Sample records for cationic meso-substituted porphyrins

  1. Novel, meso-substituted cationic porphyrin molecule for photo-mediated larval control of the dengue vector Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Leonardo Lucantoni


    Full Text Available BACKGROUND: Control of the mosquito vector population is the most effective strategy currently available for the prevention of dengue fever and the containment of outbreaks. Photo-activated oxidants may represent promising tools for developing effective, safe and ecofriendly novel larvicides. The purpose of this study was to evaluate the potential of the synthetic meso-substituted porphyrin meso-tri(N-methylpyridyl, meso-mono(N-tetradecylpyridylporphine (C14 as a photoactivatable larvicide against the dengue vector Aedes (Stegomyia aegypti. METHODOLOGY: The photophysical and photochemical properties of the C14 molecule were assessed spectrophotometrically. Photomediated larvicidal efficacy, route of intake and site of action were determined on Ae. aegypti larvae by laboratory bioassays and fluorescence microscopy. Using powdered food pellet for laboratory rodents (a common larval food used in the laboratory as a carrier for C14, loading-release dynamics, larvicidal efficacy and residual activity of the C14-carrier complex were investigated. MAIN FINDINGS: The C14 molecule was found to exert a potent photosensitizing activity on Ae. aegypti larvae. At irradiation intervals of 12 h and 1 h, at a light intensity of 4.0 mW/cm(2, which is 50-100 times lower than that of natural sunlight, LC(50 values of 0.1 µM (0.15 mg/l and 0.5 µM (0.77 mg/l were obtained, respectively. The molecule was active after ingestion by the larvae and caused irreversible, lethal damage to the midgut and caecal epithelia. The amphiphilic nature of C14 allowed a formulate to be produced that not only was as active against the larvae as C14 in solution, but also possessed a residual activity of at least two weeks, in laboratory conditions. CONCLUSIONS: The meso-substituted synthetic porphyrin C14, thanks to its photo-sensitizing properties represents an attractive candidate for the development of novel photolarvicides for dengue vector control.

  2. Involvement of both Type I and Type II mechanisms in Gram-positive and Gram-negative bacteria photosensitization by a meso-substituted cationic porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Ergaieg, Karim; Seux, Rene [Laboratoire d' Etude et de Recherche en Environnement et Sante, National School of Public Health, Av. Pr. Leon Bernard, CS 74312, Rennes 35043 (France); Chevanne, Martine; Cillard, Josiane [Laboratoire de Biologie Cellulaire et Vegetale, UPRES 3891, UFR des Sciences Pharmaceutiques et Biologiques, University of Rennes 1, 2 Av. Pr. Leon Bernard, CS 34317, Rennes 35043 (France)


    A meso-substituted cationic porphyrin (TMPyP) showed a photocytotoxicity against Gram-positive and Gram-negative bacteria. In order to determine the mechanism involved in the phototoxicity of this photosensitizer, electron paramagnetic resonance (EPR) experiments with 2,2,6,6-tetramethyl-4-piperidone (TEMP), a specific probe for singlet oxygen, and the spin-trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were carried out with illuminated TMPyP. An EPR signal characteristic of TEMP-singlet oxygen (TEMPO) adduct formation was observed, which could be ascribed to singlet oxygen ({sup 1}O{sub 2}) generated by TMPyP photosensitization. The signal for the DMPO spin adduct of superoxide anion (DMPO-OOH) was observed in DMSO solution but not in aqueous conditions. However, an EPR spectrum characteristic of the DMPO-hydroxyl radical spin adduct (DMPO-OH) was observed in aqueous conditions. The obtained results testify a primary hydroxyl radical ({sup .}OH) generation probably from superoxide anion (O{sub 2} {sup x} {sup -})via the Fenton reaction and/or via Haber-Weiss reaction. Gram-positive and Gram-negative bacteria inactivation by TMPyP photosensitization predominantly involved Type II reactions mediated by the formation of {sup 1}O{sub 2}, as demonstrated by the effect of quenchers for {sup 1}O{sub 2} and scavengers for {sup .}OH (sodium azide, thiourea, and dimethylsulphoxide). Participation of other active oxygen species cannot however be neglected since Type I reactions also had a significant effect, particularly for Gram-negative bacteria. For Gram-negative bacteria the photoinactivation rate was lower in the presence of superoxide dismutase, a specific O{sub 2} {sup x} {sup -} scavenger, and/or catalase, an enzyme which specifically eliminates H{sub 2}O{sub 2}, but was unchanged for Gram-positive bacteria. The generation of {sup 1}O{sub 2}, O{sub 2} {sup x} {sup -} and {sup .}OH by TMPyP photosensitization indicated that TMPyP maintained a photodynamic activity in

