sample solution. The established procedure for nicotine quantification manifests fascinating results and can be suggested for further applications.

  17. Electrochemiluminescent determination of nicotine based on tri(2,2'-bipyridyl) ruthenium (II) complex through flow injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Meng Shan; Wang, Jun Sheng; Lai, Chien Hung [Department of Chemistry, Tamkang University, Tamsui 25137 (China)

    2008-11-01

    This paper describes the electrogenerated chemiluminescence (ECL) processes of Ru(bpy){sub 3}{sup 2+}/nicotine system at ITO working electrode. An ECL-based method for rapid and sensitive detection of nicotine in phosphate buffer solution at pH 8.0 is established. Strong ECL emission was observed at a positive potential of 1.4 V vs. Ag/AgCl. A possible ECL mechanism is proposed for the Ru(bpy){sub 3}{sup 2+}/nicotine system, the oxidation product of nicotine at the electrode surface reacts with the 3+ state of ruthenium bipyridyl (2+) complex and form ruthenium complex exited state ions and thus releases photons. Effect of pH (medium/electrolyte), working potential, buffer composition, buffer concentration, reactant and co-reactant (nicotine) concentration, flow rate and loop size on the ECL spectrum of the Ru(bpy){sub 3}{sup 2+}/nicotine were studied. At the optimized experimental conditions, lower detection limit for nicotine was observed as 1.2 nmol L{sup -1} (S/N = 3). Linear relationship between ECL current and concentration of nicotine was observed (up to 100 {mu}mol L{sup -1}) with R-value of 0.997. The relative standard deviation with 5 {mu}mol L{sup -1} concentration of nicotine for 20 analyses was only 1.4%. A 94% recovery rate was observed in a real sample analysis without any complications/disturbance in measurement. Interferences of humid acid, camphor and SDS were not observed in their presence in the sample solution. The established procedure for nicotine quantification manifests fascinating results and can be suggested for further applications. (author)

  18. Nitro/Nitrosyl-Ruthenium Complexes Are Potent and Selective Anti-Trypanosoma cruzi Agents Causing Autophagy and Necrotic Parasite Death

    Science.gov (United States)

    Bastos, Tanira M.; Barbosa, Marília I. F.; da Silva, Monize M.; da C. Júnior, José W.; Meira, Cássio S.; Guimaraes, Elisalva T.; Ellena, Javier; Moreira, Diogo R. M.; Batista, Alzir A.

    2014-01-01

    cis-[RuCl(NO2)(dppb)(5,5′-mebipy)] (complex 1), cis-[Ru(NO2)2(dppb)(5,5′-mebipy)] (complex 2), ct-[RuCl(NO)(dppb)(5,5′-mebipy)](PF6)2 (complex 3), and cc-[RuCl(NO)(dppb)(5,5′-mebipy)](PF6)2 (complex 4), where 5,5′-mebipy is 5,5′-dimethyl-2,2′-bipyridine and dppb is 1,4-bis(diphenylphosphino)butane, were synthesized and characterized. The structure of complex 2 was determined by X-ray crystallography. These complexes exhibited a higher anti-Trypanosoma cruzi activity than benznidazole, the current antiparasitic drug. Complex 3 was the most potent, displaying a 50% effective concentration (EC50) of 2.1 ± 0.6 μM against trypomastigotes and a 50% inhibitory concentration (IC50) of 1.3 ± 0.2 μM against amastigotes, while it displayed a 50% cytotoxic concentration (CC50) of 51.4 ± 0.2 μM in macrophages. It was observed that the nitrosyl complex 3, but not its analog lacking the nitrosyl group, releases nitric oxide into parasite cells. This release has a diminished effect on the trypanosomal protease cruzain but induces substantial parasite autophagy, which is followed by a series of irreversible morphological impairments to the parasites and finally results in cell death by necrosis. In infected mice, orally administered complex 3 (five times at a dose of 75 μmol/kg of body weight) reduced blood parasitemia and increased the survival rate of the mice. Combination index analysis of complex 3 indicated that its in vitro activity against trypomastigotes is synergic with benznidazole. In addition, drug combination enhanced efficacy in infected mice, suggesting that ruthenium-nitrosyl complexes are potential constituents for drug combinations. PMID:25092707

  19. Thiol-Activated HNO Release from a Ruthenium Antiangiogenesis Complex and HIF-1α Inhibition for Cancer Therapy.

    Science.gov (United States)

    Silva Sousa, Eduardo Henrique; Ridnour, Lisa A; Gouveia, Florêncio S; Silva da Silva, Carlos Daniel; Wink, David A; de França Lopes, Luiz Gonzaga; Sadler, Peter J

    2016-07-15

    Metallonitrosyl complexes are promising as nitric oxide (NO) donors for the treatment of cardiovascular, endothelial, and pathogenic diseases, as well as cancer. Recently, the reduced form of NO(-) (protonated as HNO, nitroxyl, azanone, isoelectronic with O2) has also emerged as a candidate for therapeutic applications including treatment of acute heart failure and alcoholism. Here, we show that HNO is a product of the reaction of the Ru(II) complex [Ru(bpy)2(SO3)(NO)](+) (1) with glutathione or N-acetyl-L-cysteine, using met-myoglobin and carboxy-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) as trapping agents. Characteristic absorption spectroscopic profiles for HNO reactions with met-myoglobin were obtained, as well as EPR evidence from carboxy-PTIO experiments. Importantly, the product HNO counteracted NO-induced as well as hypoxia-induced stabilization of the tumor-suppressor HIF-1α in cancer cells. The functional disruption of neovascularization by HNO produced by this metallonitrosyl complex was demonstrated in an in vitro angiogenesis model. This behavior is consistent with HNO biochemistry and contrasts with NO-mediated stabilization of HIF-1α. Together, these results demonstrate for the first time thiol-dependent production of HNO by a ruthenium complex and subsequent destabilization of HIF-1α. This work suggests that the complex warrants further investigation as a promising antiangiogenesis agent for the treatment of cancer. PMID:27191177

  20. Ruthenium, osmium and rhodium complexes of polypyridyl ligands: Metal-promoted activities, stereochemical aspects and electrochemical properties

    Indian Academy of Sciences (India)

    Parimal Paul

    2002-08-01

    This article presents a brief overview of the reactions of 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) in presence of rhodium(III), ruthenium(II) and osmium(II) under various experimental conditions. Under certain experimental conditions tptz exhibits metal-assisted hydrolysis/hydroxylation at the triazine ring. However, synthetic methods have also been developed to prepare complexes with intact tptz. Molecular structures of some of the complexes, especially stereoisomers of the hydroxylated products, are established by single crystal X-ray studies. A critical analysis of all data suggests that the electron-withdrawing effect of the metal ion (L→M donation) is the predominant factor, rather than angular strain, that is responsible for metal-promoted reactivities. Electrochemical properties of all of these complexes have been investigated, Rh(III) complexes are excellent catalysts for electrocatalytic reduction of CO2, and dinuclear Ru(II) and Os(II) complexes exhibit strong electronic communication between the metal centres.

  1. New mixed ligand complexes of ruthenium(II) that incorporate a modified phenanthroline ligand: Synthesis, spectral characterization and DNA binding

    Indian Academy of Sciences (India)

    S Murali; C V Sastri; Bhaskar G Maiya

    2002-08-01

    The hexafluorophosphate and chloride salts of two ruthenium(II) complexes, viz. [Ru(phen)(ptzo)2]2+ and [Ru(ptzo)3]2+, where ptzo = 1,10-phenanthrolino[5,6-]1,2,4-triazine-3-one (ptzo) - a new modified phenanthroline (phen) ligand, have been synthesised. These complexes have been characterised by infrared, UV-Vis, steady-state emission and 1H NMR spectroscopic methods. Results of absorption and fluorescence titration as well as thermal denaturation studies reveal that both the bis- and tris-complexes of ptzo show moderately strong affinity for binding with calf thymus (CT) DNA with the binding constants being close to 105M-1 in each case. An intercalative mode of DNA binding has been suggested for both the complexes. Emission studies carried out in non-aqueous solvents and in aqueous media without DNA reveal that both [Ru(phen)(ptzo)2]2+ and [Ru(ptzo)3]2+ are weakly luminescent under these solution conditions. Successive addition of CT DNA to buffered aqueous solutions containing [Ru(phen)(ptzo)2]2+ results in an enhancement of the emission. These results have been discussed in the light of the dependence of the structure-specific deactivation processes of the MLCT state of the metallointercalator with the characteristic features of its DNA interaction. In doing so, attempts have been made to compare and contrast its properties with those of the analogous phenanthroline-based complexes including the ones reported by us previously.

  2. Luminescent Ruthenium(II) Complex Bearing Bipyridine and N-Heterocyclic Carbene-based C∧N∧C Pincer Ligand for Live-Cell Imaging of Endocytosis

    Science.gov (United States)

    Tsui, Wai-Kuen; Chung, Lai-Hon; Wong, Matthew Man-Kin; Tsang, Wai-Him; Lo, Hoi-Shing; Liu, Yaxiang; Leung, Chung-Hang; Ma, Dik-Lung; Chiu, Sung-Kay; Wong, Chun-Yuen

    2015-03-01

    Luminescent ruthenium(II)-cyanide complex with N-heterocyclic carbene pincer ligand C∧N∧C = 2,6-bis(1-butylimidazol-2-ylidene)pyridine and 2,2'-bipyridine (bpy) shows minimal cytotoxicity to both human breast carcinoma cell (MCF-7) and human retinal pigmented epithelium cell (RPE) in a wide range of concentration (0.1-500 μM), and can be used for the luminescent imaging of endocytosis of the complex in these cells.

  3. Ruthenium(II) and osmium(II) polypyridyl complexes of an asymmetric pyrazinyl- and pyridinyl-containing 1,2,4-triazole based ligand. Connectivity and physical properties of mononuclear complexes

    NARCIS (Netherlands)

    Browne, Wesley R.; O’Connor, Christine M.; Hughes, Helen P.; Hage, Ronald; Walter, Olaf; Doering, Manfred; Gallagher, John F.; Vos, Johannes G.

    2002-01-01

    The synthesis, purification and characterisation of two coordination isomers of ruthenium(II) and osmium (II) complexes containing the ligand 3-(pyrazin-2'-yl)-5-(pyridin-2"-yl)-1,2,4-triazole (Hppt) are described. The X-ray and molecular structure of the complex [Ru(bipy)(2) (ppt)] PF6.CH3OH (1a) i

  4. Formation of Stable Cationic Lipid/DNA Complexes for Gene Transfer

    Science.gov (United States)

    Hofland, Hans E. J.; Shephard, Lee; Sullivan, Sean M.

    1996-07-01

    Stable cationic lipid/DNA complexes were formed by solubilizing cationic liposomes with 1% octylglucoside and complexing a DNA plasmid with the lipid in the presence of detergent. Removal of the detergent by dialysis yielded a lipid/DNA suspension that was able to transfect tissue culture cells up to 90 days after formation with no loss in activity. Similar levels of gene transfer were obtained by mixing the cationic lipid in a liposome form with DNA just prior to cell addition. However, expression was completely lost 24 hr after mixing. The transfection efficiency of the stable complex in 15% fetal calf serum was 30% of that obtained in the absence of serum, whereas the transient complex was completely inactivated with 2% fetal calf serum. A 90-day stability study comparing various storage conditions showed that the stable complex could be stored frozen or as a suspension at 4 degrees C with no loss in transfection efficiency. Centrifugation of the stable complex produced a pellet that contained approximately 90% of the DNA and 10% of the lipid. Transfection of cells with the resuspended pellet and the supernatant showed that the majority of the transfection activity was in the pellet and all the toxicity was in the supernatant. Formation of a stable cationic lipid/DNA complex has produced a transfection vehicle that can be stored indefinitely, can be concentrated with no loss in transfection efficiency, and the toxicity levels can be greatly reduced when the active complex is isolated from the uncomplexed lipid.

  5. Luminescence Quenching Behavior of Oxygen Sensing ORMOSIL Films Based on Ruthenium Complex

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An organically modified silicate (ORMOSIL) based optical sensor response to gaseous O2 or O2 dissolved in water is presented. The oxygen sensing film mechanism is based on the principle of fluorescence quenching of tris(4,7-diphenyl-1,10-phenanthroline) ruthenium ( Ⅱ )([Ru(dpp)3]2+), which has been entrapped in a porous ORMOSIL film. In order to establish optimum film-processing parameters, comprehensive investigations, including the effects of the polarity and the hydrophobicity of the sensing film on oxygen quenching response and response time, were carried out. The film hydrophobicity increased as a function of dimethyldimethoxysilane (DiMe-DMOS) content, which is correlated with enhanced oxygen sensor performance. The sensor developed in the present work exhibits the advantages of fast response time and good reversibility. The detection limits are 0. 50% and 0. 3μg/Ml for O2 in the gaseous and the aqueous phases, respectively.

  6. Studies of ruthenium(II) polypyridyl complexes on cytotoxicity in vitro, apoptosis, DNA-binding and antioxidant activity

    Science.gov (United States)

    Huang, Hong-Liang; Liu, Yun-Jun; Zeng, Cheng-Hui; Yao, Jun-Hua; Liang, Zhen-Hua; Li, Zheng-Zheng; Wu, Fu-Hai

    2010-03-01

    Two new ruthenium(II) polypyridyl complexes [Ru(dmb) 2(maip)](ClO 4) 21 (maip = 2-(3-aminophenyl)imizado[4,5-f][1,10]phenanthroline and [Ru(dmb) 2(maip)](ClO 4) 22 (paip = 2-(4-aminophenyl)imidazo[4,5-f][1,10]phenanthroline, dmb = 4,4'-dimethyl-2,2'-bipyridine) have been synthesized and characterized. The DNA-binding behaviors of complexes 1 and 2 were studied by viscosity measurements, thermal denaturation, photocleavage, absorption titration and luminescence spectra. The results show that the two complexes intercalate between the base pairs of DNA. The DNA-binding constants Kb for complexes 1 and 2 were determined to be 1.12 ± 0.11 × 10 5 M -1 ( s = 2.17) and 3.46 ± 0.59 × 10 5 M -1 ( s = 2.11) M -1. The studies on the mechanism of photocleavage demonstrate that superoxide anion radical (O 2rad - ) and singlet oxygen ( 1O 2) may play an important role. The cytotoxicity of these complexes has been evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The IC 50 values are 19.21, 33.15, 38.57 and 21.15 for complex 1 and 41.77, 123.58, 255.44 and 49.11 for complex 2 against BEL-7402, C-6, HepG-2 and MCF-7 cell lines, respectively. The apoptosis assay was carried out with acridine orange/ethidium bromide (AO/EB) staining methods and the results indicate that complexes can induce the apoptosis of BEL-7402 cells. The experiments on antioxidant activity show these complexes exhibit good antioxidant activity against hydroxyl radical (OH rad ).

  7. Synthesis, electronic structure and catalytic activity of ruthenium-iodo-carbonyl complexes with thioether containing NNS donor ligand

    Science.gov (United States)

    Jana, Subrata; Jana, Mahendra Sekhar; Biswas, Sujan; Sinha, Chittaranjan; Mondal, Tapan Kumar

    2014-05-01

    The ruthenium carbonyl complexes 1 and 2 with redox noninnocent NNS donor ligand, 1-methyl-2-{(o-thiomethyl)phenylazo}imidazole (L) have been synthesized and characterized by various analytical and spectroscopic (IR, UV-Vis and 1H NMR) techniques. The complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 1.11 V for 1 and 0.76 V for 2 along with two successive one electron ligand reductions. Catalytic activity of the compounds has been investigated to the oxidation of PhCH2OH to PhCHO, 2-butanol (C4H9OH) to 2-butanone, 1-phenylethanol (PhC2H4OH) to acetophenone, cyclopentanol (C5H9OH) to cyclopentanone, cyclohexanol to cyclohexanone, cycloheptanol to cycloheptanone and cycloctanol to cycloctanone using N-methylmorpholine-N-oxide (NMO) as oxidant. The catalytic efficiency of 2 is greater than complex 1 and well correlate with the metal oxidation potential. DFT, NBO and TDDFT calculations in DFT/B3LYP/6-31G(d)/lanL2TZ(f) method are employed to interpret the structural and electronic features of the complexes.

  8. Iron(II) and ruthenium(II) complexes containing P, N, and H ligands: structure, spectroscopy, electrochemistry, and reactivity.

    Science.gov (United States)

    Chen, Jinzhu; Szalda, David J; Fujita, Etsuko; Creutz, Carol

    2010-10-18

    The purpose of this work was to explore the possibility of using iron(II) hydrides in CO(2) reduction and to compare their reactivity to that of their ruthenium analogues. Fe(bpy)(P(OEt)(3))(3)H(+) and Ru(bpy)(P(OEt)(3))(3)H(+) do not react with CO(2) in acetonitrile, but the one-electron-reduction products of Ru(bpy)(P(OEt)(3))(3)H(+) and Ru(bpy)(2)(P(OEt)(3))H(+) and the two-electron-reduction product of Fe(bpy)(P(OEt)(3))(3)H(+) do. Ru(bpy)(2)(P(OEt)(3))H(+) also reacts slowly with CO(2) to give a formate complex [as reported previously by Albertin et al. (Inorg. Chem. 2004, 43, 1336)] with a second-order rate constant of ∼4 × 10(-3) M(-1) s(-1) in methanol. The structures for the hydride complexes [Fe(bpy)(P(OEt)(3))(3)H](+) and [Ru(bpy)(2)(P(OEt)(3))H](+) and for the (η(5)-Cp)bis- and -tris-PTA complexes (PTA = 1,3,5-triaza-7-phosphatricyclo[3.3.1.13.7]decane) of iron(II) are reported. These and the CpFe(CO)(bpy)(+) and Fe(II)PNNP compounds have been subjected to electrochemical and UV-vis spectroscopic characterization. Fe(bpy)(P(OEt)(3))(3)H(+) exhibits a quasi-reversible oxidation at +0.42 V vs AgCl/Ag in acetonitrile; Ru(bpy)(P(OEt)(3))(3)H(+) and Ru(bpy)(2)(P(OEt)(3))H(+) are oxidized irreversibly at +0.90 and +0.55 V, respectively, vs AgCl/Ag. The reduction site for Fe(bpy)(P(OEt)(3))(3)H(+) and Fe(bpy)(P(OEt)(3))(3)(CH(3)CN)(2+) appears to be the metal and gives rise to a two-electron process. The bpy-centered reductions are negatively shifted in the ruthenium(II) hydride complexes, compared to the acetonitrile complexes. The results of attempts to prepare other iron(II) hydrides are summarized. PMID:20857940

  9. Aromatic Amino Acids-Guanidinium Complexes through Cation-π Interactions

    Directory of Open Access Journals (Sweden)

    Cristina Trujillo

    2015-05-01

    Full Text Available Continuing with our interest in the guanidinium group and the different interactions than can establish, we have carried out a theoretical study of the complexes formed by this cation and the aromatic amino acids (phenylalanine, histidine, tryptophan and tyrosine using DFT methods and PCM-water solvation. Both hydrogen bonds and cation-π interactions have been found upon complexation. These interactions have been characterized by means of the analysis of the molecular electron density using the Atoms-in-Molecules approach as well as the orbital interactions using the Natural Bond Orbital methodology. Finally, the effect that the cation-π and hydrogen bond interactions exert on the aromaticity of the corresponding amino acids has been evaluated by calculating the theoretical NICS values, finding that the aromatic character was not heavily modified upon complexation.

  10. Cationic technetium and rhenium complexes with pendant carbohydrates

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cara L. [Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: cara.ferreira@mdsinc.com; Marques, Fabio L.N. [Centro de Medicina Nuclear, Faculdade de Medicina, Universidade de Sao Paulo, Trav. R. Dr. Ovidio Pires de Campos s/n Sao Paulo, 05403-010 (Brazil)], E-mail: flnmarqu@hcnet.usp.br; Okamoto, Miriam R.Y. [Centro de Medicina Nuclear, Faculdade de Medicina, Universidade de Sao Paulo, Trav. R. Dr. Ovidio Pires de Campos s/n Sao Paulo, 05403-010 (Brazil); Otake, Andreia H. [Laboratorio de Oncologia Experimental, Faculdade de Medicina, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, Sao Paulo 01246-903 (Brazil); Sugai, Yuko; Mikata, Yuji [KYOUSEI Science Center, Nara Women' s University, Nara 630-8506 (Japan); Storr, Tim; Bowen, Meryn [Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1 (Canada); Yano, Shigenobu [Division of Functional Material Science, Nara Women' s University, Nara 630-8506 (Japan); Adam, Michael J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Chammas, Roger [KYOUSEI Science Center, Nara Women' s University, Nara 630-8506 (Japan); Orvig, Chris [Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada)

    2010-06-15

    Three carbohydrate conjugated dipicolylamine chelators, 2-bis(2-pyridinylmethyl)amino)ethyl 1-deoxy-1-thio-{beta}-D-glucopyranoside (L{sup 1}), 2-bis(2-pyridinylmethyl)amino)ethyl-{beta}-D-glucopyranoside (L{sup 2}), and 2-bis(2-pyridinylmethyl)amino) carboxamide-N-(2-amino-2-deoxy-D-glucopyranose) (L{sup 3}) were complexed to the [M(CO){sub 3}]{sup +} core (M=Tc, Re) and the properties of the resulting complexes were investigated. Synthesis and characterization of the chelator 2-bis(2-pyridinylmethyl)amino)ethyl 1-deoxy-1-thio-{beta}-D-glucopyranoside (L{sup 1}) and the corresponding Re complex are reported. All chelators were radiolabeled in high yield with [{sup 99m}Tc(CO){sub 3}(H{sub 2}O){sub 3}]{sup +} (>98%) and [{sup 186}Re(CO){sub 3}(H{sub 2}O){sub 3}]{sup +} (>80%). The chelators and Re-complexes were determined to not be substrates for the glucose metabolism enzyme hexokinase. However, the biodistribution of each of the {sup 99m}Tc complexes demonstrated fast clearance from most background tissue, including >75% clearance of the activity in the kidneys and the liver within 2 h post-injection.

  11. Vanadyl cationic complexes as catalysts in olefin oxidation.

    Science.gov (United States)

    Nunes, Carla D; Vaz, Pedro D; Félix, Vítor; Veiros, Luis F; Moniz, Tânia; Rangel, Maria; Realista, Sara; Mourato, Ana C; Calhorda, Maria José

    2015-03-21

    Three new mononuclear oxovanadium(IV) complexes [VO(acac)(R-BIAN)]Cl (BIAN = 1,2-bis{(R-phenyl)imino}acenaphthene, R = H, 1; CH3, 2; Cl, 3) were prepared and characterized. They promoted the catalytic oxidation of olefins such as cyclohexene, cis-cyclooctene, and styrene with both tbhp (tert-butylhydroperoxide) and H2O2, and of enantiopure olefins (S(-)- and R(+)-pinene, and S(-)- and R(+)-limonene) selectively to their epoxides, with tbhp as the oxidant. The TOFs for styrene epoxidation promoted by complex 3 with H2O2 (290 mol mol(-1)V h(-1)) and for cis-cyclooctene epoxidation by 2 with tbhp (248 mol mol(-1)V h(-1)) are particularly good. Conversions reached 90% for several systems with tbhp, and were lower with H2O2. A preference for the internal C=C bond, rather than the terminal one, was found for limonene. Kinetic data indicate an associative process as the first step of the reaction and complex [VO(acac)(H-BIAN)](+) (1(+)) was isolated in an FTICR cell after adding tbhp to 1. EPR studies provide evidence for the presence of a V(IV) species in solution, until at least 48 hours after the addition of tbhp and cis-cyclooctene, and cyclic voltammetry studies revealed an oxidation potential above 1 V for complex 1. DFT calculations suggest that a [VO(H-BIAN)(MeOO)](+) complex is the likely active V(IV) species in the catalytic cycle from which two competitive mechanisms for the reaction proceed, an outer sphere path with an external attack of the olefin at the coordinated peroxide, and an inner sphere mechanism starting with a complex with the olefin coordinated to vanadium.

  12. Effect of the Piperazine Unit and Metal-Binding Site Position on the Solubility and Anti-Proliferative Activity of Ruthenium(II)- and Osmium(II)- Arene Complexes of Isomeric Indolo[3,2-c]quinoline—Piperazine Hybrids

    OpenAIRE

    Filak, Lukas K.; Kalinowski, Danuta S.; Bauer, Theresa J.; Richardson, Des R.; Arion, Vladimir B

    2014-01-01

    In this study, the indoloquinoline backbone and piperazine were combined to prepare indoloquinoline–piperazine hybrids and their ruthenium- and osmium-arene complexes in an effort to generate novel antitumor agents with improved aqueous solubility. In addition, the position of the metal-binding unit was varied, and the effect of these structural alterations on the aqueous solubility and antiproliferative activity of their ruthenium- and osmium-arene complexes was studied. The indoloquinoline–...

  13. Preparation of Different Substitued Polypyridine Ligands, Ruthenium(II)-Bridged Complexes and Spectoscopıc Studies.

    Science.gov (United States)

    Obali, Aslihan Yilmaz; Ucan, Halil Ismet

    2016-09-01

    Novel different substitued polypyridine ligands 4-((4-(1H-imidazo[4,5-f][1,10]phenanthroline-2-yl)phenoxy)methyl)benzaldehyde (BA-PPY), (E)-N-(4-((4-(1H-imidazo[4,5-f][1,10]phenanthroline-2-yl)phenoxy)methyl)benzylidene)-pyrene-4-amine (PR-PPY), (E)-N-(4-((4-(1H-imidazo[4,5-f][1,10] phenanthroline-2-yl)phenoxy)methyl)benzylidene)-1,10-phenanthroline-5amine (FN-PPY), 2-(4-(bromomethyl)phenyl)-1H-imidazo[4,5-f][1,10] phenanthroline (BR-PPY), 2-(4-(azidomethyl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (N3-PPY) and triazole containing polypyridine ligand 3,4-bis[(4-(metoxy)-1,2,3-triazole)1-methylphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline)] benzaldehyde (BA-DIPPY) and Ruthenium(II) complexes were synthesized and characterized. Their photopysical properties were investigated. The complexes RuP(PR-PPY), RuB(PR-PPY, RuP(FN-PPY) and RuB(FN-PPY) exhibited a broad absorption bands at 485, 475, 476, and 453 nm, respectively, assignable to the spin-allowed MLCT (dπ-π*) transition. The emission maxima of the pyrene-appended polypyridine ligand PR-PPY was observed at λems = 616 nm and the phenanthroline-appended polypyridine ligand FN-PPY was observed at λems = 668 nm. And the emission maxima of the complexes RuP(PR-PPY), RuB(PR-PPY), RuP(FN-PPY) and RuB(FN-PPY) were observed at λems = 646, 646, 685 and 685 nm, respectively. As seen in fluorescence spectra, the fluorescence intensities of the ligands are higher than their metal complexes. This is because of quenching effect of Ruthenium(II) metal on chromophore groups. PMID:27351670

  14. Derivation of structure-activity relationships from the anticancer properties of ruthenium(II) arene complexes with 2-aryldiazole ligands.

    Science.gov (United States)

    Martínez-Alonso, Marta; Busto, Natalia; Jalón, Félix A; Manzano, Blanca R; Leal, José M; Rodríguez, Ana M; García, Begoña; Espino, Gustavo

    2014-10-20

    The ligands 2-pyridin-2-yl-1H-benzimidazole (HL(1)), 1-methyl-2-pyridin-2-ylbenzimidazole (HL(2)), and 2-(1H-imidazol-2-yl)pyridine (HL(3)) and the proligand 2-phenyl-1H-benzimidazole (HL(4)) have been used to prepare five different types of new ruthenium(II) arene compounds: (i) monocationic complexes with the general formula [(η(6)-arene)RuCl(κ(2)-N,N-HL)]Y [HL = HL(1), HL(2), or HL(3); Y = Cl or BF4; arene = 2-phenoxyethanol (phoxet), benzene (bz), or p-cymene (p-cym)]; (ii) dicationic aqua complexes of the formula [(η(6)-arene)Ru(OH2)(κ(2)-N,N-HL(1))](Y)2 (Y = Cl or TfO; arene = phoxet, bz, or p-cym); (iii) the nucleobase derivative [(η(6)-arene)Ru(9-MeG)(κ(2)-N,N-HL(1))](PF6)2 (9-MeG = 9-methylguanine); (iv) neutral complexes consistent with the formulation [(η(6)-arene)RuCl(κ(2)-N,N-L(1))] (arene = bz or p-cym); (v) the neutral cyclometalated complex [(η(6)-p-cym)RuCl(κ(2)-N,C-L(4))]. The cytototoxic activity of the new ruthenium(II) arene compounds has been evaluated in several cell lines (MCR-5, MCF-7, A2780, and A2780cis) in order to establish structure-activity relationships. Three of the compounds with the general formula [(η(6)-arene)RuCl(κ(2)-N,N-HL(1))]Cl differing in the arene moiety have been studied in depth in terms of thermodynamic dissociation constants, aquation kinetic constants, and DNA binding measurements. The biologically most active compound is the p-cym derivative, which strongly destabilizes the DNA double helix, whereas those with bz and phoxet have only a small effect on the stability of the DNA double helix. Moreover, the inhibitory activity of several compounds toward CDK1 has also been evaluated. The DNA binding ability of some of the studied compounds and their CDK1 inhibitory effect suggest a multitarget mechanism for their biological activity. PMID:25302401

  15. Photoinduced electron-transfer processes involving covalently linked ruthenium and cobalt polypyridyl complexes. Comparison of electronic coupling in bridged and nonbridged ruthenium and cobalt complexes

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaoqing; Lei, Yabin; Endicott, J.F. (Wayne State Univ., Detroit, MI (United States)); Van Wallendal, S.; Jackman, D.C.; Rillema, D.P. (Univ. of North Carolina, Charlotte (United States)); Perkovic, M.W. (Wayne State Univ., Detroit, MI (United States) Univ. of North Carolina, Charlotte (United States))

    1993-04-01

    Photoinduced electron-transfer processes have been examined in a heterobimetallic coordination complex with polypyridyl ligands. Three relaxation processes were observed to follow light absorption by (bpy)[sub 2]Ru(bb)Co(bpy)[sub 2][sup 5+] (where bpy = 2,2'-bipyridine and bb 1,2-bis(2,2'-bipyridyl-4'-yl)ethane) with lifetimes in water at 25[degrees]C of 0.18, 1, and 6 ns determined using picosecond flash photolysis techniques. These nearly solvent independent relaxation rates are ascribed to forward electron transfer from ([sup 3]MLCT)Ru(bpy)[sub 2][sup 2+] to Co(bpy)[sub 2][sup 3+], spin relaxation at the Co(II) center and back electron transfer from ([sup 4]T[sub 1])Co(bpy)[sub 2][sub 2+] to Ru(bpy)[sub 2][sup 3+]. Luminescence decay of ([sup 3]MLCT)Ru(bpy)[sub 2][sup 2+] has also been used to monitor the electron-transfer quenching step from 77-150 K, and the quenching rate extrapolated to 25[degrees]C (activation energy of 2.2 [times] 10[sup 3] cm[sup [minus]1]) was compatible with the 180-ps lifetime. It is inferred that the back electron transfer rate is retarded by poor donor-acceptor electronic coupling (k[sub el] [congruent] 10[sup [minus]3]). A Mulliken type of perturbational model is proposed to describe the weak electronic coupling in this complex. Spectroscopic parameters are combined with the perturbational expressions to give a plausible account of the electronic coupling in the back-electron-transfer process. 84 refs., 9 figs., 5 tabs.

  16. The Noah's Ark experiment: species dependent biodistributions of cationic 99mTc complexes

    International Nuclear Information System (INIS)

    The time dependent biodistributions of three related 99mTc complexes of 1, 2-bis(dimethylphosphino)ethane (DMPE) were evaluated in several animal species including humans: trans-[99mTcv(DMPE)2O2]+, trans-[99mTcIII(DMPE)2Cl2]+ and [99mTcI(DMPE)3]+. Imaging studies were performed in 10 animal species to evaluate these complexes as myocardial perfusion imaging agents. Animal models adequately predict the uninteresting behaviour of the Tc(V) cation in humans, predict to only a very limited extent the behaviour of the Tc(III) cation in humans and totally fail to predict the behaviour of the Tc(I) cation in humans. (U.K.)

  17. Mechanistic insights into acetophenone transfer hydrogenation catalyzed by half-sandwich ruthenium(II) complexes containing 2-(diphenylphosphanyl)aniline - a combined experimental and theoretical study

    NARCIS (Netherlands)

    A. Bacchi; M. Balordi; R. Cammi; L. Elviri; C. Pelizzi; F. Picchioni; V. Verdolino; K. Goubitz; R. Peschar; P. Pelagatti

    2008-01-01

    Several new half-sandwich ruthenium(II) complexes containing 2-(diphenyphosphanyl)aniline (PNH2) of formula {Ru[(kappa P-2,N)PNH2](p-cymene)Cl}Y [Y = Cl (1a), PF6 (1b), BF4 (1c), BPh4 (1d), TfO (1e)] were synthesized and fully characterized both in solution (H-1 NMR and P-31{H-1) NMR spectroscopy) a

  18. Study of the chemical interactions of actinide cations in solution at macroscopic concentrations

    International Nuclear Information System (INIS)

    The aim of this work was to study the interactions of pentavalent neptunium in dodecane-diluted tributyl phosphate with other metallic cations, especially uranium VI and ruthenium present in reprocessing solutions. Pentavalent neptunium on its own was shown to exist in several forms complexed by water and TBP and also to dimerise. In the complex it forms with uranium VI the interaction via the neptunyl oxygen is considerably enhanced in organic solution. Dibutyl phosphoric acid strengthens the interaction between neptunium and uranium. The Np V-ruthenium interaction reveals the existence of a new cation-cation complex; the process takes place in two successive stage and leads to the formation, reinforced and accelerated by HDBP, of a highly to the formation, reinforced and accelerated by HDBP, of a highly stable complex. These results contribute towards a better knowledge of the behaviour of neptunium in the reprocessing operation

  19. Recharging cationic DNA complexes with highly charged polyanions for in vitro and in vivo gene delivery.

    Science.gov (United States)

    Trubetskoy, V S; Wong, S C; Subbotin, V; Budker, V G; Loomis, A; Hagstrom, J E; Wolff, J A

    2003-02-01

    The intravenous delivery of plasmid DNA complexed with either cationic lipids (CL) or polyethyleneimine (PEI) enables high levels of foreign gene expression in lung. However, these cationic DNA complexes cause substantial toxicity. The present study found that the inclusion of polyacrylic acid (pAA) with DNA/polycation and DNA/CL complexes prevented the serum inhibition of the transfection complexes in cultured cells. The mechanism mediating this increase seems to involve both particle size enlargement due to flocculation and electrostatic shielding from opsonizing serum proteins. The use of pAA also increased the levels of lung expression in mice in vivo substantially above the levels achieved with just binary complexes of DNA and linear PEI (lPEI) or CL and reduced their toxicity. Also, the use of a "chaser" injection of pAA 30 min after injection of the ternary DNA/lPEI/pAA complexes further aided this effort to reduce toxicity while not affecting foreign gene expression. By optimizing the amount of pAA, lPEI, and DNA within the ternary complexes and using the "chaser" injection, substantial levels of lung expression were obtained while avoiding adverse effects in lung or liver. These developments will aid the use of cationic DNA complexes in animals and for eventual human gene therapy.

  20. Ruthenium(III)/phosphine/pyridine complexes applied in the hydrogenation reactions of polar and apolar double bonds

    Science.gov (United States)

    Rodrigues, Claudia; Delolo, Fábio G.; Ferreira, Lucas M.; da S. Maia, Pedro I.; Deflon, Victor M.; Rabeah, Jabor; Brückner, Angelika; Norinder, Jakob; Börner, Armin; Bogado, André L.; Batista, Alzir A.

    2016-05-01

    In this work, five ruthenium(III) complexes containing phosphine and pyridine based ligands with general formula mer-[RuCl3(dppb)(N)] [where dppb = 1,4-bis(diphenylphosphino)butane and N = pyridine (py), 4-methylpyridine (4-Mepy), 4-vinylpyridine (4-Vpy), 4-tert-butylpyridine (4-tBupy) and 4-phenylpyridine (4-Phpy)] were synthesized and characterized using spectroscopic and electrochemical techniques, as well as magnetic susceptibility to check the paramagnetism of these compounds. These complexes were tested as catalytic precursors in hydrogenation reactions with cyclohexene, undecanal and cyclohexanecarboxaldehyde, as compounds bearing Cdbnd C and Cdbnd O groups. Broad screening was carried out in order to find the optimal reaction conditions with the highest conversion. It was found that by using a ratio of Ru-catalyst/substrate = 1:530 at 80 °C and 15 bar of H2 for 24 h, cyclohexene can be reduced. Hydrogenation of undecanal was possible using a Ru-catalyst/substrate ratio of 1:100 at 160 °C and 100 bar for 24 h, and for the reduction of cyclohexanecarboxaldehyde the reaction conditions were Ru-catalyst/substrate ratio of 1:100 at 160 °C and 50 bar for 24 h.

  1. Microwave synthesis of mixed ligand diimine–thiosemicarbazone complexes of ruthenium(ii): biophysical reactivity and cytotoxicity†

    Science.gov (United States)

    Beckford, Floyd A.; Shaloski, Michael; Leblanc, Gabriel; Thessing, Jeffrey; Lewis-Alleyne, Lesley C.; Holder, Alvin A.; Li, Liya; Seeram, Navindra P.

