Sample records for cationic protein-induced apoptosis

  1. Human Soluble TRAIL Protein Inducing Apoptosis in Osteosarcoma Cell

    Institute of Scientific and Technical Information of China (English)

    ZHU Shaobo; YU Aixi; ZHANG Zhongning; WU Gang


    This study is to examine the effect of human recombinant soluble TRAIL (TNF-related apoptosis-inducing ligand) protein inducing apoptosis in MG-63 human osteosarcoma cells. The inhibitive rates of TRAIL to MG-63 cells were detected by MTT assay. The apoptosis induced by TRAIL in MG-63 human osteosarcoma cells was analyzed with FACS and TUNEL and the apoptotic bodies were observed by transmission electron microscope. MTT assay showed that the inhibitive rates of 500, 1 000,2 000 and 4 000 ng/mL TRAIL for 24 h were 10.1%, 24.3%,50.6% and 97.7% respectively. Flow cytometric analysis showed that after MG-63 cells were treated with 2 μg/mL TRAIL for 6 h,obvious apoptotic peak would immediately appear before diploid peak. Human soluble TRAIL protein can quickly kill MG-63 osteosarcoma cells selectively, and may have potential value for clinical treatment of osteosarcoma.

  2. Research of BH3 domain protein inducing cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    FENG Wan-yu; LIU Yang; ZHANG Zhi-cheng


    Objective BH3 domain protein plays an important role in control mechanism of cell apoptosis. The article mainly discusses its mechanism of promoting cell apoptosis and control. Methods The article analyzed and evaluated the mechanism of BH3 domain protein promoting cell apoptosis by internal and overseas literature. Results Activation of BH3 domain protein could promote the increase of mitochondrial membrane permeability, then it would start mitoehondrial apoptosis pathway, and at the last the cell apoptosis. Conclusions BH3 domain protein is the necessary condition of starting cell apoptosis. Its activation can cause cell apoptosis.

  3. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Li [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158 (China); Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China); Tong, Dewen, E-mail: [College of Veterinary Medicine, Northwest A and F University, Yangling, Shaanxi 712100 (China)


    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  4. Hepatitis C virus core protein induces apoptosis-like caspase independent cell death

    Directory of Open Access Journals (Sweden)

    Gregor Michael


    Full Text Available Abstract Background Hepatitis C virus (HCV associated liver diseases may be related to apoptotic processes. Thus, we investigated the role of different HCV proteins in apoptosis induction as well as their potency to interact with different apoptosis inducing agents. Methods and Results The use of a tightly adjustable tetracycline (Tet-dependent HCV protein expression cell system with the founder osteosarcoma cell line U-2 OS allowed switch-off and on of the endogenous production of HCV proteins. Analyzed were cell lines expressing the HCV polyprotein, the core protein, protein complexes of the core, envelope proteins E1, E2 and p7, and non-structural proteins NS3 and NS4A, NS4B or NS5A and NS5B. Apoptosis was measured mainly by the detection of hypodiploid apoptotic nuclei in the absence or presence of mitomycin C, etoposide, TRAIL and an agonistic anti-CD95 antibody. To further characterize cell death induction, a variety of different methods like fluorescence microscopy, TUNEL (terminal deoxynucleotidyl transferase (TdT-catalyzed deoxyuridinephosphate (dUTP-nick end labeling assay, Annexin V staining, Western blot and caspase activation assays were included into our analysis. Two cell lines expressing the core protein but not the total polyprotein exerted a strong apoptotic effect, while the other cell lines did not induce any or only a slight effect by measuring the hypodiploid nuclei. Cell death induction was caspase-independent since it could not be blocked by zVAD-fmk. Moreover, caspase activity was absent in Western blot analysis and fluorometric assays while typical apoptosis-associated morphological features like the membrane blebbing and nuclei condensation and fragmentation could be clearly observed by microscopy. None of the HCV proteins influenced the apoptotic effect mediated via the mitochondrial apoptosis pathway while only the core protein enhanced death-receptor-mediated apoptosis. Conclusion Our data showed a caspase

  5. The HIV-1 Vpu protein induces apoptosis in Drosophila via activation of JNK signaling.

    Directory of Open Access Journals (Sweden)

    Christelle Marchal

    Full Text Available The genome of the human immunodeficiency virus type 1 (HIV-1 encodes the canonical retroviral proteins, as well as additional accessory proteins that enhance the expression of viral genes, the infectivity of the virus and the production of virions. The accessory Viral Protein U (Vpu, in particular, enhances viral particle production, while also promoting apoptosis of HIV-infected human T lymphocytes. Some Vpu effects rely on its interaction with the ubiquitin-proteasome protein degradation system, but the mechanisms responsible for its pro-apoptotic effects in vivo are complex and remain largely to be elucidated.We took advantage of the Drosophila model to study the effects of Vpu activity in vivo. Expression of Vpu in the developing Drosophila wing provoked tissue loss due to caspase-dependent apoptosis. Moreover, Vpu induced expression of the pro-apoptotic gene reaper, known to down-regulate Inhibitor of Apoptosis Proteins (IAPs which are caspase-antagonizing E3 ubiquitin ligases. Indeed, Vpu also reduced accumulation of Drosophila IAP1 (DIAP1. Though our results demonstrate a physical interaction between Vpu and the proteasome-addressing SLIMB/β-TrCP protein, as in mammals, both SLIMB/βTrCP-dependent and -independent Vpu effects were observed in the Drosophila wing. Lastly, the pro-apoptotic effect of Vpu in this tissue was abrogated upon inactivation of the c-Jun N-terminal Kinase (JNK pathway. Our results in the fly thus provide the first functional evidence linking Vpu pro-apoptotic effects to activation of the conserved JNK pathway.

  6. The HIV-1 Vpu protein induces apoptosis in Drosophila via activation of JNK signaling. (United States)

    Marchal, Christelle; Vinatier, Gérald; Sanial, Matthieu; Plessis, Anne; Pret, Anne-Marie; Limbourg-Bouchon, Bernadette; Théodore, Laurent; Netter, Sophie


    The genome of the human immunodeficiency virus type 1 (HIV-1) encodes the canonical retroviral proteins, as well as additional accessory proteins that enhance the expression of viral genes, the infectivity of the virus and the production of virions. The accessory Viral Protein U (Vpu), in particular, enhances viral particle production, while also promoting apoptosis of HIV-infected human T lymphocytes. Some Vpu effects rely on its interaction with the ubiquitin-proteasome protein degradation system, but the mechanisms responsible for its pro-apoptotic effects in vivo are complex and remain largely to be elucidated.We took advantage of the Drosophila model to study the effects of Vpu activity in vivo. Expression of Vpu in the developing Drosophila wing provoked tissue loss due to caspase-dependent apoptosis. Moreover, Vpu induced expression of the pro-apoptotic gene reaper, known to down-regulate Inhibitor of Apoptosis Proteins (IAPs) which are caspase-antagonizing E3 ubiquitin ligases. Indeed, Vpu also reduced accumulation of Drosophila IAP1 (DIAP1). Though our results demonstrate a physical interaction between Vpu and the proteasome-addressing SLIMB/β-TrCP protein, as in mammals, both SLIMB/βTrCP-dependent and -independent Vpu effects were observed in the Drosophila wing. Lastly, the pro-apoptotic effect of Vpu in this tissue was abrogated upon inactivation of the c-Jun N-terminal Kinase (JNK) pathway. Our results in the fly thus provide the first functional evidence linking Vpu pro-apoptotic effects to activation of the conserved JNK pathway.

  7. Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4. (United States)

    Lee, Kang-In; Choi, Han-Gyu; Son, Yeo-Jin; Whang, Jake; Kim, Kwangwook; Jeon, Heat Sal; Park, Hye-Soo; Back, Yong Woo; Choi, Seunga; Kim, Seong-Woo; Choi, Chul Hee; Kim, Hwa-Jung


    Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4(-/-) macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.

  8. Secretory Transactivating Transcription-apoptin fusion protein induces apoptosis in hepatocellular carcinoma HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    Su-Xia Han; Jin-Lu Ma; Yi Lv; Chen Huang; Hai-Hua Liang; Kang-Min Duan


    AIM: To determine whether SP-TAT-apoptin induces apoptosis and also maintains its tumor cell specificity.METHODS: In this study, we designed a secretory protein by adding a secretory signal peptide (SP) to the N terminus of Transactivating Transcription (TAT)-apoptin (SP-TAT-apoptin), to test the hypothesis that it gains an additive bystander effect as an anti-cancer therapy. We used an artificial human secretory SP whose amino acid sequence and corresponding cDNA sequence were generated by the SP hidden Markov model.RESULTS: In human liver carcinoma HepG2 cells, SP-TAT-apoptin expression showed a diffuse pattern in the early phase after transfection. After 48h, however, it translocated into the nuclear compartment and caused massive apoptotic cell death, as determined by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and annexin-V binding assay. SP-TAT-apoptin did not, however, cause any cell death in non-malignant human umbilical vein endothelial cells (HUVECs). Most importantly, the conditioned medium from Chinese hamster ovary (CHO) cells transfected with SP-TAT-apoptin also induced significant cell death in HepG2 cells, but not in HUVECs.CONCLUSION: The data demonstrated that SP-TAT-apoptin induces apoptosis only in malignant cells, and its secretory property might greatly increase its potency once it is delivered in vivo for cancer therapy.

  9. Telencephalin protects PAJU cells from amyloid beta protein-induced apoptosis by activating the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway

    Institute of Scientific and Technical Information of China (English)

    Heping Yang; Dapeng Wu; Xiaojie Zhang; Xiang Wang; Yi Peng; Zhiping Hu


    Telencephalin is a neural glycoprotein that reduces apoptosis induced by amyloid beta protein in the human neural tumor cell line PAJU.In this study,we examined the role of the ezrin/radixin/moesin protein family/phosphatidylinositol-3-kinase/protein kinase B pathway in this process.Western blot analysis demonstrated that telencephalin,phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B were not expressed in PAJU cells transfected with empty plasmid,while they were expressed in PAJU cells transfected with a telencephalin expression plasmid.After treatment with 1.0 nM amyloid beta protein 42,expression of telencephalin and phosphorylated phosphatidylinositol-3-kinase/protein kinase B in the transfected cells gradually diminished,while levels of phosphorylated ezrin/radixin/moesin increased.In addition,the high levels of telencephalin,phosphorylated ezrin/radixin/moesin and phosphatidylinositol-3-kinase/protein kinase B expression in PAJU cells transfected with a telencephalin expression plasmid could be suppressed by the phosphatidylinositol-3-kinase inhibitor LY294002.These findings indicate that telencephalin activates the ezrin/radixin/moesin family/phosphatidylinositol-3-kinase/protein kinase B pathway and protects PAJU cells from amyloid beta protein-induced apoptosis.

  10. Programmed cell death 2 protein induces gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis in a p53-dependent manner. (United States)

    Zhang, Jian; Wei, Wei; Jin, Hui-Cheng; Ying, Rong-Chao; Zhu, A-Kao; Zhang, Fang-Jie


    Programmed cell death 2 (PDCD2) is a highly conserved nuclear protein, and aberrant PDCD2 expression alters cell apoptosis. The present study aimed to investigate PDCD2 expression in gastric cancer. Tissue specimens from 34 gastric cancer patients were collected for analysis of PDCD2 expression using immunohistochemistry, western blotting and qRT-PCR. Gastric cancer cell lines (a p53-mutated MKN28 line and a wild-type p53 MKN45 line) were used to assess the effects of PDCD2 overexpression. p53-/- nude mice were used to investigate the effect of PDCD2 on ultraviolet B (UVB)-induced skin carcinogenesis. The data showed that PDCD2 expression was reduced in gastric cancer tissue specimens, and loss of PDCD2 expression was associated with the poor survival of patients. PDCD2 expression induced gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis. The antitumor effects of PDCD2 expression were dependent on p53 expression in gastric cancer cells. Moreover, PDCD2 expression inhibited activity of the ATM/Chk1/2/p53 signaling pathway. In addition, PDCD2 expression suppressed UVB-induced skin carcinogenesis in p53+/+ nude mice, but not in p53-/- mice. The data from the present study demonstrated that loss of PDCD2 expression could contribute to gastric cancer development and progression and that PDCD2-induced gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis are p53-dependent.

  11. A cell-permeable dominant-negative survivin protein induces apoptosis and sensitizes prostate cancer cells to TNF-α therapy

    Directory of Open Access Journals (Sweden)

    Kanwar Jagat R


    Full Text Available Abstract Background Survivin is a member of the inhibitor-of-apoptosis (IAP family which is widely expressed by many different cancers. Overexpression of survivin is associated with drug resistance in cancer cells, and reduced patient survival after chemotherapy and radiotherapy. Agents that antagonize the function of survivin hold promise for treating many forms of cancer. The purpose of this study was to investigate whether a cell-permeable dominant-negative survivin protein would demonstrate bioactivity against prostate and cervical cancer cells grown in three dimensional culture. Results A dominant-negative survivin (C84A protein fused to the cell penetrating peptide poly-arginine (R9 was expressed in E. coli and purified by affinity chromatography. Western blot analysis revealed that dNSurR9-C84A penetrated into 3D-cultured HeLa and DU145 cancer cells, and a cell viability assay revealed it induced cancer cell death. It increased the activities of caspase-9 and caspase-3, and rendered DU145 cells sensitive to TNF-α via by a mechanism involving activation of caspase-8. Conclusions The results demonstrate that antagonism of survivin function triggers the apoptosis of prostate and cervical cancer cells grown in 3D culture. It renders cancer cells sensitive to the proapoptotic affects of TNF-α, suggesting that survivin blocks the extrinsic pathway of apoptosis. Combination of the biologically active dNSurR9-C84A protein or other survivin antagonists with TNF-α therapy warrants consideration as an approach to cancer therapy.

  12. Competitive inhibition of survivin using a cell-permeable recombinant protein induces cancer-specific apoptosis in colon cancer model

    Directory of Open Access Journals (Sweden)

    Roy K


    Full Text Available Kislay Roy,1 Rupinder K Kanwar,1 Subramanian Krishnakumar,2,3 Chun Hei Antonio Cheung,4 Jagat R Kanwar1 1Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR, Molecular and Medical Research (MMR Strategic Research Centre, School of Medicine (SoM, Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia; 2Department of Nanobiotechnology, 3Larsen & Toubro (L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai, India; 4Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China Abstract: Endogenous survivin expression has been related with cancer survival, drug resistance, and metastasis. Therapies targeting survivin have been shown to significantly inhibit tumor growth and recurrence. We found out that a cell-permeable dominant negative survivin (SurR9-C84A, referred to as SR9 competitively inhibited endogenous survivin and blocked the cell cycle at the G1/S phase. Nanoencapsulation in mucoadhesive chitosan nanoparticles (CHNP substantially increased the bioavailability and serum stability of SR9. The mechanism of nanoparticle uptake was studied extensively in vitro and in ex vivo models. Our results confirmed that CHNP–SR9 protected primary cells from autophagy and successfully induced tumor-specific apoptosis via both extrinsic and intrinsic apoptotic pathways. CHNP–SR9 significantly reduced the tumor spheroid size (three-dimensional model by nearly 7-fold. Effects of SR9 and CHNP–SR9 were studied on 35 key molecules involved in the apoptotic pathway. Highly significant (4.26-fold, P≤0.005 reduction in tumor volume was observed using an in vivo mouse xenograft colon cancer model. It was also observed that net apoptotic (6.25-fold, P≤0.005 and necrotic indexes (3.5-fold, P≤0.05 were comparatively higher in CHNP–SR9 when compared to void CHNP and CHNP–SR9

  13. RBP-J-interacting and tubulin-associated protein induces apoptosis and cell cycle arrest in human hepatocellular carcinoma by activating the p53–Fbxw7 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haihe [The Key Laboratory of Molecular Diagnosis in Laboratory Medicine, Department of Pathogenobiology, Daqing Branch of Harbin Medical University, Daqing 163319 (China); Yang, Zhanchun [Department of General Surgery of Fifth Clinical Hospital of Harbin Medical University, Daqing 163319 (China); Liu, Chunbo; Huang, Shishun; Wang, Hongzhi; Chen, Yingli [The Key Laboratory of Molecular Diagnosis in Laboratory Medicine, Department of Pathogenobiology, Daqing Branch of Harbin Medical University, Daqing 163319 (China); Chen, Guofu, E-mail: [Department of General Surgery of Fifth Clinical Hospital of Harbin Medical University, Daqing 163319 (China)


    Highlights: • RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. • RITA can significantly inhibit the in vitro growth of SMMC7721 and HepG2 cells. • RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC. - Abstract: Aberrant Notch signaling is observed in human hepatocellular carcinoma (HCC) and has been associated with the modulation of cell growth. However, the role of Notch signaling in HCC and its underlying mechanism remain elusive. RBP-J-interacting and tubulin-associated (RITA) mediates the nuclear export of RBP-J to tubulin fibers and downregulates Notch-mediated transcription. In this study, we found that RITA overexpression increased protein expression of p53 and Fbxw7 and downregulated the expression of cyclin D1, cyclin E, CDK2, Hes-1 and NF-κB p65. These changes led to growth inhibition and induced G0/G1 cell cycle arrest and apoptosis in SMMC7721 and HepG2 cells. Our findings indicate that RITA exerts tumor-suppressive effects in hepatocarcinogenesis through induction of G0/G1 cell cycle arrest and apoptosis and suggest a therapeutic application of RITA in HCC.

  14. Molecular mechanisms of protein induced hyperinsulinaemic hypoglycaemia

    Institute of Scientific and Technical Information of China (English)

    Suresh; Chandran; Fabian; Yap; Khalid; Hussain


    The interplay between glucose metabolism and that of the two other primary nutrient classes, amino acids and fatty acids is critical for regulated insulin secretion. Mitochondrial metabolism of glucose, amino acid and fatty acids generates metabolic coupling factors(such as ATP, NADPH, glutamate, long chain acyl-CoA and diacylglycerol) which trigger insulin secretion. The observation of protein induced hypoglycaemia in patients with mutations in GLUD1 gene, encoding the enzyme glutamate dehydrogenase(GDH) and HADH gene, encoding for the enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase has provided new mechanistic insights into the regulation of insulin secretion by amino acid and fatty acid metabolism. Metabolic signals arising from amino acid and fatty acid metabolism converge on the enzyme GDH which integrates both signals from both pathways and controls insulin secretion. Hence GDH seems to play a pivotal role in regulating both amino acid and fatty acid metabolism.

  15. Allostery through protein-induced DNA bubbles. (United States)

    Traverso, Joseph J; Manoranjan, Valipuram S; Bishop, A R; Rasmussen, Kim Ø; Voulgarakis, Nikolaos K


    Allostery through DNA is increasingly recognized as an important modulator of DNA functions. Here, we show that the coalescence of protein-induced DNA bubbles can mediate allosteric interactions that drive protein aggregation. We propose that such allostery may regulate DNA's flexibility and the assembly of the transcription machinery. Mitochondrial transcription factor A (TFAM), a dual-function protein involved in mitochondrial DNA (mtDNA) packaging and transcription initiation, is an ideal candidate to test such a hypothesis owing to its ability to locally unwind the double helix. Numerical simulations demonstrate that the coalescence of TFAM-induced bubbles can explain experimentally observed TFAM oligomerization. The resulting melted DNA segment, approximately 10 base pairs long, around the joints of the oligomers act as flexible hinges, which explains the efficiency of TFAM in compacting DNA. Since mitochondrial polymerase (mitoRNAP) is involved in melting the transcription bubble, TFAM may use the same allosteric interaction to both recruit mitoRNAP and initiate transcription.

  16. Allostery through protein-induced DNA bubbles (United States)

    Traverso, Joseph J.; Manoranjan, Valipuram S.; Bishop, A. R.; Rasmussen, Kim Ø.; Voulgarakis, Nikolaos K.


    Allostery through DNA is increasingly recognized as an important modulator of DNA functions. Here, we show that the coalescence of protein-induced DNA bubbles can mediate allosteric interactions that drive protein aggregation. We propose that such allostery may regulate DNA's flexibility and the assembly of the transcription machinery. Mitochondrial transcription factor A (TFAM), a dual-function protein involved in mitochondrial DNA (mtDNA) packaging and transcription initiation, is an ideal candidate to test such a hypothesis owing to its ability to locally unwind the double helix. Numerical simulations demonstrate that the coalescence of TFAM-induced bubbles can explain experimentally observed TFAM oligomerization. The resulting melted DNA segment, approximately 10 base pairs long, around the joints of the oligomers act as flexible hinges, which explains the efficiency of TFAM in compacting DNA. Since mitochondrial polymerase (mitoRNAP) is involved in melting the transcription bubble, TFAM may use the same allosteric interaction to both recruit mitoRNAP and initiate transcription.

  17. Protooncogenes as mediators of apoptosis. (United States)

    Teng, C S


    Apoptosis has been well established as a vital biological phenomenon that is important in the maintenance of cellular homeostasis. Three major protooncogene families and their encoded proteins function as mediators of apoptosis in various cell types and are the subject of this chapter. Protooncogenic proteins such as c-Myc/Max, c-Fos/c-Jun, and Bcl-2/Bax utilize a synergetic effect to enhance their roles in the pro- or antiapoptotic action. These family members activate and repress the expression of their target genes, control cell cycle progression, and execute programmed cell death. Repression or overproduction of these protooncogenic proteins induces apoptosis, which may vary as a result of either cell type specificity or the nature of the apoptotic stimuli. The proapoptotic and antiapoptotic proteins exert their effects in the membrane of cellular organelles. Here they generate cell-type-specific signals that activate the caspase family of proteases and their regulators for the execution of apoptosis.

  18. Food protein-induced enterocolitis syndrome, from practice to theory. (United States)

    Miceli Sopo, Stefano; Greco, Monica; Monaco, Serena; Tripodi, Salvatore; Calvani, Mauro


    Food protein-induced enterocolitis syndrome (FPIES) is an allergic disease, probably non-IgE-mediated, with expression predominantly in the GI tract. The most characteristic symptom is repeated, debilitating vomiting. It occurs 2-6 h after ingestion of culprit food and is usually accompanied by pallor and lethargy. There may be diarrhea, and in 10-20% of cases, severe hypotension. These symptoms resolve completely within a few hours. The food most frequently involved is cow's milk, followed by rice, but many other foods may be involved. The prognosis is generally good in a few years. In this review the authors try to cope, with the help of some case histories, with the practical clinical aspects of FPIES. The authors also try to provide a management approach based on current knowledge, and finally, to point out the aspects of FPIES that are still controversial.

  19. Food protein induced enterocolitis syndrome caused by rice beverage. (United States)

    Caminiti, Lucia; Salzano, Giuseppina; Crisafulli, Giuseppe; Porcaro, Federica; Pajno, Giovanni Battista


    Food protein-induced enterocolitis syndrome (FPIES) is an uncommon and potentially severe non IgE-mediated gastrointestinal food allergy. It is usually caused by cow's milk or soy proteins, but may also be triggered by ingestion of solid foods. The diagnosis is made on the basis of clinical history and symptoms. Management of acute phase requires fluid resuscitation and intravenous steroids administration, but avoidance of offending foods is the only effective therapeutic option.Infant with FPIES presented to our emergency department with vomiting, watery stools, hypothension and metabolic acidosis after ingestion of rice beverage. Intravenous fluids and steroids were administered with good clinical response. Subsequently, a double blind placebo control food challenge (DBPCFC) was performed using rice beverage and hydrolyzed formula (eHF) as placebo. The "rice based formula" induced emesis, diarrhoea and lethargy. Laboratory investigations reveal an increase of absolute count of neutrophils and the presence of faecal eosinophils. The patient was treated with both intravenous hydration and steroids. According to Powell criteria, oral food challenge was considered positive and diagnosis of FPIES induced by rice beverage was made. Patient was discharged at home with the indication to avoid rice and any rice beverage as well as to reintroduce hydrolyzed formula. A case of FPIES induced by rice beverage has never been reported. The present case clearly shows that also beverage containing rice proteins can be responsible of FPIES. For this reason, the use of rice beverage as cow's milk substitute for the treatment of non IgE-mediated food allergy should be avoided.

  20. Simultaneous human papilloma virus type 16 E7 and cdk inhibitor p21 expression induces apoptosis and cathepsin B activation

    DEFF Research Database (Denmark)

    Kaznelson, Dorte Wissing; Bruun, Silas; Monrad, Astrid;


    and induction of cell death. We have used the osteosarcoma cell line U2OS cells provided with E7 and the cdk2 inhibitor p21 (cip1/waf1) under inducible control, as a model system for the analysis of E7-mediated apoptosis. Our data shows that simultaneous expression of E7 and p21 proteins induces cell death...

  1. PD-1/PD-L1 signal pathway participates in HCV F protein-induced T cell dysfunction in chronic HCV infection. (United States)

    Xiao, Wen; Jiang, Long Feng; Deng, Xiao Zhao; Zhu, Dan Yan; Pei, Jia Ping; Xu, Mao Lei; Li, Bing Jun; Wang, Chang Jun; Zhang, Jing Hai; Zhang, Qi; Zhou, Zhen Xian; Ding, Wei Liang; Xu, Xiao Dong; Yue, Ming


    Programmed cell death-1/programmed cell death-1 ligand 1 (PD-1/PD-L1) inhibitory signal pathway has been verified to be involved in the establishment of persistent viral infections. Blockade of PD-1/PD-L1 engagement to reinvigorate T cell activity is supposed to be a potential therapeutic scheme. Studies have verified the participation of PD-1/PD-L1 in hepatitis C virus (HCV) core protein-regulated immune response. To determine the roles of PD-1/PD-L1 signal pathway in HCV F protein-induced immunoreaction in chronic HCV infection, variations in T cells were examined. The results showed that PD-1 expression on CD8(+) and CD4(+) T cells was increased with HCV F stimulation in both chronic HCV patients and healthy controls, and could be reduced partly by PD-1/PD-L1 blocking. Additionally, by PD-1/PD-L1 blocking, HCV F-induced inhibition of T cell proliferation and promotion of cellular apoptosis were partly or even totally recovered. Furthermore, levels of both Th1 and Th2 cytokines were elevated in the presence of anti-PD-L1 antibody. All these results indicated that PD-1/PD-L1 signal pathway also participates in HCV F protein-induced immunoregulation. PD-1/PD-L1 blocking plays important roles in the restoration of effective functionality of the impaired T cells in chronic HCV patients.

  2. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang, E-mail:; Xiao, Shaobo; Chen, Huanchun


    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.

  3. Synthetic cation-selective nanotube: Permeant cations chaperoned by anions (United States)

    Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho


    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  4. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong


    and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...

  5. Ubiquitination in apoptosis signaling

    NARCIS (Netherlands)

    van de Kooij, L.W.


    The work described in this thesis focuses on ubiquitination and protein degradation, with an emphasis on how these processes regulate apoptosis signaling. More specifically, our aims were: 1. To increase the understanding of ubiquitin-mediated regulation of apoptosis signaling. 2. To identify the E3

  6. Calpains, mitochondria, and apoptosis. (United States)

    Smith, Matthew A; Schnellmann, Rick G


    Mitochondrial activity is critical for efficient function of the cardiovascular system. In response to cardiovascular injury, mitochondrial dysfunction occurs and can lead to apoptosis and necrosis. Calpains are a 15-member family of Ca(2+)-activated cysteine proteases localized to the cytosol and mitochondria, and several have been shown to regulate apoptosis and necrosis. For example, in endothelial cells, Ca(2+) overload causes mitochondrial calpain 1 cleavage of the Na(+)/Ca(2+) exchanger leading to mitochondrial Ca(2+) accumulation. Also, activated calpain 1 cleaves Bid, inducing cytochrome c release and apoptosis. In renal cells, calpains 1 and 2 promote apoptosis and necrosis by cleaving cytoskeletal proteins, which increases plasma membrane permeability and cleavage of caspases. Calpain 10 cleaves electron transport chain proteins, causing decreased mitochondrial respiration and excessive activation, or inhibition of calpain 10 activity induces mitochondrial dysfunction and apoptosis. In cardiomyocytes, calpain 1 activates caspase 3 and poly-ADP ribose polymerase during tumour necrosis factor-α-induced apoptosis, and calpain 1 cleaves apoptosis-inducing factor after Ca(2+) overload. Many of these observations have been elucidated with calpain inhibitors, but most calpain inhibitors are not specific for calpains or a specific calpain family member, creating more questions. The following review will discuss how calpains affect mitochondrial function and apoptosis within the cardiovascular system.

  7. Inhibitor of apoptosis proteins and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yunbo Wei; Tingjun Fan; Miaomiao Yu


    Apoptosis is a physiological cell death process that plays a critical role in development, homeostasis, and immune defense of multicellular animals. Inhibitor of apoptosis proteins (IAPs) constitute a family of proteins that possess between one and three baculovirus IAP repeats. Some of them also have a really interesting new gene finger domain, and can prevent cell death by binding and inhibiting active caspases, but are regulated by IAP antagonists. Some evidence also indicates that IAP can modulate the cell cycle and signal transduction. The three main factors, IAPs, IAP antagonists, and caspases, are involved in regulating the progress of apoptosis in many species. Many studies and assumptions have been focused on the anfractuous interactions between these three main factors to explore their real functional model in order to develop potential anticancer drugs.In this review, we describe the classification, molecular structures, and properties of IAPs and discuss the mechanisms of apoptosis. We also discuss the promising significance of clinical applications of IAPs in the diagnosis and treatment of malignancy.

  8. Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy. (United States)

    Chen, Lili; Ji, Fangling; Bao, Yongming; Xia, Jing; Guo, Lianying; Wang, Jingyun; Li, Yachen


    The greatest crux in the combination of chemotherapy and gene therapy is the construction of a feasible and biocompatible carrier for loading the therapeutic drug and gene simultaneously. Here, a new amphiphilic bifunctional pullulan derivative (named as PDP) synthesized by grafting lipophilic desoxycholic acid and low-molecular weight (1kDa) branched polyethylenimine onto the backbone of pullulan was evaluated as a nano-carrier for the co-delivery of drug and gene for potential cancer therapy. PDP exhibited good blood compatibility and low cytotoxicity in the hemolysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. By self-assembly process, the amphiphilic PDP polymer formed cationic core-shell nanomicelles in aqueous solution with an average diameter of 160.8nm and a zeta potential of approximate 28mV. The PDP micelles had relative higher drug encapsulation efficiency (84.05%) and loading capacity (7.64%) for doxorubicin (DOX), an effective anti-tumor drug, demonstrating sustained drug release profile and good DNA-binding ability. The flow cytometry and confocal laser scanning microscopy showed that PDP/DOX micelles could be successfully internalized by MCF-7 cells, and presenting higher cytotoxicity against MCF-7 cells than that of free DOX. Furthermore, PDP micelles could efficiently transport tumor suppressor gene p53 into MCF-7 cells, and the expressed exogenous p53 protein induced MCF-7 cells to die. More excitedly, in comparison with single DOX or p53 delivery, the co-delivery of DOX and gene p53 using PDP micelles displayed higher cytotoxicity, induced higher apoptosis rate of tumor cells and blocked more effectively the migration of cancer cells in vitro. In tumor-bearing mice, co-delivery of DOX and p53 also exhibited enhanced antitumor efficacy as compared with single delivery of DOX or p53 alone. In summary, these results demonstrated that it is highly promising to use cationic PDP micelles for effectively

  9. Caspases: An apoptosis mediator

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Palai


    Full Text Available The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy - dependent biochemical mechanisms. Apoptosis is a widely conserved phenomenon helping many processes, including normal cell turnover, proper development and functioning of the immune system, hormone dependent atrophy etc. Inappropriate apoptosis (either low level or high level leads to many developmental abnormalities like, neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. To use cells for therapeutic purposes through generating cell lines, it is critical to study the cell cycle machinery and signalling pathways that controls cell death and apoptosis. Apoptotic pathways provide a fundamental protective mechanism that decreases cellular sensitivity to damaging events and allow proper developmental process in multi-cellular organisms. Major mediator of apoptosis is a family of proteins known as caspases. There are mainly fourteen types of caspases but out of them only ten caspasese have got essential role in controlling the process of apoptosis. These ten caspases have been categorized into either initiator caspases (caspase 2, 8, 9, 10 or executioner caspases (caspase 3, 6, 7. Although various types of caspases have been identified so far, the exact mechanisms of action of these groups of proteins is still to be fully understood. The aim of this review is to provide a detail overview of role of different caspases in regulating the process of apoptosis.

  10. DNA fragmentation in apoptosis

    Institute of Scientific and Technical Information of China (English)


    Cleavage of chromosomal DNA into oligonucleosomal size fragments is an integral part of apoptosis. Elegant biochemical work identified the DNA fragmentation factor (DFF) as a major apoptotic endonuclease for DNA fragmentation in vitro. Genetic studies in mice support the importance of DFF in DNA fragmentation and possibly in apoptosis in vivo. Recent work also suggests the existence of additional endonucleases for DNA degradation. Understanding the roles of individual endonucleases in apoptosis, and how they might coordinate to degrade DNA in different tissues during normal development and homeostasis, as well as in various diseased states, will be a major research focus in the near future.

  11. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)


    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.

  12. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    CHENG JiaGao; LUO XiaoMin; YAN XiuHua; LI Zhong; TANG Yun; JIANG HuaLiang; ZHU WeiLiang


    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system, which has been viewed as a new kind of binding force, as being compared with the classical interac-tions (e.g. hydrogen bonding, electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper, we present an overview of the typi-cal cation-π interactions in biological systems, the experimental and theoretical investigations on cation-π interactions, as well as the research results on cation-π interactions in our group.

  13. Apoptosis in Pneumovirus Infection

    Directory of Open Access Journals (Sweden)

    Reinout A. Bem


    Full Text Available Pneumovirus infections cause a wide spectrum of respiratory disease in humans and animals. The airway epithelium is the major site of pneumovirus replication. Apoptosis or regulated cell death, may contribute to the host anti-viral response by limiting viral replication. However, apoptosis of lung epithelial cells may also exacerbate lung injury, depending on the extent, the timing and specific location in the lungs. Differential apoptotic responses of epithelial cells versus innate immune cells (e.g., neutrophils, macrophages during pneumovirus infection can further contribute to the complex and delicate balance between host defense and disease pathogenesis. The purpose of this manuscript is to give an overview of the role of apoptosis in pneumovirus infection. We will examine clinical and experimental data concerning the various pro-apoptotic stimuli and the roles of apoptotic epithelial and innate immune cells during pneumovirus disease. Finally, we will discuss potential therapeutic interventions targeting apoptosis in the lungs.

  14. RIP and FADD: two "death domain"-containing proteins can induce apoptosis by convergent, but dissociable, pathways.


    Grimm, S; Stanger, B Z; Leder, P


    With use of the yeast two-hybrid system, the proteins RIP and FADD/MORT1 have been shown to interact with the "death domain" of the Fas receptor. Both of these proteins induce apoptosis in mammalian cells. Using receptor fusion constructs, we provide evidence that the self-association of the death domain of RIP by itself is sufficient to elicit apoptosis. However, both the death domain and the adjacent alpha-helical region of RIP are required for the optimal cell killing induced by the overex...

  15. Heavy metal cations permeate the TRPV6 epithelial cation channel. (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A


    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  16. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes

    DEFF Research Database (Denmark)

    Korsholm, Karen Smith; Agger, Else Marie; Foged, Camilla;


    Cationic liposomes are being used increasingly as efficient adjuvants for subunit vaccines but their precise mechanism of action is still unknown. Here, we investigated the adjuvant mechanism of cationic liposomes based on the synthetic amphiphile dimethyldioctadecylammonium (DDA). The liposomes ...

  17. Tripodal Receptors for Cation and Anion Sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman,; Verboom, Willem; Reinhoudt, David N.


    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  18. Induction of apoptosis in purified animal and plant nuclei by Xenopus egg extracts

    Institute of Scientific and Technical Information of China (English)



    We have developed a cell-free system that can trigger the nuclei purified from mouse liver and suspensioncultured carrot cells to undergo apoptosis as defined by the formation of apoptotic bodies and nucleosomal DNA fragments.The effects of different divalent cations and cycloheximide on DNA cleavage in this system were assessed.The fact that nuclei of plant cells can be induced to undergo apoptosis in a cell-free animal system suggests that animals and plants share a common signal transduction pathway triggering in the initiation stage of apoptosis.

  19. Radiolabeled Apoptosis Imaging Agents for Early Detection of Response to Therapy

    Directory of Open Access Journals (Sweden)

    Kazuma Ogawa


    Full Text Available Since apoptosis plays an important role in maintaining homeostasis and is associated with responses to therapy, molecular imaging of apoptotic cells could be useful for early detection of therapeutic effects, particularly in oncology. Radiolabeled annexin V compounds are the hallmark in apoptosis imaging in vivo. These compounds are reviewed from the genesis of apoptosis (cell death imaging agents up to recent years. They have some disadvantages, including slow clearance and immunogenicity, because they are protein-based imaging agents. For this reason, several studies have been conducted in recent years to develop low molecule apoptosis imaging agents. In this review, radiolabeled phosphatidylserine targeted peptides, radiolabeled bis(zinc(II-dipicolylamine complex, radiolabeled 5-fluoropentyl-2-methyl-malonic acid (ML-10, caspase-3 activity imaging agents, radiolabeled duramycin, and radiolabeled phosphonium cation are reviewed as promising low-molecular-weight apoptosis imaging agents.


    Directory of Open Access Journals (Sweden)

    О. M. Kapuler


    Full Text Available Abstract. Forty-two patients with progressive vulgar psoriasis (PASI = 19.7 ± 1.5 and 40 healthy volunteers were under investigation. Psoriatic patients were characterized by increased number of CD4+ CD95+ peripheral blood T lymphocytes, which correlates with clinical psoriatic score, and by increased levels of soluble Fas (sFas in serum, as compared to controls (resp., 1868.1 ± 186.8 pg/ml vs. 1281.4 ± 142.5 pg/ml, PLSD = 0.019. The levels of spontaneous lymphocyte apoptosis and anti-Fas (Mab-induced apoptosis in psoriatic patients did not differ from the controls. However, apoptosis induced by “oxidative stress” (50 M Н202, 4 hrs was depressed in the patients. Moreover, a simultaneous assessment of cell cycle structure (metachromatic staining with Acridine Orange, apoptosis and Fas receptor expression (AnnV-FITC/antiFas mAbs-PE staining following a short-term mitogenic stimulation (PHA-P, 5 µg/ml, 24 hrs were performed. We found no marked differences in mitogenic reactivity, activation-induced apoptosis, and activation-induced Fas receptor expression when studying lymphocytes from healthy donors and psoriatic patients. However, PHA-activated lymphocytes from psoriatic patients displayed a significantly decreased ratio of AnnV+CD95+ to the total AnnV+ subpopulation, thus suggesting a decreased role of Fas-dependent mechanisms of apoptosis during the cell activation. The data obtained confirm a view, that an abnormal lymphocyte “apoptotic reactivity”, which plays a crucial role in the mechanisms of autoimmunity, may also of importance in the pathogenesis of psoriasis.

  1. Apoptosis - Methods and Protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi


    Full Text Available Apoptosis - Methods and ProtocolsSecond edition, 2009; Peter Erhardt and Ambrus Toth (Eds; Springer Protocols - Methods in molecular biology, vol. 559; Humana press, Totowa, New Jersey (USA; Pages: 400; €88.35; ISBN: 978-1-60327-016-8The editors rightly begin the preface telling us that: “The ability to detect and quantify apoptosis, to understand its biochemistry and to identify its regulatory genes and proteins is crucial to biomedical research”. Nowadays this is a grounding concept of biology and medicine. What is particularly remarkable...

  2. The biochemistry of apoptosis. (United States)

    Hengartner, M O


    Apoptosis--the regulated destruction of a cell--is a complicated process. The decision to die cannot be taken lightly, and the activity of many genes influence a cell's likelihood of activating its self-destruction programme. Once the decision is taken, proper execution of the apoptotic programme requires the coordinated activation and execution of multiple subprogrammes. Here I review the basic components of the death machinery, describe how they interact to regulate apoptosis in a coordinated manner, and discuss the main pathways that are used to activate cell death.

  3. Mediastinal Yolk Sac Tumor Producing Protein Induced by Vitamin K Absence or Antagonist-II. (United States)

    Akutsu, Noriyuki; Adachi, Yasushi; Isosaka, Mai; Mita, Hiroaki; Takagi, Hideyasu; Sasaki, Shigeru; Yamamoto, Hiroyuki; Arimura, Yoshiaki; Ishii, Yoshifumi; Masumori, Naoya; Endo, Takao; Shinomura, Yasuhisa


    Extragonadal yolk sac tumors (YSTs) are rare. We herein report the case of a 66-year-old man with mediastinal, lung and liver tumors. The largest mass was located in the liver and contained a high concentration of protein induced by vitamin K absence or antagonist-II (PIVKA-II) and alpha-fetoprotein. Therefore, the lesion was difficult to distinguish from hepatocellular carcinoma. Finally, YST was diagnosed based on the results of a liver biopsy. Although chemotherapy was effective, the patient died of respiratory failure. The autopsy revealed primary mediastinal YST. In the current report, we describe this case of PIVKA-II-producing YST and review previous cases of PIVKA-II-producing tumors other than hepatoma.

  4. Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease

    NARCIS (Netherlands)

    Jiang, Hong; Schiffer, Eric; Song, Zhangfa; Wang, Jianwei; Zürbig, Petra; Thedieck, Kathrin; Moes, Suzette; Bantel, Heike; Saal, Nadja; Jantos, Justyna; Brecht, Meiken; Jenö, Paul; Hall, Michael N; Hager, Klaus; Manns, Michael P; Hecker, Hartmut; Ganser, Arnold; Döhner, Konstanze; Bartke, Andrzej; Meissner, Christoph; Mischak, Harald; Ju, Zhenyu; Rudolph, K Lenhard


    Telomere dysfunction limits the proliferative capacity of human cells by activation of DNA damage responses, inducing senescence or apoptosis. In humans, telomere shortening occurs in the vast majority of tissues during aging, and telomere shortening is accelerated in chronic diseases that increase

  5. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.


    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  6. Apoptosis and inflammation

    Directory of Open Access Journals (Sweden)

    C. Haanen


    Full Text Available During the last few decades it has been recognized that cell death is not the consequence of accidental injury, but is the expression of a cell suicide programme. Kerr et al. (1972 introduced the term apoptosis. This form of cell death is under the influence of hormones, growth factors and cytokines, which depending upon the receptors present on the target cells, may activate a genetically controlled cell elimination process. During apoptosis the cell membrane remains intact and the cell breaks into apoptotic bodies, which are phagocytosed. Apoptosis, in contrast to necrosis, is not harmful to the host and does not induce any inflammatory reaction. The principal event that leads to inflammatory disease is cell damage, induced by chemical/physical injury, anoxia or starvation. Cell damage means leakage of cell contents into the adjacent tissues, resulting in the capillary transmigration of granulocytes to the injured tissue. The accumulation of neutrophils and release of enzymes and oxygen radicals enhances the inflammatory reaction. Until now there has been little research into the factors controlling the accumulation and the tissue load of granulocytes and their histotoxic products in inflammatory processes. Neutrophil apoptosis may represent an important event in the control of intlamtnation. It has been assumed that granulocytes disintegrate to apoptotic bodies before their fragments are removed by local macrophages. Removal of neutrophils from the inflammatory site without release of granule contents is of paramount importance for cessation of inflammation. In conclusion, apoptotic cell death plays an important role in inflammatory processes and in the resolution of inflammatory reactions. The facts known at present should stimulate further research into the role of neutrophil, eosinophil and macrophage apoptosis in inflammatory diseases.

  7. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick


    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  8. Fullerene and apoptosis

    Directory of Open Access Journals (Sweden)

    M. A. Orlova


    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  9. Fullerene and apoptosis

    Directory of Open Access Journals (Sweden)

    M. A. Orlova


    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  10. Apoptosis and survival

    Directory of Open Access Journals (Sweden)

    Manjul Tiwari


    Full Text Available The term apoptosis first appeared in the biomedical literature in 1972, to delineate a structurally distinctive mode of cell death responsible for cell loss within living tissues. The cardinal morphological features are cell shrinkage, accompanied by transient but violent bubbling and blebbing from the surface, and culminating in separation of the cell into a cluster of membrane-bounded bodies. Changes in several cell surface molecules also ensure that, in tissues, apoptotic cells are immediately recognised and phagocytosed by their neighbours. However, it is important to note that apoptosis is only one form of cell death and the particular death pathway that is the most important determinant for cancer therapy is not necessarily that which has the fastest kinetics, as is the bias in many laboratories, but rather that which displays the most sensitive dose-response relationship.

  11. Apoptosis: una muerte silenciosa

    Directory of Open Access Journals (Sweden)

    Isis Casadelvalle Pérez


    Full Text Available La apoptosis o muerte celular programada es un tipo de muerte presente en todas las células eucarióticas. Es un proceso ordenado y esencial del desarrollo normal y de mantenimiento de la homeostasis de un organismo. En el presente trabajo se resumen las principales características fisiológicas, bioquímicas y moleculares de la muerte por apoptosis, evento que ocurre de forma apagada o silenciosa, o sea, sin daño celular aparente diferenciándose claramente del proceso de necrosis celular. En ese proceso se destaca la mitocondria, como organelo celular donde mediado por la activación de las caspasas se inicia el paso hacia la muerte celular programada. En el momento actual, la apoptosis ha cobrado un verdadero valor para la mejor comprensión de los procesos biológicos normales en los que este evento está involucrado y que con anterioridad no era tomado en cuenta. En este sentido, se comentan las principales técnicas de detección de muerte celular programada y se aclara que la elección de algunas de ellas depende del modelo de estudio. Tambi én se dan a conocer algunas de las patologías generales en las que este proceso representa un papel determinante y se discute acerca de cómo algunas alteraciones en los mecanismos de regulación de la apoptosis inducen la aparici ón de varias enfermedades, incluyendo aquellos desórdenes en los que ocurre acumulación celular (cáncer, alteración cardiaca, neurodegeneración y SIDA. El estudio y caracterización de este complejo mecanismo ha cambiado profundamente la comprensión de numerosas patologías en los organismos eucariotas.

  12. Sphingolipids and mitochondrial apoptosis. (United States)

    Patwardhan, Gauri A; Beverly, Levi J; Siskind, Leah J


    The sphingolipid family of lipids modulate several cellular processes, including proliferation, cell cycle regulation, inflammatory signaling pathways, and cell death. Several members of the sphingolipid pathway have opposing functions and thus imbalances in sphingolipid metabolism result in deregulated cellular processes, which cause or contribute to diseases and disorders in humans. A key cellular process regulated by sphingolipids is apoptosis, or programmed cell death. Sphingolipids play an important role in both extrinsic and intrinsic apoptotic pathways depending on the stimuli, cell type and cellular response to the stress. During mitochondrial-mediated apoptosis, multiple pathways converge on mitochondria and induce mitochondrial outer membrane permeabilization (MOMP). MOMP results in the release of intermembrane space proteins such as cytochrome c and Apaf1 into the cytosol where they activate the caspases and DNases that execute cell death. The precise molecular components of the pore(s) responsible for MOMP are unknown, but sphingolipids are thought to play a role. Here, we review evidence for a role of sphingolipids in the induction of mitochondrial-mediated apoptosis with a focus on potential underlying molecular mechanisms by which altered sphingolipid metabolism indirectly or directly induce MOMP. Data available on these mechanisms is reviewed, and the focus and limitations of previous and current studies are discussed to present important unanswered questions and potential future directions.

  13. Localization versus delocalization in diamine radical cations

    DEFF Research Database (Denmark)

    Brouwer, A.M.; Wiering, P.G.; Zwier, J.M.;


    The optical absorption spectrum of the radical cation of 1,4-diphenylpiperazine 2a shows a strong transition in the near-IR, and only a weak band at 445 nm, in the region where aniline radical cations normally absorb strongly. This indicates that the charge and spin are delocalized over the two...

  14. Advancements in Anion Exchange Membrane Cations

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Long, Hai [National Renewable Energy Lab. (NREL), Golden, CO (United States); Park, Andrew M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pivovar, Bryan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  15. Severe Food Protein-Induced Enterocolitis Syndrome to Cow’s Milk in Infants

    Directory of Open Access Journals (Sweden)

    Min Yang


    Full Text Available Cow’s milk is the most common cause of food-protein-induced enterocolitis syndrome (FPIES. The aim of this study was to examine the clinical features and treatment outcomes of infants with severe FPIES to cow’s milk. We reviewed all infants ≤12 months of age who were hospitalized and diagnosed with severe FPIES to cow’s milk between 1 January 2011 and 31 August 2014 in a tertiary Children’s Medical Center in China. Patients’ clinical features, feeding patterns, laboratory tests, and treatment outcomes were reviewed. A total of 12 infants met the inclusion criteria. All infants presented with diarrhea, edema, and hypoalbuminemia. Other main clinical manifestations included regurgitation/vomiting, skin rashes, low-grade fever, bloody and/or mucous stools, abdominal distention, and failure to thrive. They had clinical remission with resolution of diarrhea and significant increase of serum albumin after elimination of cow’s milk protein (CMP from the diet. The majority of infants developed tolerance to the CMP challenge test after 12 months of avoidance. In conclusion, we reported the clinical experience of 12 infants with severe FPIES to cow’s milk, which resulted in malnutrition, hypoproteinemia, and failure to thrive. Prompt treatment with CMP-free formula is effective and leads to clinical remission of FPIES in infants.

  16. Hematochezia before the First Feeding in a Newborn with Food Protein-Induced Enterocolitis Syndrome

    Directory of Open Access Journals (Sweden)

    Masanori Mizuno


    Full Text Available The prevalence and incidence of food protein-induced enterocolitis syndrome (FPIES are clearly not known; its onset before first feeding at birth especially has been rarely reported. A female newborn was referred to our institution due to blood-stained diarrhea before her first feeding at birth. Examination of the stool with Wright-Giemsa staining on day 6 revealed numerous fecal eosinophils, including Charcot-Leyden crystals. Lymphocyte stimulation test (LST against cow's milk protein also showed positive values on day 12. The hematochezia resolved immediately after starting intravenous nutrition. She was fed with breast milk and extensively hydrolyzed formula and discharged from hospital on day 49. FPIES was diagnosed based on these symptoms and data. Our case was thought to have acquired allergic enterocolitis after sensitization in her fetal period, which caused severe FPIES triggered by the first intake of cow's milk soon after birth. The patient with FPIES presents atypical clinical findings, which is likely to cause misdiagnosis and delay of appropriate treatment. Heightened awareness and increased attention may be necessary to diagnose FPIES, even soon after birth. Evaluating fecal eosinophils and LST, which may be difficult to perform in every clinical hospital, is thought to be useful for the detection of FPIES without oral food challenge.

  17. The Oncogenic Properties Of The Redox Inflammatory Protein Inducible Nitric Oxide Synthase In ER(- Breast Cancer

    Directory of Open Access Journals (Sweden)

    David A. Wink


    Full Text Available Inflammation generates reactive chemical species that induce conditions of oxidative nitrosative stress as emerged as factor in poor outcome of many cancers. Our recent findings show that in the inflammatory protein inducible nitric oxide synthase (iNOS is a strong predictor of poor outcome in ER(- patients (Glynn et al. JCI 2010. Furthermore 46 genes, of which 23 were associated with basal like breast cancer, were elevated when iNOS high. In vitro studies using ER(- cell lines showed that fluxes of nitric oxide (NO delivered by NO donors surprising mimic this relationship in the patient cohort. Using this model, we show that NO at different specific concentrations stimulate pro-oncogenic mechanisms such as AKT, ERK, NFkB, AP-1, and HIF-1α that lead to increase of metastatic and cancer stem cells proteins. In addition, we show that tumor suppressor gene BRCA1 and PP2A are inhibited by these NO levels. Similarly other studies show that these concentrations of NO increase immunosuppressive proteins TGF-β and IL-10 in leukocytes to decrease efficacy of some anticancer therapies further contributing to pro-tumorigenic environment. Using this model we have identified several new compounds that have efficacy in xenographic models. These finding have provided a model that shows how NO can affect numerous mechanism that leads to a more aggressive phenotype.

  18. Cation diffusion in the natural zeolite clinoptilolite

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, A.; White, K.J. [Science Research Institute, Chemistry Division, Cockcroft Building, University of Salford, Salford (United Kingdom)


    The natural zeolite clinoptilolite is mined commercially in many parts of the world. It is a selective exchanger for the ammonium cation and this has prompted its use in waste water treatment, swimming pools and in fish farming. It is also used to scavenge radioisotopes in nuclear waste clean-up. Further potential uses for clinoptilolite are in soil amendment and remediation. The work described herein provides thermodynamic data on cation exchange processes in clinoptilolite involving the NH{sub 4}, Na, K, Ca, and Mg cations. The data includes estimates of interdiffusion coefficients together with free energies, entropies and energies of activation for the cation exchanges studied. Suggestions are made as to the mechanisms of cation-exchanges involved.

  19. Role of Calpain in Apoptosis

    Directory of Open Access Journals (Sweden)

    Hamid Reza Momeni


    Full Text Available Apoptosis, a form of programmed cell death that occurs under physiologicalas well as pathological conditions, is characterized by morphological and biochemicalfeatures. While the importance of caspases in apoptosis is established,several noncaspase proteases (Ca2+-dependent proteases such as calpain mayplay a role in the execution of apoptosis. The calpain family consists of twomajor isoforms, calpain I and calpain II which require μM and mM Ca2+ concentrationsto initiate their activity. An increase in intracellular Ca2+ level isthought to trigger a cascade of biochemical processes including calpain activation.Once activated, calpains degrade membrane, cytoplasmic and nuclear substrates,leading to the breakdown of cellular architecture and finally apoptosis.The activation of calpain has been implicated in neuronal apoptosis followingspinal cord injuries and neurodegenerative diseases. This review focuses oncalpain with an emphasis on its key role in the proteolysis of cellular proteinsubstrates following apoptosis.

  20. Cationic Bolaamphiphiles for Gene Delivery (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad


    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  1. Apoptosis and DNA Methylation

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Huan X.; Hackett, James A. [MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Nestor, Colm [MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Breakthrough Research Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Dunican, Donncha S.; Madej, Monika; Reddington, James P. [MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Pennings, Sari [Queen' s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ (United Kingdom); Harrison, David J. [Breakthrough Research Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Meehan, Richard R., E-mail: [MRC Human Genetics Unit, IGMM, Western General Hospital, Edinburgh EH4 2XU (United Kingdom); Breakthrough Research Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU (United Kingdom)


    Epigenetic mechanisms assist in maintaining gene expression patterns and cellular properties in developing and adult tissues. The molecular pathology of disease states frequently includes perturbation of DNA and histone methylation patterns, which can activate apoptotic pathways associated with maintenance of genome integrity. This perspective focuses on the pathways linking DNA methyltransferases and methyl-CpG binding proteins to apoptosis, and includes new bioinformatic analyses to characterize the evolutionary origin of two G/T mismatch-specific thymine DNA glycosylases, MBD4 and TDG.

  2. Apoptosis and DNA Methylation

    Directory of Open Access Journals (Sweden)

    Richard R. Meehan


    Full Text Available Epigenetic mechanisms assist in maintaining gene expression patterns and cellular properties in developing and adult tissues. The molecular pathology of disease states frequently includes perturbation of DNA and histone methylation patterns, which can activate apoptotic pathways associated with maintenance of genome integrity. This perspective focuses on the pathways linking DNA methyltransferases and methyl-CpG binding proteins to apoptosis, and includes new bioinformatic analyses to characterize the evolutionary origin of two G/T mismatch-specific thymine DNA glycosylases, MBD4 and TDG.

  3. Heme protein-induced tubular cytoresistance: expression at the plasma membrane level. (United States)

    Zager, R A


    Following experimental rhabdomyolysis, animals become resistant to heme protein-induced acute renal failure (ARF). The goals of this study were to: (a) ascertain whether this resistance, previously documented only in vivo, is expressed directly at the proximal tubular cell level; (b) determine whether heme proteinuria (vs. other consequences of rhabdomyolysis) is its trigger; and (c) ascertain some of its subcellular determinants. Rats were injected with a borderline toxic dose of glycerol and 24 hours later proximal tubular segments (PTS) were isolated for study. Their vulnerability to diverse forms of injury (FeSO4-induced oxidant stress, hypoxia, Ca2+ ionophore, cytochalasin D, PLA2) was compared to that found in normal PTS. Post-glycerol PTS manifested significant resistance to each insult (decreased lactate dehydrogenase +/- N-acetyl-beta-D-glucosaminidase release). Protection against FeSO4 was virtually complete and it was associated with a 50% decrease in membrane lipid peroxidation. No decrease in hydroxyl radical generation was noted during the FeSO4 challenge (salicylate trap assessment), suggesting a primary increase in membrane resistance to attack. That PLA2 addition caused less deacylation, plasma membrane enzyme (alanine aminopeptidase) release, and LDH leakage from post-glycerol versus normal tubules supported this hypothesis. To test whether cytoresistance was specifically triggered by heme proteins (vs. being a non-specific filtered protein effect, or a result of endotoxin cascade activation), rats were injected with purified myoglobin, non-heme containing filterable proteins, or endotoxin. Only myoglobin induced cytoresistance. In vivo heme oxygenase inhibition (tin-protoporphyrin) did not block the emergence of cytoresistance and it was expressed despite Na,K-ATPase inhibition (ouabain) or cytoskeletal disruption (cytochalasin D). In vivo heat shock failed to protect. In conclusion, (1) rhabdomyolysis induces broad based proximal tubular

  4. Cation distributions on rapidly solidified cobalt ferrite (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.


    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  5. Apoptosis Resistance in Endometriosis

    Directory of Open Access Journals (Sweden)

    Liselotte Mettler


    Full Text Available Introduction: In a cytological analysis of endometriotic lesions neither granulocytes nor cytotoxic T-cells appear in an appreciable number. Based on this observation we aimed to know, whether programmed cell death plays an essential role in the destruction of dystopic endometrium. Disturbances of the physiological mechanisms of apoptosis, a persistence of endometrial tissue could explain the disease. Another aspect of this consideration is the proliferation competence of the dystopic mucous membrane. Methods: Endometriotic lesions of 15 patients were examined through a combined measurement of apoptosis activity with the TUNEL technique (terminal deoxyribosyltransferase mediated dUTP Nick End Labeling and the proliferation activity (with the help of the Ki-67-Antigens using the monoclonal antibody Ki-S5. Results: Twelve out of 15 women studied showed a positive apoptotic activity of 3-47% with a proliferation activity of 2-25% of epithelial cells. Therefore we concluded that the persistence of dystopic endometrium requires proliferative epithelial cells from middle to lower endometrial layers. Conclusion: A dystopia misalignment of the epithelia of the upper layers of the functionalism can be rapidly eliminated by apoptotic procedures.

  6. High Prevalence of Neutrophil Cytoplasmic Autoantibodies in Infants with Food Protein-Induced Proctitis/Proctocolitis: Autoimmunity Involvement?

    Directory of Open Access Journals (Sweden)

    Alena Sekerkova


    Full Text Available Background. Food protein-induced proctitis/proctocolitis (FPIP is the most common noninfectious colitis in children in the first year of life. Along with the overall clinical symptoms, diarrhoea and rectal bleeding are the main manifestations of the disease. There is no routine noninvasive test that would be specific for this type of colitis. The aim of our study was to find a noninvasive laboratory test or tests that may be helpful in differential diagnosis of food protein-induced proctitis/proctocolitis. Methods. ANA, ANCA, ASCA, a-EMA, a-tTg, specific IgE, total IgE, IgG, IgA, IgM, and concentration of serum calprotectin were measured in a group of 25 patients with colitis and 18 children with other diagnoses. Results. Atypical-pANCA antibodies of IgG isotype were detected in the sera of 24 patients by the method of indirect immunofluorescence, and 5 patients showed also the positivity of IgA isotype. In control samples these autoantibodies were not detected. Other autoantibodies were not demonstrated in either patient or control group. Conclusions. Of the parameters tested in noninfectious colitis, atypical-pANCA on ethanol-fixed granulocytes appears to be a suitable serological marker of food protein-induced proctitis/proctocolitis and suggests a possible involvement of an autoimmune mechanisms in the pathogenesis of this disease.

  7. Cardiovascular molecular imaging of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, S.L.; Reutelingsperger, C.P.M. [Maastricht University, Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht (Netherlands); Corsten, M.F.; Hofstra, L. [Maastricht University, Department of Cardiology, Cardiovascular Research Institute Maastricht, P.O. Box 616, Maastricht (Netherlands); Narula, J. [University of California Irvine, Department of Cardiology, Irvine (United States)


    Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies. (orig.)

  8. Apoptosis : Target of cancer therapy

    NARCIS (Netherlands)

    Ferreira, CG; Epping, M; Kruyt, FAE; Giaccone, G


    Recent knowledge on apoptosis has made it possible to devise novel approaches, which exploit this process to treat cancer. In this review, we discuss in detail approaches to induce tumor cell apoptosis, their mechanism of action, stage of development, and possible drawbacks. Finally, the obstacles y

  9. Cationic ruthenium alkylidene catalysts bearing phosphine ligands. (United States)

    Endo, Koji; Grubbs, Robert H


    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  10. Cation locations and dislocations in zeolites (United States)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  11. Apoptosis Evaluation by Electrochemical Techniques. (United States)

    Yin, Jian; Miao, Peng


    Apoptosis has close relevance to pathology, pharmacology, and toxicology. Accurate and convenient detection of apoptosis would be beneficial for biological study, clinical diagnosis, and drug development. Based on distinct features of apoptotic cells, a diversity of analytical techniques have been exploited for sensitive analysis of apoptosis, such as surface plasmon resonance, electrochemical methods, flow cytometry, and some imaging assays. Among them, the features of simplicity, easy operation, low cost, and high sensitivity make electrochemical techniques powerful tools to investigate electron-transfer processes of in vitro biological systems. In this contribution, a general overview of current knowledge on various technical approaches for apoptosis evaluation is provided. Furthermore, recently developed electrochemical biosensors for detecting apoptotic cells and their advantages over traditional methods are summarized. One of the main considerations focuses on designing the recognition elements based on various biochemical events during apoptosis.

  12. Caspase Family Proteases and Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Ting-Jun FAN; Li-Hui HAN; Ri-Shan CONG; Jin LIANG


    Apoptosis, or programmed cell death, is an essential physiological process that plays a critical role in development and tissue homeostasis. The progress of apoptosis is regulated in an orderly way by a series of signal cascades under certain circumstances. The caspase-cascade system plays vital roles in the induction, transduction and amplification of intracellular apoptotic signals. Caspases, closely associated with apoptosis, are aspartate-specific cysteine proteases and members of the interleukin-1β-converting enzyme family. The activation and function of caspases, involved in the delicate caspase-cascade system, are regulated by various kinds of molecules, such as the inhibitor of apoptosis protein, Bcl-2 family proteins, calpain,and Ca2+. Based on the latest research, the members of the caspase family, caspase-cascade system and caspase-regulating molecules involved in apoptosis are reviewed.