  3. Interaction of a tricationic meso-substituted porphyrin with guanine-containing polyribonucleotides of various structures (United States)

    Ryazanova, Olga; Zozulya, Victor; Voloshin, Igor; Glamazda, Alexander; Dubey, Igor; Dubey, Larysa; Karachevtsev, Victor


    The interaction of a tricationic water-soluble meso-(N-methylpyridinium)-substituted porphyrin, TMPyP3+, derived from classic TMPyP4, with double-stranded poly(G)  ṡ  poly(C) and four-stranded poly(G) polyribonucleotides has been studied in aqueous buffered solutions, pH 6.9, of low and near-physiological ionic strengths in a wide range of molar phosphate-to-dye ratios (P/D). To clarify the binding modes of TMPyP3+ to biopolymers various spectroscopic techniques, including absorption and polarized fluorescence spectroscopy, Raman spectroscopy, and resonance light scattering, were used. As a result, two competitive binding modes were revealed. In solution of low ionic strength outside binding of the porphyrin to the polynucleotide backbone with self-stacking prevailed at low P/D ratios (P/D    30 including emission enhancement were supposed to be caused by the embedding of partially stacked porphyrin J-dimers into the polymer groove. TMPyP3+ binding to poly(G) induced a fluorescence increase 2.5 times as large as that observed for poly(G)  ṡ  poly(C). In solution of near-physiological ionic strength the efficiency of external porphyrin binding was reduced substantially due to the competitive binding of Na+ ions with the polymer backbone. The spectroscopic characteristics of porphyrin bound to polynucleotides at different conditions were compared with those for free porphyrin.

  4. Evaluating the antitumor activity of combined photochemotherapy mediated by a meso-substituted tetracationic porphyrin and adriamycin

    Institute of Scientific and Technical Information of China (English)

    Kawser Kassab


    The combined anticancer modality comprising por-phyrins as photodynamic sensitizers and anticancer drugs has been an interesting subject for many researchers. In this study, the photochemotherapeutic effect mediated by simultaneous photoactivation of tet-racationic meso-tetrakis(N-methyl-4-pyridyl) porphine tetratosylate (TMPyP) and adriamycin (ADM) were explored using human hepatocellular carcinoma cell line (HePG2). The efficiency of TMPyP acting in concert with ADM in the dark and in the presence of photoirradiation was evaluated, by studying cell viabi-lity, caspase-3 activity and ultrastructurai changes in the cells after incubation with each of the two agents,separately, or simultaneously as a co-mixture. Under dark conditions, the simultaneous incubation of cells with TMPyP and ADM significantly enhanced cell death by 1.8 folds and 1.3 folds, compared with TMPyP or ADM treatment, respectively. After photoir-radiation, the antiproliferative effect of the co-treatment with TMPyP and ADM increased further by 2 folds.Transmission electron microscopy and the measure-ments of caspase-3 levels in treated cells revealed that the co-treatment of cells with ADM and TMPyP fol-lowed by light irradiation directed the cell death towards necrosis and abrogated the apoptotic cell death pathway, which was exhibited in cells treated with ADM in absence and in presence of photoirradiation.