    2010-01-01

    A novel microwave-assisted synthetic method has been used to synthesise a series of mixed ligand ruthenium(ii) compounds containing diimine as well as bidentate thiosemicarbazone ligands. The compounds contain the diimine 1,10-phenanthroline (phen) or 2,2′-bipyridine (bpy) and the thiosemicarbazone is derived from 9-anthraldehyde. Based on elemental analyses and spectroscopic data, the compounds are best formulated as [(phen)2Ru(thiosemicarbazone)](PF6)2 and [(phen)2Ru(thiosemicarbazone)](PF6)2 where thiosemicarbazone = 9-anthraldehydethiosemicarbazone, 9-anthraldehyde-N(4)-methylthiosemicarbazone, and 9-anthraldehyde-N(4)-ethylthiosemicarbazone. Fluorescence competition studies with ethidium bromide, along with viscometric measurements suggests that the complexes bind calf thymus DNA (CTDNA) relatively strongly via an intercalative mode possibly involving the aromatic rings of the diimine ligands. The complexes show good cytotoxic profiles against MCF-7 and MDA-MB-231 (breast adenocarcinoma) as well as HCT 116 and HT-29 (colorectal carcinoma) cell lines. PMID:20023905

  2. Lipophilic tetranuclear ruthenium(II) complexes as two-photon luminescent tracking non-viral gene vectors.

    Science.gov (United States)

    Yu, Bole; Ouyang, Cheng; Qiu, Kangqiang; Zhao, Jing; Ji, Liangnian; Chao, Hui

    2015-02-23

    Fluorescence detection is the most effective tool for tracking gene delivery in living cells. To reduce photodamage and autofluorescence and to increase deep penetration into cells, choosing appropriate fluorophores that are capable of two-photon activation under irradiation in the NIR or IR regions is an effective approach. In this work, we have developed six tetranuclear ruthenium(II) complexes, GV1-6, and have studied their one- and two-photon luminescence properties. DNA interaction studies have demonstrated that GV2-6, bearing hydrophobic alkyl ether chains, show more efficient DNA condensing ability but lower DNA binding constants than GV1. However, the hydrophobic alkyl ether chains also enhance the DNA delivery ability of GV2-6 compared with that of GV1. More importantly, we have applied GV1-6 as non-viral gene vectors for tracking DNA delivery in living cells by one- and two-photon fluorescence microscopies. In two-photon microscopy, a high signal-to-noise contrast was achieved by irradiation with an 830 nm laser. This is the first example of the use of transition-metal complexes for two-photon luminescent tracking of the cellular pathways of gene delivery and as DNA carriers. Our work provides new insights into improving real-time tracking during gene delivery and transfection as well as important information for the design of multifunctional non-viral vectors. PMID:25597394

  3. Structural studies on dinuclear ruthenium(II) complexes that bind diastereoselectively to an antiparallel folded human telomere sequence.

    Science.gov (United States)

    Wilson, Tom; Costa, Paulo J; Félix, Vítor; Williamson, Mike P; Thomas, Jim A

    2013-11-14

    We report DNA binding studies of the dinuclear ruthenium ligand [{Ru(phen)2}2tpphz](4+) in enantiomerically pure forms. As expected from previous studies of related complexes, both isomers bind with similar affinity to B-DNA and have enhanced luminescence. However, when tested against the G-quadruplex from human telomeres (which we show to form an antiparallel basket structure with a diagonal loop across one end), the ΛΛ isomer binds approximately 40 times more tightly than the ΔΔ, with a stronger luminescence. NMR studies show that the complex binds at both ends of the quadruplex. Modeling studies, based on experimentally derived restraints obtained for the closely related [{Ru(bipy)2}2tpphz](4+), show that the ΛΛ isomer fits neatly under the diagonal loop, whereas the ΔΔ isomer is unable to bind here and binds at the lateral loop end. Molecular dynamics simulations show that the ΔΔ isomer is prevented from binding under the diagonal loop by the rigidity of the loop. We thus present a novel enantioselective binding substrate for antiparallel basket G-quadruplexes, with features that make it a useful tool for quadruplex studies.

  4. Programmable multimetallic linear nanoassemblies of ruthenium-DNA conjugates

    OpenAIRE

    Irvoas, Joris; Noirot, Arielle; Chouini-Lalanne, Nadia; Reynes, Olivier; Garrigues, Jean-Christophe; Sartor, Valérie

    2012-01-01

    International audience A new ruthenium-DNA conjugates family was synthesized, made up of a ruthenium complex bound to one or two identical DNA strands of 14-58 nucleotides. The formation of controlled linear nanoassemblies containing one to seven ruthenium complexes is described.

  5. Synthesis, characterization, and DFT-TDDFT computational study of a ruthenium complex containing a functionalized tetradentate ligand.

    Science.gov (United States)

    Barolo, C; Nazeeruddin, Md K; Fantacci, Simona; Di Censo, D; Comte, P; Liska, P; Viscardi, G; Quagliotto, P; De Angelis, Filippo; Ito, S; Grätzel, M

    2006-06-12

    A ruthenium complex trans-[Ru(L)(NCS)2], L = 4,4' ''-di-tert-butyl-4',4' '-bis(carboxylic acid)-2,2':6',2' ':6' ',2' ''-quaterpyridine (N886), was synthesized and characterized by spectroscopic and electrochemical methods. The absorption spectrum of the N886 complex shows metal-to-ligand charge-transfer transitions in the entire visible region and quasi-reversible oxidation and reduction potentials at E(1/2) = +0.38 and -1.92 V vs ferrocene, respectively. The electronic spectra of the N886 complex were calculated by density functional theory (DFT)-time-dependent DFT, which qualitatively reproduces the experimental absorption spectra for both the protonated and deprotonated species. From the analysis of the computed optical transitions of N886, we assign its absorption bands as mixed Ru/SCN-to-quaterpyridine charge-transfer transitions, which extend from the near-IR to the UV regions. The panchromatic response of the N886 complex renders it as a suitable sensitizer for solar energy conversion applications based on titanium dioxide mesoporous electrodes. The preliminary results using the N886 complex as a sensitizer in a dye-sensitized solar cell, with an electrolyte containing 0.60 M butylmethylimidazolium iodide, 0.03 M I2, and 0.50 M tert-butylpyridine in a mixture of acetonitrile and valeronitrile (volume ratio 1:1), show 40% incident photon-to-current efficiencies, yielding under standard AM 1.5 sunlight a short-circuit photocurrent density of 11.8 +/- 0.2 mA/cm(2), an open-circuit voltage of 680 +/- 30 mV, and a fill factor of 0.73 +/- 0.03, corresponding to an overall conversion efficiency of 5.85%. PMID:16749827

  6. Synthesis, characterization, electronic structure and catalytic activity of new ruthenium carbonyl complexes of N-[(2-pyridyl)methylidene]-2-aminothiazole

    Science.gov (United States)

    Kundu, Subhankar; Sarkar, Deblina; Jana, Mahendra Sekhar; Pramanik, Ajoy Kumar; Jana, Subrata; Mondal, Tapan Kumar

    2013-03-01

    Reaction of ruthenium carbonyls, [Ru(CO)2Cl2]n/[Ru(CO)4I2] with bidentate Schiffs base ligands derived by the condensation of pyridine-2-carboxaldehyde with 2-aminothiazole in a 1:1 mole ratio in acetonitrile led to the formation of complexes having general formula [Ru(CO)2(L)X2] (X = Cl (1) and I (2)) (L = N-[(2-pyridyl)methylidene]-2-aminothiazole). The compounds have been characterized by various analytical and spectroscopic (IR, electronic and 1H NMR) studies. In acetonitrile solution the complexes exhibit a weak broad metal-ligand to ligand charge transfer (MLLCT) band along with ILCT transitions. The compounds are emissive in room temperature upon excitation in the ILCT band. The complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 1.44 V for 1 and 0.94 V for 2. Catalytic activity of these compounds is investigated to the oxidation of PhCH2OH to PhCHO, 2-butanol (C4H9OH) to 2-butanone, 1-phenylethanol (PhC2H4OH) to acetophenone, cyclopentanol (C5H9OH) to cyclopentanone, cyclohexanol to cyclohexanone, cycloheptanol to cycloheptanone and cycloctanol to cycloctanone using N-methylmorpholine-N-oxide (NMO) as oxidant. The catalytic efficiency of 2 is greater than complex 1 and well correlate with the metal oxidation potential of the complexes. DFT, NBO and TDDFT calculations are employed to explain the structural and electronic features and to support the spectroscopic assignments.

  7. Oxidative Stress and Antimicrobial Activity of Chromium(III and Ruthenium(II Complexes on Staphylococcus aureus and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Paulina L. Páez

    2013-01-01

    Full Text Available The prevalence of antibiotic resistance has resulted in the need for new approaches to be developed to combat previously easily treatable infections. The main aim of this work was to establish the potential of the synthetic α-diimine chromium(III and ruthenium(II complexes (where the α-diimine ligands are bpy = 2,2-bipyridine, phen = 1,10-phenanthroline, and dppz = dipyrido[3,2-a:2′,3′-c]-phenazine like [Cr(phen3]3+, [Cr(phen2(dppz]3+, [Ru(phen3]2+, and [Ru(bpy3]2+ as antibacterial agents by generating oxidative stress. The [Cr(phen3]3+ and [Cr(phen2(dppz]3+ complexes showed activity against Gram positive and Gram negative bacteria with minimum inhibitory concentrations (MICs ranging from 0.125 μg/mL to 1 μg/mL, while [Ru(phen3]2+ and [Ru(bpy3]2+ do not exhibit antimicrobial activity against the two bacterial genera studied at the concentration range used. When ciprofloxacin was combined with [Cr(phen3]3+ for the inhibition of Staphylococcus aureus and Escherichia coli, an important synergistic effect was observed, FIC 0.066 for S. aureus and FIC 0.064 for E. coli. The work described here shows that chromium(III complexes are bactericidal for S. aureus and E. coli. Our results indicate that α-diimine chromium(III complexes may be interesting to open new paths for metallodrug chemotherapy against different bacterial genera since some of these complexes have been found to exhibit remarkable antibacterial activities.

  8. Studies of technetium and rhenium diphosphine complexes, and some cationic technetium complexes of Schiff base ligands, as myocardial imaging agents

    International Nuclear Information System (INIS)

    The ultimate goal of this research is the development of an efficacious /sup 99m/Tc myocardial imaging agent. This thesis describes (i) the application of inorganic and analytical techniques to the preparation and characterization of cationic technetium-99 and rhenium complexes in macroscopic amounts, and (ii) the preparation and biological evaluation of these, and other, complexes using /sup 99m/Tc and 186Re at the very low concentrations of these isotopes encountered in nuclear medicine. The 99Tc and Re complexes have been characterized by classical chemical techniques including (1) single-crystal x-ray analysis, (2) elemental analysis, (3) spectroscopy (IR, visible-UV, and/or NMR), (4) extended x-ray absorption fine structure analysis (EXAFS), (5) electrochemistry, and (6) high performance liquid chromatography analysis (HPLC). The /sup 99m/Tc complexes have been characterized by comparison of their HPLC retention times with the retention times of standard solutions of their 99Tc analogues. Thus HPLC comprises the link between macroscopic 99Tc chemistry and microscopic /sup 99m/Tc chemistry. Cationic diphosphine complexes of technetium were prepared in the V, III, and I oxidation states. These cationic complexes, prepared with /sup 99m/Tc, were evaluated as myocardial imaging agents in different animal models. In vivo evaluation of the 186Re-diphosphine analogs has provided insight into the role played by oxidation-reduction processes in determining myocardial accumulation of the /sup 99m/Tc-diphosphine complexes

  9. Study of the alkaline cations complexation by photo-isomerizable calixarenes; Etude de la complexation de cations alcalins par des calixarenes photoisomerisables

    Energy Technology Data Exchange (ETDEWEB)

    Reynier, N.

    1996-04-25

    The first step to reduce the volume and the toxicity of radioactive waste coming from the spent fuel reprocessing is to separate long life radioisotopes from others ones with a shorter period. The aim of this study is to show that the control of the two phenomenons, complexation of the cation by the calixarenes and its de-complexation, can be envisaged by the introduction on the molecule of a chromophore group, azo benzene, able to modify the complexing site structure of the calixarenes with an isomerization trans-cis induced by ultraviolet radiation, and isomerization cis-trans thermally induced by a visible radiation. (N.C.). 112 refs., 78 figs., 23 tabs.

  10. Electro-volatilization of ruthenium in nitric medium: influences of ruthenium species nature and models solutions composition

    International Nuclear Information System (INIS)

    Ruthenium is one of the fission products in the reprocessing of irradiated fuels that requires a specific processing management. Its elimination, upstream by the PUREX process, has been considered. A process, called electro-volatilization, which take advantage of the RuO4 volatility, has been optimised in the present study. It consists in a continuous electrolysis of ruthenium solutions in order to generate RuO4 species that is volatilized and easily trapped. This process goes to satisfying ruthenium elimination yields with RuNO(NO3)3(H2O)2 synthetic solutions but not with fuel dissolution solutions. Consequently, this work consisted in the speciation studies of dissolved ruthenium species were carried out by simulating fuel solutions produced by hot acid attack of several ruthenium compounds (Ru(0), RuO2,xH2O, polymetallic alloy). In parallel with dissolution kinetic studies, the determination of dissolved species was performed using voltammetry, spectrometry and spectro-electrochemistry. The results showed the co-existence of Ru(IV) and RuNO(NO2)2(H2O)3. Although these species are different from synthetic RuNO(NO3)3(H2O)2, their electro-oxidation behaviour are similar. The electro-volatilization tests of these dissolution solutions yielded to comparable results as the synthetic RuNO(NO3)3(H2O)2 solutions. Then, complexity increase of models solutions was performed by in-situ generation of nitrous acid during ruthenium dissolution. Nitrous acid showed a catalytic effect on ruthenium dissolution. Its presence goes to quasi exclusively RuNO(NO2)2(H2O)3 species. It is also responsible of the strong n-bond formation between Ru2+ and NO+. In addition, it has been shown that its reducing action on RuO4 hinders the electro-volatilization process. Mn2+ and Ce3+ cations also reveal, but to a lesser extent, an electro-eater behaviour as well as Pu4+ and Cr3+ according to the thermodynamics data. These results allow one to purpose a dissolution mechanism of RuO2,xH2O species

  11. Ruthenium bistridentate complexes with non-symmetrical hexahydro-pyrimidopyrimidine ligands: a structural and theoretical investigation of their optical and electrochemical properties.

    Science.gov (United States)

    Laramée-Milette, Baptiste; Hanan, Garry S

    2016-08-01

    Six ruthenium complexes were synthesized based on three non-symmetrical tridentate ligands bearing the strongly electron-donating group 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-α]pyrimidine (hpp), bpyG (bpyG = 2,2'-bipyridyl-6-hpp), phenG (phenG = 2-hpp-1,10-phenanthroline) and QpyG (QpyG = 2-hpp-6-quinolylpyridyl). The fac-/mer-conformation of the homoleptic species has a dramatic effect on the optical properties, where the fac-isomer absorption is red-shifted by 150 nm, thus reaching the near-IR at approximately 850 nm. Owing to the interesting structural effect on the optical properties, density functional theory (DFT) and time-dependent DFT calculations have been implemented to enlighten the experimental data and prove that exciton coupling is at the origin of the observed shift. The electronic properties have been investigated and, as corroborated by electrochemical data, the presence of the hpp ligand strongly affects the oxidation potential of the ruthenium metal ion, which allows facile fine-tuning of the electronic properties. The luminescence properties of all the compounds have also been investigated (λmax emission = 781-817 nm) and the complexes have longer excited-state lifetimes at room temperature than the parent bis(2,2':6',2''-terpyridine)ruthenium(ii) by 10 to 30 times. PMID:27436338

  12. High-efficiency upconversion luminescent sensing and bioimaging of Hg(II) by chromophoric ruthenium complex-assembled nanophosphors.

    Science.gov (United States)

    Liu, Qian; Peng, Juanjuan; Sun, Lining; Li, Fuyou

    2011-10-25

    A chromophoric ruthenium complex-assembled nanophosphor (N719-UCNPs) was achieved as a highly selective water-soluble probe for upconversion luminescence sensing and bioimaging of intracellular mercury ions. The prepared nanophosphors were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDXA), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Further application of N719-UCNPs in sensing Hg(2+) was confirmed by optical titration experiment and upconversion luminescence live cell imaging. Using the ratiometric upconversion luminescence as a detection signal, the detection limit of Hg(2+) for this nanoprobe in water was down to 1.95 ppb, lower than the maximum level (2 ppb) of Hg(2+) in drinking water set by the United States EPA. Importantly, the nanoprobe N719-UCNPs has been shown to be capable of monitoring changes in the distribution of Hg(2+) in living cells by upconversion luminescence bioimaging. PMID:21899309

  13. The ruthenium complex cis-(dichloro)tetrammineruthenium(III) chloride induces apoptosis and damages DNA in murine sarcoma 180 cells

    Indian Academy of Sciences (India)

    Aliny Pereira De Lima; Flávia De Castro Pereira; Cesar Augusto Sam Tiago Vilanova-Costa; Alessandra De Santana Braga Barbosa Ribeiro; Luiz Alfredo Pavanin; Wagner Batista Dos Santos; Elisângela De Paula Silveira-Lacerda

    2010-09-01

    Ruthenium(III) complexes are increasingly attracting the interest of researchers due to their promising pharmacological properties. Recently, we reported that the cis-(dichloro)tetrammineruthenium(III) chloride compound has cytotoxic effects on murine sarcoma 180 (S-180) cells. In an effort to understand the mechanism responsible for their cytotoxicity, study we investigated the genotoxicity, cell cycle distribution and induction of apoptosis caused by cis-(dichloro)tetrammineruthenium(III) chloride in S-180 tumour cells. cis-(dichloro)tetrammineruthenium(III) chloride treatment induced significant DNA damage in S-180 cells, as detected by the alkaline comet assay. In the cell cycle analysis, cis-(dichloro)tetrammineruthenium(III) chloride caused an increase in the number of cells in G1 phase, accompanied by a decrease in the S and G2 phases after 24 h of treatment. In contrast, the cell cycle distribution of S-180 cells treated with cis-(dichloro)tetrammineruthenium(III) chloride for 48 h showed a concentration-dependent increase in the sub-G1 phase (indicating apoptosis), with a corresponding decrease in cells in the G1, S and G2 phases. In addition, cis-(dichloro)tetrammineruthenium(III) chloride treatment induced apoptosis in a time-dependent manner, as observed by the increased numbers of annexin V-positive cells. Taken together, these findings strongly demonstrate that DNA damage, cell cycle changes and apoptosis may correlate with the cytotoxic effects of cis-(dichloro)tetrammineruthenium(III) chloride on S-180 cells.

  14. Development and characterization of light-emitting diodes (LEDs) based on ruthenium complex single layer for transparent displays

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G.; Fonseca, F.; Andrade, A.M. [Laboratorio de Microelectronica, Departamento de Engenharia de Sistemas Electronicos, Escola Politecnica da Universidade de Sao Paulo (Brazil); Patrocinio, A.O.T.; Mizoguchi, S.K.; Murakami Iha, N.Y. [Laboratorio de Fotoquimica Inorganica e Conversao de Energia, Instituto de Quimica da Universidade de Sao Paulo (Brazil); Peres, M.; Monteiro, T.; Pereira, L. [Departamento de Fisica e I3N, Universidade de Aveiro (Portugal)

    2008-08-15

    In this work, two ruthenium complexes,[Ru(bpy){sub 3}](PF{sub 6}){sub 2} and[Ru(ph2phen){sub 3}](PF{sub 6}){sub 2} in poly(methylmethacrylate) matrix were employed to build single-layer light-emitting electrochemical cells by spin coating on indium tin oxide substrate. In both cases the electroluminescence spectra exhibit a relatively broad band with maxima near to 625 nm and CIE (x,y) color coordinates of (0.64,0.36), which are comparable with the photoluminescence data in the same medium. The best result was obtained with the[Ru(bpy){sub 3}](PF{sub 6}){sub 2} device where the optical output power approaches 10{mu}W at the band maximum with a wall-plug efficiency higher than 0.03%. The lowest driving voltage is about 4 V for an electrical current of 20 mA. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Optical limiting and dynamical two-photon absorption of porphyrin with ruthenium outlying complexes for a picosecond pulse train

    Science.gov (United States)

    Zhang, Yu-Jin; Sun, Yu-Ping; Wang, Chuan-Kui

    2016-01-01

    Propagation and nonlinear optical absorption of a picosecond pulse train in strong reverse saturable absorption (RSA) materials (free-based tetrapyridyl porphyrin H2TPyP with ruthenium (Ru) outlying complexes) are investigated by solving coupled rate equations and field intensity equation. Influence of outlying Ru groups on optical limiting (OL) properties is studied. Propagation of the front subpulses is mainly affected by linear transition between the ground state and the first excited singlet state, while intensity of the latter subpulses is attenuated by the excited state absorption (ESA). These two different absorption mechanisms result in asymmetric distribution of the transmitted pulse. It is shown that effective population transfer time from the ground state to the lowest triplet state and RSA play important roles in the OL performance and pulse shaping. Moreover, our results indicate that the porphyrins studied are ideal optical limiters because of their large ESA cross section and long lifetime of the lowest triplet state. Compounds with the presence of Ru group possess preferable power limiting ability. Ligand group attached to Ru also influences the nonlinear optical absorption of compounds. Special attention has been paid on dynamical two-photon absorption (TPA) cross section which depends crucially on the duration of the subpulse as well as time interval between subpulses. The present study provides a way to modulate nonlinear optical absorption properties of the medium by changing parameters of the pulse train.

  16. Structure And Gene Silencing Activities of Monovalent And Pentavalent Cationic Lipid Vectors Complexed With Sirna

    Energy Technology Data Exchange (ETDEWEB)

    Bouxsein, N.F.; McAllister, C.S.; Ewert, K.K.; Samuel, C.E.; Safinya, C.R.; /UC, Santa Barbara

    2007-07-03

    Small interfering RNAs (siRNAs) of 19-25 bp mediate the cleavage of complementary mRNA, leading to post-transcriptional gene silencing. We examined cationic lipid (CL)-mediated delivery of siRNA into mammalian cells and made comparisons to CL-based DNA delivery. The effect of lipid composition and headgroup charge on the biophysical and biological properties of CL-siRNA vectors was determined. X-ray diffraction revealed that CL-siRNA complexes exhibited lamellar and inverted hexagonal phases, qualitatively similar to CL-DNA complexes, but also formed other nonlamellar structures. Surprisingly, optimally formulated inverted hexagonal 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) CL-siRNA complexes exhibited high toxicity and much lower target-specific gene silencing than lamellar CL-siRNA complexes even though optimally formulated, inverted hexagonal CL-DNA complexes show high transfection efficiency in cell culture. We further found that efficient silencing required cationic lipid/nucleic acid molar charge ratios (chg) nearly an order of magnitude larger than those yielding efficiently transfecting CL-DNA complexes. This second unexpected finding has implications for cell toxicity. Multivalent lipids (MVLs) require a smaller number of cationic lipids at a given chg of the complex. Consistent with this observation, the pentavalent lipid MVL5 exhibited lower toxicity and superior silencing efficiency over a large range in both the lipid composition and chg when compared to monovalent DOTAP. Most importantly, MVL5 achieved much higher total knockdown of the target gene in CL-siRNA complex regimes where toxicity was low. This property of CL-siRNA complexes contrasts to CL-DNA complexes, where the optimized transfection efficiencies of multivalent and monovalent lipids are comparable.

  17. Design and synthesis of ruthenium(II) OCO pincer type NHC complexes and their catalytic role towards the synthesis of amides

    Indian Academy of Sciences (India)

    Muthukumaran Nirmala; Periasamy Viswanathamurthi

    2016-01-01

    The present contribution describes the synthesis and characterization of a family of robust ruthenium complexes, supported by a tridentate pincer ligand of the type bis-phenolate--heterocyclic carbene [Bu(OCO)2−] (NHC). Ruthenium(II) complexes (1-3) bearing bis-phenolate--heterocyclic carbene ligand were synthesized in good yields by the reaction of imidazolinium proligand (HL) with metal precursors [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) by transmetalation from the corresponding silver carbene complex. All the Ru(II)-NHC complexes have been characterized by elemental analyses, spectroscopic methods as well as ESI mass spectrometry. Based on the spectral results, an octahedral geometry was assigned for all the complexes. The tridentate nature of the Bu(OCO)2− ligand as well as some level of steric protection provided by the Bu groups may rationalize the excellent stability of the Ru-Ccarbene bond in the present systems. Moreover, for the explorations of catalytic potential of the synthesized compounds, all the three [Ru-NHC] complexes (1-3) were tested as catalysts for amidation of alcohols with amines. Notably, the complex 1 was found to be very efficient and versatile catalyst towards amidation of a wide range of alcohols with amines.

  18. RECOVERY OF RUTHENIUM VALUES

    Science.gov (United States)

    Grummitt, W.E.; Hardwick, W.H.

    1961-01-01

    A process is given for the recovery of ruthenium from its aqueous solutions by oxidizing the ruthenium to the octavalent state and subsequently extracting the ruthenium into a halogen-substituted liquid paraffin.

  19. Synthesis and Characterization of Phosphine and Arsine Complexes of Ruthenium (Ii & Iii Ligated With 3-(4-Pyridyl-4-Substituted-Triazoline-5-Thione

    Directory of Open Access Journals (Sweden)

    R. N. Pandey

    2014-12-01

    Full Text Available Organometallic complexes of ruthenium (II & III with the formula [RuH(CO(Ef32L] and [RuCl2(Ef32L] (E = P/As; L = deprotonated mononegative bidentate 3-(4-pyridyl-triazoline-5-thione and its 4-phenyl substituted derivative were synthesized and characterized by elemental analysis, physico-chemical and spectroscopic methods. All new compounds were iso-structural with precursor complexes. Two triphenyl phosphine or triphenylarsine molecules are at trans-disposition and thioamide ligands behaves as bidentate (N, S donor in assigned octahedral structure.

  20. Dual triggering of DNA binding and fluorescence via photoactivation of a dinuclear ruthenium(II) arene complex.

    Science.gov (United States)

    Magennis, Steven W; Habtemariam, Abraha; Novakova, Olga; Henry, John B; Meier, Samuel; Parsons, Simon; Oswald, Iain D H; Brabec, Viktor; Sadler, Peter J

    2007-06-11

    The dinuclear RuII arene complexes [{(eta6-arene)RuCl}2(mu-2,3-dpp)](PF6)2, arene=indan (1), benzene (2), p-cymene (3), or hexamethylbenzene (4) and 2,3-dpp=2,3-bis(2-pyridyl)pyrazine, have been synthesized and characterized. Upon irradiation with UVA light, complexes 1 and 2 readily underwent arene loss, while complexes 3 and 4 did not. The photochemistry of 1 was studied in detail. In the X-ray structure of [{(eta6-indan)RuCl}2(mu-2,3-dpp)](PF6)2 (1), 2,3-dpp bridges two RuII centers 6.8529(6) A apart. In water, aquation of 1 in the dark occurs with replacement of chloride with biexponential kinetics and decay constants of 100+/-1 min-1 and 580+/-11 min-1. This aquation was suppressed by 0.1 M NaCl. UV or visible irradiation of 1 in aqueous or methanolic solution led to arene loss. The fluorescence of the unbound arene is approximately 40 times greater than when it is complexed. Irradiation of 1 also had a significant effect on its interactions with DNA. The DNA binding of 1 is increased after irradiation. The non-irradiated form of 1 preferentially formed DNA adducts that only weakly blocked RNA polymerase, while irradiation of 1 transformed the adducts into stronger blocks for RNA polymerase. The efficiency of irradiated 1 to form DNA interstrand cross-links was slightly greater than that of cisplatin in both 10 mM NaClO4 and 0.1 M NaCl. In contrast, the interstrand cross-linking efficiency of non-irradiated 1 in 10 mM NaClO4 was relatively low. An intermediate amount of cross-linking was observed when the sample of DNA already modified by non-irradiated 1 was irradiated. DNA unwinding measurements supported the conclusion that both mono- and bifunctional adducts with DNA can form. These results show that photoactivation of dinuclear RuII arene complexes can simultaneously produce a highly reactive ruthenium species that can bind to DNA and a fluorescent marker (the free arene). Importantly, the mechanism of photoreactivity is also independent of oxygen. These

  1. Complexation of the sodium cation with sodium ionophore III: Experimental and theoretical study

    Science.gov (United States)

    Makrlík, Emanuel; Kvíčala, Jaroslav; Vaňura, Petr

    2014-06-01

    By using extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Na+(aq) + A-(aq) + 1(nb) ⇄ 1·Na+(nb) + A-(nb) occurring in the two-phase water - nitrobenzene system (A- = picrate, 1 = sodium ionophore III; aq = aqueous phase, nb = nitrobenzene phase) was determined as log Kex (1·Na+, A-) = 1.5 ± 0.1. Further, the stability constant of the 1·Na+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log βnb (1·Na+) = 6.7 ± 0.1. Finally, applying quantum mechanical DFT calculations, the most probable structure of the nonhydrated 1·Na+ and hydrated 1·Na+·2H2O cationic complex species were derived. In both of these complexes, the “central” cation Na+ is bound by four bonding interactions to the corresponding four oxygen atoms of the parent ligand 1. Besides, in the case of 1·Na+·2H2O complex, the considered hydrated structure is stabilized by two water molecules bound to the “central” sodium cation.

  2. Cytotoxic, DNA binding, DNA cleavage and antibacterial studies of ruthenium-fluoroquinolone complexes

    Indian Academy of Sciences (India)

    Mohan N Patel; Hardik N Joshi; Chintan R Patel

    2014-05-01

    Six new Ru(II) and Ru(III) complexes have been synthesized and characterized by elemental analysis, LC-MS, electronic spectra, IR spectra and magnetic moment measurements. DNA-binding properties of Ru complexes have been studied by means of absorption spectrophotometry and viscosity measurements as well as their HS DNA cleavage properties by means of agarose gel electrophoresis. The experimental results show that all the complexes can bind to DNA via partial intercalative mode. The b values of complexes were found in the range 2.14 × 104 to 2.70 × 105 M-1. All the complexes show excellent efficiency of cleaving DNA than respective fluoroquinolones. Brine shrimp lethality bioassay has been performed to check the cytotoxic activity. The IC50 values of the complexes are in the range of 6.27 to 16.05 g mL-1.

  3. Ruthenium(II) polypyridyl complexes with hydrophobic ancillary ligand as Aβ aggregation inhibitors.

    Science.gov (United States)

    Vyas, Nilima A; Ramteke, Shefali N; Kumbhar, Avinash S; Kulkarni, Prasad P; Jani, Vinod; Sonawane, Uddhavesh B; Joshi, Rajendra R; Joshi, Bimba; Erxleben, Andrea

    2016-10-01

    The synthesis, spectral and electrochemical characterization of the complexes of the type [Ru(NN)2(txbg)](2+) where NN is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), dipyrido [3,2-d:2',3f] quinoxaline (dpq) (3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz) (4) which incorporate the tetra-xylene bipyridine glycoluril (txbg) as the ancillary ligand are described in detail. Crystal structures of ligand txbg and complex 2 were solved by single crystal X-ray diffraction. Thioflavin T (ThT) fluorescence and Transmission Electron Microscopy (TEM) results indicated that at micromolar concentration all complexes exhibit significant potential of Aβ aggregation inhibition, while the ligand txbg displayed weak activity towards Aβ aggregation. Complex 1 showed relatively low inhibition (70%) while complexes 2-4 inhibited nearly 100% Aβ aggregation after 240 h of incubation. The similar potential of complexes 2-4 and absence of any trend in their activity with the planarity of polypyridyl ligands suggests there is no marked effect of planarity of coligands on their inhibitory potential. Further studies on acetylcholinesterase (AChE) inhibition indicated very weak activity of these complexes against AChE. Detailed interactions of Aβ with both ligand and complex 2 have been studied by molecular modeling. Complex 2 showed interactions involving all three polypyridyl ligands with hydrophobic region of Aβ. Furthermore, the toxicity of these complexes towards human neuroblastoma cells was evaluated by MTT assay and except complex 4, the complexes displayed very low toxicity. PMID:27406812

  4. Ruthenium(II) complexes bearing pyridine-functionalized N-heterocyclic carbene ligands: Synthesis, structure and catalytic application over amide synthesis

    Indian Academy of Sciences (India)

    MUTHUKUMARAN NIRMALA; PERIASAMY VISWANATHAMURTHI

    2016-11-01

    A series of four imidazolium salts was synthesized by the reaction of 2-bromopyridine with 1- substituted imidazoles. These imidazolium salts (1a–d) were successfully employed as ligand precursors for the syntheses of new ruthenium(II) complexes bearing neutral bidentate ligands of N-heterocyclic carbene and pyridine donor moiety. The NHC-ruthenium(II) complexes (3a–d) were synthesized by reacting the appropriately substituted pyridine-functionalized N-heterocyclic carbenes with Ag₂O forming the NHC–silver bromide in situ followed by transmetalation with [RuHCl(CO)(PPh₃)₃]. The new complexes were characterized by elemental analyses and spectroscopy (IR, UV-Vis, ¹H, ¹³C, ³¹P-NMR) as well as ESI mass spectrometry. Based on the spectral results, an octahedral geometry was assigned for all the complexes. The complexes were shown to be efficient catalysts for the one-pot conversion of various aldehydes to their corresponding primary amides with good to excellent isolated yields using NH₂OH.HCl and NaHCO₃. The effects of solvent, base, temperature, time and catalyst loading were also investigated. A broad range of amides were successfully synthesized with excellent isolated yields using the above optimized protocol. Notably, the complex 3a was found to be a very efficient and versatile catalyst towards amidation of a wide range of aldehydes.

  5. Cellular responses of BRCA1-defective and triple-negative breast cancer cells and in vitro BRCA1 interactions induced by metallo-intercalator ruthenium(II) complexes containing chloro-substituted phenylazopyridine

    International Nuclear Information System (INIS)

    Triple-negative breast cancer (TNBC) is defined by the absence of expression of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. Breast cancers with a BRCA1 mutation are also frequently triple-negative. Currently, there is a lack of effective therapies and known specific molecular targets for this aggressive breast cancer subtype. To address this concern, we have explored the cellular responses of BRCA1-defective and triple-negative breast cancer cells, and in vitro BRCA1 interactions induced by the ruthenium(II) complexes containing the bidentate ligand, 5-chloro-2-(phenylazo)pyridine. Triple-negative MDA-MB-231, BRCA1-defective HCC1937 and BRCA1-competent MCF-7 breast cancer cell lines were treated with ruthenium(II) complexes. The cytoxoxicity of ruthenium-induced breast cancer cells was evaluated by a real time cellular analyzer (RTCA). Cellular uptake of ruthenium complexes was determined by ICP-MS. Cell cycle progression and apoptosis were assessed using propidium iodide and Annexin V flow cytometry. The N-terminal BRCA1 RING protein was used for conformational and functional studies using circular dichroism and in vitro ubiquitination. HCC1937 cells were significantly more sensitive to the ruthenium complexes than the MDA-MB-231 and MCF-7 cells. Treatment demonstrated a higher degree of cytotoxicity than cisplatin against all three cell lines. Most ruthenium atoms were retained in the nuclear compartment, particularly in HCC1937 cells, after 24 h of incubation, and produced a significant block at the G2/M phase. An increased induction of apoptotic cells as well as an upregulation of p53 mRNA was observed in all tested breast cancer cells. It was of interest that BRCA1 mRNA and replication of BRCA1-defective cells were downregulated. Changes in the conformation and binding constants of ruthenium-BRCA1 adducts were observed, causing inactivation of the RING heterodimer BRCA1/BARD1-mediated E3 ubiquitin ligase activity

  6. Ruthenium(II) and iridium(III) complexes featuring NHC-sulfonate chelate.

    Science.gov (United States)

    Rajaraman, A; Sahoo, A R; Hild, F; Fischmeister, C; Achard, M; Bruneau, C

    2015-10-28

    Three new complexes bearing a chelating (κ(2)C,O) NHC-SO3 ligand have been prepared. An original method for the synthesis of the imidazolium-sulfonate NHC precursor is described. The 5-membered ruthena- and irida-cycle containing complexes were fully characterized and evaluated in a series of catalytic transformations involving hydrogen auto-transfer processes.

  7. Ruthenium(II) arene complexes with oligocationic triarylphosphine ligands: synthesis, DNA interactions and in vitro properties

    NARCIS (Netherlands)

    Snelders, D.J.M.; Casini, A.; Edafe, F.; van Koten, G.; Klein Gebbink, R.J.M.; Dyson, P.J.

    2011-01-01

    The synthesis, DNA binding properties and cytotoxicity of a series of Ru(II)-arene complexes containing oligocationic ammonium-functionalized triarylphosphines, of the type Ru(p-cymene)Cl2(L) (L ¼ oligocationic phosphine), are reported. The complexes are highly charged (the overall charge states bei

  8. 环戊二烯基钌配合物催化的高选择性苯乙炔二聚反应%HIGHLY SELECTIVE CATALYTIC DIMERIZATION OF PHENYLACETYLENE BY CYCLOPENTADIENYL RUTHENIUM COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    金军挺; 黄吉玲; 陶晓春; 钱延龙

    1999-01-01

    @@ Transition metal vinylidene complexes (M=C=CHR) have attracted a great deal of attention in recent years as a new type of organometallic intermediates that may have unusual reactivity[1]. Their reactivity has been explored and their application to organic synthesis is developed[2]. Recent reports on the ruthenium-vinylidene complexes[3]suggest that the reaction of ruthenium-vinylidene complexes with a base generates the coordinatively unsaturated ruthenium acetylide species, which are involved in a number of catalytic and stoichiometric reactions of alkynes. For example,the coordinatively unsaturated ruthenium acetylide species C5Me5Ru(PPh3)-C≡CPh,formed from the reaction of the vinylidene complex C5Me5Ru(PPh3) (Cl)=C=CHPh with a base was reactive toward a variety of small molecules and active in catalytic dimerization of terminal alkynes[4]. The dimerization of terminal alkyne is an effective method of forming enynes, but its synthetic application in organic synthesis has been limited dueto low selectivity for dimeric products[5]. In this communication, we report that three ruthenium complexes were used as catalysts for the highly selective dimerization of phenylacetylene.