  13. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry (United States)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.


    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  14. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi


    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  15. Apoptosis in Primary Hyperparathyroidism. (United States)

    Segiet, Oliwia Anna; Mielańczyk, Łukasz; Piecuch, Adam; Michalski, Marek; Tyczyński, Szczepan; Brzozowa-Zasada, Marlena; Deska, Mariusz; Wojnicz, Romuald


    Primary hyperparathyroidism (PHPT) is defined by inappropriate elevation of parathormone, caused by parathyroid hyperplasia, also known as multi-gland disease (MGD), parathyroid adenoma (PA), or parathyroid carcinoma (PC). Although several studies have already been conducted, there is a lack of a definite diagnostic marker, which could unambiguously distinguish MGD from PA or PC. The accurate and prompt diagnosis has the key meaning for effective treatment and follow-up. This review paper presents the role of apoptosis in PHPT. The comparison of the expression of Fas, TRAIL, BCL-2 family members, p53 in MGD, PA, and PC, among others, was described. The expression of described factors varies among proliferative lesions of parathyroid gland; therefore, these could serve as additional markers to assist in the diagnosis.

  16. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida


    , and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...... by cell swelling, it is possible that CFTR serves RVD/AVD through accumulation of ROS and activation of independent membrane channels such as ANO6. Thus activation of ANO6 will support cell shrinkage and induce additional apoptotic events, such as membrane phospholipid scrambling....

  17. Myelin basic protein induces neuron-specific toxicity by directly damaging the neuronal plasma membrane.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    Full Text Available The central nervous system (CNS insults may cause massive demyelination and lead to the release of myelin-associated proteins including its major component myelin basic protein (MBP. MBP is reported to induce glial activation but its effect on neurons is still little known. Here we found that MBP specifically bound to the extracellular surface of the neuronal plasma membrane and induced neurotoxicity in vitro. This effect of MBP on neurons was basicity-dependent because the binding was blocked by acidic lipids and competed by other basic proteins. Further studies revealed that MBP induced damage to neuronal membrane integrity and function by depolarizing the resting membrane potential, increasing the permeability to cations and other molecules, and decreasing the membrane fluidity. At last, artificial liposome vesicle assay showed that MBP directly disturbed acidic lipid bilayer and resulted in increased membrane permeability. These results revealed that MBP induces neurotoxicity through its direct interaction with acidic components on the extracellular surface of neuronal membrane, which may suggest a possible contribution of MBP to the pathogenesis in the CNS disorders with myelin damage.

  18. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    Energy Technology Data Exchange (ETDEWEB)

    Walia, Rupali; Dardari, Rkia, E-mail:; Chaiyakul, Mark; Czub, Markus


    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  19. Targeting Rac1 signaling inhibits streptococcal M1 protein-induced CXC chemokine formation, neutrophil infiltration and lung injury.

    Directory of Open Access Journals (Sweden)

    Songen Zhang

    Full Text Available Infections with Streptococcus pyogenes exhibit a wide spectrum of infections ranging from mild pharyngitis to severe Streptococcal toxic shock syndrome (STSS. The M1 serotype of Streptococcus pyogenes is most commonly associated with STSS. In the present study, we hypothesized that Rac1 signaling might regulate M1 protein-induced lung injury. We studied the effect of a Rac1 inhibitor (NSC23766 on M1 protein-provoked pulmonary injury. Male C57BL/6 mice received NSC23766 prior to M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for quantification of neutrophil recruitment, edema and CXC chemokine formation. Neutrophil expression of Mac-1 was quantified by use of flow cytometry. Quantitative RT-PCR was used to determine gene expression of CXC chemokines in alveolar macrophages. Treatment with NSC23766 decreased M1 protein-induced neutrophil infiltration, edema formation and tissue injury in the lung. M1 protein challenge markedly enhanced Mac-1 expression on neutrophils and CXC chemokine levels in the lung. Inhibition of Rac1 activity had no effect on M1 protein-induced expression of Mac-1 on neutrophils. However, Rac1 inhibition markedly decreased M1 protein-evoked formation of CXC chemokines in the lung. Moreover, NSC23766 completely inhibited M1 protein-provoked gene expression of CXC chemokines in alveolar macrophages. We conclude that these novel results suggest that Rac1 signaling is a significant regulator of neutrophil infiltration and CXC chemokine production in the lung. Thus, targeting Rac1 activity might be a potent strategy to attenuate streptococcal M1 protein-triggered acute lung damage.

  20. Clinical utility of protein induced by vitamin K absence in patients with chronic hepatitis B virus infection


    Truong, Bui Xuan; Yano, Yoshihiko; VAN, VU TUONG; Seo, Yasushi; Nam, Nguyen Hoai; TRACH, NGUYEN KHANH; Utsumi, Takako; Azuma, Takeshi; Hayashi, Yoshitake


    Hepatitis B virus (HBV) is a leading cause of hepatocellular carcinoma (HCC). α-fetoprotein (AFP) is a common tumor marker for the diagnosis of HCC, although not for protein induced by the absence of vitamin K or antagonist-II (PIVKA-II). The present study aimed to evaluate the role of PIVKA-II in the diagnosis of HCC in HBV-infected Vietnamese patients. A total of 166 consecutive HBV-infected Vietnamese patients were enrolled, including 41 HCC, 43 liver cirrhosis (LC), 26 chronic hepatitis (...

  1. Invertebrate Iridovirus Modulation of Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Trevor Williams; Nllesh S. Chitnis; Sh(a)n L. Bilimoria


    Programmed cell death (apoptosis) is a key host response to virus infection. Viruses that can modulate host apoptotic responses are likely to gain important opportunities for transmission. Here we review recent studies that demonstrate that particles of Invertebrate iridescent virus 6 (IIV-6) (Iridoviridae, genus Iridovirus), or an IIV-6 virion protein extract, are capable of inducing apoptosis in lepidopteran and coleopteran cells, at concentrations 1000-fold lower than that required to shut-off host macromolecular synthesis. Induction of apoptosis depends on endocytosis of one or more heat-sensitive virion component(s). Studies with a JNK inh ibitor(SP600125) indicated that the JNK signaling pathway is significantly involved in apoptosis in IIV-6 infections of Choristoneurafumiferana ceils. The genome of IIV-6 codes for an inhibitor of apoptosis iap gene (193R) that encodes a protein of 208 aa with 15% identity and 28% similarity in its amino acid sequence to IAP-3 from Cydia pomonella ganulovirus (CpGV). Transcription of IIV-6 iap did not require prior DNA or protein synthesis, indicating that it is an immediate-early class gene. Transient expression and gene knockdown studies have confirmed the functional nature of the IIV-6 iap gene. We present a tentative model for IIV-6 induction and inhibition of apoptosis in insect cells and discuss the potential applications of these findings in insect pest control.

  2. Cation Effect on Copper Chemical Mechanical Polishing

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; LIU Bo; SONG Zhi-Tang; FENG Song-Lin


    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demon-strates the worst performance. These results reveal a mechanism that sma//molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  3. Cation Effect on Copper Chemical Mechanical Polishing (United States)

    Wang, Liang-Yong; Liu, Bo; Song, Zhi-Tang; Feng, Song-Lin


    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demonstrates the worst performance. These results reveal a mechanism that small molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  4. Cationically polymerizable monomers derived from renewable sources

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.V.


    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  5. Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery. (United States)

    Le Corre, Stéphanie S; Belmadi, Nawal; Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain


    In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synthesis strategies were evaluated. The first used the Atherton-Todd coupling reaction to introduce a phenolic derivative to dioleylphosphite. The second strategy used a sequential addition of lipid alcohol and a phenolic derivative on POCl3. The two methods are efficient, but the latter allows larger yields. Different polar head groups were introduced, thus producing amphiphilic compounds possessing either one permanent (N-methyl-imidazolium, pyridinium, trimethylammonium) or two permanent cationic charges. All these cationic lipids were formulated as liposomal solutions and characterized (size and zeta potential). They formed stable liposomal solutions both in water (at pH 7.0) and in a weakly acidic medium (at pH 5.5). Finally, this new generation of cationic lipids was used to deliver DNA into various human-derived epithelial cells cultured in vitro. Compared with Lipofectamine used as a reference commercial lipofection reagent, some cationic dialkylarylphosphates were able to demonstrate potent gene transfer abilities, and noteworthily, monocationic derivatives were much more efficient than dicationic analogues.

  6. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation. (United States)

    Finnerty, Justin John; Peyser, Alexander; Carloni, Paolo


    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores.

  7. MAPK signaling pathways regulate mitochondrial-mediated apoptosis induced by isoorientin in human hepatoblastoma cancer cells. (United States)

    Yuan, Li; Wang, Jing; Xiao, Haifang; Wu, Wanqiang; Wang, Yutang; Liu, Xuebo


    Isoorientin (ISO) (CAS RN: 4261-42-1) is a flavonoid compound that can be extracted from several plant species, such as Phyllostachys pubescens, Patrinia, and Drosophyllum lusitanicum. ISO is able to induce apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cells, however, the effects of ISO on MAPK signaling pathways remain unknown. The present study investigated the effects of ISO on this pathway, and the roles of MAPK kinases on mitochondrial-mediated apoptosis in HepG2 cells. The results showed that ISO induced cell death in a dose- and time-dependent manner, and induction apoptosis is main cause for ISO-induced cytotoxicity in HepG2 cells. ISO significantly inhibited the levels of ERK1/2 kinase and increased the expression of JNK and p38 kinases. Furthermore, U0126 (an ERK1/2 inhibitor) significantly enhanced the ISO-induced the Bax/Bcl-2 ratio, the release of cytochrome c to the cytosol fraction, and the levels of cleaved caspase-3. While SP600125 (a JNK inhibitor) and SB203580 (a p38 inhibitor) markedly prevented the expression of these proteins induced by ISO. Furthermore, the ROS inhibitor (NAC) notably promoted the inhibited effect of ISO on the ERK1/2 kinase. NAC also suppressed the p-JNK and p-p38, but failed to reverse the effects of ISO. These results demonstrated for the first time that ISO induces apoptosis in HepG2 cells through inactivating ERK1/2 kinase and activating JNK and p38 kinases, and ROS stimulated by ISO is able to activate the MAPK singaling pathway as the upstream signaling molecules. Initiating event of the mitochondrial-mediated apoptosis induced by ISO is MAPK signals.

  8. In search of novel highly active mitochondria-targeted antioxidants: thymoquinone and its cationic derivatives. (United States)

    Severina, Inna I; Severin, Fedor F; Korshunova, Galina A; Sumbatyan, Natalya V; Ilyasova, Tatyana M; Simonyan, Ruben A; Rogov, Anton G; Trendeleva, Tatyana A; Zvyagilskaya, Renata A; Dugina, Vera B; Domnina, Lidia V; Fetisova, Elena K; Lyamzaev, Konstantin G; Vyssokikh, Mikhail Yu; Chernyak, Boris V; Skulachev, Maxim V; Skulachev, Vladimir P; Sadovnichii, Viktor A


    Since the times of the Bible, an extract of black cumin seeds was used as a medicine to treat many human pathologies. Thymoquinone (2-demethylplastoquinone derivative) was identified as an active antioxidant component of this extract. Recently, it was shown that conjugates of plastoquinone and penetrating cations are potent mitochondria-targeted antioxidants effective in treating a large number of age-related pathologies. This review summarizes new data on the antioxidant and some other properties of membrane-penetrating cationic compounds where 2-demethylplastoquinone substitutes for plastoquinone. It was found that such a substitution significantly increases a window between anti- and prooxidant concentrations of the conjugates. Like the original plastoquinone derivatives, the novel compounds are easily reduced by the respiratory chain, penetrate through model and natural membranes, specifically accumulate in mitochondria in an electrophoretic fashion, and strongly inhibit H2O2-induced apoptosis at pico- and nanomolar concentrations in cell cultures. At present, cationic demethylplastoquinone derivatives appear to be the most promising mitochondria-targeted drugs of the quinone series.

  9. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  10. Resonance raman studies of phenylcyclopropane radical cations

    NARCIS (Netherlands)

    Godbout, J.T.; Zuilhof, H.; Heim, G.; Gould, I.R.; Goodman, J.L.; Dinnocenzo, J.P.; Myers Kelley, A.


    Resonance Raman spectra of the radical cations of phenylcyclopropane and trans-1-phenyl-2-methylcyclopropane are reported. A near-UV pump pulse excites a photosensitizer which oxidizes the species of interest, and a visible probe pulse delayed by 35 ns obtains the spectrum of the radical ion. The tr

  11. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.;


    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M...... alkali metal chlorides as well as BaCl2, NaBr and (CH3CH2CH2)(4)NBr were used to investigate the effects of both the ionic charge, size and shape. In 1: 1 electrolytes using small ions only three peaks are present: a sharp cathodic peak at ca. - 0.6 V vs, SCE representing both the insertion of cations...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  12. Anionic/cationic complexes in hair care. (United States)

    O'Lenick, Tony


    The formulation of cosmetic products is always more complicated than studying the individual components in aqueous solution. This is because there are numerous interactions between the components, which make the formulation truly more than the sum of the parts. This article will look at interactions between anionic and cationic surfactants and offer insights into how to use these interactions advantageously in making formulations.

  13. Controlled Cationic Polymerization of N-Vinylcarbazol

    NARCIS (Netherlands)

    Nuyken, O.; Rieß, G.; Loontjens, J.A.


    Cationic polymerization of N-Vinylcarbazol (NVC) was initiated with 1-iodo-1-(2-methylpropyloxy)ethane in the presence of N(n-Bu)4ClO4 and without addition of this activator. Furthermore, 1-chloro-1-(2-methylpropyloxy) ethane, with and without activator has been applied as initiator for NVC. These i

  14. Protective effects of baicalin on amyloid beta 25-35- induced apoptosis in human neuroblastoma SH-SY5Y cells

    Institute of Scientific and Technical Information of China (English)

    Miao Geng; Hongyan Chen; Jianhua Wang; Yazhuo Hu; Jianwei Liu; Jing Liu; Jingkun Pan; Yuhong Gao


    Baicalin, a type of flavanoid, effectively prevents cellular apoptosis induced by various factors. However, little evidence is available regarding its role on amyloid β (Aβ) -induced neuronal apoptosis. The present study investigated the protective mechanisms of baicalin on Aβ-induced neuronal apoptosis. Flow cytometry and cation dye 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethyl- benzimidazoly lcarbocyanine iodide (JC-1) were employed to measure mitochondrial membrane potential, and nitric oxide secretion and apoptotic-related factors, such as caspase-3, were comprehensively analyzed. Results demonstrated a protective effect of baicalin on Aβ-treated SH-SY5Y cell viability; the rate of apoptosis decreased, nitric oxide generation and expression of caspase-3 were effectively inhibited, and mitochondrial membrane potential was effectively protected. Baicalin inhibited Aβ-induced neuronal apoptosis via multiple targets and multiple pathways, such as the inhibition of free radical damage, reduction of caspase-3 expression, and protection of normal mitochondrial functions.

  15. Cationic lipids and cationic ligands induce DNA helix denaturation: detection of single stranded regions by KMnO4 probing. (United States)

    Prasad, T K; Gopal, Vijaya; Rao, N Madhusudhana


    Cationic lipids and cationic polymers are widely used in gene delivery. Using 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as a cationic lipid, we have investigated the stability of the DNA in DOTAP:DNA complexes by probing with potassium permanganate (KMnO4). Interestingly, thymidines followed by a purine showed higher susceptibility to cationic ligand-mediated melting. Similar studies performed with other water-soluble cationic ligands such as polylysine, protamine sulfate and polyethyleneimine also demonstrated melting of the DNA but with variations. Small cations such as spermine and spermidine and a cationic detergent, cetyl trimethylammonium bromide, also rendered the DNA susceptible to modification by KMnO4. The data presented here provide direct proof for melting of DNA upon interaction with cationic lipids. Structural changes subsequent to binding of cationic lipids/ligands to DNA may lead to instability and formation of DNA bubbles in double-stranded DNA.

  16. A Triterpenoid from Thalictrum fortunei Induces Apoptosis in BEL-7402 Cells Through the P53-Induced Apoptosis Pathway

    Directory of Open Access Journals (Sweden)

    Lvyi Chen


    Full Text Available Thalictrum fortunei S. Moore, a perennial plant distributed in the southeastern part of China, has been used in Traditional Chinese Medicine for thousands of years for its antitumor, antibacterial and immunoregulatory effects. In order to investigate the active components and the mechanism of the anti-tumor effects of Thalictrum fortunei, the growth inhibitory effects of eight triterpenoids isolated from the aerial parts of the plant on tumor cell lines were examined by 3-(4,5-dimethylthiazoy1-3,5-diphenyltetrazolium bromide (MTT assay. The MTT-assay results showed that the inhibitory activity of 3-O-β-D-glucopyranosyl-(1→4-β-D-fucopyranosyl(22S,24Z-cycloart-24-en-3β,22,26-triol 26-O-β-D-glucopyranoside (1 was stronger than that of the other seven tested triterpenoids on human hepatoma Bel-7402 cell line (Bel-7402, human colon lovo cells (LoVo, human non-small cells lung cancer NCIH-460 cells (NCIH-460 and human gastric carcinoma SGC-7901 cells (SGC-7901 after 48 h treatment in vitro, with the IC50 values of 66.4, 84.8, 73.5, 89.6 μM, respectively. Moreover, the antitumor mechanism of compound 1 on Bel-7402 cell was explored through nucleus dyeing, fluorescence assay, flow cytometry and western blot. The flow cytometric analysis results revealed that compound 1 caused apoptosis and mitochondrial membrane potential (MMP loss in Bel-7402 cells. A fluorescence assay indicated that intracellular reactive oxygen species (ROS were markedly provoked by compound 1 treatment compared to control cells. Immunoblot results showed that compound 1 significantly increased the expression levels of cleaved caspase-3, P53 and Bax protein, and decreased the expression level of Bcl-2 protein. These findings indicate that compound 1 inhibits the growth activity of tumor cells, probably through the P53 protein-induced apoptosis pathway.

  17. Dendritic Cells Stimulated by Cationic Liposomes. (United States)

    Vitor, Micaela Tamara; Bergami-Santos, Patrícia Cruz; Cruz, Karen Steponavicius Piedade; Pinho, Mariana Pereira; Barbuto, José Alexandre Marzagão; De La Torre, Lucimara Gaziola


    Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients' DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration-rehydration method (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated-rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy.

  18. Activation of JNK by TPA promotes apoptosis via PKC pathway in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yan Chen; Qiao Wu; Si-Yang Song; Wen-Jin Su


    AIM: JNK cascade plays an important role in cell proliferation, differentiation and apoptosis. However, the exact function of JNK cascade for apoptosis induction remains largely unknown. In this study, the role of JNK activation stimulated by TPA in the process of apoptosis induction and its signaling transduction pathway in gastric cancer cells were investigated and determined.METHODS: Expressions of mRNA and protein were detected by Northern blot and Western blot. Transcription activity was measured by transient transfection and CAT assay. Apoptotic cells were displayed through staining the nucleus with DAPI and were observed under fluorescence microscope. The apoptotic index was determined by counting 1000 cells randomly.RESULTS: JNK protein was stimulated rapidly by TPA, and reached its highest peak within 3 hr, then decreased in a time-dependent manner, but the expression level of JNK protein induced by TPA was always keeping higher than that in untreated cells. Similar pattern was seen in c-jun mRNA level induced by TPA. TPA significantly activated the transcriptional activity of activator protein-1 with a TPA-closedependent manner. Furthermore, activation of JNK was mediated through PKC pathway. Treatment of cells with PKC specific inhibitor, Wortmannin, led to repression of JNK even in the presence of TPA. More importantly, all these effects were associated with induction of apoptosis in gastric cancer cells. TPA inducted apoptosis obviously in gastric cancer cells. The apoptotic cells became smaller and rounded, and their nuclei became condensation and fragmentation with brightly stained chromatin. However, suppression of JNK by PKC specific inhibitor, Wortmannin, resulted in the decrease of apoptosis induced by TPA in a time-dependent manner, apoptotic index dramatically decreased from 32.56 % to 8.71%.CONCLUSION: TPA stimulates JNK cascade, including upregulation of JNK protein expression level and c-jun mRNA expression level, and activation of activator

  19. Bithiophene radical cation: Resonance Raman spectroscopy and molecular orbital calculations

    DEFF Research Database (Denmark)

    Grage, M.M.-L.; Keszthelyi, T.; Offersgaard, J.F.


    The resonance Raman spectrum of the photogenerated radical cation of bithiophene is reported. The bithiophene radical cation was produced via a photoinduced electron transfer reaction between excited bithiophene and the electron acceptor fumaronitrile in a room temperature acetonitrile solution a...


    Institute of Scientific and Technical Information of China (English)

    Dongmei Yu; Chuanshan Zhao; Kefu Chen


    This study investigated the effects of several different cationic additives on the viscosity 、zeta potential and printing properties of the ink-jet coating. The cationic additives have greatly improved sheet's gloss and printabilities.

  1. Ion dynamics in cationic lipid bilayer systems in saline solutions

    DEFF Research Database (Denmark)

    Miettinen, Markus S; Gurtovenko, Andrey A; Vattulainen, Ilpo


    mixture of cationic dimyristoyltrimethylammoniumpropane (DMTAP) and zwitterionic (neutral) dimyristoylphosphatidylcholine (DMPC) lipids. Using atomistic molecular dynamics simulations, we address the effects of bilayer composition (cationic to zwitterionic lipid fraction) and of NaCl electrolyte...

  2. Cardiomyocytic apoptosis and heart failure

    Institute of Scientific and Technical Information of China (English)

    Quanzhou Feng


    Heart failure is a major disease seriously threatening human health.Once left ventricular dysfunction develops,cardiac function usually deteriorates and progresses to congestive heart failure in several months or years even if no factors which accelerate the deterioration repeatedly exist.Mechanism through which cardiac function continually deteriorates is still unclear.Cardiomyocytic apoptosis can occur in acute stage of ischemic heart diseases and the compensated stage of cardiac dysfunction.In this review,we summarize recent advances in understanding the role of cardiomyocytic apoptosis in heart failure.

  3. Production of sulfonated cation-exchangers from petroleum asphaltites

    Energy Technology Data Exchange (ETDEWEB)

    Pokonova, Yu.V.; Pol' kin, G.B.; Proskuryakov, V.A.; Vinogradov, M.V.


    Continuing our studies of the preparation of products of practical value from asphaltite, a new by-product of oil refining, we obtained sulfonated cation-exchangers from a mixture of asphaltite and acid tar. It is shown that these cation-exchangers have good kinetic properties and are superior in thermal and thermohydrolytic stability to the commercial cation-exchange resin KU-2.

  4. Cation Permeability in Soybean Aleurone Layer


    Noda, Hiroko; Fukuda, Mitsuru


    The permeation of water and ions into bean seeds is essential for processing and cooking of beans. The permeability of cations, K, Na, Ca, and Mg ions, into soybean seed tissue, especially aleurone layer, during water uptake was investigated to characterize the ion permeation into soybeans. Aleurone layers and seed coats contained relatively high concentration of endogenous K and Ca ions, and endogenous Ca ion, respectively. The amounts of Ca ion entered seed coats and aleurone layers were gr...

  5. Limited data speaker identification

    Indian Academy of Sciences (India)

    H S Jayanna; S R Mahadeva Prasanna


    In this paper, the task of identifying the speaker using limited training and testing data is addressed. Speaker identification system is viewed as four stages namely, analysis, feature extraction, modelling and testing. The speaker identification performance depends on the techniques employed in these stages. As demonstrated by different experiments, in case of limited training and testing data condition, owing to less data, existing techniques in each stage will not provide good performance. This work demonstrates the following: multiple frame size and rate (MFSR) analysis provides improvement in the analysis stage, combination of mel frequency cepstral coefficients (MFCC), its temporal derivatives $(\\Delta,\\Delta \\Delta)$, linear prediction residual (LPR) and linear prediction residual phase (LPRP) features provides improvement in the feature extraction stage and combination of learning vector quantization (LVQ) and gaussian mixture model – universal background model (GMM–UBM) provides improvement in the modelling stage. The performance is further improved by integrating the proposed techniques at the respective stages and combining the evidences from them at the testing stage. To achieve this, we propose strength voting (SV), weighted borda count (WBC) and supporting systems (SS) as combining methods at the abstract, rank and measurement levels, respectively. Finally, the proposed hierarchical combination (HC) method integrating these three methods provides significant improvement in the performance. Based on these explorations, this work proposes a scheme for speaker identification under limited training and testing data.

  6. Controlling chemistry with cations: photochemistry within zeolites. (United States)

    Ramamurthy, V; Shailaja, J; Kaanumalle, Lakshmi S; Sunoj, R B; Chandrasekhar, J


    The alkali ions present in the supercages of zeolites X and Y interact with included guest molecules through quadrupolar (cation-pi), and dipolar (cation-carbonyl) interactions. The presence of such interactions can be inferred through solid-state NMR spectra of the guest molecules. Alkali ions, as illustrated in this article, can be exploited to control the photochemical and photophysical behaviors of the guest molecules. For example, molecules that rarely phosphoresce can be induced to do so within heavy cation-exchanged zeolites. The nature (electronic configuration) of the lowest triplet state of carbonyl compounds can be altered with the help of light alkali metal ions. This state switch (n pi*-pi pi*) helps to bring out reactivity that normally remains dormant. Selectivity obtained during the singlet oxygen oxidation of olefins within zeolites illustrates the remarkable control that can be exerted on photoreactions with the help of a confined medium that also has active sites. The reaction cavities of zeolites, like enzymes, are not only well-defined and confined, but also have active sites that closely guide the reactant molecule from start to finish. The examples provided here illustrate that zeolites are far more useful than simple shape-selective catalysts.

  7. Downregulation of miRNA-30c and miR-203a is associated with hepatitis C virus core protein-induced epithelial–mesenchymal transition in normal hepatocytes and hepatocellular carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongjing [Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha 410008 (China); Wu, Jilin, E-mail: [Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha 410008 (China); Liu, Meizhou [Department of Medical Service, Shenzhen Second People' s Hospital, Shenzhen, Guangdong 518035 (China); Yin, Hui [Staff' s Hospital, Central South University, Changsha, Hunan 410078 (China); He, Jiantai [Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha 410008 (China); Zhang, Bo, E-mail: [Department of Ultrasonography, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China)


    Hepatitis C virus (HCV) Core protein has been demonstrated to induce epithelial–mesenchymal transition (EMT) and is associated with cancer progression of hepatocellular carcinoma (HCC). However, how the Core protein regulates EMT is still unclear. In this study, HCV Core protein was overexpressed by an adenovirus. The protein levels of EMT markers were measured by Western blot. The xenograft animal model was established by inoculation of HepG2 cells. Results showed that ectopic expression of HCV core protein induced EMT in L02 hepatocytes and HepG2 tumor cells by upregulating vimentin, Sanl1, and Snal2 expression and downregulating E-cadherin expression. Moreover, Core protein downregulated miR-30c and miR-203a levels in L02 and HepG2 cells, but artificial expression of miR-30c and miR-203a reversed Core protein-induced EMT. Further analysis showed that ectopic expression of HCV core protein stimulated cell proliferation, inhibited apoptosis, and increased cell migration, whereas artificial expression of miR-30c and miR-203a significantly reversed the role of Core protein in these cell functions in L02 and HepG2 cells. In the HepG2 xenograft tumor models, artificial expression of miR-30c and miR-203a inhibited EMT and tumor growth. Moreover, L02 cells overexpressing Core protein can form tumors in nude mice. In HCC patients, HCV infection significantly shortened patients' survival time, and loss of miR-30c and miR-203 expression correlated with poor survival. In conclusion, HCV core protein downregulates miR-30c and miR-203a expression, which results in activation of EMT in normal hepatocytes and HCC tumor cells. The Core protein-activated-EMT is involved in the carcinogenesis and progression of HCC. Loss of miR-30c and miR-203a expression is a marker for the poor prognosis of HCC. - Highlights: • HCV core protein downregulates miR-30c and miR-203a expression. • Downregulation of miR-30c and miR-203a activates EMT. • Activated-EMT is involved in the

  8. Cell volume-regulated cation channels. (United States)

    Wehner, Frank


    Considering the enormous turnover rates of ion channels when compared to carriers it is quite obvious that channel-mediated ion transport may serve as a rapid and efficient mechanism of cell volume regulation. Whenever studied in a quantitative fashion the hypertonic activation of non-selective cation channels is found to be the main mechanism of regulatory volume increase (RVI). Some channels are inhibited by amiloride (and may be related to the ENaC), others are blocked by Gd(3) and flufenamate (and possibly linked to the group of transient receptor potential (TRP) channels). Nevertheless, the actual architecture of hypertonicity-induced cation channels remains to be defined. In some preparations, hypertonic stress decreases K(+) channel activity so reducing the continuous K(+) leak out of the cell; this is equivalent to a net gain of cell osmolytes facilitating RVI. The hypotonic activation of K(+) selective channels appears to be one of the most common principles of regulatory volume decrease (RVD) and, in most instances, the actual channels involved could be identified on the molecular level. These are BKCa (or maxi K(+)) channels, IK(Ca) and SK(Ca) channels (of intermediate and small conductance, respectively), the group of voltage-gated (Kv) channels including their Beta (or Kv ancilliary) subunits, two-pore K(2P) channels, as well as inwardly rectifying K(+) (Kir) channels (also contributing to K(ATP) channels). In some cells, hypotonicity activates non-selective cation channels. This is surprising, at first sight, because of the inside negative membrane voltage and the sum of driving forces for Na(+) and K(+) diffusion across the cell membrane rather favouring net cation uptake. Some of these channels, however, exhibit a P(K)/P(Na) significantly higher than 1, whereas others are Ca(++) permeable linking hypotonic stress to the activation of Ca(++) dependent ion channels. In particular, the latter holds for the group of TRPs which are specialised in the

  9. [Antioxidant activity of cationic whey protein isolate]. (United States)

    titova, M E; Komolov, S A; Tikhomirova, N A


    The process of lipid peroxidation (LPO) in biological membranes of cells is carried out by free radical mechanism, a feature of which is the interaction of radicals with other molecules. In this work we investigated the antioxidant activity of cationic whey protein isolate, obtained by the cation-exchange chromatography on KM-cellulose from raw cow's milk, in vitro and in vivo. In biological liquids, which are milk, blood serum, fetal fluids, contains a complex of biologically active substances with a unique multifunctional properties, and which are carrying out a protective, antimicrobial, regenerating, antioxidant, immunomodulatory, regulatory and others functions. Contents of the isolate were determined electrophoretically and by its biological activity. Cationic whey protein isolate included lactoperoxidase, lactoferrin, pancreatic RNase, lysozyme and angeogenin. The given isolate significantly has an antioxidant effect in model experimental systems in vitro and therefore may be considered as a factor that can adjust the intensity of lipid oxidation. In model solutions products of lipid oxidation were obtained by oxidation of phosphatidylcholine by hydrogen peroxide in the presence of a source of iron. The composition of the reaction mixture: 0,4 mM H2O2; 50 mcM of hemin; 2 mg/ml L-alpha-phosphatidylcholine from soybean (Sigma, German). Lipid peroxidation products were formed during the incubation of the reaction mixture for two hours at 37 degrees C. In our studies rats in the adaptation period immediately after isolation from the nest obtained from food given orally native cationic whey protein isolate at the concentration three times higher than in fresh cow's milk. On the manifestation of the antioxidant activity of cationic whey protein isolate in vivo evidence decrease of lipid peroxidation products concentration in the blood of rats from the experimental group receipt whey protein isolate in dos 0,6 mg/g for more than 20% (pwhey protein isolate has an

  10. Alkali cation specific adsorption onto fcc(111) transition metal electrodes. (United States)

    Mills, J N; McCrum, I T; Janik, M J


    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  11. Interaction between alginates and manganese cations: identification of preferred cation binding sites. (United States)

    Emmerichs, N; Wingender, J; Flemming, H-C; Mayer, C


    Algal and bacterial alginates have been studied by means of 13C NMR spectroscopy in presence of paramagnetic manganese ions in order to reveal the nature of their interaction with bivalent cations. It is found that the mannuronate blocks bind manganese cations externally near their carboxylate groups, while guluronate blocks show the capability to integrate Mn2+ into pocket-like structures formed by adjacent guluronate residues. In alternating mannuronate-guluronate blocks, manganese ions preferentially locate in a concave structure formed by guluronate-mannuronate pairs. Partial acetylation of the alginate generally reduces its capability to interact with bivalent cations, however, the selectivity of the binding geometry is conserved. The results may serve as a hint for the better understanding of the alginate gelation in presence of calcium ions.


    Institute of Scientific and Technical Information of China (English)

    Chunfeng Liu; Shiyao Bao; Yongping Dai


    0bjective In order to clarify the mechanism of the neurotoxics of Aβ, we studied the effects on the rCBF, extra-cellular amino acid (EAA), apoptosis and Bcl-2 protein expression, and their relationship with learning and memory deficiency. Methods Aβ was injected into NBM in rats to establish the AD model, learning and memory abilities were observed by Y-maze. The rCBF was measured by hydrogen clearance method. The EAA was detected by microdialysis in vivo with HPLC. The apoptosis and Bc1-2 protein expression was examined by flow cytometry. The male SD rats were divided into three groups: the model group was injected Aβ (10 μ g) into NBM of the rat. The control group was injected NaC1 (0.9%) in the same way. The treatment group was made with intraperitoneal injections of Nimodipine for 2 weeks after A β injections. Results The administration of Aβ into rat′s NBM could lead to the loss of learning and memory abilities. It was found that in frontal cortex and hippocampus, the rCBF decrease, however, with no trend of progressive decline. On the other hand, the levels of EAA increased, especially glutamate. Furthermore, A β significantly induced neurons apoptosis of frontal cortex and hippocampi cell, and upregulated the expression of the bcl-2. The Nimodipine might entirely improve rCBF of AD rats nearly to normal level, lessen the release of EAA and augment restrain neurotransmission. It might reduce the apoptosis partly, but it couldn't improve the learning and memory disorders completely. Conclusion The results implied that the neurotoxic effect of Aβ exists multi-mechanism.

  13. The adenovirus E4orf4 protein induces growth arrest and mitotic catastrophe in H1299 human lung carcinoma cells. (United States)

    Li, S; Szymborski, A; Miron, M-J; Marcellus, R; Binda, O; Lavoie, J N; Branton, P E


    The human adenovirus E4orf4 protein, when expressed alone, induces p53-independent death in a wide range of cancer cells. Earlier studies by our groups suggested that although in some cases cell death can be associated with some hallmarks of apoptosis, it is not always affected by caspase inhibitors. Thus it is unlikely that E4orf4-induced cell death occurs uniquely through apoptosis. In the present studies using H1299 human lung carcinoma cells as a model system we found that death is induced in the absence of activation of any of the caspases tested, accumulation of reactive oxygen species, or release of cytochrome c from mitochondria. E4orf4 caused a substantial change in cell morphology, including vigorous membrane blebbing, multiple nuclei in many cells and increased cell volume. Most of these characteristics are not typical of apoptosis, but they are of necrosis. FACS analysis and western blotting for cell cycle markers showed that E4orf4-expressing cells became arrested in G(2)/M and also accumulated high levels of cyclin E. The presence of significant numbers of tetraploid and polyploid cells and some cells with micronuclei suggested that E4orf4 appears to induce death in these cells through a process resulting from mitotic catastrophe.

  14. Aggregate Formed by a Cationic Fluorescence Probe

    Institute of Scientific and Technical Information of China (English)

    TIAN, Juan; SANG, Da-Yong; JI, Guo-Zhen


    The aggregation behavior of a cationic fluorescence probe 10-(4,7,10,13,16-pentaoxa-1-azacyclooctadecyl-methyl)anthracen-9-ylmethyl dodecanoate (1) was observed and studied by a fluorescence methodology in acidic and neutral conditions. By using the Py scale, differences between simple aggregates and micelles have been discussed. The stability of simple aggregates was discussed in terms of hydrophobic interaction and electrostatic repulsion. The absence of excimer emission of the anthrancene moiety of probe 1 in neutral condition was attributed to the photoinduced electron transfer mechanism instead of photodimerization.

  15. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.


    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  16. Heart imaging with cationic complexes of technetium

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, E.; Bushong, W.; Glavan, K.A.; Elder, R.C.; Sodd, V.J.; Scholz, K.L.; Fortman, D.L.; Lukes, S.J.


    The cationic technetium-99 complex trans-(99TC(dmpe)2Cl2)+, where dmpe is bis(1,2-dimethylphosphino)ethane or (CH3)2P-CH2-P(CH3)2, has been prepared and characterized by single-crystal, x-ray structural analysis. The technetium-99m analog, trans-(99mTc(dmpe) 2Cl2)+, has also been prepared and shown to yield excellent gamma-ray images of the heart. The purposeful design, characterization, and synthesis of this technetium-99m radiopharmaceutical represents a striking application of fundamental inorganic chemistry to a problem in applied nuclear medicine.

  17. Induction of apoptosis in human cancer cells by targeting mitochondria with gold nanoparticles (United States)

    Mkandawire, M. M.; Lakatos, M.; Springer, A.; Clemens, A.; Appelhans, D.; Krause-Buchholz, U.; Pompe, W.; Rödel, G.; Mkandawire, M.


    A major challenge in designing cancer therapies is the induction of cancer cell apoptosis, although activation of intrinsic apoptotic pathways by targeting gold nanoparticles to mitochondria is promising. We report an in vitro procedure targeting mitochondria with conjugated gold nanoparticles and investigating effects on apoptosis induction in the human breast cancer cell line Jimt-1. Gold nanoparticles were conjugated to a variant of turbo green fluorescent protein (mitoTGFP) harbouring an amino-terminal mitochondrial localization signal. Au nanoparticle conjugates were further complexed with cationic maltotriose-modified poly(propylene imine) third generation dendrimers. Fluorescence and transmission electron microscopy revealed that Au nanoparticle conjugates were directed to mitochondria upon transfection, causing partial rupture of the outer mitochondrial membrane, triggering cell death. The ability to target Au nanoparticles into mitochondria of breast cancer cells and induce apoptosis reveals an alternative application of Au nanoparticles in photothermal therapy of cancer.A major challenge in designing cancer therapies is the induction of cancer cell apoptosis, although activation of intrinsic apoptotic pathways by targeting gold nanoparticles to mitochondria is promising. We report an in vitro procedure targeting mitochondria with conjugated gold nanoparticles and investigating effects on apoptosis induction in the human breast cancer cell line Jimt-1. Gold nanoparticles were conjugated to a variant of turbo green fluorescent protein (mitoTGFP) harbouring an amino-terminal mitochondrial localization signal. Au nanoparticle conjugates were further complexed with cationic maltotriose-modified poly(propylene imine) third generation dendrimers. Fluorescence and transmission electron microscopy revealed that Au nanoparticle conjugates were directed to mitochondria upon transfection, causing partial rupture of the outer mitochondrial membrane, triggering cell

  18. Apoptosis in irradiated murine tumors. (United States)

    Stephens, L C; Ang, K K; Schultheiss, T E; Milas, L; Meyn, R E


    Early radiation responses of transplantable murine ovarian (OCaI) and hepatocellular (HCaI) carcinomas were examined at 6, 24, 48, 96, and 144 h after single photon doses of 25, 35, or 45 Gy. Previous studies using tumor growth delay and tumor radiocurability assays had shown OCaI tumors to be relatively radiosensitive and HCaI tumors to be radioresistant. At 6 h, approximately 20% of nuclei in OCaI tumors showed aberrations characteristic of cell death by apoptosis. This contrasted to an incidence of 3% in HCaI tumors. Mitotic activity was eliminated in OCaI tumors but was only transiently suppressed in HCaI tumors. At 24-96 h, OCaI tumors continued to display apoptosis and progressive necrosis, whereas HCaI tumors responded by exhibiting marked pleomorphism. Factors other than mitotic activity may influence tumor radiosensitivity, and one of these may be susceptibility to induction of apoptosis (programmed cell death), because this was a prominent early radiation response by the radiosensitive OCaI tumors.

  19. Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers. (United States)

    Wang, Hui; Shi, Xuefeng; Yu, Danfeng; Zhang, Jian; Yang, Guang; Cui, Yingxian; Sun, Keji; Wang, Jinben; Yan, Haike


    The current study is aimed at investigating the effect of cationic charge density and hydrophobicity on the antibacterial and hemolytic activities. Two kinds of cationic surfmers, containing single or double hydrophobic tails (octyl chains or benzyl groups), and the corresponding homopolymers were synthesized. The antimicrobial activity of these candidate antibacterials was studied by microbial growth inhibition assays against Escherichia coli, and hemolysis activity was carried out using human red blood cells. It was interestingly found that the homopolymers were much more effective in antibacterial property than their corresponding monomers. Furthermore, the geminized homopolymers had significantly higher antibacterial activity than that of their counterparts but with single amphiphilic side chains in each repeated unit. Geminized homopolymers, with high positive charge density and moderate hydrophobicity (such as benzyl groups), combine both advantages of efficient antibacterial property and prominently high selectivity. To further explain the antibacterial performance of the novel polymer series, the molecular interaction mechanism is proposed according to experimental data which shows that these specimens are likely to kill microbes by disrupting bacterial membranes, leading them unlikely to induce resistance.

  20. Photodissociation of Cerium Oxide Nanocluster Cations. (United States)

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A


    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)).

  1. Electronic absorptions of the benzylium cation (United States)

    Dryza, Viktoras; Chalyavi, Nahid; Sanelli, Julian A.; Bieske, Evan J.


    The electronic transitions of the benzylium cation (Bz+) are investigated over the 250-550 nm range by monitoring the photodissociation of mass-selected C7H7+-Arn (n = 1, 2) complexes in a tandem mass spectrometer. The Bz+-Ar spectrum displays two distinct band systems, the S1←S0 band system extending from 370 to 530 nm with an origin at 19 067 ± 15 cm-1, and a much stronger S3←S0 band system extending from 270 to 320 nm with an origin at 32 035 ± 15 cm-1. Whereas the S1←S0 absorption exhibits well resolved vibrational progressions, the S3←S0 absorption is broad and relatively structureless. Vibronic structure of the S1←S0 system, which is interpreted with the aid of time-dependent density functional theory and Franck-Condon simulations, reflects the activity of four totally symmetric ring deformation modes (ν5, ν6, ν9, ν13). We find no evidence for the ultraviolet absorption of the tropylium cation, which according to the neon matrix spectrum should occur over the 260 - 275 nm range [A. Nagy, J. Fulara, I. Garkusha, and J. Maier, Angew. Chem., Int. Ed. 50, 3022 (2011)], 10.1002/anie.201008036.

  2. Transition-Metal Hydride Radical Cations. (United States)

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R


    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  3. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro


    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  4. Apoptosis and congestive heart failure. (United States)

    Feuerstein, G; Ruffolo, R R; Yue, T L


    Congestive heart failure (CHF) is the final clinical manifestation of a variety of cardiac (myopathies), coronary (atherosclerosis), and systemic diseases (diabetes, hypertension). Regardless of the origin of the cardiac insult, left ventricular dysfunction resulting in decreased cardiac output elicits a series of adaptational processes that attempt to compensate for some of the decrement in myocardial function. One of the key manifestations of these compensatory processes is cardiac hypertrophy, which is characterized by a marked increase in myocyte size and an increase in contractile proteins. The benefits resulting from these compensatory adaptational mechanisms, however, are only transient, and within a period of months to years, the changes induced in the myocardium fail to sustain cardiac output at a level that is sufficient to meet the demands of the body; subsequently, physical performance is impaired. Typically, progressive dilation and thinning of the left ventricle occur along with progression of CHF. The mechanisms responsible for the thinning of ventricular tissue and loss of left ventricular mass are poorly understood; traditionally, such loss has been attributed to tissue necrosis based on the morphologic observation of dead cardiac myocytes. Very recently, there have been data suggesting that apoptosis, a form of programmed cell death (PCD), occurs in the heart and may be responsible, at least in part, for the progression of CHF and the chronic loss of left ventricular function and mass. Evidence for a role of apoptosis/PCD in the progression of heart failure has been obtained from a variety of observations, including in vitro studies of cardiac myocytes in culture, experimental animal models of cardiac injury, and cardiac tissue obtained from patients with CHF. Thus, apoptosis/PCD may be a critical mechanism involved in the progressive loss of cardiac myocytes, which ultimately results in end-stage heart failure. In this brief review, the evidence

  5. Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers (United States)

    Ploetz, Evelyn; Lerner, Eitan; Husada, Florence; Roelfs, Martin; Chung, Sangyoon; Hohlbein, Johannes; Weiss, Shimon; Cordes, Thorben


    Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble.

  6. Identification of avocado (Persea americana) root proteins induced by infection with the oomycete Phytophthora cinnamomi using a proteomic approach. (United States)

    Acosta-Muñiz, Carlos H; Escobar-Tovar, Lina; Valdes-Rodríguez, Silvia; Fernández-Pavia, Silvia; Arias-Saucedo, Luis J; de la Cruz Espindola Barquera, Maria; Gómez Lim, Miguel Á


    Avocado root rot, caused by Phytophthora cinnamomi, is the most important disease that limits avocado production. A proteomic approach was employed to identify proteins that are upregulated by infection with P. cinnamomi. Different proteins were shown to be differentially expressed after challenge with the pathogen by two-dimensional (2-D) gel electrophoresis. A densitometric evaluation of protein expression indicated differential regulation during the time-course analyzed. Some proteins induced in response to the infection were identified by standard peptide mass fingerprinting using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry and sequencing by MALDI LIFT-TOF/TOF tandem mass spectrometry. Of the 400 protein spots detected on 2-D gels, 21 seemed to change in abundance by 3 hours after infection. Sixteen proteins were upregulated, 5 of these were only detected in infected roots and 11 showed an increased abundance. Among the differentially expressed proteins identified are homologs to isoflavone reductase, glutathione S-transferase, several abscisic acid stress-ripening proteins, cinnamyl alcohol dehydrogenase, cinnamoyl-CoA reductase, cysteine synthase and quinone reductase. A 17.3-kDa small heat-shock protein and a glycine-rich RNA-binding protein were identified as downregulated. Our group is the first to report on gene induction in response to oomycete infection in roots from avocado, using proteomic techniques.

  7. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement-Förster-Type Resonance Energy Transfer (PIFE-FRET). (United States)

    Lerner, Eitan; Ploetz, Evelyn; Hohlbein, Johannes; Cordes, Thorben; Weiss, Shimon


    Single-molecule, protein-induced fluorescence enhancement (PIFE) serves as a molecular ruler at molecular distances inaccessible to other spectroscopic rulers such as Förster-type resonance energy transfer (FRET) or photoinduced electron transfer. In order to provide two simultaneous measurements of two distances on different molecular length scales for the analysis of macromolecular complexes, we and others recently combined measurements of PIFE and FRET (PIFE-FRET) on the single molecule level. PIFE relies on steric hindrance of the fluorophore Cy3, which is covalently attached to a biomolecule of interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate. In this work, we provide a theoretical framework that accounts for relevant photophysical and kinetic parameters of PIFE-FRET, show how this framework allows the extraction of the fold-decrease in isomerization mobility from experimental data, and show how these results provide information on changes in the accessible volume of Cy3. The utility of this model is then demonstrated for experimental results on PIFE-FRET measurement of different protein-DNA interactions. The proposed model and extracted parameters could serve as a benchmark to allow quantitative comparison of PIFE effects in different biological systems.

  8. Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers (United States)

    Ploetz, Evelyn; Lerner, Eitan; Husada, Florence; Roelfs, Martin; Chung, SangYoon; Hohlbein, Johannes; Weiss, Shimon; Cordes, Thorben


    Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble. PMID:27641327

  9. Nature as a source of inspiration for cationic lipid synthesis. (United States)

    Labas, Romain; Beilvert, Fanny; Barteau, Benoit; David, Stéphanie; Chèvre, Raphaël; Pitard, Bruno


    Synthetic gene delivery systems represent an attractive alternative to viral vectors for DNA transfection. Cationic lipids are one of the most widely used non-viral vectors for the delivery of DNA into cultured cells and are easily synthesized, leading to a large variety of well-characterized molecules. This review discusses strategies for the design of efficient cationic lipids that overcome the critical barriers of in vitro transfection. A particular focus is placed on natural hydrophilic headgroups and lipophilic tails that have been used to synthesize biocompatible and non-toxic cationic lipids. We also present chemical features that have been investigated to enhance the transfection efficiency of cationic lipids by promoting the escape of lipoplexes from the endosomal compartment and DNA release from DNA-liposome complexes. Transfection efficiency studies using these strategies are likely to improve the understanding of the mechanism of cationic lipid-mediated gene delivery and to help the rational design of novel cationic lipids.

  10. Molecular signal transduction in vascular cell apoptosis

    Institute of Scientific and Technical Information of China (English)


    Apoptosis is a form of genetically programmed cell death, which plays a key role in regulation of cellularity in a variety of tissue and cell types including the cardiovascular tissues. Under both physiological and pathophysiological conditions, various biophysiological and biochemical factors, including mechanical forces, reactive oxygen and nitrogen species, cytokines, growth factors, oxidized lipoproteins, etc., may influence apoptosis of vascular cells. The Fas/Fas ligand/caspase death-signaling pathway, Bcl-2 protein family/mitochondria, the tumor suppressive gene p53, and the proto-oncogene c-myc may be activated in atherosclerotic lesions, and mediates vascular apoptosis during the development of atherosclerosis. Abnormal expression and dysfunction of these apoptosis-regulating genes may attenuate or accelerate vascular cell apoptosis and affect the integrity and stability of atherosclerotic plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of atherosclerosis and its major complication, the acute vascular syndromes.

  11. High glucose induced oxidative stress and apoptosis in cardiac microvascular endothelial cells are regulated by FoxO3a.

    Directory of Open Access Journals (Sweden)

    Chaoming Peng

    Full Text Available AIM: Cardiac microvascular endothelial cells (CMECs dysfunction contributes to cardiovascular complications in diabetes, whereas, the underlying mechanism is not fully clarified. FoxO transcription factors are involved in apoptosis and reactive oxygen species (ROS production. Therefore, the present study was designed to elucidate the potential role of FoxO3a on the CMECs injury induced by high glucose. MATERIALS AND METHODS: CMECs were isolated from hearts of adult rats and cultured in normal or high glucose medium for 6 h, 12 h and 24 h respectively. To down-regulate FoxO3a expression, CMECs were transfected with FoxO3a siRNA. ROS accumulation and apoptosis in CMECs were assessed by dihydroethidine (DHE staining and TUNEL assay respectively. Moreover, the expressions of Akt, FoxO3a, Bim and BclxL in CMECs were assessed by Western blotting assay. RESULTS: ROS accumulation in CMECs was significantly increased after high glucose incubation for 6 to 24 h. Meanwhile, high glucose also increased apoptosis in CMECs, correlated with decreased the phosphorylation expressions of Akt and FoxO3a. Moreover, high glucose incubation increased the expression of Bim, whereas increased anti-apoptotic protein BclxL. Furthermore, siRNA target FoxO3a silencing enhanced the ROS accumulation, whereas suppressed apoptosis in CMECs. FoxO3a silencing also abolished the disturbance of Bcl-2 proteins induced by high glucose in CMECs. CONCLUSION: Our data provide evidence that high glucose induced FoxO3a activation which suppressed ROS accumulation, and in parallel, resulted in apoptosis of CMECs.

  12. HIV-1 protein induced modulation of primary human osteoblast differentiation and function via a Wnt/β-catenin-dependent mechanism.

    LENUS (Irish Health Repository)

    Butler, Joseph S


    HIV infection is associated with metabolic bone disease resulting in bone demineralization and reduced bone mass. The molecular mechanisms driving this disease process have yet to be elucidated. Wnt\\/β-catenin signaling plays a key role in bone development and remodeling. We attempted to determine the effects of the HIV-1 protein, gp120, on Wnt\\/β-catenin signaling at an intracellular and transcriptional level in primary human osteoblasts (HOBs). This work, inclusive of experimental controls, was part of a greater project assessing the effects of a variety of different agents on Wnt\\/β-catenin signaling (BMC Musculoskelet Disord 2010;11:210).We examined the phenotypic effects of silencing and overexpressing the Wnt antagonist, Dickkopf-1 (Dkk1) in HOBs treated with gp120. HOBs exposed to gp120 displayed a significant reduction in alkaline phosphatase activity (ALP) activity and cell proliferation and increased cellular apoptosis over a 48 h time course. Immunocytochemistry demonstrated a significant reduction in intracytosolic and intranuclear β-catenin in response to HIV-1 protein exposure. These changes were associated with a reduction of TCF\\/LEF-mediated transcription, the transcriptional outcome of canonical Wnt β-catenin signaling. Silencing Dkk1 expression in HOBs exposed to gp120 resulted in increased ALP activity and cell proliferation, and decreased cellular apoptosis relative to scrambled control. Dkk1 overexpression exacerbated the inhibitory effect of gp120 on HOB function, with decreases in ALP activity and cell proliferation and increased cellular apoptosis relative to vector control. Wnt\\/β-catenin signaling plays a key regulatory role in HIV-associated bone loss, with Dkk1, aputative central mediator in this degenerative process. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 218-226, 2013.

  13. Grow-ING, Age-ING and Die-ING: ING proteins link cancer, senescence and apoptosis. (United States)

    Russell, Michael; Berardi, Philip; Gong, Wei; Riabowol, Karl


    The INhibitor of Growth (ING) family of plant homeodomain (PHD) proteins induce apoptosis and regulate gene expression through stress-inducible binding of phospholipids with subsequent nuclear and nucleolar localization. Relocalization occurs concomitantly with interaction with a subset of nuclear proteins, including PCNA, p53 and several regulators of acetylation such as the p300/CBP and PCAF histone acetyltransferases (HATs), as well as the histone deacetylases HDAC1 and hSir2. These interactions alter the localized state of chromatin compaction, subsequently affecting the expression of subsets of genes, including those associated with the stress response (Hsp70), apoptosis (Bax, MDM2) and cell cycle regulation (p21WAF1, cyclin B) in a cell- and tissue-specific manner. The expression levels and subcellular localization of ING proteins are altered in a significant number of human cancer types, while the expression of ING isoforms changes during cellular aging, suggesting that ING proteins may play a role in linking cellular transformation and replicative senescence. The variety of functions attributed to ING proteins suggest that this tumor suppressor serves to link the disparate processes of cell cycle regulation, cell suicide and cellular aging through epigenetic regulation of gene expression. This review examines recent findings in the ING field with a focus on the functions of protein-protein interactions involving ING family members and the mechanisms by which these interactions facilitate the various roles that ING proteins play in tumorigenesis, apoptosis and senescence.

  14. Cation-π interaction of the univalent silver cation with meso-octamethylcalix[4]pyrrole: Experimental and theoretical study (United States)

    Polášek, Miroslav; Kvíčala, Jaroslav; Makrlík, Emanuel; Křížová, Věra; Vaňura, Petr


    By using electrospray ionization mass spectrometry (ESI-MS), it was proven experimentally that the univalent silver cation Ag+ forms with meso-octamethylcalix[4]pyrrole (abbrev. 1) the cationic complex species 1·Ag+. Further, applying quantum chemical DFT calculations, four different conformations of the resulting complex 1·Ag+ were derived. It means that under the present experimental conditions, this ligand 1 can be considered as a macrocyclic receptor for the silver cation.

  15. Apoptosis in cancer: from pathogenesis to treatment

    Directory of Open Access Journals (Sweden)

    Wong Rebecca SY


    Full Text Available Abstract Apoptosis is an ordered and orchestrated cellular process that occurs in physiological and pathological conditions. It is also one of the most studied topics among cell biologists. An understanding of the underlying mechanism of apoptosis is important as it plays a pivotal role in the pathogenesis of many diseases. In some, the problem is due to too much apoptosis, such as in the case of degenerative diseases while in others, too little apoptosis is the culprit. Cancer is one of the scenarios where too little apoptosis occurs, resulting in malignant cells that will not die. The mechanism of apoptosis is complex and involves many pathways. Defects can occur at any point along these pathways, leading to malignant transformation of the affected cells, tumour metastasis and resistance to anticancer drugs. Despite being the cause of problem, apoptosis plays an important role in the treatment of cancer as it is a popular target of many treatment strategies. The abundance of literature suggests that targeting apoptosis in cancer is feasible. However, many troubling questions arise with the use of new drugs or treatment strategies that are designed to enhance apoptosis and critical tests must be passed before they can be used safely in human subjects.

  16. The cellular decision between apoptosis and autophagy

    Institute of Scientific and Technical Information of China (English)

    Yong-Jun Fan; Wei-Xing Zong


    Apoptosis and autophagy are important molecular processes that maintain organismal and cellular homeostasis,respectively.While apoptosis fulfills its role through dismantling damaged or unwanted cells,autophagy maintains cellular homeostasis through recycling selective intracellular organelles and molecules.Yet in some conditions,autophagy can lead to cell death.Apoptosis and autophagy can be stimulated by the same stresses.Emerging evidence indicates an interplay between the core proteins in both pathways,which underlies the molecular mechanism of the crosstalk between apoptosis and autophagy.This review summarizes recent literature on molecules that regulate both the apoptotic and autophagic processes.

  17. Mycobacterium tuberculosis effectors interfering host apoptosis signaling. (United States)

    Liu, Minqiang; Li, Wu; Xiang, Xiaohong; Xie, Jianping


    Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.

  18. Capturing dynamic cation hopping in cubic pyrochlores (United States)

    Brooks Hinojosa, Beverly; Asthagiri, Aravind; Nino, Juan C.


    In direct contrast to recent reports, density functional theory predicts that the most stable structure of Bi2Ti2O7 pyrochlore is a cubic Fd3¯m space group by accounting for atomic displacements. The displaced Bi occupies the 96g(x,x,z) Wyckoff position with six equivalent sites, which create multiple local minima. Using nudged elastic band method, the transition states of Bi cation hopping between equivalent minima were investigated and an energy barrier between 0.11 and 0.21 eV was determined. Energy barriers associated with the motion of Bi between equivalent sites within the 96g Wyckoff position suggest the presence of dielectric relaxation in Bi2Ti2O7.

  19. Retention of Cationic Starch onto Cellulose Fibres (United States)

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur


    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  20. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    DEFF Research Database (Denmark)

    Ellegaard, Anne-Marie; Dehlendorff, Christian; Vind, Anna C.;


    Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We...... then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients...... with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any...

  1. Heart imaging with cationic complexes of technetium

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, E. (Univ. of Cincinnati, Cincinnati, OH); Bushong, W.; Glavan, K.A.; Elder, R.C.; Sodd, V.J.; Scholz, K.L.; Fortman, D.L.; Lukes, S.J.


    The cationic technetium-99 complex trans-(/sup 99/Tc(dmpe)/sub 2/Cl/sub 2/)/sup +/, where dmpe is bis(1,2-dimethylphosphino)ethane or (CH/sub 3/)/sub 2/P-CH/sub 2/CH/sub 2/-P(CH/sub 3/)/sub 2/, has been prepared and characterized by single-crystal, x-ray structural analysis. The technetium-99m analog, trans-(/sup 99m/Tc (dmpe)/sub 2/Cl/sub 2/)/sup +/, has also been prepared and shown to yield excellent gamma-ray images of the heart. The purposeful design, characterization, and synthesis of this technetium-99m radiopharmaceutical represents a striking application of fundamental inorganic chemistry to a problem in applied nuclear medicine.

  2. Electron spectra of radical cations of heteroanalogs

    Energy Technology Data Exchange (ETDEWEB)

    Petrushenko, K.B.; Turchaninov, V.K.; Vokin, A.I.; Ermikov, A.F.; Frolov, Yu.L.


    Radical cation spectra of indazole and benzothiophene in the visible region were obtained by laser photolysis during the reaction of photoexcited quinones with these compounds in acetonitrile. The charge transfer bands of the complexes of the test compounds with p-chloranil and 7,7,8,8-tetracyanoquinodimethane in dioxane were recorded on a Specord M-40. Photoelectron spectra were obtained on a ES-3201 electron spectrometer. The He(I) resonance band (21.21 eV) was used for excitation. Measurements were carried out in the 60-120/sup 0/C range. The energy scale was calibrated form the first ionization potentials of Ar (15.76 eV) and chlorobenzene (9.06 eV). The error in the determination of the ionization potentials for the first four photoelectron bands was 0.05 eV.

  3. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo


    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  4. Antiviral effect of cationic compounds on bacteriophages

    Directory of Open Access Journals (Sweden)

    Mai Huong eChatain-Ly


    Full Text Available The antiviral activity of several cationic compounds - cetytrimethylammonium (CTAB, chitosan, nisin and lysozyme - was investigated on the bacteriophage c2 (DNA head and non-contractile tail infecting Lactococcus strains and the bacteriophage MS2 (F-specific RNA infecting E.coli. Firstly, these activities were evaluated in a phosphate buffer pH 7- 10 mM. The CTAB had a virucidal effect on the Lactococcus bacteriophages, but not on the MS2. After 1 min of contact with 0.125 mM CTAB, the c2 population was reduced from 6 log(pfu/mL to 1,5 log(pfu/mL and completely deactivated at 1 mM. On the contrary, chitosan inhibited the MS2 more than it did the bacteriophages c2. No antiviral effect was observed for the nisin or the lysozyme on bacteriophages after 1 min of treatment. A 1 and 2.5 log reduction was respectively observed for nisin and lysozyme when the treatment time increased (5 or 10 min. These results showed that the antiviral effect depended both on the virus and structure of the antimicrobial compounds. The antiviral activity of these compounds was also evaluated in different physico-chemical conditions and in complex matrices. The antiviral activity of CTAB was impaired in acid pH and with an increase of the ionic strength. These results might be explained by the electrostatic interactions between cationic compounds and negatively charged particles such as bacteriophages or other compounds in a matrix. Milk proved to be protective suggesting the components of food could interfere with antimicrobial compounds.