  5. 5,10-A2B2-type meso-substituted porphyrins--a unique class of porphyrins with a realigned dipole moment. (United States)

    Senge, Mathias O; Ryppa, Claudia; Fazekas, Marijana; Zawadzka, Monika; Dahms, Katja


    Current applications in porphyrin chemistry require the use of unsymmetrically substituted porphyrins. Many current industrial interests in optics and biomedicine require systems with either push-pull (electron-donating and -withdrawing groups) or amphiphilic systems (hydrophobic and hydrophilic groups). In this context we present the class of 5,10-A(2)B(2)-type porphyrins for which two different substituents are positioned in diagonally opposite meso positions. Thus, the intramolecular dipole moment in these tetrapyrroles is positioned along a β-β vector passing through two pyrrole rings. This is opposite to the situation of the frequently used 5,15-A(2)BC porphyrins for which the dipole moment is oriented along a meso-meso axis. We have elaborated syntheses of the 5,10-A(2)B(2) porphyrins by using transition-metal-catalyzed transformations of 5,10-A(2) porphyrins or direct substitutions reactions thereof; this gives the target molecules in 22-77% overall yields. The compounds exhibit interesting structural, spectroscopic, and optical features and can serve as building blocks for new porphyrin arrays and applications.

  6. Cationic porphyrin derivatives for application in photodynamic therapy of cancer (United States)

    Prack McCormick, Bárbara P.; Florencia Pansa, M.; Milla Sanabria, Laura N.; Carvalho, Carla M. B.; Faustino, M. Amparo F.; Neves, Maria Graça P. M. S.; Cavaleiro, José A. S.; Rumie Vittar, Natalia B.; Rivarola, Viviana A.


    Current studies in photodynamic therapy (PDT) against cancer are focused on the development of new photosensitizers (PSs), with higher phototoxic action. The aim of this study was to compare the therapeutic efficiency of tri-cationic meso-substituted porphyrin derivatives (Tri-Py+-Me-PF, Tri-Py+-Me-Ph, Tri-Py+-Me-CO2Me and Tri-Py+-Me-CO2H) with the well-known tetra-cationic T4PM. The phototoxic action of these derivatives was assessed in human colon adenocarcinoma cells by cell viability, intracellular localization and nuclear morphology analysis. In the experimental conditions used we determined that after light activation -PF, -Ph and -CO2Me cause a more significant decline of cell viability compared to -CO2H and T4PM. These results suggest that the nature of the peripheral substituent influences the extent of cell photodamage. Moreover, we have demonstrated that PS concentration, physicochemical properties and further light activation determine the PDT response. All porphyrins were clearly localized as a punctuated pattern in the cytoplasm of the cells, and the PDT scheme resulted in apoptotic cell death after 3 h post-PDT. The tri-cationic porphyrin derivatives Tri-Py+-Me-PF, Tri-Py+-Me-Ph and Tri-Py+-Me-CO2Me showed a promising ability, making them good photosensitizer candidates for oncological PDT.

  7. Synthesis and characterization of new meso-substituted unsymmetrical metalloporphyrins

    Indian Academy of Sciences (India)

    Babasaheeb P Bandgar; Pradip B Gujarathi


    The synthesis and characterization of new meso-substituted unsymmetrical metalloporphyrins has been described. A new modified Adler method was used for the synthesis of two unsymmetrical porphyrins. Reactions of these unsymmetrical porphyrins with metal acetates afforded the corresponding metalloporphyrins in high yields with excellent purity. These porphyrins and their metal derivatives were characterized by spectroscopic methods. However, the copper complexes were further studied by ESR spectra and zinc complex by fluorescence spectrum.