  9. 含NS和NNSS供电子原子的钌(Ⅱ)羰基配合物%Ruthenium(Ⅱ) Carbonyl Complexes Containing NS and NNSS Donor Atoms

    Institute of Scientific and Technical Information of China (English)

    Daniel Thangadurai.T; Son-Ki Ihm

    2006-01-01

    Bidentate and tetradentate Schiff base ruthenium(Ⅱ) complexes has been synthesized by the reaction of [RuHCl(CO)(PPh3)2(B)] (B=PPh3 or pyridine (py) or piperidine (pip) or morpholine (morph)) with appropriate Schiff bases in 1:1 molar ratio. The Schiff base ligands were prepared by condensing S-benzyldithiocarbazate (NH2NHCSSCH2C6H5) with 2,3-butanedione (1:1 and 1:2 molar ratio). Ruthenium(Ⅱ) complexes and the ligands were studied and characterized by elemental analyses and various physico-chemical methods. The ruthenium complexes were diamagnetic with six-coordinate structures. The ligands and the complexes were screened for antimicrobial activity against three organisms.%通过[RuHCl(CO)(PPh3)2(B)](B=PPh3,吡啶(py),哌啶(pip),吗啉(morph))与适当的席夫碱按1:1的物质的量的比反应,合成了二齿和四齿席夫碱钌(Ⅱ)配合物.所用席夫碱配体通过S-苄基二硫代肼基甲酸酯与2,3-丁二酮(物质的量的比分别为1:1和1:2)的缩合反应制得.通过元素分析和多种物理化学方法对钌(Ⅱ)配合物和其席夫碱配体进行了表征.钌(Ⅱ)配合物为六配位的反磁性物质.用三种细菌对席夫碱配体及其钌(Ⅱ)配合物的抗微生物活性进行了筛选试验.

  10. Cationic tungsten-oxo-alkylidene-N-heterocyclic carbene complexes: highly active olefin metathesis catalysts.

    Science.gov (United States)

    Schowner, Roman; Frey, Wolfgang; Buchmeiser, Michael R

    2015-05-20

    The synthesis, structure, and olefin metathesis activity of the first neutral and cationic W-oxo-alkylidene-N-heterocyclic carbene (NHC) catalysts are reported. Neutral W-oxo-alkylidene-NHC catalysts can be prepared in up to 90% isolated yield. Depending on the ligands used, they possess either an octahedral (Oh) or trigonal bipyramidal ligand sphere. They can be activated with excess AlCl3 to form cationic olefin metathesis-active W-complexes; however, these readily convert into neutral chloro-complexes. Well-defined, stable cationic species can be prepared by stoichiometric substitution of one chloro ligand in the parent, neutral W-oxo-alkylidene-NHC complexes with Ag(MeCN)2B(Ar(F))4 or NaB(Ar(F))4; B(Ar(F))4 = B(3,5-(CF3)2-C6H3)4. They are highly active olefin metathesis catalysts, allowing for turnover numbers up to 10,000 in various olefin metathesis reactions including alkenes bearing nitrile, sec-amine, and thioether groups.

  11. Cationic tungsten-oxo-alkylidene-N-heterocyclic carbene complexes: highly active olefin metathesis catalysts.

    Science.gov (United States)

    Schowner, Roman; Frey, Wolfgang; Buchmeiser, Michael R

    2015-05-20

    The synthesis, structure, and olefin metathesis activity of the first neutral and cationic W-oxo-alkylidene-N-heterocyclic carbene (NHC) catalysts are reported. Neutral W-oxo-alkylidene-NHC catalysts can be prepared in up to 90% isolated yield. Depending on the ligands used, they possess either an octahedral (Oh) or trigonal bipyramidal ligand sphere. They can be activated with excess AlCl3 to form cationic olefin metathesis-active W-complexes; however, these readily convert into neutral chloro-complexes. Well-defined, stable cationic species can be prepared by stoichiometric substitution of one chloro ligand in the parent, neutral W-oxo-alkylidene-NHC complexes with Ag(MeCN)2B(Ar(F))4 or NaB(Ar(F))4; B(Ar(F))4 = B(3,5-(CF3)2-C6H3)4. They are highly active olefin metathesis catalysts, allowing for turnover numbers up to 10,000 in various olefin metathesis reactions including alkenes bearing nitrile, sec-amine, and thioether groups. PMID:25938340

  12. Antiproliferative activity of ruthenium(ii) arene complexes with mono- and bidentate pyridine-based ligands.

    Science.gov (United States)

    Richter, Stefan; Singh, Sushma; Draca, Dijana; Kate, Anup; Kumbhar, Anupa; Kumbhar, Avinash S; Maksimovic-Ivanic, Danijela; Mijatovic, Sanja; Lönnecke, Peter; Hey-Hawkins, Evamarie

    2016-08-16

    A series of Ru(II) arene complexes of mono- and bidentate N-donor ligands with carboxyl or ester groups and chlorido ancillary ligands were synthesised and structurally characterised. The complexes have a distorted tetrahedral piano-stool geometry. The binding interaction was studied with calf thymus DNA (CT-DNA) by absorption titration, viscosity measurement, thermal melting, circular dichroism, ethidium bromide displacement assay and DNA cleavage of plasmid DNA (pBR322), investigated by gel electrophoresis. The dichlorido complexes bind covalently to DNA in the dark, similar to cisplatin, while the monochlorido complexes bind covalently on irradiation, similar to cisplatin analogues. The compounds are selectively cytotoxic against several tumour cell lines and show specific nonlinear correlation between dose and activity. This phenomenon is closely related to their potential to act preferentially as inhibitors of cell division. PMID:27264161

  13. An ethylene-glycol decorated ruthenium(ii) complex for two-photon photodynamic therapy.

    Science.gov (United States)

    Boca, Sanda C; Four, Mickaël; Bonne, Adeline; van der Sanden, Boudewijn; Astilean, Simion; Baldeck, Patrice L; Lemercier, Gilles

    2009-08-14

    A novel water-soluble Ru(ii) complex has been prepared, which represents a promising new class of selective two-photon sensitizers for use in photodynamic therapy within a confined space. PMID:19617993

  14. Anticancer Activity Studies of Ruthenium(II) Complex Toward Human Osteosarcoma HOS Cells.

    Science.gov (United States)

    Zhu, Jian-Wei; Liu, Si-Hong; Zhang, Gui-Qiang; Xu, Hui-Hua; Wang, Yu-Xuan; Wu, Yong; Liu, Ya-Min; Wang, Yan; Liang, Jun-Bo; Guo, Qi-Feng

    2016-08-01

    A new Ru(II) complex [Ru(dmp)2(NMIP)](ClO4)2 (dmp = 2,9-dimethyl-1,10-phenanthroline, NMIP = 2'-(2″-nitro-3″,4″-methylenedioxyphenyl)imidazo[4',5'-f][1,10]-phenanthroline) was synthesized and characterized by elemental analysis, ESI-MS and (1)H NMR. The cytotoxic activity of the complex against MG-63, U2OS, HOS, and MC3T3-e1 cell lines was investigated by MTT method. The complex shows moderate cytotoxicity toward HOS (IC50 = 35.6 ± 2.6 µM) and MC3T3-e1 (IC50 = 41.6 ± 2.8 µM) cell lines. The morphological studies show that the complex can induce apoptosis in HOS cells and cause an increase of reactive oxygen species levels and a decrease in the mitochondrial membrane potential. The cell cycle distribution demonstrates that the complex inhibits the cell growth at S phase. Additionally, the antitumor activity in vivo reveals that the complex can induce a decrease in tumor weight. PMID:27007877

  15. 153Sm -DOTA-phosphine-ruthenium and gold bimetallic complexes as new radio-theranostics

    International Nuclear Information System (INIS)

    Full text of publication follows. Since the pioneer discovery of cisplatin for biological applications by Rosenberg in the 1960's [Ref.1] metal complexes have become the most currently investigated and used class of compounds in cancer chemotherapy [Ref.2]. However in most cases, their mechanisms of action are still poorly understood. Imaging drugs aimed at understanding their mechanism of action and studying their pharmacokinetics is thus one of the key challenges of medicinal chemists today. To take up this challenge new DOTA-phosphine compounds were synthesized. It is a versatile tool to image organometallic complexes, and allowed the access to an unprecedented family of theranostics featuring Au and Ru complexes for the therapeutic moiety and 153Sm for the imaging part. The radiolabelling of the ligand was studied and the stability of corresponding complexes was evaluated. Their cytotoxicity was also tested on cancer cells, and their biodistribution was determined in vivo. References: [1] Rosenberg, B.; VanCamp, L.; Krigas, T., Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode, Nature 1965, 205, 698-699; [2] Zhang, C. X.; Lippard, S. J., New metal complexes as potential therapeutics, Curr. Opin. Chem. Biol. 2003, 7, 481-489. (authors)

  16. Ruthenium(ii) complexes with dppz: from molecular photoswitch to biological applications.

    Science.gov (United States)

    Li, Guanying; Sun, Lingli; Ji, Liangnian; Chao, Hui

    2016-09-14

    The DNA photoswitch [Ru(bpy)2dppz](2+) (bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine) has attracted much attention and become a powerful tool for studying the interaction of metal polypyridyl complexes with DNA. A large number of Ru-dppz complexes have been designed for a wide range of uses in many fields. In this perspective, we first introduce the latest results of Ru-dppz complexes that bind with DNA. The mechanisms of the light-switch effect and the structural modifications of Ru-dppz systems are also briefly introduced. We also review the recent advances in biological applications of the Ru-dppz system in DNA binders, cellular imaging, anticancer drugs, protein aggregation detection and chemosensors. PMID:27426487

  17. Protein-binding, cytotoxicity in vitro and cell cycle arrest of ruthenium(II) polypyridyl complexes

    Science.gov (United States)

    Liu, Si-Hong; Zhu, Jian-Wei; Xu, Hui-Hua; Wang, Yan; Liu, Ya-Min; Liang, Jun-Bo; Zhang, Gui-Qiang; Cao, Di-Hua; Lin, Yang-Yang; Wu, Yong; Guo, Qi-Feng

    2016-05-01

    The cytotoxic activity of two Ru(II) complexes against A549, BEL-7402, HeLa, PC-12, SGC-7901 and SiHa cell lines was investigated by MTT method. Complexes 1 and 2 show moderate cytotoxicity toward BEL-7402 cells with an IC50 value of 53.9 ± 3.4 and 39.3 ± 2.1 μM. The effects of the complexes inducing apoptosis, cellular uptake, reactive oxygen species and mitochondrial membrane potential in BEL-7402 cells have been studied by fluorescence microscopy. The percentages of apoptotic and necrotic cells and cell cycle arrest were studied by flow cytometry. The BSA-binding behaviors were investigated by UV/visible and fluorescent spectra.

  18. Cationic Tungsten(VI) Penta-Methyl Complex: Synthesis, Characterization and its Application in Olefin Metathesis Reaction

    KAUST Repository

    Dey, Raju

    2016-04-13

    Tungsten-hexa-methyl readily reacts with B(C6F5)3 in dichloromethane and generates the corresponding well-defined cationic tungsten-penta-methyl complex which was identified precisely by 1H NMR, 13C NMR, 1H-13C NMR correlation spectroscopy. Unlike WMe6, this cationic complex has low energy barrier to form tungsten carbene intermediate, which was further supported by the fact that WMe6 alone has no activity in olefin metathesis reaction whereas the cationic complex shows catalytic activity for self-metathesis of 1-octene.

  19. Cationic Tungsten(VI Penta-Methyl Complex: Synthesis, Characterization and its Application in Olefin Metathesis Reaction

    Directory of Open Access Journals (Sweden)

    Dey Raju

    2016-03-01

    Full Text Available Tungsten-hexa-methyl readily reacts with B(C6F53 in dichloromethane and generates the corresponding well-defined cationic tungsten-penta-methyl complex which was identified precisely by 1H NMR, 13C NMR, 1H-13C NMR correlation spectroscopy. Unlike WMe6, this cationic complex has low energy barrier to form tungsten carbene intermediate, which was further supported by the fact that WMe6 alone has no activity in olefin metathesis reaction whereas the cationic complex shows catalytic activity for self-metathesis of 1-octene.

  20. Types of cationic complexes based on oxocentred tetrahedra [OM4] in the crystal structures of inorganic compounds

    International Nuclear Information System (INIS)

    The crystal structures of inorganic compounds comprising cationic complexes containing oxygen atoms coordinated tetrahedrally to metal atoms, or oxocentred groups [OM4], are considered. The linking of the [OM4] tetrahedra in the structures has been analysed and cationic complexes of different structures have been identified. The rules governing the linking of the [OM4] tetrahedra have been formulated and the cationic complexes have been subjected to a detailed systematic treatment on their basis. Data on the statistics of the bond lengths and bond angles in the [OM4] tetrahedra are presented. The bibliography includes 317 references.

  1. The photophysical properties of Ruthenium(11) Polypyridyl complexes immobilised in sol-gel matrices

    OpenAIRE

    Mongey, Karen

    1996-01-01

    This thesis involves the synthesis and characterisation of sol-gel monoliths doped with Ru(II) polypyridyl complexes. In Chapter 1 an overview of the chemistry of the sol-gel process is given along with an introduction to the photophysical properties of Ru(II) complexes in solution. In the first section of this thesis, the Ru(II) dopants are employed as spectroscopic probes of the sol-gel process, following the reactions as they proceed from the initial sol to the final xerogel. Variation...

  2. Backbone tuning in indenylidene–ruthenium complexes bearing an unsaturated N-heterocyclic carbene

    Directory of Open Access Journals (Sweden)

    César A. Urbina-Blanco

    2010-11-01

    Full Text Available The steric and electronic influence of backbone substitution in IMes-based (IMes = 1,3-bis(2,4,6-trimethylphenylimidazol-2-ylidene N-heterocyclic carbenes (NHC was probed by synthesizing the [RhCl(CO2(NHC] series of complexes to quantify experimentally the Tolman electronic parameter (electronic and the percent buried volume (%Vbur, steric parameters. The corresponding ruthenium–indenylidene complexes were also synthesized and tested in benchmark metathesis transformations to establish possible correlations between reactivity and NHC electronic and steric parameters.

  3. D/H isotope effects in π-complexes of deuterated hexamethylbenzenes with the nitrosonium cation

    International Nuclear Information System (INIS)

    The isotope effects of deuterium, manifested in the 13C NMR spectra of complexes of deuterated hexamethylbenzenes C6(CD3)n·(CH3)6-n with the nitrosonium cation, have been studied. The small values observed for the isotopic perturbation are evidence of π-bonding of the NO+ group to the hexamethylbenzene molecule. The applicability of an additive scheme of calculation of isotope effects for the ring carbon atoms of the complexes, based on the increment of replacement of the CH3 group by CD3 in hexamethylbenzene, has been demonstrated

  4. Comparison of physical and photophysical properties of monometallic and bimetallic ruthenium(II) complexes containing structurally altered diimine ligands

    Energy Technology Data Exchange (ETDEWEB)

    Macatangay, A.; Jackman, D.C.; Merkert, J.W. [Univ. of North Carolina, Charlotte, NC (United States)] [and others

    1996-11-06

    The physical and photophysical properties of a series of monometallic, [Ru(bpy){sub 2}(dmb)]{sup 2+}, [Ru(bpy){sub 2}(BPY)]{sup 2+}, [Ru(bpy)(Obpy)]{sup 2+} and [Ru(bpy){sub 2}(Obpy)] {sup 2+}, and bimetallic, [(Ru(bpy){sub 2}){sub 2}(BPY)]{sup 4+} and [(Ru(bpy){sub 2}){sub 2}(Obpy)]{sup 4+}, complexes are examined, where bpy is 2,2{prime}-bipyridine, dmb is 4,4{prime}-dimethyl-2,2{prime}-bipyridine, BPY is 1,2-bis(4-methyl-2,2{prime}-bipyridin-4{prime}-yl)ethane, and Obpy is 1,2-bis(2,2{prime}-bipyridin-6-yl)ethane. The complexes display metal-to-ligand charge transfer transitions in the 450 nmn region, intraligand {pi}{yields}{pi}* transitions at energies greater than 300 nm, a reversible oxidation of the ruthenium(II) center in the 1.25-1.40 V vs SSCE region, a series of three reductions associated with each coordinated ligand commencing at {minus}1.3 V and ending at {approximately}{minus}1.9 V, and emission from a {sup 3}MLCT state having energy maxima between 598 and 610 nm. The Ru{sup III}/Ru{sup II} oxidation of the two bimetallic complexes is a single, two one-electron process. Relative to [Ru(bpy){sub 2}(BPY)]{sup 2+}, the Ru{sup III}/Ru{sup II} potential for [Ru-(bpy){sub 2}(Obpy)]{sup 2+} increases from 1.24 to 1.35 V, the room temperature emission lifetime decreases from 740 to 3ns, and the emission quantum yield decreases from 0.078 to 0.000 23. Similarly, relative to [(Ru(bpy){sub 2}){sub 2}(BPY)]{sup 4+}, the Ru{sup III}/Ru{sup II} potential for [(Ru(bpy){sub 2}){sub 2}(Obpy)]{sup 4+} increases from 1.28 to 1.32 V, the room temperature emission lifetime decreases from 770 to 3 ns, and the room temperature emission quantum yield decreases from 0.079 to 0.000 26.

  5. Ruthenium Vinylidene and Acetylide Complexes. An Advanced Undergraduate Multi-technique Inorganic/Organometallic Chemistry Experiment

    Science.gov (United States)

    McDonagh, Andrew M.; Deeble, Geoffrey J.; Hurst, Steph; Cifuentes, Marie P.; Humphrey, Mark G.

    2001-02-01

    This experiment describes the isolation and characterization of complexes containing examples of two important monohapto ligands, namely vinylidene (C=CHR) and alkynyl (C ? CR) ligands. The former is a tautomer of acetylene that has minimal (10-10 s) existence as an uncomplexed molecule, providing an interesting example of the stabilization of reactive organic species at transition metals--an important motif in organometallic chemistry. The latter ligand affords complexes that have attracted a great deal of interest recently for their potentially useful electronic or optical properties, illustrating a major focus of contemporary organometallic chemistry, the search for useful materials. The particular strength of this experiment is in demonstrating the utility of a range of spectroscopic and analytical techniques in inorganic complex identification. The students observe unusual chemical shifts in the 13C NMR (vinylidene metal-bound carbon), meet heteronuclear NMR (31P), assign intense metal-to-ligand charge transfer (MLCT) bands in the UV-visible spectra, observe the utility of mass spectra in characterizing complexes of poly-isotopic transition metals, and are introduced to redox potentials (cyclic voltammetry).

  6. Sensitive fluorescence detection of lysozyme using a tris(bipyridine)ruthenium(II) complex containing multiple cyclodextrins.

    Science.gov (United States)

    Zhang, Fan; Zhao, Ying-Ying; Chen, Hong; Wang, Xiu-Hua; Chen, Qiong; He, Pin-Gang

    2015-04-18

    A new series of photoactive metallocyclodextrins with increased fluorescence intensity upon binding with ssDNAs/aptamers has been demonstrated to sensitively and selectively detect lysozyme. The detection mechanism relies on the formation of an aptamer-lysozyme complex, which leads to reduction of fluorescence intensity.

  7. η6-Arene complexes of ruthenium and osmium with pendant donor functionalities

    KAUST Repository

    Reiner, Thomas

    2010-11-01

    Conversion of 4′-(2,5-dihydrophenyl)butanol or N-trifluoroacetyl-2,5- dihydrobenzylamine with MCl3·n H2O (M = Ru, Os) affords the corresponding dimeric η6-arene complexes in good to excellent yields. Under similar reaction conditions, the amine functionalized arene precursor 2,5-dihydrobenzylamine yields the corresponding Ru(II) complex. For osmium, HCl induced oxidation leads to formation of [OsCl6] 2- salts. However, under optimized reaction conditions, conversion of the precursor 2,5-dihydrobenzylamine chloride results in clean formation of η6-arene Os(II) complex. X-ray structures of [(η6- benzyl ammonium)(dmso)RuCl2] and (2,5-dihydrobenzyl ammonium) 4[OsCl6]2confirm the spectroscopic data. High stability towards air and acid as well as enhanced solubility in water is observed for all η6-arene complexes. © 2010 Elsevier B.V. All rights reserved.

  8. Tuning interaction in dinuclear ruthenium complexes : HOMO versus LUMO mediated superexchange through azole and azine bridges

    NARCIS (Netherlands)

    Browne, Wesley; Hage, R; Vos, Johannes G.

    2006-01-01

    In this review the interaction between metal centers in dinuclear complexes based on azole and azine containing bridging ligands is reviewed. The focus of the review is on the manner in which the interaction pathway can be manipulated by variations in the nature of both the direct bridging unit and

  9. On an intraparticle complex of cationic nanogel with a stoichiometric amount of bound polyanions.

    Science.gov (United States)

    Ogawa, Kazuyoshi; Sato, Seigo; Kokufuta, Etsuo

    2007-02-13

    A polyelectrolyte nanogel (PENG) particle consisting of lightly cross-linked terpolymer chains of N-isopropylacrylamide, acrylic acid, and 1-vinylimidazole has positive charges in an aqueous medium at pH 3 due to protonation of the imidazole groups, and thereby forms a polyelectrolyte complex with the linear polyanion, potassium poly(vinyl alcohol) sulfate (KPVS). It has been demonstrated that the hydrodynamic radius (Rh), by dynamic light scattering (DLS), and the radius of gyration (Rg), by static light scattering (SLS), of the complex particles are smallest at approximately 1:1 mixing ratio (rm) of anions to cations, in the absence of simple salts such as KCl (Langmuir 2005, 21, 4830). Here, we aimed to study the nature of the complex formed at rm=1 and examined the complex formation process by electrophoretic light scattering (ELS). It was found that the mobility of the cationic PENG with a stoichiometric amount of bound KPVS anions (i.e., the complex formed at rm=1) is positive but not zero at 25 degrees C. This was also the case when the complex was examined by ELS at 45 degrees C, where DLS and SLS show a temperature-driven collapse of the complex. We thus assumed that (a) electroneutrality is maintained in the complex particle with the aid of counterions, but (b) the complex is highly polarizable, and hence (c) during ELS the KPVS anions would dissociate in part from the complex. This hypothesis was supported by the following results: (i) Mixing complexed and uncomplexed PENG particles at different ratios brings about an increase in Rh and a decrease in the light scattering intensity of the complex at the same time, suggesting a polyelectrolyte exchange reaction. (ii) The same phenomenon is seen when poly(diallyldimethylammonium chloride) (PDDA as a polysalt) is added to the complex dispersion, meaning that the PDDA takes out the KPVS from the complex to form a stable PDDA-KPVS complex. (iii) Upon addition of KCl, the complex undergoes little change in Rh

  10. Structure-function relationships within Keppler-type antitumor ruthenium(III) complexes: the case of 2-aminothiazolium[trans-tetrachlorobis(2-aminothiazole)ruthenate(III)].

    Science.gov (United States)

    Mura, Pasquale; Piccioli, Francesca; Gabbiani, Chiara; Camalli, Mercedes; Messori, Luigi

    2005-07-11

    Keppler-type ruthenium(III) complexes exhibit promising antitumor properties. We report here a study of 2-aminothiazolium[trans-tetrachlorobis(2-aminothiazole)ruthenate(III)], both in the solid state and in solution. The crystal structure has been solved and found to exhibit classical features. Important solvatochromic effects were revealed. Notably, we observed that introduction of an amino group in position 2 greatly accelerates chloride hydrolysis compared to the thiazole analogue; this latter finding may be of interest for a fine-tuning of the reactivity of these novel metallodrugs.

  11. MCM-41 Bound Ruthenium Complex as Heterogeneous Catalyst for Hydrogenation Ⅰ: Effect of Support, Ligand and Solvent on the Catalyst Performance

    Institute of Scientific and Technical Information of China (English)

    YU, Ying-Min; FEI, Jin-Hua; ZHANG, Yi-Ping; ZHENG, Xiao-Ming

    2006-01-01

    The functionalized MCM-41 mesoporous bound ruthenium complex was synthesized and characterized using elemental analysis, atomic absorption spectrophotometer, BET, XRD and FTIR. Hydrogenation of carbon dioxide to formic acid was investigated over these catalysts under supercritical CO2 condition. The effect of reactant gas partial pressure, supports, solvents and ligands on the synthesis of formic acid was studied. These factors could influence the catalyst activity, stability and reuse performance greatly and no byproduct was detected. These promising catalysts also offered the industrial advantages such as easy separation.

  12. Arene ruthenium(II) azido complexes incorporating N intersection O chelate ligands: Synthesis, spectral studies and 1,3-dipolar-cycloaddition to a coordinated azide in ruthenium(II) compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, K.S.; Kaminsky, W.

    The arene ruthenium(II) azido compounds [{(p-cymene)Ru(N^O)N3}] have been prepared by the reaction of [{(p-cymene)Ru(mewN3)Cl}2] with the corresponding ligands. The ruthenium azido compounds [{(p...

  13. PALLADIUM, PLATINUM, RHODIUM, RUTHENIUM AND IRIDIUM IN PERIDOTITES AND CHROMITITES FROM OPHIOLITE COMPLEXES IN NEWFOUNDLAND.

    Science.gov (United States)

    Page, Norman J; Talkington, Raymond W.

    1984-01-01

    Samples of spinel lherzolite, harzburgite, dunite, and chromitite from the Bay of Islands, Lewis Hills, Table Mountain, Advocate, North Arm Mountain, White Hills Periodite Point Rousse, Great Bend and Betts Cove ophiolite complexes in Newfoundland were analyzed for the platinum-group elements (PGE) Pd, Pt, Rh, Ru and Ir. The ranges of concentration (in ppb) observed for all rocks are: less than 0. 5 to 77 (Pd), less than 1 to 120 (Pt), less than 0. 5 to 20 (Rh), less than 100 to 250 (Ru) and less than 20 to 83 (Ir). Chondrite-normalized PGE ratios suggest differences between rock types and between complexes. Samples of chromitite and dunite show relative enrichment in Ru and Ir and relative depletion in Pt and Pd.

  14. Hexakis (PCP-Platinum and -Ruthenium) Complexes by the Transcyclometalation Reaction and Their Use in Catalysis

    NARCIS (Netherlands)

    Koten, G. van; Dijkstra, H.P.; Albrecht, M.; Medici, S.; Klink, G.P.M. van

    2002-01-01

    Hexakis(PCP-pincer) complexes [C6{PtBr(PCP)}6] (5d) and [C6{RuCl(PCP)(PPh3)}6] (5e) were synthesized via the transcyclometalation (TCM) procedure. Mixing the hexakis(PCHP-arene) ligand 7 with six equivalents of [PtBr(NCN)] (1a) or [RuCl(NCN)(PPh3)] (1b), respectively, resulted in the selective metal

  15. From ruthenium olefin metathesis catalyst to (η5-3-phenylindenyl)hydrido complex via alcoholysis.

    Science.gov (United States)

    Manzini, Simone; Nelson, David J; Lebl, Tomas; Poater, Albert; Cavallo, Luigi; Slawin, Alexandra M Z; Nolan, Steven P

    2014-02-28

    The synthesis and characterisation of [Ru(H)(η(5)-3-phenylindenyl)((i)Bu-Phoban)2] 4 is reported ((i)Bu-Phoban = 9-isobutyl-9-phosphabicyclo-[3.3.1]-nonane). 4 is obtained via alcoholysis of metathesis pre-catalyst M11, in a process that was previously thought to be limited to analogous complex [RuCl2(PPh3)2(3-phenylindenylidene)] (M10).

  16. Some mixed ligand hydridocarbonyl and hydridophosphine complexes of ruthenium(II) and iridium(III)

    International Nuclear Information System (INIS)

    Mixed-ligand hydridocarbonyl and hydridophosphine complexes of RuII and IrIII have been isolated from the displacement reaction of [RuH(CO)(Pφ3)3Cl] with ligand isonicotinic acid hydrazide (INAH) in benzene medium. Most probable structures are assigned on the basis of elemental analysis, electronic, infrared and far-infrared spectral studies. In all cases bonding of INAH occurs through amino nitrogen of hydrazine residue. (author). 15 refs., 1 tab

  17. From ruthenium olefin metathesis catalyst to (η5-3- phenylindenyl)hydrido complex via alcoholysis

    KAUST Repository

    Manzini, Simone

    2014-01-01

    The synthesis and characterisation of [Ru(H)(η5-3- phenylindenyl)(iBu-Phoban)2] 4 is reported ( iBu-Phoban = 9-isobutyl-9-phosphabicyclo-[3.3.1]-nonane). 4 is obtained via alcoholysis of metathesis pre-catalyst M11, in a process that was previously thought to be limited to analogous complex [RuCl 2(PPh3)2(3-phenylindenylidene)] (M 10). This journal is © The Royal Society of Chemistry.

  18. From ruthenium olefin metathesis catalyst to (η5-3-phenylindenyl)hydrido complex via alcoholysis.

    Science.gov (United States)

    Manzini, Simone; Nelson, David J; Lebl, Tomas; Poater, Albert; Cavallo, Luigi; Slawin, Alexandra M Z; Nolan, Steven P

    2014-02-28

    The synthesis and characterisation of [Ru(H)(η(5)-3-phenylindenyl)((i)Bu-Phoban)2] 4 is reported ((i)Bu-Phoban = 9-isobutyl-9-phosphabicyclo-[3.3.1]-nonane). 4 is obtained via alcoholysis of metathesis pre-catalyst M11, in a process that was previously thought to be limited to analogous complex [RuCl2(PPh3)2(3-phenylindenylidene)] (M10). PMID:24435451

  19. Dye-Sensitized Nanocrystalline ZnO Solar Cells Based on Ruthenium(II Phendione Complexes

    Directory of Open Access Journals (Sweden)

    Hashem Shahroosvand

    2011-01-01

    Full Text Available The metal complexes (RuII (phen2(phendione(PF62(1, [RuII (phen(bpy(phendione(PF62 (2, and (RuII (bpy2(phendione(PF62 (3 (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine and phendione = 1,10-phenanthroline-5,6-dione have been synthesized as photo sensitizers for ZnO semiconductor in solar cells. FT-IR and absorption spectra showed the favorable interfacial binding between the dye-molecules and ZnO surface. The surface analysis and size of adsorbed dye on nanostructure ZnO were further examined with AFM and SEM. The AFM images clearly show both, the outgrowth of the complexes which are adsorbed on ZnO thin film and the depression of ZnO thin film. We have studied photovoltaic properties of dye-sensitized nanocrystalline semiconductor solar cells based on Ru phendione complexes, which gave power conversion efficiency of (η of 1.54% under the standard AM 1.5 irradiation (100 mW cm−2 with a short-circuit photocurrent density (sc of 3.42 mA cm−2, an open-circuit photovoltage (oc of 0.622 V, and a fill factor (ff of 0.72. Monochromatic incident photon to current conversion efficiency was 38% at 485 nm.

  20. Study of ruthenium complexation by 22' bipyridine in nitric aqueous solutions

    International Nuclear Information System (INIS)

    Substitution of the NO3-, NO+ ions of RuNO(NO3)x.yH2Osup((3-x)+) complexes by 22'bipyridine (bipy) in nitric aqueous solution was studied by spectrophotometry. In the absence of reducing agent we observe the species RuNO(bipy)(NO3)sub(z)sup((3-z)+) and RuNO(bipy)2NO32+. Most reducing agents give rise to the RuNO(bipy)2NO32+ + e → RuNO(bipy)2NO3+ reaction. The oxydation potential of the reversible couple RuNO(bipy)2NO32+/RuNO(bipy)2NO3+ was measured by cyclic voltamperometry at the platinum electrode. Its value is + 1.02 V/NHE. Substitution of NO+ ions by a (bipy) molecule is only possible in the presence of reducing agents of apparent formal potential below + 0.5 V/NHE, and anti-nitrite agents are also needed; these two functions can be fulfilled by hydrazine and ascorbic acid. The presence of HSO3 NH2 was necessary to obtain the substitution of NO+ and NO3- by bipy during electrochemical reductions. The intermediate complexes RuNO(bipy)2NO32+ and RuNO(bipy)2NO3+ probably include two bipy molecules in the trans position whereas RuNO(bipy)22+ complexes, where the sixth coordination position is occupied by π donors stronger than NO3-, have two bipy molecules in the cis position

  1. Structural Determinants of p53-Independence in Anticancer Ruthenium-Arene Schiff-Base Complexes.

    Science.gov (United States)

    Chow, Mun Juinn; Babak, Maria V; Wong, Daniel Yuan Qiang; Pastorin, Giorgia; Gaiddon, Christian; Ang, Wee Han

    2016-07-01

    p53 is a key tumor suppressor gene involved in key cellular processes and implicated in cancer therapy. However, it is inactivated in more than 50% of all cancers due to mutation or overexpression of its negative regulators. This leads to drug resistance and poor chemotherapeutic outcome as most clinical drugs act via a p53-dependent mechanism of action. An attractive strategy to circumvent this resistance would be to identify new anticancer drugs that act via p53-independent mode of action. In the present study, we identified 9 Ru (II)-Arene Schiff-base (RAS) complexes able to induce p53-independent cytotoxicity and discuss structural features that are required for their p53-independent activity. Increasing hydrophobicity led to an increase in cellular accumulation in cells with a corresponding increase in efficacy. We further showed that all nine complexes demonstrated p53-independent activity. This was despite significant differences in their physicochemical properties, suggesting that the iminoquinoline ligand, a common structural feature for all the complexes, is required for the p53-independent activity. PMID:27174050

  2. Interaction and Binding Modes of bis-Ruthenium(II Complex to Synthetic DNAs

    Directory of Open Access Journals (Sweden)

    Hasi Rani Barai

    2016-06-01

    Full Text Available [μ-(linkerL2(dipyrido[3,2-a:2′,3′-c]phenazine2(phenanthroline2Ru(II2]2+ with linker: 1,3-bis-(4-pyridyl-propane, L: PF6 (bis-Ru-bpp was synthesized and their binding properties to a various polynucleotides were investigated by spectroscopy, including normal absorption, circular dichroism(CD, linear dichroism(LD, and luminescence techniques in this study. On binding to polynucleotides, the bis-Ru-bpp complex with poly[d(A-T2], and poly[d(I-C2] exhibited a negative LDr signal whose intensity was as large as that in the DNA absorption region, followed by a complicated LDr signal in the metal-to-ligand charge transfer region. Also, the emission intensity and equilibrium constant of the bis-Ru-bpp complex with poly[d(A-T2], and poly[d(I-C2] were enhanced. It was reported that both of dppz ligand of the bis-Ru-bpp complex intercalated between DNA base-pairs when bound to native, mixed sequence DNA. Observed spectral properties resemble to those observed for poly[d(A-T2] and poly[d(I-C2], led us to be concluded that both dppz ligands intercalate between alternated AT and IC bases-pairs In contrast when bis-Ru-bpp complex was bound to poly[d(G-C2], the magnitude of the LDr in the dppz absorption region, as well as the emission intensity, was half in comparison to that of bound to poly[d(A-T2], and poly[d(I-C2]. Therefore the spectral properties of the bis-Ru-bpp-poly[d(G-C2] complex suggested deviation from bis-intercalation model in the poly[d(G-C2] case. These results can be explained by a model whereby one of the dppz ligands is intercalated while the other is exposed to solvent or may exist near to phosphate. Also it is indicative that the amine group of guanine in the minor groove provides the steric hindrance for incoming intercalation binder and it also takes an important role in a difference in binding of bis-Ru-bpp bound to poly[d(A-T2] and poly[d(I-C2].

  3. Radiochemistry of ruthenium

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W W; Metcalf, S G; Barney, G S

    1984-06-01

    Information on ruthenium is presented. Topics include the following; isotopes and nuclear properties of ruthenium; review of the chemistry of ruthenium including metal and alloys, compounds of ruthenium, and solution chemistry; separation methods including volatilization of RuO{sub 4}, precipitation and coprecipitation, solvent extraction, chromatographic techniques, and analysis for radioruthenium. 445 refs., 7 figs., 23 tabs.

  4. Electrochemical properties of the hexacyanoferrate(II)–ruthenium(III) complex immobilized on silica gel surface chemically modified with zirconium(IV) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Panice, Lucimara B.; Oliveira, Elisangela A. de; Filho, Ricardo A.D. Molin; Oliveira, Daniela P. de [Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR (Brazil); Lazarin, Angélica M., E-mail: amlazarin2@uem.br [Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR (Brazil); Andreotti, Elza I.S.; Sernaglia, Rosana L. [Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR (Brazil); Gushikem, Yoshitaka [Instituto de Química, Universidade Estadual de Campinas, Caixa Postal 6154, 13084-971 Campinas, São Paulo (Brazil)

    2014-10-15

    Highlights: • The cyano-bridged mixed valence ruthenium composite material was synthesized. • This newly synthesized compound was incorporated into a carbon paste electrode. • The electrode did not show significant changes in response after six months of use. • The modified electrode is very stable and reproducible. • The electrode sensor was successfully applied for ascorbic acid determination. - Abstract: The chemically modified silica gel with zirconium(IV) oxide was used to immobilize the [Fe(CN){sub 6}]{sup 4−} complex ion initially. The reaction of this material with [Ru(edta)H{sub 2}O]{sup −} complex ion formed the immobilized cyano-bridged mixed valence ruthenium complex, (≡Zr){sub 5}[(edta)RuNCFe(CN){sub 5}]. This material was incorporated into a carbon paste electrode and, its electrochemical properties were investigated. However, for an ascorbic acid solution, an enhancement of the anodic peak current was detected due to electrocatalytic oxidation. The electrode presented the same response for at least 150 successive measurements, with a good repeatability. The modified electrode is very stable and reproducible. The sensor was applied for ascorbic acid determination in pharmaceutical preparation with success.

  5. Ruthenium(II) bipyridine complexes bearing quinoline-azoimine (NN‧N″) tridentate ligands: Synthesis, spectral characterization, electrochemical properties and single-crystal X-ray structure analysis

    Science.gov (United States)

    Al-Noaimi, Mousa; Abdel-Rahman, Obadah S.; Fasfous, Ismail I.; El-khateeb, Mohammad; Awwadi, Firas F.; Warad, Ismail

    Four octahedral ruthenium(II) azoimine-quinoline complexes having the general molecular formula [RuII(Lsbnd Y)(bpy)Cl](PF6) {Lsbnd Y = YC6H4Ndbnd NC(COCH3)dbnd NC9H6N, Y = H (1), CH3 (2), Br (3), NO2 (4) and bpy = 2,2‧-bipyrdine} were synthesized. The azoimine-quinoline based ligands behave as NN‧N″ tridentate donors and coordinated to ruthenium via azo-N‧, imine-N‧ and quinolone-N″ nitrogen atoms. The composition of the complexes has been established by elemental analysis, spectral methods (FT-IR, electronic, 1H NMR, UV/Vis and electrochemical (cyclic voltammetry) techniques. The crystal structure of complex 1 is reported. The Ru(II) oxidation state is greatly stabilized by the novel tridentate ligands, showing Ru(III/II) couples ranging from 0.93-1.27 V vs. Cp2Fe/Cp2Fe+. The absorption spectrum of 1 in dichloromethane was modeled by time-dependent density functional theory (TD-DFT).