  5. Role of extracellular cations in cell motility, polarity, and chemotaxis

    Directory of Open Access Journals (Sweden)

    Soll D


    Full Text Available David R Soll1, Deborah Wessels1, Daniel F Lusche1, Spencer Kuhl1, Amanda Scherer1, Shawna Grimm1,21Monoclonal Antibody Research Institute, Developmental Studies, Hybridoma Bank, Department of Biology, University of Iowa, Iowa City; 2Mercy Medical Center, Surgical Residency Program, Des Moines, Iowa, USAAbstract: The concentration of cations in the aqueous environment of free living organisms and cells within the human body influence motility, shape, and chemotaxis. The role of extracellular cations is usually perceived to be the source for intracellular cations in the process of homeostasis. The role of surface molecules that interact with extracellular cations is believed to be that of channels, transporters, and exchangers. However, the role of Ca2+ as a signal and chemoattractant and the discovery of the Ca2+ receptor have demonstrated that extracellular cations can function as signals at the cell surface, and the plasma membrane molecules they interact with can function as bona fide receptors that activate coupled signal transduction pathways, associated molecules in the plasma membrane, or the cytoskeleton. With this perspective in mind, we have reviewed the cationic composition of aqueous environments of free living cells and cells that move in multicellular organisms, most notably humans, the range of molecules interacting with cations at the cell surface, the concept of a cell surface cation receptor, and the roles extracellular cations and plasma membrane proteins that interact with them play in the regulation of motility, shape, and chemotaxis. Hopefully, the perspective of this review will increase awareness of the roles extracellular cations play and the possibility that many of the plasma membrane proteins that interact with them could also play roles as receptors.Keywords: extracellular cations, chemotaxis, transporters, calcium, receptors

  6. Cytokine Expression in CD3+ Cells in an Infant with Food Protein-Induced Enterocolitis Syndrome (FPIES: Case Report

    Directory of Open Access Journals (Sweden)

    F. Mori


    Full Text Available Food protein-induced enterocolitis syndrome (FPIES is a non-IgE-mediated food allergy characterized by severe vomiting, diarrhea, and often failure to thrive in infants. Symptoms typically resolve after the triggering food-derived protein is removed from the diet and recur within few hours after the re-exposure to the causal protein. The diagnosis is based on clinical symptoms and a positive food challenge. In this study, we report a case of FPIES to rice in an 8-month-old boy. We performed a double-blind placebo-controlled food challenge (DBPCFC to rice and we measured the intracellular T cell expression of interleukin-4 (IL-4; IL-10, and interferon (IFN- pre-and post-challenge during an acute FPIES reaction and when tolerance to rice had been achieved. For the first time we describe an increase in T cell IL-4 and decrease in IFN- expression after a positive challenge with rice (i.e. rice triggered a FPIES attack and an increase in T cell IL-10 expression after rice challenge 6 months later after a negative challenge (i.e., the child had acquired tolerance to rice in an 8 month old with documented FPIES to rice. A Th2 activation associated with high IL-4 levels may contribute to the pathophysiology of the disease. On the other hand, T cell-derived IL-10 may play a role in the acquisition of immunotolerance by regulating the Th1 and Th2 responses.

  7. Hepatitis C virus core protein induces fibrogenic actions of hepatic stellate cells via toll-like receptor 2. (United States)

    Coenen, Martin; Nischalke, Hans Dieter; Krämer, Benjamin; Langhans, Bettina; Glässner, Andreas; Schulte, Daniela; Körner, Christian; Sauerbruch, Tilman; Nattermann, Jacob; Spengler, Ulrich


    Hepatic stellate cells (HSCs) represent the main fibrogenic cell type accumulating extracellular matrix in the liver. Recent data suggest that hepatitis C virus (HCV) core protein may directly activate HSCs. Therefore, we examined the influence of recombinant HCV core protein on human HSCs. Primary human HSCs and the human HSC line LX-2 were stimulated with recombinant HCV proteins core and envelope 2 protein. Expression of procollagen type I α-1, α-smooth muscle actin, cysteine- and glycine-rich protein 2, glial fibrillary acidic protein, tissue growth factor β1, matrix metalloproteinases 2 (MMP2) and 13, tissue inhibitor of metalloproteinases 1 and 2 was investigated by real-time PCR. Intracellular signaling pathways of ERK1/2, p38 and, jun-amino-terminal kinase (JNK) were analyzed by western blot analysis. Recombinant HCV core protein induced upregulation of procollagen type I α-1, α-smooth muscle actin, MMP 2 and 13, tissue inhibitor of metalloproteinases 1 and 2, tissue growth factor β1, cysteine- and glycine-rich protein 2, and glial fibrillary acidic protein mRNA expression, whereas HCV envelope 2 protein did not exert any significant effect. Blocking of toll-like receptor 2 (TLR2) with a neutralizing antibody prevented mRNA upregulation by HCV core protein confirming that the TLR2 pathway was involved. Furthermore, western blot analysis revealed HCV-induced phosphorylation of the TLR2-dependent signaling molecules ERK1/2, p38 and JNK mitogen-activated kinases. Our in vitro results demonstrate a direct effect of HCV core protein on activation of HSCs toward a profibrogenic state, which is mediated via the TLR2 pathway. Manipulating the TLR2 pathway may thus provide a new approach for antifibrotic therapies in HCV infection.

  8. Clinical utility of protein induced by vitamin K absence in patients with chronic hepatitis B virus infection. (United States)

    Truong, Bui Xuan; Yano, Yoshihiko; VAN, Vu Tuong; Seo, Yasushi; Nam, Nguyen Hoai; Trach, Nguyen Khanh; Utsumi, Takako; Azuma, Takeshi; Hayashi, Yoshitake


    Hepatitis B virus (HBV) is a leading cause of hepatocellular carcinoma (HCC). α-fetoprotein (AFP) is a common tumor marker for the diagnosis of HCC, although not for protein induced by the absence of vitamin K or antagonist-II (PIVKA-II). The present study aimed to evaluate the role of PIVKA-II in the diagnosis of HCC in HBV-infected Vietnamese patients. A total of 166 consecutive HBV-infected Vietnamese patients were enrolled, including 41 HCC, 43 liver cirrhosis (LC), 26 chronic hepatitis (CH) and 56 asymptomatic carriers (ASC). AFP was examined using ELISA, while PIVKA-II was analyzed using Eitest PIVKA-II. The cut-off level of AFP and PIVKA-II was 20 ng/ml and 40 mAU/ml, respectively. Although the markers, AFP (344±356 ng/ml) and PIVKA-II (16,200±25,386 mAU/ml), were the highest in the HCC groups, only PIVKA-II in HCC was significantly higher compared to the other groups (PPIVKA-II were risk factors of LC and HCC. Results of the receiver operating characteristics (ROC) analysis showed that PIVKA-II was more sensitive to HCC compared to AFP. Moreover, PIVKA-II was strongly correlated with the portal venous thrombosis in HCC, as opposed to AFP. Results of the multivariate analysis demonstrated that PIVKA-II was the strongest independent risk factor of LC and HCC. In conclusion, PIVKA-II is likely to be a better marker for the diagnosis of HCC in chronic HBV-infected Vietnamese patients.

  9. The Effect of Hydration on the Cation-π Interaction Between Benzene and Various Cations

    Indian Academy of Sciences (India)



    The effect of hydration on cation-π interaction in Mq+ BmWn (B = benzene; W = water; Mq+ =Na⁺, K⁺, Mg²⁺, Ca²⁺, Al³⁺, 0 ≤ n,m ≤ 4, 1≤ m + n ≤ 4) complexes has been investigated using ab initio quantum chemical methods. Interaction energy values computed at the MP2 level of theory using the 6-31G(d,p) basis set reveal a qualitative trend in the relative affinity of different cations for benzene and water in these complexes. The π–cloud thickness values for benzene have also been estimated for these systems.

  10. Efficient delivery of Notch1 siRNA to SKOV3 cells by cationic cholesterol derivative-based liposome (United States)

    Zhao, Yun-Chun; Zhang, Li; Feng, Shi-Sen; Hong, Lu; Zheng, Hai-Li; Chen, Li-Li; Zheng, Xiao-Ling; Ye, Yi-Qing; Zhao, Meng-Dan; Wang, Wen-Xi; Zheng, Cai-Hong


    A novel cationic cholesterol derivative-based small interfering RNA (siRNA) interference strategy was suggested to inhibit Notch1 activation in SKOV3 cells for the gene therapy of ovarian cancer. The cationic cholesterol derivative, N-(cholesterylhemisuccinoyl-amino-3-propyl)-N, N-dimethylamine (DMAPA-chems) liposome, was incubated with siRNA at different nitrogen-to-phosphate ratios to form stabilized, near-spherical siRNA/DMAPA-chems nanoparticles with sizes of 100–200 nm and zeta potentials of 40–50 mV. The siRNA/DMAPA-chems nanoparticles protected siRNA from nuclease degradation in 25% fetal bovine serum. The nanoparticles exhibited high cell uptake and Notch1 gene knockdown efficiency in SKOV3 cells at an nitrogen-to-phosphate ratio of 100 and an siRNA concentration of 50 nM. They also inhibited the growth and promoted the apoptosis of SKOV3 cells. These results may provide the potential for using cationic cholesterol derivatives as efficient nonviral siRNA carriers for the suppression of Notch1 activation in ovarian cancer cells.

  11. An alpha-helical cationic antimicrobial peptide selectively modulates macrophage responses to lipopolysaccharide and directly alters macrophage gene expression. (United States)

    Scott, M G; Rosenberger, C M; Gold, M R; Finlay, B B; Hancock, R E


    Certain cationic antimicrobial peptides block the binding of LPS to LPS-binding protein and reduce the ability of LPS to induce the production of inflammatory mediators by macrophages. To gain a more complete understanding of how LPS activates macrophages and how cationic peptides influence this process, we have used gene array technology to profile gene expression patterns in macrophages treated with LPS in the presence or the absence of the insect-derived cationic antimicrobial peptide CEMA (cecropin-melittin hybrid). We found that CEMA selectively blocked LPS-induced gene expression in the RAW 264.7 macrophage cell line. The ability of LPS to induce the expression of >40 genes was strongly inhibited by CEMA, while LPS-induced expression of another 16 genes was relatively unaffected. In addition, CEMA itself induced the expression of a distinct set of 35 genes, including genes involved in cell adhesion and apoptosis. Thus, CEMA, a synthetic alpha-helical peptide, selectively modulates the transcriptional response of macrophages to LPS and can alter gene expression in macrophages.

  12. In vivo toxicity of cationic micelles and liposomes

    DEFF Research Database (Denmark)

    Knudsen, Kristina Bram; Northeved, Helle; Ek, Pramod Kumar


    This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the last...

  13. How mobile are sorbed cations in clays and clay rocks? (United States)

    Gimmi, T; Kosakowski, G


    Diffusion of cations and other contaminants through clays is of central interest, because clays and clay rocks are widely considered as barrier materials for waste disposal sites. An intriguing experimental observation has been made in this context: Often, the diffusive flux of cations at trace concentrations is much larger and the retardation smaller than expected based on their sorption coefficients. So-called surface diffusion of sorbed cations has been invoked to explain the observations but remains a controversial issue. Moreover, the corresponding surface diffusion coefficients are largely unknown. Here we show that, by an appropriate scaling, published diffusion data covering a broad range of cations, clays, and chemical conditions can all be modeled satisfactorily by a surface diffusion model. The average mobility of sorbed cations seems to be primarily an intrinsic property of each cation that follows inversely its sorption affinity. With these surface mobilities, cation diffusion coefficients can now be estimated from those of water tracers. In pure clays at low salinities, surface diffusion can reduce the cation retardation by a factor of more than 1000.

  14. A novel human protease similar to the interleukin-1 beta converting enzyme induces apoptosis in transfected cells. (United States)

    Faucheu, C; Diu, A; Chan, A W; Blanchet, A M; Miossec, C; Hervé, F; Collard-Dutilleul, V; Gu, Y; Aldape, R A; Lippke, J A


    We have identified a novel cDNA encoding a protein (named TX) with > 50% overall sequence identity with the interleukin-1 beta converting enzyme (ICE) and approximately 30% sequence identity with the ICE homologs NEDD-2/ICH-1L and CED-3. A computer homology model of TX was constructed based on the X-ray coordinates of the ICE crystal recently published. This model suggests that TX is a cysteine protease, with the P1 aspartic acid substrate specificity retained. Transfection experiments demonstrate that TX is a protease which is able to cleave itself and the p30 ICE precursor, but not to generate mature IL-1 beta from pro-IL-1 beta. In addition, this protein induces apoptosis in transfected COS cells. TX therefore delineates a new member of the growing Ice/ced-3 gene family coding for proteases with cytokine processing activity or involved in programmed cell death.

  15. Neuronal apoptosis and inflammatory reaction in rat models of focal cerebral ischemia following 40-minute suspended moxibustion

    Institute of Scientific and Technical Information of China (English)

    Rixin Chen; Zhimai Lv; Mingren Chen; Xin An; Dingyi Xie; Jing Yi


    The treatment duration of heat-sensitive moxibustion (approximately 40 minutes on average) is longer than that of traditional suspended moxibustion.The present study investigated expression changes of three inflammatory and apoptosis-associated proteins (inducible nitric oxide synthase,cyclooxygenase-2 and caspase-3) in transient middle cerebral artery occlusion model rats following suspended moxibustion for 40 minutes,to explore the mechanisms underlying neuroprotective action of suspended moxibustion.The results indicated that suspended moxibustion at acupoint Dazhui (DU 14) for 40 minutes reduced the cortical expression of caspase-3,cyclooxygenase-2 and inducible nitric oxide synthase proteins of transient middle cerebral artery occlusion model rats,as well as decreasing infarct volume and ameliorating the neurological deficit score.Outcomes with 40 minutes of moxibustion were superior to the outcomes after suspended moxibustion for 15 minutes.

  16. Interactions between cationic liposomes and drugs or biomolecules

    Directory of Open Access Journals (Sweden)



    Full Text Available Multiple uses for synthetic cationic liposomes composed of dioctadecyldimethylammonium bromide (DODAB bilayer vesicles are presented. Drugs or biomolecules can be solubilized or incorporated in the cationic bilayers. The cationic liposomes themselves can act as antimicrobial agents causing death of bacteria and fungi at concentrations that barely affect mammalian cells in culture. Silica particles or polystyrene microspheres can be functionalized by coverage with DODAB bilayers or phospholipid monolayers. Negatively charged antigenic proteins can be carried by the cationic liposomes which generate a remarkable immunoadjuvant action. Nucleotides or DNA can be physically adsorbed to the cationic liposomes to be transferred to mammalian cells for gene therapy. An overview of the interactions between DODAB vesicles and some biomolecules or drugs clearly points out their versatility for useful applications in a near future.

  17. Interactions between cationic liposomes and drugs or biomolecules. (United States)

    Carmona-Ribeiro, A M


    Multiple uses for synthetic cationic liposomes composed of dioctadecyldimethylammonium bromide (DODAB) bilayer vesicles are presented. Drugs or biomolecules can be solubilized or incorporated in the cationic bilayers. The cationic liposomes themselves can act as antimicrobial agents causing death of bacteria and fungi at concentrations that barely affect mammalian cells in culture. Silica particles or polystyrene microspheres can be functionalized by coverage with DODAB bilayers or phospholipid monolayers. Negatively charged antigenic proteins can be carried by the cationic liposomes which generate a remarkable immunoadjuvant action. Nucleotides or DNA can be physically adsorbed to the cationic liposomes to be transferred to mammalian cells for gene therapy. An overview of the interactions between DODAB vesicles and some biomolecules or drugs clearly points out their versatility for useful applications in a near future.

  18. Do Cation-π Interactions Exist in Bacteriorhodopsin

    Institute of Scientific and Technical Information of China (English)

    HU Kun-Sheng; WANG Guang-Yu; HE Jin-An


    Metal ions are essential to the structure and physiological functions of bacteriorhodopsin. Experimental evidence suggests the existence of specific cation binding to the negatively charged groups of Asp85 and Asp212 via an electrostatic interaction. However, only using electrostatic force is not enough to explain the role of the metal cations because the carboxylate of Asp85 is well known to be protonated in the M intermediate. Considering the presence of some aromatic amino acid residues in the vicinity of the retinal pocket, the existence of cation-π interactions between the metal cation and aromatic amino acid residues is suggested. Obviously, introduction of this kind of interaction is conducive to understanding the effects of the metal cations and aromatic amino acid residues inside the protein on the structural stability and proton pumping of bacteriorhodopsin.

  19. Efficient inhibition of C-26 colon carcinoma by VSVMP gene delivered by biodegradable cationic nanogel derived from polyethyleneimine. (United States)

    Gou, MaLing; Men, Ke; Zhang, Juan; Li, YuHua; Song, Jia; Luo, Shan; Shi, HuaShan; Wen, YanJun; Guo, Gang; Huang, MeiJuan; Zhao, Xia; Qian, ZhiYong; Wei, YuQuan


    Biodegradable cationic nanoparticles have promising application as a gene delivery system. In this article, heparin-polyethyleneimine (HPEI) nanogels were prepared, and these nanogels were developed as a nonviral gene vector. The transfection efficiency of HPEI nanogels was comparable with that of PEI25K, while the cytotoxicity was lower than that of PEI2K and much lower than that of PEI25K in vitro. These HPEI nanogels also had better blood compatibility than PEI25K. After intravenous administration, HPEI nanogels degraded, and the degradation products were excreted through urine. The plasmid expressing vesicular stomatitis virus matrix protein (pVSVMP) could be efficiently transfected into C-26 colon carcinoma cells by HPEI nanogels in vitro, inhibiting the cell proliferation through apoptosis induction. Intraperitoneal injection of pVSVMP/HPEI complexes efficiently inhibited the abdominal metastases of C-26 colon carcinoma through apoptosis induction (mean tumor weight in mice treated with pVSVMP/HPEI complex = 0.93 g and in control mice = 3.28 g, difference = 2.35 g, 95% confidence interval [CI] = 1.75-2.95 g, P < 0.001) and prolonged the survival of treated mice. Moreover, intravenous application of pVSVMP/HPEI complexes also inhibited the growth of pulmonary metastases of C-26 colon carcinoma through apoptosis induction. The HPEI nanogels delivering pVSVMP have promising application in treating colon carcinoma.

  20. Targeted induction of apoptosis for cancer therapy

    NARCIS (Netherlands)

    Bremer, Edwin


    Introduction to the thesis Programmed cell death, known as apoptosis, is an essential cellular homeostasis mechanism that ensures correct development and function of multi-cellular organisms. The pivotal importance of correct execution of apoptosis is apparent from the many human diseases with aberr

  1. Apoptosis in mammalian oocytes: a review. (United States)

    Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ashutosh N; Ali, Irfan; Singh, Arvind K; Shrivastav, Tulsidas G; Chaube, Shail K


    Apoptosis causes elimination of more than 99% of germ cells from cohort of ovary through follicular atresia. Less than 1% of germ cells, which are culminated in oocytes further undergo apoptosis during last phases of oogenesis and depletes ovarian reserve in most of the mammalian species including human. There are several players that induce apoptosis directly or indirectly in oocytes at various stages of meiotic cell cycle. Premature removal of encircling granulosa cells from immature oocytes, reduced levels of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, increased levels of calcium (Ca(2+)) and oxidants, sustained reduced level of maturation promoting factor, depletion of survival factors, nutrients and cell cycle proteins, reduced meiotic competency, increased levels of proapoptotic as well as apoptotic factors lead to oocyte apoptosis. The BH3-only proteins also act as key regulators of apoptosis in oocyte within the ovary. Both intrinsic (mitochondria-mediated) as well as extrinsic (cell surface death receptor-mediated) pathways are involved in oocyte apoptosis. BID, a BH3-only protein act as a bridge between both apoptotic pathways and its cleavage activates cell death machinery of both the pathways inside the follicular microenvironment. Oocyte apoptosis leads to the depletion of ovarian reserve that directly affects reproductive outcome of various mammals including human. In this review article, we highlight some of the important players and describe the pathways involved during oocyte apoptosis in mammals.

  2. Crosstalk between apoptosis and inflammation in atherosclerosis

    NARCIS (Netherlands)

    Westra, Marijke Marianne


    In this thesis the role of several apoptosis regulating proteins in the development of atherosclerosis and atherosclerotic plaque stability is investigated. Apoptosis of different cell types in atherosclerotic plaques, such as macrophages and smooth muscle cells may inhibit or promote plaque develop

  3. HN protein of Newcastle disease virus sensitizes HeLa cells to TNF-α-induced apoptosis by downregulating NF-κB expression. (United States)

    Rajmani, R S; Gupta, Shishir Kumar; Singh, Prafull Kumar; Gandham, Ravi Kumar; Sahoo, A P; Chaturvedi, Uttara; Tiwari, Ashok K


    Hemagglutinin neuraminidase (HN) is a membrane protein of Newcastle disease virus (NDV) with the ability to induce apoptosis in many transformed cell lines. TNF-α is a multi-factorial protein that regulates cell survival, differentiation and apoptosis. In a previous study, we reported that HN protein induces apoptosis by downregulating NF-κB expression. Further, we speculated that downregulation of NF-κB expression might sensitize HeLa cells to TNF-α-mediated apoptosis. Therefore, the present study was undertaken to investigate if HN protein could sensitize HeLa cells to TNF-α and to examine the apoptotic potential of the HN protein and TNF-α in combination. The results revealed that the pro-apoptotic effects were more pronounced with the combination of HN and TNF-α than with HN or TNF-α alone, which indicates that the HN protein indeed sensitized the HeLa cells to TNF-α-induced cell death. The results of the study provide a mechanistic insight into the apoptotic action of HN protein along with TNF-α, which could be valuable in treating tumor types that are naturally resistant to TNF-α.

  4. Hepatitis C virus infection and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Richard Fischer; Thomas Baumert; Hubert E Blum


    Apoptosis is central for the control and elimination of viral infections. In chronic hepatitis C virus (HCV) infection,enhanced hepatocyte apoptosis and upregulation of the death inducing ligands CD95/Fas, TRAIL and TNFα occur.Nevertheless, HCV infection persists in the majority of patients. The impact of apoptosis in chronic HCV infection is not well understood. It may be harmful by triggering liver fibrosis, or essential in interferon (IFN)induced HCV elimination. For virtually all HCV proteins,pro- and anti-apoptotic effects have been described,especially for the core and NS5A protein. To date, it is not known which HCV protein affects apoptosis in vivo and whether the infectious virions act pro- or antiapoptotic. With the availability of an infectious tissue culture system, we now can address pathophysiologically relevant issues. This review focuses on the effect of HCV infection and different HCV proteins on apoptosis and of the corresponding signaling cascades.

  5. Study of apoptosis in human liver cancers

    Institute of Scientific and Technical Information of China (English)

    Chang-Min Shan; Juan Li


    AIM: To investigate the action of apoptosis in occurrence ofliver cacinornas in vivo and the biological effect of Solanumlyratum Thumb on BEL-7404 cell line inducing apoptosis invitro.METHODS: The apoptosis in the liver carcinoma wasdetected with terminal deoxynucl neotidyl transferasemediated dUTP nick end labelling (TUNEL); the cancer cellscultured in DMED medium were treated with extract ofSolanum lyratum Thumb and observed under microscope,and their DNA was assayed by gel electrophoresis.RESULTS: In vivo apoptotic cells in the cancer adjacenttissues inceased; in vitro treatment of liver cancers withextract of Solanum lyratum Thumb could induce the cells tomanifest a typical apoptotic morphology. Their DNA wasfractured and a characteristic ladder pattem could be foundusing electrophoresis.CONCLUSION: In vivo the apoptosis of carcinomas waslower; maybe the cells divided quickly and then the cancersoccurred. In the cancer adjacent tissues, the apoptosispricked up, and in vitro Solarium lyratum Thumb couldinduce the apoptosis of BEL-7404 cells.


    Institute of Scientific and Technical Information of China (English)


    Objective To confirm the role played by apoptosis in spinal cord injury. Methods 36 rats models of spinal cord injury were made by Allen method. Histological examinations using HE staining and in situ end-labeling were used to observe apoptosis in spinal cord tissues from 1h to 21d after injury. Results HE staining sections showed hemorrhage and necrosis, neuronal degeneration and gliai cell proliferation. In situ end-labeling sections showed the appearance of apoptosis in both gray and white matter as well as in both central and surrounding region. The number of apoptotic cells increased from 12h after injury, increased to the peak at 4d and declined to normal at 21d. Conclu sion The results suggest that apoptosis, especially glial apoptosis, plays a role in the pathogenesis of spinal cord in jury.

  7. Anaerobic toxicity of cationic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gitipour, Alireza; Thiel, Stephen W. [Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Scheckel, Kirk G. [USEPA, Office of Research and Development, Cincinnati, OH (United States); Tolaymat, Thabet, E-mail: [USEPA, Office of Research and Development, Cincinnati, OH (United States)


    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag{sup +} under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L{sup −1}, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L{sup −1} as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag{sup +}. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L{sup −1} as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L{sup −1}), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  8. IRMPD Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation

    NARCIS (Netherlands)

    Yang, B.; Wu, R.R.; Polfer, N.C.; Berden, G.; Oomens, J.; Rodgers, M.T.


    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both simi

  9. Autophagy and apoptosis: where do they meet? (United States)

    Mukhopadhyay, Subhadip; Panda, Prashanta Kumar; Sinha, Niharika; Das, Durgesh Nandini; Bhutia, Sujit Kumar


    Autophagy and apoptosis are two important cellular processes with complex and intersecting protein networks; as such, they have been the subjects of intense investigation. Recent advances have elucidated the key players and their molecular circuitry. For instance, the discovery of Beclin-1's interacting partners has resulted in the identification of Bcl-2 as a central regulator of autophagy and apoptosis, which functions by interacting with both Beclin-1 and Bax/Bak respectively. When localized to the endoplasmic reticulum and mitochondria, Bcl-2 inhibits autophagy. Cellular stress causes the displacement of Bcl-2 from Beclin-1 and Bax, thereby triggering autophagy and apoptosis, respectively. The induction of autophagy or apoptosis results in disruption of complexes by BH3-only proteins and through post-translational modification. The mechanisms linking autophagy and apoptosis are not fully defined; however, recent discoveries have revealed that several apoptotic proteins (e.g., PUMA, Noxa, Nix, Bax, XIAP, and Bim) modulate autophagy. Moreover, autophagic proteins that control nucleation and elongation regulate intrinsic apoptosis through calpain- and caspase-mediated cleavage of autophagy-related proteins, which switches the cellular program from autophagy to apoptosis. Similarly, several autophagic proteins are implicated in extrinsic apoptosis. This highlights a dual cellular role for autophagy. On one hand, autophagy degrades damaged mitochondria and caspases, and on the other hand, it provides a membrane-based intracellular platform for caspase processing in the regulation of apoptosis. In this review, we highlight the crucial factors governing the crosstalk between autophagy and apoptosis and describe the mechanisms controlling cell survival and cell death.

  10. Cation Defects and Conductivity in Transparent Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Exarhos, Gregory J.; Windisch, Charles F.; Ferris, Kim F.; Owings, Robert R.


    High quality doped zinc oxide and mixed transition metal spinel oxide films have been deposited by means of sputter deposition from metal and metal oxide targets, and by spin casting from aqueous or alcoholic precursor solutions. Deposition conditions and post-deposition processing are found to alter cation oxidation states and their distributions in both oxide materials resulting in marked changes to both optical transmission and electrical response. For ZnO, partial reduction of the neat or doped material by hydrogen treatment of the heated film or by electrochemical processing renders the oxide n-type conducting. Continued reduction was found to diminish conductivity. In contrast, oxidation of the infrared transparent p-type spinel conductors typified by NiCo2O4 was found to increase conductivity. The disparate behavior of these two materials is caused in part by the sign of the charge carrier and by the existence of two different charge transport mechanisms that are identified as free carrier conduction and polaron hopping. While much work has been reported concerning structure/property relationships in the free carrier conducting oxides, there is a significantly smaller body of information on transparent polaron conductors. In this paper, we identify key parameters that promote conductivity in mixed metal spinel oxides and compare their behavior with that of the free carrier TCO’s.


    Directory of Open Access Journals (Sweden)

    Elina Orblin


    Full Text Available Papermaking pulps are a mixture of fibres, fibre fragments, and small cells (parenchyma or ray cells, usually called pulp fines. The interactions between pulp fines and a cationic copolymer of acrylamide and acryloxyethyltrimethyl ammonium chloride were investigated based on solid-liquid isotherms prepared under different turbulence, and subsequent advanced surface characterization using X-ray photoelectron spectroscopy (XPS and time-of-flight secondary ion mass spectrometry (ToF-SIMS. The surface charge and surface area of pulp fine substrates were measured by methylene blue sorption-XPS analysis and nitrogen adsorption combined with mercury porosimetry, respectively. The driving force behind polyelectrolyte adsorption was the amount of the surface anionic charge, whereas surface area appeared to be of less importance. Based on a comparison of solid-liquid and XPS sorption isotherms, different polyelectrolyte conformations were suggested, depending on the types of fines: A flatter conformation and partial cell-wall penetration of polyelectrolytes on kraft fines from freshly prepared pulp, and a more free conformation with extended loops and tails on lignocellulosic fines from recycled pulp. Additionally, ToF-SIMS imaging proved that recycled pulp fines contained residual de-inking chemicals (primarily palmitic acid salts that possibly hinder the electrostatic interactions with polyelectrolytes.

  12. Cationic Noncovalent Interactions: Energetics and Periodic Trends. (United States)

    Rodgers, M T; Armentrout, P B


    In this review, noncovalent interactions of ions with neutral molecules are discussed. After defining the scope of the article, which excludes anionic and most protonated systems, methods associated with measuring thermodynamic information for such systems are briefly recounted. An extensive set of tables detailing available thermodynamic information for the noncovalent interactions of metal cations with a host of ligands is provided. Ligands include small molecules (H2, NH3, CO, CS, H2O, CH3CN, and others), organic ligands (O- and N-donors, crown ethers and related molecules, MALDI matrix molecules), π-ligands (alkenes, alkynes, benzene, and substituted benzenes), miscellaneous inorganic ligands, and biological systems (amino acids, peptides, sugars, nucleobases, nucleosides, and nucleotides). Hydration of metalated biological systems is also included along with selected proton-based systems: 18-crown-6 polyether with protonated peptides and base-pairing energies of nucleobases. In all cases, the literature thermochemistry is evaluated and, in many cases, reanchored or adjusted to 0 K bond dissociation energies. Trends in these values are discussed and related to a variety of simple molecular concepts.

  13. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Anne-Marie Ellegaard


    Full Text Available Non-small cell lung cancer (NSCLC is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any non-localized cancer, and ebastine use showed a similar tendency. The association between CAD antihistamine use and reduced mortality was stronger among patients with records of concurrent chemotherapy than among those without such records. In line with this, sub-micromolar concentrations of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy.

  14. Induction of Apoptosis by L-NMMA, via FKHRL1/ROCK Pathway in Human Gastric Cancer Cells

    Institute of Scientific and Technical Information of China (English)



    To investigate the apoptosis-inducing effect of endogenous nitric oxide (NO) suppression in gastric cancer cells and its mechanisms. Methods Apoptosis of gastric cancer cells was detected by flow cytometry. Expression of phosphorylated FKHRL1 (thr-32, ser-253) and FKHRL1 in gastric cancer cells was analyzed using Western blotting.Immunofluorescence assay was performed to localize the intracellular phosphorylated FKHRL1 (thr-32, ser-253) and FKHRL1.Transfection of FKHRL1-HA wild type and mutant FKHRL1-HA T32A constructs was performed by lipofectamine plus reagent. NO generation was determined by Griess reaction. Results Gastric cancer cells were significantly apoptotic after treatment with NG-monomethyl-L-arginine (L-NMMA, a nitric oxide synthase inhibitor), compared with the control (P<0.01).The apoptosis of gastric cancer cells induced by L-NMMA was dose-dependent and time-independent. However, the Z-DEVD-fmk, a caspase-3, 6, 7, 8, 10 inhibitor, did not prevent the apoptosis. The immunofluorescence assays showed that FKHRL1 protein was strongly expressed in the nucleu and p-FKHRL1 thr-32 protein was strongly expressed in the cytoplasm of SGC-7901 cells when endogenous nitric oxide generation was blocked by L-NMMA, but no change in FKHRL1 ser-253phosphorylation. Nevertheless, ROCK protein was strongly expressed in p-FKHRL1 thr-32-positive SGC-7901 cells. The wortmannin, an inhibitor of phosphoinositol-3-OH kinase (PI3K), did not block the phosphorylated FKHRL1 thr-32 protein induced by L-NMMA. However, Y-27632, a specific inhibitor of the protein kinase ROCK, significantly blocked apoptosis induced by phosphorylated FKHRL1 thr-32 (P<0.01), which was mediated by L-NMMA. A significant decrease in NO generation (P<0.01) and a significant increase in apoptosis (P<0.01) were observed when FKHRL1-HA wild-type cells were transfected, which caused increased FKHRL1 thr-32 phosphorylation. Conclusions L-NMMA triggers gastric carcinoma cell apoptosis, possibly by

  15. Cation exchange properties of zeolites in hyper alkaline aqueous media. (United States)

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric


    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  16. Lipopolysaccharide Neutralization by Cationic-Amphiphilic Polymers through Pseudoaggregate Formation. (United States)

    Uppu, Divakara S S M; Haldar, Jayanta


    Synthetic polymers incorporating the cationic charge and hydrophobicity to mimic the function of antimicrobial peptides (AMPs) have been developed. These cationic-amphiphilic polymers bind to bacterial membranes that generally contain negatively charged phospholipids and cause membrane disintegration resulting in cell death; however, cationic-amphiphilic antibacterial polymers with endotoxin neutralization properties, to the best of our knowledge, have not been reported. Bacterial endotoxins such as lipopolysaccharide (LPS) cause sepsis that is responsible for a great amount of mortality worldwide. These cationic-amphiphilic polymers can also bind to negatively charged and hydrophobic LPS and cause detoxification. Hence, we envisaged that cationic-amphiphilic polymers can have both antibacterial as well as LPS binding properties. Here we report synthetic amphiphilic polymers with both antibacterial as well as endotoxin neutralizing properties. Levels of proinflammatory cytokines in human monocytes caused by LPS stimulation were inhibited by >80% when coincubated with these polymers. These reductions were found to be dependent on concentration and, more importantly, on the side-chain chemical structure due to variations in the hydrophobicity profiles of these polymers. These cationic-amphiphilic polymers bind and cause LPS neutralization and detoxification. Investigations of polymer interaction with LPS using fluorescence spectroscopy and dynamic light scattering (DLS) showed that these polymers bind but neither dissociate nor promote LPS aggregation. We show that polymer binding to LPS leads to sort of a pseudoaggregate formation resulting in LPS neutralization/detoxification. These findings provide an unusual mechanism of LPS neutralization using novel synthetic cationic-amphiphilic polymers.

  17. Neutron diffraction investigations of kesterites: cation order and disorder

    Energy Technology Data Exchange (ETDEWEB)

    Schorr, Susan [Free University Berlin, Institute of Geological Sciences (Germany); Tovar, Michael [Helmholtz Zentrum Berlin fuer Materialien und Energie (Germany); Levcenco, Sergej; Napetrov, Alexander; Arushanov, Ernest [Academy of Sciences of Moldova Republic, Institute of Applied Physics, Chisinau (Moldova)


    The quaternary chalcogenides Cu{sub 2}ZnSnS{sub 4} and Cu{sub 2}ZnSnSe{sub 4} have newly attracted attention as possible absorber materials in thin film solar cells. They crystallize in the kesterite type (space group I anti 4) or stannite type structure (space group I anti 42m), which are described as an ordered distribution of the cations on different structural sites. Cation disorder may cause site defects and hence influences the electronic properties of the material. Thus the degree of cation order/disorder plays a crucial role and was therefor in the focus of the presented investigations. A differentiation between the isoelectronic cations Cu{sup +} and Zn{sup 2+} is not possible using X-ray diffraction due to their similar scattering power. But their neutron scattering lengths are different, thus neutron diffraction opens the possibility to determine the cation distribution in these compounds. A simultaneous Rietveld analysis of neutron and X-ray powder diffraction data revealed that in dependence on the thermal history of the samples cation disorder appears. The correlation trend between cation order/disorder and the sample growth method (solid state synthesis, Bridgman method) are discussed.

  18. Competitive Effects of 2+ and 3+ Cations on DNA Compaction

    CERN Document Server

    Tongu, C; Yoshikawa, Y; Zinchenko, A A; Chen, N; Yoshikawa, K


    By using single-DNA observation with fluorescence microscopy, we observed the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA with 166 kbp). It was found that divalent cations, such as Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. These experimental observations are inconsistent with the well-established Debye-Huckel scheme regarding the shielding effect of counter ions, which is given as the additivity of contributions of cations with different valences. We interpreted the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counter ions before and after the folding transition of DNA. For the compaction with SPD(3+), we considered the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly-charged polyelectrolyte, double-st...

  19. Atmospheric CO2 enrichment facilitates cation release from soil. (United States)

    Cheng, L; Zhu, J; Chen, G; Zheng, X; Oh, N-H; Rufty, T W; Richter, D deB; Hu, S


    Atmospheric CO(2) enrichment generally stimulates plant photosynthesis and nutrient uptake, modifying the local and global cycling of bioactive elements. Although nutrient cations affect the long-term productivity and carbon balance of terrestrial ecosystems, little is known about the effect of CO(2) enrichment on cation availability in soil. In this study, we present evidence for a novel mechanism of CO(2)-enhancement of cation release from soil in rice agricultural systems. Elevated CO(2) increased organic C allocation belowground and net H(+) excretion from roots, and stimulated root and microbial respiration, reducing soil redox potential and increasing Fe(2+) and Mn(2+) in soil solutions. Increased H(+), Fe(2+), and Mn(2+) promoted Ca(2+) and Mg(2+) release from soil cation exchange sites. These results indicate that over the short term, elevated CO(2) may stimulate cation release from soil and enhance plant growth. Over the long-term, however, CO(2)-induced cation release may facilitate cation losses and soil acidification, negatively feeding back to the productivity of terrestrial ecosystems.

  20. Inhibitor of apoptosis (IAP)-like protein lacks a baculovirus IAP repeat (BIR) domain and attenuates cell death in plant and animal systems. (United States)

    Kim, Woe Yeon; Lee, Sun Yong; Jung, Young Jun; Chae, Ho Byoung; Nawkar, Ganesh M; Shin, Mi Rim; Kim, Sun Young; Park, Jin Ho; Kang, Chang Ho; Chi, Yong Hun; Ahn, Il Pyung; Yun, Dae Jin; Lee, Kyun Oh; Kim, Young-Myeong; Kim, Min Gab; Lee, Sang Yeol


    A novel Arabidopsis thaliana inhibitor of apoptosis was identified by sequence homology to other known inhibitor of apoptosis (IAP) proteins. Arabidopsis IAP-like protein (AtILP) contained a C-terminal RING finger domain but lacked a baculovirus IAP repeat (BIR) domain, which is essential for anti-apoptotic activity in other IAP family members. The expression of AtILP in HeLa cells conferred resistance against tumor necrosis factor (TNF)-α/ActD-induced apoptosis through the inactivation of caspase activity. In contrast to the C-terminal RING domain of AtILP, which did not inhibit the activity of caspase-3, the N-terminal region, despite displaying no homology to known BIR domains, potently inhibited the activity of caspase-3 in vitro and blocked TNF-α/ActD-induced apoptosis. The anti-apoptotic activity of the AtILP N-terminal domain observed in plants was reproduced in an animal system. Transgenic Arabidopsis lines overexpressing AtILP exhibited anti-apoptotic activity when challenged with the fungal toxin fumonisin B1, an agent that induces apoptosis-like cell death in plants. In AtIPL transgenic plants, suppression of cell death was accompanied by inhibition of caspase activation and DNA fragmentation. Overexpression of AtILP also attenuated effector protein-induced cell death and increased the growth of an avirulent bacterial pathogen. The current results demonstrated the existence of a novel plant IAP-like protein that prevents caspase activation in Arabidopsis and showed that a plant anti-apoptosis gene functions similarly in plant and animal systems.

  1. Effect of N-tosyl-L-phenylalanylchloromethyl Ketone on Tumor Necrosis Factor-alpha -induced NF-κB Activation and Apoptosis in U937 Cell Line

    Institute of Scientific and Technical Information of China (English)

    陈卫华; 陈燕; 崔国惠


    To investigate the effect of N-tosyl-L-phenylalanylchloromethyl ketone (TPCK) on tumor necrosis factor-alpha-induced NF-κB activation and apoptosis in U937 cell line, changes and subcellular localization of NF-κB/p65 and IκB-α were observed by fluorescencemicroscopy and expression and degradation of IκB-α by flow cytometry. The apoptosis of U937 cells was measured by flow cytometry and electrophoresis of DNA. Immunolfluorescence assay showed that NF-κB/p65,IκB-α only localized in cytoplasm. After TNF-α stimulation, p65 was localized only in nuclei, and IκB-α was only localized in cytoplasm and decreased. The changes of TNF-α stimulation were specifically inhibited by TPCK. Flow cytometry also revealed the downregulation of IκB-α protein during TNF-α-induced apoptosis and the down-regulation was specifically inhibited by TPCK. Flow cytometry also showed the apoptosis of U937 cells after TNF-α induction. DNA ladder can be detected in cells treated by TNF-α. It is concluded that degradation of IκB-α protein and NF-κB/p65 translocation occur during TNF-α-induced apoptosis of U937 cells, suggesting the activation of NF-κB.TPCK-sensitive protease plays an important role in the degradation of IκB-α protein induced by TNF-α in U937 cells. TPCK sensitive protease also plays an inportant role in the apoptosis of U937cells induced by TNF-α.

  2. Cations bind only weakly to amides in aqueous solutions. (United States)

    Okur, Halil I; Kherb, Jaibir; Cremer, Paul S


    We investigated salt interactions with butyramide as a simple mimic of cation interactions with protein backbones. The experiments were performed in aqueous metal chloride solutions using two spectroscopic techniques. In the first, which provided information about contact pair formation, the response of the amide I band to the nature and concentration of salt was monitored in bulk aqueous solutions via attenuated total reflection Fourier transform infrared spectroscopy. It was found that molar concentrations of well-hydrated metal cations (Ca(2+), Mg(2+), Li(+)) led to the rise of a peak assigned to metal cation-bound amides (1645 cm(-1)) and a decrease in the peak associated with purely water-bound amides (1620 cm(-1)). In a complementary set of experiments, the effect of cation identity and concentration was investigated at the air/butyramide/water interface via vibrational sum frequency spectroscopy. In these studies, metal ion-amide binding led to the ordering of the adjacent water layer. Such experiments were sensitive to the interfacial partitioning of cations in either a contact pair with the amide or as a solvent separated pair. In both experiments, the ordering of the interactions of the cations was: Ca(2+) > Mg(2+) > Li(+) > Na(+) ≈ K(+). This is a direct cationic Hofmeister series. Even for Ca(2+), however, the apparent equilibrium dissociation constant of the cation with the amide carbonyl oxygen was no tighter than ∼8.5 M. For Na(+) and K(+), no evidence was found for any binding. As such, the interactions of metal cations with amides are far weaker than the analogous binding of weakly hydrated anions.

  3. Posttraumatic Chondrocyte Apoptosis in the Murine Xiphoid (United States)

    Davis, Christopher G.; Eisner, Eric; McGlynn, Margaret; Shelton, John M.; Richardson, James


    Objective. To demonstrate posttraumatic chondrocyte apoptosis in the murine xiphoid after a crush-type injury and to ultimately determine the pathway (i.e., intrinsic or extrinsic) by which chondrocytes undergo apoptosis in response to mechanical injury. Design. The xiphoids of adult female wild-type mice were injured with the use of a modified Kelly clamp. Postinjury xiphoid cartilage was analyzed via 3 well-described independent means of assessing apoptosis in chondrocytes: hematoxylin and eosin staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and activated caspase-3 staining. Results. Injured specimens contained many chondrocytes with evidence of apoptosis, which is characterized by cell shrinkage, chromatin condensation, nuclear fragmentation, and the liberation of apoptotic bodies. There was a statistically significant increase in the number of chondrocytes undergoing apoptosis in the injured specimens as compared with the uninjured specimens. Conclusions. Chondrocytes can be stimulated to undergo apoptosis as a result of mechanical injury. These experiments involving predominantly cartilaginous murine xiphoid in vivo establish a baseline for future investigations that employ the genetic and therapeutic modulation of chondrocyte apoptosis in response to mechanical injury. PMID:26069679

  4. Cationic starches on cellulose surfaces. A study of polyelectrolyte adsorption.


    Steeg, van der, P.A.H.


    Cationic starches are used on a large scale in paper industry as wet-end additives. They improve dry strength. retention of fines and fillers, and drainage. Closure of the white water systems in the paper mills hase increased the concentration of detrimental substances. This might be the reason for the poor retention of cationic starches observed in the last few years.The purpose of the research described in this thesis was to obtain a better understanding of the adsorption of cationic starch...

  5. Electrostatic charge confinement using bulky tetraoctylammonium cation and four anions (United States)

    Andreeva, Nadezhda A.; Chaban, Vitaly V.


    Thanks to large opposite electrostatic charges, cations and anions establish strong ionic bonds. However, applications of ionic systems - electrolytes, gas capture, solubilization, etc. - benefit from weaker non-covalent bonds. The common approaches are addition of cosolvents and delocalization of electron charge density via functionalization of ions. We report fine tuning of closest-approach distances, effective radii, and cation geometry by different anions using the semi-empirical molecular dynamics simulations. We found that long fatty acid chains employed in the tetraalkylammonium cation are largely inefficient and new substituents must be developed. The reported results foster progress of task-specific ionic liquids.

  6. Competitive Solvation of the Imidazolium Cation by Water and Methanol

    CERN Document Server

    Chaban, Vitaly


    Imidazolium-based ionic liquids are widely used in conjunction with molecular liquids for various applications. Solvation, miscibility and similar properties are of fundamental importance for successful implementation of theoretical schemes. This work reports competitive solvation of the 1,3-dimethylimidazolium cation by water and methanol. Employing molecular dynamics simulations powered by semiempirical Hamiltonian (electronic structure level of description), the local structure nearly imidazolium cation is described in terms of radial distribution functions. Although water and methanol are chemically similar, water appears systematically more successful in solvating the 1,3-dimethylimidazolium cation. This result fosters construction of future applications of the ternary ion-molecular systems.

  7. Pyridine radical cation and its fluorine substituted derivatives (United States)

    Bondybey, V.E.; English, J.H.; Shiley, R.H.


    The spectra and relaxation of the pyridine cation and of several of its fluorinated derivatives are studied in low temperature Ne matrices. The ions are generated by direct photoionization of the parent compounds. Of the compounds studied, laser induced → and → fluorescence is observed only for the 2, 6‐difluoropyridine cation. The analysis of the spectrum indicates that the ion is planar both in the and states. The large variety in the spectroscopic and relaxation behavior of fluoropyridine radical cations is explained in terms of their electronic structure and of the differential shifts of the individual electronic states caused by the fluorine substitution.

  8. Metadherin facilitates podocyte apoptosis in diabetic nephropathy (United States)

    Liu, Wen-Ting; Peng, Fen-Fen; Li, Hong-Yu; Chen, Xiao-Wen; Gong, Wang-Qiu; Chen, Wen-Jing; Chen, Yi-Hua; Li, Pei-Lin; Li, Shu-Ting; Xu, Zhao-Zhong; Long, Hai-Bo


    Apoptosis, one of the major causes of podocyte loss, has been reported to have a vital role in diabetic nephropathy (DN) pathogenesis, and understanding the mechanisms underlying the regulation of podocyte apoptosis is crucial. Metadherin (MTDH) is an important oncogene, which is overexpressed in most cancers and responsible for apoptosis, metastasis, and poor patient survival. Here we show that the expression levels of Mtdh and phosphorylated p38 mitogen-activated protein kinase (MAPK) are significantly increased, whereas those of the microRNA-30 family members (miR-30s) are considerably reduced in the glomeruli of DN rat model and in high glucose (HG)-induced conditionally immortalized mouse podocytes (MPC5). These levels are positively correlated with podocyte apoptosis rate. The inhibition of Mtdh expression, using small interfering RNA, but not Mtdh overexpression, was shown to inhibit HG-induced MPC5 apoptosis and p38 MAPK pathway, and Bax and cleaved caspase 3 expression. This was shown to be similar to the effects of p38 MAPK inhibitor (SB203580). Furthermore, luciferase assay results demonstrated that Mtdh represents the target of miR-30s. Transient transfection experiments, using miR-30 microRNA (miRNA) inhibitors, led to the increase in Mtdh expression and induced the apoptosis of MPC5, whereas the treatment with miR-30 miRNA mimics led to the reduction in Mtdh expression and apoptosis of HG-induced MPC5 cells in comparison with their respective controls. Our results demonstrate that Mtdh is a potent modulator of podocyte apoptosis, and that it represents the target of miR-30 miRNAs, facilitating podocyte apoptosis through the activation of HG-induced p38 MAPK-dependent pathway. PMID:27882943

  9. Cytochrome c and insect cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    Kai-Yu Liu; Hong Yang; Jian-Xin Peng; Hua-Zhu Hong


    The role ofcytochrome c in insect cell apoptosis has drawn considerable attention and has been subject to considerable controversy.In Drosophila,the majority of studies have demonstrated that cytochrome c may not be involved in apoptosis,although there are conflicting reports.Cytochrome c is not released from mitochondria into the cytosol and activation of the initiator caspase Dronc or effector caspase Drice is not associated with cytochrome c during apoptosis in Drosophila SL2 cells or BG2 cells.Cytochrome c failed to induce caspase activation and promote caspase activation in Drosophila cell lysates,but remarkably caused caspase activation in extracts from human cells.Knockdown of cytochrome c does not protect cells from apoptosis and over-expression of cytochrome c also does not promote apoptosis.Structural analysis has revealed that cytochrome c is not required for Dapaf-1 complex assembly.In Lepidoptera,the involvement of cytochrome c in apoptosis has been demonstrated by the accumulating evidence.Cytochrome c release from mitochondria into cytosol has been observed in different cell lines such as Spodoptera frugiperda Sf9,Spodoptera litura S1-1 and Lymantria dispar LdFB.Silencing of cytochrome c expression significantly affected apoptosis and activation of caspase and the addition of cytochrome c to cell-free extracts results in caspase activation,suggesting the activation of caspase is dependent on cytochrome c.Although Apaf- 1 has not been identified in Lepidoptera,the inhibitor of apoptosome formation can inhibit apoptosis and caspase activation.Cytochrome c may be exclusively required for Lepidoptera apoptosis.

  10. Novel cationic polyelectrolyte coatings for capillary electrophoresis. (United States)

    Duša, Filip; Witos, Joanna; Karjalainen, Erno; Viitala, Tapani; Tenhu, Heikki; Wiedmer, Susanne K


    The use of bare fused silica capillary in CE can sometimes be inconvenient due to undesirable effects including adsorption of sample or instability of the EOF. This can often be avoided by coating the inner surface of the capillary. In this work, we present and characterize two novel polyelectrolyte coatings (PECs) poly(2-(methacryloyloxy)ethyl trimethylammonium iodide) (PMOTAI) and poly(3-methyl-1-(4-vinylbenzyl)-imidazolium chloride) (PIL-1) for CE. The coated capillaries were studied using a series of aqueous buffers of varying pH, ionic strength, and composition. Our results show that the investigated polyelectrolytes are usable as semi-permanent (physically adsorbed) coatings with at least five runs stability before a short coating regeneration is necessary. Both PECs showed a considerably decreased stability at pH 11.0. The EOF was higher using Good's buffers than with sodium phosphate buffer at the same pH and ionic strength. The thickness of the PEC layers studied by quartz crystal microbalance was 0.83 and 0.52 nm for PMOTAI and PIL-1, respectively. The hydrophobicity of the PEC layers was determined by analysis of a homologous series of alkyl benzoates and expressed as the distribution constants. Our result demonstrates that both PECs had comparable hydrophobicity, which enabled separation of compounds with log Po/w > 2. The ability to separate cationic drugs was shown with β-blockers, compounds often misused in doping. Both coatings were also able to separate hydrolysis products of the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-ene acetate at highly acidic conditions, where bare fused silica capillaries failed to accomplish the separation.

  11. IRMPD action spectroscopy of alkali metal cation-cytosine complexes: effects of alkali metal cation size on gas phase conformation. (United States)

    Yang, Bo; Wu, R R; Polfer, N C; Berden, G; Oomens, J; Rodgers, M T


    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both similar and distinctive spectral features over the range of ~1000-1900 cm(-1). The IRMPD spectra of the Li(+)(cytosine), Na(+)(cytosine), and K(+)(cytosine) complexes are relatively simple but exhibit changes in the shape and shifts in the positions of several bands that correlate with the size of the alkali metal cation. The IRMPD spectra of the Rb(+)(cytosine) and Cs(+)(cytosine) complexes are much richer as distinctive new IR bands are observed, and the positions of several bands continue to shift in relation to the size of the metal cation. The measured IRMPD spectra are compared to linear IR spectra of stable low-energy tautomeric conformations calculated at the B3LYP/def2-TZVPPD level of theory to identify the conformations accessed in the experiments. These comparisons suggest that the evolution in the features in the IRMPD action spectra with the size of the metal cation, and the appearance of new bands for the larger metal cations, are the result of the variations in the intensities at which these complexes can be generated and the strength of the alkali metal cation-cytosine binding interaction, not the presence of multiple tautomeric conformations. Only a single tautomeric conformation is accessed for all five alkali metal cation-cytosine complexes, where the alkali metal cation binds to the O2 and N3 atoms of the canonical amino-oxo tautomer of cytosine, M(+)(C1).

  12. Crystal structure of pseudouridine synthase RluA: indirect sequence readout through protein-induced RNA structure. (United States)

    Hoang, Charmaine; Chen, Junjun; Vizthum, Caroline A; Kandel, Jason M; Hamilton, Christopher S; Mueller, Eugene G; Ferré-D'Amaré, Adrian R


    RluA is a dual-specificity enzyme responsible for pseudouridylating 23S rRNA and several tRNAs. The 2.05 A resolution structure of RluA bound to a substrate RNA comprising the anticodon stem loop of tRNA(Phe) reveals that enzyme binding induces a dramatic reorganization of the RNA. Instead of adopting its canonical U turn conformation, the anticodon loop folds into a new structure with a reverse-Hoogsteen base pair and three flipped-out nucleotides. Sequence conservation, the cocrystal structure, and the results of structure-guided mutagenesis suggest that RluA recognizes its substrates indirectly by probing RNA loops for their ability to adopt the reorganized fold. The planar, cationic side chain of an arginine intercalates between the reverse-Hoogsteen base pair and the bottom pair of the anticodon stem, flipping the nucleotide to be modified into the active site of RluA. Sequence and structural comparisons suggest that pseudouridine synthases of the RluA, RsuA, and TruA families employ an equivalent arginine for base flipping.

  13. Isomerization of propargyl cation to cyclopropenyl cation: Mechanistic elucidations and effects of lone pair donors

    Indian Academy of Sciences (India)

    Zodinpuia Pachuau; Kiew S Kharnaior; R H Duncan Lyngdoh


    This ab initio study examines two pathways (one concerted and the other two-step) for isomerization of the linear propargyl cation to the aromatic cyclopropenyl cation, also probing the phenomenon of solvation of this reaction by simple lone pair donors (NH3, H2O, H2S and HF) which bind to the substrate at two sites. Fully optimized geometries at the B3LYP/6-31G(d) level were used, along with single point QCISD(T)/6-311+G(d,p) and accurate G3 level calculations upon the DFT optimized geometries. For the unsolvated reaction, the two-step second pathway is energetically favoured over the one-step first pathway. Lone pair donor affinity for the various C3H$^{+}_{3}$ species follows the uniform order NH3 > H2S>H2O>HF. The activation barriers for the solvated isomerizations decrease in the order HF>H2O>H2S>NH3 for both pathways. The number of lone pairs on the donor heteroatom as well as the heteroatom electronegativity are factors related to both these trends. Compared to the unsolvated cases, the solvated reactions have transition states which are usually ‘later’ in position along the reaction coordinate, validating the Hammond postulate.

  14. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process. (United States)

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V


    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange.

  15. MicroRNA-1 promotes apoptosis of hepatocarcinoma cells by targeting apoptosis inhibitor-5 (API-5). (United States)

    Li, Dong; Liu, Yu; Li, Hua; Peng, Jing-Jing; Tan, Yan; Zou, Qiang; Song, Xiao-Feng; Du, Min; Yang, Zheng-Hui; Tan, Yong; Zhou, Jin-Jun; Xu, Tao; Fu, Zeng-Qiang; Feng, Jian-Qiong; Cheng, Peng; chen, Tao; Wei, Dong; Su, Xiao-Mei; Liu, Huan-Yi; Qi, Zhong-Chun; Tang, Li-Jun; Wang, Tao; Guo, Xin; Hu, Yong-He; Zhang, Tao


    Although microRNA-1 (miR-1) is a known liver cancer suppressor, the role of miR-1 in apoptosis of hepatoma cells has remained largely unknown. Our study shows that ectopic miR-1 overexpression induced apoptosis of liver hepatocellular carcinoma (HepG2) cells. Apoptosis inhibitor 5 (API-5) was found to be a potential regulator of miR-1 induced apoptosis, using a bioinformatics approach. Furthermore, an inverse relationship between miR-1 and API-5 expression was observed in human liver cancer tissues and adjacent normal liver tissues. Negative regulation of API-5 expression by miR-1 was demonstrated to promote apoptosis of HepG2 cells. Our study provides a novel regulatory mechanism of miR-1 in the apoptosis of hepatoma cells.

  16. Silica surfaces lubrication by hydrated cations adsorption from electrolyte solutions. (United States)

    Donose, Bogdan C; Vakarelski, Ivan U; Higashitani, Ko


    Adsorption of hydrated cations on hydrophilic surfaces has been related to a variety of phenomena associated with the short-range interaction forces and mechanisms of the adhesive contact between the surfaces. Here we have investigated the effect of the adsorption of cations on the lateral interaction. Using lateral force microscopy (LFM), we have measured the friction force between a silica particle and silica wafer in pure water and in electrolyte solutions of LiCl, NaCl, and CsCl salts. A significant lubrication effect was demonstrated for solutions of high electrolyte concentrations. It was found that the adsorbed layers of smaller and more hydrated cations have a higher lubrication capacity than the layers of larger and less hydrated cations. Additionally, we have demonstrated a characteristic dependence of the friction force on the sliding velocity of surfaces. A mechanism for the observed phenomena based on the microstructures of the adsorbed layers is proposed.

  17. Degradation Mechanism of Cationic Red X-GRL by Ozonation

    Institute of Scientific and Technical Information of China (English)

    Wei Rong ZHAO; Xin Hua XU; Hui Xiang SHI; Da Hui WANG


    The degradation mechanism of Cationic Red X-GRL was investigated when the intermediates, the nitrate ion and the pH were analyzed in the ozonation. The degradation of the Cationic Red X-GRL includes the de-auxochrome stage, the decolour stage, and the decomposition of fragment stage. During the degradation process, among the six nitrogen atoms of Cationic Red X-GRL, one is transferred into a nitrate ion, one becomes the form of an amine compound, and the rest four are transformed into two molecules of nitrogen. In the course of the ozonation of Cationic Red X-GRL, the direct attack of ozone is the main decolour effect.

  18. DFT study on the cycloreversion of thietane radical cations. (United States)

    Domingo, Luis R; Pérez-Ruiz, Raúl; Argüello, Juan E; Miranda, Miguel A


    The molecular mechanism of the cycloreversion (CR) of thietane radical cations has been analyzed in detail at the UB3LYP/6-31G* level of theory. Results have shown that the process takes place via a stepwise mechanism leading to alkenes and thiobenzophenone; alternatively, formal [4+2] cycloadducts are obtained. Thus, the CR of radical cations 1a,b(•+) is initiated by C2-C3 bond breaking, giving common intermediates INa,b. At this stage, two reaction pathways are feasible involving ion molecule complexes IMCa,b (i) or radical cations 4a,b(•+) (ii). Calculations support that 1a(•+) follows reaction pathway ii (leading to the formal [4+2] cycloadducts 5a). By contrast, 1b(•+) follows pathway i, leading to trans-stilbene radical cation (2b(•+)) and thiobenzophenone.

  19. Condensation of nonstochiometric DNA/polycation complexes by divalent cations. (United States)

    Budker, Vladimir; Trubetskoy, Vladimir; Wolff, Jon A


    This study found that divalent cations induced the further condensation of partially condensed DNA within nonstochiometric polycation complexes. The addition of a few mmol of a divalent cation such as calcium reduced by half the inflection point at which DNA became fully condensed by poly-L-lysine (PLL) and a variety of other polycations. The effect on DNA condensation was initially observed using a new method, which is based on the concentration-dependent self-quenching of fluorescent moieties (e.g., rhodamine) covalently linked to the DNA backbone at relatively high densities. Additional analyses, which employed ultracentrifugation, dynamic light scattering, agarose gel electrophoresis, and atomic force microscopy, confirmed the effect of divalent cations. These results provide an additional accounting of the process by which divalent cations induce greater chromatin compaction that is based on the representation of chromatin fibers as a nonstoichiometric polyelectrolyte complex. They also offer a new approach to assemble nonviral vectors for gene therapy.

  20. Inhibition of Reaper-induced apoptosis by interaction with inhibitor of apoptosis proteins (IAPs)



    IAPs comprise a family of inhibitors of apoptosis found in viruses and animals. In vivo binding studies demonstrated that both baculovirus and Drosophila IAPs physically interact with an apoptosis-inducing protein of Drosophila, Reaper (RPR), through their baculovirus IAP repeat (BIR) region. Expression of IAPs blocked RPR-induced apoptosis and resulted in the accumulation of RPR in punctate perinuclear locations which coincided with IAP localization. When expressed alone, RPR rapidly disappe...

  1. Migration of Cations and Anions in Amorphous Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    N.A.Stolwijk; S.H.Obeidi; M.Wiencierz


    1 Results Polymer electrolytes are used as ion conductors in batteries and fuel cells.Simple systems consist of a polymer matrix complexing an inorganic salt and are fully amorphous at the temperatures of interest.Both cations and anions are mobile and contribute to charge transport.Most studies on polymer electrolytes use the electrical conductivity to characterize the ion mobility.However,conductivity measurements cannot discriminate between cations and anions.This paper reports some recent results fr...


    Institute of Scientific and Technical Information of China (English)

    W. Liu; Y. Ni; H. Xiao


    Hydrophilic and cationic montmorillonite is desirable for pitch control in the pulp and paper industry. In this paper, polyaminoamide - epichlorohydrin (PAE)modified montmorillonite was prepared. The modified montmorillonite was characterized using X-ray diffraction, FTIR and thermal gravimetric analysis. The amount of PAE intercalated and cationic charge densities of the modified montmorillonite were determined. Finally, it was found that both the solution and melt-intercalated samples with different charge densities exhibited strong interactions with dispersed colloidal rosin acid.