  8. Meso-取代卟啉染料敏化太阳能电池%Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)



    卟啉具有良好的光、热和化学稳定性,特别在可见光区和近红外区域具有优越的光捕获特性。这些优异的特性使它在染料敏化太阳能电池领域得到了较为深入的研究。人们通过对卟啉分子结构进行修饰来提高相应的太阳能电池效率,并取得了不错的效果。以 meso-卟啉敏化剂为主线,介绍了染料敏化太阳能电池的基本构造及其原理,综述了 meso-卟啉敏化剂在染料太阳能电池中的应用,讨论了其结构对光电转换效率的影响。%Porphyrin has good light , thermal and chemical stability .Especially , they exhibit excellent light-harvesting character in the visible and near infred region .These excellent features have earned it a thorough research in the field of dye-sensitized solar cells .By modifying the porphyrin molecules to im-prove the efficiencies of the corresponding solar cells , excellent results have been achieved .This paper focuses mainly on meso-porphyrin based sensitizers and the basic construction and principle of DSSCs are introduced here .The applications of varies meso-porphyrins in the DSSCs , particularly the influence of porphyrin structures on the photovoltaic efficiency have been discussed in this paper .

  9. meso-Substituted bisanthenes as soluble and stable near-infrared dyes

    KAUST Repository

    Li, Jinling


    (Chemical Equation Presented) Three meso-substituted bisanthenes, 4-6, were prepared in a short synthetic route from the bisanthenequinone. They exhibit largely improved stability and solubility in comparison to the parent bisanthene. All of these compounds also show near-infrared (NIR) absorption and emission with high to moderate fluorescence quantum yields. Amphoteric redox behavior was observed for 4-6 by cyclic voltammetry, and these compounds can be reversibly oxidized and reduced into respective cationic and anionic species by both electrochemical and chemical processes. In addition, compound 5 adopts a herringbone π-stacking motif in the single crystal. © 2010 American Chemical Society.

  10. Influence of meso-substituted tetraphenylporphyrin derivatives structure on their supramolecular organization in floating layers and Langmuir-Blodgett films. (United States)

    Kazak, Alexandr V; Usol'tseva, Nadezhda V; Yudin, Sergey G; Sotsky, Valentin V; Semeikin, Alexandr S


    To study the influence of structure peculiarities of porphyrin derivatives on their supramolecular organization in thin films, 15 new meso-substituted tetraphenylporphyrin derivatives and their metal complexes with substituents (-OC(4)H(9) or -OC(16)H(33)) in para or ortho positions were studied. The films of the studied compounds were obtained by the Langmuir-Schaefer method. The behavior of porphyrin derivatives at the water-air interface was analyzed, and the conformity of the influence of molecular structure on supramolecular organization in floating layers and Langmuir-Blodgett films was defined. The absorption of these films over a wide spectral range was analyzed. The supramolecular organization of meso-substituted tetraphenylporphyrin derivatives was modeled and specified with the help of X-ray diffraction analysis. It was determined that the formation of monomolecular layers is typical for the compounds with short lateral substituents or without substituents. Tetraphenylporphyrins with extensive substituents can form a monolayer only when zinc is included in the molecular structure.

  11. Simultaneous occurrence of three different valence tautomers in meso-vinylruthenium-modified zinc porphyrin radical cations. (United States)

    Chen, Jing; Wuttke, Evelyn; Polit, Walther; Exner, Thomas; Winter, Rainer F


    The mixed-valent radical cation of a styrylruthenium-modified meso-tetraarylzinc porphyrin forms a mixture of three different valence tautomers (VTs) in CH2Cl2 or 1,2-C2H4Cl2 solutions. One of these VTs has the charge and spin delocalized over the porphyrin and the styrylruthenium moieties, while the other two display charge and spin localization on just one of the different redox sites. The relative amounts of the three different VTs were determined by EPR and IR spectroscopies at variable temperatures, while delocalization in the ground state was confirmed by DFT calculations.