  6. Preparation and reactivity of mixed-ligand ruthenium(II) hydride complexes with phosphites and polypyridyls.

    Science.gov (United States)

    Albertin, Gabriele; Antoniutti, Stefano; Bacchi, Alessia; D'Este, Claudia; Pelizzi, Giancarlo

    2004-02-23

    Chloro complexes [RuCl(N-N)P3]BPh4 (1-3) [N-N = 2,2'-bipyridine, bpy; 1,10-phenanthroline, phen; 5,5'-dimethyl-2,2'-bipyridine, 5,5'-Me2bpy; P = P(OEt)3, PPh(OEt)2 and PPh2OEt] were prepared by allowing the [RuCl4(N-N)].H2O compounds to react with an excess of phosphite in ethanol. The bis(bipyridine) [RuCl(bpy)2[P(OEt)3

  7. Synthesis and characterisation of ruthenium carbonyl complexes with cyclometallated ligands derived from senecialdimine

    NARCIS (Netherlands)

    Mul, WP; Elsevier, CJ; Vuurman, MA; Smeets, WJJ; Spek, AL; deBoer, JL

    1997-01-01

    From thermal reactions of Ru-3(CO)(12) with senecialdimine, (CH3)(2)C=CHCH=NR (R = iPr (a), t-Bu (b)), in refluxing heptanes the following complexes have been isolated and characterised: Ru-2(CO)(6)[(CH3)(2)C(H)CC(H)NR] (2a,b), Ru-2(Co)(6)[C(H)C(CH3)C(H)C(H)=NR] (3a,b), [HRu6(CO)(18)][2-(C(H)=C(CH3)

  8. The Effect of Dye Density on the Efficiency of Photosensitization of TiO2 Films: Light-Harvesting by Phenothiazine-Labelled Dendritic Ruthenium Complexes

    Directory of Open Access Journals (Sweden)

    Lin-Yong Zhu

    2009-09-01

    Full Text Available A family of dendritic tris-bipyridyl ruthenium coordination complexes incorporating two or four carboxylate groups for binding to a TiO2 surface site and another dendritic linker between the metal complex and highly absorptive dyes were formulated as thin films on TiO2 coated glass. The family included phenothiazine-substituted dendrons of increasing structural complexity and higher optical density. The dye-loaded films were characterized by steady-state emission and absorption measurements and by kinetic studies of luminescence and transient absorption. Upon photoexcitation of the bound dyes, rapid electron injection into the metal oxide film was the dominant observed process, producing oxidized dye that persisted for hundreds of milliseconds. Complex decay profiles for emission, transient absorption, and optical bleaching of the dendritic dyes point to highly heterogeneous behavior for the films, with observed persistence lifetimes related directly to structurally enhance electronic coupling between the metal oxide support and the dendritic dyes.

  9. A Mesoionic Carbene as Neutral Ligand for Phosphorescent Cationic Ir(III) Complexes.

    Science.gov (United States)

    Baschieri, Andrea; Monti, Filippo; Matteucci, Elia; Mazzanti, Andrea; Barbieri, Andrea; Armaroli, Nicola; Sambri, Letizia

    2016-08-15

    Two phosphorescent Ir(III) complexes bearing a mesoionic carbene ligand based on 1,2,3-triazolylidene are obtained for the first time. A silver-iridium transmetalation of the in situ-generated mesoionic carbene affords the cationic dichloro complex [Ir(trizpy)2Cl2](+) (3, trizpy = 1-benzyl-3-methyl-4-(pyridin-2-yl)-1H-1,2,3-triazolylidene) that reacts with a bis-tetrazolate (b-trz) dianionic ligand to give [Ir(trizpy)2(b-trz)](+) (5). The new compounds are fully characterized by NMR spectroscopy and mass spectrometry, and the X-ray structure of 3 is determined. The electrochemical behavior is somewhat different compared to most standard cationic iridium complexes. The first oxidation process is shifted to substantially higher potential in both 3 and 5, due to peculiar and different ligand-induced effects in the two cases, which stabilize the highest occupied molecular orbital; reduction processes are centered on the mesoionic carbene ligands. Both compounds exhibit a mostly ligand-centered luminescence band in the blue-green spectral region, substantially stronger in the case of 5 versus 3, both in CH3CN solution and in poly(methyl methacrylate) matrix at room temperature. Optimized geometries, orbital energies, spin densities, and electronic transitions are determined via density functional theory calculations, which support a full rationalization of the electrochemical and photophysical behavior. This work paves the way for the development of Ir-based emitters with neutral mesoionic carbene ligands and anionic ancillary ligands, a new concept in the area of cationic Ir(III) complexes. PMID:27483041

  10. Synthesis, Spectroscopy and Crystal Structure of a New Copper Complex Builtup by Cationic (Dimethylphosphorylmethanaminium Ligands

    Directory of Open Access Journals (Sweden)

    Manuela E. Richert

    2014-05-01

    Full Text Available A new transition metal complex of the mono-protonated ligand (dimethylphosphorylmethanamine (dpmaH+ was obtained by equimolar reaction of copper(II chloride dihydrate and dpma in concentrated hydrochloric acid. The asymmetric unit of the title structure, [CuCl2(C3H11NOP4][CuCl4]2, consists of one half of a fourfold charged trans-dichloridotetrakis[(dimethylphosphorylmethanaminium]copper(II complex with the copper atom located on an inversion centre and one tetrachloridocuprate(II dianion found in a general position. The copper centre in the cationic complex shows a tetragonally distorted octahedral environment composed of four oxygen atoms in a square plane and two trans-coordinated chlorido ligands. This 4+2-coordination causes elongated Cu-Cl distances because of the Jahn-Teller effect. The geometry of the tetrachloridocuprate(II dianion is best described as a seriously distorted tetrahedron. Analysis of the hydrogen bonding scheme by graph-set theory shows three patterns of rings in the title compound. The cationic copper complex reveals intramolecular hydrogen bonds between two aminium groups and the two axial chlorido ligands. Further hydrogen bonding among the cations and anions, more precisely between four aminium groups and the chlorido ligands of four adjacent tetrachloridocuprate(II anions, lead to a chain-type structure. Comparing the coordination chemistry of the title structure with an analogue cobalt(II compound only disclose differences in hydrogen bonding pattern resulting in an unusual chain propagation. Besides the crystal structure received spectroscopic data are in accordance with appropriate literature.

  11. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

    Energy Technology Data Exchange (ETDEWEB)

    Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2008-01-31

    Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.

  12. Crystal structure, physical, and photophysical properties of a ruthenium(II) bipyridine diazafluorenone complex

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Jackman, D.C.; Rillema, D.P. [Univ. of North Carolina, Charlotte, NC (United States)] [and others

    1995-09-01

    The complex [Ru(bpy){sub 2}(dafo)](PF{sub 6}){sub 2}, where bpy is 2,2{prime}-bipyridine and dafo is diazafluorenone crystallizes in the space group P2{sub 1}/n with a = 9.5059(3){angstrom}, b = 14.002(2){angstrom} and c = 25.783(8){angstrom}. The coordination geometry of the Ru atom is that of a distorted octahedron with a RuN{sub 6} core. The two Ru-N bond distances to the dafo ligand are 2.13(1) and 2.15(1) {angstrom}; the four Ru-N bond distances to the bipyridine ligands are 2.03(1), 2.05(1), 2.06(1), and 2.07(1) {angstrom}. The three shortest Ru-N distances are trans to the three longest Ru-N distances. The complex is oxidized and reduced reversibly at 1.41 and -0.65 V vs. SSCE, respectively. It displays absorptions at 438 nm (1.6 x 10{sup 4}), 285 nm (6.2 x 10{sup 4}), and 240 nm (4.1 x 10{sup 4}) and a broad emission centered at 626 nm in water at room temperature. The emission lifetime is 420 ns and the emission quantum yield is 5.3 x 10{sup -4}.

  13. Complexes of ruthenium(III) with some 2-aminothiazole derivatives/synthesis, properties and pharmacological studies.

    Science.gov (United States)

    Nikolova, Antonina; Ivanov, Darvin; Bontchev, Panayot; Buyukliev, Rossen; Mehandjiev, Dimitar; Gochev, Georgi; Konstantinov, Spiro; Karaivanova, Margarita

    2004-01-01

    Four new complexes of Ru(III) with a general formula [Ru(L)2Cl2]Cl, where L = 2-amino-4-phenylthiazole (CAS 2010-06-2), 2-amino-4-methylthiazole (CAS 1603-91-4), ethyl 2-amino-4-methyl-5-thiazolecarboxylate (CAS 7210-76-6) and ethyl 2-amino-4-phenyl-5-thiazolecarboxylate (CAS 64399-23-1), were prepared. The syntheses were carried out in polar medium and inert atmosphere at a molar ratio Ru:L = 1:2 or 1:3. The compounds obtained were characterised by IR-, 1H-NMR- 13C-NMR-, UV-VIS-, EPR spectroscopy, magnetochemical and conductivity measurements. The ligands behaved as bidental, bounding Ru(III) through the nitrogen atoms from the amino group and the heterocycle. The complex of ethyl 2-amino-4-phenyl-5-thiazolecarboxylate showed significant antileukaemic activity on various human cells (IC50 values ranging from 20 to 92 micromol/l). Toxicological studies on mice indicated that such concentrations could be reached without mortality. This compound exhibited a promising antineoplastic potential and needs further pharmacological and toxicological evaluation.

  14. New water-soluble ruthenium(II) cytotoxic complex: biological activity and cellular distribution.

    Science.gov (United States)

    Morais, Tânia S; Santos, Filipa C; Jorge, Tiago F; Côrte-Real, Leonor; Madeira, Paulo J Amorim; Marques, Fernanda; Robalo, M Paula; Matos, António; Santos, Isabel; Garcia, M Helena

    2014-01-01

    A novel water soluble organometallic compound, [RuCp(mTPPMSNa)(2,2'-bipy)][CF3SO3] (TM85, where Cp=η(5)-cyclopentadienyl, mTPPMS=diphenylphosphane-benzene-3-sulfonate and 2,2'-bipy=2,2'-bipyridine) is presented herein. Studies of interactions with relevant proteins were performed to understand the behavior and mode of action of this complex in the biological environment. Electrochemical and fluorescence studies showed that TM85 strongly binds to albumin. Studies carried out to study the formation of TM85 which adducts with ubiquitin and cytochrome c were performed by electrospray ionization mass spectrometry (ESI-MS). Antitumor activity was evaluated against a variety of human cancer cell lines, namely A2780, A2780cisR, MCF7, MDAMB231, HT29, PC3 and V79 non-tumorigenic cells and compared with the reference drug cisplatin. TM85 cytotoxic effect was reduced in the presence of endocytosis modulators at low temperatures, suggesting an energy-dependent mechanism consistent with endocytosis. Ultrastructural analysis by transmission electron microscopy (TEM) revealed that TM85 targets the endomembranar system disrupting the Golgi and also affects the mitochondria. Disruption of plasma membrane observed by flow cytometry could lead to cellular damage and cell death. On the whole, the biological activity evaluated herein combined with the water solubility property suggests that complex TM85 could be a promising anticancer agent. PMID:24145065

  15. Synthesis, characterization and biological evaluation of labile intercalative ruthenium(ii) complexes for anticancer drug screening.

    Science.gov (United States)

    Huang, Huaiyi; Zhang, Pingyu; Chen, Yu; Qiu, Kangqiang; Jin, Chengzhi; Ji, Liangnian; Chao, Hui

    2016-08-16

    DNA binding and DNA transcription inhibition is regarded as a promising strategy for cancer chemotherapy. Herein, chloro terpyridyl Ru(ii) complexes, [Ru(tpy)(N^N)Cl](+) (Ru1, N^N = 2,2'-bipyridine; Ru2, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]acenaphthylene; Ru3, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]phenanthrene; Ru4, N^N = 3-(pyrazin-2-yl)-as-triazino[5,6-f]pyrene) were prepared as DNA intercalative and covalent binding anticancer agents. The chloro ligand hydrolysis slowly and the octanol and water partition coefficient of Ru2-Ru4 were between 0.6 and 1.2. MALDI-TOF mass, DNA gel electrophoresis confirmed covalent and intercalative DNA binding modes of Ru2-Ru4, while Ru1 can only bind DNA covalently. As a result, Ru2-Ru4 exhibited stronger DNA transcription inhibition activity, higher cell uptake efficiency and better anticancer activity than Ru1. Ru4 was the most toxic complex toward all cancer cells which inhibited DNA replication and transcription. AO/EB, Annexin V/PI, nuclear staining, JC-1 assays further confirmed that Ru2-Ru4 induced cancer cell death by an apoptosis mechanism. PMID:27294337

  16. Formation of intra- and interparticle polyelectrolyte complexes between cationic nanogel and strong polyanion.

    Science.gov (United States)

    Ogawa, Kazuyoshi; Sato, Seigo; Kokufuta, Etsuo

    2005-05-24

    Polyelectrolyte complex formation of a strong polyanion, potassium poly(vinyl alcohol) sulfate (KPVS), with positively charged nanogels was studied at 25 degrees C in aqueous solutions with different KCl concentrations (C(s)) as a function of the polyion-nanogel mixing ratio based on moles of anions versus cations. Used as the gel sample was a polyampholytic nanogel consisting of lightly cross-linked terpolymer chains of N-isopropylacrylamide, acrylic acid, and 1-vinylimidazole; thus, the complexation was performed at pH 3 at which the imidazole groups are fully protonated to generate positive charges. Turbidimetric titration was employed to vary the mixing ratio. Also employed for studies of the resulting complexes at different stages of the titration were dynamic light scattering (DLS) and static light scattering (SLS) techniques. It was found from the titration as well as DLS and SLS that there is a critical mixing ratio (cmr) at which both the size and molar mass of the complexed gel particles abruptly increase. The value of the cmr at C(s) = 0 or 0.01 M (mol/L) was observed at approximately 1:1 mixing ratio of anions versus cations but at lower mixing ratios than the 1:1 ratio under conditions of C(s) = 0.05 and 0.1 M. At the mixing ratios less than the cmr, the molar mass of the complex agrees with that of one gel particle with the calculated amount of the bound KPVS ions, indicating the formation of an "intraparticle" KPVS-nanogel complex, by the aggregation of which an "interparticle" complex is formed at the cmr. During the process of the intraparticle complex formation, both the hydrodynamic radius by DLS and the radius gyration by SLS decreased with increasing mixing ratio, demonstrating the gel collapse due to the complexation. At C(s) = 0 or 0.01 M and under conditions where the amount of KPVS bindings was less than half of the nanogel cations, however, the decrease of the hydrodynamic radius was very small, while the radius gyration fell monotonically

  17. A Long-Lived Mononuclear Cyclopentadienyl Ruthenium Complex Grafted onto Anatase TiO2 for Efficient CO2 Photoreduction.

    Science.gov (United States)

    Huang, Haowei; Lin, Jinjin; Zhu, Gangbei; Weng, Yuxiang; Wang, Xuxu; Fu, Xianzhi; Long, Jinlin

    2016-07-11

    This work shows a novel artificial donor-catalyst-acceptor triad photosystem based on a mononuclear C5 H5 -RuH complex oxo-bridged TiO2 hybrid for efficient CO2 photoreduction. An impressive quantum efficiency of 0.56 % for CH4 under visible-light irradiation was achieved over the triad photocatalyst, in which TiO2 and C5 H5 -RuH serve as the electron collector and CO2 -reduction site and the photon-harvester and water-oxidation site, respectively. The fast electron injection from the excited Ru(2+) cation to TiO2 in ca. 0.5 ps and the slow backward charge recombination in half-life of ca. 9.8 μs result in a long-lived D(+) -C-A(-) charge-separated state responsible for the solar-fuel production. PMID:27237701

  18. Chapter 17 - Engineering cationic liposome siRNA complexes for in vitro and in vivo delivery.

    Science.gov (United States)

    Podesta, Jennifer E; Kostarelos, Kostas

    2009-01-01

    RNA interference, the sequence-specific silencing of gene expression by introduction of short interfering RNA (siRNA) is a powerful tool that that the potential to act as a therapeutic agent and the advantage of decreasing toxic effects on normal tissue sometimes seen with conventional treatments i.e. small molecule inhibitors. Naked, unmodified siRNA is poorly taken up by cells and is subject to degradation when exposed to blood proteins during systemic administration. It has also been shown to produce non-specific immune response as well as having the potential to generate 'off-target' effects. Therefore there is a requirement for a delivery system to not only protect the siRNA and facilitate its uptake, but additionally to offer the potential for targeted delivery with an aim of exploiting the high specificity afforded by RNA interference. Cationic liposomes are the most studied, non-viral delivery system used for nucleic acid delivery. As such, the use of cationic liposomes is promising for siRNA for delivery. Furthermore, polyethylene glycol (PEG) can be incorporated into the liposome formulation to create sterically stabilized or 'stealth' liposomes. Addition of PEG can reduce recognition by the reticuloendothelial system (RES) thereby prolonging circulation time. Here we describe a methodology for the complexation of siRNA with cationic liposomes and PEGylated liposomes using two protocols: mixing and encapsulation. Moreover, the different formulations are compared head to head to demonstrate their efficacy for gene silencing.

  19. Effects of Anions and Cations on π-Complexation Between Olefin and Metal Halide

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jin-xia; ZHANG Yong-chun; GUO Xin-wen

    2005-01-01

    An ab initio molecular orbital study was performed to determine the effects of anions and cations on the π-complexation of C2H4 on MX(M=Ag, Cu; X=F, Cl). The calculated results show the following order of adsorption strength: F->Cl- for anions; Cu+>Ag+ for cations. The results can be explained by the detailed analysis of atomic charge, orbital energy and orbital population by using the natural bond orbital(NBO) theory: (1) anions with stronger electronegativity can attract more electrons from the s orbital of M, while at the same time it does not obviously weaken the d orbital occupation of M, thus the nearly vacant s orbital and the sufficiently filled d orbitals of M help with forming σ-donation and d-π* backdonation with the π orbital and the π* orbital of olefin, respectively; (2) a smaller energy gap of symmetry-adapted orbitals between olefin and a cation can favor the electron transfer, that is why Cu+ forms stronger adsorption with olefin than Ag+does.

  20. Bis-mixed-carbene ruthenium-thiolate-alkylidene complexes: synthesis and olefin metathesis activity.

    Science.gov (United States)

    Dahcheh, Fatme; Stephan, Douglas W

    2015-01-28

    A series of bis-carbene Ru-hydride species, including (IMes)(Im(OMe)2)(PPh3)RuHCl (1) and (SIMes)(Me2Im(OMe)2)(PPh3)RuHCl (2) were prepared and subsequently shown to react with aryl-vinyl-sulfides to give the bis-carbene-alkylidene complexes: Im(OMe)2(SIMes)RuCl(SR)(=CHCH3) (R = p-FC6H4 (3), p-(NO2)C6H4 (4)), Im(OMe)2(IMes)RuCl(=CHCH3)(SPh) (5), Me2Im(OMe)2(SIMes)RuCl(=CHCH3)(SPh) (6), Im(OMe)2(SIMes)(F5C6S)RuCl(=CHR) (R = C4H9 (9), C5H11 (10)). The activity of these species in the standard Grubbs' tests for ring-opening metathesis polymerization, ring-closing and cross-metathesis are reported. Although these thiolate derivatives are shown to exhibit modest metathesis activities, the reactivity is enhanced in the presence of BCl3.

  1. Bis-mixed-carbene ruthenium-thiolate-alkylidene complexes: synthesis and olefin metathesis activity.

    Science.gov (United States)

    Dahcheh, Fatme; Stephan, Douglas W

    2015-01-28

    A series of bis-carbene Ru-hydride species, including (IMes)(Im(OMe)2)(PPh3)RuHCl (1) and (SIMes)(Me2Im(OMe)2)(PPh3)RuHCl (2) were prepared and subsequently shown to react with aryl-vinyl-sulfides to give the bis-carbene-alkylidene complexes: Im(OMe)2(SIMes)RuCl(SR)(=CHCH3) (R = p-FC6H4 (3), p-(NO2)C6H4 (4)), Im(OMe)2(IMes)RuCl(=CHCH3)(SPh) (5), Me2Im(OMe)2(SIMes)RuCl(=CHCH3)(SPh) (6), Im(OMe)2(SIMes)(F5C6S)RuCl(=CHR) (R = C4H9 (9), C5H11 (10)). The activity of these species in the standard Grubbs' tests for ring-opening metathesis polymerization, ring-closing and cross-metathesis are reported. Although these thiolate derivatives are shown to exhibit modest metathesis activities, the reactivity is enhanced in the presence of BCl3. PMID:25462569

  2. Liquid-liquid extraction and separation of VIII group elements, especially ruthenium, by synergic combinations or aromatic polyimines and micellar cationic exchangers

    International Nuclear Information System (INIS)

    This thesis aims to characterize and to quantify the chemical equilibria involved in d-elements liquid-liquid extraction systems, especially elements belonging to the VIII group (Fe, Ni, Co, Ru, Rh, Pd, Pt). These systems are composed of synergic combination of aromatic polyimines and micellar cationic exchangers. Substitutions are first performed in aqueous acidic media by aromatic polyimines; then extractions are operated using micellic canionic exchangers. Chemical equilibria, selectivity effects, especially those due to ion-pair formations, kinetics, extractant behaviour are analysed and quantified

  3. Spacial Structure of Cationic Phosphorus Ligand-Ru (Ⅱ) Halide Complexes-by DFT Study

    Institute of Scientific and Technical Information of China (English)

    Yi Xin ZHAO; Shu Guang WANG

    2005-01-01

    The full-parameter geometry optimization of cationic (S)-BINAP-Ru (Ⅱ) halide complex was performed by DFT method using B3LYP, PW91 and PBE potentials with several basis sets. PW91 with 3-21G / SDD basis sets is found to be the most suitable method with consideration of both precision and efficiency. The dihedral angles (θ) of the binaphthyl or biphenyl with different phosphorus ligand-Ru (Ⅱ) halide complexes were found changing from 59.9 to 79.3 degree, while the natural bite angle (βn) of those complexes only changes from 87.4to 90.3 degree. It is different from the common view of asymmetric organic chemists' that θ directly influences βn.

  4. Ruthenium Polypyridyl Complex Inhibits Growth and Metastasis of Breast Cancer Cells by Suppressing FAK signaling with Enhancement of TRAIL-induced Apoptosis

    Science.gov (United States)

    Cao, Wenqiang; Zheng, Wenjie; Chen, Tianfeng

    2015-03-01

    Ruthenium-based complexes have emerged as promising antitumor and antimetastatic agents during the past decades. However, the limited understanding of the antimetastatic mechanisms of these agents is a roadblock to their clinical application. Herein, we reported that, RuPOP, a ruthenium polypyridyl complex with potent antitumor activity, was able to effectively inhibit growth and metastasis of MDA-MB-231 cells and synergistically enhance TRAIL-induced apoptosis. The selective intracellular uptake and cytotoxic effect of RuPOP was found associated with transferring receptor (TfR)-mediated endocytosis. Further investigation on intracellular mechanisms reveled that RuPOP notably suppressed FAK-mediated ERK and Akt activation. Pretreatment of cells with ERK inhibitor (U0126) and PI3K inhibitor (LY294002) significantly potentiated the inhibitory effect of RuPOP on cell growth, migration and invasion. Moreover, the alternation in the expression levels of metastatic regulatory proteins, including uPA, MMP-2/-9, and inhibition of VEGF secretion were also observed after RuPOP treatment. These results demonstrate the inhibitory effect of RuPOP on the growth and metastasis of cancer cells and the enhancement of TRAIL-induced apoptosis though suppression of FAK-mediated signaling. Furthermore, RuPOP exhibits the potential to be developed as a metal-based antimetastatic agent and chemosensitizer of TRAIL for the treatment of human metastatic cancers.

  5. Bell Curve for Transfection by Lamellar Cationic Lipid--DNA Complexes

    Science.gov (United States)

    Ahmad, A.; Evans, Heather M.; Ewert, K.; George, C. X.; Samuel, C. E.; Safinya, C. R.

    2004-03-01

    Cationic liposomes (CL) present a viable alternative to viral delivery of therapeutic DNA to cells. We combine CL with DNA in order to form complexes that can deliver foreign DNA (genes) to cells. In trying to improve the transfection efficiency (TE) of lamellar CL-DNA complexes, we have identified universal trends depending on the headgroup size and charge of the cationic lipid. By using new multivalent lipids ranging from 2+ to 16+ (e.g. Ewert et al, J. Med. Chem. 2002; 45: 5023) we are able to access a wide range of membrane charge density values, or σ _M. TE plots vs. σ M for multivalent lipids merge onto a universal curve with a Gaussian shape. The optimal σ M depends on the overall CL/DNA charge. The universal TE curve shows three regimes related to cellular obstacles: at low σ _M, TE is limited by endosomal escape of CL-DNA, while at high σ M TE is limited by complex dissociation and DNA release into the cytoplasm. Funded by NIH GM-59288 and NSF DMR-0203755.

  6. Time-resolved FRET and PCT in cationic conjugated polymer/dye-labeled DNA complex

    Science.gov (United States)

    Kim, Inhong; Kim, Jihoon; Kim, Bumjin; Kang, Mijeong; Woo, Han Young; Kyhm, Kwangseuk

    2011-12-01

    The energy transfer mechanism between cationic conjugated polyelectrolytes and a single stranded DNA labeled with fluorescein was investigated in terms of Förster resonance energy transfer (FRET) and photo-induced charge transfer (PCT) by time-resolved fluorescence. Both FRET and PCT rate efficiencies were obtained by phenomenological coupled rate equations, which are in excellent agreement with experiments. We found the total energy transfer in the complex is maximized as a consequence of FRET and PCT at an optimum distance 32.7Å.

  7. Functional Mn–Mg{sub k} cation complexes in GaN featured by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Devillers, T., E-mail: thibaut.devillers@jku.at; Bonanni, A., E-mail: alberta.bonanni@jku.at [Institut für Halbleiter-und-Festkörperphysik, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz (Austria); Leite, D. M. G. [Instituto de Física e Química, Universidade Federal de Itajubá, 37500-903, Itajubá–MG (Brazil); Department of Physics, São Paulo State University, Bauru–SP (Brazil); Dias da Silva, J. H. [Department of Physics, São Paulo State University, Bauru–SP (Brazil)

    2013-11-18

    The evolution of the optical branch in the Raman spectra of (Ga,Mn)N:Mg epitaxial layers as a function of the Mn and Mg concentrations, reveals the interplay between the two dopants. We demonstrate that the various Mn-Mg-induced vibrational modes can be understood in the picture of functional Mn–Mg{sub k} complexes formed when substitutional Mn cations are bound to k substitutional Mg through nitrogen atoms, the number of ligands k being driven by the ratio between the Mg and the Mn concentrations.

  8. Assignment of Pre-Edge Features in the Ru K-Edge X-Ray Absorption Spectra of Organometallic Ruthenium Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Getty, K.; Delgado-Jaime, M.U.; Kennepohl, P.

    2009-05-18

    The nature of the lowest energy bound-state transition in the Ru K-edge X-ray absorption spectra for a series of Grubbs-type ruthenium complexes was investigated. The pre-edge feature was unambiguously assigned as resulting from formally electric dipole forbidden Ru 4d {l_arrow} 1s transitions. The intensities of these transitions are extremely sensitive to the ligand environment and the symmetry of the metal centre. In centrosymmetric complexes the pre-edge is very weak since it is limited by the weak electric quadrupole intensity mechanism. By contrast, upon breaking centrosymmetry, Ru 5p-4d mixing allows for introduction of electric dipole allowed character resulting in a dramatic increase in the pre-edge intensity. The information content of this approach is explored as it relates to complexes of importance in olefin metathesis and its relevance as a tool for the study of reactive intermediates.

  9. Solution chemistry of a water-soluble eta2-H2 ruthenium complex: evidence for coordinated H2 acting as a hydrogen bond donor.

    Science.gov (United States)

    Szymczak, Nathaniel K; Zakharov, Lev N; Tyler, David R

    2006-12-13

    The ability of an eta2-H2 ligand to participate in intermolecular hydrogen bonding in solution has long been an unresolved issue. Such species are proposed to be key intermediates in numerous important reactions such as the proton-transfer pathway of H2 production by hydrogenase enzymes. We present the synthesis of several new water-soluble ruthenium coordination complexes including an eta2-H2 complex that is surprisingly inert to substitution by water. The existence of dihydrogen hydrogen bonding (DHHB) was experimentally probed by monitoring the chemical shift of H-bonded Ru-(H2) complexes using NMR spectroscopy, by UV-visible spectroscopy, and by monitoring the rotational dynamics of a hydrogen-bonding probe molecule. The results provide strong evidence that coordinated H2 can indeed participate in intermolecular hydrogen bonding to bulk solvent and other H-bond acceptors. PMID:17147394

  10. Adsorption of Cationic Laser Dye onto Polymer/Surfactant Complex Film

    Institute of Scientific and Technical Information of China (English)

    Pabitra Kumar Paul; Syed Arshad Hussain; Debajyoti Bhattacharjee; Mrinal Pal

    2011-01-01

    Fabrication of complex molecular films of organic materials is one of the most important issues in modern nanoscience and nanotechnology. Soft materials with flexible properties have been given much attention and can be obtained through bottom up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and technologies. In this work, we report the successful incorporation of cationic laser dye rhodamine 6G abbreviated as R6G into the pre-assembled polyelectrolyte/surfactant complex film onto quartz substrate by electrostatic adsorption technique. Poly(allylamine hydrochloride) (PAH) was used as polycation and sodium dodecyl sulphate (SDS) was used as anionic surfactant. UV-Vis absorption spectroscopic characterization reveals the formation of only H-type aggregates of R6G in their aqueous solution and both H- and J-type aggregates in PAH/SDS/R6G complex layer-by-layber films as well as the adsorption kinetics of R6G onto the complex films. The ratio of the absorbance intensity of two aggregated bands in PAH/SDS/R6G complex films is merely independent of the concentration range of the SDS solution used to fabricate PAH/SDS complex self-assembled films. Atomic force microscopy reveals the formation of R6G aggregates in PAH/SDS/R6G complex films.

  11. Ruthenium, rhodium, osmium, and iridium complexes of osazones (osazones = bis-arylhydrazones of glyoxal): radical versus nonradical states.

    Science.gov (United States)

    Patra, Sarat Chandra; Weyhermüller, Thomas; Ghosh, Prasanta

    2014-03-01

    Phenyl osazone (L(NHPh)H2), phenyl osazone anion radical (L(NHPh)H2(•-)), benzoyl osazone (L(NHCOPh)H2), benzoyl osazone anion radical (L(NHCOPh)H2(•-)), benzoyl osazone monoanion (L(NCOPh)HMe(-)), and anilido osazone (L(NHCONHPh)HMe) complexes of ruthenium, osmium, rhodium, and iridium of the types trans-[Os(L(NHPh)H2)(PPh3)2Br2] (3), trans-[Ir(L(NHPh)H2(•-))(PPh3)2Cl2] (4), trans-[Ru(L(NHCOPh)H2)(PPh3)2Cl2] (5), trans-[Os(L(NHCOPh)H2)(PPh3)2Br2] (6), trans- [Rh(L(NHCOPh)H2(•-))(PPh3)2Cl2] (7), trans-[Rh(L(NHCOPh)HMe(-))(PPh3)2Cl]PF6 ([8]PF6), and trans-[Ru(L(NHCONHPh)HMe)(PPh3)2Cl]Cl ([9]Cl) have been isolated and compared (osazones = bis-arylhydrazones of glyoxal). The complexes have been characterized by elemental analyses and IR, mass, and (1)H NMR spectra; in addition, single-crystal X-ray structure determinations of 5, 6, [8]PF6, and [9]Cl have been carried out. EPR spectra of 4 and 7 reveal that in the solid state they are osazone anion radical complexes (4, gav = 1.989; 7, 2.028 (Δg = 0.103)), while in solution the contribution of the M(II) ions is greater (4, gav = 2.052 (Δg = 0.189); 7, gav = 2.102 (Δg = 0.238)). Mulliken spin densities on L(NHPh)H2 and L(NHCOPh)H2 obtained from unrestricted density functional theory (DFT) calculations on trans-[Ir(L(NHPh)H2)(PMe3)2Cl2] (4(Me)) and trans-[Rh(L(NHCOPh)H2)(PMe3)2Cl2] (7(Me)) in the gas phase with doublet spin states authenticated the existence of L(NHPh)H2(•-) and L(NHCOPh)H2(•-) anion radicals in 4 and 7 coordinated to iridium(III) and rhodium(III) ions. DFT calculations on trans-[Os(L(NHPh)H2)(PMe3)2Br2] (3(Me)), trans-[Os(L(NHCOPh)H2)(PMe3)2Br2] (6(Me)), and trans-[Ru(L(NHCONHPh)HMe(-))(PMe3)2Cl] [9(Me)](+) with singlet spin states established that the closed-shell singlet state (CSS) solutions of 3, 5, 6, and [9]Cl are stable. The lower value of M(III)/M(II) reduction potentials and lower energy absorption bands corroborate the higher extent of mixing of d orbitals with the π* orbital

  12. Influence of the substitution of {beta}-cyclodextrins by cationic groups on the complexation of organic anions

    Energy Technology Data Exchange (ETDEWEB)

    Hbaieb, S. [U.R. Physico-Chimie des Materiaux Solides, Faculte des Sciences de Tunis, Manar II, 2092 Tunis (Tunisia)], E-mail: Souhairabouchaira@yahoo.fr; Kalfat, R. [U.R. Physico-Chimie des Materiaux Solides, Faculte des Sciences de Tunis, Manar II, 2092 Tunis (Tunisia); Chevalier, Y. [Laboratoire d' Automatique et de Genie des Procedes (LAGEP), UMR 5007 CNRS-Universite Claude Bernard Lyon 1, 69622 Villeurbanne (France)], E-mail: chevalier@lagep.univ-lyon1.fr; Amdouni, N. [U.R. Physico-Chimie des Materiaux Solides, Faculte des Sciences de Tunis, Manar II, 2092 Tunis (Tunisia); Parrot-Lopez, H. [Institut de Chimie et Biochimie Moleculaires et Supramoleculaires (ICBMS), UMR 5246 CNRS-Universite Claude Bernard Lyon 1, 69622 Villeurbanne (France)], E-mail: helene.parrot@univ-lyon1.fr

    2008-07-01

    The inclusion complexation of the organic anion, dansyl-acid, by cationic derivatives of {beta}-cyclodextrin has been investigated. A series of cationic {beta}-cyclodextrins with various positive charge has been synthesized by selective functionalization of the primary face of {beta}-cyclodextrin with amino groups. The complexes were of the 1:1 stoichiometry; the stability constants (K{sub 11}) have been evaluated from UV-Vis measurements by application of the Benesi-Hildebrand equation. The presence of amino groups increased the complexation ability. {beta}-cyclodextrin fully substituted at the primary face with amino groups showed the strongest inclusion binding ability towards the dansyl-acid guest. The enhanced complexation for anions was ascribed to the cationic amino groups. A simple thermodynamic model of the electrostatic contribution to the complexation is presented.

  13. Biocompatible Double-Membrane Hydrogels from Cationic Cellulose Nanocrystals and Anionic Alginate as Complexing Drugs Codelivery.

    Science.gov (United States)

    Lin, Ning; Gèze, Annabelle; Wouessidjewe, Denis; Huang, Jin; Dufresne, Alain

    2016-03-23

    A biocompatible hydrogel with a double-membrane structure is developed from cationic cellulose nanocrystals (CNC) and anionic alginate. The architecture of the double-membrane hydrogel involves an external membrane composed of neat alginate, and an internal composite hydrogel consolidates by electrostatic interactions between cationic CNC and anionic alginate. The thickness of the outer layer can be regulated by the adsorption duration of neat alginate, and the shape of the inner layer can directly determine the morphology and dimensions of the double-membrane hydrogel (microsphere, capsule, and filmlike shapes). Two drugs are introduced into the different membranes of the hydrogel, which will ensure the complexing drugs codelivery and the varied drugs release behaviors from two membranes (rapid drug release of the outer hydrogel, and prolonged drug release of the inner hydrogel). The double-membrane hydrogel containing the chemically modified cellulose nanocrystals (CCNC) in the inner membrane hydrogel can provide the sustained drug release ascribed to the "nano-obstruction effect" and "nanolocking effect" induced by the presence of CCNC components in the hydrogels. Derived from natural polysaccharides (cellulose and alginate), the novel double-membrane structure hydrogel material developed in this study is biocompatible and can realize the complexing drugs release with the first quick release of one drug and the successively slow release of another drug, which is expected to achieve the synergistic release effects or potentially provide the solution to drug resistance in biomedical application.

  14. In vitro evaluation of the cyto-genotoxic potential of Ruthenium(II) SCAR complexes: a promising class of antituberculosis agents.