  3. Competition by meperidine for the organic cation renal excretory system. (United States)

    Acara, M; Gessner, T; Trudnowski, R J


    Renal tubular excretory transport of meperidine was studied using the Sperber preparation in chickens. When urine samples from infused and uninfused kidneys were analyzed for meperidine by gas chromatography, meperidine was always present in greater amounts in the urine from the infused kidney, demonstrating active tubular excretion. Meperidine at an infusion rate of 1 mumole/min, also inhibited the excretion of the organic cations choline and acetylcholine, indicating occupation of the renal organic cation excretory system in the chicken.

  4. Focused fluorescent probe library for metal cations and biological anions. (United States)

    Rhee, Hyun-Woo; Lee, Sang Wook; Lee, Jun-Seok; Chang, Young-Tae; Hong, Jong-In


    A focused fluorescent probe library for metal cations was developed by combining metal chelators and picolinium/quinolinium moieties as combinatorial blocks connected through a styryl group. Furthermore, metal complexes derived from metal chelators having high binding affinities for metal cations were used to construct a focused probe library for phosphorylated biomolecules. More than 250 fluorescent probes were screened for identifying an ultraselective probe for dTTP.

  5. [Apoptosis and thymocyte development (epithelial cells as inducers of thymocyte apoptosis)]. (United States)

    Iarilin, A A; Bulanova, E G; Sharova, N I; Budagian, V M


    Apoptosis, together with proliferation, is a main factor of selection of the clones of developing T-lymphocytes: the clones not supported by positive selection are subject to apoptosis and apoptosis accounts for discarding of potentially autoaggressive clones, i.e., for negative selection in the thymus and peripheral lymphoid tissue. Realization of apoptosis at different stages of the development of T-lymphocytes depends to a varying extent on Fas, Bcl-2, p53, and other regulators. The dendritic cells are the main cell type, the contact with determines apoptosis of T-lymphocytes. A possible role of the epithelial cells was shown in few models (on murine cells) and was not practically studied. We obtained a line of epithelial cells of the human thymus cells HTSC, cocultivation with which induces apoptosis of immature thymocytes and blood T-cells activated by mitogens. Development of apoptosis is suppressed by inhibitors of protein and RNA synthesis, chelators Ca2+, ions Zn2+, and factors destroying the cytoskeleton components. In this model, interaction of pairs of molecules CD4-HLA class II and LFA-1-ICAM-1. When in contact with the HTSC cells, the thymocytes of mice mutant for Fas-receptor (line MRL.lpr) are subject to apoptosis, but when this receptor is present, it affects the development of apoptosis.

  6. Computer simulation of alkali metal cation-montmorillonite hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Fang-Ru Chou [Columbia Univ., Palisades, NY (United States); Skipper, N.T. [Univ. College, London (United Kingdom); Sposito, G. [Lawrence Berkeley National Lab., CA (United States)


    Molecular structure in the interlayers of Li-, Na-, or K-Wyoming montmorillonite with one, two, or three adsorbed water layers was investigated for the first time by concurrent Monte Carlo and molecular dynamics (MD) simulation, based on the Matsouka-Clementi-Yoshimine, (MCY) model of water-water interactions. Calculated layer spacings, as well as interlayer-species self-diffusion coefficients, were in good agreement with available experimental data. Inner-sphere surface complexes of the cations with tetrahedral charge sites were observed for all hydrates, whereas outer-sphere surface complexes of the cations with octahedral charge sites, found also in the one-layer hydrate, tended to dissociate from the clay mineral basal planes into a diffuse layer in the two- and three-layer hydrates. Differences in the interlayer water structure among the hydrates mainly reflected cation solvation, although some water molecules were entrapped within cavities in the montmorillonite surface. All of the interlayer cation and water species exchanged on the time scale (0.2 ns) of the MD simulations. Comparisons with results obtained using, instead of the MCY model, the TIP4P model for water-water, cation-water, and cation-clay interactions indicated that layer spacings and interlayer species mobilities tend to be under-predicted by the TIP4P model.

  7. Complexation Between Cationic Diblock Copolymers and Plasmid DNA (United States)

    Jung, Seyoung; Reineke, Theresa; Lodge, Timothy

    Deoxyribonucleic acids (DNA), as polyanions, can spontaneously bind with polycations to form polyelectrolyte complexes. When the polycation is a diblock copolymer with one cationic block and one uncharged hydrophilic block, the polyelectrolyte complexes formed with plasmid DNA (pDNA) are often colloidally stable, and show great promise in the field of polymeric gene therapy. While the resulting properties (size, stability, and toxicity to biological systems) of the complexes have been studied for numerous cationic diblocks, the fundamentals of the pDNA-diblock binding process have not been extensively investigated. Herein, we report how the cationic block content of a diblock influences the pDNA-diblock interactions. pDNA with 7164 base pairs and poly(2-deoxy-2-methacrylamido glucopyranose)-block-poly(N-(2-aminoethyl) methacrylamide) (PMAG-b-PAEMA) are used as the model pDNA and cationic diblock, respectively. To vary the cationic block content, two PMAG-b-PAEMA copolymers with similar PMAG block lengths but distinct PAEMA block lengths and a PAEMA homopolymer are utilized. We show that the enthalpy change from pDNA-diblock interactions is dependent on the cationic diblock composition, and is closely associated with both the binding strength and the pDNA tertiary structure.

  8. Photochemical generation, isomerization, and oxygenation of stilbene cation radicals

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, F.D.; Bedell, A.M.; Dykstra, R.E.; Elbert, J.E. (Northwestern Univ., Evanston, IL (USA)); Gould, I.R.; Farid, S. (Eastman Kodak Co., Rochester, NY (USA))


    The cation radicals of cis- and trans-stilbene and several of their ring-substituted derivatives have been generated in solution directly by means of pulsed-laser-induced electron transfer to singlet cyanoanthracenes or indirectly via electron transfer from biphenyl to the singlet cyanoanthracene followed by secondary electron transfer from the stilbenes to the biphenyl cation radical. Transient absorption spectra of the cis- and trans-stilbene cation radicals generated by secondary electron transfer are similar to those previously obtained in 77 K matrices. Quantum yields for radical ion-pair cage escape have been measured for direct electron transfer from the stilbenes to three neutral and one charged singlet acceptor. These values increase as the ion-pair energy increases due to decreased rate constants for radical ion-pair return electron transfer, in accord with the predictions of Marcus theory for highly exergonic electron transfer. Cage-escape efficiencies are larger for trans- vs cis-stilbene cation radicals, possibly due to the greater extent of charge delocalization in the planar trans vs nonpolar cis cation radicals. Cage-escape stilbene cation radicals can initiate a concentration-dependent one way cis- {yields} trans-stilbene isomerization reaction.

  9. Tunable states of interlayer cations in two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)


    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.

  10. Synthesis and characterisation of cationically modified phospholipid polymers. (United States)

    Lewis, Andrew L; Berwick, James; Davies, Martyn C; Roberts, Clive J; Wang, Jin-Hai; Small, Sharon; Dunn, Anthony; O'Byrne, Vincent; Redman, Richard P; Jones, Stephen A


    Phospholipid-like copolymers based on 2-(methacryloyloxyethyl) phosphorylcholine were synthesised using monomer-starved free radical polymerisation methods and incorporating cationic charge in the form of the choline methacrylate monomer in amounts varying from 0 to 30 wt%, together with a 5 wt% silyl cross-linking agent in order to render them water-insoluble once thermally cured. Characterisation using a variety of techniques including nuclear magnetic resonance spectroscopy, high-pressure liquid chromatography and gel permeation chromatography showed the cationic monomer did not interfere with the polymerisation and that the desired amount of charge had been incorporated. Gravimetric and differential scanning calorimetry methods were used to evaluate the water contents of polymer membranes cured at 70 degrees C, which was seen to increase with increasing cation content, producing materials with water contents ranging from 50% to 98%. Surface plasmon resonance indicated that the coatings swelled rapidly in water, the rate and extent of swelling increasing with increasing cation level. Dynamic contact angle showed that coatings of all the polymers possessed a hydrophobic surface when dry in air, characteristic of the alkyl chains expressed at the surface (>100 degrees advancing angle). Rearrangement of the hydrophilic groups to the surface occurred once wet, to produce highly wettable surfaces with a decrease in advancing angle with increasing cation content. Atomic force microscopy showed all polymer films to be smooth with no features in topographical or phase imaging. Mechanical properties of the dry films were also unaffected by the increase in cation content.

  11. Modulatory role of bivalent cations on reward system. (United States)

    Nechifor, M; Chelărescu, D


    Bivalent cations (Ca, Mg, Zn, Mn etc.) modulate activity of reward system (RS). At physiologic levels they may influence all components of RS. There are influenced behavioral reactions at physiological stimuli and all essential elements of drug dependence (compulsive intake of substance, craving, reinforcement, withdrawal syndrom, relapse and reinstatement of intake) The fact that some cations (e.g. calcium) enhance some of the aspects of drug dependence and others (e.g. magnesium, zinc) decrease intensity of this process show that ratio between intra- and extracellular in the brain of these cations is important for the function of RS. Among actions of different cations at the level of RS there are important differences. Their mecahanism of action are common in part and specific in other. It is important the fact that modulatory action appear at physiologic cation concentrations (that could be reached at therapeutic doses). Modulatory action is related to ratio between concetrations of different bivalent cations and is exerted both in normal or pathologic conditions.

  12. Cationic Polyamidoamine Dendrimers as Modulators of EGFR Signaling In Vitro and In Vivo. (United States)

    Akhtar, Saghir; Al-Zaid, Bashayer; El-Hashim, Ahmed Z; Chandrasekhar, Bindu; Attur, Sreeja; Yousif, Mariam H M; Benter, Ibrahim F


    Cationic polyamidoamine (PAMAM) dendrimers are branch-like spherical polymers being investigated for a variety of applications in nanomedicine including nucleic acid drug delivery. Emerging evidence suggests they exhibit intrinsic biological and toxicological effects but little is known of their interactions with signal transduction pathways. We previously showed that the activated (fragmented) generation (G) 6 PAMAM dendrimer, Superfect (SF), stimulated epidermal growth factor receptor (EGFR) tyrosine kinase signaling-an important signaling cascade that regulates cell growth, survival and apoptosis- in cultured human embryonic kidney (HEK 293) cells. Here, we firstly studied the in vitro effects of Polyfect (PF), a non-activated (intact) G6 PAMAM dendrimer, on EGFR tyrosine kinase signaling via extracellular-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) in cultured HEK 293 cells and then compared the in vivo effects of a single administration (10mg/kg i.p) of PF or SF on EGFR signaling in the kidneys of normal and diabetic male Wistar rats. Polyfect exhibited a dose- and time-dependent inhibition of EGFR, ERK1/2 and p38 MAPK phosphorylation in HEK-293 cells similar to AG1478, a selective EGFR inhibitor. Administration of dendrimers to non-diabetic or diabetic animals for 24h showed that PF inhibited whereas SF stimulated EGFR phosphorylation in the kidneys of both sets of animals. PF-mediated inhibition of EGFR phosphorylation as well as SF or PF-mediated apoptosis in HEK 293 cells could be significantly reversed by co-treatment with antioxidants such as tempol implying that both these effects involved an oxidative stress-dependent mechanism. These results show for the first time that SF and PF PAMAM dendrimers can differentially modulate the important EGFR signal transduction pathway in vivo and may represent a novel class of EGFR modulators. These findings could have important clinical implications for the use of PAMAM dendrimers

  13. [Protein kinase C activation induces platelet apoptosis]. (United States)

    Zhao, Li-Li; Chen, Meng-Xing; Zhang, Ming-Yi; Dai, Ke-Sheng


    Platelet apoptosis elucidated by either physical or chemical compound or platelet storage occurs wildly, which might play important roles in controlling the numbers and functions of circulated platelets, or in the development of some platelet-related diseases. However, up to now, a little is known about the regulatory mechanisms of platelet apoptosis. Protein kinase C (PKC) is highly expressed in platelets and plays central roles in regulating platelet functions. Although there is evidence indicating that PKC is involved in the regulation of apoptosis of nucleated cells, it is still unclear whether PKC plays a role in platelet apoptosis. The aim of this study was to investigate the role of PKC in platelet apoptosis. The effects of PKC on mitochondrial membrane potential (ΔΨm), phosphatidylserine (PS) exposure, and caspase-3 activation of platelets were analyzed by flow cytometry and Western blot. The results showed that the ΔΨm depolarization in platelets was induced by PKC activator in time-dependent manner, and the caspase-3 activation in platelets was induced by PKC in concentration-dependent manner. However, the platelets incubated with PKC inhibitor did not results in ΔΨm depolarization and PS exposure. It is concluded that the PKC activation induces platelet apoptosis through influencing the mitochondrial functions and activating caspase 3. The finds suggest a novel mechanism for PKC in regulating platelet numbers and functions, which has important pathophysiological implications for thrombosis and hemostasis.

  14. Effect of sevoflurane on human neutrophil apoptosis.

    LENUS (Irish Health Repository)

    Tyther, R


    BACKGROUND AND OBJECTIVE: Both chronic occupational exposure to volatile anaesthetic agents and acute in vitro exposure of neutrophils to isoflurane have been shown to inhibit the rate of apoptosis of human neutrophils. It is possible that inhibition of neutrophil apoptosis arises through delaying mitochondrial membrane potential collapse. We assessed mitochondrial depolarization and apoptosis in unexposed neutrophils and neutrophils exposed to sevoflurane in vivo. METHODS: A total of 20 mL venous blood was withdrawn pre- and postinduction of anaesthesia, the neutrophils isolated and maintained in culture. At 1, 12 and 24 h in culture, the percentage of neutrophil apoptosis was assessed by dual staining with annexin V-FITC and propidium iodide. Mitochondrial depolarization was measured using the dual emission styryl dye JC-1. RESULTS: Apoptosis was significantly inhibited in neutrophils exposed to sevoflurane in vivo at 24 (exposed: 38 (12)% versus control: 28 (11)%, P = 0.001), but not at 1 or 12 h, in culture. Mitochondrial depolarization was not delayed in neutrophils exposed to sevoflurane. CONCLUSIONS: The most important findings are that sevoflurane inhibits neutrophil apoptosis in vivo and that inhibition is not mediated primarily by an effect on mitochondrial depolarization.

  15. Host-pathogen interactions during apoptosis

    Indian Academy of Sciences (India)

    Seyed E Hasnain; Rasheeda Begum; K V A Ramaiah; Sudhir Sahdev; E M Shajil; Tarvinder K Taneja; Manjari Mohan; M Athar; Nand K Sah; M Krishnaveni


    Host pathogen interaction results in a variety of responses, which include phagocytosis of the pathogen, release of cytokines, secretion of toxins, as well as production of reactive oxygen species (ROS). Recent studies have shown that many pathogens exert control on the processes that regulate apoptosis in the host. The induction of apoptosis upon infection results from a complex interaction of parasite proteins with cellular host proteins. Abrogation of host cell apoptosis is often beneficial for the pathogen and results in a successful host invasion. However, in some cases, it has been shown that induction of apoptosis in the infected cells significantly imparts protection to the host from the pathogen. There is a strong correlation between apoptosis and the host protein translation machinery: the pathogen makes all possible efforts to modify this process so as to inhibit cell suicide and ensure that it can survive and, in some cases, establish latent infection. This review discusses the significance of various pathways/steps during virus-mediated modulation of host cell apoptosis.

  16. Epithelial Cell Apoptosis and Lung Remodeling

    Institute of Scientific and Technical Information of China (English)

    Kazuyoshi Kuwano


    Lung epithelium is the primary site of lung damage in various lung diseases. Epithelial cell apoptosis has been considered to be initial event in various lung diseases. Apoptosis signaling is classically composed of two principle pathways. One is a direct pathway from death receptor ligation to caspase cascade activation and cell death. The other pathway triggered by stresses such as drugs, radiation, infectious agents and reactive oxygen species is mediated by mitochondria. Endoplasmic reticulum has also been shown to be the organelle to mediate apoptosis.Epithelial cell death is followed by remodeling processes, which consist of epithelial and fibroblast activation,cytokine production, activation of coagulation pathway, neoangiogenesis, re-epithelialization and fibrosis.Epithelial and mesenchymal interaction plays important roles in these processes. Further understanding of apoptosis signaling and its regulation by novel strategies may lead to effective treatments against various lung diseases. We review the recent advances in the understanding of apoptosis signaling and discuss the involvement of apoptosis in lung remodeling.

  17. Does the cation really matter? The effect of modifying an ionic liquid cation on an SN2 process. (United States)

    Tanner, Eden E L; Yau, Hon Man; Hawker, Rebecca R; Croft, Anna K; Harper, Jason B


    The rate of reaction of a Menschutkin process in a range of ionic liquids with different cations was investigated, with temperature-dependent kinetic data giving access to activation parameters for the process in each solvent. These data, along with molecular dynamics simulations, demonstrate the importance of accessibility of the charged centre on the cation and that the key interactions are of a generalised electrostatic nature.

  18. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations. (United States)

    Kutzner, Susann; Schaffer, Mario; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard


    Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel.

  19. Cation Uptake and Allocation by Red Pine Seedlings under Cation-Nutrient Stress in a Column Growth Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zhenqing; Balogh-Brunstad, Zsuzsanna; Grant, Michael R.; Harsh, James B.; Gill, Richard; Thomashow, Linda; Dohnalkova, Alice; Stacks, Daryl; Letourneau, Melissa; Keller, Chester K.


    Background and Aims Plant nutrient uptake is affected by environmental stress, but how plants respond to cation-nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient limitation on cation uptake in an experimental plant-mineral system. Methods Column experiments, with red pine (Pinus resinosa Ait.) seedlings growing in sand/mineral mixtures, were conducted for up to nine months under a range of Ca- and K-limited conditions. The Ca and K were supplied from both minerals and nutrient solutions with varying Ca and K concentrations. Results Cation nutrient stress had little impact on carbon allocation after nine months of plant growth and K was the limiting nutrient for biomass production. The Ca/Sr and K/Rb ratio results allowed independent estimation of dissolution incongruency and discrimination against Sr and Rb during cation uptake processes. The fraction of K in biomass from biotite increased with decreasing K supply from nutrient solutions. The mineral anorthite was consistently the major source of Ca, regardless of nutrient treatment. Conclusions Red pine seedlings exploited more mineral K in response to more severe K deficiency. This did not occur for Ca. Plant discrimination factors must be carefully considered to accurately identify nutrient sources using cation tracers.

  20. Lack of association between a cationic protein and a cationic fluorosurfactant. (United States)

    Macakova, Lubica; Nordstierna, Lars; Karlsson, Göran; Blomberg, Eva; Furó, István


    Surface tension, 19F and 1H NMR spectroscopy, and cryotransmission electron microscopy are used to characterize the state of association in aqueous solutions of a fluorosurfactant CF3(CF2)nSO2NH(CH2)3-4N(CH3)3+ I- (n = 8, 6) with and without lysozyme added. In the absence of lysozyme, we find monomers, small aggregates, and large vesicles to coexist, with the individual fluorosurfactant molecules exchanging slowly (>1 ms) among those states. When both lysozyme and fluorosurfactant are present in the solution, they have no measurable influence on the physical state of the other. In contrast, a hydrogenated cationic surfactant with the same headgroup, hexadecyltrimethylammonium bromide, is shown to associate to lysozyme.

  1. Blocking lhh Signaling Pathway Inhibits the Proliferation and Pro-motes the Apoptosis of PSCs

    Institute of Scientific and Technical Information of China (English)

    Kai XU; Fengjing GUO; Shuwei ZHANG; Cheng LIU; Feixiong WANG; Zhiguo ZHOU; Anmin CHEN


    The roles of Indian hedgehog (Ihh) signaling pathway in the proliferation and apoptosis of precartilaginous stem cells (PSCs) were investigated.PSCs,labeled with fibroblast growth factor receptor 3 (FGFR-3),were isolated from neonatal rats by immanomagnetic separation.After identifi-cation with FGFR-3 and Col Ⅱ,the cells were incubated with different concentrations of cyclopamine (cyclo),the specific inhibitor of lhh signaling pathway.The morphologic changes of the cells were observed under the inverted phase contrast microscope.The mRNA expression levels of Ibh,para-thyroid hormonerelated peptide (PTHrP),protein Patched (Ptch),Bcl-2 and p21 were detected by RT-PCR.The protein expression levels of Ihh and Ptch were measured by Western blot.MTT assay was used to examine the effects of cyclo on proliferation of PSCs.Apoptosis rate of PSCs was exam-ined by Annexin V/PI assay of flow cytometric analyses.After PSCs were incubated with cyclo,ob-vious morphologic changes were observed as compared with the control group.The mRNA expres-sion levels of PTHrP,Ptch and Bcl-2 were decreased to varying degrees in a cyclo dose-dependent manner.However,the expression levels of lhh and p21 mRNA were increased.The protein expres-sion of Ptch and Ihh had the same change as the mRNA expression.Meanwhile,cyclo could obvi-ously inhibit the proliferation and promote the apoptosis of PSCs.The results indicated that Ihh sig-naling pathway plays an important role in regulating the proliferation and apoptosis of PSCs,which is probably mediated by Bcl-2 and p21.

  2. A novel method for study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering technique (United States)

    Long, Xiufen; Zhang, Caihua; Cheng, Jiongjia; Bi, Shuping


    We present a novel method for the study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering (RRS) technique. In neutral Tris-HCl medium, the effect of this aggregation of protein results in the enhancement of RRS intensity and the relationship between the enhancement of the RRS signal and the Al concentration is nonlinear. On this basis, we established a new method for the determination of the critical induced-aggregation concentrations ( CCIAC) of metal ion Al(III) inducing the protein aggregation. Our results show that many factors, such as, pH value, anions, salts, temperature and solvents have obvious effects. We also studied the extent of aggregation and structural changes using ultra-violet spectrometry, protein intrinsic fluorescence and circular dichroism to further understand the exact mechanisms of the aggregation characteristics of proteins induced by metal ion Al(III) at the molecular level, to help us to develop effective methods to investigate the toxicity of metal ion Al, and to provide theoretical and quantitative evidences for the development of appropriate treatments for neurodementia such as Parkinson's disease, Alzheimer's disease and dementia related to dialysis.

  3. [Depression and treatment. Apoptosis, neuroplasticity and antidepressants]. (United States)

    Arantes-Gonçalves, Filipe; Coelho, Rui


    Depression's neurobiology begins to be better understood. The last decade data considers neuroplasticity and stress as implicated factors on the pathophisiology of depression. Because antidepressants have a lag-time on their action it is possible that inhibition of neurotransmitters recaptation is not sufficient to explain long term changes. For that purpose, neurogenesis increase, nervous fibers sprouting, new synapses and stabilization of the old ones can be responsible for those changes. AMPc-MAPcinases-CREB-BDNF cellular cascade can play a significant role in the mechanisms of dendritic restructuration, hippocampal neurogenesis increase and nervous cells survival. The aim of this article is to discuss if apoptosis could play a key role as an ethiopathogenic factor on the patogenesis of depression. It was done a medline search for references with apoptosis, stress, neuroplasticity, depression and antidepressants key-words. It were found 101 original or review references about these subjects. Stress plays a key role in the etiopathogeny of depression. Its deletery effects on apoptosis and neuroplasticity can be changed by antidepressants. Neurogenesis' increase is necessary for their action. This increase is reached with chronic antidepressant treatment and not with other psychotropic drugs which means some pharmacological specificity of antidepressants. AMPc, CREB, BDNF and Bcl-2 can be considered as target genes in antidepressant synthesis. At the level of this neurotrophic factors apoptosis might be included in the neuroplastic model of depression and play a prominent role in etiopathogeny of depression. To confirm that, we need more research on the field to know which are the mechanisms that trigger apoptosis and its biological significance. In relation to the last one, we can say that is possible to be physiological apoptosis in deteriorated neurons death which cannot make strong connections and pathological apoptosis because of stress via, namely, HPA axis.

  4. Metformin induces apoptosis of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)


    AIM: To assess the role and mechanism of mefformin in inducing apoptosis of pancreatic cancer cells. METHODS: The human pancreatic cancer cell lines ASPC-1, BxPc-3, PANC-1 and SW1990 were exposed to mefformin. The inhibition of cell proliferation and colony formation via apoptosis induction and S phase arrest in pancreatic cancer cell lines of mefformin was tested.RESULTS: In each pancreatic cancer cell line tested, metformin inhibited cell proliferation in a dose dependent manner in MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assays). Flow cytometric analysis showed that metformin reduced the number of cells in G1 and increased the percentage of cells in S phase as well as the apoptotic fraction. Enzymelinked immunosorbent assay (EUSA) showed that metformin induced apaptosis in all pancreatic cancer cell lines. In Western blot studies, metformin induced oly-ADP-ribose polymerase(PARP) cleavage (an indicator of aspase activation) in all pancreatic cancer cell lines. The general caspase inhibitor (VAD-fmk) completely abolished metformin-induced PARP cleavage and apoptosis in ASPC-1 BxPc-3 and PANC-1, the caspase-8 specific inhibitor (IETD-fmk) and the caspase-9 specific inhibitor (LEHD-fmk) only partially abrogated metformin-induced apoptosis and PARP cleavage in BxPc-3 and PANC-1 cells. We also observed that metformin treatment ramatically reduced epidermal growth factor receptor (EGFR) and phosphorylated mitogen activated protein kinase (P-MAPK) in both a time- and dose-dependent manner in all cell lines tested.CONCLUSION: Metformin significantly inhibits cell proliferation and apoptosis in all pancreatic cell lines. And the metformin-induced apoptosis is associated with PARP leavage, activation of caspase-3, -8, and -9 in a time- and dose-dependent manner. Hence, both caspase-8 and -9-initiated apoptotic signaling pathways contribute to metforrnin-induced apoptosis in pancreatic cell lines.

  5. Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion

    Directory of Open Access Journals (Sweden)

    Lijuan Han


    Full Text Available Abstract Background Somatic calreticulin (CALR, Janus kinase 2 (JAK2, and thrombopoietin receptor (MPL mutations essentially show mutual exclusion in myeloproliferative neoplasms (MPN, suggesting that they activate common oncogenic pathways. Recent data have shown that MPL function is essential for CALR mutant-driven MPN. However, the exact role and the mechanisms of action of CALR mutants have not been fully elucidated. Methods The murine myeloid cell line 32D and human HL60 cells overexpressing the most frequent CALR type 1 and type 2 frameshift mutants were generated to analyze the first steps of cellular transformation, in the presence and absence of MPL expression. Furthermore, mutant CALR protein stability and secretion were examined using brefeldin A, MG132, spautin-1, and tunicamycin treatment. Results The present study demonstrates that the expression of endogenous Mpl, CD41, and the key megakaryocytic transcription factor NF-E2 is stimulated by type 1 and type 2 CALR mutants, even in the absence of exogenous MPL. Mutant CALR expressing 32D cells spontaneously acquired cytokine independence, and this was associated with increased Mpl mRNA expression, CD41, and NF-E2 protein as well as constitutive activation of downstream signaling and response to JAK inhibitor treatment. Exogenous expression of MPL led to constitutive activation of STAT3 and 5, ERK1/2, and AKT, cytokine-independent growth, and reduction of apoptosis similar to the effects seen in the spontaneously outgrown cells. We observed low CALR-mutant protein amounts in cellular lysates of stably transduced cells, and this was due to accelerated protein degradation that occurred independently from the ubiquitin-proteasome system as well as autophagy. CALR-mutant degradation was attenuated by MPL expression. Interestingly, we found high levels of mutated CALR and loss of downstream signaling after blockage of the secretory pathway and protein glycosylation. Conclusions These

  6. Cationic amino acid transporter 2 enhances innate immunity during Helicobacter pylori infection.

    Directory of Open Access Journals (Sweden)

    Daniel P Barry

    Full Text Available Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2 is essential for transport of L-arginine (L-Arg into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO produced from inducible NO synthase (iNOS, or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2(-/- mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2(-/- mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2(-/- mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection.

  7. NMR exposure sensitizes tumor cells to apoptosis. (United States)

    Ghibelli, L; Cerella, C; Cordisco, S; Clavarino, G; Marazzi, S; De Nicola, M; Nuccitelli, S; D'Alessio, M; Magrini, A; Bergamaschi, A; Guerrisi, V; Porfiri, L M


    NMR technology has dramatically contributed to the revolution of image diagnostic. NMR apparatuses use combinations of microwaves over a homogeneous strong (1 Tesla) static magnetic field. We had previously shown that low intensity (0.3-66 mT) static magnetic fields deeply affect apoptosis in a Ca2+ dependent fashion (Fanelli et al., 1999 FASEBJ., 13;95-102). The rationale of the present study is to examine whether exposure to the static magnetic fields of NMR can affect apoptosis induced on reporter tumor cells of haematopoietic origin. The impressive result was the strong increase (1.8-2.5 fold) of damage-induced apoptosis by NMR. This potentiation is due to cytosolic Ca2+ overload consequent to NMR-promoted Ca2+ influx, since it is prevented by intracellular (BAPTA-AM) and extracellular (EGTA) Ca2+ chelation or by inhibition of plasma membrane L-type Ca2+ channels. Three-days follow up of treated cultures shows that NMR decrease long term cell survival, thus increasing the efficiency of cytocidal treatments. Importantly, mononuclear white blood cells are not sensitised to apoptosis by NMR, showing that NMR may increase the differential cytotoxicity of antitumor drugs on tumor vs normal cells. This strong, differential potentiating effect of NMR on tumor cell apoptosis may have important implications, being in fact a possible adjuvant for antitumor therapies.

  8. Apoptosis of beta cells in diabetes mellitus. (United States)

    Anuradha, Rachakatla; Saraswati, Mudigonda; Kumar, Kishore G; Rani, Surekha H


    Diabetes mellitus is a multifactorial metabolic disorder characterized by hyperglycemia. Apoptosis in beta cells has been observed in response to diverse stimuli, such as glucose, cytokines, free fatty acids, leptin, and sulfonylureas, leading to the activation of polyol, hexosamine, and diacylglycerol/protein kinase-C (DAG/PKC) pathways that mediate oxidative and nitrosative stress causing the release of different cytokines. Cytokines induce the expression of Fas and tumor necrosis factor-alpha (TNF-α) by activating the transcription factor, nuclear factor-κb, and signal transducer and activator of transcription 1 (STAT-1) in the β cells in the extrinsic pathway of apoptosis. Cytokines produced in beta cells also induce proapoptotic members of the intrinsic pathway of apoptosis. The genetic alterations in apoptosis signaling machinery and the pathogenesis of diabetes include Fas, FasL, Akt, caspases, calpain-10, and phosphatase and tensin homolog (Pten). The other gene products that are involved in diabetes are nitric oxide synthase-2 (NOS2), small ubiquitin-like modifier (SUMO), apolipoprotein CIII (ApoCIII), forkhead box protein O1 (FOXO1), and Kruppel-like zinc finger protein Gli-similar 3 (GLIS3). The gene products having antiapoptotic nature are Bcl-2 and Bcl-XL. Epigenetic mechanisms play an important role in type I and type II diabetes. Further studies on the apoptotic genes and gene products in diabetics may be helpful in pharmacogenomics and individualized treatment along with antioxidants targeting apoptosis in diabetes.

  9. Measuring Apoptosis by Microscopy and Flow Cytometry. (United States)

    Hollville, Emilie; Martin, Seamus J


    Apoptosis is a mode of programmed cell death that plays an important role during development and in the maintenance of tissue homeostasis. Numerous physiological as well as pathological stimuli trigger apoptosis such as engagement of Fas, TRAIL, or TNF receptors, growth factor deprivation, hypoxia, or exposure to cytotoxic drugs. Apoptosis is coordinated from within by members of the caspase family of cysteine proteases that, upon activation, trigger a series of morphological changes including cell shrinkage, extensive plasma membrane blebbing, chromatin condensation, DNA hydrolysis, and nuclear fragmentation. These dramatic structural and biochemical alterations result not only in the controlled dismantling of the cell, but also in the efficient recognition and removal of apoptotic cells by phagocytes. Necrosis, which is typically nonprogrammed or imposed upon the cell by overwhelming membrane or organelle damage, is characterized by rapid plasma membrane rupture followed by organelle and cell swelling. Necrosis is often provoked by infectious agents or a severe departure from physiological conditions. This unit describes protocols for the measurement of apoptosis and for distinguishing apoptosis from necrosis.

  10. Hydration of cations: a key to understanding of specific cation effects on aggregation behaviors of PEO-PPO-PEO triblock copolymers. (United States)

    Lutter, Jacob C; Wu, Tsung-yu; Zhang, Yanjie


    This work reports results from the interactions of a series of monovalent and divalent cations with a triblock copolymer, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO). Phase transition temperatures of the polymer in the presence of chloride salts with six monovalent and eight divalent cations were measured using an automated melting point apparatus. The polymer undergoes a two-step phase transition, consisting of micellization of the polymer followed by aggregation of the micelles, in the presence of all the salts studied herein. The results suggest that hydration of cations plays a key role in determining the interactions between the cations and the polymer. The modulation of the phase transition temperature of the polymer by cations can be explained as a balance between three interactions: direct binding of cations to the oxygen in the polymer chains, cations sharing one water molecule with the polymer in their hydration layer, and cations interacting with the polymer via two water molecules. Monovalent cations Na(+), K(+), Rb(+), and Cs(+) do not bind to the polymer, while Li(+) and NH4(+) and all the divalent cations investigated including Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), and Cd(2+) bind to the polymer. The effects of the cations correlate well with their hydration thermodynamic properties. Mechanisms for cation-polymer interactions are discussed.

  11. Sustained release of hepatocyte growth factor by cationic self-assembling peptide/heparin hybrid hydrogel improves β-cell survival and function through modulating inflammatory response (United States)

    Liu, Shuyun; Zhang, Lanlan; Cheng, Jingqiu; Lu, Yanrong; Liu, Jingping


    Inflammatory response is a major cause of grafts dysfunction in islet transplantation. Hepatocyte growth factor (HGF) had shown anti-inflammatory activity in multiple diseases. In this study, we aim to deliver HGF by self-assembling peptide/heparin (SAP/Hep) hybrid gel to protect β-cell from inflammatory injury. The morphological and slow release properties of SAPs were analyzed. Rat INS-1 β-cell line was treated with tumor necrosis factor α in vitro and transplanted into rat kidney capsule in vivo, and the viability, apoptosis, function, and inflammation of β-cells were evaluated. Cationic KLD1R and KLD2R self-assembled to nanofiber hydrogel, which showed higher binding affinity for Hep and HGF because of electrostatic interaction. Slow release of HGF from cationic SAP/Hep gel is a two-step mechanism involving binding affinity with Hep and molecular diffusion. In vitro and in vivo results showed that HGF-loaded KLD2R/Hep gel promoted β-cell survival and insulin secretion, and inhibited cell apoptosis, cytokine release, T-cell infiltration, and activation of NFκB/p38 MAPK pathways in β-cells. This study suggested that SAP/Hep gel is a promising carrier for local delivery of bioactive proteins in islet transplantation. PMID:27729786

  12. Endocytosis of cationized ferritin by coated vesicles of soybean protoplasts. (United States)

    Tanchak, M A; Griffing, L R; Mersey, B G; Fowke, L C


    Soybean (Glycine max (L.) Merr.) protoplasts have been surface-labelled with cationized ferritin, and the fate of the label has been followed ultrastructurally. Endocytosis of the label occurs via the coated-membrane system. The pathway followed by the label, once it has been taken into the interior of the protoplast, appears to be similar to that found during receptor-mediated endocytosis in animal cells. Cationized ferritin is first seen in coated vesicles but rapidly appears in smooth vesicles. Labelled, partially coated vesicles are occasionally observed, indicating that the smooth vesicles may have arisen by the uncoating of coated vesicles. Structures which eventually become labelled with cationized ferritin include multivesicular bodies, dictyosomes, large smooth vesicles, and a system of partially coated reticula.

  13. Infrared Spectroscopic Investigation on CH Bond Acidity in Cationic Alkanes (United States)

    Matsuda, Yoshiyuki; Xie, Min; Fujii, Asuka


    We have demonstrated large enhancements of CH bond acidities in alcohol, ether, and amine cations through infrared predissociation spectroscopy based on the vacuum ultraviolet photoionization detection. In this study, we investigate for the cationic alkanes (pentane, hexane, and heptane) with different alkyl chain lengths. The σ electrons are ejected in the ionization of alkanes, while nonbonding electrons are ejected in ionization of alcohols, ethers, and amines. Nevertheless, the acidity enhancements of CH in these cationic alkanes have also been demonstrated by infrared spectroscopy. The correlations of their CH bond acidities with the alkyl chain lengths as well as the mechanisms of their acidity enhancements will be discussed by comparison of infrared spectra and theoretical calculations.

  14. Radical Addition to Iminium Ions and Cationic Heterocycles

    Directory of Open Access Journals (Sweden)

    Johannes Tauber


    Full Text Available Carbon-centered radicals represent highly useful reactive intermediates in organic synthesis. Their nucleophilic character is reflected by fast additions to electron deficient C=X double bonds as present in iminium ions or cationic heterocycles. This review covers diverse reactions of preformed or in situ-generated cationic substrates with various types of C-radicals, including alkyl, alkoxyalkyl, trifluoromethyl, aryl, acyl, carbamoyl, and alkoxycarbonyl species. Despite its high reactivity, the strong interaction of the radical’s SOMO with the LUMO of the cation frequently results in a high regioselectivity. Intra- and intermolecular processes such as the Minisci reaction, the Porta reaction, and the Knabe rearrangement will be discussed along with transition metal and photoredox catalysis or electrochemical methods to generate the odd-electron species.

  15. A covalent attraction between two molecular cation TTF·~+

    Institute of Scientific and Technical Information of China (English)

    WANG FangFang; WANG Yi; WANG BingQiang; WANG YinFeng; MA Fang; Li ZhiRu


    The optimized structure of the tetrathiafulvalence radical-cation dimer (TTF·~+-TTF·~+) with all-real frequencies is obtained at MP2/6-311G level,which exhibits the attraction between two molecular cation TTF·~+.The new attraction interaction is a 20-center-2-electron intermolecular covalent π/π bonding with a telescope shape.The covalent π/π bonding has the bonding energy of about-21 kcal·mol~(-1) and is concealed by the Coulombic repulsion between two TTF·~+ cations.This intermolecular covalent attraction also influences the structure of the TTF·~+ subunit,I.e.,its molecular plane is bent by an angle θ=5.6°.This work provides new knowledge on intermolecular interaction.

  16. A covalent attraction between two molecular cation TTF·~+

    Institute of Scientific and Technical Information of China (English)


    The optimized structure of the tetrathiafulvalence radical-cation dimer(TTF·+-TTF·+) with all-real frequencies is obtained at MP2/6-311G level,which exhibits the attraction between two molecular cation TTF·+.The new attraction interaction is a 20-center-2-electron intermolecular covalent π /π bonding with a telescope shape.The covalent π /π bonding has the bonding energy of about -21 kcal·mol-1 and is concealed by the Coulombic repulsion between two TTF·+ cations.This intermolecular covalent attraction also influences the structure of the TTF·+ subunit,i.e.,its molecular plane is bent by an angle θ=5.6°.This work provides new knowledge on intermolecular interaction.

  17. Cationic lipids delay the transfer of plasmid DNA to lysosomes. (United States)

    Wattiaux, R; Jadot, M; Laurent, N; Dubois, F; Wattiaux-De Coninck, S


    Plasmid 35S DNA, naked or associated with different cationic lipid preparations was injected to rats. Subcellular distribution of radioactivity in the liver one hour after injection, was established by centrifugation methods. Results show that at that time, 35S DNA has reached lysosomes. On the contrary, when 35S DNA was complexed with lipids, radioactivity remains located in organelles whose distribution after differential and isopycnic centrifugation, is clearly distinct from that of arylsulfatase, lysosome marker enzyme. Injection of Triton WR 1339, a specific density perturbant of lysosomes, four days before 35S DNA injection causes a density decrease of radioactivity bearing structures, apparent one hour after naked 35S DNA injection but visible only after more than five hours, when 35S DNA associated with a cationic lipid is injected. These observations show that cationic lipids delay the transfer to lysosomes, of plasmid DNA taken up by the liver.

  18. Surface hopping investigation of the relaxation dynamics in radical cations

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, Mariana; Matsika, Spiridoula, E-mail: [Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States); Weinacht, Thomas [Department of Physics, Stony Brook University, Stony Brook, New York 11794 (United States)


    Ionization processes can lead to the formation of radical cations with population in several ionic states. In this study, we examine the dynamics of three radical cations starting from an excited ionic state using trajectory surface hopping dynamics in combination with multiconfigurational electronic structure methods. The efficiency of relaxation to the ground state is examined in an effort to understand better whether fragmentation of cations is likely to occur directly on excited states or after relaxation to the ground state. The results on cyclohexadiene, hexatriene, and uracil indicate that relaxation to the ground ionic state is very fast in these systems, while fragmentation before relaxation is rare. Ultrafast relaxation is facilitated by the close proximity of electronic states and the presence of two- and three-state conical intersections. Examining the properties of the systems in the Franck-Condon region can give some insight into the subsequent dynamics.

  19. Theoretical Studies on the Interactions of Cations with Diazine

    Institute of Scientific and Technical Information of China (English)

    CHEN Xing; WU Wen-Peng; ZHANG Jing-Lai; CAO Ze-Xing


    Density functional theory and MP2 calculations have been used to determine the geometries, stabilities, binding energies, and dissociative properties of cation-diazine complexes Mn+-C4H4N2 (Mn+ = Li+, B+, Al+, Be2+, Mg2+, Ca2+). The calculated results indicate that most complexes are stable except the π complexes of Ca2+-pyridazine, Ca2+-pyrazine, Al+-pyrimidine and Al+-pyrimidine. The σ complexes are generally much more stable than their π counterparts. Among the π complexes, the cation-pyrazine π complexes have slightly higher stability. The nature of the ion-molecule interactions has been discussed by the natural bond orbital analysis and frontier molecular orbital interactions. In these σ complexes, there is stronger covalent interaction between B+ and diazine. In the selected π complexes, B+ and Be2+ have stronger covalent interaction with diazine, while the other cations mainly have electrostatic interaction with diazine.

  20. Solubility and transport of cationic and anionic patterned nanoparticles (United States)

    Su, Jiaye; Guo, Hongxia; Olvera de La Cruz, Monica


    Diffusion and transport of nanoparticles (NPs) though nanochannels is important for desalination, drug delivery, and biomedicine. Their surface composition dictate their efficiency separating them by reverse osmosis, delivering into into cells, as well as their toxicity. We analyze bulk diffusion and transport through nanochannels of NPs with different hydrophobic-hydrophilic patterns achieved by coating a fraction of the NP sites with positive or negative charges via explicit solvent molecular dynamics simulations. The cationic NPs are more affected by the patterns, less water soluble, and have higher diffusion constants and fluxes than their anionic NPs counterparts. The NP-water interaction dependence on surface pattern and field strength explains these observations. For equivalent patterns, anionic NPs solubilize more than cationic NPs since the Coulomb interaction of free anionic NPs, which are much stronger than hydrophobic NP-water interactions, are about twice that of cationic NPs.

  1. Cationization of Alpha-Cellulose to Develop New Sustainable Products

    Directory of Open Access Journals (Sweden)

    Ana Moral


    Full Text Available Papermaking has been using high quantities of retention agents, mainly cationic substances and organic compounds such as polyamines. The addition of these agents is related to economic and environmental issues, increasing contamination of the effluents. The aim of this work is to develop a cationic polymer for papermaking purposes based on the utilization of alpha-cellulose. The cationization of mercerized alpha-cellulose with 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHPTAC is governed by a pseudo-second-order reaction. The initial amorphous fraction of cellulose is reacted with CHPTAC until the equilibrium value of nitrogen substitution is reached. Nitrogen is incorporated as a quaternary ammonium group in the polymer. Also, the kinetic constant increased with decreasing crystallinity index, showing the importance of the previous alkalization stage. The use of modified natural polysaccharides is a sustainable alternative to synthetic, nonbiodegradable polyelectrolytes and thus is desirable with a view to developing new products and new processes.

  2. Comparison of Cation Adsorption by Isostructural Rutile and Cassiterite

    Energy Technology Data Exchange (ETDEWEB)

    Machesky, Michael L. [Illinois State Water Survey, Champaign, IL; Wesolowski, David J [ORNL; Rosenqvist, Jorgen K [ORNL; Predota, M. [University of South Bohemia, Czech Republic; Vlcek, Lukas [ORNL; Ridley, Moira K [ORNL; Kohli, V [Oak Ridge National Laboratory (ORNL); Zhang, Zhan [Argonne National Laboratory (ANL); Fenter, Paul [Argonne National Laboratory (ANL); Cummings, Peter T [ORNL; Lvov, Serguei N. [Pennsylvania State University; Fedkin, Mark V [ORNL; Rodriguez-Santiago, V [Oak Ridge National Laboratory (ORNL); Kubicki, James D. [Pennsylvania State University; Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia


    Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) Crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl2 in NaCl, and trace ZnCl2 in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite ( bulk 11). Inner-sphere adsorption is also significant for Rb and Na on neutral surfaces, whereas Cl- binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb , Na , and especially Sr2 are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn2 are very steep but similar for both oxides, reflective of Zn2 hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the cassiterite (110) surface. Hence, their removal upon inner-sphere cation binding is relatively more

  3. Comparison of cation adsorption by isostructural rutile and cassiterite. (United States)

    Machesky, Michael; Wesolowski, David; Rosenqvist, Jörgen; Předota, Milan; Vlcek, Lukas; Ridley, Moira; Kohli, Vaibhav; Zhang, Zhan; Fenter, Paul; Cummings, Peter; Lvov, Serguei; Fedkin, Mark; Rodriguez-Santiago, Victor; Kubicki, James; Bandura, Andrei


    Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl(2) in NaCl, and trace ZnCl(2) in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite (ε(bulk) ≈ 11). Inner-sphere adsorption is also significant for Rb(+) and Na(+) on neutral surfaces, whereas Cl(-) binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb(+), Na(+), and especially Sr(2+) are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn(2+) are very steep but similar for both oxides, reflective of Zn(2+) hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH(+) on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the cassiterite (110) surface. Hence, their removal upon inner

  4. Apoptosis in Drosophila: which role for mitochondria? (United States)

    Clavier, Amandine; Rincheval-Arnold, Aurore; Colin, Jessie; Mignotte, Bernard; Guénal, Isabelle


    It is now well established that the mitochondrion is a central regulator of mammalian cell apoptosis. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, mainly because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and cell death in Drosophila occurs at the mitochondrial level. Numerous proteins, including RHG proteins and proteins of the Bcl-2 family that are key regulators of Drosophila apoptosis, constitutively or transiently localize in mitochondria. These proteins participate in the cell death process at different levels such as degradation of Diap1, a Drosophila IAP, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. Here, we review these mitochondrial events that might have their counterpart in human.

  5. Death penalty for keratinocytes: apoptosis versus cornification. (United States)

    Lippens, S; Denecker, G; Ovaere, P; Vandenabeele, P; Declercq, W


    Homeostasis implies a balance between cell growth and cell death. This balance is essential for the development and maintenance of multicellular organisms. Homeostasis is controlled by several mechanisms including apoptosis, a process by which cells condemned to death are completely eliminated. However, in some cases, total destruction and removal of dead cells is not desirable, as when they fulfil a specific function such as formation of the skin barrier provided by corneocytes, also known as terminally differentiated keratinocytes. In this case, programmed cell death results in accumulation of functional cell corpses. Previously, this process has been associated with apoptotic cell death. In this overview, we discuss differences and similarities in the molecular regulation of epidermal programmed cell death and apoptosis. We conclude that despite earlier confusion, apoptosis and cornification occur through distinct molecular pathways, and that possibly antiapoptotic mechanisms are implicated in the terminal differentiation of keratinocytes.

  6. Spermine triggers the activation of caspase-3 in a cell-free model of apoptosis. (United States)

    Stefanelli, C; Bonavita, F; Stanic', I; Pignatti, C; Flamigni, F; Guarnieri, C; Caldarera, C M


    Polyamines are ubiquitous organic cations required for cell proliferation. However, some evidence suggested that their excessive accumulation can induce apoptosis. We show here that, in a post-nuclear extract from U937 cells, the addition of spermine triggers the death program, represented by cytochrome c exit from mitochondria, the dATP-dependent processing of pro-caspase-3 and the onset of caspase activity. Spermine is more effective than spermidine, whereas putrescine has no effect. Polyamine acetylation abolishes their pro-apoptotic power. These data demonstrate a direct mechanism responsible for polyamine toxicity and also suggest that an excessive elevation of free polyamines could be involved in the transduction of a death signal.

  7. Determination of Cationic Surfactant by Laser Thermal Lens Spectrometry

    Institute of Scientific and Technical Information of China (English)


    A novel method for the determination of cationic surfactant by laser thermal lens spectrometry was developed. It was based on the reaction between 1-hydroxy-2-(5-nitro-2-Pyri-dylazo)-8-aminonaphthalene-3,6-disulfonic acid (5-NO2-PAH) and cationic surfactant to form 1:2 ionic association complex in a weakly basic medium (pH 9.44). The determination conditions and the mechanism were discussed. The method has been applied to the analysis of wastewater and moat water samples.

  8. Cationically polymerizable monomers derived from renewable sources. Annual performance report

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.V.


    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year`s research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  9. Dilatometric, refractometric and viscometric study of lysozyme-cation interaction. (United States)

    Abad, C; Trueba, M; Campos, A; Figueruelo, J E


    The interaction between hen egg-white lysozyme and Cu(II) or Co(II) cations has been studied by dilatometry, equilibrium dialysis-differential refractometry and viscometry at different metal cation concentrations. Delta V isotherms in copper and cobalt solutions have been obtained from dilatometry. Preferential adsorption parameters and specific viscosity have been determined from refractometric and viscosimetric measurements. It has been observed that this interaction produces structural alterations in lysozyme. The magnitude of these conformational changes depends on the metal ion and protein concentration. The results obtained using the three techniques are in good agreement.


    Institute of Scientific and Technical Information of China (English)

    JinWang; KefuChen; FushanChent; ChuanshanZhao; RendangYang


    Cationic polyacrylamide (CPAM) which was prepared through complex initiation system in laboratory and cationic polyacrylamide (Ciba) were used asretention and drainage aids for bleached wheat strawpulp. The influences of (polydiallyldimethlammonium chloride) PDADMAC and PDADMAC/CPAMon Zeta potential and drainability of pulp was investigated. The dual drainage and retention systems suchas CPAM/modified bentonite, CPAM/colloidal SiO2,as well as their comparison between the two systemswere discussed, and the optimal dosages of additiveswere determined. The results showed that: the complex systems can further enhance filler retention,drainability of pulp and strength properties of paper.

  11. Dimerization of two novel apoptosis-inducing proteins and its function in regulating cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    刘青珍; 甘淼; 齐义鹏; 李凌云; 齐兵


    Asy (apoptosis/saibousi Yutsudo) is a novel apoptosis-inducing gene found in 1999 by Yutsudo group in Japan. In 2000, Qi Bing et al. cloned another novel gene, named hap (homologue of ASY protein), which encoded the ASY interact ing protein, from human lung cell line (WI-38) cDNA library by using yeast two-h ybrid system. It has been proved that ASY formed homodimer in yeast and human ce ll line, ASY and HAP formed heterodimer in yeast cells, and both induced cell ap optosis in human tumor cell lines Sao2 and CGL4. This paper showed that HAP coul d form homodimer in yeast cells by yeast two-hybrid system; HAP and ASY could pr oduce heterodimer in human cell line by cross-immunoprecipitation test; by using apoptosis-testing technologies such as AnnexinV, TUNEL, DNA ladder and Flow Cyt ometry, the cell apoptosis in human normal or tumor cell lines transfected with hap or asy individually or cotransfected by the both was qualified or quantified . It was firstly demonstrated that ASY or HAP induced cell apoptosis not only in human tumor cell lines, but also in human normal cell lines. Moreover, we prove d that the heterodimer between ASY and HAP decreased apoptosis-inducing activity from the homodimer of ASY or HAP. It revealed that by choosing to form heterodi mer or homodimer between ASY and / or HAP is an important mechanism of regulatin g apoptosis in human cell lines.

  12. The relationship between prostate cancer and apoptosis

    Directory of Open Access Journals (Sweden)

    Zeki Arı


    Full Text Available Prostate is the largest accessory gland of male genitaltract and the beginning part of male urethra. Prostatecancer is the most common internal malignancy inmales. Prostate cancer is ranked as second in death fromto cancer. A malignant disease is known as uncontrolledproliferation of cells. Beside excessive proliferation, decreasedapoptosis was also observed contribute to thedevelopment of malignancy. Apoptosis (programmedcell death plays an important role in many diseases andfree radical damage, triggers by cytokines and inflammatoryinjury. This review has been prepared to show theinteresting link between apoptosis and cancer and toprovide collective source to who want to do research onthis subject. J Clin Exp Invest 2011; 2(1: 124-131

  13. Stress response and apoptosis in pro- and antiinflammatory macrophages. (United States)

    Malyshev, I Yu; Kruglov, S V; Bakhtina, L Yu; Malysheva, E V; Zubin, M; Norkin, M


    We showed that stress response and apoptosis in macrophages depend on the phenotype of their secretory activity and specific biological and physical characteristics of the factor inducing stress-response or apoptosis.

  14. Thiol redox state in apoptosis : physiological and toxicant modulation


    Nobel, Stefan


    Apoptosis is a physiological type of cell death used to regulate the number of cells during development and im adult organs. However, apoptosis can also be inappropriately activated or inhibited under pathological conditions. One of the critical mechanisms of apoptosis is the activity of cysteine proteases belonging to the caspase family. The present study was designed to investigate the role of oxidative stress in apoptosis and how the apoptotic death program might be regul...

  15. Alloyed copper chalcogenide nanoplatelets via partial cation exchange reactions. (United States)

    Lesnyak, Vladimir; George, Chandramohan; Genovese, Alessandro; Prato, Mirko; Casu, Alberto; Ayyappan, S; Scarpellini, Alice; Manna, Liberato


    We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide-sulfide (CZSeS), copper tin selenide-sulfide (CTSeS), and copper zinc tin selenide-sulfide (CZTSeS) nanoplatelets (NPLs) (∼20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide-sulfide (Cu2-xSeyS1-y) platelet shaped nanocrystals via the colloidal route, followed by an in situ cation exchange reaction. During the latter step, the cation exchange proceeded through a partial replacement of copper ions by zinc or/and tin cations, yielding homogeneously alloyed nanocrystals with platelet shape. Overall, the chemical composition of the alloyed nanocrystals can easily be controlled by the amount of precursors that contain cations of interest (e.g., Zn, Sn) to be incorporated/alloyed. We have also optimized the reaction conditions that allow a complete preservation of the size, morphology, and crystal structure as that of the starting Cu2-xSeyS1-y NPLs. The alloyed NPLs were characterized by optical spectroscopy (UV-vis-NIR) and cyclic voltammetry (CV), which demonstrated tunability of their light absorption characteristics as well as their electrochemical band gaps.

  16. Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals. (United States)

    Lesnyak, Vladimir; Brescia, Rosaria; Messina, Gabriele C; Manna, Liberato


    We have investigated cation exchange reactions in copper selenide nanocrystals using two different divalent ions as guest cations (Zn(2+) and Cd(2+)) and comparing the reactivity of close to stoichiometric (that is, Cu2Se) nanocrystals with that of nonstoichiometric (Cu(2-x)Se) nanocrystals, to gain insights into the mechanism of cation exchange at the nanoscale. We have found that the presence of a large density of copper vacancies significantly accelerated the exchange process at room temperature and corroborated vacancy diffusion as one of the main drivers in these reactions. Partially exchanged samples exhibited Janus-like heterostructures made of immiscible domains sharing epitaxial interfaces. No alloy or core-shell structures were observed. The role of phosphines, like tri-n-octylphosphine, in these reactions, is multifaceted: besides acting as selective solvating ligands for Cu(+) ions exiting the nanoparticles during exchange, they also enable anion diffusion, by extracting an appreciable amount of selenium to the solution phase, which may further promote the exchange process. In reactions run at a higher temperature (150 °C), copper vacancies were quickly eliminated from the nanocrystals and major differences in Cu stoichiometries, as well as in reactivities, between the initial Cu2Se and Cu(2-x)Se samples were rapidly smoothed out. These experiments indicate that cation exchange, under the specific conditions of this work, is more efficient at room temperature than at higher temperature.

  17. Fusion Pore Diameter Regulation by Cations Modulating Local Membrane Anisotropy

    Directory of Open Access Journals (Sweden)

    Doron Kabaso


    Full Text Available The fusion pore is an aqueous channel that is formed upon the fusion of the vesicle membrane with the plasma membrane. Once the pore is open, it may close again (transient fusion or widen completely (full fusion to permit vesicle cargo discharge. While repetitive transient fusion pore openings of the vesicle with the plasma membrane have been observed in the absence of stimulation, their frequency can be further increased using a cAMP-increasing agent that drives the opening of nonspecific cation channels. Our model hypothesis is that the openings and closings of the fusion pore are driven by changes in the local concentration of cations in the connected vesicle. The proposed mechanism of fusion pore dynamics is considered as follows: when the fusion pore is closed or is extremely narrow, the accumulation of cations in the vesicle (increased cation concentration likely leads to lipid demixing at the fusion pore. This process may affect local membrane anisotropy, which reduces the spontaneous curvature and thus leads to the opening of the fusion pore. Based on the theory of membrane elasticity, we used a continuum model to explain the rhythmic opening and closing of the fusion pore.

  18. Cationic PAMAM dendrimers aggressively initiate blood clot formation. (United States)

    Jones, Clinton F; Campbell, Robert A; Brooks, Amanda E; Assemi, Shoeleh; Tadjiki, Soheyl; Thiagarajan, Giridhar; Mulcock, Cheyanne; Weyrich, Andrew S; Brooks, Benjamin D; Ghandehari, Hamidreza; Grainger, David W


    Poly(amidoamine) (PAMAM) dendrimers are increasingly studied as model nanoparticles for a variety of biomedical applications, notably in systemic administrations. However, with respect to blood-contacting applications, amine-terminated dendrimers have recently been shown to activate platelets and cause a fatal, disseminated intravascular coagulation (DIC)-like condition in mice and rats. We here demonstrate that, upon addition to blood, cationic G7 PAMAM dendrimers induce fibrinogen aggregation, which may contribute to the in vivo DIC-like phenomenon. We demonstrate that amine-terminated dendrimers act directly on fibrinogen in a thrombin-independent manner to generate dense, high-molecular-weight fibrinogen aggregates with minimal fibrin fibril formation. In addition, we hypothesize this clot-like behavior is likely mediated by electrostatic interactions between the densely charged cationic dendrimer surface and negatively charged fibrinogen domains. Interestingly, cationic dendrimers also induced aggregation of albumin, suggesting that many negatively charged blood proteins may be affected by cationic dendrimers. To investigate this further, zebrafish embryos were employed to more specifically determine the speed of this phenomenon and the pathway- and dose-dependency of the resulting vascular occlusion phenotype. These novel findings show that G7 PAMAM dendrimers significantly and adversely impact many blood components to produce rapid coagulation and strongly suggest that these effects are independent of classic coagulation mechanisms. These results also strongly suggest the need to fully characterize amine-terminated PAMAM dendrimers in regard to their adverse effects on both coagulation and platelets, which may contribute to blood toxicity.

  19. Cation binding site of cytochrome c oxidase: progress report. (United States)

    Vygodina, Tatiana V; Kirichenko, Anna; Konstantinov, Alexander A


    Cytochrome c oxidase from bovine heart binds Ca(2+) reversibly at a specific Cation Binding Site located near the outer face of the mitochondrial membrane. Ca(2+) shifts the absorption spectrum of heme a, which allowed earlier the determination of the kinetic and equilibrium characteristics of the binding, and, as shown recently, the binding of calcium to the site inhibits cytochrome oxidase activity at low turnover rates of the enzyme [Vygodina, Т., Kirichenko, A., Konstantinov, A.A (2013). Direct Regulation of Cytochrome c Oxidase by Calcium Ions. PloS ONE 8, e74436]. This paper summarizes further progress in the studies of the Cation Binding Site in this group presenting the results to be reported at 18th EBEC Meeting in Lisbon, 2014. The paper revises specificity of the bovine oxidase Cation Binding Site for different cations, describes dependence of the Ca(2+)-induced inhibition on turnover rate of the enzyme and reports very high affinity binding of calcium with the "slow" form of cytochrome oxidase. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.

  20. Structure and Reactivity of the Cysteine Methyl Ester Radical Cation

    NARCIS (Netherlands)

    Osburn, S.; Steill, J. D.; Oomens, J.; O' Hair, R. A. J.; Van Stipdonk, M.; Ryzhov, V.


    The structure and reactivity of the cysteine methyl ester radical cation, CysOMe(center dot+), have been examined in the gas phase using a combination of experiment and density functional theory (DFT) calculations. CysOMe(center dot+) undergoes rapid ion molecule reactions with dimethyl disulfide, a

  1. [Synthesis of functionalized cyanines. Fluorescence properties following complexation of cations]. (United States)

    Mazières, M R; Duprat, C; Sutra, E; Lamandé, L; Bergon, M; Bellan, J; Wolf, J G; Roques, C


    The ionophoric properties of podands containing dioxazaphosphocane moieties linked by inactive spacers were studied. To increase the detection sensibility of these compounds we introduced a cyanine as spacer. Fluorescence analysis demonstrated the interest of cyanines as active spacers since the complexation by cations as Ca2+ and Mg2+ gives an enhancement of the emission intensity.

  2. Metal Cations in G-Quadruplex Folding and Stability (United States)

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra


    This review is focused on the structural and physico-chemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-Quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.

  3. Denatured Thermodynamics of Proteins in Weak Cation-exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    LI Rong; CHEN Guo-Liang


    The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appearance of the thermal transition temperature indicates that the conformations of the proteins are destroyed seriously. The thermal behavior of the proteins in weak cation-exchange and hydrophobic interaction chromatographies were compared in a wide temperature range. It was found that the proteins have a higher thermostability in a weak cation-exchange chromatography system. The thermodynamic parameters(ΔH0, ΔS0) of those proteins were determined by means of Vant Hoff relationship(lnk-1/T). According to standard entropy change(ΔS0), the conformational change of the proteins was judged in the chromatographic process. The linear relationships between ΔH0 and ΔS0 can be used to evaluate "compensation temperature"(β) at the protein denaturation and identify the identity of the protein retention mechanism in weak cation-exchange chromatography.