  12. Functional cationic nanomagnet-porphyrin hybrids for the photoinactivation of microorganisms. (United States)

    Carvalho, Carla M B; Alves, Eliana; Costa, Liliana; Tomé, João P C; Faustino, Maria A F; Neves, Maria G P M S; Tomé, Augusto C; Cavaleiro, José A S; Almeida, Adelaide; Cunha, Angela; Lin, Zhi; Rocha, João


    Cationic nanomagnet-porphyrin hybrids were synthesized and their photodynamic therapy capabilities were investigated against the Gram (-) Escherichia coli bacteria, the Gram (+) Enterococcus faecalis bacteria and T4-like phage. The synthesis, structural characterization, photophysical properties, and antimicrobial activity of these new materials are discussed. The results show that these new multicharged nanomagnet-porphyrin hybrids are very stable in water and highly effective in the photoinactivation of bacteria and phages. Their remarkable antimicrobial activity, associated with their easy recovery, just by applying a magnetic field, makes these materials novel photosensitizers for water or wastewater disinfection.

  13. Aggregates of a cationic porphyrin as supramolecular probes for biopolymers. (United States)

    Occhiuto, Ilaria Giuseppina; Samperi, Mario; Trapani, Mariachiara; De Luca, Giovanna; Romeo, Andrea; Pasternack, Robert F; Scolaro, Luigi Monsù


    The copper(II) derivative of the dicationic trans-bis(N-methylpyridinium-4-yl)diphenylporphyrin (t-CuPagg) forms large fractal aggregates in aqueous solution under moderate ionic strength conditions. A kinetic investigation of the aggregation process allows for a choice of experimental conditions to quickly obtain stable assemblies in solution. These positively charged aggregates are able to interact efficiently with negatively charged chiral species, (including bacterial spores) leading to induced circular dichroism signals in the Soret region of the porphyrin, now acting as a sensitive chiroptical probe.

  14. Photodynamic efficiency of cationic meso-porphyrins at lipid bilayers: insights from molecular dynamics simulations. (United States)

    Cordeiro, Rodrigo M; Miotto, Ronei; Baptista, Maurício S


    Porphyrin derivatives have applications as photoactive drugs in photodynamic therapy. However, little is known about their interactions with phospholipid membranes at the molecular level. We employed molecular dynamics simulations to model the binding between a series of cationic meso-(N-methyl-4-pyridinium)phenylporphyrins and anionic phosphatidylglycerol lipid bilayers. This was done in the presence of molecular oxygen within the membrane. The ability of various porphyrins to cause photodamage was quantified in terms of their immersion depth and degree of exposition to a higher oxygen concentration inside the membrane. Simulations showed that the photodynamic efficiency could be improved as the number of hydrophobic phenyl substituents attached to the porphyrinic ring increased. In the specific case of porphyrins containing two hydrophobic and two charged substituents, the cis isomer was significantly more efficient than the trans. These results correlate well with previous experimental observations. They highlight the importance of both the total charge and amphiphilicity of the photosensitizer for its performance in photodynamic therapy.

  15. Study on the synthesis and antimicrobial activity of novel cationic porphyrins

    Institute of Scientific and Technical Information of China (English)

    Ke Gui Yu; Dong Hong Li; Cheng He Zhou; Jun Lin Diao


    A novel series of quaternary ammonium cationic derivatives based on tetrapyridyl-porphyrin was synthesized.All the compounds were evaluated for their in vitro antibacterial activities against S.aureus,E.coli and P aeruginosa,and antifunga activities against C. albicans.where microorganisms were exposed and unexposed to the irradiation.The results revealed that some of these compounds,especially,3a and 4a displayed satisfactory antibacterial activity against Gram-positive bacteria S. aureus and moderate antifungal activity against C. albicans.Unfortunately.Gram-negative bacteria P. aeruginasa was resistant to all compounds.The antimicrobial activity was found to be sensitive to the functional groups attached on the aromatic ring and the complex metal in the porphyrin ring,and decreased with the increase of electron-withdrawing capability of the functional groups.These preliminary results suggested that the remarkable antibacterial efficiency against S.aureus makes these substances promising antimicrobial agents.