    Science.gov (United States)

    De Grandis, Rone Aparecido; Resende, Flávia Aparecida; da Silva, Monize Martins; Pavan, Fernando Rogério; Batista, Alzir Azevedo; Varanda, Eliana Aparecida

    2016-03-01

    Tuberculosis is a top infectious disease killer worldwide, caused by the bacteria Mycobacterium tuberculosis. Increasing incidences of multiple drug-resistance (MDR) strains are emerging as one of the major public health threats. However, the drugs in use are still incapable of controlling the appalling upsurge of MDR. In recent years a marked number of research groups have devoted their attention toward the development of specific and cost-effective antimicrobial agents against targeted MDR-Tuberculosis. In previous studies, ruthenium(II) complexes (SCAR) have shown a promising activity against MDR-Tuberculosis although few studies have indeed considered ruthenium toxicity. Therefore, within the preclinical requirements, we have sought to determine the cyto-genotoxicity of three SCAR complexes in this present study. The treatment with the SCARs induced a concentration-dependent decrease in cell viability in CHO-K1 and HepG2 cells. Based on the clonogenic survival, SCAR 5 was found to be more cytotoxic while SCAR 6 exhibited selectivity action on tumor cells. Although SCAR 4 and 5 did not indicate any mutagenic activity as evidenced by the Ames and Cytokinesis block micronucleus cytome assays, the complex SCAR 6 was found to engender a frameshift mutation detected by Salmonella typhimurium in the presence of S9. Similarly, we observed a chromosomal damage in HepG2 cells with significant increases of micronuclei and nucleoplasmic bridges. These data indicate that SCAR 4 and 5 complexes did not show genotoxicity in our models while SCAR 6 was considered mutagenic. This study presented a comprehensive genotoxic evaluation of SCAR complexes were shown to be genotoxic in vitro. All in all, further studies are required to fully elucidate how the properties can affect human health.

  15. Binuclear ruthenium η6-arene complexes with tetradentate N,S-ligands containing the ortho-aminothiophenol motif.

    Science.gov (United States)

    Acosta-Ramirez, Alberto; Cross, Edward D; McDonald, Robert; Bierenstiel, Matthias

    2014-02-28

    A series of cationic binuclear (η(6)-cymene-Ru)2 complexes with N2S2-ligands were synthesized in 64% to 85% yield by reaction of [Ru(η(6)-cymene)Cl2]2 with bis-S,S'-(ortho-aminothiophenol)-xylenes as BF4(-) and PF6(-) salts. The compounds were studied using NMR, HRMS, UV-vis and IR spectroscopy, EA and inductively coupled plasma (ICP) MS. It was determined that the hinged binuclear Ru complexes were anti and syn diastereomers obtained in 2 : 1 ratio for ortho- and meta-xylylene bridged ligands and in a 1 : 1 ratio for the para-xylylene bridged ligand. An anion effect was found for the presence of NaBF4 with the meta-xylylene bridged system yielding the targeted binuclear Ru complex and a mononuclear Ru complex. This mononuclear S,S'-coordinated η(6)-cymene Ru chloride structure lacked amine-metal coordination and was obtained in a 1 : 3 ratio of anti : syn diastereomers which were insoluble in CH2Cl2 and soluble in DMSO and DMF. X-ray crystallographic analysis was obtained for the N2S2 ligand, 1,2-bis{(2-aminophenyl)thiomethyl}benzene, showing a CS symmetry with amine groups facing outwards with a tilt of 28.95° from the ortho-aminothiophenol pendant ring. The interatomic sulfur-sulfur distance (S-S') is 4.6405 Å within the crystal structure while accommodating a potential metal bite angle from 1.0 Å to 5.9 Å when allowing rotation of the methylene phenyl bond. PMID:24284434

  16. A dinuclear ruthenium(II) complex as a one- and two-photon luminescent probe for biological Cu(2+) detection.

    Science.gov (United States)

    Zhang, Pingyu; Pei, Lingmin; Chen, Yu; Xu, Wenchao; Lin, Qitian; Wang, Jinquan; Wu, Jingheng; Shen, Yong; Ji, Liangnian; Chao, Hui

    2013-11-11

    A new dinuclear Ru(II) polypyridyl complex, [(bpy)2 Ru(H2 bpip)Ru(bpy)2 ](4+) (RuH2 bpip, bpy=2,2-bipyridine, H2 bpip=2,6-pyridyl(imidazo[4,5-f][1,10]phenanthroline), was developed to act as a one- and two-photon luminescent probe for biological Cu(2+) detection. This Ru(II) complex shows a significant two-photon absorption cross section (400 GM) and displays a remarkable one- and two-photon luminescence switch in the presence of Cu(2+) ions. Importantly, RuH2 bpip can selectively recognise Cu(2+) in aqueous media in the presence of other abundant cellular cations (such as Na(+) , K(+) , Mg(2+) , and Ca(2+) ), trace metal ions in organisms (such as Zn(2+) , Ag(+) , Fe(3+) , Fe(2+) , Ni(2+) , Mn(2+) , and Co(2+) ), prevalent toxic metal ions in the environment (such as Cd(2+) , Hg(2+) , and Cr(3+) ), and amino acids, with high sensitivity (detection limit≤3.33×10(-8)  M) and a rapid response time (≤15 s). The biological applications of RuH2 bpip were also evaluated and it was found to exhibit low cytotoxicity, good water solubility, and membrane permeability; RuH2 bpip was, therefore, employed as a sensing probe for the detection of Cu(2+) in living cells and zebrafish. PMID:24166837

  17. Polyanionic Biopolymers for the Delivery of Pt(II Cationic Antiproliferative Complexes

    Directory of Open Access Journals (Sweden)

    Mauro Ravera

    2016-01-01

    Full Text Available Phenanthriplatin, that is, (SP-4-3-diamminechlorido(phenanthridineplatinum(II nitrate, an effective antitumor cationic Pt(II complex, was loaded on negatively charged dextran sulfate (DS as a model vector for drug delivery via electrostatic interactions. The free complex and the corresponding conjugate with DS were tested on two standard human tumor cell lines, namely, ovarian A2780 and colon HCT 116, and on several malignant pleural mesothelioma cell lines (namely, epithelioid BR95, mixed/biphasic MG06, sarcomatoid MM98, and sarcomatoid cisplatin-resistant MM98R. The in vitro results suggest that the conjugate releases the active metabolite phenanthriplatin with a biphasic fashion. In these experimental conditions, the conjugate is slightly less active than free phenanthriplatin; but both exhibited antiproliferative potency higher than the reference metallodrug cisplatin and were able to overcome the acquired cisplatin chemoresistance in MM98R cells.

  18. Superior Light-Harvesting Heteroleptic Ruthenium(II) Complexes with Electron-Donating Antennas for High Performance Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Chen, Wang-Chao; Kong, Fan-Tai; Li, Zhao-Qian; Pan, Jia-Hong; Liu, Xue-Peng; Guo, Fu-Ling; Zhou, Li; Huang, Yang; Yu, Ting; Dai, Song-Yuan

    2016-08-01

    Three heteroleptic polypyridyl ruthenium complexes, RC-41, RC-42, and RC-43, with efficient electron-donating antennas in the ancillary ligands were designed, synthesized, and characterized as sensitizers for dye-sensitized solar cell. All the RC dye sensitizers showed remarkable light-harvesting capacity and broadened absorption range. Significantly, RC-43 obtained the lower energy metal-ligand charge transfer (MLCT) band peaked at 557 nm with a high molar extinction coefficient of 27 400 M(-1) cm(-1). In conjunction with TiO2 photoanode of submicrospheres and iodide-based electrolytes, the DSSCs sensitizing with the RC sensitizers, achieved impressively high short-circuit current density (19.04 mA cm(-2) for RC-41, 19.83 mA cm(-2) for RC-42, and 20.21 mA cm(-2) for RC-43) and power conversion efficiency (10.07% for RC-41, 10.52% for RC-42, and 10.78% for RC-43). The superior performances of RC dye sensitizers were attributed to the enhanced light-harvesting capacity and incident-photon-to-current efficiency (IPCE) caused by the introduction of electron-donating antennas in the ancillary ligands. The interfacial charge recombination/regeneration kinetics and electron lifetime were further evaluated by the electrochemical impedance spectroscopy (EIS) and transient absorption spectroscopy (TAS). These data decisively revealed the dependences on the photovoltaic performance of ruthenium sensitizers incorporating electron-donating antennas. PMID:27409513

  19. Superior Light-Harvesting Heteroleptic Ruthenium(II) Complexes with Electron-Donating Antennas for High Performance Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Chen, Wang-Chao; Kong, Fan-Tai; Li, Zhao-Qian; Pan, Jia-Hong; Liu, Xue-Peng; Guo, Fu-Ling; Zhou, Li; Huang, Yang; Yu, Ting; Dai, Song-Yuan

    2016-08-01

    Three heteroleptic polypyridyl ruthenium complexes, RC-41, RC-42, and RC-43, with efficient electron-donating antennas in the ancillary ligands were designed, synthesized, and characterized as sensitizers for dye-sensitized solar cell. All the RC dye sensitizers showed remarkable light-harvesting capacity and broadened absorption range. Significantly, RC-43 obtained the lower energy metal-ligand charge transfer (MLCT) band peaked at 557 nm with a high molar extinction coefficient of 27 400 M(-1) cm(-1). In conjunction with TiO2 photoanode of submicrospheres and iodide-based electrolytes, the DSSCs sensitizing with the RC sensitizers, achieved impressively high short-circuit current density (19.04 mA cm(-2) for RC-41, 19.83 mA cm(-2) for RC-42, and 20.21 mA cm(-2) for RC-43) and power conversion efficiency (10.07% for RC-41, 10.52% for RC-42, and 10.78% for RC-43). The superior performances of RC dye sensitizers were attributed to the enhanced light-harvesting capacity and incident-photon-to-current efficiency (IPCE) caused by the introduction of electron-donating antennas in the ancillary ligands. The interfacial charge recombination/regeneration kinetics and electron lifetime were further evaluated by the electrochemical impedance spectroscopy (EIS) and transient absorption spectroscopy (TAS). These data decisively revealed the dependences on the photovoltaic performance of ruthenium sensitizers incorporating electron-donating antennas.

  20. Trimethylsilyl-Substituted Hydroxycyclopentadienyl Ruthenium Hydrides as Benchmarks to Probe Ligand and Metal Effects on the Reactivity of Shvo Type Complexes.

    Science.gov (United States)

    Casey, Charles P; Guan, Hairong

    2012-01-01

    The bis(trimethylsilyl)-substituted hydroxycyclopentadienyl ruthenium hydride [2,5-(SiMe(3))(2)-3,4-(CH(2)OCH(2))(η(5)-C(4)COH)]Ru(CO)(2)H (10) is an efficient catalyst for hydrogenation of aldehydes and ketones. Because 10 transfers hydrogen rapidly to aldehydes and ketones and because it does not form an inactive bridging hydride during reaction, hydrogenation of aldehydes and ketones can be performed at room temperature under relatively low hydrogen pressure (3 atm); this is a significant improvement compared with previously developed Shvo type catalysts. Kinetic and (2)H NMR spectroscopic studies of the stoichiometric reduction of aldehydes and ketones by 10 established a two-step process for the hydrogen transfer: (1) rapid and reversible hydrogen bond formation between OH of 10 and the oxygen of the aldehyde or ketone, (2) followed by slow transfer of both proton and hydride from 10 to the aldehyde or ketone. The stoichiometric and catalytic activities of complex 10 are compared to those of other Shvo type ruthenium hydrides and related iron hydrides. PMID:23087535

  1. Synthesis and Structural Characterization of an Arene-ruthenium Complex [(η6-p-cymene)Ru(μ-N3) (N3)]2

    Institute of Scientific and Technical Information of China (English)

    LIU Yang-Li; WU Fang-Hui; DUAN Tai-Ke; ZHANG Qian-Feng

    2009-01-01

    An arene-ruthenium dimeric complex, [(η6-p-cymene)Ru(μ-N3) (N3)]21, was synthe-sized from the reaction of [(η6-p-cymene)Ru(μ-Cl)(Cl)]2 with an excess NaN3 and charac-terized by single-crystal X-ray diffraction. It crystallizes in triclinic, space group P1 with a=8.2321(8), b=8.2155(8), c=9.9976(11) A,α=81.786(5), β=82.906(5), γ=77.134(5)°, V=649.46(11) A3, Z=1,Mr=638.68, Dc=1.633 g/cm3,μ(MoKd)=1.195 mm-1, F(000)=320, S=0.974, the final R=0.0282 and wR=0.0644 for 2363 observed reflections with I > 2σ(I) and 157 variables. The neutral molecule is dimeric with two azide ligands bridging two ruthenium atoms to adopt an octahedral coordination geometry. The average RuNt (terminal) and Ru-Nb (bridge) bond lengths are 2.092(3)and 2.147(2) A,, respectively.

  2. Evaluation of DNA binding, DNA cleavage, protein binding, radical scavenging and in vitro cytotoxic activities of ruthenium(II) complexes containing 2,4-dihydroxy benzylidene ligands.

    Science.gov (United States)

    Mohanraj, Maruthachalam; Ayyannan, Ganesan; Raja, Gunasekaran; Jayabalakrishnan, Chinnasamy

    2016-12-01

    The new ruthenium(II) complexes with hydrazone ligands, 4-Methyl-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL(1)), 4-Methoxy-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL(2)), 4-Bromo-benzoic acid (2,4-dihydroxy-benzylidene)-hydrazide (HL(3)), were synthesized and characterized by various spectro analytical techniques. The molecular structures of the ligands were confirmed by single crystal X-ray diffraction technique. The DNA binding studies of the ligands and complexes were examined by absorption, fluorescence, viscosity and cyclic voltammetry methods. The results indicated that the ligands and complexes could interact with calf thymus DNA (CT-DNA) through intercalation. The DNA cleavage activity of the complexes was evaluated by gel electrophoresis assay, which revealed that the complexes are good DNA cleaving agents. The binding interaction of the ligands and complexes with bovine serum albumin (BSA) was investigated using fluorescence spectroscopic method. Antioxidant studies showed that the complexes have a strong radical scavenging properties. Further, the cytotoxic effect of the complexes examined on cancerous cell lines showed that the complexes exhibit significant anticancer activity. PMID:27612830

  3. Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus-Nitrogen PN3-Pincer Ligand

    KAUST Repository

    Pan, Yupeng

    2016-04-22

    An unsymmetrically protonated PN3-pincer complex in which ruthenium is coordinated by one nitrogen and two phosphorus atoms was employed for the selective generation of hydrogen from formic acid. Mechanistic studies suggest that the imine arm participates in the formic acid activation/deprotonation step. A long life time of 150 h with a turnover number over 1 million was achieved. Grabbing hold: A PN3-pincer complex was employed for the selective hydrogen generation from formic acid. Mechanistic studies suggest the imine arm participates in the formic acid activation/deprotonation step. A long life time of 150 h with a turnover number over 1 million was achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis, catalytic properties and biological activity of new water soluble ruthenium cyclopentadienyl PTA complexes [(C5R5)RuCl(PTA)2] (R = H, Me; PTA = 1,3,5-triaza-7-phosphaadamantane).

    Science.gov (United States)

    Akbayeva, Dina N; Gonsalvi, Luca; Oberhauser, Werner; Peruzzini, Maurizio; Vizza, Francesco; Brüggeller, Peter; Romerosa, Antonio; Sava, Gianni; Bergamo, Alberta

    2003-01-21

    The new water soluble ruthenium complexes [(C5R5)RuCl(PTA)2] (R = H, Me; PTA = 1,3,5-triaza-7-phosphaadamantane) were synthesised and characterised. Their evaluation as regioselective catalysts for hydrogenation of unsaturated ketones in aqueous biphasic conditions and as cytotoxic agents towards the TS/A adenocarcinoma cell line is briefly presented. PMID:12585422

  5. Highly sensitive catalytic spectrophotometric determination of ruthenium

    Science.gov (United States)

    Naik, Radhey M.; Srivastava, Abhishek; Prasad, Surendra

    2008-01-01

    A new and highly sensitive catalytic kinetic method (CKM) for the determination of ruthenium(III) has been established based on its catalytic effect on the oxidation of L-phenylalanine ( L-Pheala) by KMnO 4 in highly alkaline medium. The reaction has been followed spectrophotometrically by measuring the decrease in the absorbance at 526 nm. The proposed CKM is based on the fixed time procedure under optimum reaction conditions. It relies on the linear relationship where the change in the absorbance (Δ At) versus added Ru(III) amounts in the range of 0.101-2.526 ng ml -1 is plotted. Under the optimum conditions, the sensitivity of the proposed method, i.e. the limit of detection corresponding to 5 min is 0.08 ng ml -1, and decreases with increased time of analysis. The method is featured with good accuracy and reproducibility for ruthenium(III) determination. The ruthenium(III) has also been determined in presence of several interfering and non-interfering cations, anions and polyaminocarboxylates. No foreign ions interfered in the determination ruthenium(III) up to 20-fold higher concentration of foreign ions. In addition to standard solutions analysis, this method was successfully applied for the quantitative determination of ruthenium(III) in drinking water samples. The method is highly sensitive, selective and very stable. A review of recently published catalytic spectrophotometric methods for the determination of ruthenium(III) has also been presented for comparison.

  6. Cationic versus anionic surfactant in tuning the structure and interaction of nanoparticle, protein, and surfactant complexes.

    Science.gov (United States)

    Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim

    2014-08-26

    The structure and interaction in complexes of anionic Ludox HS40 silica nanoparticle, anionic bovine serum albumin (BSA) protein, and cationic dodecyl trimethylammonium bromide (DTAB) surfactant have been studied using small-angle neutron scattering (SANS). The results are compared with similar complexes having anionic sodium dodecyl sulfate (SDS) surfactant (Mehan, S; Chinchalikar, A. J.; Kumar, S.; Aswal, V. K.; Schweins, R. Langmuir 2013, 29, 11290). In both cases (DTAB and SDS), the structure in nanoparticle-protein-surfactant complexes is predominantly determined by the interactions of the individual two-component systems. The nanoparticle-surfactant (mediated through protein-surfactant complex) and protein-surfactant interactions for DTAB, but nanoparticle-protein (mediated through protein-surfactant complex) and protein-surfactant interactions for SDS, are found to be responsible for the resultant structure of nanoparticle-protein-surfactant complexes. Irrespective of the charge on the surfactant, the cooperative binding of surfactant with protein leads to micellelike clusters of surfactant formed along the unfolded protein chain. The adsorption of these protein-surfactant complexes for DTAB on oppositely charged nanoparticles gives rise to the protein-surfactant complex-mediated aggregation of nanoparticles (similar to that of DTAB surfactant). It is unlike that of depletion-induced aggregation of nanoparticles with nonadsorption of protein-surfactant complexes for SDS in similarly charged nanoparticle systems (similar to that of protein alone). The modifications in nanoparticle aggregation as well as unfolding of protein in these systems as compared to the corresponding two-component systems have also been examined by selectively contrast matching the constituents.

  7. Synthesis and Application of New Ruthenium Complexes Containing β-Diketonato Ligands as Sensitizers for Nanocrystalline TiO2 Solar Cells

    Directory of Open Access Journals (Sweden)

    Ashraful Islam

    2011-01-01

    Full Text Available Five heteroleptic ruthenium complexes having different β-diketonato ligands, [Ru(tctpy(dppd(NCS] (1, [Ru(tctpy(pd(NCS] (2, [Ru(tctpy(tdd(NCS] (3, [Ru(tctpy(mepd(NCS] (4, and [Ru(tctpy(tmhd(NCS] (5, where tctpy = 4,4′,4′′-tricarboxy-2,2′:6′,2′′-terpyridine, pd = pentane-2,4-dione, mepd = 3-methylpentane-2,4-dione, tmhd = 2,2,6,6-tetramethylheptane-3,5-dione, tdd = tridecane-6,8-dione, and dppd = 1,3-diphenylpropane-1,3-dione, were synthesized and characterized. These heteroleptic complexes exhibit a broad metal-to-ligand charge transfer absorption band over the whole visible range extending up to 950 nm. The low-energy absorption bands and the E (Ru3+/2+ oxidation potentials in these complexes could be tuned to about 15 nm and 110 mV, respectively, by choosing appropriate β-diketonate ligands. Molecular orbital calculation of complex 1 shows that the HOMO is localized on the NCS ligand and the LUMO is localized on the tctpy ligand, which is anchored to the TiO2 nanoparticles. The β-diketonato-ruthenium(II-polypyridyl sensitizers, when anchored to nanocrystalline TiO2 films for light to electrical energy conversion in regenerative photoelectrochemical cells, achieve efficient sensitization to TiO2 electrodes with increasing activity in the order 5 +.53 V versus SCE.

  8. Optical tweezers reveal a dynamic mechanical response of cationic peptide-DNA complexes

    Science.gov (United States)

    Lee, Amy; Zheng, Tai; Sucayan, Sarah; Chou, Szu-Ting; Tricoli, Lucas; Hustedt, Jason; Kahn, Jason; Mixson, A. James; Seog, Joonil

    2013-03-01

    Nonviral carriers have been developed to deliver nucleic acids by forming nanoscale complexes; however, there has been limited success in achieving high transfection efficiency. Our hypothesis is that a factor affecting gene delivery efficiency is the mechanical response of the condensed complex. To begin to test this hypothesis, we directly measured the mechanical properties of DNA-carrier complexes using optical tweezers. Histidine-lysine (HK) polymer, Asparagine-lysine (NK) polymer and poly-L-lysine were used to form complexes with a single DNA molecule. As carriers were introduced, a sudden decrease in DNA extension occurrs at a force level which is defined as critical force (Fc). Fc is carrier and concentration dependent. Pulling revealed reduction in DNA extension length for HK-DNA complexes. The characteristics of force profiles vary by agent and can be dynamically manipulated by changes in environmental conditions such as ionic strength of the buffer as well as pH. Heparin can remove cationic reagents which are otherwise irreversibly bound to DNA. The implications for optimizing molecular interactions to enhance transfection efficiency will be discussed.

  9. Half sandwich ruthenium(II) hydrides: hydrogenation of terminal, internal, cyclic and functionalized olefins.

    Science.gov (United States)

    Bagh, Bidraha; Stephan, Douglas W

    2014-11-01

    Bis(1,2,3-triazolylidene) silver(I) complex 1a was reacted with [RuCl2(p-cymene)]2 to give the ruthenium complex [PhCH2N2(NMe)C2(C6H4CF3)]RuCl2(p-cymene) (2a) as major product in addition to the minor C(sp(2))-H activated product [PhCH2N2(NMe)C2(C6H3CF3)]RuCl(p-cymene) (2a'). Similar ruthenium complexes 2b, 2c, 2d and 2e with general formula RuCl2(p-cymene)(NHC) (NHC = MesCH2N2(NMe)C2Ph 2b, PhCH2N2(NMe)C2Ph 2c, TripCH2N2(NMe)C2Ph 2d, IMes 2e) were also synthesized. Subsequent reaction of Me3SiOSO2CF3 with 2a and 2b resulted in cationic ruthenium species [(PhCH2N2(NMe)C2(C6H4CF3))RuCl(p-cymene)][OSO2CF3] (3a) and [(MesCH2N2(NMe)C2Ph)RuCl(p-cymene)][OSO2CF3] (3b), respectively. Complexes 3a and 3b dissolved in CD3CN to give [(PhCH2N2(NMe)C2(C6H4CF3))RuCl(CD3CN)(p-cymene)][OSO2CF3] (4a) and [(MesCH2N2(NMe)C2Ph)RuCl(CD3CN)(p-cymene)][OSO2CF3] (4b), respectively. Cationic ruthenium species 4a and 4b failed to show catalytic activity towards hydrogenation of olefins. Ruthenium(II) complexes 2b-e with the general formula RuCl2(p-cymene)(NHC) were reacted with Et3SiH to generate a series of ruthenium(II) hydrides 5b-e. These compounds 5b-e are effective catalysts for the hydrogenation of terminal, internal and cyclic and functionalized olefins. PMID:25208607

  10. Alkali Cation Chelation in Cold β-O-4 Tetralignol Complexes

    Science.gov (United States)

    DeBlase, Andrew F.; Dziekonski, Eric T.; Hopkins, John R.; Burke, Nicole L.; Kenttamaa, Hilkka I.; McLuckey, Scott A.; Zwier, Timothy S.

    2016-06-01

    Lignins are the second most abundant naturally occurring polymer class, contributing to about 30% of the organic carbon in the biosphere. Their primary function is to provide the structural integrity of plant cell walls and have recently come under consideration as a potential source of biofuels because they have an energy content similar to coal. Herein, we employ cold ion spectroscopy (UV action and IR-UV double resonance) to unravel the spectroscopic signatures of G-type alkali metal cationized (X = Li+, Na+, K+) lignin tetramers connected by β-O-4 linkages. The conformation-specific spectroscopy reveals a variety of conformers, each containing distinct infrared spectra in the OH stretching region building on recent studies on the neutral and alkali metal cationized β-O-4 dimers. Based on comparisons of our infrared spectra to density functional theory [M05-2X/6-31+G*] harmonic level calculations for structures derived from a Monte Carlo conformational search, the alkali metal ion is discovered to engage in M+-OH-O interactions as important motifs that determine the secondary structures of these complexes. This interaction disappears in the major conformer of the K+ adduct, suggesting a reemergence of a neutral dimer segment as the metal binding energy decreases. Chelation of the metal cation by oxygen lone pair(s) of nearby oxygens in the β-O-4 linkage is observed to be the predominant driving force for 3D structure around the charge site, relegating OH-O H-bonds as secondary stabilizing elements.

  11. Microwave synthesis of mixed ligand diimine–thiosemicarbazone complexes of ruthenium(ii): biophysical reactivity and cytotoxicity†

    OpenAIRE

    Beckford, Floyd A.; Shaloski, Michael; LeBlanc, Gabriel; Thessing, Jeffrey; Lewis-Alleyne, Lesley C.; Holder, Alvin A.; LI, LIYA; Seeram, Navindra P.

    2009-01-01

    A novel microwave-assisted synthetic method has been used to synthesise a series of mixed ligand ruthenium(ii) compounds containing diimine as well as bidentate thiosemicarbazone ligands. The compounds contain the diimine 1,10-phenanthroline (phen) or 2,2′-bipyridine (bpy) and the thiosemicarbazone is derived from 9-anthraldehyde. Based on elemental analyses and spectroscopic data, the compounds are best formulated as [(phen)2Ru(thiosemicarbazone)](PF6)2 and [(phen)2Ru(thiosemicarbazone)](PF6...

  12. Cationic organobismuth complex as an effective catalyst for conversion of CO2 into cyclic carbonates

    Institute of Scientific and Technical Information of China (English)

    Xiaowen ZHANG; Weili DAI; Shuangfeng YIN; Shenglian LUO; Chak-Tong AU

    2009-01-01

    In order to achieve high-efficiency conversion of CO2 into valuable chemicals, and to exploit new appli-cations of organobismuth compounds, cationic organo-bismuth complex with 5,6,7,12-tetrahydrodibenz[c,f] [ 1,5 ]azabismocine framework was examined for the first time for the coupling of CO2 into cyclic carbonates, using ter-minal epoxides as substrates and tetrabutylammonium halide as co-catalyst in a solvent-free environment under mild conditions. It is shown that the catalyst exhibited high activity and selectivity for the coupling reaction of CO2 with a wide range of terminal epoxide. The selectivity of propylene carbonates could reach 100%, and the max-imum turnover frequency was up to 10740 h-1 at 120℃ and 3 MPa CO2 pressure when tetrabutylammonium iod-ide was used as co-catalyst. Moreover, the catalyst is environment friendly, resistant to air and water, and can be readily reused and recycled without any loss of activity,demonstrating a potential in industrial application.

  13. Host--guest complexation. 15. Macrocyclic acetylacetone ligands for metal cations

    International Nuclear Information System (INIS)

    Five macrocycles containing 1,5-disubstituted acetylacetone units (AcAc) have been synthesized. Their abilities to complex metal cations in water--dioxane have been compared to those of noncyclic model compounds. The AcAc units were bound together through bridges composed of the following groups: oxa (O), ethylene (E), and 1,3-disubstituted benzene (B). Cycles O(AcAcOEOE)(EOEOE)O(7), (OEOAcAcOE)2 (8), and (OEOAcAcOE)3 (9) were prepared by hydrolysis of rings closed by the reactions of CH2[HOCH2C(SCH2)2CH2]2 (2) and appropriate polyethylene glycol ditosylates. Ligand systems O(EAcAcE)2O (12) and B(CH2AcAcCH2)2B (14) were synthesized in Ca2+ or Mg2+ templated, two-step sequences involving reactions of HAcAcH dianions with either diethylene glycol ditosylate of m-xylyl dibromide, respectively. The preparation of (CH2IsCH2O)3 (17) is also described, in which Is is the 3,5-disubstituted isoxazole unit. Also described are the preparations of O(EAcAcH)2 (11), B(CH2AcAcH)2 (13), and P(CH2AcAcH)2 (15), in which P is 2,6-disubstituted pyridine. The logarithms of the formation constants (log K/sup f//sub av/) of the salts of (OEOAcAcOE)2 with 11 divalent metal cations and of (OEOAcAcOE)3 with 3 trivalent cations were 1.8 to 6.3 units higher valued than for CH3OAcAcOCH3. The log K/sup f//sub av/values for salt formation of O(EAcAcE)2O and B(CH2AcAcCH2)2B with 10 divalent cations were compared with those of O(EAcAcH)2 and B(CH2AcAcH)2, respectively, and with HAcAcH itself. Without exception, O(EAcAcE)2O > O(EAcAcH)2 > HAcAcH in values of log k/sup f//sub av/, the maximum difference being 4.3 for Ca2+

  14. Synthesis and characterization of mixed-ligand diimine-piperonal thiosemicarbazone complexes of ruthenium(II): Biophysical investigations and biological evaluation as anticancer and antibacterial agents

    Science.gov (United States)

    Beckford, Floyd A.; Thessing, Jeffrey; Shaloski, Michael, Jr.; Canisius Mbarushimana, P.; Brock, Alyssa; Didion, Jacob; Woods, Jason; Gonzalez-Sarrías, Antonio; Seeram, Navindra P.

    2011-04-01

    We have used a novel microwave-assisted method developed in our laboratories to synthesize a series of ruthenium-thiosemicarbazone complexes. The new thiosemicarbazone ligands are derived from benzo[ d][1,3]dioxole-5-carbaldehyde (piperonal) and the complexes are formulated as [(diimine) 2Ru(TSC)](PF 6) 2 (where the TSC is the bidentate thiosemicarbazone ligand). The diimine in the complexes is either 2,2'-bipyridine or 1,10-phenanthroline. The complexes have been characterized by spectroscopic means (NMR, IR and UV-Vis) as well as by elemental analysis. We have studied the biophysical characteristics of the complexes by investigating their anti-oxidant ability as well as their ability to disrupt the function of the human topoisomerase II enzyme. The complexes are moderately strong binders of DNA with binding constants of 10 4 M -1. They are also strong binders of human serum albumin having binding constants on the order of 10 4 M -1. The complexes show good in vitro anticancer activity against human colon cancer cells, Caco-2 and HCT-116 and indeed show some cytotoxic selectivity for cancer cells. The IC 50 values range from 7 to 159 μM (after 72 h drug incubation). They also have antibacterial activity against Gram-positive strains of pathogenic bacteria with IC 50 values as low as 10 μM; little activity was seen against Gram-negative strains. It has been established that all the compounds are catalytic inhibitors of human topoisomerase II.

  15. Cationic and anionic polyelectrolyte complexes of xylan and chitosan. Interaction with lignocellulosic surfaces.

    Science.gov (United States)

    Mocchiutti, Paulina; Schnell, Carla N; Rossi, Gerardo D; Peresin, María S; Zanuttini, Miguel A; Galván, María V

    2016-10-01

    Cationic (CatPECs) and anionic (AnPECs) polyelectrolyte complexes from xylan and chitosan were formed, characterized and adsorbed onto unbleached fibers for improving the papermaking properties. They were prepared at a level of 30% of neutralization charge ratio by modifying the order of addition of polyelectrolytes and the ionic strength (0.01N and 0.1N NaCl). The charge density, colloidal stability and particle size of polyelectrolyte complexes (PECs) was measured using polyelectrolyte titration method, Turbiscan and Zetasizer Nano equipments, respectively. All the complexes were stable even after seven days from PEC formation. DRIFT spectra of complexes were also analyzed. The adsorption behavior of them onto cellulose nanofibrils model surfaces was studied using quartz crystal microbalance with dissipation monitoring, and surface plasmon resonance. It was found that the PEC layers were viscoelastic and highly hydrated. Finally, it is shown that the adsorbed PECs onto cellulosic fibers markedly improved the tensile and crushing strengths of paper. PMID:27312617

  16. Cationic iridium(III) complexes with two carbene-based cyclometalating ligands: cis versus trans isomers.

    Science.gov (United States)

    Monti, Filippo; La Placa, Maria Grazia I; Armaroli, Nicola; Scopelliti, Rosario; Grätzel, Michael; Nazeeruddin, Mohammad Khaja; Kessler, Florian

    2015-03-16

    A series of cationic iridium(III) complexes with two carbene-based cyclometalating ligands and five different N^N bipyridine and 1,10-phenanthroline ancillary ligands is presented. For the first time--in the frame of a rarely studied class of bis(heteroleptic) iridium complexes with two carbene-based cyclometalating ligands--a pair of cis and trans isomers has been isolated. All complexes (trans-1-5 and cis-3) were characterized by (1)H NMR, (13)C NMR, (31)P NMR, and HRMS (ESI-TOF); in addition, crystal structures of cis-3 and trans-4 are reported and discussed. Cyclic voltammetric studies show that the whole series exhibits highly reversible oxidation and reduction processes, suggesting promising potential for optoelectronic applications. Ground-state DFT and TD-DFT calculations nicely predict the blue shift experimentally observed in the room-temperature absorption and emission spectra of cis-3, compared to the trans complexes. In CH3CN, cis-3 displays a 4-fold increase in photoluminescence quantum yield (PLQY) with respect to trans-3, as a consequence of drastically slower nonradiative rate constant. By contrast, at 77 K, the emission properties of all the compounds, including the cis isomer, are much more similar, with a pronounced hypsochromic shift for the trans complexes. A similar behavior is found in solid state (1% w/w poly(methyl methacrylate) matrix), with all complexes displaying PLQY of ∼70-80%, comparable emission lifetimes (τ ≈ 1.3 μs), and a remarkable rigidochromic shift. To rationalize the more pronounced nonradiative deactivation (and smaller PLQY) observed for photoexcited trans complexes, comparative temperature-dependent emission studies in the range of 77-450 K for cis-3 and trans-3 were made in propylene glycol, showing that solvation effects are primarily responsible for the observed behavior.

  17. Modulation of pyridinium cationic lipid-DNA complex properties by pyridinium gemini surfactants and its impact on lipoplex transfection properties.

    Science.gov (United States)

    Sharma, Vishnu Dutt; Lees, Julia; Hoffman, Nicholas E; Brailoiu, Eugen; Madesh, Muniswamy; Wunder, Stephanie L; Ilies, Marc A

    2014-02-01

    The study presents the effects of blending a cationic gemini surfactant into cationic lipid bilayers and its impact on the plasmid DNA compaction and delivery process. Using nanoDSC, dynamic light scattering, zeta potential, and electrophoretic mobility measurements, together with transfection (2D- and 3D-) and viability assays, we identified the main physicochemical parameters of the lipid bilayers, liposomes, and lipoplexes that are affected by the gemini surfactant addition. We also correlated the cationic bilayer composition with the dynamics of the DNA compaction process and with transfection efficiency, cytotoxicity, and the internalization mechanism of the resultant nucleic acid complexes. We found that the blending of gemini surfactant into the cationic bilayers fluidized the supramolecular assemblies, reduced the amount of positive charge required to fully compact the plasmid DNA and, in certain cases, changed the internalization mechanism of the lipoplexes. The transfection efficiency of select ternary lipoplexes derived from cationic gemini surfactants and lipids was several times superior to the transfection efficiency of corresponding binary lipoplexes, also surpassing standard transfection systems. The overall impact of gemini surfactants into the formation and dynamic of cationic bilayers was found to depend heavily on the presence of colipids, their nature, and amount present in lipoplexes. The study confirmed the possibility of combining the specific properties of pyridinium gemini surfactants and cationic lipids synergistically to obtain efficient synthetic transfection systems with negligible cytotoxicity useful for therapeutic gene delivery. PMID:24377350

  18. The structure of micelles of mixed anionic surfactants and their complexes with cationic starch studied by SANS

    International Nuclear Information System (INIS)

    Complete text of publication follows. The aim of this study was to determine the composition and structure of mixed micelles of different chain length alkanoates (sodium octanoate - sodium hexadecanoate) and the structure of cationic starch/mixed surfactant complexes. The cationic starch (CS) was a potato starch having 2-hydroxy-3-trimethylammoniumpropyl groups as substituents. It was partly depolymerized by oxidizing with sodium hypochlorite. Its molecular mass is 104 - 106 and the degree of substitution is 0.80. The small-angle neutron scattering experiments were perform on solutions of different alkanoate mixtures. The complexation of cationic starch with surfactant mixtures was studied by using different CS/surfactant ratios as well as using surfactant mixtures of different chain-length difference. Deuterated and protonated surfactants were used. The formation of mixed micelles and cationic starch/surfactant complexes is observed. The structure, composition, and electrical charge of mixed micelles versus chain length difference and molar ratio of alkanoates are determined. Structural parameters of cationic starch/surfactant complexes are evaluated. (author)

  19. Efficient Removal of Ruthenium Byproducts from Olefin Metathesis Products by Simple Aqueous Extraction

    Science.gov (United States)

    Hong, Soon Hyeok; Grubbs, Robert H.

    2008-01-01

    Simple aqueous extraction removed ruthenium byproducts efficiently from ring-closing metathesis (RCM) reactions catalyzed by a PEG-supported N-heterocyclic carbene-based ruthenium complex. PMID:17428062

  20. Kinetics and Mechanism of the Reaction of a Ruthenium(VI) Nitrido Complex with HSO3 (-) and SO3 (2-) in Aqueous Solution.

    Science.gov (United States)

    Wang, Qian; Zhao, Hong Yan; Man, Wai-Lun; Lam, William W Y; Lau, Kai-Chung; Lau, Tai-Chu

    2016-07-25

    The kinetics and mechanism of the reaction of S(IV) (SO3 (2-) +HSO3 (-) ) with a ruthenium(VI) nitrido complex, [(L)Ru(VI) (N)(OH2 )](+) (Ru(VI) N, L=N,N'-bis(salicylidene)-o-cyclohexyldiamine dianion), in aqueous acidic solutions are reported. The kinetic results are consistent with parallel pathways involving oxidation of HSO3 (-) and SO3 (2-) by Ru(VI) N. A deuterium isotope effect of 4.7 is observed in the HSO3 (-) pathway. Based on experimental results and DFT calculations the proposed mechanism involves concerted N-S bond formation (partial N-atom transfer) between Ru(VI) N and HSO3 (-) and H(+) transfer from HSO3 (-) to a H2 O molecule. PMID:27246832

  1. The induction of apoptosis in HepG-2 cells by ruthenium(II) complexes through an intrinsic ROS-mediated mitochondrial dysfunction pathway.