  4. Synthesis and Cation Complexation of Lariat Calix[4 ] crowns

    Institute of Scientific and Technical Information of China (English)

    SHI Zheng-Wei; JIN Chuan-Ming; LU Guo-Yuan


    @@ Calixcrowns carrying bridging polyethyleneoxy moieties on the lower rim, which combine calixarene and crown ether in a single molecule, are a novel class of host compounds which have attracted increasing attention because of their increased ability for selective complexation of cations and neutral molecules compared with crown ethers or cal ixarenes.

  5. Two different cationic positions in Cu-SSZ-13? (United States)

    Hun Kwak, Ja; Zhu, Haiyang; Lee, Jong H; Peden, Charles H F; Szanyi, János


    H(2)-TPR and FTIR were used to characterize the nature of the Cu ions present in the Cu-SSZ-13 zeolite at different ion exchange levels. The results obtained are consistent with the presence of Cu ions at two distinct cationic positions in the SSZ-13 framework.

  6. Two different cationic positions in Cu-SSZ-13?

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ja Hun; Zhu, Haiyang; Lee, Jong H.; Peden, Charles HF; Szanyi, Janos


    H2-TPR and FTIR were used to characterize the Cu ions present in Cu-SSZ-13 zeolite at different ion exchange levels. The results obtained are consistent with the presence of Cu ions in two distinct cationic positions of the SSZ-13 framework.

  7. Interactions between liposomes and cations in aqueous solution. (United States)

    Ruso, Juan M; Besada, Lina; Martínez-Landeira, Pablo; Seoane, Laura; Prieto, Gerardo; Sarmiento, Félix


    An investigation on the dependence of electrophoretic mobilities of unilamellar vesicles of phosphatidylcholine-cholesterol-phosphatidylinositol (PC-Chol-PI) on the concentration of several cations with variations in the relation charge/radius in the range Na+, K+, Cs+, Mg2+, Ca2+, Ba2+, Al3+, and La3+ has been realized. Plots of zeta potential against ion concentration exhibit a maximum for all the cations under study, the position of the maximum is greatly affected by the charge of the ion. From the feature of these plots two phenomenon were observed: an initial binding of cations into the slipping plane for ion concentration below the maximum and a phenomenon of vesicle association for concentration above the maximum. To confirm these observations measurements on dynamic light scattering were performed to obtain the corresponding size distribution of the liposomes at different ion concentrations. Finally the ability of the Stern isotherm to describe the adsorption of the cations to vesicles was tested by two methods. The two main parameters of the theory: the total number of adsorption sites per unit area, N1, and the equilibrium constant, K; (and consequently the free energy of adsorption, deltaG0ads) were calculated for the different ions, showing good agreement. The equilibrium constants of adsorption have been found to obey a linear relationship with ion radius the slope of which decreases with the ion charge.

  8. New cation-exchange membranes for hyperfiltration processes

    NARCIS (Netherlands)

    Velden, van der P.M.; Smolders, C.A.


    A new route for the preparation of cation exchange membranes from polystyrene-polyisoprene-polystyrene (SIS) block copolymers has been studied, using N-chlorosulfonyl isocyanate. At temperatures of 0° to 20°C, N-chlorosulfonyl isocyanate reacts readily with the olefin group in polyisoprenes, resulti

  9. Predictive model of cationic surfactant binding to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Koopal, L.K.


    The humic substances (HS) have a high reactivity with other components in the natural environment. An important factor for the reactivity of HS is their negative charge. Cationic surfactants bind strongly to HS by electrostatic and specific interaction. Therefore, a surfactant binding model is devel

  10. Synthesis and Properties of Novel Cationic Maleic Diester Polymerizable Surfactants

    Institute of Scientific and Technical Information of China (English)


    Three new cationic polymerizable surfactants are synthesized by the reaction of alkylmaleic hemiester with glycidyltrimethylammonium chloride. Their structures are confirmed by 1H NMR, IR and elements analysis. The values of CMC and gCMC of these surfactants have been measured. One can obtain nearly monodisperse polystyrene latex by emulsion polymerization using the polymerizable surfactant.

  11. Gas-phase infrared photodissociation spectroscopy of cationic polyaromatic hydrocarbons

    NARCIS (Netherlands)

    Oomens, J.; van Roij, A. J. A.; Meijer, G.; von Helden, G.


    Infrared spectra of gas-phase cationic naphthalene, phenanthrene, anthracene, and pyrene are recorded in the 500-1600 cm(-1) range using multiphoton dissociation in an ion trap. Gas-phase polyaromatic hydrocarbons are photoionized by an excimer laser and stored in a quadrupole ion trap. Subsequent i

  12. Metal Cations in G-Quadruplex Folding and Stability (United States)

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra


    This review is focused on the structural and physicochemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location, and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy, and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in the presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm. PMID:27668212

  13. Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment. (United States)

    Smith, Robert L.; And Others


    Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)

  14. Planar Homotropenylium Cation : A Transition State with Reversed Aromaticity

    NARCIS (Netherlands)

    Gibson, Christopher M.; Havenith, Remco W. A.; Fowler, Patrick W.; Jenneskens, Leonardus W.


    In contrast to the equilibrium structure of the homoaromatic C-s homotropenylium cation, C8H9+ (1), which supports a pinched diatropic ring current, the C(2)v transition state (2) for inversion of the methylene bridge of 1 is antiaromatic and supports a two-lobe paratropic pi current, as detected by

  15. Cationic Organic/Inorganic Hybrids and Their Swelling Properties

    Institute of Scientific and Technical Information of China (English)

    E. S. Dragan; L. Ghimici; M. Cazacu


    @@ 1Introduction Specific properties of poly(dimethylsiloxanes), such as low glass transition temperature, low surface energy, good insulating properties, biological and chemical inertness, high diffusion coefficient of gases, make them very attractive for practical applications in the daily life. However, there is a great interest last time in the preparation of ionic organic/inorganic materials with new properties for new applications. Quaternary ammonium salt(QAS) groups included in siloxane copolymers could induce new interesting properties such as:permanent fungicidal and bactericidal properties, which make them very attractive as materials for sanitary applications, improved selectivity coefficients of the gas-separation membranes, ion-exchange properties and so forth. So far, QAS groups have been located in the side chain[1,2]. Our interest was focused on the preparation of some novel cationic polysiloxane copolymers containing QAS groups of both integral type and pendent type[3,4]. Our objectives for the present study concern the synthesis of some cationic organic/siloxane hybrid materials with swelling properties controlled by both the nature of cationic organic component and the ratio between the organic and inorganic counterparts. Such cationic hybrid materials could be of interest for the preparation of new stimuli-responsive hydrogels[5,6].

  16. Cation ordering and superstructures in natural layered double hydroxides. (United States)

    Krivovichev, Sergey V; Yakovenchuk, Victor N; Zolotarev, Andrey A; Ivanyuk, Gregory N; Pakhomovsky, Yakov A


    Layered double hydroxides (LDHs) constitute an important group of materials with many applications ranging from catalysis and absorption to carriers for drug delivery, DNA intercalation and carbon dioxide sequestration. The structures of LDHs are based upon double brucite-like hydroxide layers [M(2+)(n)M(3+)(m)(OH)(2(m+n)](m+), where M(2+) = Mg(2+), Fe(2+), Mn(2+), Zn(2+), etc.; M(3+) = Al(3+), Fe(3+), Cr(3+), Mn(3+), etc. Structural features of LDHs such as cation ordering, charge distribution and polytypism have an immediate influence upon their properties. However, all the structural studies on synthetic LDHs deal with powder samples that prevent elucidation of such fine details of structure architecture as formation of superstructures due to cation ordering. In contrast to synthetic materials, natural LDHs are known to form single crystals accessible to single-crystal X-ray diffraction analysis, which provides a unique possibility to investigate 3D cation ordering in LDHs that results in formation of complex superstructures, where 2D cation order is combined with a specific order of layer stacking (polytypism). Therefore LDH minerals provide an indispensable source of structural information for modeling of structures and processes happening in LDHs at the molecular and nanoscale levels.

  17. Cationic amphiphiles as delivery system for genes into eukaryotic cells

    NARCIS (Netherlands)

    Oberle, Volker; Zuhorn, Inge S.; Audouy, Sandrine; Bakowsky, Udo; Smisterová, Jarmila; Engberts, Jan B.F.N.; Hoekstra, Dick; Gregoriadis, G; McCormack, B


    Cationic liposomes, consisting of synthetic amphiphiles and a so-called helper lipid, rapidly form complexes with DNA, known as lipoplexes. When incubated with cells in culture, the DNA can be delivered into the cell and becomes expressed. Because of these properties, lipoplexes are considered a use

  18. Inward Cationic Diffusion and Percolation Transition in Glass-Ceramics

    DEFF Research Database (Denmark)

    Smedsklaer, Morten Mattrup; Yue, Yuanzheng; Mørup, Steen


    of crystallization. Below the critical value, the diffusion extent decreases only slightly with the degree of crystallization. No cationic diffusion is observed in the fully crystalline materials. The critical value might be associated with a percolation transition from an interconnected to a disconnected glass...

  19. Cationic starches on cellulose surfaces. A study of polyelectrolyte adsorption.

    NARCIS (Netherlands)

    Steeg, van de H.G.M.


    Cationic starches are used on a large scale in paper industry as wet-end additives. They improve dry strength. retention of fines and fillers, and drainage. Closure of the white water systems in the paper mills hase increased the concentration of detrimental substances. This might be the reason for

  20. Analysis of Adsorption, Ion Exchange, Thermodynamic Behaviour of Some Organic Cations on Dowex 50WX4-50/H+ Cation Exchanger in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ehteram A. Noor


    Full Text Available The equilibrium adsorption, ion exchange characteristics of various concentrations of some organic cations from aqueous solutions onto dowex 50WEX/H+ cation exchanger were studied at different temperatures in the range of 30-50 °C. The studied cations showed good adsorptive properties onto dowex 50WX4-5/H+ at different concentrations and temperatures. Main adsorption behaviour was ion exchange between hydrogen ions and the organic cations as indicated from the linear relation between the initial concentration of the organic cations and the released hydrogen ions. It was found that the adsorption affinity of dowex 50WX4-50/H+ towards the studied organic cations depends on the substituent type of the organic cations giving the following increasing order: 1-H < 2-OH < 3-OCH3. Thermodynamic parameters for the adsorption of the studied organic cations were evaluated and discussed. It was found that the adsorption 1-H organic cation was spontaneous, ordered, exothermic and favored with decreasing temperature. On the other hand the adsorption of both 2-OH and 3-OCH3 organic cations was found to be spontaneous and disordered with enthalpy change varies significantly with increasing organic cation concentration, suggesting dipole-dipole adsorption forces as new active sites for adsorption under conditions of relatively high concentrations. Freundlich and Dubinin-Radushkevich adsorption isotherm models reasonably describe the adsorption of the studied organic cations onto dowex 50WX4-50/H+ by segmented straight lines depending on the studied range of concentration, indicating the existence of two different sets of adsorption sites with substantial difference in energy of adsorption. According to Dubinin-Radushkevich adsorption isotherm model, physical-ion exchange mechanism was suggested for the adsorption of 1-H organic cation and both physical and chemical-ion exchange mechanisms were suggested for the adsorption of 2-OH and 3-OCH3 organic cations

  1. Influence of various functional groups on the relative stability of alkylperoxy triplet cations: A theoretical study (United States)

    Smith, Kenneth J.; Meloni, Giovanni


    CBS-QB3 energy calculations show that the formation of a stable triplet cation for alkylperoxy radicals is dependent on factors other than the stability of the daughter cations exclusively. We have found that in cases where the daughter ions are not capable of stabilizing the cation through hyperconjugation, it is possible for the triplet cation to be bound. In many circumstances, CBS-QB3 calculations have found bound triplet cation states with 'negative dissociation energies.' These results are attributed to the effects that electron donating/withdrawing substituents have on the spin and charge densities of the resulting cations.

  2. Calpain Activator Dibucaine Induces Platelet Apoptosis

    Directory of Open Access Journals (Sweden)

    Jun Liu


    Full Text Available Calcium-dependent calpains are a family of cysteine proteases that have been demonstrated to play key roles in both platelet glycoprotein Ibα shedding and platelet activation and altered calpain activity is associated with thrombotic thrombocytopenic purpura. Calpain activators induce apoptosis in several types of nucleated cells. However, it is not clear whether calpain activators induce platelet apoptosis. Here we show that the calpain activator dibucaine induced several platelet apoptotic events including depolarization of the mitochondrial inner transmembrane potential, up-regulation of Bax and Bak, down-regulation of Bcl-2 and Bcl-XL, caspase-3 activation and phosphatidylserine exposure. Platelet apoptosis elicited by dibucaine was not affected by the broad spectrum metalloproteinase inhibitor GM6001. Furthermore, dibucaine did not induce platelet activation as detected by P-selectin expression and PAC-1 binding. However, platelet aggregation induced by ristocetin or α-thrombin, platelet adhesion and spreading on von Willebrand factor were significantly inhibited in platelets treated with dibucaine. Taken together, these data indicate that dibucaine induces platelet apoptosis and platelet dysfunction.

  3. Epac inhibits apoptosis of human leukocytes

    NARCIS (Netherlands)

    Grandoch, M.; Bujok, V.; Fleckenstein, D.; Schmidt, M.; Fischer, J. W.; Weber, A. -A.


    cAMP is known to participate in the regulation of apoptosis in leukocytes. Depending on the cell type, pro- and antiapoptotic effects of cAMP have been described. Thus far, most of the cAMP-dependent effects have been attributed to the activation of PKA. However, Epac proteins (direct cAMP targets a

  4. A novel method for detection of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zagariya, Alexander M., E-mail:


    There are two different Angiotensin II (ANG II) peptides in nature: Human type (ANG II) and Bovine type (ANG II*). These eight amino acid peptides differ only at position 5 where Valine is replaced by Isoleucine in the Bovine type. They are present in all species studied so far. These amino acids are different by only one atom of carbon. This difference is so small, that it will allow any of ANG II, Bovine or Human antibodies to interact with all species and create a universal method for apoptosis detection. ANG II concentrations are found at substantially higher levels in apoptotic, compared to non-apoptotic, tissues. ANG II accumulation can lead to DNA damage, mutations, carcinogenesis and cell death. We demonstrate that Bovine antiserum can be used for universal detection of apoptosis. In 2010, the worldwide market for apoptosis detection reached the $20 billion mark and significantly increases each year. Most commercially available methods are related to Annexin V and TUNNEL. Our new method based on ANG II is more widely known to physicians and scientists compared to previously used methods. Our approach offers a novel alternative for assessing apoptosis activity with enhanced sensitivity, at a lower cost and ease of use.

  5. Photo-fragmentation spectroscopy of benzylium and 1-phenylethyl cations

    Energy Technology Data Exchange (ETDEWEB)

    Féraud, Géraldine; Dedonder-Lardeux, Claude; Jouvet, Christophe, E-mail: [Physique des Interactions Ioniques et Moleculaires, UMR CNRS 7345, Aix-Marseille Université, Avenue Escadrille Normandie-Niémen, 13397 Marseille Cedex 20 (France); Soorkia, Satchin [Institut des Sciences Moléculaires d’Orsay, CNRS UMR 8214, Université Paris Sud 11, 91405 Orsay Cedex (France)


    The electronic spectra of cold benzylium (C{sub 6}H{sub 5}-CH{sub 2}{sup +}) and 1-phenylethyl (C{sub 6}H{sub 5}-CH-CH{sub 3}{sup +}) cations have been recorded via photofragment spectroscopy. Benzylium and 1-phenylethyl cations produced from electrosprayed benzylamine and phenylethylamine solutions, respectively, were stored in a cryogenically cooled quadrupole ion trap and photodissociated by an OPO laser, scanned in parts of the UV and visible regions (600–225 nm). The electronic states and active vibrational modes of the benzylium and 1-phenylethyl cations as well as those of their tropylium or methyl tropylium isomers have been calculated with ab initio methods for comparison with the spectra observed. Sharp vibrational progressions are observed in the visible region while the absorption features are much broader in the UV. The visible spectrum of the benzylium cation is similar to that obtained in an argon tagging experiment [V. Dryza, N. Chalyavi, J. A. Sanelli, and E. J. Bieske, J. Chem. Phys. 137, 204304 (2012)], with an additional splitting assigned to Fermi resonances. The visible spectrum of the 1-phenylethyl cation also shows vibrational progressions. For both cations, the second electronic transition is observed in the UV, around 33 000 cm{sup −1} (4.1 eV) and shows a broadened vibrational progression. In both cases the S{sub 2} optimized geometry is non-planar. The third electronic transition observed around 40 000 cm{sup −1} (5.0 eV) is even broader with no apparent vibrational structures, which is indicative of either a fast non-radiative process or a very large change in geometry between the excited and the ground states. The oscillator strengths calculated for tropylium and methyl tropylium are weak. Therefore, these isomeric structures are most likely not responsible for these absorption features. Finally, the fragmentation pattern changes in the second and third electronic states: C{sub 2}H{sub 2} loss becomes predominant at higher

  6. Solubilization of pentanol by cationic surfactants and binary mixtures of cationic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, M.E.


    The research reported here has included studies of the solubilization of pentanol in hexadecylpyridinium chloride (CPC), trimethyletetradecylammonium chloride (C{sub 14}Cl), benzyldimethyltetradecylammonium chloride (C{sub 14}BzCl), benzyldimethylhexadecylpyridinium chloride (C{sub 16}BzCl), hexadecyltrimethylammonium bromide (CTAB), and binary mixtures of CPC + C{sub 16}BzCl and C{sub 14}Cl + C{sub 14}BzCl. Rather than using calorimetric methods, this project will employ headspace chromatography to measure solubilization of pentanol over a wide range of solute concentrations. While not yielding as much thermodynamic data as calorimetry, headspace chromatography is a more direct measure of the extent of solubilization. Using headspace chromatography, is a more direct measure of the extent of solubilization. Using headspace chromatography, this study will seek to determine whether strongly synergistic mixture ratios exist in the case of binary cationic surfactant systems. There are two equilibria in the pentanol-water-surfactant system: (1) The pentanol solubilized in micelles is in equilibrium with the monomeric pentanol in solution, and (2) the monomeric pentanol is in equilibrium with the pentanol in the vapor above the solution. To establish the link between the two equilibria, a sample of the vapor above pure liquid pentanol must be collected, in order to find the activity of pentanol in solution. Also, a calibration curve for various concentrations of pentanol in solution. From this type of data it is possible to infer both the concentration of pentanol solubilized in micelles and the concentrations of pentanol in the ``bulk`` solution outside the micelles. The method is equally applicable to systems containing a single surfactant as well as mixtures of surfactants.

  7. Measuring cation dependent DNA polymerase fidelity landscapes by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Bradley Michael Zamft

    Full Text Available High-throughput recording of signals embedded within inaccessible micro-environments is a technological challenge. The ideal recording device would be a nanoscale machine capable of quantitatively transducing a wide range of variables into a molecular recording medium suitable for long-term storage and facile readout in the form of digital data. We have recently proposed such a device, in which cation concentrations modulate the misincorporation rate of a DNA polymerase (DNAP on a known template, allowing DNA sequences to encode information about the local cation concentration. In this work we quantify the cation sensitivity of DNAP misincorporation rates, making possible the indirect readout of cation concentration by DNA sequencing. Using multiplexed deep sequencing, we quantify the misincorporation properties of two DNA polymerases--Dpo4 and Klenow exo(---obtaining the probability and base selectivity of misincorporation at all positions within the template. We find that Dpo4 acts as a DNA recording device for Mn(2+ with a misincorporation rate gain of ∼2%/mM. This modulation of misincorporation rate is selective to the template base: the probability of misincorporation on template T by Dpo4 increases >50-fold over the range tested, while the other template bases are affected less strongly. Furthermore, cation concentrations act as scaling factors for misincorporation: on a given template base, Mn(2+ and Mg(2+ change the overall misincorporation rate but do not alter the relative frequencies of incoming misincorporated nucleotides. Characterization of the ion dependence of DNAP misincorporation serves as the first step towards repurposing it as a molecular recording device.

  8. Measurement of antioxidant activity with trifluoperazine dihydrochloride radical cation

    Directory of Open Access Journals (Sweden)

    M.N. Asghar


    Full Text Available A novel, rapid and cost-effective trifluoperazine dihydrochloride (TFPH decolorization assay is described for the screening of antioxidant activity. A chromogenic reaction between TFPH and potassium persulfate at low pH produces an orange-red radical cation with maximum absorption at 502 nm in its first-order derivative spectrum. TFPH was dissolved in distilled water to give a 100 mM solution. The TFPH radical cation solution was made by reacting 0.5 mL of the solution with K2S2O8 (final concentration: 0.1 mM and diluting to 100 mL with 4 M H2SO4 solution. A linear inhibition of color production was observed with linearly increasing amounts of antioxidants, with correlation coefficients (R² ranging from 0.999 to 0.983. The antioxidant capacity of standard solutions of an antioxidant was evaluated by comparing with the inhibition curve using Trolox as the standard. Comparison of antioxidant capacity determined with this newly developed TFPH assay and with the well-known 2,2'-azinobis-[3-ethylbenzthiazoline-6-sulfonic acid] (ABTS-persulfate decolorization assay indicated the efficacy and sensitivity of the procedure. The proposed assay is less expensive (costs about US$4 per 100 assays and requires only 20 min for preparation of radical cation solution in comparison with ABTS assay, in which almost 12-16 h are required for preparation of a stable ABTS radical cation solution. The present assay has the advantage over ABTS assay that it can be used to measure the antioxidant activity of the samples, which are naturally found at a pH as low as 1, because the radical cation itself has been stabilized at low pH.

  9. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells. (United States)

    Ko, Sung-Kyun; Kim, Sung Kuk; Share, Andrew; Lynch, Vincent M; Park, Jinhong; Namkung, Wan; Van Rossom, Wim; Busschaert, Nathalie; Gale, Philip A; Sessler, Jonathan L; Shin, Injae


    Anion transporters based on small molecules have received attention as therapeutic agents because of their potential to disrupt cellular ion homeostasis. However, a direct correlation between a change in cellular chloride anion concentration and cytotoxicity has not been established for synthetic ion carriers. Here we show that two pyridine diamide-strapped calix[4]pyrroles induce coupled chloride anion and sodium cation transport in both liposomal models and cells, and promote cell death by increasing intracellular chloride and sodium ion concentrations. Removing either ion from the extracellular media or blocking natural sodium channels with amiloride prevents this effect. Cell experiments show that the ion transporters induce the sodium chloride influx, which leads to an increased concentration of reactive oxygen species, release of cytochrome c from the mitochondria and apoptosis via caspase activation. However, they do not activate the caspase-independent apoptotic pathway associated with the apoptosis-inducing factor. Ion transporters, therefore, represent an attractive approach for regulating cellular processes that are normally controlled tightly by homeostasis.

  10. Spermine inhibits Endoplasmic Reticulum Stress - induced Apoptosis: a New Strategy to Prevent Cardiomyocyte Apoptosis

    Directory of Open Access Journals (Sweden)

    Can Wei


    Full Text Available Background/Aims: Endoplasmic reticulum stress (ERS plays an important role in the progression of acute myocardial infarction (AMI, in part by mediating apoptosis. Polyamines, including putrescine, spermidine, and spermine, are polycations with anti-oxidative, anti-aging, and cell growth-promoting activities. This study aimed to determine the mechanisms by which spermine protects against ERS-induced apoptosis in rats following AMI. Methods and Results: AMI was established by ligation of the left anterior descending coronary artery (LAD in rats, and exogenous spermine was administered by intraperitoneal injection (2.5 mg/ml daily for 7 days pre-AMI. Spermine treatment limited infarct size, attenuated cardiac troponin I and creatinine kinase-MB release, improved cardiac function, and decreased ERS and apoptosis related protein expression. Isolated cardiomyocytes subjected to hypoxia showed significant increase in reactive oxygen species (ROS and the expression of apoptosis and ERS related proteins; these effects occurred through PERK and eIF2α phosphorylation. The addition of spermine attenuated cardiomyocyte apoptosis, suppressed the production of ROS, and inhibited ERS related pathways. Conclusions: Spermine was an effective pre-treatment strategy to attenuate cardiac ERS injury in rats, and the cardioprotective mechanism occurring through inhibition of ROS production and down regulation of the PERK-eIF2α pathway. These findings provide a novel target for the prevention of apoptosis in the setting of AMI.

  11. Noscapine induces apoptosis in human glioma cells by an apoptosis-inducing factor-dependent pathway. (United States)

    Newcomb, Elizabeth W; Lukyanov, Yevgeniy; Smirnova, Iva; Schnee, Tona; Zagzag, David


    Previously, we identified noscapine as a small molecule inhibitor of the hypoxia-inducible factor-1 pathway in hypoxic human glioma cells and human umbilical vein endothelial cells. Noscapine is a nontoxic ingredient in cough medicine currently used in clinical trials for patients with non-Hodgkin's lymphoma or chronic lymphocytic leukemia to assess antitumor efficacy. Here, we have evaluated the sensitivity of four human glioma cell lines to noscapine-induced apoptosis. Noscapine was a potent inhibitor of proliferation and inducer of apoptosis. Induction of apoptosis was associated with activation of the c-jun N-terminal kinase signaling pathway concomitant with inactivation of the extracellular signal regulated kinase signaling pathway and phosphorylation of the antiapoptotic protein Bcl-2. Noscapine-induced apoptosis was associated with the release of mitochondrial proteins apoptosis-inducing factor (AIF) and/or cytochrome c. In some glioma cell lines, only AIF release occurred without cytochrome c release or poly (ADP-ribose) polymerase cleavage. Knock-down of AIF decreased noscapine-induced apoptosis. Our results suggest the potential importance of noscapine as a novel agent for use in patients with glioblastoma owing to its low toxicity profile and its potent anticancer activity.

  12. IR spectroscopy of cationized aliphatic amino acids: Stability of charge-solvated structure increases with metal cation size

    NARCIS (Netherlands)

    Drayss, M. K.; Armentrout, P. B.; Oomens, J.; Schaefer, M.


    Gas-phase structures of alkali metal cationized (Li+, Na+,K+, Rb+, and Cs+) proline (Pro) and N-methyl alanine have been investigated using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser and computational modeling. Measured IRMPD spectra

  13. IR spectroscopy of cationized aliphatic amino acids: Stability of charge-solvated structure increases with metal cation size

    NARCIS (Netherlands)

    Drayß, M.K.; Armentrout, P.B.; Oomens, J.; Schäfer, M.


    Gas-phase structures of alkali metal cationized (Li+, Na+, K+, Rb+, and Cs+) proline (Pro) and N-methyl alanine have been investigated using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser and computational modeling. Measured IRMPD spectr

  14. Variational first hyperpolarizabilities of 2,3-naphtho-15-crown-5 ether derivatives with cation-complexing: a potential and selective cation detector. (United States)

    Yu, Hai-Ling; Wang, Wen-Yong; Hong, Bo; Zong, Ying; Si, Yan-Ling; Hu, Zhong-Qiang


    Crown ethers, as a kind of heterocycle, have been the subject of great interest over recent decades due to their selective capability to bind to metal cations. The use of a constant crown ether, such as naphtho-15-crown-5 (N15C5), and varied metal cations (Li(+), Na(+), K(+), Be(2+), Mg(2+), Ca(2+), Co(2+), Ni(2+), Cu(2+)) makes it possible to determine the contributions of the metal cations to nonlinear optical (NLO) responses and to design an appropriate NLO-based cation detector. N15C5 and its metal cation derivatives have been systematically investigated by density functional theory. It is found that the dependency of the first hyperpolarizability relies on the metal cation, especially for transition metals. The decrease of the first hyperpolarizabilities for alkali metal cation derivatives is due to their relatively low oscillator strengths, whereas the significant increase of the first hyperpolarizabilities for transition metal cation derivatives can be further illustrated by their low transition energies, large amplitudes and separate distributions of first hyperpolarizability density. Thus, the alkali metal and transition metal cations are distinguishable and the transition metal cations are easier to detect by utilizing the variations in NLO responses.

  15. Pharmacology of the human cell voltage-dependent cation channel. Part II: inactivation and blocking

    DEFF Research Database (Denmark)

    Bennekou, Poul; Barksmann, Trine L.; Kristensen, Berit I.


    Human red cells; Nonselective voltage-dependent cation channel; NSVDC channel; Thiol group reagents......Human red cells; Nonselective voltage-dependent cation channel; NSVDC channel; Thiol group reagents...

  16. 21 CFR 872.3420 - Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive. (United States)


    ... polyacrylamide polymer denture adhesive. 872.3420 Section 872.3420 Food and Drugs FOOD AND DRUG ADMINISTRATION....3420 Carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive. (a) Identification. A carboxymethylcellulose sodium and cationic polyacrylamide polymer denture adhesive is a...

  17. Preparing cationic cotton linter cellulose with high substitution degree by ultrasonic treatment. (United States)

    Zhang, Fulong; Pang, Zhiqiang; Dong, Cuihua; Liu, Zong


    As an important cellulose derivative, cationic cellulose has becoming an attractive material. However, it remains challenging to produce cationic cellulose with high substitute degree. In this paper, we successfully increased the substitute degree of cationic cellulose by introducing ultrasonic treatment, which efficiently breaks hydrogen bonds of the chemical structure of cationic cellulose. Properties of cationic cellulose were studied by scanning electron spectroscope (SEM), contact angle, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Experimental results show that the cationic cellulose has rougher surface and lower crystallinity degree as compared to the original sample. TGA analysis verifies that the thermostability of CLC decreases after the cationic modification. The residual of the cationic cellulose (25 wt%) after pyrolysis increases significantly as compared to that of the original cellulose (15 wt%).

  18. Intracellular magnesium content changes during mitochondria-mediated apoptosis: in depth study of early events on mitochondrial membrane potential

    Directory of Open Access Journals (Sweden)

    Lucia Merolle


    Full Text Available A recent study showed the antitumor activity of a new indole-derivative – MM-67 – inducing mitochondria-mediated apoptosis and a decrease of intracellular magnesium (Mg concentration in HT29 colon cancer cells. Aim of this work was to assess cellular Mg levels throughout MM-67-induced apoptosis from the early to the final stage of the process and to evaluate the correlation with mitochondrial membrane potential (ΔΨm variations. All analysis were performed by flow cytometry: ΔΨm was assessed by using mitochondrial potential sensitive dye DiOC6, while free and total intracellular cation concentrations were assessed by using the commercial probe MagFluo4-AM (Kd=4.7 mM, and the new synthesized DCHQ5 (Kd=8.3 mM, respectively. Our results evidenced that the MM67 induced apoptosis is characterized by a direct correlation between ΔΨ and free intracellular Mg content variations.

  19. Calcium paradox induces apoptosis in the isolated perfused Rana ridibunda heart: involvement of p38-MAPK and calpain. (United States)

    Aggeli, Ioanna-Katerina; Zacharias, Triantafyllos; Papapavlou, Georgia; Gaitanaki, Catherine; Beis, Isidoros


    "Calcium paradox" as a term describes the deleterious effects conferred to a heart perfused with a calcium-free solution followed by repletion, including loss of mechanical activity and sarcomere disruption. Given that the signaling mechanisms triggered by calcium paradox remain elusive, in the present study, we tried to investigate them in the isolated perfused heart from Rana ridibunda. Calcium paradox was found to markedly activate members of the MAPKs (p43-ERK, JNKs, p38-MAPK). In addition to lactate dehydrogenase (LDH) release in the perfusate (indicative of necrosis), we also confirmed the occurrence of apoptosis by using the TUNEL assay and identifying poly(ADP-ribose) polymerase (PARP) fragmentation and upregulated Bax expression. Furthermore, using MDL28170 (a selective calpain inhibitor), a role for this protease was revealed. In addition, various divalent cations were shown to exert a protective effect against the calcium paradox. Interestingly, SB203580, a p38-MAPK inhibitor, alleviated calcium-paradox-conferred apoptosis. This result indicates that p38-MAPK plays a pro-apoptotic role, contributing to the resulting myocardial dysfunction and cell death. To our knowledge, this is the first time that the calcium paradox has been shown to induce apoptosis in amphibians, with p38-MAPK and calpain playing significant roles.

  20. Comparison of cation adsorption by isostructural rutile and cassiterite.

    Energy Technology Data Exchange (ETDEWEB)

    Machesky, M.; Wesolowski, D.; Rosenqvist, J.; Predota, M.; Vlcek, L.; Ridley, M.; Kohli, V.; Zhang, Z.; Fenter, P.; Cummings, P.; Lvov, S.; Fedkin, M.; Rodriguez-Santiago, V.; Kupicki, J.; Bandura, A. (X-Ray Science Division); (Illinois State Water Survey); (Oak Ridge National Laboratory); (University of South Branisovska); (Texas Tech University); (Vanderbilt University); (The Pennsylvania State University); (St. Petersburg State University)


    Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl{sub 2} in NaCl, and trace ZnCl{sub 2} in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite ({epsilon}{sub bulk} {approx} 11). Inner-sphere adsorption is also significant for Rb{sup +} and Na{sup +} on neutral surfaces, whereas Cl{sup -} binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb{sup +}, Na{sup +}, and especially Sr{sup 2+} are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn{sup 2+} are very steep but similar for both oxides, reflective of Zn{sup 2+} hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH{sup +} on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the

  1. Star-like superalkali cations featuring planar pentacoordinate carbon. (United States)

    Guo, Jin-Chang; Tian, Wen-Juan; Wang, Ying-Jin; Zhao, Xue-Feng; Wu, Yan-Bo; Zhai, Hua-Jin; Li, Si-Dian


    Superalkali cations, known to possess low vertical electron affinities (VEAs), high vertical detachment energies, and large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, are intriguing chemical species. Thermodynamically, such species need to be the global minima in order to serve as the promising targets for experimental realization. In this work, we propose the strategies of polyhalogenation and polyalkalination for designing the superalkali cations. By applying these strategies, the local-minimum planar pentacoordinate carbon (ppC) cluster CBe5 can be modified to form a series of star-like superalkali ppC or quasi-ppC CBe5X5 (+) (X = F, Cl, Br, Li, Na, K) cations containing a CBe5 moiety. Polyhalogenation and polyalkalination on the CBe5 unit may help eliminate the high reactivity of bare CBe5 molecule by covering the reactive Be atoms with noble halogen anions and alkali cations. Computational exploration of the potential energy surfaces reveals that the star-like ppC or quasi-ppC CBe5X5 (+) (X = F, Cl, Br, Li, Na, K) clusters are the true global minima of the systems. The predicted VEAs for CBe5X5 (+) range from 3.01 to 3.71 eV for X = F, Cl, Br and 2.12-2.51 eV for X = Li, Na, K, being below the lower bound of the atomic ionization potential of 3.89 eV in the periodic table. Large HOMO-LUMO energy gaps are also revealed for the species: 10.76-11.07 eV for X = F, Cl, Br and 4.99-6.91 eV for X = Li, Na, K. These designer clusters represent the first series of superalkali cations with a ppC center. Bonding analyses show five Be-X-Be three-center two-electron (3c-2e) σ bonds for the peripheral bonding, whereas the central C atom is associated with one 6c-2e π bond and three 6c-2e σ bonds, rendering (π and σ) double aromaticity. Born-Oppenheimer molecular dynamics simulations indicate that the CBe5 motif is robust in the clusters. As planar hypercoordination carbon species are often thermodynamically

  2. Diffusion of an organic cation into root cell walls. (United States)

    Meychik, N R; Yermakov, I P; Prokoptseva, O S


    Uptake of a cationic dye (methylene blue) by isolated root cell walls, roots of whole transpiring seedlings, and excised roots was investigated using 7-day-old seedlings of cucumber, maize, and wheat. The number of ionogenic groups per 1 g dry and wet weight of the root cell walls, their swelling capacity (K(cw)), time-dependence of methylene blue (M(cw)) ion exchange capacity, and diffusion coefficients of the cation diffusion in the polymer matrix of the cell walls (D(cw)) were determined. The M(cw) value depended on pH (or carboxyl group dissociation); it changed in accordance with the number of carboxyl groups per 1 g cell wall dry weight. This parameter decreased in the order: cucumber > wheat > maize. For description of experimental kinetic curves and calculation of cation diffusion coefficients, the equation for ion diffusion into a cylinder of infinite length was used. The chosen model adequately described cation diffusion in cell walls and roots. Diffusion coefficient values for cucumber, wheat, and maize were 3.1*10(-8), 1.3*10(-8), and 8.4*10(-8) cm(2)/sec, respectively. There was a statistically significant linear dependence between K(cw) and D(cw) values, which characterize the same property of the polymer matrix, rigidity of its polymer structure or the degree of cross-linkage or permeability. This also confirms the right choice of the model selected for calculation of methylene blue diffusion coefficients, because K(cw) and D(cw) values were obtained in independent experiments. The coefficients determined for methylene blue diffusion in transpiring seedling roots (D(ts)) and excised roots (D(er)) depended on the plant species. The rate of methylene blue diffusion into the excised roots was either 1.5-fold lower (cucumber) or 3-4-times lower (maize, wheat) than in cell walls. The values of diffusion coefficients in roots of whole seedlings were comparable which those for the cell walls. On the basis of the experimental data and results of calculations

  3. Paclitaxel induces apoptosis in human gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Hai-Bo Zhou; Ju-Ren Zhu


    AIM: To investigate the apoptosis in gastric cancer cells induced by paclitaxel, and the relation between this apoptosis and expression of Bcl-2 and Bax.METHODS: In in vitro experiments, MTT assay was used to determine the cell growth inhibitory rate. Transmission electron microscope and TUNEL staining method were used to quantitatively and qualitively detect the apoptosis status of gastric cancer cell line SGC-7901 before and after the paditaxel treatment. Immunohistochemical staining was used to detect the expression of apoptosis-regulated gene Bcl-2and Bax.RESULTS: Paclitaxel inhibited the growth of gastric cancer cell line SGC-7901 in a dose-and time-dependent manner.Paclitaxel induced SGC-7901 cells to undergo apoptosis with typically apoptotic characteristics, including morphological changes of chromatin condensation, chromatin crescent formation, nucleus fragmentation and apoptotic body formation. Paclitaxel could reduce the expression of apoptosis-regulated gene Bcl-2, and improve the expression of apoptosis-regulated gene Bax.CONCLUSION: Paclitaxel is able to induce the apoptosis in gastric cancer. This apoptosis may be mediated by downexpression of apoptosis-regulated gene Bcl-2 and upexpression of apoptosis-regulated gene Bax.

  4. ING function in apoptosis in diverse model systems. (United States)

    Shah, Sitar; Smith, Heather; Feng, Xiaolan; Rancourt, Derrick E; Riabowol, Karl


    Genetic studies in model organisms have shown that programmed cell death (apoptosis) plays a significant role during development, where a deficiency in apoptosis results in severe and diverse diseases. Dysregulation of apoptosis also contributes to a variety of human diseases, such as cancer and autoimmune diseases. ING family proteins (ING1-ING5) are involved in many cellular processes, and appear to play a significant role in apoptosis. Loss or downregulation of ING protein function is frequently observed in different tumour types, many of which are resistant to apoptosis, thus warranting their classification as type II tumour suppressors. Several different in vitro and in vivo models have explored the role of ING proteins in regulating apoptosis. In this review, we discuss the progress that has been made in understanding ING protein function in apoptosis using in vitro studies and Mus musculus, Xenopus laevis, and Caenorhabditis elegans experimental models, with an emphasis on ING1 and ING3.

  5. Cold-inducible RNA-binding protein inhibits neuron apoptosis through the suppression of mitochondrial apoptosis. (United States)

    Zhang, Hai-Tao; Xue, Jing-Hui; Zhang, Zhi-Wen; Kong, Hai-Bo; Liu, Ai-Jun; Li, Shou-Chun; Xu, Dong-Gang


    Cold-inducible RNA-binding protein (CIRP) is induced by mild hypothermia in several mammals, but the precise mechanism by which CIRP mediates hypothermia-induced neuroprotection remains unknown. We aimed to investigate the molecular mechanisms by which CIRP protects the nervous system during mild hypothermia. Rat cortical neurons were isolated and cultured in vitro under mild hypothermia (32°C). Apoptosis was measured by annexin V and propidium iodide staining, visualized by flow cytometry. Neuron ultrastructure was visualized by transmission electron microscopy. CIRP overexpression and knockdown were achieved via infection with pL/IRES/GFP-CIRP and pL/shRNA/F-CIRP-A lentivirus. RT(2) Profiler PCR Array Pathway Analysis and western blotting were used to evaluate the effects of CIRP overexpresion/knockdown on the neurons׳ transcriptome. Neuron late apoptosis was significantly reduced at day 7 of culture by 12h hypothermia, but neuron ultrastructure remained relatively intact. RT(2) Profiler PCR Array Pathway Analysis of 84 apoptosis pathway-associated factors revealed that mild hypothermia and CIRP overexpression induce similar gene expression profiles, specifically alterations of genes implicated in the mitochondrial apoptosis pathway. Mild hypothermia-treated neurons up-regulated 12 and down-regulated 38 apoptosis pathway-associated genes. CIRP-overexpressing neurons up-regulated 15 and down-regulated 46 genes. CIRP-knocked-down hypothermia-treated cells up-regulated 9 and down-regulated 40 genes. Similar results were obtained at the protein level. In conclusion, CIRP may inhibit neuron apoptosis through the suppression of the mitochondria apoptosis pathway during mild hypothermia.

  6. High performance flocculating agents based on cationic polysaccharides in relation to coal fine suspension

    Energy Technology Data Exchange (ETDEWEB)

    Pal, S.; Sen, G.; Karmakar, N.C.; Mal, D.; Singh, R.P. [Birla Institute of Technology, Ranchi (India). Dept. of Applied Chemistry


    Five polysaccharides namely amylopectin, amylose, glycogen, guar gum and starch have been cationized by grafting with N-(3-chloro-2-hydroxypropyl) trimethyl ammonium chloride and studied for their flocculation behaviors. Of them, cationic glycogen (Cat Gly) is found to be the best for flocculation of coal suspended sample amongst cationic polysaccharides. Cat Gly was compared with some of the commercial flocculants.

  7. The Influence of Cationization on the Dyeing Performance of Cotton Fabrics with Direct Dyes

    Directory of Open Access Journals (Sweden)

    M. F. Shahin


    Full Text Available The effect of cationic modification of cotton fabrics, using cationic agent (Chromatech 9414 on direct dyeing characteristics was studied in this work. Cationization of cotton fabric at different conditions (pH, cationic agent concentration, temperature and time was investigated and the optimum conditions were determined . Nitrogen content of cotton samples pretreated with cationic agent was indicated. The results showed that increasing cationic agent concentration lead to higher nitrogen content on cotton fabric . The cationized cotton fabrics were dyed with two direct dyes (C.I. Direct Yellow 142 - C.I. Direct red 224 and the results were compared to untreated cotton fabrics. The parameters which may affect the dyeing process such as dye concn., addition of salt, time and temperature of dyeing were studied. The dyeing results illustrate that cationization improves the fabric dyeability compared to the uncationized cotton and the magnitude of increase in colour depth depends on the nitrogen content of the cationized cotton fabric .The results also refer to possibility of dyeing cationized cotton fabric with direct dyes without addition of electrolytes to give colour strength higher than that achieved on uncationized cotton using conventional dyeing method .Another important advantage of cationic treatment is in the saving of dye concn., energy ,dyeing time , rinse water and subsequently saving of waste water treatment , and finally minimizes the environmental pollution . The changes in surface morphology of fibres after cationization were identified by various methods such as wettability and scanning with the electron microscope. Different fastness properties were evaluated.

  8. 21 CFR 872.3480 - Polyacrylamide polymer (modified cationic) denture adhesive. (United States)


    ... adhesive. 872.3480 Section 872.3480 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... polymer (modified cationic) denture adhesive. (a) Identification. A polyacrylamide polymer (modified cationic) denture adhesive is a device composed of polyacrylamide polymer (modified cationic) intended...

  9. Structure of ionic liquids with cationic silicon-substitutions (United States)

    Wu, Boning; Shirota, Hideaki; Lall-Ramnarine, Sharon; Castner, Edward W.


    Significantly lower viscosities result when a single alkyl carbon is replaced by a silicon atom on the side chain of an ionic liquid cation. To further explore this effect, we compare liquid structure factors measured using high-energy X-ray scattering and calculated using molecular dynamics simulations. Four ionic liquids are studied that each has a common anion, bis(trifluoromethylsulfonyl)amide ( NTf2 - ). The four cations for this series of NTf2 - -anion ionic liquids are 1-methyl-3-trimethylsilylmethylimidazolium (Si-mim+), 1-methyl-3-neopentylimidazolium (C-mim+), 1-methyl-3-pentamethyldisiloxymethylimidazolium (SiOSi-mim+), and 1-methyl-1-trimethylsilylmethylpyrrolidinium (Si-pyrr+). To achieve quantitative agreement between the structure factors measured using high-energy X-ray scattering and molecular dynamics simulations, new transferable parameters for silicon were calibrated and added to the existing force fields.

  10. Review on cation exchange selectivity coefficients for MX-80 bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, C.; Arcos, D.; Duro, L. [ENVIROS, Passeig de Rubi, 29-31, 08197 Valldoreix (Spain); Sellin, P. [SKB, Brahegatan 47, SE-102 40 Stockholm (Sweden)


    Full text of publication follows: Bentonite is considered as engineered barrier in the near field of a nuclear waste repository due to its low permeability, what impedes groundwater flow to the nuclear waste, and its high retention capacity (sorption) of radionuclides in the eventuality of groundwater intrusion. One of the main retention processes occurring at the bentonite surface is ion exchange. This process may exert a strong control on the mobility of major pore water cations. Changes in major cation concentration, especially calcium, can affect the dissolution-precipitation of calcite, which in turn controls one of the key parameters in the system: pH. The cation exchange process is usually described according to the Gaines-Thomas convention: Ca{sup 2+} + 2 NaX = CaX{sub 2} + 2 Na{sup +}, K{sub Ca} = (N{sub Ca} x a{sup 2}{sub Na{sup +}})/(N{sup 2}{sub Na} x a{sub Ca{sup 2+}}) where K{sub Ca} is the selectivity coefficient for the Ca by Na exchange, ai is the activity of cation 'i' in solution and NJ the equivalent fractional occupancy of cation 'J' in bentonite. Parameters such as solid to liquid (S:L) ratio and dry density of the solid have an important influence on the value of selectivity coefficients (K{sub ex}). Although in most geochemical modelling works, K{sub ex} values are directly taken from experiments conducted at low S:L ratios and low dry densities, the expected conditions in a deep geological nuclear waste repository are higher S:L and higher bentonite density (1.6{sup -3} in the SKB design to obtain a fully water saturated density of around 2.0{sup -3}). Experiments focused at obtaining selectivity coefficients under the conditions of interest face the difficulty of achieving a proper extraction and analyses of pore water without disturbing the system by the sampling method itself. In this work we have conducted a complete analyses of published data on MX-80 bentonite cationic exchange in order to assess the

  11. S. Typhimurium strategies to resist killing by cationic antimicrobial peptides. (United States)

    Matamouros, Susana; Miller, Samuel I


    S. Typhimurium is a broad host range Gram-negative pathogen that must evade killing by host innate immune systems to colonize, replicate, cause disease, and be transmitted to other hosts. A major pathogenic strategy of Salmonellae is entrance, survival, and replication within eukaryotic cell phagocytic vacuoles. These phagocytic vacuoles and gastrointestinal mucosal surfaces contain multiple cationic antimicrobial peptides (CAMPs) which control invading bacteria. S. Typhimurium possesses several key mechanisms to resist killing by CAMPs which involve sensing CAMPs and membrane damage to activate signaling cascades that result in remodeling of the bacterial envelope to reduce its overall negative charge with an increase in hydrophobicity to decrease binding and effectiveness of CAMPs. Moreover Salmonellae have additional mechanisms to resist killing by CAMPs including an outer membrane protease which targets cationic peptides at the surface, and specific efflux pumps which protect the inner membrane from damage. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.

  12. Preparation of sulfonated cation exchangers from petroleum asphaltites

    Energy Technology Data Exchange (ETDEWEB)

    Pokonova, Yu.V.; Pol' kin, G.B.; Proskuryakov, V.A.


    It was established that the reaction of petroleum asphaltite sulfonation is determined in the first step by the chemical reaction rate, and in the last --- by diffusion factors. The kinetic constants were found for each reaction step. Sulfonated cation exchangers were obtained having the characteristics: specific volume of the swollen cation exchanger 3.30 mL/g, bulk density of the air-dry product 0.58 g/mL., moisture content 23.4%, swelling in water 41.6%, mechanical strength 80.0%, static exchange capacity with respect to 0.1N NaOH solution 2.76 mg equiv/g, dynamic exchange capacity with respect to 0.0035N CaC1/sub 2/ solution for a specific load of 10 L/L.h 465 mg equiv/L.

  13. Cationic polymers for successful flocculation of marine microalgae. (United States)

    't Lam, G P; Vermuë, M H; Olivieri, G; van den Broek, L A M; Barbosa, M J; Eppink, M H M; Wijffels, R H; Kleinegris, D M M


    Flocculation of microalgae is a promising technique to reduce the costs and energy required for harvesting microalgae. Harvesting marine microalgae requires suitable flocculants to induce the flocculation under marine conditions. This study demonstrates that cationic polymeric flocculants can be used to harvest marine microalgae. Different organic flocculants were tested to flocculate Phaeodactylum tricornutum and Neochloris oleoabundans grown under marine conditions. Addition of 10 ppm of the commercial available flocculants Zetag 7557 and Synthofloc 5080H to P. tricornutum showed a recovery of, respectively, 98% ± 2.0 and 94% ± 2.9 after flocculation followed by 2h sedimentation. Using the same flocculants and dosage for harvesting N. oleoabundans resulted in a recovery of 52% ± 1.5 and 36% ± 11.3. This study shows that cationic polymeric flocculants are a viable option to pre-concentrate marine cultivated microalgae via flocculation prior to further dewatering.

  14. Mobility of alkali cations in polypyrrole-dodecyl sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Kupila, E.L. [Department of Chemistry, University of Turku, 20500 Turku (Finland); Kankare, J. [Department of Chemistry, University of Turku, 20500 Turku (Finland)


    Due to the immobility of the large dodecyl sulfate anion, the mobile ions in polypyrrole-dodecyl sulfate are small ions from the solution. Virgin PP-dodecyl sulfate does not contain other ionic species, but already the first reduction causes the incorporation of cations into the membrane. Using in situ AC conductimetry on a double-band platinum electrode, we show that the insertion of cations from the solution into the PP membrane proceeds as a non-conducting zone advancing from the solution interface toward the substrate. The model allows to estimate ion mobilities in the membrane giving 8.6x10{sup -7}cm{sup 2}s{sup -1}V{sup -1} for K{sup +}. (orig.)

  15. Structure of heavy cation molecules: from experiment to simulation

    Energy Technology Data Exchange (ETDEWEB)

    Den Auwer, C.; Fillaux, C.; Guilbaud, P.; Guillaumont, D.; Moisy, P. [CEA Marcoule DEN/DRCP/SCPS, 30207 Bagnols sur Ceze (France); Conradson, S.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Di Giandomenico, V.; Le Naour, C.; Simoni, E. [IPN Orsay, 91405 Orsay (France); Hennig, C. [Forschungszentrum Rossendorf, ROBL at ESRF, 38043 Grenoble (France)


    For industrial, environmental and public health purposes, actinide chemistry has been the subject of considerable efforts since the 50's. Aqueous redox chemistry, ionic selective recognition, uptake by specific biomolecules or compartments of the geosphere are some of the major fields of investigation. The physical-chemical properties of the actinide elements strongly depend on the 5f/6d electronic configuration. X-ray photons are an ideal spectroscopic tool for structure and bonding in actinide molecules. At high photon energies, actinide Extended X-ray Absorption Fine Structure (EXAFS) is a structural probe of the cation coordination sphere. Furthermore, coupling EXAFS with molecular dynamics or quantum chemical calculations leads to a better description of the 'cation in its close environment', like polyhedron, disorder, solvent effects etc.. (authors)

  16. Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Y.M., E-mail: [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Mansour, S.A.; Ibrahim, M.H. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Ali, Shehab E., E-mail: [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt)


    Nanocrystalline cobalt ferrite has been synthesized using two different methods: ceramic and co-precipitation techniques. The nanocrystalline ferrite phase has been formed after 3 h of sintering at 1000 deg. C. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. The transmission electronic microscope analysis confirmed the X-ray results. The magnetic properties of the samples were characterized using a vibrating sample magnetometer. - Highlights: > The refinement result showed that the cationic distribution over the sites in the lattice is partially an inverse spinel. > The transmission electronic microscope analysis confirmed the X-ray results. > The magnetic properties of the samples were characterized using a vibrating sample magnetometer.

  17. Sulfonated polyvinyl chloride fibers for cation-exchange microextraction. (United States)

    Xu, Li; Lee, Hian Kee


    Polyvinyl chloride (PVC) fiber was derivatized by concentrated sulfuric acid to yield sulfonated PVC (PVC-SO3H). The PVC-SO3H fiber had dual properties as a sorbent, based on cation-exchange and hydrophobicity. In the present study, the novel fiber was used directly as an individual device for extraction purposes in the cation-exchange microextraction of anaesthetics, followed by high-performance liquid chromatography-UV analysis. The results demonstrated that this PVC-SO3H fiber-based microextraction afforded convenient operation and cost-effective application to basic analytes. The limits of detection for four anaesthetics ranged from 1.2 to 6.0 ng/mL. No carryover (because of its disposable usage), and no loss of sorbent phase (which normally occurs in stir-bar sorptive extraction) during extraction were observed.


    Lleo, Ana; Selmi, Carlo; Invernizzi, Pietro; Podda, Mauro; Gershwin, M. Eric


    The clearance of apoptotic cells is a highly regulated mechanism, normally associated with anti-inflammatory response. During early stages of apoptosis the cell is promptly recognized and engulfed by professional phagocytes or tissue cells to avoid the outflow of intracellular content and limit the immunological reaction against released antigens. However, increasing evidences suggest that impairment in the uptake of apoptotic cell debris is linked to the development of autoimmunity. In fact, autoantigens have been demonstrated to be content within apoptotic bodies and apoptotic cells seems to be critical in the presentation of antigens, activation of innate immunity and regulation of macrophage cytokine secretion. We herein review the known mechanisms for regulating the uptake of the products of apoptosis in the development of autoimmunity. PMID:18513925

  19. Ordering the multiple pathways of apoptosis. (United States)

    Park, D S; Stefanis, L; Greene, L A


    Apoptosis plays an important role in development, homeostasis, and disease. Current work has suggested that apoptosis can be evoked by multiple stimuli that, in turn, initiate distinct death pathways. Recently, exciting advances have been made in the understanding of biochemical pathways that regulate apoptotic processes. These pathways contain both evolutionarily conserved elements and components that are dependent on the death stimulus and cell context. Accordingly, this review focuses on the compositions and relative ordering of the apoptotic pathways in four different death paradigms: activation of receptors of the Fas ligand, destruction by cytotoxic T lymphocytes, exposure to DNA damaging agents, and loss of support by neurotrophic factors. These examples illustrate the conservation and divergence in the ways that death pathways are composed and ordered. (Trends Cardiovasc Med 1997;7:294-301). © 1997, Elsevier Science Inc.

  20. Autophagy and apoptosis: rivals or mates?

    Institute of Scientific and Technical Information of China (English)

    Yan Cheng; Jin-Ming Yang


    Autophagy,a cellular process of "self-eating" by which intracellular components are degraded within the lysosome,is an evolutionarily conserved response to various stresses.Autophagy is associated with numerous patho-physiological conditions,and dysregulation of autophagy contributes to the pathogenesis of a variety of human diseases including cancer.Depending on context,activation of autophagy may promote either cell survival or death,two major events that determine pathological process of many illnesses.Importantly,the activity of autophagy is often associated with apoptosis,another critical cellular process determining cellular fate.A better understanding of biology of autophagy and its implication in human health and disorder,as well as the relationship between autophagy and apoptosis,has the potential of facilitating the development of autophagy-based therapeutic interventions for human diseases such as cancer.

  1. The effect of external divalent cations on spontaneous non-selective cation channel currents in rabbit portal vein myocytes. (United States)

    Albert, A P; Large, W A


    1. The effects of external divalent cations on spontaneous single non-selective cation channel currents were studied in outside-out patches from rabbit portal vein smooth muscle cells in K+-free conditions. 2. In an external medium containing 1.5 mM Ca2+ (Ca2+o) the majority of spontaneous channel currents had a unitary conductance of 23 pS, reversal potential (Vr) of +10 mV and a low open probability (Po) at negative patch potentials. Some channels opened to a lower conductance state of about 13 pS suggesting that the cation channels have two conductance states. Open time and burst duration distributions could both be described by two exponentials with time constants of about of 1 ms and 7 ms for open times and 3 ms and 16 ms for burst durations. 3. In 0 Ca2+o the majority of spontaneous cation channels had a unitary conductance of 13 pS and Vr was shifted to +4 mV. Moreover the longer open time and longer burst duration time constants were both reduced to approximately half the values in 1.5 mM Ca2+o. 4. Compared to 0 Ca2+o the single channel currents in 3 microM and 100 microM Ca2+o had a 5- to 6-fold increase in Po which was accompanied by increases in both open times and burst durations. In 3 microM and 100 microM Ca2+o the unitary conductance of the single channel currents was between 22 and 26 pS. 5. At positive membrane potentials the single channel currents had an increased Po compared to negative potentials which was associated with increased open times and burst durations but these values were similar in 3 microM, 100 microM and 1.5 mM Ca2+o. 6. In 1.5 mM Sr2+o and 1.5 mM Ba2+o channels opened to the higher conductance state of about 22-25 pS and had a 3- to 7-fold greater Po than in 0 Ca2+o. 7. In conclusion, external divalent cations have marked effects on the unitary conductance and kinetic behaviour of non-selective cation channels in rabbit portal vein smooth muscle cells.

  2. Flow behaviour of gellan sol with selected cations. (United States)

    Sharma, Shipra; Bhattacharya, Suvendu


    An understanding of the flow behaviour of the sols before gel formation is important for developing nutrient enriched gels. The influence of cations like CaCl2 (0.05 and 0.1 %, w/w) and FeSO4 (0.05 and 0.1 %, w/w) on the rheological properties of 1 % gellan sol (w/w) prior to gelling was investigated. The apparent viscosity, reported at a shear-rate of 100 s(-1), indicated that the gellan dispersion without any cation possessed lower values compared to other samples containing different cations. The Cross model provided the best fit (0.97 ≤ r ≤ 0.99, p ≤ 0.01) compared to moderate fitting to power law model (0.94 ≤ r ≤ 0.98). Among the different Cross model parameters, the zero-shear viscosity (ηo) increased with the addition of CaCl2 and FeSO4, and with an increase in their concentrations. Zero-shear viscosity values were 0.46 Pas for gellan sol, 0.79 Pas for gellan with 0.05 % (w/w) CaCl2, 1.41 Pas for gellan with 0.1 % CaCl2, 3.85 Pas for gellan with 0.05 % FeSO4 and 4.33 Pas for gellan with 0.1 % FeSO4. An increase in cation concentration from 0.05 to 0.10 % (w/w) marginally increased the relaxation time (λ) values indicating the development of more solid characteristics in the sol.

  3. Identification of bilinear systems using differential evolution algorithm

    Indian Academy of Sciences (India)

    Saban Ozer; Hasan Zorlu


    In this work, a novel identification method based on differential evolution algorithm has been applied to bilinear systems and its performance has been compared to that of genetic algorithm. Box–Jenkins system and different type bilinear systems have been identified using differential evolution and genetic algorithms. The simulation results have shown that bilinear systems can be successfully and efficiently identified using these algorithms.


    Institute of Scientific and Technical Information of China (English)

    LinLi; BingyueLiu; YafengCao


    The cationic graft copolymer was synthesized byreversed phase emulsion copolymerization of starchwith diallydimethyl ammoniumlchlorid (DADMAC)and acrylamide (AM). The copolymerization wascarried out using (NH4)2S2Os-NH2CONH2 redox asinitiator and selecting Span-20 as emulsifier. Theeffects of emulsifier content in oil phase, volumeratio of oil to water, initiator concentration and moleratio of DADMAC to AM on the graftcopolymerization were discussed. The optimumcondition of synthetics was found with theorthogonal test method.

  5. Natural zeolite reactivity towards ozone: The role of compensating cations

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, Hector, E-mail: [Laboratorio de Tecnologias Limpias (F. Ingenieria), Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, Concepcion (Chile); Alejandro, Serguei; Zaror, Claudio A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Concepcion (Chile)


    Highlights: Black-Right-Pointing-Pointer Chemical and thermal treatment enhances catalytic activity of natural zeolite. Black-Right-Pointing-Pointer Modified natural zeolite exhibits high stability after thermal treatment. Black-Right-Pointing-Pointer Reducing the compensating cation content leads to an increase on ozone abatement. Black-Right-Pointing-Pointer Surface active atomic oxygen was detected using the DRIFT technique. Black-Right-Pointing-Pointer The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L{sup -1}). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH{sub 3}-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  6. Electronic absorption spectrum of triacetylene cation for astronomical considerations. (United States)

    Chakrabarty, S; Rice, C A; Mazzotti, F J; Dietsche, R; Maier, J P


    The A(2)Πg ← X(2)Πu electronic transition (4800-6000 Å) of triacetylene cation was measured in an ion trap, where the vibrational and rotational degrees of freedom were equilibrated to 25 K. The rotational profile of the origin band is predicted by a collisional-radiative rate model under conditions expected in diffuse interstellar clouds. Variation in the density of the surrounding gas, rotational temperature, and velocity dispersion are taken into account.


    Institute of Scientific and Technical Information of China (English)

    Hongjie Zhang; Huiren Hu; Fushan Chen


    In this paper, the cationic polyacrylamide (CPAM)with high molecular weight was prepared in aqueous solution through a complex initiator system. The CPAM was characterized by Fourier transform infrared spectroscopy (FTIR) and 13C nuclear magnetic resonance spectroscopy (13C NMR), and the charge density of the CPAM was determined by colloid titration. The results obtained indicated that the copolymerization technology used in the experiment was successful.