    Science.gov (United States)

    Zeng, Chuan-Chuan; Lai, Shang-Hai; Yao, Jun-Hua; Zhang, Cheng; Yin, Hui; Li, Wei; Han, Bing-Jie; Liu, Yun-Jun

    2016-10-21

    Four new ruthenium(II) polypyridyl complexes [Ru(N-N)2(dhbn)](ClO4)2 (N-N = dmb: 4,4'-dimethyl-2,2'-bipyridine 1; bpy = 2,2'-bipyridine 2; phen = 1,10-phenanthroline 3; dmp = 2,9-dimethyl-1,10-phenanthroline 4) were synthesized and characterized. The cytotoxicity in vitro of the ligand and complexes toward HepG-2, HeLa, MG-63 and A549 were assayed by MTT method. The IC50 values of the complexes against the above cells range from 17.7 ± 1.1 to 45.1 ± 2.8 μM. The cytotoxic activity of the complexes against HepG-2 cells follows the order of 4 > 2 > 3 > 1. Ligand shows no cytotoxic activity against the selected cell lines. Cellular uptake, apoptosis, comet assay, reactive oxygen species, mitochondrial membrane potential, cell cycle arrest, and the expression of proteins involved in apoptosis pathway induced by the complexes were investigated. The results indicate that complexes 1-4 induce apoptosis in HepG-2 cells through an intrinsic ROS-mediated mitochondrial dysfunction pathway. PMID:27344489

  2. Syntheses, DNA binding and anticancer profiles of L-glutamic acid ligand and its copper(II) and ruthenium(III) complexes.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Saleem, Kishwar; Wesselinova, Diana

    2013-02-01

    A new multidentate ligand (L) has been synthesized by the controlled condensation of L-glutamic acid with formaldehyde and ethylenediamine. Cu(II) and Ru(III) metal ion complexes of the synthesized ligand have also been prepared. The ligand and the metal complexes were purified by chromatography and characterized by spectroscopy and other techniques. Molar conductance measurements suggested ionic nature of the complexes. The ligand and the complexes are soluble in water with quite good stabilities; essential requirements for effective anticancer drugs. DNA binding constants (Kbs) for copper and ruthenium complexes were 1.8 x 103 and 2.6 x 103 M-1 while their Ksv values were 7.9 x 103, and 7.3 x 103; revealing strong binding of these complexes with DNA. Hemolytic assays of the reported compounds indicated their significantly less toxicity to RBCs than the standard anticancer drug letrazole. Anticancer profiles of all the compounds were determined on HepG2, HT-29, MDA-MB-231 and HeLa human cancer cell lines. All the compounds have quite good activities on HeLa cell lines but the best results were of CuL on HepG2, HT-29 and MDA-MB-231 cell lines. PMID:22741786

  3. Mixed ligand ruthenium(III) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones with triphenylphosphine/triphenylarsine co-ligands: Synthesis, DNA binding, DNA cleavage, antioxidative and cytotoxic activity

    Science.gov (United States)

    Sampath, K.; Sathiyaraj, S.; Raja, G.; Jayabalakrishnan, C.

    2013-08-01

    The new ruthenium(III) complexes with 4-methyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-methylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-methylhydrazinecarbothioamide (HL2), were prepared and characterized by various physico-chemical and spectroscopic methods. The title compounds act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the ligands and complexes were investigated by absorption spectroscopy and IR spectroscopy. It reveals that the compounds bind to nitrogenous bases of DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes against MCF-7 cell line was assayed which showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  4. Insights into anticancer activity and mechanism of action of a ruthenium(II) complex in human esophageal squamous carcinoma EC109 cells.

    Science.gov (United States)

    Guo, Liubin; Lv, Gaochao; Qiu, Ling; Yang, Hui; Zhang, Li; Yu, Huixin; Zou, Meifen; Lin, Jianguo

    2016-09-01

    A ruthenium(II) complex [Ru(p-cymene)(NHC)Cl2] (NHC=1,3-bis(4-(tert-butyl)benzylimidazol-2-ylidene), referred to as L-4, has been designed and synthesized recently in order to look for new anticancer drugs with high efficacy and low side effects. The anticancer activity and mechanism of action of L-4 in human esophageal squamous carcinoma EC109 cells were systematically investigated. The results revealed that L-4 exerted strong inhibitory effect on the proliferation of EC109 cells, and it arrested EC109 cells at G2/M phase, accompanied with the up-regulation of p53 and p21 and the down-regulation of cyclin D1. The results also showed that the reactive oxygen species (ROS)-dependent apoptosis of EC109 can be induced by L-4 via inhibiting the activity of glutathione reductase (GR), decreasing the ratio of glutathione to oxidized glutathione (GSH/GSSG), and leading to the generation of reactive oxygen species. The mitochondria-mediated apoptosis of EC109 induced by L-4 was also observed from the increase of Bax/Bcl-2 ratio, overload of Ca(2+), disruption of mitochondrial membrane potential (MMP), redistribution of cytochrome c, and activation of caspase-3/-9. However, the effects of L-4 on the cell viability, GR activity, GSH/GSSG ratio, reactive oxygen species level, mitochondria dysfunction and apoptosis induction were remarkably attenuated by adding the reactive oxygen species scavenger, NAC. Therefore, it was concluded that L-4 can inhibit the proliferation of EC109 cells via blocking cell cycle progression and inducing reactive oxygen species-dependent and mitochondria-mediated apoptosis. These findings suggested that the ruthenium(II) complex might be a potential effective chemotherapeutic agent for human esophageal squamous carcinoma (ESCC) and worthy of further investigation. PMID:27262377

  5. DFT 2H quadrupolar coupling constants of ruthenium complexes: a good probe of the coordination of hydrides in conjuction with experiments.

    Science.gov (United States)

    del Rosal, Iker; Gutmann, Torsten; Maron, Laurent; Jolibois, Franck; Chaudret, Bruno; Walaszek, Bernadeta; Limbach, Hans-Heinrich; Poteau, Romuald; Buntkowsky, Gerd

    2009-07-21

    Transition metal (TM) hydrides are of great interest in chemistry because of their reactivity and their potential as catalysts for hydrogenation reactions. 2H solid-state NMR can be used in order to get information about the local environment of hydrogen atoms, and more particularly the coordination mode of hydrides in such complexes. In this work we will show that it is possible to establish at the level of density functional theory (DFT) a viable methodological strategy that allows the determination of 2H NMR parameters, namely the quadrupolar coupling constant (C(Q)) respectively the quadrupolar splitting (deltanuQ) and the asymmetry parameter (etaQ). The reliability of the method (B3PW91-DFT) and basis set effects have been first evaluated for simple organic compounds (benzene and fluorene). A good correlation between experimental and theoretical values is systematically obtained if the large basis set cc-pVTZ is used for the computations. 2H NMR properties of five mononuclear ruthenium complexes (namely Cp*RuD3(PPh3), Tp*RuD(THT)2, Tp*RuD(D2)(THT) and Tp*RuD(D2)2 and RuD2(D2)2(PCy3)2) which exhibit different ligands and hydrides involved in different coordination modes (terminal-H or eta2-H2), have been calculated and compared to previous experimental data. The results obtained are in excellent agreement with experiments. Although 2H NMR spectra are not always easy to analyze, assistance by quantum chemistry calculations allows unambiguous assignment of the signals of such spectra. As far as experiments can be achieved at very low temperatures in order to avoid dynamic effects, this hybrid theoretical/experimental tool may give useful insights in the context of the characterization of ruthenium surfaces or nanoparticles with solid-state NMR. PMID:19842483

  6. Electrogenerated chemiluminescence biosensing for the detection of prostate PC-3 cancer cells incorporating antibody as capture probe and ruthenium complex-labelled wheat germ agglutinin as signal probe

    International Nuclear Information System (INIS)

    Highlights: • A novel biosensor was developed for the detection of prostate cancer cells. • The selectivity of the biosensor was improved using antibody as capture probe. • The biosensor showed the low extremely detection limit of 2.6 × 102 cells mL−1. • The ruthenium complex-labelled WGA can be transported in the cell vesicles. - Abstract: A highly selective and sensitive electrogenerated chemiluminescence (ECL) biosensor for the detection of prostate PC-3 cancer cells was designed using a prostate specific antibody as a capture probe and ruthenium complex-labelled wheat germ agglutinin as a signal probe. The ECL biosensor was fabricated by covalently immobilising the capture probe on a graphene oxide-coated glassy carbon electrode. Target PC-3 cells were selectively captured on the surface of the biosensor, and then, the signal probe was bound with the captured PC-3 cells to form a sandwich. In the presence of tripropylamine, the ECL intensity of the sandwich biosensor was logarithmically directly proportion to the concentration of PC-3 cells over a range from 7.0 × 102 to 3.0 × 104 cells mL−1, with a detection limit of 2.6 × 102 cells mL−1. The ECL biosensor was also applied to detect prostate specific antigen with a detection limit of 0.1 ng mL−1. The high selectivity of the biosensor was demonstrated in comparison with that of a lectin-based biosensor. The strategy developed in this study may be a promising approach and could be extended to the design of ECL biosensors for highly sensitive and selective detection of other cancer-related cells or cancer biomarkers using different probes

  7. Electrogenerated chemiluminescence biosensing for the detection of prostate PC-3 cancer cells incorporating antibody as capture probe and ruthenium complex-labelled wheat germ agglutinin as signal probe

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haiying [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062 (China); Department of Chemistry, Yuncheng University, Yuncheng 044300 (China); Li, Zhejian; Shan, Meng; Li, Congcong; Qi, Honglan; Gao, Qiang [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062 (China); Wang, Jinyi [College of Science and College of Veterinary Medicine, Northwest A& F University, Yangling 712100 (China); Zhang, Chengxiao, E-mail: cxzhang@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062 (China)

    2015-03-10

    Highlights: • A novel biosensor was developed for the detection of prostate cancer cells. • The selectivity of the biosensor was improved using antibody as capture probe. • The biosensor showed the low extremely detection limit of 2.6 × 10{sup 2} cells mL{sup −1}. • The ruthenium complex-labelled WGA can be transported in the cell vesicles. - Abstract: A highly selective and sensitive electrogenerated chemiluminescence (ECL) biosensor for the detection of prostate PC-3 cancer cells was designed using a prostate specific antibody as a capture probe and ruthenium complex-labelled wheat germ agglutinin as a signal probe. The ECL biosensor was fabricated by covalently immobilising the capture probe on a graphene oxide-coated glassy carbon electrode. Target PC-3 cells were selectively captured on the surface of the biosensor, and then, the signal probe was bound with the captured PC-3 cells to form a sandwich. In the presence of tripropylamine, the ECL intensity of the sandwich biosensor was logarithmically directly proportion to the concentration of PC-3 cells over a range from 7.0 × 10{sup 2} to 3.0 × 10{sup 4} cells mL{sup −1}, with a detection limit of 2.6 × 10{sup 2} cells mL{sup −1}. The ECL biosensor was also applied to detect prostate specific antigen with a detection limit of 0.1 ng mL{sup −1}. The high selectivity of the biosensor was demonstrated in comparison with that of a lectin-based biosensor. The strategy developed in this study may be a promising approach and could be extended to the design of ECL biosensors for highly sensitive and selective detection of other cancer-related cells or cancer biomarkers using different probes.

  8. Formation of a porphyrin pi-cation radical in the fluoride complex of horseradish peroxidase.

    Science.gov (United States)

    Farhangrazi, Z S; Sinclair, R; Powers, L; Yamazaki, I

    1995-11-21

    Horseradish peroxidase (HRP) was oxidized by IrCl6(2-) to a mixture of compounds I and II, the rate of oxidation and the ratio of the mixture being greatly affected by pH (Hayashi & Yamazaki, 1979). Oxidation of HRP by IrCl6(2-) in the presence of fluoride was significantly accelerated. This resulted in the formation of a new compound which is a ferric fluoride complex containing a porphyrin pi-cation radical. The spectrum of the new compound showed a decreased absorption band in the Soret region and a broad band at 570 nm; which was converted to that of the original ferric fluoride complex by addition of ascorbate or hydroquinone. Addition of cyanide slowed down the oxidation of HRP by IrCl6(2-), and the oxidation product was the same as that obtained in the absence of cyanide. Compound I was formed when H2O2 was added to HRP in the presence of fluoride or cyanide. The one-electron reduction potential (Eo') of the oxidized HRP-fluoride complex was measured at several pH values, the Eo' value at pH 7 being 861 +/- 4 mV. The ratio of delta Eo' to delta pH was 49 mV/pH unit.

  9. Formation and characterization of water-soluble hydrido-ruthenium(II) complexes of 1,3,5-triaza-7-phosphaadamantane and their catalytic activity in hydrogenation of CO2 and HCO3- in aqueous solution.

    Science.gov (United States)

    Laurenczy, G; Joó, F; Nádasdi, L

    2000-10-30

    The water-soluble tertiary phosphine complex of ruthenium(II), [RuCl2(PTA)4], (PTA = 1,3,5-triaza-7-phosphaadamantane) was used as catalyst precursor for hydrogenation of CO2 and bicarbonate in aqueous solution, in the absence of amine or other additives, under mild conditions. Reaction of [RuCl2(PTA)4] and H2 (60 bar) gives the hydrides [RuH2(PTA)4] (at pH = 12.0) and [RuH(PTA)4X] (X = Cl- or H2O) (at pH = 2.0). In presence of excess PTA, formation of the unparalleled cationic pentakis-phosphino species, [HRu(PTA)5]+, was unambiguously established by 1H and 31P NMR measurements. The same hydrides were observed when [Ru(H2O)6][tos]2 (tos = toluene-4-sulfonate) reacted with PTA under H2 pressure. The rate of CO2 hydrogenation strongly depends on the pH. The highest initial reaction rate (TOF = 807.3 h(-1)) was determined for a 10% HCO3-/90% CO2 mixture (pH = 5.86), whereas the reduction was very slow both at low and high pH (CO2 and Na2CO3 solutions, respectively). 1H and 31P NMR studies together with the kinetic measurements suggested that HCO3- was the real substrate and [RuH(PTA)4X] the catalytically active hydride species in this reaction. Hydrogenation of HCO3- showed an induction period which could be ascribed to the slow formation of the catalytically active hydride species. PMID:11233205

  10. Spectroscopy and quantum-chemical calculations of nitro-bis-bipyridyl complexes of ruthenium(II) with 4-substituted pyridine ligands

    Science.gov (United States)

    Reshetova, K. I.; Krauklis, I. V.; Litke, S. V.; Ershov, A. Yu.; Chizhov, Yu. V.

    2016-04-01

    The luminescence, absorption, and luminescence excitation spectra of complexes cis-[Ru(bpy)2(L)(NO2)]+ [bpy = 2,2'-bipyridyl, L = pyridine, 4-aminopyridine, 4-dimethylaminopyridine, 4-picoline, isonicotinamide, or 4,4'-bipyridyl] in alcoholic (4 : 1 EtOH-MeOH) solutions are studied at 77 K. A linear correlation is established between the energy of the lowest electronically excited metal-toligand charge transfer state d π(Ru) → π*(bpy) of the complexes and the pKa parameter of the free 4-substituted pyridines used as ligands L. The B3LYP/[6-31G(d)+LanL2DZ(Ru)] hybrid density functional method is used to optimize the geometry of complexes and calculate their electronic structure and the charge distribution on the atoms of the nearest environment of ruthenium(II) ions. It is shown that there exists a mutually unambiguous correspondence between the charge on the nitrogen atom of ligands L coordinated in the complex and the pK a parameter of ligands. The calculated energies of the electronically excited metal-to-ligand charge transfer states of complexes linearly (correlation coefficient 0.99) depend on the charge on the nitrogen atom of ligands L, which completely agrees with the experimental data.

  11. Evaluation of DNA-binding, DNA cleavage, antioxidant and cytotoxic activity of mononuclear ruthenium(II) carbonyl complexes of benzaldehyde 4-phenyl-3-thiosemicarbazones

    Science.gov (United States)

    Sampath, Krishnan; Sathiyaraj, Subbaiyan; Jayabalakrishnan, Chinnasamy

    2013-11-01

    Two 4-phenyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-phenylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-phenylhydrazinecarbothioamide (HL2), and its ruthenium(II) complexes were synthesized and characterized by physico-chemical and spectroscopic methods. The Schiff bases act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the compounds was investigated by absorption spectroscopy which indicated that the compounds bind to DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes assayed against HeLa and MCF-7 cell lines showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  12. Cationic drug-based self-assembled polyelectrolyte complex micelles: Physicochemical, pharmacokinetic, and anticancer activity analysis.

    Science.gov (United States)

    Ramasamy, Thiruganesh; Poudel, Bijay Kumar; Ruttala, Himabindu; Choi, Ju Yeon; Hieu, Truong Duy; Umadevi, Kandasamy; Youn, Yu Seok; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-10-01

    Nanofabrication of polymeric micelles through self-assembly of an ionic block copolymer and oppositely charged small molecules has recently emerged as a promising method of formulating delivery systems. The present study therefore aimed to investigate the interaction of cationic drugs doxorubicin (DOX) and mitoxantrone (MTX) with the anionic block polymer poly(ethylene oxide)-block-poly(acrylic acid) (PEO-b-PAA) and to study the influence of these interactions on the pharmacokinetic stability and antitumor potential of the formulated micelles in clinically relevant animal models. To this end, individual DOX and MTX-loaded polyelectrolyte complex micelles (PCM) were prepared, and their physicochemical properties and pH-responsive release profiles were studied. MTX-PCM and DOX-PCM exhibited a different release profile under all pH conditions tested. MTX-PCM exhibited a monophasic release profile with no initial burst, while DOX-PCM exhibited a biphasic release. DOX-PCM showed a higher cellular uptake than that shown by MTX-PCM in A-549 cancer cells. Furthermore, DOX-PCM induced higher apoptosis of cancer cells than that induced by MTX-PCM. Importantly, both MTX-PCM and DOX-PCM showed prolonged blood circulation. MTX-PCM improved the AUCall of MTX 4-fold compared to a 3-fold increase by DOX-PCM for DOX. While a definite difference in blood circulation was observed between MTX-PCM and DOX-PCM in the pharmacokinetic study, both MTX-PCM and DOX-PCM suppressed tumor growth to the same level as the respective free drugs, indicating the potential of PEGylated polymeric micelles as effective delivery systems. Taken together, our results show that the nature of interactions of cationic drugs with the polyionic copolymer can have a tremendous influence on the biological performance of a delivery system. PMID:27318960

  13. Spin-coupling in ferric metalloporphyrin radical cation complexes: Mössbauer and susceptibility studies

    Science.gov (United States)

    Lang, George; Boso, Brian; Erler, Brian S.; Reed, Christopher A.

    1986-03-01

    The ferric metalloporphyrin π-radical cation complexes Fe(III) (OClO3)2 (TPP.) and [Fe(III) Cl (TPP.)] [SbCl6] were examined in microcrystalline form by Mössbauer spectroscopy and magnetic susceptometry over a range of temperatures and applied fields. All measurements on the six-coordinate Fe(OClO3)2 (TPP.) were consistent with isolated molecules having an S=5/2 iron site with zero field splitting (12 cm-1) S2z that is ferromagnetically coupled to the S=1/2 porphyrin radical by an energy term (-110 cm-1) Sṡs. Thus the ground state is overall spin-3. In the five-coordinate [FeCl (TPP.)] [SbCl6] the susceptibility is in reasonable agreement with the results of a calculation based on zero field splitting (12 cm-1) S2z for the S=5/2 iron and antiferromagnetic coupling (200 cm-1) Sṡs with the radical to give an overall spin-2 ground state. However, the Mössbauer measurements require a more complicated model having the same large intramolecular iron-radical coupling, a smaller zero field splitting (3 cm-1) S2z, and weak intermolecular antiferromagnetic coupling between heme pairs given by (32 cm-1) s1ṡs2 or, equivalently, (0.65 cm-1) S1ṡS2. A slightly improved correspondence with the measured susceptibility results. The intermolecular antiferromagnetic coupling probably results from crystallization of the [FeCl (TPP.)]+ cations in face-to-face dimers as observed in other closely related five-coordinate iron (III) porphyrins.

  14. Novel ruthenium-catalyst for hydroesterification of olefins with formates

    OpenAIRE

    Profir, Irina; Beller, Matthias; Fleischer, Ivana

    2014-01-01

    An alternative ruthenium-based catalyst for the hydroesterification of olefins with formates is reported. The good activity of our system is ensured by the use of a bidentate P,N-ligand and ruthenium dodecacarbonyl. A range of formates can be used for selective alkoxycarbonylation of aromatic olefins. In addition, the synthesis of selected aliphatic esters is realized. The proposed active ruthenium complex has been isolated and characterized.

  15. Ruthenium(II) carbonyl complexes bearing quinoline-based NNO tridentate ligands as catalyst for one-pot conversion of aldehydes to amides and o-allylation of phenols

    Science.gov (United States)

    Manikandan, R.; Prakash, G.; Kathirvel, R.; Viswanathamurthi, P.

    2013-12-01

    Six new octahedral ruthenium(II) carbonyl complexes having the general molecular formula [RuCl(CO)(B)L1-2] (B = PPh3, AsPh3 or py; L1-2 = quinoline based NNO ligand) were synthesized. The quinoline based ligands behave as monoanionic tridentate donor and coordinated to ruthenium via ketoenolate oxygen, azomethine nitrogen and quinoline nitrogen. The composition of the complexes has been established by elemental analysis and spectral methods (FT-IR, electronic, 1H NMR, 13C NMR, 31P NMR and ESI-Mass). The complexes were used as efficient catalysts for one-pot conversion of various aldehydes to their corresponding primary amides in presence of NH2OH·HCl and NaHCO3. The effect of catalyst loading and reaction temperature on catalytic activity of the ruthenium(II) carbonyl complexes were also investigated. The synthesized complexes also possess good catalytic activity for the o-allylation of phenols in the presence of K2CO3 under mild conditions. The complexes afforded branched allyl aryl ethers according to a regioselective reaction.

  16. Investigations on interpolymer complexes of cationic guar gum and xanthan gum for formulation of bioadhesive films.

    Science.gov (United States)

    Singh, M; Tiwary, A K; Kaur, G

    2010-07-01

    The present study was aimed at evaluating the possible use of inter polymer complexed (IPC) films of xanthan gum (XG) and cationic guar gum (CGG) for formulating domperidone bioadhesive films. Formation of bonds between -COO¯ groups of XG and -N(+)(CH(3))(3) groups of CGG was evident in the FTIR spectra of IPC films. Bioadhesive strength of the films was evaluated employing texture analyser. Water uptake studies indicated swelling to be a function of XG concentration in the interpolymer complexes. The bioadhesive films were found to possess neutral pH. In vitro drug release studies and residence time studies indicated that the film comprising CGG:XG (80:20) released 98% of domperidone in 8 h and exhibited a residence time of approximately 8 h. Enhanced bioavailability of domperidone was observed from bioadhesive films as compared to orally administered conventional tablets. Overall, the findings suggest that IPC films of XG and CGG, exhibiting desired bioadhesive strength and enhanced bioavailability of domperidone, can be prepared. PMID:21589796

  17. Synthesis, spectroscopic and DFT structural characterization of two novel ruthenium(III) oxicam complexes. In vivo evaluation of anti-inflammatory and gastric damaging activities.

    Science.gov (United States)

    Tamasi, Gabriella; Bernini, Caterina; Corbini, Gianfranco; Owens, Natalie F; Messori, Luigi; Scaletti, Federica; Massai, Lara; Giudice, Pietro Lo; Cini, Renzo

    2014-05-01

    The reactions of ruthenium(III) chloride trihydrate with piroxicam (H2PIR) and tenoxicam (H2TEN), two widely used non-steroidal anti-inflammatory drugs, afforded [Ru(III)Cl2(H2PIR)(HPIR)],·1, and [Ru(III)Cl2(H2TEN)(HTEN)],·2. Both compounds were obtained as pure green solids through purification via flash column chromatography. Characterizations were accomplished through UV-vis and IR spectroscopy, potentiometry and HPLC. Quantum mechanics and density functional computational methods were applied to investigate their respective molecular structures. The experimental and computational results are in agreement with a pseudo-octahedral coordination where the two chlorido ligands are in trans positions (apical) and the two trans-N,O chelating oxicam ligands occupy the equatorial sites. Both compounds revealed an acceptable solubility and stability profile upon dissolution in a standard buffer at physiological pH. Nonetheless, the addition of biologically occurring reducing agents caused spectral changes. The two complexes manifested a poor reactivity with the model proteins cytochrome c and lysozyme: no evidence for adduct formation was indeed obtained based on a standard ESI MS analysis; in contrast, some significant reactivity with serum albumin was proved spectrophotometrically. Remarkably, both study compounds revealed pronounced anti-edema effects in vivo suggesting that the pharmacological actions of the ligands are mostly retained; in addition, they were less irritating than piroxicam on the gastric mucosa when the coordination compounds and free oxicam were administered at the same overall molar concentration of the ligand. Overall, the present results point out that ruthenium coordination may represent an effective strategy to improve the pharmacological properties of oxicam drugs reducing their undesired side effects. PMID:24518539

  18. New water-soluble ruthenium(II) terpyridine complexes for anticancer activity: synthesis, characterization, activation kinetics, and interaction with guanine derivatives.

    Science.gov (United States)

    Rilak, Ana; Bratsos, Ioannis; Zangrando, Ennio; Kljun, Jakob; Turel, Iztok; Bugarčić, Živadin D; Alessio, Enzo

    2014-06-16

    With the aim of assessing whether ruthenium(II) compounds with meridional geometry might be utilized as potential antitumor agents, a series of new, water-soluble, monofunctional ruthenium(II) complexes of the general formula mer-[Ru(L3)(N-N)X][Y]n (where L3 = 2,2':6',2″-terpyridine (tpy) or 4'-chloro-2,2':6',2″-terpyridine (Cl-tpy), N-N = 1,2-diaminoethane (en), 1,2-diaminocyclohexane (dach), or 2,2'-bipyridine (bpy); X = Cl or dmso-S; Y = Cl, PF6, or CF3SO3; n = 1 or 2, depending on the nature of X) were synthesized. All complexes were fully characterized by elemental analysis and spectroscopic techniques (IR, UV/visible, and 1D and 2D NMR), and for three of them, i.e., [Ru(Cl-tpy)(bpy)Cl][Cl] (3Cl), [Ru(Cl-tpy)(en)(dmso-S)][Y]2 [Y = PF6 (6PF6), CF3SO3 (6OTf)] and [Ru(Cl-tpy)(bpy)(dmso-S)][CF3SO3]2 (8OTf), the X-ray structure was also determined. The new terpyridine complexes, with the exception of 8, are well soluble in water (>25 mg/mL). (1)H and (31)P NMR spectroscopy studies performed on the three selected complexes [Ru(Cl-tpy)(N-N)Cl](+) [N-N = en (1), dach (2), and bpy (3)] demonstrated that, after hydrolysis of the Cl ligand, they are capable of interacting with guanine derivatives [i.e., 9-methylguanine (9MeG) or guanosine-5'-monophosphate (5'-GMP)] through N7, forming monofunctional adducts with rates and extents that depend strongly on the nature of N-N: 1 ≈ 2 ≫ 3. In addition, compound 1 shows high selectivity toward 5'-GMP compared to adenosine-5'-monophosphate (5'-AMP), in a competition experiment. Quantitative kinetic investigations on 1 and 2 were performed by means of UV/visible spectroscopy. Overall, the complexes with bidentate aliphatic diamines proved to be superior to those with bpy in terms of solubility and reactivity (i.e., release of Cl(-) and capability to bind guanine derivatives). Contrary to the chlorido compounds, the corresponding dmso derivatives proved to be inert (viz., they do not release the monodentate ligand) in

  19. Naked (C5Me5)(2)M cations (M = Sc, Ti, and V) and their fluoroarene complexes

    NARCIS (Netherlands)

    Bouwkamp, MW; Budzelaar, PHM; Gercama, J; Morales, ID; de Wolf, J; Meetsma, A; Troyanov, SI; Teuben, JH; Hessen, B; Budzelaar, Peter H.M.; Hierro Morales, Isabel Del; Troyanov, Sergei I.

    2005-01-01

    The ionic metallocene complexes [Cp*M-2][BPh4] (CP* = C5Me5) of the trivalent 3d metals Sc, Ti, and V were synthesized and structurally characterized. For M Sc, the anion interacts weakly with the metal center through one of the phenyl groups, but for M = Ti and V, the cations are naked. They each c

  20. Rolling cycle amplification based single-color quantum dots–ruthenium complex assembling dyads for homogeneous and highly selective detection of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chen; Liu, Yufei; Ye, Tai; Xiang, Xia; Ji, Xinghu; He, Zhike, E-mail: zhkhe@whu.edu.cn

    2015-01-01

    Graphical abstract: A universal, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. - Highlights: • The single-color QDs–Ru assembling dyads were applied in homogeneous DNA assay. • This biosensor exhibited high selectivity against base mismatched sequences. • This biosensor could be severed as universal platform for the detection of ssDNA. • This sensor could be used to detect the target in human serum samples. • This DNA sensor had a good selectivity under the interference of other dsDNA. - Abstract: In this work, a new, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. This strategy includes three steps: (1) the target DNA initiates RCA reaction and generates linear RCA products; (2) the complementary DNA hybridizes with the RCA products to form long double-strand DNA (dsDNA); (3) [Ru(phen){sub 2}(dppx)]{sup 2+} (dppx = 7,8-dimethyldipyrido [3,2-a:2′,3′-c] phenanthroline) intercalates into the long dsDNA with strong fluorescence emission. Due to its strong binding propensity with the long dsDNA, [Ru(phen){sub 2}(dppx)]{sup 2+} is removed from the surface of the QDs, resulting in restoring the fluorescence of the QDs, which has been quenched by [Ru(phen){sub 2}(dppx)]{sup 2+} through a photoinduced electron transfer process and is overlaid with the fluorescence of dsDNA bonded Ru(II) polypyridyl complex (Ru-dsDNA). Thus, high fluorescence intensity is observed, and is related to the concentration of target. This sensor exhibits not only high sensitivity for hepatitis B virus (HBV) ssDNA with a low detection limit (0.5 pM), but also excellent selectivity in the complex matrix. Moreover

  1. A triphenylamine-grafted imidazo[4,5-f][1,10]phenanthroline ruthenium(II) complex: acid-base and photoelectric properties.

    Science.gov (United States)

    Fan, Su-Hua; Zhang, An-Guo; Ju, Chuan-Chuan; Gao, Li-Hua; Wang, Ke-Zhi

    2010-04-19

    A new heteroleptic ruthenium(II) complex of [Ru(Hipdpa)(Hdcbpy)(NCS)(2)](-).0.5H(+).0.5[N(C(4)H(9))(4)](+) Ru(Hipdpa) {where Hdcbpy = monodeprotonated 4,4'-dicarboxy-2,2'-bipyridine and Hipdpa = 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline} was synthesized and characterized by elementary analysis, standard spectroscopy techniques, and cyclic voltammetry. The ground- and excited-state acid-base properties of Ru(Hipdpa) were studied by means of UV-vis absorption spectrophotometric and spectrofluorimetric titrations in 4:1(v/v) Britton-Robinson/dimethylformamide buffer solution. The four-step separate protonation/deprotonation processes were found in the ground states, and one of which taking place near the physiological pH range. The two observable excited-state protonation/deprotonation processes were found for the Ru(Hipdpa), constituting pH-induced "off-on-off" emission switches. The performance of the complexes as photosensitizers in nanocrystalline TiO(2)-based liquid solar cells containing an electrolyte solution (0.05 M I(2), 0.5 M LiI, and 0.5 M 4-tert-butylpyridine in 50% acetonitrile and 50% propylene carbonate) was investigated and found to achieve a much improved device performance (a short-circuit photocurrent density of 18.7 mA cm(-2), an open-circuit voltage of 630 mV, and an overall conversion efficiency of 6.85%) compared to a triphenylamine-free parent complex [Ru(Hpip)(Hdcbpy)(NCS)(2)](-).[N(C(4)H(9))(4)](+)-based device {Hpip = 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline} and a comparable performance to that of cis-bis(isothiocyanato)bis(2,2'-bipyridine-4,4'-dicarboxylic acid)ruthenium(II) (N3) under identical experimental conditions. A density functional theory calculation of the molecular structures and electronic properties of the complexes was also carried out in an effort to understand their effectiveness in TiO(2)-based solar cells. PMID:20337492

  2. Influence of phospholipid composition on cationic emulsions/DNA complexes: physicochemical properties, cytotoxicity, and transfection on Hep G2 cells

    Directory of Open Access Journals (Sweden)

    Fraga M

    2011-10-01

    Full Text Available Michelle Fraga1,2, Fernanda Bruxel1, Valeska Lizzi Lagranha2,3, Helder Ferreira Teixeira1, Ursula Matte2,31Post Graduation Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, 2Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, 3Post Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, BrazilBackground: Cationic nanoemulsions have been recently considered as potential delivery systems for nucleic acids. This study reports the influence of phospholipids on the properties of cationic nanoemulsions/DNA plasmid complexes.Methods: Nanoemulsions composed of medium-chain triglycerides, stearylamine, egg lecithin or isolated phospholipids, ie, DSPC, DOPC, DSPE, or DOPE, glycerol, and water were prepared by spontaneous emulsification. Gene transfer to Hep G2 cells was analyzed using real-time polymerase chain reaction.Results: The procedure resulted in monodispersed nanoemulsions with a droplet size and zeta potential of approximately 250 nm and +50 mV, respectively. The complexation of cationic nanoemulsions with DNA plasmid, analyzed by agarose gel retardation assay, was complete when the complex was obtained at a charge ratio of ≥1.0. In these conditions, the complexes were protected from enzymatic degradation by DNase I. The cytotoxicity of the complexes in Hep G2 cells, evaluated by MTT assay, showed that an increasing number of complexes led to progressive toxicity. Higher amounts of reporter DNA were detected for the formulation obtained with the DSPC phospholipid. Complexes containing DSPC and DSPE phospholipids, which have high phase transition temperatures, were less toxic in comparison with the formulations obtained with lecithin, DOPC, and DOPE.Conclusion: The results show the effect of the DNA/nanoemulsion complexes composition on the toxicity and transfection results.Keywords: plasmids, cationic nanoemulsions

  3. Rolling cycle amplification based single-color quantum dots-ruthenium complex assembling dyads for homogeneous and highly selective detection of DNA.

    Science.gov (United States)

    Su, Chen; Liu, Yufei; Ye, Tai; Xiang, Xia; Ji, Xinghu; He, Zhike

    2015-01-01

    In this work, a new, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots-ruthenium complex (QDs-Ru) assembling dyads. This strategy includes three steps: (1) the target DNA initiates RCA reaction and generates linear RCA products; (2) the complementary DNA hybridizes with the RCA products to form long double-strand DNA (dsDNA); (3) [Ru(phen)2(dppx)](2+) (dppx=7,8-dimethyldipyrido [3,2-a:2',3'-c] phenanthroline) intercalates into the long dsDNA with strong fluorescence emission. Due to its strong binding propensity with the long dsDNA, [Ru(phen)2(dppx)](2+) is removed from the surface of the QDs, resulting in restoring the fluorescence of the QDs, which has been quenched by [Ru(phen)2(dppx)](2+) through a photoinduced electron transfer process and is overlaid with the fluorescence of dsDNA bonded Ru(II) polypyridyl complex (Ru-dsDNA). Thus, high fluorescence intensity is observed, and is related to the concentration of target. This sensor exhibits not only high sensitivity for hepatitis B virus (HBV) ssDNA with a low detection limit (0.5 pM), but also excellent selectivity in the complex matrix. Moreover, this strategy applies QDs-Ru assembling dyads to the detection of single-strand DNA (ssDNA) without any functionalization and separation techniques.

  4. Water-soluble Cp ruthenium complex containing 1,3,5-triaza-7-phosphaadamantane and 8-thiotheophylline derivatives: synthesis, characterization, and antiproliferative activity.

    Science.gov (United States)

    Hajji, Lazhar; Saraiba-Bello, Cristobal; Romerosa, Antonio; Segovia-Torrente, Gaspar; Serrano-Ruiz, Manuel; Bergamini, Paola; Canella, Alessandro

    2011-02-01

    The new water-soluble ruthenium(II) mononuclear complexes [RuCp(X)(PTA)(L)] (X = 8-thio-theophyllinate (TTH(-)), L = PTA (1), L = PPh(3) (7)); (X = 8-methylthio-theophyllinate (8-MTT(-)), L = PTA (2), L = PPh(3) (8)), (X = 8-benzylthio-theophyllinate (8-BzTT(-)), L = PTA (3), L = PPh(3) (9)) and binuclear complexes [{RuCp(PTA)(L)}(2)-μ-(Y-κN7,N'7)] (Y = bis(S-8-thiotheophyllinate)methane (MBTT(2-)), L = PTA (4), L = PPh(3) (10)), (Y = 1,2-bis(S-8-thiotheophyllinate)ethane (EBTT(2-)), L = PTA (5), L = PPh(3) (11)), (Y = 1,3-bis(S-8-thiotheophyllinate)propane (PBTT(2-)); L = PTA (6), L = PPh(3) (12)) have been synthesized and characterized by NMR, IR spectroscopy and elemental analysis. The single crystal X-ray structure of [RuCp(8-MTT-κS)(PTA)(2)] (2) was also obtained. The antiproliferative activity of the complexes on cisplatin-sensitive T2 and cisplatin-resistant SKOV3 cell lines has been evaluated. PMID:21226474

  5. Mutagenic activity of some platinum and ruthenium complexes with N-heterocyclic ligands in salmonella typhimurium Ta 1530 and Ta 98

    International Nuclear Information System (INIS)

    The mutagenic activity of some platinum and ruthenium complexes with 2,2'-biquinoline (b iq) and 2-(2' -pyridyl) quinoline (p q) was examined in strains of salmonella typhimurium Ta 1530 and Ta 98. The complexes cis-[Pt(Nn)X2)] (Nn=b iq, X=CI; Nn=p q, X=CI, Br), Pt3(b iq)2I6 and me r-[Ru(b iq)2CI3].2H2O exhibit significant mutagenic activity while me r-[Ru(p q)CI3(C2H5OH)], [Ru(p q)CI4]. 3a-2a and [Ru(p q) (DMSO)2CI2].0.5H2O show much weaker mutagenic activity. the platinum complexes appear to be more active via induction of frameshift than base substitution mutation while me r-[Ru(b iq)2CI3].2H2O is highly mutagenic via base substitution. (authors). 16 refs., 2 tabs

  6. Effect of Pendant Group on pDNA Delivery by Cationic-β-Cyclodextrin:Alkyl-PVA-PEG Pendant Polymer Complexes

    OpenAIRE

    Kulkarni, Aditya; Badwaik, Vivek; DeFrees, Kyle; Schuldt, Ryan A.; Gunasekera, Dinara S.; Powers, Cory; Vlahu, Alexander; VerHeul, Ross; Thompson, David H.