  8. Mechanisms of Neuronal Apoptosis In Vivo (United States)


    Mechanisms for neuronal degeneration in amyotrophic rons in aging and neurological research: aluminum neu- lateral sclerosis and in models of motor neuron...not ture-DNA damage-lschemic neuronal death-MEKKI. Understanding the molecular regulation of apoptosis is such as Alzheimer disease (Anderson et al...WH, Jung Y-K, Kovacs DM and Tanzi RE: Kaneko K, Shimizu T, lihara K, Kojima T, Miyatake T and Alternative cleavage of Alzheimer -associated presenilins

  9. Transformation of anthracene on various cation-modified clay minerals. (United States)

    Li, Li; Jia, Hanzhong; Li, Xiyou; Wang, Chuanyi


    In this study, anthracene was employed as a probe to explore the potential catalytic effect of clay minerals in soil environment. Clay minerals saturated with various exchangeable cations were tested. The rate of anthracene transformation follows the order: Fe-smectite > Cu-smectite > Al-smectite ≈ Ca-smectite ≈ Mg-smectite ≈ Na-smectite. This suggests that transition-metal ions such as Fe(III) play an important role in anthracene transformation. Among Fe(III)-saturated clays, Fe(III)-smectite exhibits the highest catalytic activity followed by Fe(III)-illite, Fe(III)-pyrophyllite, and Fe(III)-kaolinite, which is in agreement with the interlayer Fe(III) content. Moreover, effects by two common environmental factors, pH and relative humidity (RH), were evaluated. With an increase in pH or RH, the rate of anthracene transformation decreases rapidly at first and then is leveled off. GC-MS analysis identifies that the final product of anthracene transformation is 9,10-anthraquinone, a more bioavailable molecule compared to anthracene. The transformation process mainly involves cation-π bonding, electron transfer leading to cation radical, and further oxidation by chemisorbed O2. The present work provides valuable insights into the abiotic transformation and the fate of PAHs in the soil environment and the development of contaminated land remediation technologies.

  10. Drug loading to lipid-based cationic nanoparticles (United States)

    Cavalcanti, Leide P.; Konovalov, Oleg; Torriani, Iris L.; Haas, Heinrich


    Lipid-based cationic nanoparticles are a new promising option for tumor therapy, because they display enhanced binding and uptake at the neo-angiogenic endothelial cells, which a tumor needs for its nutrition and growth. By loading suitable cytotoxic compounds to the cationic carrier, the tumor endothelial and consequently also the tumor itself can be destroyed. For the development of such novel anti-tumor agents, the control of drug loading and drug release from the carrier matrix is essential. We have studied the incorporation of the hydrophobic anti-cancer agent Paclitaxel (PXL) into a variety of lipid matrices by X-Ray reflectivity measurements. Liposome suspensions from cationic and zwitterionic lipids, comprising different molar fractions of Paclitaxel, were deposited on planar glass substrates. After drying at controlled humidity, well ordered, oriented multilayer stacks were obtained, as proven by the presence of bilayer Bragg peaks to several orders in the reflectivity curves. The presence of the drug induced a decrease of the lipid bilayer spacing, and with an excess of drug, also Bragg peaks of drug crystals could be observed. From the results, insight into the solubility of Paclitaxel in the model membranes was obtained and a structural model of the organization of the drug in the membrane was derived. Results from subsequent pressure/area-isotherm and grazing incidence diffraction (GID) measurements performed with drug/lipid Langmuir monolayers were in accordance with these conjectures.

  11. Cationic porphyrin derivatives for application in photodynamic therapy of cancer (United States)

    Prack McCormick, Bárbara P.; Florencia Pansa, M.; Milla Sanabria, Laura N.; Carvalho, Carla M. B.; Faustino, M. Amparo F.; Neves, Maria Graça P. M. S.; Cavaleiro, José A. S.; Rumie Vittar, Natalia B.; Rivarola, Viviana A.


    Current studies in photodynamic therapy (PDT) against cancer are focused on the development of new photosensitizers (PSs), with higher phototoxic action. The aim of this study was to compare the therapeutic efficiency of tri-cationic meso-substituted porphyrin derivatives (Tri-Py+-Me-PF, Tri-Py+-Me-Ph, Tri-Py+-Me-CO2Me and Tri-Py+-Me-CO2H) with the well-known tetra-cationic T4PM. The phototoxic action of these derivatives was assessed in human colon adenocarcinoma cells by cell viability, intracellular localization and nuclear morphology analysis. In the experimental conditions used we determined that after light activation -PF, -Ph and -CO2Me cause a more significant decline of cell viability compared to -CO2H and T4PM. These results suggest that the nature of the peripheral substituent influences the extent of cell photodamage. Moreover, we have demonstrated that PS concentration, physicochemical properties and further light activation determine the PDT response. All porphyrins were clearly localized as a punctuated pattern in the cytoplasm of the cells, and the PDT scheme resulted in apoptotic cell death after 3 h post-PDT. The tri-cationic porphyrin derivatives Tri-Py+-Me-PF, Tri-Py+-Me-Ph and Tri-Py+-Me-CO2Me showed a promising ability, making them good photosensitizer candidates for oncological PDT.

  12. Natural zeolite reactivity towards ozone: the role of compensating cations. (United States)

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A


    Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  13. Solidification cracking in austenitic stainless steel welds

    Indian Academy of Sciences (India)

    V Shankar; T P S Gill; S L Mannan; S Sundaresan


    Solidification cracking is a significant problem during the welding of austenitic stainless steels, particularly in fully austenitic and stabilized compositions. Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, P and alloy elements such as Ti, Nb. The WRC-92 diagram can be used as a general guide to maintain a desirable solidification mode during welding. Nitrogen has complex effects on weld-metal microstructure and cracking. In stabilized stainless steels, Ti and Nb react with S, N and C to form low-melting eutectics. Nitrogen picked up during welding significantly enhances cracking, which is reduced by minimizing the ratio of Ti or Nb to that of C and N present. The metallurgical propensity to solidification cracking is determined by elemental segregation, which manifests itself as a brittleness temperature range or BTR, that can be determined using the varestraint test. Total crack length (TCL), used extensively in hot cracking assessment, exhibits greater variability due to extraneous factors as compared to BTR. In austenitic stainless steels, segregation plays an overwhelming role in determining cracking susceptibility.

  14. Selective Facet Reactivity During Cation Exchange in Cadmium Sulfide Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Sadtler, Bryce; Demchenko, Denis; Zheng, Haimei; Hughes, Steven; Merkle, Maxwell; Dahmen, Ulrich; Wang, Lin-Wang; Alivisatos, A. Paul


    The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper I (Cu+) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu2S) grows inwards from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver I (Ag+) exchange in CdS nanorods where non-selective nucleation of silver sulfide (Ag2S) occurs. From interface formation energies calculated for several models of epitaxialconnections between CdS and Cu2S or Ag2S, we infer the relative stability of each interface during the nucleation and growth of Cu2S or Ag2S within the CdS nanorods. The epitaxial connections of Cu2S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. However, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.

  15. Naphthoxy Bounded Ferrocenium Salts as Cationic Photoinitiators for Epoxy Photopolymerization

    Directory of Open Access Journals (Sweden)

    Zh. Q. Li


    Full Text Available To improve the absorption and the bulk of arene ligands, two naphthoxy bounded ferrocenium salts as new cationic photoinitiators, (η6-α-naphthoxybenzene (η5-cyclopentadienyl iron hexafluorophosphate (NOFC-1 and (η6-β-naphthoxybenzene (η5-cyclopentadienyl iron hexafluorophosphate (NOFC-2, were synthesized, characterized, and studied. NOFC-1 and NOFC-2 were prepared by the reaction of nucleophilic substitution (SNAr with naphthol and chlorobenzene-cyclopentadienyliron salt. Their activity as cationic photoinitiators was studied using real-time infrared spectroscopy. The results obtained showed that NOFC-1 and NOFC-2 are capable of photoinitiating the cationic polymerization of epoxy monomer directly on irradiation with long-wavelength UV light (365 nm. Comparative studies also demonstrated that they exhibited better efficiency than cyclopentadienyl-Fe-cymene hexafluorophosphate (I-261. When NOFC-1 and NOFC-2 were used to efficiently initiate polymerization of epoxide, both rate of polymerization and final conversion increased using benzoyl peroxide (BPO as sensitizer. DSC studies showed that NOFC-1 and NOFC-2 photoinitiators in epoxides possess good thermal stability in the absence of light.

  16. Control of apoptosis by asymmetric cell division.

    Directory of Open Access Journals (Sweden)

    Julia Hatzold


    Full Text Available Asymmetric cell division and apoptosis (programmed cell death are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.

  17. Keratinocyte Apoptosis is Decreased in Psoriatic Epidermis

    Directory of Open Access Journals (Sweden)

    Fatma Eskioğlu


    Full Text Available Background and Design: Abnormal differentiation and hyperproliferation of keratinocytes are the hallmarks of psoriasis vulgaris. Although psoriasis vulgaris is generally accepted as a disease of decreased keratinocyte apoptosis, the results are contradictory. The aim of the current study is to investigate whether decreased keratinocyte apoptosis contributes to the formation of a thickened epidermis as increased keratinocyte proliferation. Material and Method: Forty-three untreated psoriasis vulgaris patients and 20 healthy control subjects were included into the study. Biopsy specimens taken from the enrollee were evaluated by immunohistochemical staining for Ki-67 expressions to show the proliferation of keratinocytes and by the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL method to show the apoptotic keratinocytes. Results: Apoptotic index (percentage of the TUNEL positive cells was significantly lower in psoriatic epidermis (0.33±0.64 than in normal epidermis (0.75±0.85; whereas Ki-67 index (percentage of positively staining cells for Ki-67 was significantly higher in psoriatic epidermis (30.86±10.49 than in normal epidermis (11.65±2.98, (p=0.021 and p=0.00; respectively. Conclusion: Decreased keratinocyte apoptosis also contribute to increased epidermal thickness in psoriasis as well as increased keratinocyte proliferation.

  18. Neuronal apoptosis: signal and cell diversity

    Directory of Open Access Journals (Sweden)

    Lina Vanessa Becerra


    Full Text Available Programmed cell death occurs as a physiological process during development. In the brain and spinal cord this event determines the number and location of the different cell types. In adulthood, programmed cell death or apoptosis is more restricted but it may play a major role in different acute and chronic pathological entities. However, in contrast to other tissues where apoptosis has been widely documented from a morphological point of view, in the central nervous system complete anatomical evidence of apoptosis is scanty. In spite of this there is consensus about the activation of different signal systems associated to programmed cell death. In the present article we attempt to summarize the main apoptotic pathways so far identified in nervous tissue. Considering that apoptotic pathways are multiple, the neuronal cell types are highly diverse and specialized and that neuronal response to injury and survival depends upon tissue context, (i.e., preservation of connectivity, glial integrity and cell matrix, blood supply and trophic factors availability what is relevant for the apoptotic process in a sector of the brain may not be important in another.

  19. Hormonal regulation of apoptosis an ovarian perspective. (United States)

    Hsu, S Y; Hsueh, A J


    Using the ovary as a model system for studying the hormonal regulation of apoptosis, recent studies have revealed that the survival of growing follicles is under the regulation of a complex array of hormones through endocrine, paracrine, autocrine, or juxtacrine mechanism in a development-dependent manner. More effort is needed, however, to identify tissue-specific factors required for the survival of ovarian somatic and germ cells at specific stage of development. New insights based on characterization of conserved apoptotic effectors, both extracellular and intracellular, have suggested that apoptosis in ovarian cells may be mediated by apoptotic programs common to other cells but using specific members of the death domain proteins as well as ced-9/Bcl-2 and ced-3/ICE caspase families of genes. Future studies may provide new therapeutic modalities for different ovarian diseases caused by aberrant regulation of apoptosis in ovarian cells, including premature ovarian failure and polycystic ovarian syndrome. (Trends Endocrinol Metab 1997;8:207-213). (c) 1997, Elsevier Science Inc.

  20. Resveratrol induces apoptosis in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jia-hua; CHENG Hai-yan; YU Ze-qian; HE Dao-wei; PAN Zheng; YANG De-tong


    Background Pancreatic cancer is one of the most lethal human cancers with a very low survival rate of 5 years.Conventional cancer treatments including surgery, radiation, chemotherapy or combinations of these show little effect on this disease. Several proteins have been proved critical to the development and the progression of pancreatic cancer.The aim of this study was to investigate the effect of resveratrol on apoptosis in pancreatic cancer cells.Methods Several pancreatic cancer cell lines were screened by resveratrol, and its toxicity was tested by normal pancreatic cells. Western blotting was then performed to analyze the molecular mechanism of resveratrol induced apoptosis of pancreatic cancer cell lines.Results In the screened pancreatic cancer cell lines, capan-2 and colo357 showed high sensitivity to resveratrol induced apoptosis. Resveratrol exhibited insignificant toxicity to normal pancreatic cells. In resveratrol sensitive cells,capan-2 and colo357, the activation of caspase-3 was detected and showed significant caspase-3 activation upon resveratrol treatment; p53 and p21 were also detected up-regulated upon resveratrol treatment.Conclusion Resveratrol provides a promising anti-tumor stratagy to fight against pancreatic cancer.

  1. Lipid Metabolism, Apoptosis and Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Chunfa Huang


    Full Text Available Lipid metabolism is regulated by multiple signaling pathways, and generates a variety of bioactive lipid molecules. These bioactive lipid molecules known as signaling molecules, such as fatty acid, eicosanoids, diacylglycerol, phosphatidic acid, lysophophatidic acid, ceramide, sphingosine, sphingosine-1-phosphate, phosphatidylinositol-3 phosphate, and cholesterol, are involved in the activation or regulation of different signaling pathways. Lipid metabolism participates in the regulation of many cellular processes such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, membrane homeostasis, chemotherapy response, and drug resistance. Bioactive lipid molecules promote apoptosis via the intrinsic pathway by modulating mitochondrial membrane permeability and activating different enzymes including caspases. In this review, we discuss recent data in the fields of lipid metabolism, lipid-mediated apoptosis, and cancer therapy. In conclusion, understanding the underlying molecular mechanism of lipid metabolism and the function of different lipid molecules could provide the basis for cancer cell death rationale, discover novel and potential targets, and develop new anticancer drugs for cancer therapy.

  2. Apoptosis de fibroblastos gingivales en periodontitis

    Directory of Open Access Journals (Sweden)

    Roger Mauricio Arce


    Full Text Available Introducción: Los fibroblastos gingivales humanos (FGH tienen un papel importante en la enfermedad periodontal, pues alteran su normal funcionamiento en respuesta a estímulos pro-inflamatorios. Se cree que los fibroblastos se pueden eliminar anormalmente por medio de apoptosis en periodontitis. El propósito de este estudio es determinar y cuantificar la apoptosis de FGH en biopsias del periodonto de individuos sanos y con enfermedad periodontal. Métodos: Se realizó un estudio clínico descriptivo de corte transversal en personas con diagnóstico de salud periodontal (S, gingivitis (G y periodontitis crónica (PC. Se tomaron biopsias escisionales y se hicieron tinciones inmunohistoquímicas (hematoxilina-eosina, caspasa-3 y vimentina. Las placas se interpretaron por histopatología y se digitalizaron para cuantificar las células apoptóticas. Todos los datos se analizaron con un software estadístico para encontrar diferencias significativas (p0.5, r²=0.02; mientras que para las células inflamatorias se encontró una relación proporcional significativa (p<0.05, r²=0.2018. Conclusiones: Los resultados permiten concluir que tanto los fibroblastos gingivales como las células inflamatorias presentan apoptosis manifiesta por la expresión de caspasa-3, y ésta se incrementa significativamente en gingivitis y enfermedad periodontal.

  3. Apoptosis and oxidative stress in neurodegenerative diseases. (United States)

    Radi, Elena; Formichi, Patrizia; Battisti, Carla; Federico, Antonio


    Neurodegenerative disorders affect almost 30 million individuals leading to disability and death. These disorders are characterized by pathological changes in disease-specific areas of the brain and degeneration of distinct neuron subsets. Despite the differences in clinical manifestations and neuronal vulnerability, the pathological processes appear similar, suggesting common neurodegenerative pathways. Apoptosis seems to play a key role in the progression of several neurologic disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis as demonstrated by studies on animal models and cell lines. On the other hand, research on human brains reported contradictory results. However, many dying neurons have been detected in brains of patients with neurodegenerative diseases, and these conditions are often associated with significant cell loss accompanied by typical morphological features of apoptosis such as chromatin condensation, DNA fragmentation, and activation of cysteine-proteases, caspases. Cell death and neurodegenerative conditions have been linked to oxidative stress and imbalance between generation of free radicals and antioxidant defenses. Multiple sclerosis, stroke, and neurodegenerative diseases have been associated with reactive oxygen species and nitric oxide. Here we present an overview of the involvement of neuronal apoptosis and oxidative stress in the most important neurodegenerative diseases, mainly focusing the attention on several genetic disorders, discussing the interaction between primary genetic abnormalities and the apoptotic pathways.

  4. Safrole oxide inhibits angiogenesis by inducing apoptosis. (United States)

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli; Yin, Deling


    Our previous studies indicate that 3, 4-(methylenedioxy)-1-(2', 3'-epoxypropyl)-benzene (safrole oxide), a newly synthesized compound, induces apoptosis in vascular endothelial cells (VECs) and A549 lung cancer cells. To our knowledge, the inhibition of angiogenesis by safrole oxide has not been reported yet. We report here that cultured rat aorta treated with safrole oxide exhibited a significant microvessel reduction as determined by counting the number of microvessels in a phase contrast microscope. There were more microvessels formed in the presence of A549 lung cancer cells in rat aorta model, while a dramatic inhibition of angiogenesis was obtained by adding 220-450 micromol l(-1) of safrole oxide to the growth medium (Psafrole oxide produced only some abortive endothelial cells but not microvessels. Furthermore, safrole oxide induced antiangiogenic effect in the chorioallantoic membranes (CAM) as a dose dependent manner. Eggs treated with 2-11 micromol 100 microl(-1) per egg of the safrole oxide for 48 h exhibited a significant reduction in blood vessel area of the CAM, a process likely mediated by apoptosis as demonstrated by DNA fragmentation. Our results suggest that safrole oxide has antiangiogenic activity and this effect might occur by induction of cellular apoptosis.

  5. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Pan Shiow-Lin


    Full Text Available Abstract In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1 in denbinobin-induced apoptosis in human lung adenocarcinoma (A549 cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN, two antioxidants (N-acetyl-L-cysteine (NAC and glutathione (GSH, a c-Jun N-terminal kinase (JNK inhibitor (SP600125, and an activator protein-1 (AP-1 inhibitor (curcumin. Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis.

  6. Intracoronary levosimendan during ischemia prevents myocardial apoptosis.

    Directory of Open Access Journals (Sweden)

    Markus eMalmberg


    Full Text Available Background. Levosimendan is a calcium-sensitizing inotropic agent that prevents myocardial contractile depression following cardiac surgery. Levosimendan has also anti-apoptotic properties, but the role of this mechanism is not clear. We studied whether levosimendan prevents cardiomyocyte apoptosis and post-operative stunning after either intracoronary administration or intravenous infusion in an experimental model. Methods. Pigs (n=24 were subjected to 40 minutes of global, cardioplegic ischemia under cardiopulmonary bypass and 240 minutes of reperfusion. L-IV group received intravenous infusion of levosimendan (65 μg/kg 40 minutes before ischemia and L-IC group received levosimendan (65 μg/kg during ischemia administered intracoronary. Control group was operated without levosimendan. Echocardiography was performed to all animals. Apoptosis was determined from transmyocardial biopsies taken from left ventricle using TUNEL assay and immunohistochemistry of active caspace-3. Results. Apoptosis was induced after ischemia-reperfusion in all groups (pre L-IV 0.002±0.004 % vs. post L-IV 0.020±0.017 % p=0.02, pre L-IC 0.001±0.004 % vs. post L-IC 0.020±0.017 % p<0.001, pre control 0.007±0.013 % vs. post control 0.062±0.044 % p=0.01. The amount of apoptosis was higher in the controls, compared with the L-IV (p=0.03 and the L-IC (p=0.03 groups. Longitudinal left ventricular contraction was significantly reduced in the L-IC and the control groups when compared to the L-IV group (L-IV 0.75±0.12 mm vs. L-IC 0.53±0.11 mm p=0.003, L-IV vs. control 0.54±0.11 p=0.01. Conclusions. Both intracoronary administration and pre-ischemic intravenous infusion of levosimendan equally prevented apoptosis, but intravenous administration was required for optimal preservation of the post-operative systolic left ventricle function.

  7. Alkali metal cation-hexacyclen complexes: effects of alkali metal cation size on the structure and binding energy. (United States)

    Austin, C A; Rodgers, M T


    Threshold collision-induced dissociation (CID) of alkali metal cation-hexacyclen (ha18C6) complexes, M(+)(ha18C6), with xenon is studied using guided ion beam tandem mass spectrometry techniques. The alkali metal cations examined here include: Na(+), K(+), Rb(+), and Cs(+). In all cases, M(+) is the only product observed, corresponding to endothermic loss of the intact ha18C6 ligand. The cross-section thresholds are analyzed to extract zero and 298 K M(+)-ha18C6 bond dissociation energies (BDEs) after properly accounting for the effects of multiple M(+)(ha18C6)-Xe collisions, the kinetic and internal energy distributions of the M(+)(ha18C6) and Xe reactants, and the lifetimes for dissociation of the activated M(+)(ha18C6) complexes. Ab initio and density functional theory calculations are used to determine the structures of ha18C6 and the M(+)(ha18C6) complexes, provide molecular constants necessary for the thermodynamic analysis of the energy-resolved CID data, and theoretical estimates for the M(+)-ha18C6 BDEs. Calculations using a polarizable continuum model are also performed to examine solvent effects on the binding. In the absence of solvent, the M(+)-ha18C6 BDEs decrease as the size of the alkali metal cation increases, consistent with the noncovalent nature of the binding in these complexes. However, in the presence of solvent, the ha18C6 ligand exhibits selectivity for K(+) over the other alkali metal cations. The M(+)(ha18C6) structures and BDEs are compared to those previously reported for the analogous M(+)(18-crown-6) and M(+)(cyclen) complexes to examine the effects of the nature of the donor atom (N versus O) and the number donor atoms (six vs four) on the nature and strength of binding.

  8. Protein induced by vitamin K absence or antagonist-II production is a strong predictive marker for extrahepatic metastases in early hepatocellular carcinoma: a prospective evaluation

    Directory of Open Access Journals (Sweden)

    Yoon Jung-Hwan


    Full Text Available Abstract Background Clinicians often experience extrahepatic metastases associated with hepatocellular carcinoma (HCC, even if no evidence of intrahepatic recurrence after treatment is observed. We investigated the pretreatment predictors of extrahepatic metastases in HCC patients. Methods Patients diagnosed with HCC without evidence of extrahepatic metastases were prospectively enrolled. We evaluated the correlation between extrahepatic metastases and pretreatment clinical variables, including serum tumor markers. Results A total of 354 patients were included. Seventy-six patients (21% had extrahepatic metastases during the observation period (median, 25.3 months; range, 0.6-51.3 months. Cox regression multivariate analysis showed that serum protein induced by vitamin K absence or antagonist-II (PIVKA-II production levels, the intrahepatic tumor stage, platelet count, and portal vein thrombosis were independent risk factors for extrahepatic metastases. Patients with a PIVKA-II production ≥ 300 mAU/mL had a 2.7-fold (95% confidence interval; 1.5-4.8; P Conclusion PIVKA-II production levels might be a good candidate predictive marker for extrahepatic HCC metastases, especially in patients with smaller and/or fewer tumors in the liver with in stages regardless of serum alpha-fetoprotein.

  9. Hepatoid carcinoma of the pancreas producing protein induced by vitamin K absence or antagonist II (PIVKA-II) and alpha-fetoprotein (AFP). (United States)

    Matsueda, Kazuhiro; Yamamoto, Hiroshi; Yoshida, Yasuo; Notohara, Kenji


    We describe a rare case of hepatoid carcinoma of the pancreas with production of protein induced by vitamin K absence or antagonist II (PIVKA-II) and alpha-fetoprotein (AFP). The patient was a 49-year-old woman admitted because of high serum levels of PIVKA-II (1.63 AU/ml) and AFP (623 ng/ml) and abnormal ultrasonographic findings of the pancreas, found incidentally at medical checkup. Both ultrasonography and computed tomography showed swelling of the pancreas with small areas of low density, but no hepatic lesions. The serum levels of carcinoembryonic antigen and carbohydrate antigen 19-9 were not increased. A PIVKA-II and AFP-producing pancreatic cancer was strongly suspected, and total pancreatectomy was performed. Pathological examination showed that the tumor cells were arranged in trabecular and solid patterns with bile production, and were immunohistochemically positive for PIVKA-II and AFP, resembling hepatocellular carcinoma cells. The tumor was diagnosed as hepatoid carcinoma of the pancreas, and the patient has survived 48 months after initial diagnosis. It is important that hepatoid carcinoma be considered as a possible malignant tumor of the pancreas, and simultaneous measurement of the serum levels of AFP and PIVKA-II will enable earlier diagnosis. This is the first report describing hepatoid carcinoma of the pancreas producing PIVKA-II.

  10. Prolonged Survival in a Case of Chemotherapy-Sensitive Gastric Cancer That Produced Alpha-Fetoprotein and Protein Induced by Vitamin K Antagonist-II

    Directory of Open Access Journals (Sweden)

    Naotaka Ogasawara


    Full Text Available The number of reported cases of alpha-fetoprotein (AFP-producing gastric cancer has gradually increased, with a reported prevalence of 1.3-1.5% of all gastric cancer cases. However, reports of gastric cancer accompanied by elevated serum levels of both AFP and protein induced by vitamin K antagonist-II (PIVKA-II are rare. The prognosis of AFP- and PIVKA-II-producing gastric cancer has been reported to be very poor because the tumor cells were considered to have a high malignant potential and the cancer progressed rapidly. We described a case of gastric cancer producing AFP and PIVKA-II in which chemotherapy was effective and resulted in prolonged survival, and these two tumor markers were useful for monitoring the treatment response. Routine health screening using upper abdominal ultrasonography revealed hepatic tumors in an apparently healthy 65-year-old man. Whole-body computed tomography (CT revealed multiple hepatic tumors, and an esophagogastroduodenoscopy (EGD revealed a Bormann type 3 tumor in the lower stomach. A biopsy specimen confirmed that the tumor was immunohistochemically positive for AFP, PIVKA-II, and human epidermal growth factor receptor 2. After chemotherapy, the gastric tumor appeared as a small elevated lesion on EGD, and CT revealed a remarkable reduction in the size of the metastatic liver tumors. The patient is still alive, 35 months after the initial chemotherapy.

  11. Spironolactone induces apoptosis in human mononuclear cells. Association between apoptosis and cytokine suppression

    DEFF Research Database (Denmark)

    Mikkelsen, Martin; Sønder, S U; Nersting, J;


    Spironolactone (SPIR) has been described to suppress accumulation of pro-inflammatory cytokines. Here, the suppression of TNF-alpha in lipopolysaccharide (LPS)-stimulated mononuclear cell cultures was confirmed. However, SPIR was also found to induce apoptosis, prompting the investigations...... of a possible association between the two effects: The apoptosis-inducing and the cytokine-suppressive effects of SPIR correlated with regard to the effective concentration range. Also, pre-incubation experiments demonstrated a temporal separation of the two effects of ... preceding apoptosis. An association between the two effects was also seen when testing several SPIR analogues. Contrary to TNF-alpha, the levels of IL-1beta increased in SPIR-treated cultures. However, the amount of IL-1beta in the supernatants depended upon the order of SPIR and LPS addition, as IL-1beta...

  12. Spironolactone induces apoptosis in human mononuclear cells. Association between apoptosis and cytokine suppression

    DEFF Research Database (Denmark)

    Mikkelsen, Martin; Sønder, S U; Nersting, J;


    Spironolactone (SPIR) has been described to suppress accumulation of pro-inflammatory cytokines. Here, the suppression of TNF-alpha in lipopolysaccharide (LPS)-stimulated mononuclear cell cultures was confirmed. However, SPIR was also found to induce apoptosis, prompting the investigations...... of a possible association between the two effects: The apoptosis-inducing and the cytokine-suppressive effects of SPIR correlated with regard to the effective concentration range. Also, pre-incubation experiments demonstrated a temporal separation of the two effects of TNF-alpha suppression...... preceding apoptosis. An association between the two effects was also seen when testing several SPIR analogues. Contrary to TNF-alpha, the levels of IL-1beta increased in SPIR-treated cultures. However, the amount of IL-1beta in the supernatants depended upon the order of SPIR and LPS addition, as IL-1beta...

  13. Efficacious gene silencing in serum and significant apoptotic activity induction by survivin downregulation mediated by new cationic gemini tocopheryl lipids. (United States)

    Kumar, Krishan; Maiti, Bappa; Kondaiah, Paturu; Bhattacharya, Santanu


    Nonviral gene delivery offers cationic liposomes as promising instruments for the delivery of double-stranded RNA (ds RNA) molecules for successful sequence-specific gene silencing (RNA interference). The efficient delivery of siRNA (small interfering RNA) to cells while avoiding unexpected side effects is an important prerequisite for the exploitation of the power of this excellent tool. We present here six new tocopherol based cationic gemini lipids, which induce substantial gene knockdown without any obvious cytotoxicity. All the efficient coliposomal formulations derived from each of these geminis and a helper lipid, dioleoylphosphatidylethanolamine (DOPE), were well characterized using physical methods such as atomic force microscopy (AFM) and dynamic light scattering (DLS). Zeta potential measurements were conducted to estimate the surface charge of these formulations. Flow cytometric analysis showed that the optimized coliposomal formulations could transfect anti-GFP siRNA efficiently in three different GFP expressing cell lines, viz., HEK 293T, HeLa, and Caco-2, significantly better than a potent commercial standard Lipofectamine 2000 (L2K) both in the absence and in the presence of serum (FBS). Notably, the knockdown activity of coliposomes of gemini lipids was not affected even in the presence of serum (10% and 50% FBS) while it dropped down for L2K significantly. Observations under a fluorescence microscope, RT-PCR, and Western blot analysis substantiated the flow cytometry results. The efficient cellular entry of labeled siRNA in GFP expressing cells as evidenced from confocal microscopy put forward these gemini lipids among the potent lipidic carriers for siRNA. The efficient transfection capabilities were also profiled in a more relevant fashion while performing siRNA transfections against survivin (an anti-apoptotic protein) which induced substantial apoptosis. Furthermore, the survivin downregulation improved the therapeutic efficacy levels of an

  14. Effects of Hofmeister salt series on gluten network formation: Part I. Cation series. (United States)

    Tuhumury, H C D; Small, D M; Day, L


    Different cationic salts were used to investigate the effects of the Hofmeister salt series on gluten network formation. The effects of cationic salts on wheat flour dough mixing properties, the rheological and the chemical properties of the gluten extracted from the dough with different respective salts, were investigated. The specific influence of different cationic salts on the gluten structure formation during dough mixing, compared to the sodium ion, were determined. The effects of different cations on dough and gluten of different flours mostly followed the Hofmeister series (NH4(+), K(+), Na(+), Mg(2+) and Ca(2+)). The impacts of cations on gluten structure and dough rheology at levels tested were relatively small. Therefore, the replacement of sodium from a technological standpoint is possible, particularly by monovalent cations such as NH4(+), or K(+). However the levels of replacement need to take into account sensory attributes of the cationic salts.

  15. Highly Efficient Labeling of Human Lung Cancer Cells Using Cationic Poly-L-lysine-Assisted Magnetic Iron Oxide Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Xueqin Wang; Huiru Zhang; Hongjuan Jing; Liuqing Cui


    Cell labeling with magnetic iron oxide nanoparticles (IONPs) is increasingly a routine approach in the cell-based cancer treatment. However, cell labeling with magnetic IONPs and their leading effects on the biological properties of human lung carcinoma cells remain scarcely reported. Therefore, in the present study the magnetic c-Fe2O3 nanoparticles (MNPs) were firstly synthesized and surface-modified with cationic poly-L-lysine (PLL) to construct the PLL-MNPs, which were then used to magnetically label human A549 lung cancer cells. Cell viability and proliferation were evaluated with propidium iodide/fluorescein diacetate double staining and standard 3-(4,5-dimethylthiazol-2-diphe-nyl-tetrazolium) bromide assay, and the cytoskeleton was immunocytochemically stained. The cell cycle of the PLL-MNP-labeled A549 lung cancer cells was analyzed using flow cytometry. Apoptotic cells were fluorescently analyzed with nuclear-specific staining after the PLL-MNP labeling. The results showed that the constructed PLL-MNPs efficiently magnetically labeled A549 lung cancer cells and that, at low concentrations, labeling did not affect cellular viability, proliferation capability, cell cycle, and apoptosis. Furthermore, the cytoskeleton in the treated cells was detected intact in comparison with the untreated counterparts. However, the results also showed that at high concentration (400 lg mL-1), the PLL-MNPs would slightly impair cell viability, proliferation, cell cycle, and apoptosis and disrupt the cytoskeleton in the treated A549 lung cancer cells. Therefore, the present results indicated that the PLL-MNPs at adequate concentrations can be efficiently used for labeling A549 lung cancer cells and could be considered as a feasible approach for magnetic targeted anti-cancer drug/gene delivery, targeted diagnosis, and therapy in lung cancer treatment.

  16. Regulation of apoptosis by the papillomavirus E6 oncogene

    Institute of Scientific and Technical Information of China (English)

    Ting-Ting Li; Li-Na Zhao; Zhi-Guo Liu; Ying Han; Dai-Ming Fan


    Infection with human papillomaviruses is strongly associated with the development of multiple cancers including esophageal squamous cell carcinoma. The HPV E6 gene is essential for the oncogenic potential of HPV.The recgulation of apoptosis by oncogene has been relatel to carcinogenesis closely; therefore, the modulation of E6 on cellular apoptosis has become a hot research topic recently. Inactivation of the pro-apoptotic tumor suppressor p53 by E6 is an important mechanism by which E6promotes cell growth; it is expected that inactivation of p53 by E6 should lead to a reduction in cellular apoptosis,numerous studies showed that E6 could in fact sensitize cells to apoptosis. The molecular basis for apoptosis modulation by E6 is poorly understood. In this article, we will present an overview of observations and current understanding of molecular basis for E6-induced apoptosis.

  17. Artesunate induces AIF-dependent apoptosis in A549 cells (United States)

    Zhou, Chen-juan; Chen, Tong-Sheng


    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  18. Aspartame-induced apoptosis in PC12 cells. (United States)

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki


    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity.

  19. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells. (United States)

    Bhattacharya, Sujoy; Ray, Ramesh M; Johnson, Leonard R


    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco-2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco-2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF-α/CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner.

  20. Molecular mechanisms of TRAIL-induced apoptosis of cancer cells

    Institute of Scientific and Technical Information of China (English)


    @@Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) is a recently identified member of the tumor necrosis factor (TNF) family[1]. Numerous studies indicate that TRAIL can induce apoptosis of cancer cells but not of normal cells, pointing to the possibility of de-veloping TRAIL into a cancer drug[2-4]. This review will summary the molecular mechanisms of TRAIL-induced apoptosis and discuss the questions to be resolved in this field.

  1. Chalcones Enhance TRAIL-Induced Apoptosis in Prostate Cancer Cells



    Chalcones exhibit chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a naturally occurring anticancer agent that induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effect of five chalcones in combination with TRAIL on prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC. Our study showe...

  2. Apoptosis induced by propolis in human hepatocellular carcinoma cell line. (United States)

    Choi, Y H; Lee, W Y; Nam, S Y; Choi, K C; Park, Y E


    Propolis has been reported to exhibit a wide spectrum of activities including antibiotic, antiviral, anti-inflammatory, immunostimulatory and tumor carcinostatic properties. We showed propolis induced apoptosis in a human hepatoma cell line (SNU449) by FITC-Annexin V/PI staining. We also compared the apoptosis inducing effect between Korean and Commercial (Sigma # p-1010) propolis. There was no difference on apoptosis between them.

  3. Apoptosis and Its Significance in Oral Diseases: An Update

    Directory of Open Access Journals (Sweden)

    Megha Jain


    Full Text Available Apoptosis is a well defined mode of cell death which plays an imperative role in the development, regulation, and maintenance of the cell populations in multicellular organisms. Apoptosis is implicated in both health and diseases. Errors in apoptotic mechanisms have been allied to a wide range of pathologies including oral diseases. This review presents an update focused on the role and significance of apoptosis in various oral diseases ranging from reactive to benign and malignant pathologies.

  4. Reduced hepatic uptake and intestinal excretion of organic cations in mice with a targeted disruption of the organic cation transporter 1 (Oct1 [Slc22a1]) gene

    NARCIS (Netherlands)

    Jonker, JW; Wagenaar, E; Mol, CAAM; Buitelaar, M; Koepsell, H; Smit, JW; Schinkel, AH


    The polyspecific organic cation transporter 1 (OCT1 [SLC22A1]) mediates facilitated transport of small (hydrophilic) organic cations. OCT1 is localized at the basolateral membrane of epithelial cells in the liver, kidney, and intestine and could therefore be involved in the elimination of endogenous

  5. Stress proteins induced by arsenic. (United States)

    Del Razo, L M; Quintanilla-Vega, B; Brambila-Colombres, E; Calderón-Aranda, E S; Manno, M; Albores, A


    The elevated expression of stress proteins is considered to be a universal response to adverse conditions, representing a potential mechanism of cellular defense against disease and a potential target for novel therapeutics. Exposure to arsenicals either in vitro or in vivo in a variety of model systems has been shown to cause the induction of a number of the major stress protein families such as heat shock proteins (Hsp). Among them are members with low molecular weight, such as metallotionein and ubiquitin, as well as ones with masses of 27, 32, 60, 70, 90, and 110 kDa. In most of the cases, the induction of stress proteins depends on the capacity of the arsenical to reach the target, its valence, and the type of exposure, arsenite being the biggest inducer of most Hsp in several organs and systems. Hsp induction is a rapid dose-dependent response (1-8 h) to the acute exposure to arsenite. Thus, the stress response appears to be useful to monitor the sublethal toxicity resulting from a single exposure to arsenite. The present paper offers a critical review of the capacity of arsenicals to modulate the expression and/or accumulation of stress proteins. The physiological consequences of the arsenic-induced stress and its usefulness in monitoring effects resulting from arsenic exposure in humans and other organisms are discussed.

  6. STXM / NEXAFS investigation of humic acid metal cation interaction (United States)

    Plaschke, M.; Rothe, J.; Denecke, M. A.; Geckeis, H.


    Waste matrix dissolution following water intrusion in a future underground nuclear waste repository is regarded as a possible failure scenario leading to the dispersal of radioactive substances in the environment. Dissolved actinides, carriers of the long term radiotoxicity, may interact with groundwater constituents or sediment and host rock phases. These processes can either enhance or retard actinide mobility in the aquifer surrounding the repository. Actinide species may be highly mobile occuring as ‘eigen-colloids' or actinides adsorbed on groundwater colloids. The latter include dissolved humic acids (HA), mineral particles like iron oxides/hydroxides or clays and mineral/organic associations. The chemical characterization of these carrier colloids and a molecular scale understanding of the actinide-colloid interaction is a prerequisite to reliable prediction of actinide mobility based on model calculations. Therefore, chemical speciation information along with micro-scale morphology information is mandatory. Scanning Transmission X-ray Microscopy (STXM) is a powerful technique to reveal the chemical functionality and morphology of organic matter on a sub-µm scale. Moreover, STXM benefits from the ability to characterize organic samples in a thin film of aqueous solution. Morphological and microchemical information can be obtained at the same time within the spectral ‘water window' (i.e., between the C 1s and O 1s absorption edges at 284 eV and 537 eV, respectively). This ensures that complex hydrated structures of HA are kept in their native state. STXM investigations of HA in contact with polyvalent metal cations are carried out at the NSLS and SLS endstations. STXM micrographs at the carbon K-edge of metal cation loaded HA show optically dense zones (densification of carbon) embedded in a matrix of less dense material. Carboxyl groups are proposed to act as the primary HA cation attachment sites. NEXAFS (Near Edge Absorption Fine Structure) spectra of

  7. Shifting the balance of mitochondrial apoptosis: therapeutic perspectives

    Directory of Open Access Journals (Sweden)

    Simone eFulda


    Full Text Available Signaling via the intrinsic (mitochondrial pathway of apoptosis represents one of the critical signal transduction cascades that control the regulation of cell death. This pathway is typically altered in human cancers, thereby providing a suitable target for therapeutic intervention. Members of the Bcl-2 family of proteins as well as cell survival signaling cascades such as the PI3K/Akt/mTOR pathway are involved in the regulation of mitochondria-mediated apoptosis. Therefore, further insights into the molecular mechanisms that form the basis for the control of mitochondria-mediated apoptosis will likely open new perspectives to bypass evasion of apoptosis and treatment resistance in human cancers.

  8. Role of PUMA in methamphetamine-induced neuronal apoptosis. (United States)

    Chen, Chuanxiang; Qincao, Litao; Xu, Jingtao; Du, Sihao; Huang, Enping; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun


    Exposure to methamphetamine (METH), a widely used illicit drug, has been shown to cause neuron apoptosis. p53 upregulated modulator of apoptosis (PUMA) is a key mediator in neuronal apoptosis. This study aimed to examine the effects of PUMA in METH-induced neuronal apoptosis. We determined PUMA protein expression in PC12 cells and SH-SY5Y cells after METH exposure using western blot. We also observed the effect of METH on neuronal apoptosis after silencing PUMA expression with siRNA using TUNEL staining and flow cytometry. Additionally, to investigate possible mechanisms of METH-induced PUMA-mediated neuronal apoptosis, we measured the protein expression of apoptotic markers, including cleaved caspase-3, cleaved PARP, Bax, B-cell leukemia/lymphoma-2 (Bcl-2) and cytochrome c (cyto c), after METH treatment with or without PUMA knockdown. Results showed that METH exposure induced cell apoptosis, increased PUMA protein levels, activated caspase-3 and PARP, elevated Bax and reduced Bcl-2 expression, as well as increased the release of cyto c from mitochondria to the cytoplasm in both PC12 and SH-SY5Y cells. All these effects were attenuated or reversed after silencing PUMA. A schematic depicting the role of PUMA in METH-induced mitochondrial apoptotic pathway was proposed. Our results suggest that PUMA plays an important role in METH-triggered apoptosis and it may be a potential target for ameliorating neuronal injury and apoptosis caused by METH.

  9. Induction of Apoptosis in Protoplasts and Suspension Cultures of Plant Cells

    Institute of Scientific and Technical Information of China (English)


    Many studies have showed that apoptosis exists in plants. Our study shows that (1) menadione(VK3) induces apoptosis in suspension cultures of carrot cells; (2) heat shock induces apoptosis in suspension cultures of tobacco cells; and (3) ethrel induces apoptosis in carrot protoplasts. Some important indications of apoptosis were observed, including DNA laddering, TUNEL-positive reaction, condensation and degradation of nuclei.

  10. Apoptosis of gingival fibroblasts in periodontitis.

    Directory of Open Access Journals (Sweden)

    Roger Mauricio Arce


    Full Text Available Introducción: Los fibroblastos gingivales humanos (FGH tienen un papel importante en la enfermedad periodontal, pues alteran su normal funcionamiento en respuesta a estímulos pro-inflamatorios. Se cree que los fibroblastos se pueden eliminar anormalmente por medio de apoptosis en periodontitis. El propósito de este estudio es determinar y cuantificar la apoptosis de FGH en biopsias del periodonto de individuos sanos y con enfermedad periodontal. Métodos: Se realizó un estudio clínico descriptivo de corte transversal en personas con diagnóstico de salud periodontal (S, gingivitis (G y periodontitis crónica (PC. Se tomaron biopsias escisionales y se hicieron tinciones inmunohistoquímicas (hematoxilina-eosina, caspasa-3 y vimentina. Las placas se interpretaron por histopatología y se digitalizaron para cuantificar las células apoptóticas. Todos los datos se analizaron con un software estadístico para encontrar diferencias significativas (p Resultados: La población celular total de fibroblastos tuvo un promedio de 430±67.6 en los individuos sanos y una disminución significativamente progresiva en gingivitis (270±37.1 y periodontitis crónica (206.5±69.8 (p0.5, r²=0.02; mientras que para las células inflamatorias se encontró una relación proporcional significativa (p Conclusiones: Los resultados permiten concluir que tanto los fibroblastos gingivales como las células inflamatorias presentan apoptosis manifiesta por la expresión de caspasa-3, y ésta se incrementa significativamente en gingivitis y enfermedad periodontal.

  11. Increased cation conductance in human erythrocytes artificially aged by glycation. (United States)

    Kucherenko, Yuliya V; Bhavsar, Shefalee K; Grischenko, Valentin I; Fischer, Uwe R; Huber, Stephan M; Lang, Florian


    Excessive glucose concentrations foster glycation and thus premature aging of erythrocytes. The present study explored whether glycation-induced erythrocyte aging is paralleled by features of suicidal erythrocyte death or eryptosis, which is characterized by cell membrane scrambling with subsequent phosphatidylserine exposure at the cell surface and cell shrinkage. Both are triggered by increases of cytosolic Ca(2+) concentration ([Ca(2+)](i)), which may result from activation of Ca(2+) permeable cation channels. Glycation was accomplished by exposure to high glucose concentrations (40 and 100 mM), phosphatidylserine exposure estimated from annexin binding, cell shrinkage from decrease of forward scatter, and [Ca(2+)](i) from Fluo3-fluorescence in analysis via fluorescence-activated cell sorter. Cation channel activity was determined by means of whole-cell patch clamp. Glycation of total membrane proteins, immunoprecipitated TRPC3/6/7, and immunoprecipitated L-type Ca(2+) channel proteins was estimated by Western blot testing with polyclonal antibodies used against advanced glycation end products. A 30-48-h exposure of the cells to 40 or 100 mM glucose in Ringer solution (at 37 degrees C) significantly increased glycation of membrane proteins, hemoglobin (HbA(1c)), TRPC3/6/7, and L-type Ca(2+) channel proteins, enhanced amiloride-sensitive, voltage-independent cation conductance, [Ca(2+)](i), and phosphatidylserine exposure, and led to significant cell shrinkage. Ca(2+) removal and addition of Ca(2+) chelator EGTA prevented the glycation-induced phosphatidylserine exposure and cell shrinkage after glycation. Glycation-induced erythrocyte aging leads to eryptosis, an effect requiring Ca(2+) entry from extracellular space.

  12. The changing shape of mitochondrial apoptosis. (United States)

    Wasilewski, Michał; Scorrano, Luca


    Mitochondria are key organelles in conversion of energy, regulation of cellular signaling and amplification of programmed cell death. The anatomy of the organelle matches this functional versatility in complexity and is modulated by the concerted action of proteins that impinge on its fusion-fission equilibrium. A growing body of evidence implicates changes in mitochondrial shape in the progression of apoptosis and, therefore, proteins governing such changes are likely candidates for involvement in pathogenetic mechanisms in neurodegeneration and cancer. Here, we discuss the recent advancements in our knowledge about the machinery that regulates mitochondrial shape and on the role of molecular mechanisms controlling mitochondrial morphology during cell death.

  13. Monomer and dimer radical cations of benzene, toluene, and naphthalene. (United States)

    Das, Tomi Nath


    Pulse radiolytic generation of monomeric and dimeric cations of benzene, toluene, and naphthalene in aqueous acid media at room temperature and their spectrophotometric characterization is discussed. Results presented include measurements of each aromatic's solubility in H(2)O-H(2)SO(4) and H(2)O-HClO(4) media over the acidity range pH 1 to H(0) -7.0, facile oxidative generation, and real-time identification of appropriate cationic transients with respective lambda(max) (nm) and epsilon (M(-1) cm(-1)) values measured as follows: C(6)H(6)(*+) (443, 1145 +/- 75), C(6)H(5)CH(3)(*+) (428, 1230 +/- 90), C(10)H(8)(*+) (381, 3650 +/- 225, and 687, 2210 +/- 160), (C(6)H(6))(2)(*+) (860, 2835 +/- 235), (C(6)H(5)CH(3))(2)(*+) (950, 1685 +/- 155), and (C(10)H(8))(2)(*+) (1040, 4170 +/- 320). Kinetic measurements reveal the respective formation rates of monomeric cations to be near-diffusion controlled, while the forward rate values for the dimeric species generation are marginally slower. The proton activity corrected pK(a) values are found to remain between -2.6 and -1.3 for the ArH(*+) species (C(6)H(6)(*+) most acidic, C(10)H(8)(*+) least acidic), while the pK(a) values of (ArH)(2)(*+) species vary from -5.0 to -3.0 ((C(6)H(6))(2)(*+) most acidic, (C(10)H(8))(2)(*+) least acidic). In H(0) -5 in aqueous H(2)SO(4), the respective stabilization energy of (C(6)H(6))(2)(*+), (C(6)H(5)CH(3))(2)(*+), and (C(10)H(8))(2)(*+) is estimated to be 16.6, 15.0, and 13.7 kcal mol(-1). Thus, the aqueous acid solution emerges as an alternative medium for typical radical-cationic studies, while offering compatibility for the deprotonated radical characterization near neutral pH.

  14. Protic Cationic Oligomeric Ionic Liquids of the Urethane Type

    DEFF Research Database (Denmark)

    Shevchenko, V. V.; Stryutsky, A. V.; Klymenko, N. S.;


    Protic oligomeric cationic ionic liquids of the oligo(ether urethane) type are synthesized via the reaction of an isocyanate prepolymer based on oligo(oxy ethylene)glycol with M = 1000 with hexamethylene-diisocyanate followed by blocking of the terminal isocyanate groups with the use of amine...... derivatives of imidazole, pyridine, and 3-methylpyridine and neutralization of heterocycles with ethanesulfonic acid and p-toluenesulfonic acid. The structures and properties of the synthesized oligomeric ionic liquids substantially depend on the structures of the ionic groups. They are amorphous at room...

  15. Synthesis of Branch Fluorinated Cationic Surfactant and Surface Properties

    Directory of Open Access Journals (Sweden)

    Hongke Wu


    Full Text Available A novel fluorinated quaternary ammonium salt cationic surfactant N,N,N-trimethyl-2-[[4-[[3,4,4,4-tetrafluoro-2-[1,2,2,2-tetrafluoro-1-(trifluoromethylethyl]-1,3-bis(tri-fluoromethyl-1-buten-1-yl]oxy]-benzoyl]amino]-iodide (FQAS was synthesized successfully, and its structure was characterized by FTIR, 1H-NMR, 19F-NMR, and MS. The surface activities of FQAS and the effect of temperature, electrolyte, and combination with hydrocarbon surfactant were investigated. The results showed that FQAS exhibited excellent surface activity and combination with hydrocarbon surfactant.

  16. Synthesis, Characterization, and Flocculation Properties of Branched Cationic Polyacrylamide

    Directory of Open Access Journals (Sweden)

    Weimin Sun


    Full Text Available A water soluble branched cationic polyacrylamide (BCPAM was synthesized using solution polymerization. The polymerization was initiated using potassium diperiodatocuprate, K5[Cu(HIO62](Cu(III, initiating the self-condensing vinyl copolymerization of acrylamide and acryloxyethyltrimethyl ammonium chloride (DAC monomer. The resulting copolymer was characterized by the use of Fourier-transform infrared (FTIR spectroscopy and nuclear magnetic resonance (NMR spectroscopy. Its flocculation properties were evaluated with standard jar tests of sewage. The effects of initiator concentration, monomer concentration, reaction temperature, and the mass ratio of monomers on intrinsic viscosity and flocculation properties of the product were determined using single-factor experiments and orthogonal experiment.

  17. Peak metamorphic temperatures from cation diffusion zoning in garnet

    DEFF Research Database (Denmark)

    Smit, Matthijs Arjen; Scherer, Erik; Mezger, Klaus


    A model that relates the characteristic diffusion length and average cooling rate to peak temperature was developed for chemical diffusion in spherical geometries on the basis of geospeedometry principles and diffusion theory. The model is quantitatively evaluated for cation diffusion profiles in...... is robust and provides a reliable means of estimating peak temperatures for different types of high-grade metamorphic rock. The tool could be of particular advantage in rocks where critical assemblages for conventional thermometry do not occur or have been replaced during retrogression....


    Institute of Scientific and Technical Information of China (English)

    Lin Li; Bingyue Liu; Yafeng Cao


    The cationic graft copolymer was synthesized by reversed phase emulsion copolymerization of starch with diallydimethyl ammoniumlchlorid (DADMAC)and acrylamide (AM). The copolymerization was carried out using (NH4)2S2O8-NH2CONH2 redox as initiator and selecting Span-20 as emulsifier. The effects of emulsifier content in oil phase, volume ratio of oil to water, initiator concentration and mole ratio of DADMAC to AM on the graft copolymerization were discussed. The optimum condition of synthetics was found with the orthogonal test method.

  19. Blackbody-induced radiative dissociation of cationic SF 6 clusters

    DEFF Research Database (Denmark)

    Toker, Jonathan; Rahinov, I.; Schwalm, D.;


    The stability of cationic SF5+(SF6)n−1 clusters was investigated by measuring their blackbody-induced radiative dissociation (BIRD) rates. The clusters were produced in a supersonic expansion ion source and stored in an electrostatic ion-beam trap at room temperature, where their abundances...... and lifetimes were measured. Using the “master equation” approach, relative binding energies of an SF6 unit in the clusters could be extracted from the storage-time dependence of the survival probabilities. The results allow for a deeper insight into the effect of a localized charge on the structure...... and stability of SF6-based clusters....

  20. Holographic Grating Formation in Cationic Photopolymers with Dark Reaction

    Institute of Scientific and Technical Information of China (English)

    WEI Hao-Yun; CAO Liang-Cai; GU Claire; XU Zhen-Feng; HE Ming-Zhao; HE Qing-Sheng; HE Shu-Rong; JIN Guo-Fan


    @@ We propose a new formula to describe the dynamics of holographic grating formation under low intensity pulse exposures in cationic photopolymers, in which the dark reaction contributes dominantly to the grating strength.The formula is based on the living polymerization mechanism and the diffusion-free approximation. The analytical solution indicates that the grating formation time depends on the termination rate constant, while the final grating strength depends linearly on the total exposure energy. These theoretical predictions are verified experimentally using the Aprilis HMC-400μm photopolymer. The results can provide guidelines for the control and optimization of the holographic recording conditions in practical applications.

  1. Properties of sulfonated cation-exchangers made from petroleum asphaltites

    Energy Technology Data Exchange (ETDEWEB)

    Pokonova, Yu.V.; Pol' kin, G.B.; Proskuryakov, V.A.


    The use of ion-exchangers in radiochemical technology is accompanied by changes of their properties under the influence of ionizing radiation. The rate of development of these processes depends on the nature and structure of the matrix and on the nature and amount of ionic groups. We have proposed a method of synthesis of ion-exchangers resistant to ..gamma.. radiation from petroleum asphaltites. Continuing these investigations, we prepared cation-exchangers by sulfonation of a mixture of petroleum asphaltites and acid asphalt. An investigation of their radiation resistance is described in this paper.

  2. Incorporation of Monovalent Cations in Sulfate Green Rust

    DEFF Research Database (Denmark)

    Christiansen, B. C.; Dideriksen, K.; Katz, A.;


    Green rust is a naturally occurring layered mixed-valent ferrous-ferric hydroxide, which can react with a range of redox-active compounds. Sulfate-bearing green rust is generally thought to have interlayers composed of sulfate and water. Here, we provide evidence that the interlayers also contain...... with water showed that Na+ and K+ were structurally fixed in the interlayer, whereas Rb+ and Cs+ could be removed, resulting in a decrease in the basal layer spacing. The incorporation of cations in the interlayer opens up new possibilities for the use of sulfate green rust for exchange reactions with both...

  3. EXAFS determination of cation local order in layered perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Montero C, M. E.; Fuentes M, L.; Duarte M, J. A.; Fuentes C, L. [Centro de Investigacion en Materiales Avanzados S. C., Miguel de Cervantes Saavedra 120, Complejo Industrial Chihuahua, 31109 Chihuahua (Mexico); Garcia G, M. [Instituto de Fisica, UNAM, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Mehta, A.; Webb, S. [Stanford Synchrotron Radiation Laboratory, CA (United States)


    EXAFS analysis of Bi{sub 6}Ti{sub 3}Fe{sub 2}O{sub 18} Aurivillius ceramic was performed to elucidate the local environment of Fe cations. Experiments were performed at Stanford Synchrotron Radiation Laboratory, at T = 10, 30, 50, 75, 100 and 298 K, in fluorescence regime. EXAFS spectra were processed using the ab initio multiple scattering program FEFF6. Distances among representative atomic pairs were refined. As a basic result, the previous hypothesis suggested by X-ray diffraction experiments, regarding a preference of iron atoms for the centered perovskite layer of the unit cell, was confirmed. (Author)

  4. Spontaneous Superlattice Formation in Nanorods through PartialCation Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Richard D.; Sadtler, Bryce; Demchenko, Denis O.; Erdonmez, Can K.; Wang, Lin-Wang; Alivisatos, A. Paul


    Lattice mismatch strains are widely known to controlnanoscale pattern formation in heteroepitaxy, but such effects have notbeen exploited in colloidal nanocrystal growth. We demonstrate acolloidal route to synthesizing CdS-Ag2S nanorod superlattices throughpartial cation exchange. Strain induces the spontaneous formation ofperiodic structures. Ab initio calculations of the interfacial energy andmodeling of strain energies show that these forces drive theself-organization. The nanorod superlattices exhibit high stabilityagainst ripening and phase mixing. These materials are tunablenear-infrared emitters with potential applications as nanometer-scaleoptoelectronic devices.

  5. Cationic polyacrylamides enhance rates of starch and cellulose saccharification. (United States)

    Reye, John T; Maxwell, Kendra; Rao, Swati; Lu, Jian; Banerjee, Sujit


    Adding a cationic polyacrylamide (c-PAM) to either the amylase mediated hydrolysis of corn starch or the hydrolysis of wood fiber by cellulase can enhance the initial hydrolysis rates, although a rate decrease can occur under some conditions. Several c-PAMs can serve as catalysts and the same c-PAM can improve the efficiency of both amylase and cellulase. The initial amylase rate approximately doubles; the analogous cellulase hydrolysis rate increases by about 40%. c-PAMs increase the binding of enzyme to substrate.

  6. Ensemble classi…cation methods for autism disordered speech

    Directory of Open Access Journals (Sweden)

    Zoubir Abdeslem Benselama


    Full Text Available In this paper, we present the results of our investigation on Autism classifi…cation by applying ensemble classi…ers to disordered speech signals. The aim is to distinguish between Autism sub-classes by comparing an ensemble combining three decision methods, the sequential minimization optimization (SMO algorithm, the random forests (RF, and the feature-subspace aggregating approach (Feating. The conducted experiments allowed a reduction of 30% of the feature space with an accuracy increase over the baseline of 8.66% in the development set and 6.62% in the test set.

  7. Contributions of cation-π interactions to the collagen triple helix stability. (United States)

    Chen, Chia-Ching; Hsu, Wei; Hwang, Kuo-Chu; Hwu, Jih Ru; Lin, Chun-Cheng; Horng, Jia-Cherng


    Cation-π interactions are found to be an important noncovalent force in proteins. Collagen is a right-handed triple helix composed of three left-handed PPII helices, in which (X-Y-Gly) repeats dominate in the sequence. Molecular modeling indicates that cation-π interactions could be formed between the X and Y positions in adjacent collagen strands. Here, we used a host-guest peptide system: (Pro-Hyp-Gly)(3)-(Pro-Y-Gly-X-Hyp-Gly)-(Pro-Hyp-Gly)(3), where X is an aromatic residue and Y is a cationic residue, to study the cation-π interaction in the collagen triple helix. Circular dichroism (CD) measurements and Tm data analysis show that the cation-π interactions involving Arg have a larger contribution to the conformational stability than do those involving Lys, and Trp forms a weaker cation-π interaction with cationic residues than expected as a result of steric effects. The results also show that the formation of cation-π interactions between Arg and Phe depends on their relative positions in the strand. Moreover, the fluorinated and methylated Phe substitutions show that an electron-withdrawing or electron-donating substituent on the aromatic ring can modulate its π-electron density and the cation-π interaction in collagen. Our data demonstrate that the cation-π interaction could play an important role in stabilizing the collagen triple helix.

  8. Insights into the therapeutic potential of hypoxia-inducible factor-1α small interfering RNA in malignant melanoma delivered via folate-decorated cationic liposomes

    Directory of Open Access Journals (Sweden)

    Chen Z


    Full Text Available Zhongjian Chen,1,* Tianpeng Zhang,2,* Baojian Wu,2 Xingwang Zhang2 1Department of Pharmaceutics, Shanghai Dermatology Hospital, 2Division of Pharmaceutics, College of Pharmacy, Jinan University, Gangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Malignant melanoma (MM represents the most dangerous form of skin cancer, and its incidence is expected to rise in the coming time. However, therapy for MM is limited by low topical drug concentration and multidrug resistance. This article aimed to develop folate-decorated cationic liposomes (fc-LPs for hypoxia-inducible factor-1α (HIF-1α small interfering (siRNA delivery, and to evaluate the potential of such siRNA/liposome complexes in MM therapy. HIF-1α siRNA-loaded fc-LPs (siRNA-fc-LPs were prepared by a film hydration method followed by siRNA incubation. Folate decoration of liposomes was achieved by incorporation of folate/oleic acid-diacylated oligochitosans. The resulting siRNA-fc-LPs were 95.3 nm in size with a ζ potential of 2.41 mV. The liposomal vectors exhibited excellent loading capacity and protective effect toward siRNA. The in vitro cell transfection efficiency was almost parallel to the commercially available Lipofectamine™ 2000. Moreover, the anti-melanoma activity of HIF-1α siRNA was significantly enhanced through fc-LPs. Western blot analysis and apoptosis test demonstrated that siRNA-fc-LPs substantially reduced the production of HIF-1α-associated protein and induced the apoptosis of hypoxia-tolerant melanoma cells. Our designed liposomal vectors might be applicable as siRNA delivery vehicle to systemically or topically treat MM. Keywords: malignant melanoma, HIF-1α siRNA, chitosan, cationic liposomes, gene therapy

  9. Hydrogen release reactions of Al-based complex hydrides enhanced by vibrational dynamics and valences of metal cations. (United States)

    Sato, T; Ramirez-Cuesta, A J; Daemen, L; Cheng, Y-Q; Tomiyasu, K; Takagi, S; Orimo, S


    Hydrogen release from Al-based complex hydrides composed of metal cation(s) and [AlH4](-) was investigated using inelastic neutron scattering viewed from vibrational dynamics. The hydrogen release followed the softening of translational and [AlH4](-) librational modes, which was enhanced by vibrational dynamics and the valence(s) of the metal cation(s).