    2013-01-01

    We have previously shown that cationic-β-CD:R-poly(vinyl alcohol)-poly(ethylene glycol) pendant polymer host:guest complexes are safe and efficient vehicles for nucleic acid delivery, where R = benzylidene-linked adamantyl or cholesteryl esters. Herein, we report the synthesis and biological performance of a family of PVA-PEG pendant polymers whose pendant groups have a wide range of different affinities for the β-CD cavity. Cytotoxicity studies revealed that all of the cationic-β-CD:pendant ...

  7. A study of molecular adsorption of a cationic surfactant on complex surfaces with atomic force microscopy.

    Science.gov (United States)

    Sokolov, I; Zorn, G; Nichols, J M

    2016-02-01

    The study of molecular adsorption on solid surfaces is of broad interest. However, so far the study has been restricted to idealized flat smooth rigid surfaces which are rarely the case in real world applications. Here we describe a study of molecular adsorption on a complex surface of the submicron fibers of a fibrous membrane of regenerated cellulose in aqueous media. We use a cationic surfactant, cetyltrimethylammonium chloride (CTAC), as the adsorbing molecule. We study the equilibrium adsorption of CTAC molecules on the same area of the fibers by sequentially immersing the membrane in pure water, 1 mM and then a 20 mM solution of CTAC. Atomic force microscopy (AFM) is applied to study the adsorption. The force-volume mode is used to record the force-deformation curves of the adsorbed molecules on the fiber surface. We suggest a model to separate the forces due to the adsorbed molecules from the elastic deformation of the fiber. Interestingly, knowledge of the surface geometry is not required in this model provided the surface is made of elastically homogeneous material. Different models are investigated to estimate the amount of the adsorbed molecules based on the obtained force curves. The exponential steric repulsion model fits the force data the best. The amount of the adsorbed surfactant molecules and its dependence on the concentration are found to be reasonable compared to the data previously measured by means of Raman scattering done on a flat surface of silica. PMID:26730682

  8. Chemistry of ruthenium in nitric acid solution with special regard to nuclear fuel solutions

    International Nuclear Information System (INIS)

    A review is given concerning the published knowledge about the chemistry of ruthenium in nitric acid solution with special reference to nitric acid nuclear fuel solutions. Possibilities of the spectroscopic description of the different existing ruthenium complexes are discussed and papers are presented dealing with the estimation of the proportions of the different ruthenium compounds in nuclear fuel solutions. Finally, arguments are derived for the preparation of ruthenium-containing model solutions, which adequately simulate the composition of real nuclear fuel solutions. (author)

  9. Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Yuancheng Qin

    2012-01-01

    Full Text Available Dye-sensitized solar cells (DSSCs have attracted considerable attention in recent years due to the possibility of low-cost conversion of photovoltaic energy. The DSSCs-based ruthenium complexes as sensitizers show high efficiency and excellent stability, implying potential practical applications. This review focuses on recent advances in design and preparation of efficient ruthenium sensitizers and their applications in DSSCs, including thiocyanate ruthenium sensitizers and thiocyanate-free ruthenium sensitizers.

  10. A novel dual-functioning ruthenium(II)-arene complex of an anti-microbial ciprofloxacin derivative - Anti-proliferative and anti-microbial activity.

    Science.gov (United States)

    Ude, Ziga; Romero-Canelón, Isolda; Twamley, Brendan; Fitzgerald Hughes, Deirdre; Sadler, Peter J; Marmion, Celine J

    2016-07-01

    7-(4-(Decanoyl)piperazin-1-yl)-ciprofloxacin, CipA, (1) which is an analogue of the antibiotic ciprofloxacin, and its ruthenium(II) complex [Ru(η(6)-p-cymene)(CipA-H)Cl], (2) have been synthesised and the x-ray crystal structures of 1·1.3H2O·0.6CH3OH and 2·CH3OH·0.5H2O determined. The complex adopts a typical pseudo-octahedral 'piano-stool' geometry, with Ru(II) π-bonded to the p-cymene ring and σ-bonded to a chloride and two oxygen atoms of the chelated fluoroquinolone ligand. The complex is highly cytotoxic in the low μM range and is as potent as the clinical drug cisplatin against the human cancer cell lines A2780, A549, HCT116, and PC3. It is also highly cytotoxic against cisplatin- and oxaliplatin-resistant cell lines suggesting a different mechanism of action. The complex also retained low μM cytotoxicity against the human colon cancer cell line HCT116p53 in which the tumour suppressor p53 had been knocked out, suggesting that the potent anti-proliferative properties associated with this complex are independent of the status of p53 (in contrast to cisplatin). The complex also retained moderate anti-bacterial activity in two Escherichia coli, a laboratory strain and a clinical isolate resistant to first, second and third generation β-lactam antibiotics.

  11. A novel dual-functioning ruthenium(II)-arene complex of an anti-microbial ciprofloxacin derivative - Anti-proliferative and anti-microbial activity.

    Science.gov (United States)

    Ude, Ziga; Romero-Canelón, Isolda; Twamley, Brendan; Fitzgerald Hughes, Deirdre; Sadler, Peter J; Marmion, Celine J

    2016-07-01

    7-(4-(Decanoyl)piperazin-1-yl)-ciprofloxacin, CipA, (1) which is an analogue of the antibiotic ciprofloxacin, and its ruthenium(II) complex [Ru(η(6)-p-cymene)(CipA-H)Cl], (2) have been synthesised and the x-ray crystal structures of 1·1.3H2O·0.6CH3OH and 2·CH3OH·0.5H2O determined. The complex adopts a typical pseudo-octahedral 'piano-stool' geometry, with Ru(II) π-bonded to the p-cymene ring and σ-bonded to a chloride and two oxygen atoms of the chelated fluoroquinolone ligand. The complex is highly cytotoxic in the low μM range and is as potent as the clinical drug cisplatin against the human cancer cell lines A2780, A549, HCT116, and PC3. It is also highly cytotoxic against cisplatin- and oxaliplatin-resistant cell lines suggesting a different mechanism of action. The complex also retained low μM cytotoxicity against the human colon cancer cell line HCT116p53 in which the tumour suppressor p53 had been knocked out, suggesting that the potent anti-proliferative properties associated with this complex are independent of the status of p53 (in contrast to cisplatin). The complex also retained moderate anti-bacterial activity in two Escherichia coli, a laboratory strain and a clinical isolate resistant to first, second and third generation β-lactam antibiotics. PMID:26993079

  12. Simultaneous realization of Hg2+ sensing, magnetic resonance imaging and upconversion luminescence in vitro and in vivo bioimaging based on hollow mesoporous silica coated UCNPs and ruthenium complex

    Science.gov (United States)

    Ge, Xiaoqian; Sun, Lining; Ma, Binbin; Jin, Di; Dong, Liang; Shi, Liyi; Li, Nan; Chen, Haige; Huang, Wei

    2015-08-01

    We have constructed a multifunctional nanoprobe with sensing and imaging properties by using hollow mesoporous silica coated upconversion nanoparticles (UCNPs) and Hg2+ responsive ruthenium (Ru) complex. The Ru complex was loaded into the hollow mesoporous silica and the UCNPs acted as an energy donor, transferring luminescence energy to the Ru complex. Furthermore, polyethylenimine (PEI) was assembled on the surface of mesoporous silica to achieve better hydrophilic and bio-compatibility. Upon addition of Hg2+, a blue shift of the absorption peak of the Ru complex is observed and the energy transfer process between the UCNPs and the Ru complex was blocked, resulting in an increase of the green emission intensity of the UCNPs. The un-changed 801 nm emission of the nanoprobe was used as an internal standard reference and the detection limit of Hg2+ was determined to be 0.16 μM for this nanoprobe in aqueous solution. In addition, based on the low cytotoxicity as studied by CCK-8 assay, the nanoprobe was successfully applied for cell imaging and small animal imaging. Furthermore, when doped with Gd3+ ions, the nanoprobe was successfully applied to in vivo magnetic resonance imaging (MRI) of Kunming mice, which demonstrates its potential as a MRI positive-contrast agent. Therefore, the method and results may provide more exciting opportunities to afford nanoprobes with multimodal bioimaging and multifunctional applications.We have constructed a multifunctional nanoprobe with sensing and imaging properties by using hollow mesoporous silica coated upconversion nanoparticles (UCNPs) and Hg2+ responsive ruthenium (Ru) complex. The Ru complex was loaded into the hollow mesoporous silica and the UCNPs acted as an energy donor, transferring luminescence energy to the Ru complex. Furthermore, polyethylenimine (PEI) was assembled on the surface of mesoporous silica to achieve better hydrophilic and bio-compatibility. Upon addition of Hg2+, a blue shift of the absorption peak

  13. First ruthenium complex of glyoxalbis(N-phenyl)osazone (L(NHPh)H(2)): synthesis, x-ray structure, spectra, and density functional theory calculations of (L(NHPh)H(2))Ru(PPh(3))(2)Cl(2).

    Science.gov (United States)

    Roy, Amit Saha; Tuononen, Heikki M; Rath, Sankar P; Ghosh, Prasanta

    2007-07-23

    The first ruthenium complex containing the parent osazone ligand, glyoxalbis(N-phenyl)osazone (L(NHPh)H(2)), is reported. The complex (L(NHPh)H(2))Ru(PPh(3))(2)Cl(2) (1) was characterized with mass, IR, (1)H NMR, and UV-vis spectroscopy as well as with theoretical calculations. Density functional theory calculations on the model compound (L(NHPh)H(2))Ru(PMe(3))(2)Cl(2) (2) reproduce the geometrical features observed for 1 and verify that it formally contains a ruthenium(II) metal center coordinated by a neutral osazone. Subsequent bonding analyses identify pi-interactions between the occupied orbitals of the metal fragment and the LUMO of the osazone, which results in transfer of approximately 0.3 electrons from the metal to the ligand. The complex 1 absorbs strongly at 405 nm, which is assigned to a ruthenium-to-ligand charge-transfer band on the basis of results of theoretical calculations. Complex 1 is also electroactive and displays a single one-electron oxidation wave at 0.39 V; coulometric oxidation gives the oxidized species [1]+ as a [PF(6)](-) salt. Simulation of the EPR spectra of [1][PF(6)], a one-electron paramagnetic species, affords g-tensor parameters g(x) = 2.2649, g(y) = 2.0560, and g(z) = 1.9064 consistent with a ruthenium(III) description for [1](+), thereby confirming a metal-centered redox reaction. PMID:17595075

  14. Adsorption of ruthenium red to phospholipid membranes.

    OpenAIRE

    Voelker, D; Smejtek, P

    1996-01-01

    We have measured the distribution of the hexavalent ruthenium red cation (RuR) between water and phospholipid membranes, have shown the critical importance of membrane negative surface charge for RuR binding, and determined the association constant of RuR for different phospholipid bilayers. The studies were performed with liposomes made of mixtures of zwitterionic L-alpha-phosphatidylcholine (PC), and one of the negatively charged phospholipids: L-alpha-phosphatidylserine (PS), L-alpha-phosp...

  15. Ruthenium(III) Complexes of Heterocyclic Tridentate (ONN) Schiff Base: Synthesis, Characterization and its Biological Properties as an Antiradical and Antiproliferative Agent

    Science.gov (United States)

    Ejidike, Ikechukwu P.; Ajibade, Peter A.

    2016-01-01

    The current work reports the synthesis, spectroscopic studies, antiradical and antiproliferative properties of four ruthenium(III) complexes of heterocyclic tridentate Schiff base bearing a simple 2′,4′-dihydroxyacetophenone functionality and ethylenediamine as the bridging ligand with RCHO moiety. The reaction of the tridentate ligands with RuCl3·3H2O lead to the formation of neutral complexes of the type [Ru(L)Cl2(H2O)] (where L = tridentate NNO ligands). The compounds were characterized by elemental analysis, UV-vis, conductivity measurements, FTIR spectroscopy and confirmed the proposed octahedral geometry around the Ru ion. The Ru(III) compounds showed antiradical potentials against 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, with DPPH scavenging capability in the order: [(PAEBOD)RuCl2] > [(BZEBOD)RuCl2] > [(MOABOD)RuCl2] > [Vit. C] > [rutin] > [(METBOD)RuCl2], and ABTS radical in the order: [(PAEBOD)RuCl2] < [(MOABOD)RuCl2] < [(BZEBOD)RuCl2] < [(METBOD)RuCl2]. Furthermore, in vitro anti-proliferative activity was investigated against three human cancer cell lines: renal cancer cell (TK-10), melanoma cancer cell (UACC-62) and breast cancer cell (MCF-7) by SRB assay. PMID:26742030

  16. A chelate-stabilized ruthenium(sigma-pyrrolato) complex: resolving ambiguities in nuclearity and coordination geometry through 1H PGSE and 31P solid-state NMR studies.

    Science.gov (United States)

    Foucault, Heather M; Bryce, David L; Fogg, Deryn E

    2006-12-11

    Reaction of RuCl2(PPh3)3 with LiNN' (NN' = 2-[(2,6-diisopropylphenyl)imino]pyrrolide) affords a single product, with the empirical formula RuCl[(2,6-iPr2C6H3)N=CHC4H3N](PPh3)2. We identify this species as a sigma-pyrrolato complex, [Ru(NN')(PPh3)2]2(mu-Cl)2 (3b), rather than mononuclear RuCl(NN')(PPh3)2 (3a), on the basis of detailed 1D and 2D NMR characterization in solution and in the solid state. Retention of the chelating, sigma-bound iminopyrrolato unit within 3b, despite the presence of labile (dative) chloride and PPh3 donors, indicates that the chelate effect is sufficient to inhibit sigma --> pi isomerization of 3b to a piano-stool, pi-pyrrolato structure. 2D COSY, SECSY, and J-resolved solid-state 31P NMR experiments confirm that the PPh3 ligands on each metal center are magnetically and crystallographically inequivalent, and 31P CP/MAS NMR experiments reveal the largest 99Ru-31P spin-spin coupling constant (1J(99Ru,31P) = 244 +/- 20 Hz) yet measured. Finally, 31P dipolar-chemical shift spectroscopy is applied to determine benchmark phosphorus chemical shift tensors for phosphine ligands in hexacoordinate ruthenium complexes.

  17. A photoelectrochemical biosensor using ruthenium complex-reduced graphene oxide hybrid as the photocurrent signal reporter assembled on rhombic TiO2 nanocrystals driven by visible light.

    Science.gov (United States)

    Ge, Lei; Wang, Yanhu; Yang, Hongmei; Yang, Ping; Cheng, Xin; Yan, Mei; Yu, Jinghua

    2014-05-30

    An ultrasensitive photoelectrochemical (PEC) immunoassay of cancer biomarker carcinoembryonie antigen (CEA) is proposed that uses rhombic titanium dioxide nanocrystals (TiO2 NCs) coupled with Ab2-RGO-Ru bioconjugate, which featured CEA signal antibody (Ab2) and ruthenium tris(bipyridine) (Ru complex) labels linked to reduced graphene oxide (RGO) for signal amplification. Herein, the Ru complex acts as an electron donor, while RGO serves as an electron acceptor which facilitates charge separation and suppresses recombination of photoexcited electron-hole pairs in the hybridized species. The rhombic TiO2 NCs were fabricated through a solvothermal technique in anhydrous ethanol, followed by spin-coating process and calcination, an ITO/TiO2 electrode was obtained. Chitosan (CS) and glutaraldehyde (GLD) were used to modify the prepared ITO/TiO2 electrode to covalently immobilize antibodies. With a sandwich-type immunoreaction, CEA and Ab2-RGO-Ru were conjugated successively to form a sandwich-type immunocomplex. Thus, a sandwich-type PEC immunosensor was fabricated for the detection of CEA was developed by monitoring the changes in the photocurrent signals of the electrode resulting from the immunoreaction. The proposed PEC immunosensor showed high sensitivity, selectivity, excellent stability, and good reproducibility, and thus has great potential to be used for other biological assays. PMID:24845812

  18. Ruthenium(III Complexes of Heterocyclic Tridentate (ONN Schiff Base: Synthesis, Characterization and its Biological Properties as an Antiradical and Antiproliferative Agent

    Directory of Open Access Journals (Sweden)

    Ikechukwu P. Ejidike

    2016-01-01

    Full Text Available The current work reports the synthesis, spectroscopic studies, antiradical and antiproliferative properties of four ruthenium(III complexes of heterocyclic tridentate Schiff base bearing a simple 2′,4′-dihydroxyacetophenone functionality and ethylenediamine as the bridging ligand with RCHO moiety. The reaction of the tridentate ligands with RuCl3·3H2O lead to the formation of neutral complexes of the type [Ru(LCl2(H2O] (where L = tridentate NNO ligands. The compounds were characterized by elemental analysis, UV-vis, conductivity measurements, FTIR spectroscopy and confirmed the proposed octahedral geometry around the Ru ion. The Ru(III compounds showed antiradical potentials against 2,2-Diphenyl-1-Picrylhydrazyl (DPPH and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS radicals, with DPPH scavenging capability in the order: [(PAEBODRuCl2] > [(BZEBODRuCl2] > [(MOABODRuCl2] > [Vit. C] > [rutin] > [(METBODRuCl2], and ABTS radical in the order: [(PAEBODRuCl2] < [(MOABODRuCl2] < [(BZEBODRuCl2] < [(METBODRuCl2]. Furthermore, in vitro anti-proliferative activity was investigated against three human cancer cell lines: renal cancer cell (TK-10, melanoma cancer cell (UACC-62 and breast cancer cell (MCF-7 by SRB assay.

  19. EXAFS STRUCTURAL STUDIES OF AROMATIC POLYMERS/RUTHENIUM CATALYSTS

    OpenAIRE

    Dalba, G.; Fornasini, P.; Rocca, F.; Pertici, P.; Burattini, E.

    1986-01-01

    The coordination of ruthenium in polystyrene/ruthenium catalysts has been studied by EXAFS. Ru atoms result complexed to the phenyl rings and tend to group in small clusters. The extent of the clustering depends on the Ru concentration and grows when the compounds are utilized for the first catalytic run. Successive catalytic runs do not affect sensibly the coordination of Ru.

  20. Effect of NOx gas on ruthenium distribution during conditioning stage

    International Nuclear Information System (INIS)

    For adjusting the oxidation state of plutonium during the aqueous reprocessing of irradiated fuels of fast breeder reactors, NOx gas is considered as an efficient reductant. The noble metal, ruthenium is one of the troublesome fission products which exist as various nitro, nitrato and nitrate-nitro complexes of ruthenium nitrosyl with hydroxo and aqua ligands in the dissolved solution of the spent fuel. Extractability of different nitrato or nitro complexes of ruthenium nitrosyl ions varies and therefore, the equilibrium between the species is critical for the decontamination of U and Pu from Ru. Among the various complexes, ruthenium nitrosyl nitrate (Ru(NO)(NO3)3) has the maximum distribution into 30%TBP-NPH solvent system. Hence, the influence of NOx gas on the distribution of ruthenium as Ru(NO)(NO3)3 at various acid concentrations (2, 3, 4 and 5M nitric acid ) was investigated. NOx gas was generated by adding 7M NaNO2 to 7M HNO3 solution in a closed vessel maintained at negative pressure by a vacuum pump, through a narrow tube containing ruthenium nitrosyl nitrate solution at different acidities for 10 minutes. Equilibration of ruthenium solution in different acidities with pre-equilibrated 30%TBP in NPH was carried out (i) immediately after passing the NOx gas, (ii) after 24 hours and (iii) after one week to study the effect of ageing on ruthenium distribution. Analysis of ruthenium was carried out by spectrophotometrically using 1-10 Phenanthalein as chromogenic reagent. It was found that at lower acidity (2 and 3M HNO3), distribution of ruthenium decreases immediately after extraction and found to be almost stable even after 24 hours. After one week, the distribution was found to increase slightly. At higher acidity (4 and 5M HNO3) distribution of ruthenium was not varied much even after one week. (author)

  1. Alcohol Dehydrogenation with a Dual Site Ruthenium, Boron Catalyst Occurs at Ruthenium

    OpenAIRE

    Denver Guess; Williams, Travis J.; Conley, Brian L.; Brock Malinoski; Zhiyao Lu; Ana V. Flores

    2012-01-01

    The complex [(κ3-(N,N,O-py2B(Me)OH)Ru(NCMe)3]+ TfO− (1) is a catalyst for transfer dehydrogenation of alcohols, which was designed to function through a cooperative transition state in which reactivity was split between boron and ruthenium. We show here both stoichiometric and catalytic evidence to support that in the case of alcohol oxidation, the mechanism most likely involves reactivity only at the ruthenium center.

  2. Alcohol Dehydrogenation with a Dual Site Ruthenium, Boron Catalyst Occurs at Ruthenium

    Directory of Open Access Journals (Sweden)

    Denver Guess

    2012-10-01

    Full Text Available The complex [(κ3-(N,N,O-py2B(MeOHRu(NCMe3]+ TfO− (1 is a catalyst for transfer dehydrogenation of alcohols, which was designed to function through a cooperative transition state in which reactivity was split between boron and ruthenium. We show here both stoichiometric and catalytic evidence to support that in the case of alcohol oxidation, the mechanism most likely involves reactivity only at the ruthenium center.

  3. Effect of the piperazine unit and metal-binding site position on the solubility and anti-proliferative activity of ruthenium(II)- and osmium(II)- arene complexes of isomeric indolo[3,2-c]quinoline-piperazine hybrids.

    Science.gov (United States)

    Filak, Lukas K; Kalinowski, Danuta S; Bauer, Theresa J; Richardson, Des R; Arion, Vladimir B

    2014-07-01

    In this study, the indoloquinoline backbone and piperazine were combined to prepare indoloquinoline-piperazine hybrids and their ruthenium- and osmium-arene complexes in an effort to generate novel antitumor agents with improved aqueous solubility. In addition, the position of the metal-binding unit was varied, and the effect of these structural alterations on the aqueous solubility and antiproliferative activity of their ruthenium- and osmium-arene complexes was studied. The indoloquinoline-piperazine hybrids L(1-3) were prepared in situ and isolated as six ruthenium and osmium complexes [(η(6)-p-cymene)M(L(1-3))Cl]Cl, where L(1) = 6-(4-methylpiperazin-1-yl)-N-(pyridin-2-yl-methylene)-11H-indolo[3,2-c]quinolin-2-N-amine, M = Ru ([1a]Cl), Os ([1b]Cl), L(2) = 6-(4-methylpiperazin-1-yl)-N-(pyridin-2-yl-methylene)-11H-indolo[3,2-c]quinolin-4-N-amine, M = Ru ([2a]Cl), Os ([2b]Cl), L(3) = 6-(4-methylpiperazin-1-yl)-N-(pyridin-2-yl-methylene)-11H-indolo[3,2-c]quinolin-8-N-amine, M = Ru ([3a]Cl), Os ([3b]Cl). The compounds were characterized by elemental analysis, one- and two-dimensional NMR spectroscopy, ESI mass spectrometry, IR and UV-vis spectroscopy, and single-crystal X-ray diffraction. The antiproliferative activity of the isomeric ruthenium and osmium complexes [1a,b]Cl-[3a,b]Cl was examined in vitro and showed the importance of the position of the metal-binding site for their cytotoxicity. Those complexes containing the metal-binding site located at the position 4 of the indoloquinoline scaffold ([2a]Cl and [2b]Cl) demonstrated the most potent antiproliferative activity. The results provide important insight into the structure-activity relationships of ruthenium- and osmium-arene complexes with indoloquinoline-piperazine hybrid ligands. These studies can be further utilized for the design and development of more potent chemotherapeutic agents. PMID:24927493

  4. Ruthenium Complexes Induce HepG2 Human Hepatocellular Carcinoma Cell Apoptosis and Inhibit Cell Migration and Invasion through Regulation of the Nrf2 Pathway

    Directory of Open Access Journals (Sweden)

    Yiyu Lu

    2016-05-01

    Full Text Available Ruthenium (Ru complexes are currently the focus of substantial interest because of their potential application as chemotherapeutic agents with broad anticancer activities. This study investigated the in vitro and in vivo anticancer activities and mechanisms of two Ru complexes—2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine Ru(II carbonyl (Ru1 and 5,10,15,20-Tetraphenyl-21H,23H-porphine Ru(II carbonyl (Ru2—against human hepatocellular carcinoma (HCC cells. These Ru complexes effectively inhibited the cellular growth of three human hepatocellular carcinoma (HCC cells, with IC50 values ranging from 2.7–7.3 μM. In contrast, the complexes exhibited lower toxicity towards L02 human liver normal cells with IC50 values of 20.4 and 24.8 μM, respectively. Moreover, Ru2 significantly inhibited HepG2 cell migration and invasion, and these effects were dose-dependent. The mechanistic studies demonstrated that Ru2 induced HCC cell apoptosis, as evidenced by DNA fragmentation and nuclear condensation, which was predominately triggered via caspase family member activation. Furthermore, HCC cell treatment significantly decreased the expression levels of Nrf2 and its downstream effectors, NAD(PH: quinone oxidoreductase 1 (NQO1 and heme oxygenase 1 (HO1. Ru2 also exhibited potent in vivo anticancer efficacy in a tumor-bearing nude mouse model, as demonstrated by a time- and dose-dependent inhibition on tumor growth. The results demonstrate the therapeutic potential of Ru complexes against HCC via Nrf2 pathway regulation.

  5. Ruthenium Complexes Induce HepG2 Human Hepatocellular Carcinoma Cell Apoptosis and Inhibit Cell Migration and Invasion through Regulation of the Nrf2 Pathway

    Science.gov (United States)

    Lu, Yiyu; Shen, Ting; Yang, Hua; Gu, Weiguang

    2016-01-01

    Ruthenium (Ru) complexes are currently the focus of substantial interest because of their potential application as chemotherapeutic agents with broad anticancer activities. This study investigated the in vitro and in vivo anticancer activities and mechanisms of two Ru complexes—2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine Ru(II) carbonyl (Ru1) and 5,10,15,20-Tetraphenyl-21H,23H-porphine Ru(II) carbonyl (Ru2)—against human hepatocellular carcinoma (HCC) cells. These Ru complexes effectively inhibited the cellular growth of three human hepatocellular carcinoma (HCC) cells, with IC50 values ranging from 2.7–7.3 μM. In contrast, the complexes exhibited lower toxicity towards L02 human liver normal cells with IC50 values of 20.4 and 24.8 μM, respectively. Moreover, Ru2 significantly inhibited HepG2 cell migration and invasion, and these effects were dose-dependent. The mechanistic studies demonstrated that Ru2 induced HCC cell apoptosis, as evidenced by DNA fragmentation and nuclear condensation, which was predominately triggered via caspase family member activation. Furthermore, HCC cell treatment significantly decreased the expression levels of Nrf2 and its downstream effectors, NAD(P)H: quinone oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO1). Ru2 also exhibited potent in vivo anticancer efficacy in a tumor-bearing nude mouse model, as demonstrated by a time- and dose-dependent inhibition on tumor growth. The results demonstrate the therapeutic potential of Ru complexes against HCC via Nrf2 pathway regulation. PMID:27213353

  6. Thermodynamic study of the complexation of trivalent actinide and lanthanide cations by ADPTZ, a tridentate N-donor ligand.

    Science.gov (United States)

    Miguirditchian, Manuel; Guillaneux, Denis; Guillaumont, Dominique; Moisy, Philippe; Madic, Charles; Jensen, Mark P; Nash, Kenneth L

    2005-03-01

    To better understand the bonding in complexes of f-elements by polydentate N-donor ligands, the complexation of americium(III) and lanthanide(III) cations by 2-amino-4,6-di-(pyridin-2-yl)-1,3,5-triazine (ADPTZ) was studied using a thermodynamic approach. The stability constants of the 1:1 complexes in a methanol/water mixture (75/25 vol %) were determined by UV-visible spectrophotometry for every lanthanide(III) ion (except promethium), and yttrium(III) and americium(III) cations. The thermodynamic parameters (DeltaH degrees , DeltaS degrees) of complexation were determined from the temperature dependence of the stability constants and by microcalorimetry. The trends of the variations of DeltaG degrees , DeltaH degrees , and DeltaS degrees across the lanthanide series are compared with published results for other tridentate ligands and confirm strongly ionic bonding in the lanthanide-ADPTZ complexes. Comparison of the thermodynamic properties between the Am- and Ln-ADPTZ complexes highlights an increase in stability of the complexes by a factor of 20 in favor of the americium cation. This difference arises from a more exothermic reaction enthalpy in the case of Am, which is correlated with a greater degree of covalency in the americium-nitrogen bonds. Quantum chemistry calculations performed on a series of trivalent actinide and lanthanide-ADPTZ complexes support the experimental results, showing a slightly greater covalence in the actinide-ligand bonds that originates from a charge transfer from the ligand sigma orbitals to the 5f and 6d orbitals of the actinide ion. PMID:15732980

  7. Synthesis of a ruthenium(II) bipyridyl complex coordinated by a functionalized Schiff base ligand: Characterization, spectroscopic and isothermal titration calorimetry measurements of M 2+ binding and sensing (M 2+ = Ca 2+, Mg 2+)

    Science.gov (United States)

    Dixit, Namrata; Mishra, Lallan; Mustafi, Sourajit M.; Chary, Kandala V. R.; Houjou, Hirohiko

    2009-07-01

    Bis-[methylsalicylidine-4'benzoic acid]-ethylene (LH 2) complexed with cis-Ru(bpy) 2Cl 2·2H 2O provides a complex of composition [Ru(bpy) 2L]·2NH 4PF 6 ( 1), which has been characterized spectroscopically. Its binding behaviour towards Mg 2+ and Ca 2+ ions is monitored using 1H NMR titration, isothermal titration calorimetry (ITC) and luminescence microscopy. The luminescent ruthenium complex binds Ca 2+ in a more selective manner as compared to Mg 2+.

  8. Electroanalysis of cationic species at membrane-carbon electrodes modified by polysaccharides. Bioaccumulation at microorganism-modified electrodes.

    Science.gov (United States)

    Lojou, E; Bianco, P

    2000-05-01

    Membrane-carbon electrodes modified with polysaccharides suspensions entrapped between a dialysis membrane and the carbon surface were used for electroanalysis of various cationic species. Cationic complexes of ruthenium and cobalt, metallic cations (Cu(2+), Fe(3+), UO(2)(2+)) as well as methylviologen were considered. By investigating various parameters (concentration of the suspension, pH) binding of the cations by the polysaccharides was demonstrated. Comparison of cations uptake by different kinds of polysaccharides such as alginic acid, polygalacturonic acid, pectin, dextran and agar was performed. This study has been extended to natural biomaterials, alga and lichen, which are known to contain polysaccharides. The interest of the membrane-electrode strategy is described.

  9. Suppressing the dendritic growth of zinc in an ionic liquid containing cationic and anionic zinc complexes for battery applications.

    Science.gov (United States)

    Liu, Zhen; Pulletikurthi, Giridhar; Lahiri, Abhishek; Cui, Tong; Endres, Frank

    2016-05-10

    Metallic zinc is a promising negative electrode for high energy rechargeable batteries due to its abundance, low-cost and non-toxic nature. However, the formation of dendritic zinc and low Columbic efficiency in aqueous alkaline solutions during charge/discharge processes remain a great challenge. Here we demonstrate that the dendritic growth of zinc can be effectively suppressed in an ionic liquid electrolyte containing highly concentrated cationic and anionic zinc complexes obtained by dissolving zinc oxide and zinc trifluoromethylsulfonate in a protic ionic liquid, 1-ethylimidazolium trifluoromethylsulfonate. The presence of both cationic and anionic zinc complexes alters the interfacial structure at the electrode/electrolyte interface and influences the nucleation and growth of zinc, leading to compact, homogeneous and dendrite-free zinc coatings. This study also provides insights into the development of highly concentrated metal salts in ionic liquids as electrolytes to deposit dendrite-free zinc as an anode material for energy storage applications. PMID:27080261

  10. The different roles of a cationic gold(i) complex in catalysing hydroarylation of alkynes and alkenes with a heterocycle.

    Science.gov (United States)

    Mehrabi, Tahmineh; Ariafard, Alireza

    2016-08-01

    The mechanism of twofold hydroarylation of terminal alkynes with pyrrole catalyzed by a cationic gold(i) complex was investigated using DFT. It was found that while both the hydroarylation reactions proceed via a Friedel-Crafts-type mechanism, the first hydroarylation is directly promoted by gold(i) but the second hydroarylation by a proton released through interaction of the alkene product with gold-bound acidic organic species such as acetic acid and terminal alkynes. PMID:27377712

  11. Self-assembly of c-myc DNA promoted by a single enantiomer ruthenium complex as a potential nuclear targeting gene carrier

    Science.gov (United States)

    Wu, Qiong; Mei, Wenjie; Zheng, Kangdi; Ding, Yang

    2016-01-01

    Gene therapy has long been limited in the clinic, due in part to the lack of safety and efficacy of the gene carrier. Herein, a single enantiomer ruthenium(II) complex, Λ-[Ru(bpy)2(p-BEPIP)](ClO4)2 (Λ-RM0627, bpy = 4,4′-bipyridine, p-BEPIP = 2-(4-phenylacetylenephenyl)imidazole [4,5f][1, 10] phenanthroline), has been synthesized and investigated as a potential gene carrier that targets the nucleus. In this report, it is shown that Λ-RM0627 promotes self-assembly of c-myc DNA to form a nanowire structure. Further studies showed that the nano-assembly of c-myc DNA that induced Λ-RM0627 could be efficiently taken up and enriched in the nuclei of HepG2 cells. After treatment of the nano-assembly of c-myc DNA with Λ-RM0627, over-expression of c-myc in HepG2 cells was observed. In summary, Λ-RM0627 played a key role in the transfer and release of c-myc into cells, which strongly indicates Λ-RM0627 as a potent carrier of c-myc DNA that targets the nucleus of tumor cells. PMID:27381008

  12. Influence of different ruthenium(II) bipyridyl complex on the photocatalytic H{sub 2} evolution over TiO{sub 2} nanoparticles with mesostructures

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Tianyou [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); Hubei Key Laboratory for Catalysis and Material Science, College of Chemistry and Material Science, South-Central University for Nationalities, Wuhan 430074 (China); Ke, Dingning; Cai, Ping; Dai, Ke; Ma, Liang; Zan, Ling [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China)

    2008-05-15

    H{sub 2} production over dye-sensitized Pt/TiO{sub 2} nanoparticles with mesostructures (m-TiO{sub 2}) under visible light ({lambda} > 420 nm) was investigated by using methanol as electron donors. Experimental results indicate that three types of ruthenium(II) bipyridyl complex dyes (one binuclear Ru, two mononuclear Ru), which can be attached to Pt/m-TiO{sub 2} with different linkage modes, show different photosensitization effects due to their different coordination circumstances and physicochemical properties. The dye tightly linked with m-TiO{sub 2} has better durability but the lowest H{sub 2} evolution efficiency, whereas the loosely attached dyes possess higher H{sub 2} evolution efficiency and preferable durability. It seems that the dynamic equilibrium between the linkage of the ground state dye with TiO{sub 2} and the divorce of the oxidization state dye from the surfaces plays a crucial role in the photochemical behavior during the photocatalyst sensitization process. It is helpful to improve the H{sub 2} evolution efficiency by enhancing the electron injection and hindering the backward transfer. The binuclear Ru(II) dye shows a better photosensitization in comparison with mononuclear Ru(II) dyes due to its large molecular area, conjugation system, and ''antenna effect'', which, in turn, improve the visible light harvesting and electron transfer between the dye molecules and TiO{sub 2}. (author)

  13. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

    Science.gov (United States)

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-02-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully.

  14. Ruthenium Bis-diimine Complexes with a Chelating Thioether Ligand: Delineating 1,10-Phenanthrolinyl and 2,2'-Bipyridyl Ligand Substituent Effects

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rawashdeh, Nathir A. F.; Chatterjee, Sayandev; Krause, Jeanette A.; Connick, William B.

    2014-01-06

    A new series of ruthenium(II) bis-diimine complexes with a chelating thioether donor ligand has been prepared: Ru(diimine)2(dpte)2+ (diimine=1,10-phenanthroline (phen) (1); 5-CH3-phen (2), 5-Cl-phen (3); 5-Br-phen (4); 5-NO2-phen (5); 3,4,7,8-tetramethyl-phen (6); 4,7-diphenyl-phen (7); 5,5'-dimethyl-2,2'-bipyridine (8); 4,4'-di-tert-butyl-2,2'-bipyridine (9)). Crystal structures of 2, 5, 7 and 9 show that the complexes form 2 of the 12 possible conformational/configurational isomers, adopting compact C2-symmetric structures with short intramolecular transannular interactions between the diimine ligands and dpte phenyl groups; crystals of 2 and 5 contain non-statistical distributions of geometric isomers. In keeping with the π-acidity of the dpte, the Ru(III/II) couple, E°'(Ru3+/2+), occurs at relatively high potentials (1.4-1.7 V vs Ag/AgCl), and the lowest spin-allowed MLCT absorption band occurs near 400 nm. Surprisingly, the complexes also exhibit fluid-solution luminescence originating from a lowest MLCT excited state with lifetimes in the 140-750 ns time range; in acetonitrile, compound 8 undergoes photo-induced solvolysis. Variations in the MLCT energies and redox potentials are quantitatively described using a summative Hammett parameter (σT), as well as using Lever's electrochemical parameters (EL). Recommended parameterizations for 2,2'-bipyridyl and 1,10-phenanthrolinyl ligands were derived from analysis of correlations based on 199 measurements of E°'(Ru3+/2+) for 99 homo- and heteroleptic ruthenium(II) tris-diimine complexes. Variations in E°'(Ru3+/2+) due to substituents at the 4- and 4'-positions of bipyridyl ligands and 4- and 7-positions of phenanthrolinyl ligands are significantly more strongly correlated with σp+ than either σm or σp. Substituents at the 5- and 6-positions of phenanthrolinyl ligands are best described by σm and have effects comparable to those of substituents at the 3

  15. Competitive Binding Sites of a Ruthenium Arene Anticancer Complex on Oligonucleotides Studied by Mass Spectrometry: Ladder-Sequencing versus Top-Down

    Science.gov (United States)

    Wu, Kui; Hu, Wenbing; Luo, Qun; Li, Xianchan; Xiong, Shaoxiang; Sadler, Peter J.; Wang, Fuyi

    2013-03-01

    We report identification of the binding sites for an organometallic ruthenium anticancer complex [( η 6-biphenyl)Ru(en)Cl][PF6] ( 1; en = ethylenediamine) on the 15-mer single-stranded oligodeoxynucleotides (ODNs), 5'-CTCTCTX7G8Y9CTTCTC-3' [X = Y = T ( I); X = C and Y = A ( II); X = A and Y = T ( III); X = T and Y = A ( IV)] by electrospray ionization mass spectrometry (ESI-MS) in conjunction with enzymatic digestion or tandem mass spectrometry (top-down MS). ESI-MS combined with enzymatic digestion (termed MS-based ladder-sequencing), is effective for identification of the thermodynamically-favored G-binding sites, but not applicable to determine the thermodynamically unstable T-binding sites because the T-bound adducts dissociate during enzymatic digestion. In contrast, top-down MS is efficient for localization of the T binding sites, but not suitable for mapping ruthenated G bases, due to the facile fragmentation of G bases from ODN backbones prior to the dissociation of the phosphodiester bonds. The combination of the two MS approaches reveals that G8 in each ODN is the preferred binding site for 1, and that the T binding sites of 1 are either T7 or T11 on I and IV, and either T6 or T11 on II and III, respectively. These findings not only demonstrate for the first time that T-bases in single-stranded oligonucleotides are kinetically competitive with guanine for such organoruthenium complexes, but also illustrate the relative merits of the combination of ladder-sequencing and top-down MS approaches to elucidate the interactions of metal anticancer complexes with DNA.

  16. Synthesis, spectroscopic characterization, photochemical and photophysical properties and biological activities of ruthenium complexes with mono- and bi-dentate histamine ligand.

    Science.gov (United States)

    Cardoso, Carolina R; de Aguiar, Inara; Camilo, Mariana R; Lima, Márcia V S; Ito, Amando S; Baptista, Maurício S; Pavani, Christiane; Venâncio, Tiago; Carlos, Rose M

    2012-06-14

    The monodentate cis-[Ru(phen)(2)(hist)(2)](2+)1R and the bidentate cis-[Ru(phen)(2)(hist)](2+)2A complexes were prepared and characterized using spectroscopic ((1)H, ((1)H-(1)H)COSY and ((1)H-(13)C)HSQC NMR, UV-vis, luminescence) techniques. The complexes presented absorption and emission in the visible region, as well as a tri-exponential emission decay. The complexes are soluble in aqueous and non-aqueous solution with solubility in a buffer solution of pH 7.4 of 1.14 × 10(-3) mol L(-1) for (1R + 2A) and 6.43 × 10(-4) mol L(-1) for 2A and lipophilicity measured in an aqueous-octanol solution of -1.14 and -0.96, respectively. Photolysis in the visible region in CH(3)CN converted the starting complexes into cis-[Ru(phen)(2)(CH(3)CN)(2)](2+). Histamine photorelease was also observed in pure water and in the presence of BSA (1.0 × 10(-6) mol L(-1)). The bidentate coordination of the histamine to the ruthenium center in relation to the monodentate coordination increased the photosubstitution quantum yield by a factor of 3. Pharmacological studies showed that the complexes present a moderate inhibition of AChE with an IC(50) of 21 μmol L(-1) (referred to risvagtini, IC(50) 181 μmol L(-1) and galantamine IC(50) 0.006 μmol L(-1)) with no appreciable cytotoxicity toward to the HeLa cells (50% cell viability at 925 μmol L(-1)). Cell uptake of the complexes into HeLa cells was detected by fluorescence confocal microscopy. Overall, the observation of a luminescent complex that penetrates the cell wall and has low cytotoxicity, but is reactive photochemically, releasing histamine when irradiated with visible light, are interesting features for application of these complexes as phototherapeutic agents. PMID:22539182

  17. Bromide complexation by the Eu(III) lanthanide cation in dry and humid ionic liquids: a molecular dynamics PMF study.

    Science.gov (United States)

    Chaumont, Alain; Wipff, Georges

    2012-05-14

    We report a molecular dynamics study on the EuBr(n)(3-n) complexes (n=0 to 6) formed upon complexation of Br(-) by Eu(3+) in the [BMI][PF(6)], [BMI][Tf(2)N] and [MeBu(3)N][Tf(2)N] ionic liquids (ILs), to compare the effect of the IL anion (PF(6)(-) versus Tf(2)N(-)), the IL cation (BMI(+) versus MeBu(3)N(+)) and the "IL humidity" on their solvation and stability. In "dry" solutions all complexes remain stable and the first coordination shell of Eu(3+) is purely anionic (Br(-) and IL anions), surrounded by IL cations (BMI(+) or MeBu(3)N(+) ions). Long range "onion type" solvation features (up to 20 Å from Eu(3+)), with alternating cation-rich and anion-rich solvent shells, are observed around the different complexes. The comparison of gas phase-optimized structures of EuBr(n)(3-n) complexes (that are unstable for n=5 and 6) with those observed in solution points to the importance of solvation forces on the nature of the complex, with a higher stabilization by imidazolium- than by ammonium-based dry ILs. Adding water to the IL has different effects, depending on the IL. In the highly hygroscopic [BMI][PF(6)] IL, Br(-) ligands are displaced by water, to finally form Eu(H(2)O)(9)(3+). In the less "humid" [BMI][Tf(2)N], the EuBr(n)(3-n) complexes do not dissociate and coordinate at most 1-2 H(2)O molecules. We also calculated the free-energy profiles (Potential of Mean Force calculations) for the stepwise complexation of Br(-), and found significant solvent effects. EuBr(6)(3-) is predicted to form in both [BMI][PF(6)] and [BMI][Tf(2)N], but not in [MeBu(3)N][Tf(2)N], mainly due to weaker interactions with the cationic solvation shell. First steps are found to be more exergonic in the PF(6)(-)- than in the Tf(2)N(-)-based IL. Molecular dynamics (MD) comparisons between ILs and classical solvents (acetonitrile and water) are also reported, affording good agreement with the experimental observations of Br(-) complexation by trivalent lanthanides in these classical

  18. Colorimetric Humidity and Solvent Recognition Based on a Cation-Exchange Clay Mineral Incorporating Nickel(II)-Chelate Complexes.

    Science.gov (United States)

    Hosokawa, Hitoshi; Mochida, Tomoyuki

    2015-12-01

    Solvatochromic nickel(II) complexes with diketonato and diamine ligands were incorporated into a saponite clay by ion exchange, and their colorimetric humidity- and solvent-recognition properties were investigated. These powders exhibit color change from red to blue-green depending on humidity, and the detection range can be controlled by modifying the metal complex. The humidity response takes advantage of the humidity-dependent water content in clay and the coordination of water molecules to the metal complex in equilibrium. The addition of organic solvents to the powders causes a color change to occur, varying from red to blue-green depending on the donor number of the solvent, thereby enabling solvent recognition. In the clay, the affinity of less sterically hindered complexes to water or solvent molecules is decreased compared with that in solution because the cationic complexes interact with the anionic layers in the clay. Incorporating diethylene glycol into the materials produced thermochromic powders.

  19. Colorimetric Humidity and Solvent Recognition Based on a Cation-Exchange Clay Mineral Incorporating Nickel(II)-Chelate Complexes.

    Science.gov (United States)

    Hosokawa, Hitoshi; Mochida, Tomoyuki

    2015-12-01

    Solvatochromic nickel(II) complexes with diketonato and diamine ligands were incorporated into a saponite clay by ion exchange, and their colorimetric humidity- and solvent-recognition properties were investigated. These powders exhibit color change from red to blue-green depending on humidity, and the detection range can be controlled by modifying the metal complex. The humidity response takes advantage of the humidity-dependent water content in clay and the coordination of water molecules to the metal complex in equilibrium. The addition of organic solvents to the powders causes a color change to occur, varying from red to blue-green depending on the donor number of the solvent, thereby enabling solvent recognition. In the clay, the affinity of less sterically hindered complexes to water or solvent molecules is decreased compared with that in solution because the cationic complexes interact with the anionic layers in the clay. Incorporating diethylene glycol into the materials produced thermochromic powders. PMID:26542108

  20. Peptide-lanthanide cation equilibria in aqueous phase. I. Bound shifts for L-carnosine-praseodymium complexes

    Science.gov (United States)

    Mossoyan, J.; Asso, M.; Benlian, D.

    L-Carnosine complexes of Pr 3+ were characterized in aqueous solution by 1H NMR and potentiometric titration. A rigorous treatment of chemical shifts and pH variation data with lanthanide concentration is presented. Two different forms of the peptide ligand, forming simultaneously two complexes, were taken into account. At low pH values the cation is only coordinated at the carboxylate site of the ligand in a weak complex ( β2 = 6) whereas in neutral solution a stronger complex ( β1 = 37) is present as a consequence of the deprotonation of the imidazole ring. The computation of induced bound shifts † 2 and Δ1 for resonating nuclei of the peptide in both forms yields consistent figures. These provide the experimental basis for a conformational model which is usually not obtainable for labile complexes with low stability constants.

  1. Photostable ester-substituted bis-cyclometalated cationic iridium(III) complexes for continuous monitoring of oxygen.

    Science.gov (United States)

    Liu, Chun; Yu, Hongcui; Xing, Yang; Gao, Zhanming; Jin, Zilin

    2016-01-14

    Three bis-cyclometalated cationic Ir(iii) complexes , and with an ester substituent at the 4-position of the phenyl ring on the 2-phenylpyridine (ppy) have been synthesized and fully characterized. The emission maxima of ester-substituted Ir(iii) complexes show a notable blue-shift compared to the parent complex [Ir(ppy)2(phen)](+)PF6(-) (phen = 1,10-phenanthroline). The influence of an ester group on the photoelectric properties of the Ir(iii) complexes has been investigated systematically. The oxygen sensing films prepared from ethyl cellulose immobilized with Ir(iii) complexes exhibit excellent operational stability, high photostability and a quick response to oxygen. show extended luminescence lifetimes relative to , and display better sensitivity to changes in oxygen partial pressure. PMID:26630292

  2. Complex formation in the system double charged metal cation-Stenhouse base in water-alcohol solution

    International Nuclear Information System (INIS)

    Using the method of potentiometric titration complex formation reaction of the system metal(II) salt cation (Me2+ = Fe2+, Cd2+, Hg2+, Zn2+, Mn2+, Co2+, Ni2+) Stenhouse base in water-alcohol solution has been studied. Compositions of equilibrium complexes, the constants of their formation and instability have been determined. CoCl2 x 6H2O, NiCl2 x 6H2O and Mn(NO3)2 x 6H2O have been shown to have the most stabilizing effect on Stenhouse base

  3. Preparation, Spectrochemical, and Computational Analysis of L-Carnosine (2-[(3-Aminopropanoylamino]-3-(1H-imidazol-5-ylpropanoic Acid and Its Ruthenium (II Coordination Complexes in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Myalo Sabela

    2011-12-01

    Full Text Available This study reports the synthesis and characterization of novel ruthenium (II complexes with the polydentate dipeptide, L-carnosine (2-[(3-aminopropanoylamino]-3-(1H-imidazol-5-ylpropanoic acid. Mixed-ligand complexes with the general composition [MLp(Clq(H2Or]·xH2O (M = Ru(II; L = L-carnosine; p = 3 − q; r = 0–1; and x = 1–3 were prepared by refluxing aqueous solutions of the ligand with equimolar amounts of ruthenium chloride (black-alpha form at 60 °C for 36 h. Physical properties of the complexes were characterized by elemental analysis, DSC/TGA, and cyclic voltammetry. The molecular structures of the complexes were elucidated using UV-Vis, ATR-IR, and heteronuclear NMR spectroscopy, then confirmed by density function theory (DFT calculations at the B3LYP/LANL2DZ level. Two-dimensional NMR experiments (1H COSY, 13C gHMBC, and 15N gHMBC were also conducted for the assignment of chemical shifts and calculation of relative coordination-induced shifts (RCIS by the complex formed. According to our results, the most probable coordination geometries of ruthenium in these compounds involve nitrogen (N1 from the imidazole ring and an oxygen atom from the carboxylic acid group of the ligand as donor atoms. Additional thermogravimetric and electrochemical data suggest that while the tetrahedral-monomer or octahedral-dimer are both possible structures of the formed complexes, the metal in either structure occurs in the (2+ oxidation state. Resulting RCIS values indicate that the amide-carbonyl, and the amino-terminus of the dipeptide are not involved in chelation and these observations correlate well with theoretical shift predictions by DFT.

  4. Interactions and hybrid complex formation of anionic algal polysaccharides with a cationic glycine betaine-derived surfactant.

    Science.gov (United States)

    Covis, Rudy; Vives, Thomas; Gaillard, Cédric; Benoit, Maud; Benvegnu, Thierry

    2015-05-01

    The interaction between anionic algal polysaccharides ((κ)-, (ι)-, (λ)-carrageenans, alginate and ulvan) and a cationic glycine betaine (GB) amide surfactant possessing a C18:1 alkyl chain has been studied using isothermal titration calorimetry (ITC), zeta-potential measurements, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), and surface tension measurements. It was observed that this cationic surfactant derived from renewable raw materials induced cooperative binding with the anionic polymers at critical aggregation concentration (CAC) and the CAC values are significantly lower than the corresponding critical micelle concentration (CMC) for the surfactant. The CMC of cationic GB surfactant was obtained at higher surfactant concentration in polysaccharide solution than in pure water. More interestingly, the presence of original polysaccharide/surfactant hybrid complexes formed above the CMC value was evidenced from (κ)-carrageenan by microscopy (TEM and AFM). Preliminary investigations of the structure of these complexes revealed the existence of surfactant nanoparticles surrounded with polysaccharide matrix, probably resulting from electrostatic attraction. In addition, ITC measurements clearly showed that the interactions of the κ-carrageenan was stronger than for other polysaccharides ((ι)-, (λ)-carrageenans, alginate and ulvan). These results may have important impact on the use of the GB amide surfactant in formulations based on algal polysaccharides for several applications such as in food, cosmetics, and detergency fields.

  5. Binding properties of ruthenium(II) complexes [Ru(bpy)2(ppn)](2+) and [Ru(phen)2(ppn)](2+) with triplex RNA: As molecular "light switches" and stabilizers for poly(U)·poly(A)*poly(U) triplex.

    Science.gov (United States)

    Li, Jia; Sun, Yanmei; Zhu, Zhiyuan; Zhao, Hong; Tan, Lifeng

    2016-08-01

    Stable RNA triplexes play key roles in many biological processes, while triplexes are thermodynamically less stable than the corresponding duplexes due to the Hoogsteen base pairing. To understand the factors affecting the stabilization of RNA triplexes by octahedral ruthenium(II) complexes, the binding of [Ru(bpy)2(ppn)](2+) (1, bpy=2,2'-bipyridine, ppn=2,4-diaminopyrimido[5,6-b]dipyrido[2,3-f:2',3'-h]quinoxaline) and [Ru(phen)2(ppn)](2+) (2, phen=1,10-phenanthroline) to poly(U)·poly(A)*poly(U) (· denotes the Watson-Crick base pairing and * denotes the Hoogsteen base pairing) has been investigated. The main results obtained here suggest that complexes 1 and 2 can serve as molecular "light switches" and stabilizers for poly(U)·poly(A)*poly(U), while the effectiveness of complex 2 are more marked, suggesting that the hydrophobicity of ancillary ligands has a significant effect on the two Ru(II) complexes binding to poly(U)·poly(A)*poly(U). This study further advances our knowledge on the binding of RNA triplexes with metal complexes, particularly with octahedral ruthenium polypyridyl complexes. PMID:27287059

  6. Carriers for metal complexes on tumour cells: the effect of cyclodextrins vs CNTs on the model guest phenanthroline-5,6-dione trithiacyclononane ruthenium(II) chloride.

    Science.gov (United States)

    Braga, Susana S; Marques, Joana; Heister, Elena; Diogo, Cátia V; Oliveira, Paulo J; Paz, Filipe A Almeida; Santos, Teresa M; Marques, Maria Paula M

    2014-06-01

    The complex [Ru[9]aneS3(pdon)Cl]Cl (pdon = 1,10-phenanthroline-5,6-dione) was readily obtained from the stoichiometric reaction of Ru[9]aneS3(dmso)Cl2 with pdon. Recrystallisation in ethanol using salicylic acid as a co-crystallisation helper afforded single-crystals suitable for the collection of X-ray diffraction data which afforded a reasonable structural description. Two different kinds of molecular carriers were tested as vehicles for this complex: carbon nanotubes (CNTs) and cyclodextrins. CNTs had an insufficient loading rate for the ruthenium complex at CNT concentrations deemed non-cytotoxic on cultured cells. The cyclodextrin (CD) carriers, β-CD and TRIMEB (standing for permethylated β-CD), were able to form two adducts, studied by powder X-ray diffraction, thermogravimetric analysis (TGA), (13)C{(1)H} CP/MAS NMR and FT-IR spectroscopies. The DNA thermal denaturation studies showed that the complex 1 is able to intercalate with DNA. The in vitro cytotoxicity of the free complex [Ru[9]aneS3(pdon)Cl]Cl (1) and of its two CD adducts (2 and 3) was assessed on both rodent and human cell lines. By using the mouse K1735-M2 melanoma cell line and the non-tumour rat H9c2 cardiomyoblasts, the results showed that 1 and 2 significantly inhibited the growth of the tumour cell line while displaying a good safety profile on cardiomyoblasts. Compound 3 at 100 μM inhibited the proliferation of both cell lines, with a higher activity towards the melanoma cell line. The cytotoxicity of the compounds 1-3 was further assessed on human breast cancer cell lines. Against the MDA-MB-231 line, growth inhibition occurred only with 1 and 3 at the incubation time of 96 h, both with approximate inhibition rates of 50 %; against the MCF-7 line, mild cytotoxicity was observed at 48 h of incubation, with IC50 values calculated above 100 μM for 1, 2 and 3.

  7. Mixed-ligand complexes of ruthenium(II) incorporating a diazo ligand: Synthesis, characterization and DNA binding

    Indian Academy of Sciences (India)

    Megha S Deshpande; Avinash S Kumbhar

    2005-03-01

    Mixed-ligand complexes of the type [Ru(N-N)2(dzdf)]Cl2, where N-N is 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) and 9-diazo-4,5-diazafluorene (dzdf), have been synthesized and characterized by elemental analysis, UV-Vis, IR and NMR spectroscopy. Binding of these complexes with calf thymus DNA (CT-DNA) has been investigated by absorption spectroscopy, steady-state emission spectroscopy and viscosity measurements. The experimental results indicate that the size and shape of the intercalating ligands have marked effect on the binding affinity of the complexes to CT-DNA. The complex [Ru(phen)2(dzdf)]Cl2 binds with CT-DNA through an intercalative binding mode, while the complex [Ru(bpy)2(dzdf)]Cl2 binds electrostatically.

  8. Cationic terminal gallylene complexes by halide abstraction: coordination chemistry of a valence isoelectronic analogue of CO and N2.

    Science.gov (United States)

    Coombs, Natalie D; Vidovic, Dragoslav; Day, Joanna K; Thompson, Amber L; Le Pevelen, Delphine D; Stasch, Andreas; Clegg, William; Russo, Luca; Male, Louise; Hursthouse, Michael B; Willock, David J; Aldridge, Simon

    2008-11-26

    While N(2) and CO have played central roles in developing models of electronic structure, and their interactions with transition metals have been widely investigated, the valence isoelectronic diatomic molecules EX (E = group 13 element, X = group 17 element) have yet to be isolated under ambient conditions, either as the "free" molecule or as a ligand in a simple metal complex. As part of a program designed to address this deficiency, together with wider issues of the chemistry of cationic systems [L(n)M(ER)](+) (E = B, Al, Ga; R = aryl, amido, halide), we have targeted complexes of the type [L(n)M(GaX)](+). Halide abstraction is shown to be a viable method for the generation of mononuclear cationic complexes containing gallium donor ligands. The ability to isolate tractable two-coordinate products, however, is strongly dependent on the steric and electronic properties of the metal/ligand fragment. In the case of complexes containing ancillary pi-acceptor ligands such as CO, cationic complexes can only be isolated as base-trapped adducts, even with bulky aryl substituents at gallium. Base-free gallylene species such as [Cp*Fe(CO)(2)(GaMes)](+) can be identified only in the vapor phase by electrospray mass spectrometry experiments. With bis(phosphine) donor sets at the metal, the more favorable steric/electronic environment allows for the isolation of two-coordinate ligand systems, even with halide substituents at gallium. Thus, [Cp*Fe(dppe)(GaI)](+)[BAr(f)(4)](-) (9) can be synthesized and shown crystallographically to feature a terminally bound GaI ligand; 9 represents the first experimental realization of a complex containing a valence isoelectronic group 13/group 17 analogue of CO and N(2). DFT calculations reveal a relatively weakly bound GaI ligand, which is confirmed experimentally by the reaction of 9 with CO to give [Cp*Fe(dppe)(CO)](+)[BAr(f)(4)](-). In the absence of such reagents, 9 is stable for weeks in fluorobenzene solution, presumably reflecting (i

  9. Temperature-controlled redox-neutral ruthenium(ii)-catalyzed regioselective allylation of benzamides with allylic acetates.

    Science.gov (United States)

    Manikandan, Rajendran; Jeganmohan, Masilamani

    2016-08-10

    Substituted aromatic amides reacted efficiently with allylic acetates in the presence of a cationic ruthenium complex in ClCH2CH2Cl at room temperature providing ortho allylated benzamides in a highly regioselective manner without any oxidant and base. The whole catalytic reaction occurred in a Ru(ii) oxidation state and thus the oxidation step is avoided. By tuning the reaction temperature, ortho allyl and vinyl benzamides were prepared exclusively. Later, ortho allyl and vinylated benzamides were converted into biologically useful six- and five-membered benzolactones in the presence of HCl. PMID:27456467

  10. Building Indenylidene-Ruthenium Catalysts for Metathesis Transformations

    Science.gov (United States)

    Clavier, Hervé; Nolan, Steven P.

    Ruthenium-mediated olefin metathesis has emerged as an indispensable tool in organic synthesis for the formation carbon-carbon double bonds, attested by the large number of applications for natural product synthesis. Among the numerous catalysts developed to mediate olefin metathesis transformations, ruthenium-indenylidene complexes are robust and powerful pre-catalysts. The discovery of this catalyst category was slightly muddled due to a first mis-assignment of the compound structure. This report provides an overview of the synthetic routes for the construction of the indenylidene pattern in ruthenium complexes. The parameters relating to the indenylidene moiety construction will be discussed as well as the mechanism of this formation

  11. Ruthenium katalysierte Umvinylierung

    OpenAIRE

    Ziriakus, Jennifer

    2013-01-01

    Die Umvinylierung ermöglicht die Übertragung von Vinylgruppen zwischen verschiedenen Carbonsäuren. Um die Reaktion zu katalysieren ist ein Übergangsmetall nötig, wobei Ruthenium-Katalysatoren großes Potenzial für die industrielle Anwendung zeigen. Im Rahmen der vorliegenden Arbeit wurden die, während der Katalyse auftretenden, aktiven Ruthenium-Spezies identifiziert und charakterisiert. Die Entstehung der relevanten Ruthenium-Verbindungen wurde aufgeklärt und eine geeignete Synthese hierfür e...

  12. Simultaneous determination of hydrazine and phenyl hydrazine using 4′-(4-carboxyphenyl)-2,2′:6′,2″ terpyridine diacetonitrile triphenylphosphine ruthenium(II) tetrafluoroborate complex functionalized multiwalled carbon nanotubes modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Ida, E-mail: idatiwari_2001@rediffmail.com [Department of Chemistry (Center of Advanced Study), Faculty of Science, Banaras Hindu University, Varanasi (India); Gupta, Mandakini; Sinha, Preeti [Department of Chemistry (Center of Advanced Study), Faculty of Science, Banaras Hindu University, Varanasi (India); Banks, Craig E. [Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester Metropolitan University, Chester Street, Manchester M1 5GD (United Kingdom)

    2014-12-15

    Highlights: • A nanocomposite of ruthenium(II) terpyridine, triphenylphosphine based complex and multiwalled carbon nanotubes have been used first time for simultaneous detection of hydrazine and phenyl hydrazine. • The detection limit reported is lower as compared to other reported works. • The paper also focuses towards effect of ligand variation attached to ruthenium(II) terpyridine based complexes complex for the hydrazine and phenyl hydrazine detection. • Nanocomposite does not involve any biological entity hence high stability. - Abstract: A nanocomposite based on the incorporation of the complex 4′-(4-carboxyphenyl)-2,2′:6′,2″ terpyridine triphenylphosphine diacetonitrile ruthenium(II) tetrafluoroborate with multiwalled carbon nanotubes and ionomer supported upon a glassy carbon electrode substrate is reported and characterized with scanning electron microscopy, transmission electron microscopy and infrared spectroscopy. The electrochemical behavior and stability of the composite electrode was investigated via cyclic voltammetry. The modified electrode exhibits an electro-catalytic activity towards the oxidation of both hydrazine and phenyl hydrazine in 0.1 M phosphate buffer solution (PBS, pH 7.4). The oxidation of hydrazine and phenyl hydrazine occurs at 0.81 V and 0.32 V with limit of detection found to be 3.7 × 10{sup −7} M and 1.15 × 10{sup −7} M and having a linear range from 5 × 10{sup −6} M to 6.5 × 10{sup −3} M, and 5 × 10{sup −6} M to 0.2 × 10{sup −3} M, respectively.

  13. Analytical gradients of complete active space self-consistent field energies using Cholesky decomposition: Geometry optimization and spin-state energetics of a ruthenium nitrosyl complex

    Energy Technology Data Exchange (ETDEWEB)

    Delcey, Mickaël G. [Department of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, 751 20 Uppsala (Sweden); Freitag, Leon; González, Leticia, E-mail: leticia.gonzalez@univie.ac.at [Institut für Theoretische Chemie, Universität Wien, Währinger Straße 17, 1090 Vienna (Austria); Pedersen, Thomas Bondo [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo (Norway); Aquilante, Francesco [Department of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, 751 20 Uppsala (Sweden); Dipartimento di Chimica “G. Ciamician,” Università di Bologna, V. F. Selmi 2, 40126 Bologna (Italy); Lindh, Roland, E-mail: roland.lindh@kemi.uu.se [Department of Chemistry – Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, 751 20 Uppsala (Sweden); Uppsala Center for Computational Chemistry - UC3, Uppsala University, Box 518, 751 20 Uppsala (Sweden)

    2014-05-07

    We present a formulation of analytical energy gradients at the complete active space self-consistent field (CASSCF) level of theory employing density fitting (DF) techniques to enable efficient geometry optimizations of large systems. As an example, the ground and lowest triplet state geometries of a ruthenium nitrosyl complex are computed at the DF-CASSCF level of theory and compared with structures obtained from density functional theory (DFT) using the B3LYP, BP86, and M06L functionals. The average deviation of all bond lengths compared to the crystal structure is 0.042 Å at the DF-CASSCF level of theory, which is slightly larger but still comparable with the deviations obtained by the tested DFT functionals, e.g., 0.032 Å with M06L. Specifically, the root-mean-square deviation between the DF-CASSCF and best DFT coordinates, delivered by BP86, is only 0.08 Å for S{sub 0} and 0.11 Å for T{sub 1}, indicating that the geometries are very similar. While keeping the mean energy gradient errors below 0.25%, the DF technique results in a 13-fold speedup compared to the conventional CASSCF geometry optimization algorithm. Additionally, we assess the singlet-triplet energy vertical and adiabatic differences with multiconfigurational second-order perturbation theory (CASPT2) using the DF-CASSCF and DFT optimized geometries. It is found that the vertical CASPT2 energies are relatively similar regardless of the geometry employed whereas the adiabatic singlet-triplet gaps are more sensitive to the chosen triplet geometry.

  14. A solid-state sensor based on ruthenium (II) complex immobilized on polytyramine film for the simultaneous determination of dopamine, ascorbic acid and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Khudaish, Emad A., E-mail: ejoudi@squ.edu.om [Sultan Qaboos University, College of Science, Chemistry Department, PO Box 36, PC 123 Muscat (Oman); Al-Ajmi, Khawla Y. [Sultan Qaboos University, College of Science, Chemistry Department, PO Box 36, PC 123 Muscat (Oman); Al-Harthi, Salim H. [Sultan Qaboos University, College of Science, Department of Physics, PO Box 36, PC 123 Muscat (Oman)

    2014-08-01

    A solid-state sensor based on a polytyramine (Pty) film deposited on a glassy carbon electrode doped with a tris(2,2′-bipyridyl)Ru(II) complex (Ru/Pty/GCE) was constructed electrochemically. The surface morphology of the film modified electrode was characterized using electrochemical and surface scanning techniques. A redox property represented by a [Ru(bpy){sub 3}]{sup 3+/2+} couple immobilized at the Pty moiety was characterized using typical voltammetric techniques. A distinct Ru 3d peak obtained at 280.9 eV confirms doping of the Ru species onto the Pty moiety characterized by X-ray photoelectron (XPS). Atomic force microscopy (AFM) images demonstrate that incorporation of Ru decreases the surface roughness of the native Pty film modified electrode. The Ru/Pty/GCE exhibits efficient electrochemical sensing toward the oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) in their mixture. Three well-defined peaks were resolved with a large peak to peak separation and the detection limits of AA, DA and UA are brought down to 0.31, 0.08 and 0.58 μM, respectively. Interference studies and application for DA determination in real samples were conducted with satisfactory results. - Highlights: • XPS data confirm doping of ruthenium onto the polytyramine moiety. • The voltammetric signals of ascorbic acid, dopamine and uric acid are well defined. • The sensor is stable and offers a large adsorption facility for all species. • The sensor is highly sensitive to dopamine oxidation. • The sensor is applied to a real sample with a satisfactory recovery percentage.

  15. Study of 6- cyclic -perimeter hydrocarbon ruthenium complexes bearing functionalized pyridyl diketones: Isolation of complexes with 2-N∩O and 4-N∩O bonding modes of ligands

    Indian Academy of Sciences (India)

    Saphidabha L Nongbri; Babulal Das; Mohan Rao Kollipara

    2012-11-01

    Chelating mono- and di-pyridyl functionalized -diketones, viz. 1-phenyl-3-(2-pyridyl) propane-1,3-dione (pppdH) and 1,3-di(2-pyridyl)propane-1,3-dione (dppdH) ligands yielded new water soluble 6-arene ruthenium(II) complexes of the formulation [(6-arene)Ru(2-N-O-pppdH)Cl]+ (arene = C6H6 1, pPrC6H4Me 2, C6Me6 3) and [(6-arene)2Ru2(4-N-O-dppd)Cl2]+ (arene = C6H6 4, -PrC6H4Me 5, C6Me6 6), as their (complexes 1-4, 6) PF6 salt or (complex 5) BF4 salt. The complexes were obtained by treatment of respective precursors, [(6-arene)Ru(-Cl)Cl]2 (arene = C6H6, -PrC6H4Me, C6Me6) in 1:2 and 1:1 molar ratio with pppdH and dppdH in the presence of NH4PF6/NH4BF4. All the complexes have been characterized on the basis of FT-IR and NMR spectroscopic data as well as by elemental analysis. Molecular structures of representative complexes 2, 5 and 6 have been confirmed by single crystal X-ray diffraction studies. The `O-C-C-C-O' fragment of the coordinated ligand (pppdH) is neutral in complexes 1-3 and that of the dppdH ligand existed as a neutral as well as concomitantly uninegative fashion in complexes 4-6 due to the delocalization of -electrons.

  16. Syntheses,structures,and reactivity of ruthenium(Ⅱ) hydride complexes containing Klui’s oxygen tripodal ligand

    Institute of Scientific and Technical Information of China (English)

    NG; Ho-Yuen; LAI; Chun-Sing; WILLIAMS; Ian; D.; LEUNG; Wa-Hung

    2010-01-01

    Treatment of Ru(CO)(Cl)(H)(PPh3)3 with NaLOEt (LOEt-= [CpCo{P(O)(OEt)2}3]-) afforded the hydride complex (PPh3)(CO)-LOEtRu(H) (1), which has been characterized by X-ray crystallography. Similarly, the tricyclohexylphosphine analogue, (PCy3)(CO)LOEtRu(H) (2), was synthesized from Ru(CO)Cl(H)(PCy3)2 and NaLOEt. Treatment of complex 1 with R’SO2N3 afforded the (arylsulfonyl)amido complexes LOEtRu(CO)(PPh3)(NHSO2R) (R = 2,4,6-i-Pr3C6H2 (3), 4-t-BuC6H4 (4)). The crystal structure of complex 3 has been determined. The Ru-N distance and Ru-N-S angle in 3 are 2.076(3) and 126.14(16)°, respectively. Reactions of complex 1 with acids have been studied.

  17. Synthesis of cyano-bridged bimetallic complexes of 5-indenyl ruthenium(II): Characterization and spectroscopic studies

    Indian Academy of Sciences (India)

    K Mohan Rao; E K Rymmai

    2001-02-01

    Reactions of the cyanide complexes of the type [(Ind)Ru(PPh3)2CN] (1), [(Ind)Ru(dppe)CN] (2), [(Cp)Ru(PPh3)2CN] (3), with the corresponding chloro complexes [(Ind)Ru(PPh3)2Cl] (4), [(Ind)Ru(dppe)Cl] (5), [(Cp)Ru(PPh3)2Cl] (6), in the presence of NH4PF6 salt give homometallic cyano-bridged compounds of the type [(Ind)(PPh3)2Ru-CN-Ru(PPh3)2(Cp)]PF6 (7), [(Ind)(PPh3)2Ru-CN-Ru(PPh3)2(Ind)] PF6 where Ind = indenyl, 5-C9H7, (8), [(Cp)(PPh3)2Ru-CN-Ru(dppe)(Ind)]PF6, dppe = (Ph2PCH2CH2PPh2) (9), [(Ind(dppe)Ru-CN-Ru(PPh3)2(Ind)PF6 (10) and [(Ind)(dppe)Ru-CN-Ru(PPh3)2(Cp)]PF6 (11) respectively. Reaction of complex 3 with [(p-cymene)RuCl2]2 dimer gave a mixed dimeric complex [(Cp)Ru(PPh3)2-CN-RuCl2(-cymene)] (12). All these complexes have been characterized by IR, 1H, 13C and 31 P NMR spectroscopy and C, H, N analyses.

  18. Immobilized Ruthenium Catalyst for Carbon Dioxide Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Ying Min YU; Jin Hua FEI; Yi Ping ZHANG; Xiao Ming ZHENG

    2006-01-01

    Three kinds of cross linked polystyrene resin (PS) supported ruthenium complexes were developed as catalysts for the synthesis of formic acid from carbon dioxide hydrogenation. Many factors, such as the functionalized supports, solvents and ligands, could influence their activities and reuse performances greatly. These immobilized catalysts also offer the industrial advantages such as easy separation.

  19. Synthesis and spectral characterization of 2'-hydroxy chalconate complexes of ruthenium(II) and their catalytic and biological applications

    Science.gov (United States)

    Muthukumar, M.; Viswanathamurthi, P.; Natarajan, K.

    2008-10-01

    The reactions of [RuHCl(CO)(B)(EPh 3) 2] (B = EPh 3 or pyridine; E = P or As) and 2'-hydroxychalcones in 1:2 ratio led to the formation of [Ru(CO)(B)(L) 2] (B = PPh 3, AsPh 3 or Py; L = 2'-hydroxychalcones). The new complexes have been characterized by analytical and spectral (IR, electronic and 1H NMR) data. They have been assigned an octahedral structure. The new complexes were found to catalyze the oxidation of alcohols to aldehydes using N-methylmorpholine- N-oxide as co-oxidant. All the new complexes were found to be active against bacteria such as E. coli, Salmonella typhi and fungi Aspergillus niger. The activity was compared with standard Streptomycin or Bavistin.

  20. Towards targeting anticancer drugs: ruthenium(ii)-arene complexes with biologically active naphthoquinone-derived ligand systems.

    Science.gov (United States)

    Kubanik, Mario; Kandioller, Wolfgang; Kim, Kunwoo; Anderson, Robert F; Klapproth, Erik; Jakupec, Michael A; Roller, Alexander; Söhnel, Tilo; Keppler, Bernhard K; Hartinger, Christian G

    2016-08-16

    Anticancer active metal complexes with biologically active ligands have the potential to interact with more than one biological target, which could help to overcome acquired and/or intrinsic resistance of tumors to small molecule drugs. In this paper we present the preparation of 2-hydroxy-[1,4]-naphthoquinone-derived ligands and their coordination to a Ru(II)(η(6)-p-cymene)Cl moiety. The synthesis of oxime derivatives resulted in the surprising formation of nitroso-naphthalene complexes, as confirmed by X-ray diffraction analysis. The compounds were shown to be stable in aqueous solution but reacted with glutathione and ascorbic acid rather than undergoing reduction. One-electron reduction with pulse radiolysis revealed different behavior for the naphthoquinone and nitroso-naphthalene complexes, which was also observed in in vitro anticancer assays. PMID:27214822