  10. 食物蛋白性小肠结肠炎的诊治进展%Diagnosis and management of food protein-induced enterocolitis syndrome

    Institute of Scientific and Technical Information of China (English)

    段铃; 詹学


    食物蛋白性小肠结肠炎(FPIES)是主要发生在婴幼儿和儿童的非IgE介导的胃肠道食物变态反应。FPIES 发病率在升高,由于其临床表现不典型以及缺乏特异性的实验室指标,因此FPIES 常被误诊或延迟诊断,患儿反复接受大量的实验室及影像学检查而明确诊断,不但使患儿具有营养不良的风险,并可能导致生长发育不良,而且造成了大量医疗资源的浪费。目前其确诊主要靠病史以及口服食物激发试验(OFC)。严格规避致敏食物为主要治疗方式。%Food protein-induced enterocolitis syndrome (FPIES) is an non-immunoglobulin E (IgE)-mediated gastrointestinal food allergy affecting primarily infants and toddlers. The incidence of FPIES is increasing. Because lack of typical manifestations and specific biomarker, the diagnosis is frequently misdiagnosed and delayed, and patients often undergo extensive and invasive evaluation prior to clear the diagnosis, the infants are not only at risk for nutritional deficiencies, and failure to thrive, but also waste large number of medical resource. Now the diagnosis is based on the medical history and oral food challenge. Strict avoidance of food allergens is the main treatment.

  11. The role of casein-specific IgA and TGF-β in children with Food Protein-Induced Enterocolitis Syndrome to milk (United States)

    Konstantinou, George N.; Bencharitiwong, Ramon; Grishin, Alexander; Caubet, Jean-Christoph; Bardina, Luda; Sicherer, Scott H.; Sampson, Hugh A.; Nowak-Węgrzyn, Anna


    Background Food protein-induced enterocolitis syndrome (FPIES) is a gastrointestinal hypersensitivity disorder with a poorly understood pathophysiology and no biomarkers to aid in diagnosis. Objective To investigate humoral and cellular responses to casein in children with milk-FPIES, including the role of casein-specific (cs) IgA and T-cell mediated TGF-β responses. Patients and methods Thirty-one children previously diagnosed with milk-FPIES were challenged with milk. Twelve age-matched children with FPIES to other foods and 6 milk-tolerant children without a history of FPIES were used as controls. Casein-specific IgE, IgG, IgG4 and IgA were measured in serum and TGF-β levels in supernatants of casein-stimulated PBMCs. Result Twenty-six children with milk-FPIES reacted (active milk-FPIES) and five tolerated milk (milk-FPIES-resolved) during food challenge. All of them had significantly lower levels of csIgG, csIgG4 and csIgA than control children (p-value<0.001). There were no TGF-β responses in supernatants of active milk-FPIES children. Conclusion Children with milk-FPIES have low levels of csIgG, csIgG4 and csIgA. In particular, children with active FPIES to cow’s milk have deficient T-cell mediated TGF-β responses to casein, rendering TGF-β a promising biomarker in identifying children who are likely to experience FPIES reactions to this allergen. Prospective studies are needed to validate these findings, elucidate their role in FPIES pathophysiology and establish the diagnostic utility of TGF-β in milk-induced FPIES. PMID:25283440

  12. Diagnostic Performance of Alpha-Fetoprotein, Protein Induced by Vitamin K Absence, Osteopontin, Dickkopf-1 and Its Combinations for Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Eun Sun Jang

    Full Text Available Alpha-fetoprotein (AFP is the most widely used serum biomarker for hepatocellular carcinoma (HCC, despite its limitations. As complementary biomarkers, protein induced by vitamin K absence (PIVKA-II, osteopontin (OPN, and Dickkopf-1 (DKK-1 have been proposed. This study aimed to perform a head-to-head comparison of the diagnostic performance of AFP, PIVKA-II, OPN and DKK-1 as single or in combination to seek the best biomarker or panel, and to investigate the clinical factors affecting their performance.Using 401 stored plasma samples obtained from 208 HCC patients and 193 liver cirrhosis control patients, plasma AFP, PIVKA-II, OPN and DKK-1 levels were measured by ELISA, and receiver operating characteristic curve analyses were performed for each biomarker and for every combination of two to four markers.Of the four biomarkers, AFP showed the highest area under the curve (0.786. The sensitivity and specificity for each single biomarker was 62% and 90.2% (AFP>20 ng/mL, 51.0% and 91.2% (PIVKA-II>10 ng/mL, 46.2% and 80.3% (OPN>100 ng/mL, and 50.0% and 80.8% (DKK-1>500 pg/mL, respectively. Among the combinations of two biomarkers, AFP>20 ng/mL or DKK-1>500 pg/mL showed the best diagnostic performance (sensitivity 78.4%, specificity 72.5%. Triple or quadruple combination did not improve the diagnostic performance further. The patient's age, etiology and tumor invasiveness of HCC affected the performance of each marker.AFP was the most useful single biomarker for HCC diagnosis, and the combined measurement of AFP and DKK-1 could maximize the diagnostic yield. Clinical decision should be based on the consideration of various factors affecting the diagnostic performance of each biomarker. Efforts to seek novel HCC biomarkers should be continued.

  13. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats

    Directory of Open Access Journals (Sweden)

    Wen-Dee Chiang


    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD is one of the most common outcomes of obesity and is characterized by the accumulation of triglycerides, increased tissue apoptosis, and fibrosis. NAFLD is more common among elderly than in younger age groups, and it causes serious hepatic complications. Objective: In this study, alcalase treatment derived potato protein hydrolysate (APPH with lipolysis-stimulating property has been evaluated for its efficiency to provide hepato-protection in a high-fat-diet (HFD-fed aging rats. Design: Twenty-four-month-old SD rats were randomly divided into six groups (n=8: aged rats fed with standard chow, HFD-induced aged obese rats, HFD with low-dose (15 mg/kg/day APPH treatment, HFD with moderate (45 mg/kg/day APPH treatment, HFD with high (75 mg/kg/day APPH treatment, and HFD with probucol. Results: APPH was found to reduce the NAFLD-related effects in rat livers induced by HFD and all of the HFD-fed rats exhibited heavier body weight than those with control chow diet. However, the HFD-induced hepatic fat accumulation was effectively attenuated in rats administered with low (15 mg/kg/day, moderate (45 mg/kg/day, and high (75 mg/kg/day doses of APPH. APPH oral administration also suppressed the hepatic apoptosis- and fibrosis-related proteins induced by HFD. Conclusions: Our results thus indicate that APPH potentially attenuates hepatic lipid accumulation and anti-apoptosis and fibrosis effects in HFD-induced rats. APPH may have therapeutic potential in the amelioration of NAFLD liver damage.

  14. Benzene metabolites induce apoptosis in lymphocytes. (United States)

    Martínez-Velázquez, M; Maldonado, V; Ortega, A; Meléndez-Zajgla, J; Albores, A


    Benzene is an important environmental pollutant with important health implications. Exposure to this aromatic hydrocarbon is associated with hematotoxicity, and bone marrow carcinogenic effects. It has been shown that benzene induces oxidative stress, cell cycle alterations, and programmed cell death in cultured cells. Hepatic metabolism of benzene is thought to be a prerequisite for its bone marrow toxicity. Nevertheless, there are no reports on the cellular effects of reactive intermediates derived from hepatic metabolism of benzene. Thus, the goal of this project was to determine the cellular alterations of benzene metabolites produced by the cultured hepatic cell line HepG2. Supernatants collected from these cells were applied to a culture of freshly isolated lymphocytes. A higher decrease in cell viability was found in cells exposed to these supernatants than to unmetabolized benzene. This viability decrease was due to apoptosis, as determined by Terminal deoxynucleotidyl Transferase Biotin-dUTP Nick End Labeling (TUNEL) assay and internucleosomal fragmentation of DNA. When supernatants were analyzed by HPLC, we found that not all the hydrocarbon was biotransformed, since a 28 microM concentration (37%) remained. The only metabolite found in the culture medium was muconic acid. The present results show that muconic acid derived from benzene metabolism is able to cooperate with the pollutant for the induction of apoptosis in rat lymphocytes.

  15. Helicobacter pylori vacuolating toxin A and apoptosis

    Directory of Open Access Journals (Sweden)

    Rassow Joachim


    Full Text Available Abstract VacA, the vacuolating cytotoxin A of Helicobacter pylori, induces apoptosis in epithelial cells of the gastic mucosa and in leukocytes. VacA is released by the bacteria as a protein of 88 kDa. At the outer surface of host cells, it binds to the sphingomyelin of lipid rafts. At least partially, binding to the cells is facilitated by different receptor proteins. VacA is internalized by a clathrin-independent mechanism and initially accumulates in GPI-anchored proteins-enriched early endosomal compartments. Together with early endosomes, VacA is distributed inside the cells. Most of the VacA is eventually contained in the membranes of vacuoles. VacA assembles in hexameric oligomers forming an anion channel of low conductivity with a preference for chloride ions. In parallel, a significant fraction of VacA can be transferred from endosomes to mitochondria in a process involving direct endosome-mitochondria juxtaposition. Inside the mitochondria, VacA accumulates in the mitochondrial inner membrane, probably forming similar chloride channels as observed in the vacuoles. Import into mitochondria is mediated by the hydrophobic N-terminus of VacA. Apoptosis is triggered by loss of the mitochondrial membrane potential, recruitment of Bax and Bak, and release of cytochrome c.

  16. The Adipokine Chemerin Induces Apoptosis in Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Diego Rodríguez-Penas


    Full Text Available Background: The adipokine chemerin has been associated with cardiovascular disease. We investigated the effects of chemerin on viability and intracellular signalling in murine cardiomyocytes, and the effects of insulin and TNF-α on cardiomyocyte chemerin production. Methods: Hoechst dye vital staining and cell cycle analysis were used to analyse the viability of murine cardiac cells in culture. Western blot was used to explore the phosphorylation of AKT and caspase-9 activity in neonatal rat cardiomyocytes and HL-1 cells. Finally, RT-qPCR, ELISA and western blot were performed to examine chemerin and CMKLR1 expression after insulin and TNF-α treatment in cardiac cells. Results: Chemerin treatment increased apoptosis, reduced phosphorylation of AKT at Thr308 and increased caspase-9 activity in murine cardiomyocytes. Insulin treatment lowered chemerin and CMKLR1 mRNA and protein levels, and the amount of chemerin in the cell media, while TNF-α treatment increased chemerin mRNA and protein levels but decreased expression of the CMKLR1 gene. Conclusion: Chemerin induces apoptosis, reduces AKT phosphorylation and increases the cleavage of caspase-9 in murine cardiomyocytes. The expression of chemerin is regulated by important metabolic (insulin and inflammatory (TNF-α mediators at cardiac level. Our results suggest that chemerin could play a role in the physiopathology of cardiac diseases.

  17. Triggering of dendritic cell apoptosis by xanthohumol. (United States)

    Xuan, Nguyen Thi; Shumilina, Ekaterina; Gulbins, Erich; Gu, Shuchen; Götz, Friedrich; Lang, Florian


    Xanthohumol, a flavonoid from beer with anticancer activity is known to trigger apoptosis in a variety of tumor cells. Xanthohumol further has anti-inflammatory activity. However, little is known about the effect of xanthohumol on survival and function of immune cells. The present study thus addressed the effect of xanthohumol on dendritic cells (DCs), key players in the regulation of innate and adaptive immunity. To this end, mouse bone marrow-derived DCs were treated with xanthohumol with subsequent assessment of enzymatic activity of acid sphingomyelinase (Asm), ceramide formation determined with anti-ceramide antibodies in FACS and immunohistochemical analysis, caspase activity utilizing FITC conjugated anti-active caspase 8 or caspase 3 antibodies in FACS and by Western blotting, DNA fragmentation by determining the percentage of cells in the sub-G1 phase and cell membrane scrambling by annexin V binding in FACS analysis. As a result, xanthohumol stimulated Asm, enhanced ceramide formation, activated caspases 8 and 3, triggered DNA fragmentation and led to cell membrane scrambling, all effects virtually absent in DCs from gene targeted mice lacking functional Asm or in wild-type cells treated with sphingomyelinase inhibitor amitriptyline. In conclusion, xanthohumol stimulated Asm leading to caspase activation and apoptosis of bone marrow-derived DCs.

  18. Modulation of neutrophil apoptosis by antimicrobial peptides. (United States)

    Nagaoka, Isao; Suzuki, Kaori; Niyonsaba, François; Tamura, Hiroshi; Hirata, Michimasa


    Peptide antibiotics possess the potent antimicrobial activities against invading microorganisms and contribute to the innate host defense. Human antimicrobial peptides, α-defensins (human neutrophil peptides, HNPs), human β-defensins (hBDs), and cathelicidin (LL-37) not only exhibit potent bactericidal activities against Gram-negative and Gram-positive bacteria, but also function as immunomodulatory molecules by inducing cytokine and chemokine production, and inflammatory and immune cell activation. Neutrophil is a critical effector cell in host defense against microbial infection, and its lifespan is regulated by various pathogen- and host-derived substances. Here, we provided the evidence that HNP-1, hBD-3, and LL-37 cannot only destroy bacteria but also potently modulate (suppress) neutrophil apoptosis, accompanied with the phosphorylation of ERK-1/-2, the downregulation of tBid (an proapoptotic protein) and upregulation of Bcl-xL (an antiapoptotic protein), and the inhibition of mitochondrial membrane potential change and caspase 3 activity, possibly via the actions on the distinct receptors, the P2Y6 nucleotide receptor, the chemokine receptor CCR6, and the low-affinity formyl-peptide receptor FPRL1/the nucleotide receptor P2X7, respectively. Suppression of neutrophil apoptosis results in the prolongation of their lifespan and may be advantageous for the host defense against bacterial invasion.

  19. Cation Guided Assembly: Crystal Structures of Two Ag(I) Complexes in Versatile Dimensionalities with Different Counter Cations

    Institute of Scientific and Technical Information of China (English)

    WANG, Jiang-Yun; GU, Wen; WANG, Wen-Zhen; LIU, Xin; LIAO, Dai-Zheng


    Assembly of [Ag(CN)2]- units with M(Ⅱ)-diamine complex cations [Cu(LN-N)2]2+, where LN-N represents1,2-diaminopropane (pn) and ethylenediamine (en), afforded two complexes, [Cu(pn)2][Ag2(CN)4] (1) and[Cu(en)2][Ag3(CN)5] (2), which were characterized by elemental analysis, IR, UV-Vis and ESR spectra. Single crystal X-ray analyses show that these complexes have 2D and 3D architectures through silver-silver interactions and other weak interactions. The luminescence behaviors of the two complexes were also studied by means of emission spectra.

  20. Molecular Dynamics Study of a Dual-Cation Ionomer Electrolyte. (United States)

    Chen, Xingyu; Chen, Fangfang; Jónsson, Erlendur; Forsyth, Maria


    The poly(N1222 )x Li1-x [AMPS] ionomer system (AMPS=2-acrylamido-2-methylpropane sulfonic acid) with dual cations has previously shown decoupled Li ion dynamics from polymer segmental motions, characterized by the glass-transition temperature, which can result in a conductive electrolyte material whilst retaining an appropriate modulus (i.e. stiffness) so that it can suppress dendrite formation, thereby improving safety when used in lithium-metal batteries. To understand this ion dynamics behavior, molecular dynamics techniques have been used in this work to simulate structure and dynamics in these materials. These simulations confirm that the Li ion transport is decoupled from the polymer particularly at intermediate N1222(+) concentrations. At 50 mol % N1222(+) concentration, the polymer backbone is more rigid than for higher N1222(+) concentrations, but with increasing temperature Li ion dynamics are more significant than polymer or quaternary ammonium cation motions. Herein we suggest an ion-hopping mechanism for Li(+) , arising from structural rearrangement of ionic clusters that could explain its decoupled behavior. Higher temperatures favor an aggregated ionic structure as well as enhancing these hopping motions. The simulations discussed here provide an atomic-level understanding of ion dynamics that could contribute to designing an improved ionomer with fast ion transport and mechanical robustness.


    Institute of Scientific and Technical Information of China (English)

    Songlin Wang; Wenxia Liu


    Layered double hydroxides consisting of layers with cationic charges may be potential candidates of cationic microparticles forming synergetic retention effect with anionic polyacrylamide. In this work, the layered double hydroxides with various molar ratios of Mg/Al were synthesized by co-precipitation of magnesium chloride and aluminum chloride and peptized by intense washing with water. The chemical formula, particle size, Zeta potential of the layered double hydroxide were analyzed. It was found that positively charged magnesium aluminum hydroxide with particle diameter in nanoparticle size could be prepared. The Zeta potential and particle size vary with the feed molar ratio of Mg/Al and the peptizing process, respectively. The Zeta potential is also pH dependent. The retention experiments carried out on DDJ show that when used together with anionic polyacrylamide, the positively charged colloidal double hydroxide greatly improves the retention of reed pulps. The chemical formula, particle size and Zeta potential of the colloidal double hydroxide all affect its retention behavior.

  2. The cation content of phospholipides from swine erythrocytes. (United States)



    Phospholipides from swine erythrocytes were isolated and separated into four reproducible fractions. One of the fractions seems to be pure phosphatidylserine. The others are almost certainly not single compounds, although the analytical data indicate that they represent mixtures considerably simpler than the parent mixture extracted from the cells. All four fractions contained Na(+) and K(+), but very little Ca(2+). Sodium was the predominant cation in two of the fractions under all conditions although the major intracellular cation was potassium. In the other two fractions the ratio Na/K varied with the extraction procedure largely because the quantity of K(+) seemed to depend on the solvent system used. There appear to be reasons to believe that the entire system of phospholipides binds Na(+) preferentially. In addition, it was observed that the quantity of Na(+) found in the lipide extracts varied when the extrusion of Na(+) from the cells was made to vary. Both of these observations are consistent with the possibility that the phospholipides play some part in the extrusion of Na(+) from these cells.

  3. Effects of cation concentration on photocatalytic performance over magnesium vanadates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng [Catalytic Materials Group, Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Zhou, Wei [Department of Physics, Tianjin University, 92 Weijin Road, Nankai District, Tianjin (China); Wang, Xin; Zhang, Yan; Wang, Defa [TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin (China); Umezawa, Naoto, E-mail:, E-mail:; Abe, Hideki, E-mail:, E-mail: [Catalytic Materials Group, Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin (China); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ye, Jinhua [Catalytic Materials Group, Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin (China); International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)


    A series of magnesium vanadates (MgV {sub 2}O{sub 6}, Mg{sub 2}V {sub 2}O{sub 7}, and Mg{sub 3}V {sub 2}O{sub 8}) were synthesized to investigate the effect of cation concentration on photocatalytic performance. The samples were characterized by X-ray diffraction, field emission-scanning electron microscopy, UV-visible diffuse reflectance spectroscopy, and fluorescence spectroscopy. The photocatalytic O{sub 2} evolution experiments under visible light irradiation showed Mg{sub 2}V {sub 2}O{sub 7} exhibits the best performance, while Mg{sub 3}V {sub 2}O{sub 8} has the lowest activity. The density functional theory calculations indicated that the lowest unoccupied states of Mg{sub 3}V {sub 2}O{sub 8} are the mostly localized by the cation layers. The fluorescence spectra and fluorescence decay curves gave evident performances of excited states of magnesium vanadates and pointed out MgV {sub 2}O{sub 6} has a very short excited electron lift-time. Mg{sub 2}V {sub 2}O{sub 7} performs high photocatalytic activity because of its high electron mobility and long electron life-time.

  4. H2O Nucleation Around Noble Metal Cations (United States)

    Calaminici, Patrizia; Oropeza Alfaro, Pavel; Juarez Flores, Martin; Köster, Andreas; Beltran, Marcela; Ulises Reveles, J.; Khanna, Shiv N.


    First principle electronic structure calculations have been carried out to investigate the ground state geometry, electronic structure and binding energy of noble metal cations (H2O)n^+ clusters containing up to 10 H2O molecules. The calculations are performed with the density functional theory code deMon2k [1]. Due to the very flat potential energy surface of these systems special care to the numerical stability of energy and gradient calculation must be taken.Comparison of the results obtained with Cu^+, Ag^+ and Au^+ will be shown. This investigation provides insight into the structural arrangement of the water molecules around these metals and a microscopic understanding of the observed incremental binding energy in the case of the gold cation based on collision induced dissociation experiments. [1] A.M. Köster, P. Calaminici, M.E. Casida, R. Flores-Moreno, G. Geudtner, A. Goursot, T. Heine, A. Ipatov, F. Janetzko, J. Martin del Campo, S. Patchkovski, J.U. Reveles, A. Vela and D.R. Salahub, deMon2k, The deMon Developers, Cinvestav, 2006

  5. Cationic gadolinium chelate for magnetic resonance imaging of cartilaginous defects. (United States)

    Nwe, Kido; Huang, Ching-Hui; Qu, Feini; Warden-Rothman, Robert; Zhang, Clare Y; Mauck, Robert L; Tsourkas, Andrew


    The ability to detect meniscus defects by magnetic resonance arthrography (MRA) can be highly variable. To improve the delineation of fine tears, we synthesized a cationic gadolinium complex, (Gd-DOTA-AM4 )(2+) , that can electrostatically interact with Glycosaminoglycans (GAGs). The complex has a longitudinal relaxivity (r1) of 4.2 mM(-1) s(-1) and is highly stable in serum. Its efficacy in highlighting soft tissue tears was evaluated in comparison to a clinically employed contrast agent (Magnevist) using explants obtained from adult bovine menisci. In all cases, Gd-DOTA-AM4 appeared to improve the ability to detect the soft tissue defect by providing increased signal intensity along the length of the tear. Magnevist shows a strong signal near the liquid-meniscus interface, but much less contrast is observed within the defect at greater depths. This provides initial evidence that cationic contrast agents can be used to improve the diagnostic accuracy of MRA. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Role of Reverse Divalent Cation Diffusion in Forward Osmosis Biofouling. (United States)

    Xie, Ming; Bar-Zeev, Edo; Hashmi, Sara M; Nghiem, Long D; Elimelech, Menachem


    We investigated the role of reverse divalent cation diffusion in forward osmosis (FO) biofouling. FO biofouling by Pseudomonas aeruginosa was simulated using pristine and chlorine-treated thin-film composite polyamide membranes with either MgCl2 or CaCl2 draw solution. We related FO biofouling behavior-water flux decline, biofilm architecture, and biofilm composition-to reverse cation diffusion. Experimental results demonstrated that reverse calcium diffusion led to significantly more severe water flux decline in comparison with reverse magnesium permeation. Unlike magnesium, reverse calcium permeation dramatically altered the biofilm architecture and composition, where extracellular polymeric substances (EPS) formed a thicker, denser, and more stable biofilm. We propose that FO biofouling was enhanced by complexation of calcium ions to bacterial EPS. This hypothesis was confirmed by dynamic and static light scattering measurements using extracted bacterial EPS with the addition of either MgCl2 or CaCl2 solution. We observed a dramatic increase in the hydrodynamic radius of bacterial EPS with the addition of CaCl2, but no change was observed after addition of MgCl2. Static light scattering revealed that the radius of gyration of bacterial EPS with addition of CaCl2 was 20 times larger than that with the addition of MgCl2. These observations were further confirmed by transmission electron microscopy imaging, where bacterial EPS in the presence of calcium ions was globular, while that with magnesium ions was rod-shaped.

  7. Effect of cationic monomer on properties of fluorinated acrylate latex

    Institute of Scientific and Technical Information of China (English)

    Li Jun Chen


    Cationic fluorinated acrylate latex was prepared via semi-continuous emulsion copolymerization of cationic monomer and other monomers.The resultant latex and its film were characterized with dynamic light scattering detector and contact angle meter.Influences of amount of DMDAAC on the properties of resultant latex and its film were investigated in detail.Results show that the particle size of the latex has the minimum value and the zeta potential of the latex is increased when the amount of DMDAAC is increased.In addition,the particle size of the latex is unimodal distribution when the amount of DMDAAC is not more than 2.5%.However,the particle size of the latex is bimodal distribution when the amount of DMDAAC is more than 2.5%.The contact angle is varied slightly with the increase of amount of DMDAAC when it is not more than 2.5%.Nevertheless,the contact angle is decreased with the increase of the amount of DMDAAC when it is more than 25%.

  8. Stretch-activated cation channel from larval bullfrog skin

    DEFF Research Database (Denmark)

    Hillyard, Stanley D; Willumsen, Niels J; Marrero, Mario B


    Cell-attached patches from isolated epithelial cells from larval bullfrog skin revealed a cation channel that was activated by applying suction (-1 kPa to -4.5 kPa) to the pipette. Activation was characterized by an initial large current spike that rapidly attenuated to a stable value and showed...... was markedly reduced with N-methyl-D-glucamide (NMDG)-Cl Ringer's solution in the pipette. Neither amiloride nor ATP, which are known to stimulate an apical cation channel in Ussing chamber preparations of larval frog skin, produced channel activation nor did these compounds affect the response to suction....... Stretch activation was not affected by varying the pipette concentrations of Ca(2+) between 0 mmol l(-1) and 4 mmol l(-1) or by varying pH between 6.8 and 8.0. However, conductance was reduced with 4 mmol l(-1) Ca(2+). Western blot analysis of membrane homogenates from larval bullfrog and larval toad skin...

  9. Structural Insights into Mitochondrial Calcium Uniporter Regulation by Divalent Cations. (United States)

    Lee, Samuel K; Shanmughapriya, Santhanam; Mok, Mac C Y; Dong, Zhiwei; Tomar, Dhanendra; Carvalho, Edmund; Rajan, Sudarsan; Junop, Murray S; Madesh, Muniswamy; Stathopulos, Peter B


    Calcium (Ca(2+)) flux into the matrix is tightly controlled by the mitochondrial Ca(2+) uniporter (MCU) due to vital roles in cell death and bioenergetics. However, the precise atomic mechanisms of MCU regulation remain unclear. Here, we solved the crystal structure of the N-terminal matrix domain of human MCU, revealing a β-grasp-like fold with a cluster of negatively charged residues that interacts with divalent cations. Binding of Ca(2+) or Mg(2+) destabilizes and shifts the self-association equilibrium of the domain toward monomer. Mutational disruption of the acidic face weakens oligomerization of the isolated matrix domain and full-length human protein similar to cation binding and markedly decreases MCU activity. Moreover, mitochondrial Mg(2+) loading or blockade of mitochondrial Ca(2+) extrusion suppresses MCU Ca(2+)-uptake rates. Collectively, our data reveal that the β-grasp-like matrix region harbors an MCU-regulating acidic patch that inhibits human MCU activity in response to Mg(2+) and Ca(2+) binding.

  10. Excited state dynamics of the astaxanthin radical cation (United States)

    Amarie, Sergiu; Förster, Ute; Gildenhoff, Nina; Dreuw, Andreas; Wachtveitl, Josef


    Femtosecond transient absorption spectroscopy in the visible and NIR and ultrafast fluorescence spectroscopy were used to examine the excited state dynamics of astaxanthin and its radical cation. For neutral astaxanthin, two kinetic components corresponding to time constants of 130 fs (decay of the S 2 excited state) and 5.2 ps (nonradiative decay of the S 1 excited state) were sufficient to describe the data. The dynamics of the radical cation proved to be more complex. The main absorption band was shifted to 880 nm (D 0 → D 3 transition), showing a weak additional band at 1320 nm (D 0 → D 1 transition). We found, that D 3 decays to the lower-lying D 2 within 100 fs, followed by a decay to D 1 with a time constant of 0.9 ps. The D 1 state itself exhibited a dual behavior, the majority of the population is transferred to the ground state in 4.9 ps, while a small population decays on a longer timescale of 40 ps. Both transitions from D 1 were found to be fluorescent.

  11. High and rapid alkali cation storage in ultramicroporous carbonaceous materials (United States)

    Yun, Young Soo; Lee, Seulbee; Kim, Na Rae; Kang, Minjee; Leal, Cecilia; Park, Kyu-Young; Kang, Kisuk; Jin, Hyoung-Joon


    To achieve better supercapacitor performance, efforts have focused on increasing the specific surface area of electrode materials to obtain higher energy and power density. The control of pores in these materials is one of the most effective ways to increase the surface area. However, when the size of pores decreases to a sub-nanometer regime, it becomes difficult to apply the conventional parallel-plate capacitor model because the charge separation distance (d-value) of the electrical double layer has a similar length scale. In this study, ultramicroporous carbonaceous materials (UCMs) containing sub-nanometer-scale pores are fabricated using a simple in situ carbonization/activation of cellulose-based compounds containing potassium. The results show that alkali cations act as charge carriers in the ultramicropores (<0.7 nm), and these materials can deliver high capacitances of ∼300 F g-1 at 0.5 A g-1 and 130 F g-1, even at a high current rate of 65 A g-1 in an aqueous medium. In addition, the UCM-based symmetric supercapacitors are stable over 10,000 cycles and have a high energy and power densities of 8.4 Wh kg-1 and 15,000 W kg-1, respectively. This study provides a better understanding of the effects of ultramicropores in alkali cation storage.

  12. Cationic Nanocylinders Promote Angiogenic Activities of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Jung Bok Lee


    Full Text Available Polymers have been used extensively taking forms as scaffolds, patterned surface and nanoparticle for regenerative medicine applications. Angiogenesis is an essential process for successful tissue regeneration, and endothelial cell–cell interaction plays a pivotal role in regulating their tight junction formation, a hallmark of angiogenesis. Though continuous progress has been made, strategies to promote angiogenesis still rely on small molecule delivery or nuanced scaffold fabrication. As such, the recent paradigm shift from top-down to bottom-up approaches in tissue engineering necessitates development of polymer-based modular engineering tools to control angiogenesis. Here, we developed cationic nanocylinders (NCs as inducers of cell–cell interaction and investigated their effect on angiogenic activities of human umbilical vein endothelial cells (HUVECs in vitro. Electrospun poly (l-lactic acid (PLLA fibers were aminolyzed to generate positively charged NCs. The aninolyzation time was changed to produce two different aspect ratios of NCs. When HUVECs were treated with NCs, the electrostatic interaction of cationic NCs with negatively charged plasma membranes promoted migration, permeability and tubulogenesis of HUVECs compared to no treatment. This effect was more profound when the higher aspect ratio NC was used. The results indicate these NCs can be used as a new tool for the bottom-up approach to promote angiogenesis.

  13. Source of Lake Vostok Cations Constrained with Strontium Isotopes (United States)

    Lyons, William; Welch, Kathleen; Priscu, John; Tranter, Martyn; Royston-Bishop, George


    Lake Vostok is the largest sub-glacial lake in Antarctica. The primary source of our current knowledge regarding the geochemistry and biology of the lake comes from the analysis of refrozen lake water associated with ice core drilling. Several sources of dissolved ions and particulate matter to the lake have been proposed, including materials from the melted glacier ice, the weathering of underlying geological materials, hydrothermal activity and underlying, ancient evaporitic deposits. A sample of Lake Vostok Type 1 accretion ice has been analyzed for its 87Sr/86Sr signature as well as its major cation and anion and Sr concentrations. The strontium isotope ratio of 0.71655 and the Ca/Sr ratio in the sample strongly indicate that the major source of the Sr is from aluminosilicate minerals from the continental crust. These data imply that at least a portion of the other cations in the Type 1 ice also are derived from continental crustal materials and not hydrothermal activity, the melted glacier ice, or evaporitic sources.

  14. Synthesis and rheological properties of cation-exchanged Laponite suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Phuoc, Tran X. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Univ. of Pittsburgh, PA (United States); Howard, Bret H. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Chyu, Minking K. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Univ. of Pittsburgh, PA (United States)


    In this paper we report our new approach to synthesize cation-exchanged Laponite suspensions. General observations of the prepared samples indicated that an aqueous suspension of 1 wt.% Laponite retained its free flowing liquid phase characteristics even after aging for several weeks. When bivalent cationic metals (Cu, Co, Ni) were ablated into the suspension, the strong charge of the crystal face was reduced and, on standing, the suspension gelled becoming highly viscous. This sol-gel transition was induced by the formation of a space-filled structure due to both van der Waals and electrostatic bonds between the positively charged rims and negatively charged faces. Rheological properties of such prepared suspensions were measured using a Brookfield DV-II Pro Viscometer with a small sample adapter (SSA18/13RPY). The yield strengths of 2.2 N/m2, 3.2 N/m2, and 1.7 N/m2 were measured for Ni-, Co-, and Cumodified Laponite suspensions, respectively. These yield strengths are sufficiently high for suspending weighting materials such as barite which requires the gel strength of about 0.5 N/m2.

  15. Synthesis and rheological properties of cation exchanged Laponite suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Tran, X P; Howard, B; Chyu, M K


    In this paper we report our new approach to synthesize cation-exchanged Laponite suspensions. General observations of the prepared samples indicated that an aqueous suspension of 1 wt% Laponite retained its free flowing liquid phase characteristics even after aging for several weeks. When bivalent cationic metals (Cu, Co, Ni) were ablated into the suspension, the strong charge of the crystal face was reduced and, on standing, the suspension gelled becoming highly viscous. This sol-gel transition was induced by the formation of a space-filled structure due to both van derWaals and electrostatic bonds between the positively charged rims and negatively charged faces. Rheological properties of such prepared suspensions were measured using a Brookfield DV-H Pro Viscometer with a small sample adapter{SSA18/13RPY). The yield strengths of2.2 N/m2, 3.2 N/m2, and 1.7 N/m2 were measured for Ni-, Co-, and Cu-modified Laponite suspensions, respectively. These yield strengths are sufficiently high for suspending weighting materials such as barite which requires the gel strength of about 0.5 N/m2.

  16. Anionic and cationic Hofmeister effects on hydrophobic and hydrophilic surfaces. (United States)

    Schwierz, Nadine; Horinek, Dominik; Netz, Roland R


    Using a two-step modeling approach, we address the full spectrum of direct, reversed, and altered ionic sequences as the charge of the ion, the charge of the surface, and the surface polarity are varied. From solvent-explicit molecular dynamics simulations, we extract single-ion surface interaction potentials for halide and alkali ions at hydrophilic and hydrophobic surfaces. These are used within Poisson-Boltzmann theory to calculate ion density and electrostatic potential distributions at mixed polar/unpolar surfaces for varying surface charge. The resulting interfacial tension increments agree quantitatively with experimental data and capture the Hofmeister series, especially the anomaly of lithium, which is difficult to obtain using continuum theory. Phase diagrams that feature different Hofmeister series as a function of surface charge, salt concentration, and surface polarity are constructed from the long-range force between two surfaces interacting across electrolyte solutions. Large anions such as iodide have a high hydrophobic surface affinity and increase the effective charge magnitude on negatively charged unpolar surfaces. Large cations such as cesium also have a large hydrophobic surface affinity and thereby compensate an external negative charge surface charge most efficiently, which explains the well-known asymmetry between cations and anions. On the hydrophilic surface, the size-dependence of the ion surface affinity is reversed, explaining the Hofmeister series reversal when comparing hydrophobic with hydrophilic surfaces.

  17. Cation charge dependence of the forces driving DNA assembly. (United States)

    DeRouchey, Jason; Parsegian, V Adrian; Rau, Donald C


    Understanding the strength and specificity of interactions among biologically important macromolecules that control cellular functions requires quantitative knowledge of intermolecular forces. Controlled DNA condensation and assembly are particularly critical for biology, with separate repulsive and attractive intermolecular forces determining the extent of DNA compaction. How these forces depend on the charge of the condensing ion has not been determined, but such knowledge is fundamental for understanding the basis of DNA-DNA interactions. Here, we measure DNA force-distance curves for a homologous set of arginine peptides. All forces are well fit as the sum of two exponentials with 2.4- and 4.8-Å decay lengths. The shorter-decay-length force is always repulsive, with an amplitude that varies slightly with length or charge. The longer-decay-length force varies strongly with cation charge, changing from repulsion with Arg¹ to attraction with Arg². Force curves for a series of homologous polyamines and the heterogeneous protein protamine are quite similar, demonstrating the universality of these forces for DNA assembly. Repulsive amplitudes of the shorter-decay-length force are species-dependent but nearly independent of charge within each species. A striking observation was that the attractive force amplitudes for all samples collapse to a single curve, varying linearly with the inverse of the cation charge.

  18. Triple negative breast cancer therapy with CDK1 siRNA delivered by cationic lipid assisted PEG-PLA nanoparticles. (United States)

    Liu, Yang; Zhu, Yan-Hua; Mao, Cheng-Qiong; Dou, Shuang; Shen, Song; Tan, Zi-Bin; Wang, Jun


    There is no effective clinical therapy yet for triple-negative breast cancer (TNBC) without particular human epidermal growth factor receptor-2, estrogen and progesterone receptor expression. In this study, we report a molecularly targeted and synthetic lethality-based siRNA therapy for TNBC treatment, using cationic lipid assisted poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-PLA) nanoparticles as the siRNA carrier. It is demonstrated that only in c-Myc overexpressed TNBC cells, while not in normal mammary epithelial cells, delivery of siRNA targeting cyclin-dependent kinase 1 (CDK1) with the nanoparticle carrier (NPsiCDK1) induces cell viability decreasing and cell apoptosis through RNAi-mediated CDK1 expression inhibition, indicating the synthetic lethality between c-Myc with CDK1 in TNBC cells. Moreover, systemic delivery of NPsiCDK1 is able to suppress tumor growth in mice bearing SUM149 and BT549 xenograft and cause no systemic toxicity or activate the innate immune response, suggesting the therapeutic promise with such nanoparticles carrying siCDK1 for c-Myc overexpressed triple negative breast cancer.

  19. The influence of large cations on the electrochemical properties of tunnel-structured metal oxides (United States)

    Yuan, Yifei; Zhan, Chun; He, Kun; Chen, Hungru; Yao, Wentao; Sharifi-Asl, Soroosh; Song, Boao; Yang, Zhenzhen; Nie, Anmin; Luo, Xiangyi; Wang, Hao; Wood, Stephen M.; Amine, Khalil; Islam, M. Saiful; Lu, Jun; Shahbazian-Yassar, Reza


    Metal oxides with a tunnelled structure are attractive as charge storage materials for rechargeable batteries and supercapacitors, since the tunnels enable fast reversible insertion/extraction of charge carriers (for example, lithium ions). Common synthesis methods can introduce large cations such as potassium, barium and ammonium ions into the tunnels, but how these cations affect charge storage performance is not fully understood. Here, we report the role of tunnel cations in governing the electrochemical properties of electrode materials by focusing on potassium ions in α-MnO2. We show that the presence of cations inside 2 × 2 tunnels of manganese dioxide increases the electronic conductivity, and improves lithium ion diffusivity. In addition, transmission electron microscopy analysis indicates that the tunnels remain intact whether cations are present in the tunnels or not. Our systematic study shows that cation addition to α-MnO2 has a strong beneficial effect on the electrochemical performance of this material.

  20. Flexible polyelectrolyte conformation in the presence of cationic and anionic surfactants (United States)

    Passos, C. B.; Kuhn, P. S.; Diehl, A.


    In this work we have studied the conformation of flexible polyelectrolyte chains in the presence of cationic and anionic surfactant molecules. We developed a simple theoretical model for the formation of the polyelectrolyte-cationic surfactant complexes and mixed micelles formed by cationic and anionic surfactant molecules, in the framework of the Debye-Hückel-Bjerrum-Manning and Flory theories, with the hydrophobic interaction included explicitly as an effective short-ranged attraction between the surfactant hydrocarbon tails. This simple model allows us to calculate the extension of the polyelectrolyte-cationic surfactant complexes as a function of the anionic surfactant concentration, for different types of cationic and anionic surfactant molecules. A discrete conformational transition from a collapsed state to an elongated coil was found, for all surfactant chain lengths we have considered, in agreement with the experimental observations for the unfolding of ​DNA-cationic surfactant complexes.

  1. Resonance Raman and quantum chemical studies of short polyene radical cations

    DEFF Research Database (Denmark)

    Keszthelyi, T.; Wilbrandt, R.; Bally, T.


    The results of our investigations of the geometric and vibrational structures of some short conjugated polyene radical cations are reported. The radical cations of 1,3-butadiene and three of its deuterated isotopomers, trans- and cis-1,3-pentadiene, 2-methyl-1,3-butadiene, and E- and Z-1,3,5-hexa......The results of our investigations of the geometric and vibrational structures of some short conjugated polyene radical cations are reported. The radical cations of 1,3-butadiene and three of its deuterated isotopomers, trans- and cis-1,3-pentadiene, 2-methyl-1,3-butadiene, and E- and Z-1...... and to assist assignment of the resonance Raman spectra. A new and improved scaled quantum mechanical force field for the butadiene radical cation was also determined. The presence of more than one rotamer was observed in all the polyene radical cations we investigated. (C) 1997 Elsevier Science B.V....

  2. Improving reactive ink jet printing via cationization of cellulosic linen fabric. (United States)

    Rekaby, M; Abd-El Thalouth, J I; Abd El-Salam, Sh H


    Cellulose linen fabric samples subjected to cationization using different cationizing agents: dodecyl trimethyl ammonium bromide (DTAB), tetra methyl ammonium hydroxide (TMAH), and Quat-188, via pad batch technique, followed by ink jet printing with reactive dyes. The %N as well as the K/S of the cationized samples was found to be depends on: (a) the nature of the cationizing agent and (b) on the time of batching. As the latter increases both of the nitrogen content and K/S increases to a maximum depending on the nature of the reagent used. Further increase in the batching time up to 30 h is accompanied by a decrease in both the %N and K/S irrespective of the nature of the cationizing agent used. Cationization improves the printability of reactive dye ink jet printed linen fabrics with no remarkable effect on the overall color fastness properties.

  3. Cation-{pi}-interaction promoted aggregation of aromatic molecules and energy transfer within Y zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K.J.; Sunoj, R.B.; Chandrasekhar, J.; Ramamurthy, V.


    Photophysical studies of naphthalene confirm that aromatic molecules tend to aggregate within cation exchanged Y zeolites. Ground-state aggregation is traced to the presence of cation-aromatic {pi}-interaction. Solvents that can coordinate to the cation turn off the cation-aromatic interaction, and consequently aggregation does not occur in zeolites that are impregnated with the above solvents. The solvent that exhibits a maximum in such an effect is water. MP2 calculations on cation-benzene dimer indicate that cation-{pi}-interaction results in stabilization of the {pi}-stacked benzene dimer. Results of MP2 calculations are consistent with the formation of ground-state {pi}-stacked aggregates of naphthalene molecules within Y zeolites.

  4. Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange. (United States)

    Bruchet, Marion; Melman, Artem


    Calcium cross-linked alginate hydrogels are widely used in targeted drug delivery, tissue engineering, wound treatment, and other biomedical applications. We developed a method for preparing homogeneous alginate hydrogels cross-linked with Ca(2+) cations using reductive cation exchange in homogeneous iron(III) cross-linked alginate hydrogels. Treatment of iron(III) cross-linked alginate hydrogels with calcium salts and sodium ascorbate results in reduction of iron(III) cations to iron(II) that are instantaneously replaced with Ca(2+) cations, producing homogeneous ionically cross-linking hydrogels. Alternatively, the cation exchange can be performed by photochemical reduction in the presence of calcium chloride using a sacrificial photoreductant. This approach allows fabrication of patterned calcium alginate hydrogels through photochemical patterning of iron(III) cross-linked alginate hydrogel followed by the photochemical reductive exchange of iron cations to calcium.

  5. Probing optical band gaps at nanoscale from tetrahedral cation vacancy defects and variation of cation ordering in NiCo2O4 epitaxial thin films (United States)

    Dileep, K.; Loukya, B.; Silwal, P.; Gupta, A.; Datta, R.


    High resolution electron energy loss spectroscopy (HREELS) is utilized to probe the optical band gaps at the nanoscale in epitaxial NiCo2O4 (NCO) thin films with different structural order (cation/charge). The structure of NCO deviates from the ideal inverse spinel (non-magnetic and insulating) for films grown at higher temperatures (>500 °C) towards a mixed cation structure (magnetic with metallic conductivity) at lower deposition temperatures (<450 °C). This significantly modifies the electronic structure as well as the nature of the band gap of the material. Nanoscale regions with unoccupied tetrahedral A site cations are additionally observed in all the samples and direct measurement from such areas reveals considerably lower band gap values as compared to the ideal inverse spinel and mixed cation configurations. Experimental values of band gaps have been found to be in good agreement with the theoretical mBJLDA exchange potential based calculated band gaps for various cation ordering and consideration of A site cation vacancy defects. The origin of rich variation in cation ordering observed in this system is discussed.

  6. Resveratrol induces apoptosis in human esophageal carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Hai-Bo Zhou; Yun Yan; Ya-Ni Sun; Ju-Ren Zhu


    AIM: To investigate the apoptosis in esophageal cancer cells induced by resveratrol, and the relation between this apoptosis and expression of Bcl-2 and Bax.METHODS: In in vitro experiments, MTr assay was used to determine the cell growth inhibitory rate. Transmission electron microscope and TUNEL staining method were used to quantitatively and qualitively detect the apoptosis status of esophageal cancer cell line EC-9706 before and after the resveratrol treatment. Immunohistochemical staining was used to detect the expression of apoptosis-regulated gene Bcl-2 and Bax.RESULTS: Resveratrol inhibited the growth of esophageal cancer cell line EC-9706 in a dose-and time-dependent manner. Resveratrol induced EC-9706 cells to undergo apoptosis with typically apoptotic characteristics, including morphological changes of chromatin condensation, chromatin crescent formation, nucleus fragmentation and apoptotic body formation. TUNEL assay showed that after the for 24 to 96 hours, the AIs were apparently increased with treated time (P<0.05). Immunohistochemical staining showed that after the treatment of EC-9706 cells with proteins were apparently reduced with treated time (P<0.05)and the PRs of Bax proteins were apparently increased with treated time (P<0.05).CONCLUSION: Resveratrol is able to induce the apoptosisin esophageal cancer. This apoptosis may be mediated by down-regulating the apoptosis-regulated gene Bcl-2 and upregulating the expression of apoptosis-regulated gene bax.

  7. Role of the Crosstalk between Autophagy and Apoptosis in Cancer

    Directory of Open Access Journals (Sweden)

    Minfei Su


    Full Text Available Autophagy and apoptosis are catabolic pathways essential for organismal homeostasis. Autophagy is normally a cell-survival pathway involving the degradation and recycling of obsolete, damaged, or harmful macromolecular assemblies; however, excess autophagy has been implicated in type II cell death. Apoptosis is the canonical programmed cell death pathway. Autophagy and apoptosis have now been shown to be interconnected by several molecular nodes of crosstalk, enabling the coordinate regulation of degradation by these pathways. Normally, autophagy and apoptosis are both tumor suppressor pathways. Autophagy fulfils this role as it facilitates the degradation of oncogenic molecules, preventing development of cancers, while apoptosis prevents the survival of cancer cells. Consequently, defective or inadequate levels of either autophagy or apoptosis can lead to cancer. However, autophagy appears to have a dual role in cancer, as it has now been shown that autophagy also facilitates the survival of tumor cells in stress conditions such as hypoxic or low-nutrition environments. Here we review the multiple molecular mechanisms of coordination of autophagy and apoptosis and the role of the proteins involved in this crosstalk in cancer. A comprehensive understanding of the interconnectivity of autophagy and apoptosis is essential for the development of effective cancer therapeutics.

  8. Apoptosis and T cell depletion during feline infectious peritonitis

    NARCIS (Netherlands)

    Horzinek, M.C.; Haagmans, B.L.; Egberink, H.F.


    Cats that have succumbed to feline infectious peritonitis, an immune- mediated disease caused by variants of feline coronaviruses, show apoptosis and T-cell depletion in their lymphoid organs. The ascitic fluid that develops in the course of the condition causes apoptosis in vitro but only in activa

  9. Early events following radiolytic and photogeneration of radical cations in hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Werst, D.W.; Trifunac, A.D.


    Real-time studies in hydrocarbons have revealed a richness of chemistry involving the initial ionic species produced in radiolysis and photoionization. A modified radical cation mechanism patterned after the core mechanism for alkane radiolysis-formation of radical cations and their disappearance via ion-molecule reactions - is capable of explaining a wide range of observations in high-energy photochemistry, and thus unifies two high-energy regimes. Fundamental studies of radical cations suggest strategies for mitigating radiation effects in materials.

  10. Early events following radiolytic and photogeneration of radical cations in hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Werst, D.W.; Trifunac, A.D.


    Real-time studies in hydrocarbons have revealed a richness of chemistry involving the initial ionic species produced in radiolysis and photoionization. A modified radical cation mechanism patterned after the core mechanism for alkane radiolysis-formation of radical cations and their disappearance via ion-molecule reactions - is capable of explaining a wide range of observations in high-energy photochemistry, and thus unifies two high-energy regimes. Fundamental studies of radical cations suggest strategies for mitigating radiation effects in materials.

  11. Click-based porous cationic polymers for enhanced carbon dioxide capture


    Dani, Alessandro; Magistris, Valentina Crocella Claudio; Santoro, Valentina; Yuan, Jiayin; Bordiga, Silvia


    Imidazolium based porous cationic polymers were synthesized using an innovative and facile approach, which takes advantage of the Debus Radziszewski reaction to obtain meso- and microporous polymers following click chemistry principles. In the obtained set of materials, click based porous cationic polymers have the same cationic backbone, whereas they bear the commonly used anions of imidazolium poly(ionic liquid)s. These materials show hierarchical porosity and a good specific surface area. ...

  12. Ternary mixtures of ionic liquids for better salt solubility, conductivity and cation transference number improvement (United States)

    Karpierz, E.; Niedzicki, L.; Trzeciak, T.; Zawadzki, M.; Dranka, M.; Zachara, J.; Żukowska, G. Z.; Bitner-Michalska, A.; Wieczorek, W.


    We hereby present the new class of ionic liquid systems in which lithium salt is introduced into the solution as a lithium cation-glyme solvate. This modification leads to the reorganisation of solution structure, which entails release of free mobile lithium cation solvate and hence leads to the significant enhancement of ionic conductivity and lithium cation transference numbers. This new approach in composing electrolytes also enables even three-fold increase of salt concentration in ionic liquids.

  13. A Photo Touch on Amines: New Synthetic Adventures of Nitrogen Radical Cations. (United States)

    Maity, Soumitira; Zheng, Nan


    Amines have been used as sacrificial electron donors to reduce photoexcited Ru(II) or Ir(III) complexes, during which they are oxidized to nitrogen radical cations. Recently, the synthetic potential of these nitrogen radical cations have caught synthetic organic chemists' attention. They have been exploited in various transformations yielding a number of elegant methods for amine synthesis. This article highlights recent developments on nitrogen radical cation chemistry under visible-light photocatalysis.

  14. Differential modulation of ATP-induced P2X7-associated permeabilities to cations and anions of macrophages by infection with Leishmania amazonensis.

    Directory of Open Access Journals (Sweden)

    Camila Marques-da-Silva

    Full Text Available Leishmania and other parasites display several mechanisms to subvert host immune cell function in order to achieve successful infection. The ATP receptor P2X7, an agonist-gated cation channel widely expressed in macrophages and other cells of the immune system, is also coupled to inflammasome activation, IL-1 beta secretion, production of reactive oxygen species, cell death and the induction of the permeabilization of the plasma membrane to molecules of up to 900 Da. P2X7 receptors can function as an effective microbicidal triggering receptor in macrophages infected with several microorganisms including Mycobacteria tuberculosis, Chlamydia and Leishmania. We have previously shown that its expression is up-regulated in macrophages infected with L. amazonensis and that infected cells also display an increase in P2X7-induced apoptosis and membrane permeabilization to some anionic fluorescent dyes. In an independent study we recently showed that the phenomenon of macrophage membrane permeabilization can involve at least two distinct pathways for cations and anions respectively. Here, we re-addressed the effects of ATP-induced P2X7-associated phenomena in macrophages infected with L. amazonensis and demonstrated that the P2X7-associated dye uptake mechanisms are differentially modulated. While the membrane permeabilization for anionic dyes is up-modulated, as previously described, the uptake of cationic dyes is strongly down-modulated. These results unveil new characteristics of two distinct permeabilization mechanisms associated with P2X7 receptors in macrophages and provide the first evidence indicating that these pathways can be differentially modulated in an immunologically relevant situation. The possible importance of these results to the L. amazonensis escape mechanism is discussed.

  15. Differential modulation of ATP-induced P2X7-associated permeabilities to cations and anions of macrophages by infection with Leishmania amazonensis. (United States)

    Marques-da-Silva, Camila; Chaves, Mariana Martins; Rodrigues, Juliany Cola; Corte-Real, Suzana; Coutinho-Silva, Robson; Persechini, Pedro Muanis


    Leishmania and other parasites display several mechanisms to subvert host immune cell function in order to achieve successful infection. The ATP receptor P2X7, an agonist-gated cation channel widely expressed in macrophages and other cells of the immune system, is also coupled to inflammasome activation, IL-1 beta secretion, production of reactive oxygen species, cell death and the induction of the permeabilization of the plasma membrane to molecules of up to 900 Da. P2X7 receptors can function as an effective microbicidal triggering receptor in macrophages infected with several microorganisms including Mycobacteria tuberculosis, Chlamydia and Leishmania. We have previously shown that its expression is up-regulated in macrophages infected with L. amazonensis and that infected cells also display an increase in P2X7-induced apoptosis and membrane permeabilization to some anionic fluorescent dyes. In an independent study we recently showed that the phenomenon of macrophage membrane permeabilization can involve at least two distinct pathways for cations and anions respectively. Here, we re-addressed the effects of ATP-induced P2X7-associated phenomena in macrophages infected with L. amazonensis and demonstrated that the P2X7-associated dye uptake mechanisms are differentially modulated. While the membrane permeabilization for anionic dyes is up-modulated, as previously described, the uptake of cationic dyes is strongly down-modulated. These results unveil new characteristics of two distinct permeabilization mechanisms associated with P2X7 receptors in macrophages and provide the first evidence indicating that these pathways can be differentially modulated in an immunologically relevant situation. The possible importance of these results to the L. amazonensis escape mechanism is discussed.

  16. Apoptosis of Cancer Cells Induced by HAP Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    HU Sheng; LI Shipu; YAN Yuhua; WANG Youfa; CAO Xianying


    To confirm apoptosis is one of the hepatoma cells death pathways after HAP nanoparticles absorption, hepatoma cells were collected for ultrathin sections preparation and examined under a transmission electron microscope (TEM) after 1 h incubation with HAP nanoparticle. Apoptosis was detected by TUNEL technique. After absorption, some vacuoles with membrane containing HAP nanoparticles were found in cytoplasma.The nuclear envelope shrinked, and some area pullulated from nucleus. The karyotin became pycnosis and assembled at the edge. An apoptosis body was found. And the data of IOD and numbers of the positive apoptosic signals in nuclear area of slides could illustrate much more apoptosis in the HAP group than those in the control group ( P < 0.001 ). The experimental results indicate that the HAP nanoparticles can induce cancer cells apoptosis.

  17. Apoptosis in skeletal muscle and its relevance to atrophy

    Institute of Scientific and Technical Information of China (English)

    Esther E Dupont-Versteegden


    Apoptosis is necessary for maintaining the integrity of proliferative tissues, such as epithelial cells of the gastrointestinal system. The role of apoptosis in post mitotic tissues, such as skeletal muscle, is less well defined. Apoptosis during muscle atrophy occurs in both myonuclei and other muscle cell types. Apoptosis of myonuclei likely contributes to the loss of muscle mass, but the mechanisms underlying this process are largely unknown. Caspase-dependent as well as -independent pathways have been implicated and the mode by which atrophy is induced likely determines the apoptotic mechanisms that are utilized. It remains to be determined whether a decrease in apoptosis will alleviate atrophy and distinct research strategies may be required for different causes of skeletal muscle loss.

  18. Identification of genes responsive to apoptosis in HL-60 cells

    Institute of Scientific and Technical Information of China (English)

    Wei JIN; Le-feng QU; Ping MIN; Shan CHEN; Hong LI; He LU; Yong-tai HOU


    AIM: To identify genes responsive to apoptosis in HL-60 cells treated by homoharringtonine. METHODS: cDNA microarray technology was used to detect gene expression and the result of microarrays for genes (TIEG and VDUP1) was confirmed by Northern analysis. RESULTS: Seventy-five individual mRNAs whose mass changed significantly were identified. Among these genes (25 were up-regulated and 50 were down-regulated), most are known related to oncogenes and tumor suppressor. Some genes were involved in apoptosis signaling pathways.CONCLUSION: TGFβ and TNF apoptosis signaling pathways were initiated during apoptosis in HL-60 cells.TIEG and VDUP1 play important roles in mediating apoptosis.

  19. Periodontal Ligament Stem Cells Regulate Apoptosis of Neutrophils (United States)

    Wang, Qing; Ding, Gang; Xu, Xin


    Abstract Periodontal ligament stem cells (PDLSCs) are promising cell resource for the cell-based therapy for periodontitis and regeneration of bio-root. In this study, we investigated the effect of PDLSCs on neutrophil, a critical constituent of innate immunity, and the underlying mechanisms. The effect of PDLSCs on the proliferation and apoptosis of resting neutrophils and IL-8 activated neutrophils was tested under cell-cell contact culture and Transwell culture, with or without anti-IL-6 neutralizing antibody. We found that PDLSCs could promote the proliferation and reduce the apoptosis of neutrophils whether under cell-cell contact or Transwell culture. Anti-IL-6 antibody reduced PDLSCs-mediated inhibition of neutrophil apoptosis. IL-6 at the concentration of 10ng/ml and 20ng/ml could inhibit neutrophil apoptosis statistically. Collectively, PDLSCs could reduce the apoptosis of neutrophils via IL-6.

  20. Simplified evaluation of apoptosis using the Muse cell analyzer. (United States)

    Khan, Asima; Gillis, Katherine; Clor, Julie; Tyagarajan, Kamala


    The degree of apoptosis in a cell population is an important parameter of cell health and is characterized by distinct morphological changes. Current methods of accurate detection and measurement of cellular apoptosis require expensive and complicated instrument platforms and expertise. The Muse Cell Analyzer is a unique instrument that enables multidimensional cell health analysis on a single platform. In this study, we used the Muse Cell Analyzer for apoptosis studies using the Muse Annexin V & Dead Cell Assay. The assay is based on the detection of phosphatidylserine (PS) on the surface of apoptotic cells. The results obtained from Muse Cell Analyzer were compared with traditional methods for apoptosis analysis. Our results indicate that Muse Annexin V & Dead Cell Assay and software module enabled the acquisition of accurate and highly precise measurements of cellular apoptosis. The assay is versatile and works with both suspension and adherent cell lines and multiple treatment conditions.

  1. Research on plasma and saliva levels of some bivalent cations in patients with chronic periodontitis (salivary cations in chronic periodontitis). (United States)

    Manea, A; Nechifor, M


    The purpose of this study was to determine whether chronic periodontitis can stand behind modifications in the salivary and blood concentration of some bivalent cations (Calcium, Magnesium, Zinc and Copper). For this purpose, we formed a group of 30 adult patients with clinically onset chronic periodontitis, and another one of 30 healthy patients as control. Both groups were free from acute oral pathology and general illnesses. The groups were divided again according to the habit of smoking. Total saliva samples were obtained as "first time in the morning", then weighed and processed. Cations were read on Atomic Absorption Spectrophotometer and by Ion Chromatography (Magnesium). The same patients were required to undergo laboratory blood tests for Calcium, Magnesium and Zinc. Data obtained was normalised, then statistically interpreted using two-tailed heteroscedastic t-Student tests. Our data confirmed the existence of a connection between salivary calcium, magnesium, zinc and copper, and of blood magnesium, and chronic periodontitis. Salivary calcium and magnesium are affected by smoking.

  2. Influence of competing inorganic cations on the ion exchange equilibrium of the monovalent organic cation metoprolol on natural sediment. (United States)

    Niedbala, Anne; Schaffer, Mario; Licha, Tobias; Nödler, Karsten; Börnick, Hilmar; Ruppert, Hans; Worch, Eckhard


    The aim of this study was to systematically investigate the influence of the mono- and divalent inorganic ions Na(+) and Ca(2+) on the sorption behavior of the monovalent organic cation metoprolol on a natural sandy sediment at pH=7. Isotherms for the beta-blocker metoprolol were obtained by sediment-water batch tests over a wide concentration range (1-100000 μg L(-1)). Concentrations of the competing inorganic ions were varied within freshwater relevant ranges. Data fitted well with the Freundlich sorption model and resulted in very similar Freundlich exponents (n=0.9), indicating slightly non-linear behavior. Results show that the influence of Ca(2+) compared to Na(+) is more pronounced. A logarithmic correlation between the Freundlich coefficient K(Fr) and the concentration or activity of the competing inorganic ions was found allowing the prediction of metoprolol sorption on the investigated sediment at different electrolyte concentrations. Additionally, the organic carbon of the sediment was completely removed for investigating the influence of organic matter on the sorption of metoprolol. The comparison between the experiments with and without organic carbon removal revealed no significant contribution of the organic carbon fraction (0.1%) to the sorption of metoprolol on the in this study investigated sediment. Results of this study will contribute to the development of predictive models for the transport of organic cations in the subsurface.

  3. Computational and analytical modeling of cationic lipid-DNA complexes. (United States)

    Farago, Oded; Grønbech-Jensen, Niels


    We present a theoretical study of the physical properties of cationic lipid-DNA (CL-DNA) complexes--a promising synthetically based nonviral carrier of DNA for gene therapy. The study is based on a coarse-grained molecular model, which is used in Monte Carlo simulations of mesoscopically large systems over timescales long enough to address experimental reality. In the present work, we focus on the statistical-mechanical behavior of lamellar complexes, which in Monte Carlo simulations self-assemble spontaneously from a disordered random initial state. We measure the DNA-interaxial spacing, d(DNA), and the local cationic area charge density, sigma(M), for a wide range of values of the parameter (c) representing the fraction of cationic lipids. For weakly charged complexes (low values of (c)), we find that d(DNA) has a linear dependence on (c)(-1), which is in excellent agreement with x-ray diffraction experimental data. We also observe, in qualitative agreement with previous Poisson-Boltzmann calculations of the system, large fluctuations in the local area charge density with a pronounced minimum of sigma(M) halfway between adjacent DNA molecules. For highly-charged complexes (large (c)), we find moderate charge density fluctuations and observe deviations from linear dependence of d(DNA) on (c)(-1). This last result, together with other findings such as the decrease in the effective stretching modulus of the complex and the increased rate at which pores are formed in the complex membranes, are indicative of the gradual loss of mechanical stability of the complex, which occurs when (c) becomes large. We suggest that this may be the origin of the recently observed enhanced transfection efficiency of lamellar CL-DNA complexes at high charge densities, because the completion of the transfection process requires the disassembly of the complex and the release of the DNA into the cytoplasm. Some of the structural properties of the system are also predicted by a continuum

  4. Insect cells are superior to Escherichia coli in producing malaria proteins inducing IgG targeting PfEMP1 on infected erythrocytes

    Directory of Open Access Journals (Sweden)

    Joergensen Louise


    Full Text Available Abstract Background The PFD1235w Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1 antigen is associated with severe malaria in children and can be expressed on the surface of infected erythrocytes (IE adhering to ICAM1. However, the exact three-dimensional structure of this PfEMP1 and its surface-exposed epitopes are unknown. An insect cell and Escherichia coli based system was used to express single and double domains encoded by the pfd1235w var gene. The resulting recombinant proteins have been evaluated for yield and purity and their ability to induce rat antibodies, which react with the native PFD1235w PfEMP1 antigen expressed on 3D7PFD1235w-IE. Their recognition by human anti-malaria antibodies from previously infected Tanzanian donors was also analysed. Methods The recombinant proteins were run on SDS-PAGE and Western blots for quantification and size estimation. Insect cell and E. coli-produced recombinant proteins were coupled to a bead-based Luminex assay to measure the plasma antibody reactivity of 180 samples collected from Tanzanian individuals. The recombinant proteins used for immunization of rats and antisera were also tested by flow cytometry for their ability to surface label 3D7PFD1235w-IE. Results All seven pAcGP67A constructs were successfully expressed as recombinant protein in baculovirus-infected insect cells and subsequently produced to a purity of 60-97% and a yield of 2-15 mg/L. By comparison, only three of seven pET101/D-TOPO constructs expressed in the E. coli system could be produced at all with purity and yield ranging from 3-95% and 6-11 mg/L. All seven insect cell, but only two of the E. coli produced proteins induced antibodies reactive with native PFD1235w expressed on 3D7PFD1235w-IE. The recombinant proteins were recognized in an age- and transmission intensity-dependent manner by antibodies from 180 Tanzanian individuals in a bead-based Luminex assay. Conclusions The baculovirus based insect cell

  5. Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets. (United States)

    Pieper, Robert; Kröger, Susan; Richter, Jan F; Wang, Jing; Martin, Lena; Bindelle, Jérôme; Htoo, John K; von Smolinski, Dorthe; Vahjen, Wilfried; Zentek, Jürgen; Van Kessel, Andrew G


    Dietary inclusion of fermentable carbohydrates (fCHO) is reported to reduce large intestinal formation of putatively toxic metabolites derived from fermentable proteins (fCP). However, the influence of diets high in fCP concentration on epithelial response and interaction with fCHO is still unclear. Thirty-two weaned piglets were fed 4 diets in a 2 × 2 factorial design with low fCP/low fCHO [14.5% crude protein (CP)/14.5% total dietary fiber (TDF)]; low fCP/high fCHO (14.8% CP/16.6% TDF); high fCP low fCHO (19.8% CP/14.5% TDF); and high fCP/high fCHO (20.1% CP/18.0% TDF) as dietary treatments. After 21-23 d, pigs were killed and colon digesta and tissue samples analyzed for indices of microbial ecology, tissue expression of genes for cell turnover, cytokines, mucus genes (MUC), and oxidative stress indices. Pig performance was unaffected by diet. fCP increased (P < 0.05) cell counts of clostridia in the Clostridium leptum group and total short and branched chain fatty acids, ammonia, putrescine, histamine, and spermidine concentrations, whereas high fCHO increased (P < 0.05) cell counts of clostridia in the C. leptum and C. coccoides groups, shifted the acetate to propionate ratio toward acetate (P < 0.05), and reduced ammonia and putrescine (P < 0.05). High dietary fCP increased (P < 0.05) expression of PCNA, IL1β, IL10, TGFβ, MUC1, MUC2, and MUC20, irrespective of fCHO concentration. The ratio of glutathione:glutathione disulfide was reduced (P < 0.05) by fCP and the expression of glutathione transferase was reduced by fCHO (P < 0.05). In conclusion, fermentable fiber ameliorates fermentable protein-induced changes in most measures of luminal microbial ecology but not the mucosal response in the large intestine of pigs.

  6. Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress

    Directory of Open Access Journals (Sweden)

    Becker DF


    Full Text Available Sathish Kumar Natarajan, Donald F BeckerDepartment of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NEAbstract: Flavoproteins catalyze a variety of reactions utilizing flavin mononucleotide or flavin adenine dinucleotide as cofactors. The oxidoreductase properties of flavoenzymes implicate them in redox homeostasis, oxidative stress, and various cellular processes, including programmed cell death. Here we explore three critical flavoproteins involved in apoptosis and redox signaling, ie, apoptosis-inducing factor (AIF, proline dehydrogenase, and NADPH oxidase. These proteins have diverse biochemical functions and influence apoptotic signaling by unique mechanisms. The role of AIF in apoptotic signaling is two-fold, with AIF changing intracellular location from the inner mitochondrial membrane space to the nucleus upon exposure of cells to apoptotic stimuli. In the mitochondria, AIF enhances mitochondrial bioenergetics and complex I activity/assembly to help maintain proper cellular redox homeostasis. After translocating to the nucleus, AIF forms a chromatin degrading complex with other proteins, such as cyclophilin A. AIF translocation from the mitochondria to the nucleus is triggered by oxidative stress, implicating AIF as a mitochondrial redox sensor. Proline dehydrogenase is a membrane-associated flavoenzyme in the mitochondrion that catalyzes the rate-limiting step of proline oxidation. Upregulation of proline dehydrogenase by the tumor suppressor, p53, leads to enhanced mitochondrial reactive oxygen species that induce the intrinsic apoptotic pathway. NADPH oxidases are a group of enzymes that generate reactive oxygen species for oxidative stress and signaling purposes. Upon activation, NADPH oxidase 2 generates a burst of superoxide in neutrophils that leads to killing of microbes during phagocytosis. NADPH oxidases also participate in redox signaling that involves hydrogen peroxide-mediated activation of

  7. Quercetin-induced apoptosis prevents EBV infection. (United States)

    Lee, Minjung; Son, Myoungki; Ryu, Eunhyun; Shin, Yu Su; Kim, Jong Gwang; Kang, Byung Woog; Cho, Hyosun; Kang, Hyojeung


    Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma.

  8. Apoptosis in thymus of teleost fish. (United States)

    Romano, Nicla; Ceccarelli, Giuseppina; Caprera, Cecilia; Caccia, Elisabetta; Baldassini, Maria Rosaria; Marino, Giovanna


    The presence and distribution of apoptotic cells during thymus development and in adult were studied by in situ end-labelling of fragmented DNA in three temperate species carp (Cyprinus carpio), sea bass (Dicentrarchus labrax) and dusky grouper (Epinephelus marginatus) and in the adult thymus of three Antarctic species belonging to the genus Trematomus spp. During thymus development some few isolated apoptotic cell (AC) firstly appeared in the central-external part of the organ (carp: 5 days ph; sea bass: 35 days ph grouper: 43 days ph). Initially the cells were isolated and then increased in number and aggregated in small groups in the outer-cortical region of the thymus larvae. The high density of apoptotic cells was observed in the junction between cortex and medulla from its appearance (border between cortex and medulla, BCM). ACs decreased in number in juveniles and adult as well as the ACs average diameter. In late juveniles and in adulthood, the apoptosis were restricted to the cortex. In Antarctic species the thymus is highly adapted to low temperature (high vascularisation to effort the circulation of glycoproteins enriched plasma and strongly compact parenchyma). The apoptosis process was more extended (4-7 fold) as compare with the thymus of temperate species, even if the distribution of ACs was similar in all examined species. Data suggested a common process of T lymphocyte negative-selection in BCM of thymus during the ontogeny. The selection process seems to be still active in adult polar fish, but restricted mainly in the cortex zone.

  9. Endoplasmic reticulum quality control and apoptosis. (United States)

    Groenendyk, Jody; Michalak, Marek


    The ER is one of the most important folding compartments within the cell, as well as an intracellular Ca(2+) storage organelle and it contains a number of Ca(2+) regulated molecular chaperones responsible for the proper folding of glycosylated as well as non-glycosylated proteins. The luminal environment of the ER contains Ca(2+) which is involved in regulating chaperones such as calnexin and calreticulin, as well as apoptotic proteins caspase-12 and Bap31, which may play an important role in determining cellular sensitivity to ER stress and apoptosis. The ER quality control system consists of several molecular chaperones, including calnexin, that assist in properly folding proteins and transporting them through the ER as well as sensing misfolded proteins, attempting to refold them and if this is not possible, targeting them for degradation. Accumulation of misfolded protein in the ER leads to activation of genes responsible for the expression of ER chaperones. The UPR mechanism involves transcriptional activation of chaperones by the membrane-localized transcription factor ATF6, in conjunction with the ER membrane kinase IRE1, as well as translational repression of protein synthesis by another ER membrane kinase PERK. When accumulation of misfolded protein becomes toxic, apoptosis is triggered, potentially with IRE1 involved in signaling via caspase-12. Both the extrinsic and intrinsic apoptotic pathways appear to culminate in the activation of caspases and this results in the recruitment of mitochondria in an essential amplifying manner. Bap31 may direct pro-apoptotic crosstalk between the ER and the mitochondria via Ca(2+) in conjunction with caspase-12 and calnexin. Accordingly, ER stress and the resultant Ca(2+) release must be very carefully regulated because of their effects in virtually all areas of cell function.

  10. Study on synthesis and flocculation property of cation-polyacrylamide

    Institute of Scientific and Technical Information of China (English)

    NIE Rong-chun; GUO Li-ying; XU Chu-yang


    On the basis of flocculating settling experimentation on flotation waste coal in Wangfenggang coal preparation plant, influence of medical dosage and cationization (CD) of CPAM samples on coal slurry's flocculating effect was studied, difference of flocculating effect on coal slurry among different categories of polyacrylamide was discussed. Experi-mental results show that when the dosage of flocculant reaches 2~4 g/m3 flotation waste,and the CD of CPAM is 5%, flocculating effect is the best, light transmittance of super-natant liquor reaches 93%. Taking 3types of sample CPAM, PAM and PHP, which formula weight vary a little, to deal with the same concn of coal slurry, when medicine dosage is 3 g/m3, flocculating effect of CPAM is the best, light transmittance of supernatant liquor reaches 92%.

  11. Organic non-aqueous cation-based redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai; Zhang, Lu; Brushett, Fikile R.


    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.

  12. Interpnictogen cations: exploring new vistas in coordination chemistry. (United States)

    Robertson, Alasdair P M; Gray, Paul A; Burford, Neil


    Pnictine derivatives can behave as both 2e(-) donors (Lewis bases) and 2e(-) acceptors (Lewis acids). As prototypical ligands in the coordination chemistry of transition metals, amines and phosphines also form complexes with p-block Lewis acids, including a variety of pnictogen-centered acceptors. The inherent Lewis acidity of pnictogen centers can be enhanced by the introduction of a cationic charge, and this feature has been exploited in recent years in the development of compounds resulting from coordinate Pn-Pn and Pn-Pn' interactions. These compounds offer the unusual opportunity for homoatomic coordinate bonding and the development of complexes that possess a lone pair of electrons at the acceptor center. This Review presents new directions in the systematic extension of coordination chemistry from the transition series into the p-block.

  13. A New Nanometer-Sized Ga(III-Oxyhydroxide Cation

    Directory of Open Access Journals (Sweden)

    William H. Casey


    Full Text Available A new 30-center Ga(III-oxy-hydroxide cation cluster was synthesized by hydrolysis of an aqueous GaCl3 solution near pH = 2.5 and crystallized using 2,6-napthalene disulfonate (NDS. The cluster has 30 metal centers and a nominal stoichiometry: [Ga30(μ4-O12(μ3-O4(μ3-OH4(μ2-OH42(H2O16](2,6-NDS6, where 2,6-NDS = 2,6-napthalene disulfonate This cluster augments the very small library of Group 13 clusters that have been isolated from aqueous solution and closely resembles one other Ga(III cluster with 32 metal centers that had been isolated using curcurbit ligands. These clusters have uncommon linked Ga(O4 centers and sets of both protonated and unprotonated μ3-oxo.

  14. Ab initio study of the transition-metal carbene cations

    Institute of Scientific and Technical Information of China (English)

    李吉海; 冯大诚; 冯圣玉


    The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH2+ were investigated by ab initio molecular orbital theory (HF/LANL2DZ). All of MCH2+ are coplanar. In the closed shell structures the C bonds to M with double bonds; while in the open shell structures the partial double bonds are formed, because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2px orbital of C and 4px, 3dxz, orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated bond dissociation energies are close to the experimental ones.

  15. Cationic Conjugated Polymers-Induced Quorum Sensing of Bacteria Cells. (United States)

    Zhang, Pengbo; Lu, Huan; Chen, Hui; Zhang, Jiangyan; Liu, Libing; Lv, Fengting; Wang, Shu


    Bacteria quorum sensing (QS) has attracted significant interest for understanding cell-cell communication and regulating biological functions. In this work, we demonstrate that water-soluble cationic conjugated polymers (PFP-G2) can interact with bacteria to form aggregates through electrostatic interactions. With bacteria coated in the aggregate, PFP-G2 can induce the bacteria QS system and prolong the time duration of QS signal molecules (autoinducer-2 (AI-2)) production. The prolonged AI-2 can bind with specific protein and continuously regulate downstream gene expression. Consequently, the bacteria show a higher survival rate against antibiotics, resulting in decreased antimicrobial susceptibility. Also, AI-2 induced by PFP-G2 can stimulate 55.54 ± 12.03% more biofilm in E. coli. This method can be used to understand cell-cell communication and regulate biological functions, such as the production of signaling molecules, antibiotics, other microbial metabolites, and even virulence.

  16. Efficient intravesical therapy of bladder cancer with cationic doxorubicin nanoassemblies. (United States)

    Jin, Xun; Zhang, Peilan; Luo, Li; Cheng, Hao; Li, Yunzu; Du, Ting; Zou, Bingwen; Gou, Maling

    Nanoparticles have promising applications in drug delivery for cancer therapy. Herein, we prepared cationic 1,2-dioleoyl-3-trimethylammonium propane/methoxypoly (ethyleneglycol) (DPP) nanoparticles to deliver doxorubicin (Dox) for intravesical therapy of bladder cancer. The DPP micelles have a mean dynamic diameter of 18.65 nm and a mean zeta potential of +19.6 mV. The DPP micelles could prolong the residence of Dox in the bladder, enhance the penetration of Dox into the bladder wall, and improve cellular uptake of Dox. The encapsulation by DPP micelles significantly improved the anticancer effect of Dox against orthotopic bladder cancer in vivo. This work described a Dox-loaded DPP nanoparticle with potential applications in intravesical therapy of bladder cancer.

  17. Chiral DNA packaging in DNA-cationic liposome assemblies. (United States)

    Zuidam, N J; Barenholz, Y; Minsky, A


    Recent studies have indicated that the structural features of DNA-lipid assemblies, dictated by the lipid composition and cationic lipid-to-DNA ratio, critically affect the efficiency of these complexes in acting as vehicles for cellular delivery of genetic material. Using circular dichroism we find that upon binding DNA, positively-charged liposomes induce a secondary conformational transition of the DNA molecules from the native B form to the C motif. Liposomes composed of positively-charged and neutral 'helper' lipids, found to be particularly effective as transfecting agents, induce - in addition to secondary conformational changes - DNA condensation into a left-handed cholesteric-like phase. A structural model is presented according to which two distinct, yet inter-related modes of DNA packaging coexist within such assemblies. The results underline the notion that subtle changes in the components of a supramolecular assembly may substantially modulate the interplay of interactions which dictate its structure and functional properties.

  18. Investigation on the aggregation properties of cationic [60]fullerene derivative

    Institute of Scientific and Technical Information of China (English)

    WANG Guanwu; ZHAO Guoxia; YAN Lifeng


    The UV-Vis spectra, HRTEM and AFM images of cationic fullerene derivative 1 with ammonium head group directly connected to C60 skeleton in tetrahydrofuran (THF)-water (H2O) binary mixtures and in pure H2O were investigated. It was found that the UV-Vis spectra of ammonium 1 in the THF-H2O mixtures with THF% ≥ 20% were nearly overlapped, while those with THF% < 20% showed broadened and red-shifted peaks, indicating the formation of aggregates. Corresponding to the UV-Vis spectral changes,the solvatochromism of ammonium 1 in THF-H2O mixtures was observed. Ammonium 1 in binary THF-H2O mixtures existing as the monomer state could aggregate upon prolonged standing. Higher temperature and lower concentration speeded up the aggregation process.

  19. Quantitative mapping of intracellular cations in the human amniotic membrane (United States)

    Moretto, Ph.; Llabador, Y.; Simonoff, M.; Razafindrabe, L.; Bara, M.; Guiet-Bara, A.


    The effect of magnesium and taurine on the permeability of cell membranes to monovalent cations has been investigated using the Bordeaux nuclear microprobe. PIXE and RBS techniques have been used to provide quantitative measurements and ion distributions in the isolated amniotic membrane. This physiological model for cellular exchanges allowed us to reveal the distribution of most elements involved in cellular pathways and the modifications under different experimental conditions of incubation in physiological fluids. The PIXE microanalysis provided an original viewpoint on these mechanisms. Following this first study, the amnion compact lamina was found to play a role which was not, up to now, taken into account in the interpretation of electrophysiological experimentations. The release of some ionic species, such as K +, from the epithelial cells, during immersion in isotonic fluids, could have been hitherto underestimated.

  20. Electrochemical uranyl cation biosensor with DNA oligonucleotides as receptor layer. (United States)

    Jarczewska, Marta; Ziółkowski, Robert; Górski, Łukasz; Malinowska, Elżbieta


    The present study aims at the further development of the uranyl oligonucleotide-based voltammetric biosensor, which takes advantage of strong interaction between UO2(2+) and phosphate DNA backbone. Herein we report the optimization of working parameters of previously elaborated electrochemical DNA biosensor. It is shown that the sensor sensitivity is highly dependent on the oligonucleotide probe length and the incubation time of sensor in a sample solution. Consequently, the highest sensitivity was obtained for 10-nucleotide sequence and 60 min incubation time. The lower detection limit towards uranyl cation for developed biosensor was 30 nM. The influence of mixed monolayers and the possibility of developing a non-calibration device were also investigated. The selectivity of the proposed biosensor was significantly improved via elimination of adenine nucleobases from the DNA probe. Moreover, the regeneration procedure was elaborated and tested to prolong the use of the same biosensor for 4 subsequent determinations of UO2(2+).

  1. Cation-Induced Coiling of Vanadium Pentoxide Nanobelts

    Directory of Open Access Journals (Sweden)

    Liu Jun


    Full Text Available Abstract Single-crystalline V2O5·xH2O nanorings and microloops were chemically assembled via an ion-induced chemical spinning route in the designed hydrothermal system. The morphology and structure of products were investigated by means of scanning electron microscopy (SEM and transmission electron microscopy (TEM. X-ray powder diffraction (XRD measurement, energy-dispersive X-ray spectroscopy (EDS microanalysis and thermal gravimetric analysis (TGA revealed that the composition of nanorings and microloops is V2O5·1·1H2O. For these oxide nanorings and microloops, the cation-induced coiling growth mechanism of vanadium pentoxide nanobelts has been proposed on the basis of crystallographic structure of vanadium pentoxide. Our proposed chemical spinning process and the rational solution-phase synthesis route can also be extended to prepare novel 1D materials with layered or more complex structures.

  2. A spectroscopic study of interaction of cationic dyes with heparin

    Directory of Open Access Journals (Sweden)

    R. Nandini


    Full Text Available The interaction of two cationic dyes namely, acridine orange and pinacyanol chloride with an anionic polyelectrolyte, heparin, has been investigated by spectrophotometric method.The polymer induced metachromasy in the dyes resulting in the shift of the absorption maxima of the dyes towards shorter wavelengths. The stability of the complexes formed between acridine orange and heparin was found to be lesser than that formed between pinacyanol chloride and heparin. This fact was further confirmed by reversal studies using alcohols, urea and surfactants. The interaction of acridine orange with heparin has also been investigated fluorimetrically.The interaction parameters revealed that binding between acridine orange and heparin arises due to electrostatic interaction while that between pinacyanol chloride and heparin is found to involve both electrostatic and hydrophobic forces. The effect of the structure of the dye in inducing metachromasy has also been discussed.

  3. Aqueous behaviour of cationic surfactants containing a cleavable group. (United States)

    Samakande, Austin; Chaghi, Radhouane; Derrien, Gaelle; Charnay, Clarence; Hartmann, Patrice C


    The aggregation behaviour of two novel cationic RAFT agents (transfer surfactants); N,N-dimethyl-N-(4-(((phenylcarbonothioyl)thio)methyl)benzyl)ethanammonium bromide (PCDBAB) and N-(4-((((dodecylthio)-carbonothioyl)thio)methyl)benzyl)-N,N-dimethylethanammonium bromide (DCTBAB) in diluted solutions have been investigated by surface tension, conductimetry and microcalorimetry measurements. The thermodynamic parameters i.e. the critical micelle concentration (cmc), the degree of micelle ionization (alpha), the head group surface area (a 0), Delta H mic, Delta G mic and T Delta S mic are reported at 303 K. The thermodynamic parameters have been compared to those of the conventional surfactant cetyltrimethylammonium bromide (CTAB) in order to specify structural relationships. The obtained results have been discussed considering the hydrophobic behaviour of the S-C=S- linkage and the specific interactions that arise from the introduction of the benzene ring into the hydrophobic part.

  4. Note: Vibrationally mediated photodissociation of carbon dioxide cation (United States)

    Mao, Rui; Zhang, Qun; Chen, Min; He, Chao; Zhou, Dan-na; Bai, Xi-lin; Zhang, Limin; Chen, Yang


    The photodissociation dynamics of carbon dioxide cation, CO_2^ +, mediated by its different tilde A{}^2Π _{u,1/2} (\\upsilon _1,\\upsilon _2,0) vibronic states has been investigated by means of time-sliced velocity map imaging. Through analysis of the recorded translational energy release spectra of photofragment CO+, we found that the photodissociation of CO_2^ + exhibits drastic change in a rather narrow energy region. A conformational barrier in the CO_2^ + ( {tilde A{}^2A_1 } ) state is suggested to be ˜5600 cm-1 relative to the CO_2^ + ( {tilde A{}^2Π _{u,1/2} ( {0,0,0} )}) state, in reasonable agreement with previous prediction.

  5. Influence of hydration and cation binding on parvalbumin dynamics (United States)

    Zanotti, J.-M.; Parello, J.; Bellissent-Funel, M.-C.

    Due to structural characteristics, parvalbumin exerts a major role in intracellular Mg2+ and Ca2+ concentration regulation during the muscular contraction-relieving cycle. This structure-function relationship being established, we are investigating the structure-dynamics-function relationship to take into account the protein dynamics. Because of the strong incoherent neutron scattering cross section of hydrogen and of the abundance of this element in proteins, incoherent inelastic neutron scattering is a unique probe to study vibrations and localised motions in biological macromolecules. We take advantage of the complementarities in energy or time resolution of various neutron spectrometers (time of flight, backscattering, spin-echo) to probe the parvalbumin dynamics from a fraction of a picosecond to a few nanoseconds. Influences of hydration and of the nature of the cation on parvalbumin dynamics are discussed.

  6. Property Predictions for Nitrate Salts with Nitroxy-Functionalized Cations (United States)


    2-nitroxyethyl)-3-methyl-5-nitroim+ (40) 1-(2-nitroxyethyl)-5-nitroimidazole (40a) CH3X Pyrazolium Cations 1,2H-pyr+ (41) 1H- pyrazole (41a/44a) HX...4-nitro-1,2H-pyr+ (42) 4-nitro-1H- pyrazole (42a) HX 3,5-bis(nitroxymethyl)-1,2H-pyr+ (43) 3,5-bis(nitroxymethyl)-1H- pyrazole (43a) HX 1-methyl-2H...pyr+ (44) 1H- pyrazole (41a/44a) CH3X 1,2-dimethylpyr+ (45) 1-methylpyrazole (45a) CH3X 1-nitroxymethyl-2-methylpyr+ (46) 1-nitroxymethylpyrazole (46a

  7. Bcl-2 protects against FCCP-induced apoptosis and mitochondrial membrane potential depolarization in PC12 cells. (United States)

    Dispersyn, G; Nuydens, R; Connors, R; Borgers, M; Geerts, H


    This report addresses the relation between Bcl-2 and mitochondrial membrane potential (DeltaPsi(m)) in apoptotic cell death. Rat pheochromocytoma (PC12) cells are differentiated into neuron-like cells with nerve growth factor (NGF). It is known that Bcl-2 can attenuate apoptosis induced by deprivation of neurotrophic factor. The protective effect of Bcl-2 has been correlated with preservation of DeltaPsi(m). Protonophores, such as carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), collapse the proton gradient across the mitochondrial inner membrane, resulting in a complete abolition of the mitochondrial membrane potential. Based on the analysis of morphology, of phosphatidylserine exposure and of nuclear fragmentation we conclude that FCCP induces apoptosis in PC12 cells, which can be prevented by overexpression of Bcl-2. To determine whether the cytoprotective effect of Bcl-2 is due to stabilization of DeltaPsi(m), we investigated the effect of Bcl-2 on changes in DeltaPsi(m), induced by FCCP in PC12 cells. We showed that treatment with FCCP induced a reduction in DeltaPsi(m), as assessed with the lipophilic cationic membrane potential-sensitive dye JC-1, and that Bcl-2 protects against FCCP-induced changes in NGF differentiated PC12 cells. Our data indicate that Bcl-2 protects against FCCP-induced cell death by stabilizing DeltaPsi(m).

  8. Cationic Dihydrogen/Dihydride Complexes of Osmium: Structure and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Egbert, Jonathan D.; Bullock, R. Morris; Heinekey, D. M.


    Reaction of Cp*Os(CO)2Cl with (Et3Si )(BArF4) under hydrogen gas affords the cationic hydrogen complex [Cp*Os(CO)2(H2)][BArF4] (1), (Cp* = C5Me5; ArF = C6F5). When this reaction is carried out with HD gas, complex 1-d1 results, with JHD = 24.5 Hz. When solutions of complex 1 are monitored by 1H NMR spectroscopy over several days, the gradual formation of a trans dihydride species is observed. Similarly, reaction of CpOs(dppm)Br with NaBArF*4 (ArF* = 3,5-(CF3)2C6H3) under hydrogen affords the cationic dihydride complex [CpOs(dppm)H2]BArF*4 (2). At 295 K, complex 2 exists as a 10:1 mixture of cis and trans isomers. The 1H NMR spectrum of the cis form in the hydride region exhibits a triplet with JHP = 6.5 Hz, due to rapid exchange of the hydrogen atoms. At low temperature, static spectra of the HH'PP' spin system can be obtained, revealing quantum mechanical exchange coupling between the two hydride ligands. The observed JHH' is temperature dependent, varying from 133 Hz at 141 K to 176 Hz at 198 K. This is the first report of detectable exchange coupling between pairs of chemically equivalent hydrogen atoms. Research at the University of Washington was supported by the National Science Foundation. Research at Brookhaven National Laboratory was carried out under contract DE-AC02-98CH10886 with the U.S. Department of Energy and was supported by its Division of Chemical Sciences, Office of Basic Energy Sciences. Research at Pacific Northwest National Laboratory (PNNL) was funded by LDRD funds. PNNL is operated by Battelle for the US Department of Energy.

  9. Non-Surface Activity of Cationic Amphiphilic Diblock Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Rati Ranjan; Yamada, Tasuku; Matsuoka, Hideki, E-mail:, E-mail: [Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)


    Cationic amphiphilic diblock copolymers containing quaternized poly (2-vinylpyridine) chain as a hydrophilic segment (PIp-b-PNMe2VP) were synthesized by living anionic polymerization. By IR measurement, we confirmed the quaternization of the polymer (PIp-b-PNMe2VP), and determined the degree of quaternization by conductometric titration. The surface tension experiment showed that the polymers are non-surface active in nature. The foam formation of the polymer solutions was also investigated with or without added salt. Almost no foam formation behavior was observed without added salt, while a little foam was observed in the presence of 1M NaCl. The critical micelle concentration (cmc) of the diblock copolymers with 3 different chain lengths was measured by the static light scattering method. The cmc values obtained in this study were much lower than the values obtained for anionic non-surface active diblock polymers studied previously. The hydrodynamic radii of the polymer micelle increased slightly in the presence of 1 M NaCl. The transmission electron microscopic images revealed spherical micelles in pure water. In the presence of salt, the cmc values increased as was the case for anionic polymers, which is unlike conventional surfactant systems but consistent with non-surface active anionic block copolymers. The microviscosity of the micelle core was evaluated using Coumarin-153 as a fluorescent anisotropy probe using steady-sate fluorescence depolarization. Non-surface activity has been proved to be universal for ionic amphiphilic block copolymers both for anionic and cationic. Hence, the origin of non-surface activity is not the charged state of water surface itself, but should be an image charge repulsion at the air/water interface.

  10. Dilution thermodynamics of the biologically relevant cation mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kaczyński, Marek, E-mail:; Borowik, Tomasz, E-mail:; Przybyło, Magda, E-mail:; Langner, Marek, E-mail:


    Graphical abstract: - Highlights: • Dilution energetics of Ca{sup 2+} can be altered by the aqueous phase ionic composition. • Dissipated heat upon Ca{sup 2+} dilution is drastically reduced in the K{sup +} presence. • Reduction of the enthalpy change upon Ca{sup 2+} dilution is K{sup +} concentration dependent. • The cooperativity of Ca{sup 2+} hydration might be of great biological relevance providing a thermodynamic argument for the specific ionic composition of the intracellular environment. - Abstract: The ionic composition of intracellular space is rigorously controlled by a variety of processes consuming large quantities of energy. Since the energetic efficiency is an important evolutional criterion, therefore the ion fluxes within the cell should be optimized with respect to the accompanying energy consumption. In the paper we present the experimental evidence that the dilution enthalpies of the biologically relevant ions; i.e. calcium and magnesium depend on the presence of monovalent cations; i.e. sodium and potassium. The heat flow generated during the dilution of ionic mixtures was measured with the isothermal titration calorimetry. When calcium was diluted together with potassium the dilution enthalpy was drastically reduced as the function of the potassium concentration present in the solution. No such effect was observed when the potassium ions were substituted with sodium ones. When the dilution of magnesium was investigated the dependence of the dilution enthalpy on the accompanying monovalent cation was much weaker. In order to interpret experimental evidences the ionic cluster formation is postulated. The specific organization of such cluster should depend on ions charges, sizes and organization of the hydration layers.


    Institute of Scientific and Technical Information of China (English)


    Objective:To investigate the relation between different extent of proliferation caused by gallstone and gallbladder cancer by counting the proliferation and the apoptosis of the gallbladder cancer for the clinically prevention of the gallbladder carcinoma.Methods:The TUNEL method was used to detect the apoptosis of the specimens and the mean apoptosis indices obtained by quantification of apoptosis cells flurescence by laser scanning confocal microscope were compared among the varible pathological paterns,Results:The mean apoptosis indexed in the mormal and abnormal specimens with cholecystits,simple hyperplasia,low-grade dysplasia,mid-grade dysplasia,high-grade dysplasia and carcinoma were 5.11,5.49,6.32,8.65,12.27,25.24,39.62,119.8,respectively.There was significant difference among the variable pathological patterns and as the lesion progressing,the index went up gradually with the carcinoma had the highest index.Conclusion:the apoptosis indexes increase with the pathological progress during the carcinogenesis of gallbladder cancer caused by lithiasis,which stimulate the epithelium for long time and result in an increasing of the apoptosis;and it may play an important role in the carcinogenesis of gallbladder cancer.

  12. Apoptosis of human pancreatic cancer cells induced by Triptolide

    Institute of Scientific and Technical Information of China (English)

    Guo-Xiong Zhou; Xiao-Ling Ding; Jie-Fei Huang; Hong Zhang; Sheng-Bao Wu; Jian-Ping Cheng; Qun Wei


    AIM:To investigate apoptosis in human pancreatic cancer ceils induced by Triptolide (TL),and the relationship between this apoptosis and expression of caspase-3' bcl-2 and bax.METHODS:Human pancreatic cancer cell line SW1990 was cultured in DIEM media for this study.MTT assay was used to determine the cell growth inhibitory rate in vitro.Flow cytometry and TUNEL assay were used to detect the apoptosis of human pancreatic cancer cells before and after TL treatment.RT-PCR was used to detect the expression of apoptosis-associated gene caspase-3' bcl-2 and bax.RESULTS:TL inhibited the growth of human pancreatic cancer cells in a dose-and time-dependent manner.TL induced human pancreatic cancer cells to undergo apoptosis with typically apoptotic characteristics.TUNEL assay showed that after the treatment of human pancreatic cancer cells with 40 ng/mL TL for 12 h and 24 h,the apoptotic rates of human pancreatic cancer cells increased significantly.RT-PCR demonstrated that caspase-3 and bax were significantly up-regulated in SW1990 cells treated with TL while bcl-2 mRNA was not.CONCLUSION:TL is able to induce the apoptosis in human pancreatic cancer cells.This apoptosis may be mediated by up-regulating the expression of apoptosisassociated caspase-3 and bax gene.

  13. Mechanisms and Biomarkers of Apoptosis in Liver Disease and Fibrosis

    Directory of Open Access Journals (Sweden)

    Jayashree Bagchi Chakraborty


    Full Text Available Liver fibrosis and cirrhosis are a major cause of morbidity and mortality worldwide. Development of the fibrotic scar is an outcome of chronic liver diseases of varying aetiologies including alcoholic liver disease (ALD nonalcoholic liver disease (NAFLD including non-alcoholic steatohepatitis (NASH viral hepatitis B and C (HBV, HCV. The critical step in the development of scar is activation of hepatic stellate cells (HSCs, which become the primary source of extracellular matrix. Aberrant apoptosis is a feature of chronic liver diseases and is associated with worsening stages of fibrosis. However, apoptosis is also the main mechanism promoting the resolution of fibrosis, and spontaneous or targeted apoptosis of HSC is associated with regression of fibrosis in animal models and patients with chronic liver disease. Given the importance of apoptosis in disease progression and resolution, there is much interest in precisely delineating the mechanisms involved and also developing biomarkers that accurately reflect the underlying pathogenesis. Here, we review the mechanisms driving apoptosis in development of liver disease and use of apoptosis -related biomarkers to aid in clinical diagnosis. Finally, we will also examine the recent literature regarding new insights into mechanisms involved in apoptosis of activated HSCs as possible method of fibrosis regression.

  14. Smad2 is Involved in Aggregatibacter actinomycetemcomitans-induced Apoptosis (United States)

    Yoshimoto, T.; Fujita, T.; Ouhara, K.; Kajiya, M.; Imai, H.; Shiba, H.; Kurihara, H.


    Apoptosis is thought to contribute to the progression of periodontitis. It has been suggested that the apoptosis of epithelial cells may contribute to the loss of epithelial barrier function. Smad2, a downstream signaling molecule of TGF-β receptors (TGF-βRs), is critically involved in apoptosis in several cell types. However, the relationship between smad2 and bacteria-induced apoptosis has not yet been elucidated. It is possible that the regulation of apoptosis induced by periodontopathic bacteria may lead to novel preventive therapies for periodontitis. Therefore, in the present study, we investigated the involvement of smad2 phosphorylation in apoptosis of human gingival epithelial cells induced by Aggregatibacter actinomycetemcomitans (Aa). Aa apparently induced the phosphorylation of smad2 in primary human gingival epithelial cells (HGECs) or the human gingival epithelial cell line, OBA9 cells. In addition, Aa induced phosphorylation of the serine residue of the TGF-β type I receptor (TGF-βRI) in OBA9 cells. SB431542 (a TGF-βRI inhibitor) and siRNA transfection for TGF-βRI, which reduced both TGF-βRI mRNA and protein levels, markedly attenuated the Aa-induced phosphorylation of smad2. Furthermore, the disruption of TGF-βRI signaling cascade by SB431542 and siRNA transfection for TGF-βRI abrogated the activation of cleaved caspase-3 expression and repressed apoptosis in OBA9 cells treated with Aa. Thus, Aa induced apoptosis in gingival epithelial cells by activating the TGF-βRI-smad2-caspase-3 signaling pathway. The results of the present study may suggest that the periodontopathic bacteria, Aa, activates the TGF-βR/smad2 signaling pathway in human gingival epithelial cells and induces apoptosis in epithelial cells, which may lead to new therapeutic strategies that modulate the initiation of periodontitis. PMID:25192897

  15. The interplays between autophagy and apoptosis induced by enterovirus 71.

    Directory of Open Access Journals (Sweden)

    Xueyan Xi

    Full Text Available BACKGROUND: Enterovirus 71 (EV71 is the causative agent of human diseases with distinct severity, from mild hand, foot and mouth disease to severe neurological syndromes, such as encephalitis and meningitis. The lack of understanding of viral pathogenesis as well as lack of efficient vaccine and drugs against this virus impedes the control of EV71 infection. EV71 virus induces autophagy and apoptosis; however, the relationship between EV71-induced autophagy and apoptosis as well as the influence of autophagy and apoptosis on virus virulence remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, it was observed that the Anhui strain of EV71 induced autophagy and apoptosis in human rhabdomyosarcoma (RD-A cells. Additionally, by either applying chemical inhibitors or knocking down single essential autophagic or apoptotic genes, inhibition of EV71 induced autophagy inhibited the apoptosis both at the autophagosome formation stage and autophagy execution stage. However, inhibition of autophagy at the stage of autophagosome and lysosome fusion promoted apoptosis. In reverse, the inhibition of EV71-induced apoptosis contributed to the conversion of microtubule-associated protein 1 light chain 3-I (LC3-I to LC3-II and degradation of sequestosome 1 (SQSTM1/P62. Furthermore, the inhibition of autophagy in the autophagsome formation stage or apoptosis decreased the release of EV71 viral particles. CONCLUSIONS/SIGNIFICANCE: In conclusion, the results of this study not only revealed novel aspect of the interplay between autophagy and apoptosis in EV71 infection, but also provided a new insight to control EV71 infection.

  16. Binding properties of oxacalix[4]arenes derivatives toward metal cations; Interactions entre cations metalliques et derives des oxacalix[4]arenes

    Energy Technology Data Exchange (ETDEWEB)

    Mellah, B


    The objective of this work was to establish the binding properties of oxacalix[4]arene derivatives with different numbers of the oxa bridges, functional groups (ketones, pyridine, ester, amide and methoxy) and conformations. Their interactions with alkali and alkaline-earth, heavy and transition metal cations have been evaluated according to different approaches: (i) extraction of corresponding picrates from an aqueous phase into dichloromethane; (ii) determination of the thermodynamic parameters of complexation in methanol and/or acetonitrile by UV-spectrophotometry and micro-calorimetry; (iii) determination of the stoichiometry of the complexes by ESI-MS; (iv) {sup 1}H-NMR titrations allowing to localize the metal ions in the ligand cavity. In a first part dealing on homo-oxacalix[4]arenes, selectivities for Na{sup +}, K{sup +}, Ca{sup 2+}, Pb{sup 2+} and Mn{sup 2+} of ketones derivatives was shown. The presence of oxa bridge in these derivatives increases their efficiency while decreasing their selectivity with respect to related calixarenes. The pyridine derivative prefers transition and heavy metal cations, in agreement with the presence of the soft nitrogen atoms. In the second part, di-oxacalix[4]arene ester and secondary amide derivatives were shown to be less effective than tertiary amide counterparts but to present high selectivities for Li{sup +}, Ba{sup 2+}, Zn{sup 2+} and Hg{sup 2+}. A third part devoted to the octa-homo-tetra-oxacalix[4]arene tetra-methoxy shows that the 1:1 metal complexes formed are generally more stable than those of calixarenes, suggesting the participation of the oxygen atoms of the bridge in the complexation. Selectivity for Cs{sup +}, Ba{sup 2+}, Cu{sup 2+} and Hg{sup 2+} were noted. (author)

  17. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands. (United States)

    Dietrich, Bernard


    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  18. Chemical Surface, Thermal and Electrical Characterization of Nafion Membranes Doped with IL-Cations

    Directory of Open Access Journals (Sweden)

    María del Valle Martínez de Yuso


    Full Text Available Surface and bulk changes in a Nafion membrane as a result of IL-cation doping (1-butyl-3-methylimidazolium tetrafluoroborate or BMIM+BF4 and phenyltrimethylammonium chloride or TMPA+Cl− were studied by X-ray photoelectron spectroscopy (XPS, contact angle, differential scanning calorimetry (DSC and impedance spectroscopy (IS measurements performed with dry samples after 24 h in contact with the IL-cations BMIM+ and TMPA+. IL-cations were selected due to their similar molecular weight and molar volume but different shape, which could facilitate/obstruct the cation incorporation in the Nafion membrane structure by proton/cation exchange mechanism. The surface coverage of the Nafion membrane by the IL-cations was confirmed by XPS analysis and contact angle, while the results obtained by the other two techniques (DSC and IS seem to indicate differences in thermal and electrical behaviour depending on the doping-cation, being less resistive the Nafion/BMIM+ membrane. For that reason, determination of the ion transport number was obtained for this membrane by measuring the membrane or concentration potential with the samples in contact with HCl solutions at different concentrations. The comparison of these results with those obtained for the original Nafion membrane provides information on the effect of IL-cation BMIM+ on the transport of H+ across wet Nafion/BMIM+ doped membranes.


    NARCIS (Netherlands)



    A number of cationic amine drugs that are taken up by liver and excreted into bile may accumulate in acidified intracellular organelles such as lysosomes and endosomes. These studies were undertaken to assess directly the uptake and accumulation of three types of model organic cationic amines by end

  20. Chemical mechanical polishing of transparent conductive layers using spherical cationic polymer microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Shoji, E-mail: [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Ryu, Naoya [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Yamanouchi, Akio [Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Shirosaki, Tomohiro [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Horikawa, Maki [Kumamoto Industrial Research Institute, 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan); Sakurai, Hideo; Takafuji, Makoto; Ihara, Hirotaka [Department of Applied Chemistry and Biochemistry, Kumamoto University, 2-39-1 Kurokami, Chuouku, Kumamoto 860-8555 (Japan); Kumamoto Institute for Photo-Electro Organics (Phoenics), 3-11-38 Higashimachi, Higashiku, Kumamoto 862-0901 (Japan)


    Spherical cationic polymer microbeads were used to chemically mechanically polish transparent conductive oxide (TCO) layers without the need for inorganic abrasives. Poly(methyl acrylate) (PMA) was used as the polymer matrix. Surface cationization of the spherical PMA microbeads was achieved by aminolysis using 1,2-diaminoethane. The amino group content of the microbeads was controlled using the aminolysis reaction time. The surface roughness of the TCO polished using the cationic polymer microbeads was similar to that of TCO polished with an inorganic abrasive. The microbead-polished TCO layer was slightly thinner than the unpolished TCO layer. The sheet resistance of the TCO layer polished using the microbeads was lower than that polished using the inorganic abrasive. The TCO polishing ability of the microbeads was dependent on their cationic properties and softness. - Highlights: • Indium tin oxide (ITO) layer was planarized using cationic polymer microbeads. • Cationic polymer microbeads planarized, while retaining ITO layer thickness • Cationic polymer microbeads did not degrade the sheet resistance of ITO. • Cationic polymer microbeads could planarize the ITO surface without damaging.

  1. Concerted action of two cation filters in the aquaporin water channel

    DEFF Research Database (Denmark)

    Wu, Binghua; Steinbronn, Christina; Alsterfjord, Magnus;


    Aquaporin (AQP) facilitated water transport is common to virtually all cell membranes and is marked by almost perfect specificity and high flux rates. Simultaneously, protons and cations are strictly excluded to maintain ionic transmembrane gradients. Yet, the AQP cation filters have not been ide...

  2. Structures of dioxobipyridil-12-crown-4 and its complexes with silver (I) and copper (II) cations (United States)

    Starova, Galina L.; Denisova, Anna S.; Dem'yanchuk, Evgeniya M.


    The structures of dioxobipyridil-12-crown-4 ( bpy-CO-crown) and its complexes with copper (II) and silver (I) cations have been determined using single crystal X-ray-diffraction. The results have been compared with the literature data on the complexes of dcmbpy and its complex with silver (I) and copper (II) cations.

  3. Synthesis of phosphorylated calix[4]arene derivatives for the design of solid phases immobilizing uranyl cations

    Energy Technology Data Exchange (ETDEWEB)

    Maroun, E.B.; Hagege, A.; Asfari, Z. [Laboratoire de Chimie Analytique et Minerale, UMR 7178 ULP/CNRS/IN2P3 LC4, ECPM, Strasbourg Cedex (France); Basset, CH.; Quemeneur, E.; Vidaud, C. [CEA IBEB, SBTN, Centre de Marcoule, Bagnols-sur-Ceze (France)


    With the aim of developing supports for uranyl cations immobilisation, new 1, 3-alternate calix[4]arenes bearing both phosphonic acid functions as chelating sites and N-succinimide-4-oxa-butyrate as the anchoring arm were synthesised in good yields. The coupling of such calixarenes to a gel was performed and a successful immobilisation of uranyl cations was obtained. (authors)

  4. A Cationic Diode Based on Asymmetric Nafion® Film Deposits

    NARCIS (Netherlands)

    He, Daping; Madrid, Elena; Aaronson, Barak; Fan, Lian; Doughty, James; Mathwig, Klaus; Bond, Alan M; McKeown, Neil B; Marken, Frank


    A thin film of Nafion®, of approximately 5 microm thickness, asymmetrically deposited onto a 6 microm thick film of poly(ethylene terephthalate) (PET) fabricated with a 5, 10, 20, or 40 microm microhole, is shown to exhibit prominent ionic diode behaviour involving cation charge carrier ("cationic d

  5. Base cation deposition in Europe - Part II. Acid neutralization capacity and contribution to forest nutrition

    NARCIS (Netherlands)

    Draaijers, G.P.J.; Leeuwen, E.P. van; Jong, P.G.H. de; Erisman, J.W.


    An assessment was made of the capacity of base cations to neutralize acid deposition and of the contribution of base cation deposition to forest nutrition in Europe. In large parts of southern Europe more than 50% of the potential acid deposition was found counteracted by deposition of non-sea salt

  6. Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites

    NARCIS (Netherlands)

    Bakulin, Artem A.; Selig, Oleg; Bakker, Huib J.; Rezus, Yves L. A.; Mueller, Christian; Glaser, Tobias; Lovrincic, Robert; Sun, Zhenhua; Chen, Zhuoying; Walsh, Aron; Frost, Jarvist M.; Jansen, Thomas L. C.


    The introduction of a mobile and polarized organic moiety as a cation in 3D lead-iodide perovskites brings fascinating optoelectronic properties to these materials. The extent and the time scales of the orientational mobility of the organic cation and the molecular mechanism behind its motion remain


    Institute of Scientific and Technical Information of China (English)

    邵志敏; 江明; 吴炅; 余黎民; 韩企夏; 张延璆; 沈镇宙


    Breast tumorigenesis proceeds through an accumulation of specific genetic alteration. Breast malignant transformation is dependent on not only the rate of cell production but also on apoptcsis,a genetically prograined process of autonomous ceil death. We investigated whether breast tumorigenesis involved an altered susceptibility to apoptosis and proliferation by examining normal breast epithelium and breast cancer sampies. We found there is a great inhibition of spontaneous apoptosis in breast cancer ceils compared with normal breast epithelium. The inhibition of apoptosis in breast cancer may contribute to neoplastic transformation.

  8. Executionary pathway for apoptosis: lessons from mutant mice

    Institute of Scientific and Technical Information of China (English)


    Apoptosis or programmed cell death (PCD) is an evolutionarily conserved cellular process that is essential for normal development and homeostasis of multicellular organisms. Defects in the apoptosis signaling result in many diseases including autoimmune diseases and cancer. The apoptosis signaling pathway was first described genetically in the nematode Caenorhabditis elegans which serves as a framework for the more complex apop totic pathways that exist in mammals. In this review, we will discuss the apoptotic pathways that are emerging in mammals as elucidated by studies of gene-targeted mutant mice.

  9. ING1 induces apoptosis through direct effects at the mitochondria

    DEFF Research Database (Denmark)

    Bose, P; Thakur, S; Thalappilly, S;


    The ING family of tumor suppressors acts as readers and writers of the histone epigenetic code, affecting DNA repair, chromatin remodeling, cellular senescence, cell cycle regulation and apoptosis. The best characterized member of the ING family, ING1,interacts with the proliferating cell nuclear...... translocates to the mitochondria of primary fibroblasts and established epithelial cell lines in response to apoptosis inducing stimuli, independent of the cellular p53 status. The ability of ING1 to induce apoptosis in various breast cancer cell lines correlates well with its degree of translocation...

  10. Glucocorticoid-induced apoptosis and cellular mechanisms of myopathy. (United States)

    Dirks-Naylor, Amie J; Griffiths, Carrie L


    Glucocorticoid-induced myopathy is a common side effect of chronic glucocorticoid therapy. Several mechanisms are currently being examined as ways in which glucocorticoid-induced myopathy occurs. These include apoptotic signaling through mitochondrial-mediated and Fas-mediated apoptosis, the role of the proteosome, the suppression of the IGF-1 signaling, and the role of ceramide in glucocorticoid-induced apoptosis and myopathy. It is difficult to differentiate which mechanism may be the initiating event responsible for the induction of apoptosis; however, all of the mechanisms play a vital role in glucocorticoid-induced myopathy.

  11. Stochastic modeling of p53-regulated apoptosis upon radiation damage

    CERN Document Server

    Bhatt, Divesh; Bahar, Ivet


    We develop and study the evolution of a model of radiation induced apoptosis in cells using stochastic simulations, and identified key protein targets for effective mitigation of radiation damage. We identified several key proteins associated with cellular apoptosis using an extensive literature survey. In particular, we focus on the p53 transcription dependent and p53 transcription independent pathways for mitochondrial apoptosis. Our model reproduces known p53 oscillations following radiation damage. The key, experimentally testable hypotheses that we generate are - inhibition of PUMA is an effective strategy for mitigation of radiation damage if the treatment is administered immediately, at later stages following radiation damage, inhibition of tBid is more effective.

  12. Eutrophication of mangroves linked to depletion of foliar and soil base cations. (United States)

    Fauzi, Anas; Skidmore, Andrew K; Heitkönig, Ignas M A; van Gils, Hein; Schlerf, Martin


    There is growing concern that increasing eutrophication causes degradation of coastal ecosystems. Studies in terrestrial ecosystems have shown that increasing the concentration of nitrogen in soils contributes to the acidification process, which leads to leaching of base cations. To test the effects of eutrophication on the availability of base cations in mangroves, we compared paired leaf and soil nutrient levels sampled in Nypa fruticans and Rhizophora spp. on a severely disturbed, i.e. nutrient loaded, site (Mahakam delta) with samples from an undisturbed, near-pristine site (Berau delta) in East Kalimantan, Indonesia. The findings indicate that under pristine conditions, the availability of base cations in mangrove soils is determined largely by salinity. Anthropogenic disturbances on the Mahakam site have resulted in eutrophication, which is related to lower levels of foliar and soil base cations. Path analysis suggests that increasing soil nitrogen reduces soil pH, which in turn reduces the levels of foliar and soil base cations in mangroves.

  13. Modification of potato peel waste with base hydrolysis and subsequent cationization. (United States)

    Lappalainen, Katja; Kärkkäinen, Johanna; Joensuu, Päivi; Lajunen, Marja


    Potato peel waste (PW) is a starch containing biomaterial produced in large amounts by food processing industry. In this work, the treatment of PW by alkaline hydrolysis and cationization in the water phase is reported. In order to improve the cationization of starch, PW was hydrolyzed by heating with alkaline (NaOH) ethanol solution (80%) in a water bath. The impact of variable molar ratios of anhydroglucose unit (AGU):NaOH, heating temperatures and times was studied on the degradation of starch and the molecular size distribution of the product. The hydrolyzed PW was cationized subsequently in water by using glycidyltrimethylammonium chloride and catalyzed by NaOH under microwave irradiation or in an oil bath. The impact of the various reaction conditions on the cationization and degree of substitution of starch was studied. The degree of substitution of the cationized starch varied in the range of 0-0.35.

  14. Theoretical Investigation on the Adsorption of Ag+ and Hydrated Ag+ Cations on Clean Si(111)Surface

    Institute of Scientific and Technical Information of China (English)

    SHENG Yong-Li; LI Meng-Hua; WANG Zhi-Guo; LIU Yong-Jun


    In this paper,the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111)surface were investigated by using cluster(Gaussian 03)and periodic(DMol3)ab initio calculations.Si(111)surface was described with cluster models(Si14H17 and Si22H21)and a four-silicon layer slab with periodic boundary conditions.The effect of basis set superposition error(BSSE)was taken into account by applying the counterpoise correction.The calculated results indicated that the binding energies between hydrated Ag+ cations and clean Si(111)surface are large,suggesting a strong interaction between hydrated Ag+ cations and the semiconductor surface.With the increase of number,water molecules form hydrogen bond network with one another and only one water molecule binds directly to the Ag+ cation.The Ag+ cation in aqueous solution will safely attach to the clean Si(111)surface.


    Directory of Open Access Journals (Sweden)

    Janne Kataja-aho,


    Full Text Available Cationized birch xylan was prepared and its use as a papermaking chemical was evaluated. The focus was on studying the effects of cationized birch xylan on the wet and dry strength of fine paper. The results of the laboratory experiments show that the addition of 3 percent of cationized birch xylan to birch kraft pulp improved the initial wet strength of the web by 30 percent compared to base stock at a solids content of 55%. Furthermore, the tensile stiffness of the wet web increased by approximately a third and the dry tensile strength improved by 26%, while the dry elastic modulus was not changed. The improvements in the strength properties were clear when compared to the base stock, but not as high as achieved with conventionally used cationized starch. The difference between the xylan and starch is most likely due to the shorter polymer chain length of the cationized xylan.

  16. Differentiation and apoptosis in human immortalized sebocytes. (United States)

    Wróbel, Anna; Seltmann, Holger; Fimmel, Sabine; Müller-Decker, Karin; Tsukada, Miki; Bogdanoff, Birgit; Mandt, Nathalie; Blume-Peytavi, Ulrike; Orfanos, Constantin E; Zouboulis, Christos C


    Increased cell volume, accumulation of lipid droplets in the cytoplasm, and nuclear degeneration are phenomena indicating terminal differentiation of human sebocytes followed by holocrine secretion and cell death. The molecular pathways of natural and induced sebocyte elimination are still unknown, however. In this study, SZ95 sebocytes were found to exhibit DNA fragmentation after a 6 h culture followed by increased lactate dehydrogenase release after 24 h, indicating cell damage. With the help of morphologic studies and using Oil Red detection of cellular lipids, cell enlargement, accumulation of lipid droplets in the cytoplasm, and nuclear fragmentation could be observed under treatment with arachidonic acid. Staurosporine, a potent inhibitor of phospholipid Ca2+-dependent protein kinase, increased externalized phosphatidylserine levels on SZ95 sebocytes, detected by annexin V/propidium iodide flow cytometry, as early as after 1 h, whereas dose-dependent reduction of bcl-2 mRNA and protein expression, enhanced DNA fragmentation, and increased caspase 3 levels, detected by caspase 3 inhibitor/propidium iodide flow cytometry, were found after 6 h of treatment. SZ95 sebocyte death was detected as early as after 6 h of SZ95 sebocyte treatment with high staurosporine concentrations (10(-6)-10(-5) M). 5Alpha-dihydrotestosterone (10(-8)-10(-5) M) did not affect externalized phosphatidylserine levels and DNA fragmentation in SZ95 sebocytes but slightly decreased lactate dehydrogenase cell release. Neither acitretin nor 13-cis retinoic acid (10(-8)-10(-5) M) affected externalized phosphatidylserine levels, DNA fragmentation, and lactate dehydrogenase cell release, despite the increased caspase 3 levels under treatment with 13-cis retinoic acid. The combined staurosporine and 13-cis retinoic acid treatment enhanced DNA fragmentation in SZ95 sebocytes to the same magnitude as in cells only treated with staurosporine. In conclusion, SZ95 sebocytes in vitro undergo apoptosis

  17. Overexpressed TP73 induces apoptosis in medulloblastoma

    Directory of Open Access Journals (Sweden)

    Perlaky Laszlo


    Full Text Available Abstract Background Medulloblastoma is the most common malignant brain tumor of childhood. Children who relapse usually die of their disease, which reflects resistance to radiation and/or chemotherapy. Improvements in outcome require a better understanding of the molecular basis of medulloblastoma growth and treatment response. TP73 is a member of the TP53 tumor suppressor gene family that has been found to be overexpressed in a variety of tumors and mediates apoptotic responses to genotoxic stress. In this study, we assessed expression of TP73 RNA species in patient tumor specimens and in medulloblastoma cell lines, and manipulated expression of full-length TAp73 and amino-terminal truncated ΔNp73 to assess their effects on growth. Methods We analyzed medulloblastoma samples from thirty-four pediatric patients and the established medulloblastoma cell lines, Daoy and D283MED, for expression of TP73 RNA including the full-length transcript and the 5'-terminal variants that encode the ΔNp73 isoform, as well as TP53 RNA using quantitative real time-RTPCR. Protein expression of TAp73 and ΔNp73 was quantitated with immunoblotting methods. Clinical outcome was analyzed based on TP73 RNA and p53 protein expression. To determine effects of overexpression or knock-down of TAp73 and ΔNp73 on cell cycle and apoptosis, we analyzed transiently transfected medulloblastoma cell lines with flow cytometric and TUNEL methods. Results Patient medulloblastoma samples and cell lines expressed full-length and 5'-terminal variant TP73 RNA species in 100-fold excess compared to non-neoplastic brain controls. Western immunoblot analysis confirmed their elevated levels of TAp73 and amino-terminal truncated ΔNp73 proteins. Kaplan-Meier analysis revealed trends toward favorable overall and progression-free survival of patients whose tumors display TAp73 RNA overexpression. Overexpression of TAp73 or ΔNp73 induced apoptosis under basal growth conditions in vitro and

  18. Cytokines and Pancreatic β-Cell Apoptosis. (United States)

    Berchtold, L A; Prause, M; Størling, J; Mandrup-Poulsen, T

    Recommendations are activated by inflammatory cytokines in the pancreatic β-cell to guide the identification of antidiabetic targets. Although there are still scarce human data, the cellular and preclinical studies point to the caspase-dependent intrinsic apoptosis pathway as the prime effector of inflammatory β-cell apoptosis.

  19. Magnetic Resonance Studies of Proton Loss from Carotenoid Radical Cations

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, Lowell D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Focsan, A Ligia [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Konovalova, Tatyana A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawrence, Jesse [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bowman, Michael K [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Molnar, Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deli, Jozsef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    Carotenoids, intrinsic components of reaction centers and pigment-protein complexes in photosynthetic membranes, play a photoprotective role and serve as a secondary electron donor. Before optimum use of carotenoids can be made in artificial photosynthetic systems, their robust nature in living materials requires extensive characterization of their electron transfer, radical trapping ability, stability, structure in and on various hosts, and photochemical behavior. Pulsed ENDOR and 2D-HYSCORE studies combined with DFT calculations reveal that photo-oxidation of natural zeaxanthin (I) and violaxanthin (II) on silica-alumina produces not only the carotenoid radical cations (Car•+) but also neutral radicals (#Car•) by proton loss from the methyl groups at positions 5 or 5', and possibly 9 or 9' and 13 or 13'. Notably, the proton loss favored in I at the 5 position by DFT calculations, is unfavorable in II due to the epoxide at the 5, 6 position. DFT calculations predict the isotropic methyl proton couplings of 8-10 MHz for Car•+ which agree with the ENDOR for carotenoid α-conjugated radical cations. Large α-proton hyperfine coupling constants (>10 MHz) determined from HYSCORE are assigned from the DFT calculations to neutral carotenoid radicals. Proton loss upon photolysis was also examined as a function of carotenoid polarity [Lycopene (III) versus 8'-apo-β-caroten-8'-al (IV)]; hydrogen bonding [Lutein (V) versus III]; host [silica-alumina versus MCM-41 molecular sieve]; and substituted metal in MCM-41. Loss of H+ from the 5(5'), 9(9') or 13(13') methyl positions has importance in photoprotection. Photoprotection involves nonphotochemical quenching (NPQ) in which 1Ch1* decays via energy transfer to the carotenoid which returns to the ground state by thermal dissipation; or via electron transfer to form a charge transfer state (I •+…Chl•-), lower in energy than 1Chl*. Formation of I •+ results in bond

  20. Cation immobilization in pyrolyzed simulated spent ion exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Luca, Vittorio, E-mail: [Programa Nacional de Gestion de Residuos Radiactivos, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Av. General, Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina); Bianchi, Hugo L. [Gerencia de Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Av. General, Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina); ECyT, Universidad Nacional de General San Martin, Campus Miguelete, Ed. Tornavias, Martin de Irigoyen 3100, 1650 San Martin (Argentina); Conicet, Av. Rivadavia 1917, 1033 Buenos Aires (Argentina); Manzini, Alberto C. [Programa Nacional de Gestion de Residuos Radiactivos, Comision Nacional de Energia Atomica, Av. Del Libertador 8250, CP 1429, Ciudad Autonoma de Buenos Aires (Argentina)


    Significant quantities of spent ion exchange resins that are contaminated by an assortment of radioactive elements are produced by the nuclear industry each year. The baseline technology for the conditioning of these spent resins is encapsulation in ordinary Portland cement which has various shortcomings none the least of which is the relatively low loading of resin in the cement and the poor immobilization of highly mobile elements such as cesium. The present study was conducted with cationic resin samples (Lewatit S100) loaded with Cs{sup +}, Sr{sup 2+}, Co{sup 2+}, Ni{sup 2+} in roughly equimolar proportions at levels at or below 30% of the total cation exchange capacity. Low temperature thermal treatment of the resins was conducted in inert (Ar), or reducing (CH{sub 4}) gas atmospheres, or supercritical ethanol to convert the hydrated polymeric resin beads into carbonaceous materials that contained no water. This pyrolytic treatment resulted in at least a 50% volume reduction to give mechanically robust spherical materials. Scanning electron microscope investigations of cross-sections of the beads combined with energy dispersive analysis showed that initially all elements were uniformly distributed through the resin matrix but that at higher temperatures the distribution of Cs became inhomogeneous. Although Cs was found in the entire cross-section, a significant proportion of the Cs occurred within internal rings while a proportion migrated toward the outer surfaces to form a crustal deposit. Leaching experiments conducted in water at 25 Degree-Sign C showed that the divalent contaminant elements were very difficult to leach from the beads heated in inert atmospheres in the range 200-600 Degree-Sign C. Cumulative fractional loses of the order of 0.001 were observed for these divalent elements for temperatures below 500 Degree-Sign C. Regardless of the processing temperature, the cumulative fractional loss of Cs in water at 25 Degree-Sign C reached a plateau or