  16. Fluorenyl porphyrins for combined two-photon excited fluorescence and photosensitization (United States)

    Mongin, Olivier; Hugues, Vincent; Blanchard-Desce, Mireille; Merhi, Areej; Drouet, Samuel; Yao, Dandan; Paul-Roth, Christine


    The two-photon absorption (2PA), the luminescence and the photosensitization properties of porphyrin-cored fluorenyl dendrimers and meso-substituted fluorenylporphyrin monomer, dimer and trimer are described. In comparison with model tetraphenylporphyrin, these compounds combine enhanced (non-resonant) 2PA cross-sections in the near infrared and enhanced fluorescence quantum yields, together with maintained singlet oxygen generation quantum yields. 'Semi-disconnection' between fluorenyl groups and porphyrins (i.e. direct meso substitution) proved to be more efficient than non-conjugated systems (based on efficient FRET between fluorenyl antennae and porphyrins). These results are of interest for combined two-photon imaging and photodynamic therapy.

  17. Study on the Interaction between Lanthanide Cationic Porphyrin Complex and Bovine Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    LIU, Peng; LIU, Yi; LI, Xi; HUANG, Wei-Guo


    The interaction between lanthanide cationic porphyrin and bovine serum albumin (BSA) was studied by fluorescence and UV-Vis spectrum. The static quenching of BSA was observed in the presence of YbTMPyP. According to the thermodynamic parameters, this binding was regarded as "enthalpy-driven" reaction. Furthermore,YbTMPyP is so close to the residues of BSA that molecular resonance energy transfer occurs between them. Besides, the red drift and hypochromicity of absorption spectrum of YbTMPyP were accompanied with the binding reaction.

  18. Graphene Oxide Nanofiltration Membranes Stabilized by Cationic Porphyrin for High Salt Rejection. (United States)

    Xu, Xiao-Ling; Lin, Fu-Wen; Du, Yong; Zhang, Xi; Wu, Jian; Xu, Zhi-Kang


    Swelling has great influences on the structure stability and separation performance of graphene oxide laminate membranes (GOLMs) for water desalination and purification. Herein, we report cross-linked GOLMs from GO assembled with cationic tetrakis(1-methyl-pyridinium-4-yl)porphyrin (TMPyP) by a vacuum-assisted strategy. The concave nonoxide regions (G regions) of GO are used as cross-linking sites for the first time to precisely control the channel size for water permeation and salt ion retention. Channels around 1 nm are constructed by modulating the assembly ratio of TMPyP/GO, and these cross-linked GOLMs show high salt rejection.

  19. Remarkable fluorescence enhancement versus complex formation of cationic porphyrins on the surface of ZnO nanoparticles

    KAUST Repository

    Aly, Shawkat Mohammede


    Fluorescence enhancement of organic fluorophores shows tremendous potential to improve image contrast in fluorescence-based bioimaging. Here, we present an experimental study of the interaction of two cationic porphyrins, meso-tetrakis(1-methylpyridinium-4-yl)porphyrin chloride (TMPyP) and meso-tetrakis(4-N,N,N-trimethylanilinium)porphyrin chloride (TMAP), with cationic surfactant-stabilized zinc oxide nanoparticles (ZnO NPs) based on several steady-state and time-resolved techniques. We show the first experimental measurements demonstrating a clear transition from pronounced fluorescence enhancement to charge transfer (CT) complex formation by simply changing the nature and location of the positive charge of the meso substituent of the cationic porphyrins. For TMPyP, we observe a sixfold increase in the fluorescence intensity of TMPyP upon addition of ZnO NPs. Our experimental results indicate that the electrostatic binding of TMPyP with the surface of ZnO NPs increases the symmetry of the porphyrin macrocycle. This electronic communication hinders the rotational relaxation of the meso unit and/or decreases the intramolecular CT character between the cavity and the meso substituent of the porphyrin, resulting in the enhancement of the intensity of the fluorescence. For TMAP, on the other hand, the different type and nature of the positive charge resulting in the development of the CT band arise from the interaction with the surface of ZnO NPs. This observation is confirmed by the femtosecond transient absorption spectroscopy, which provides clear spectroscopic signatures of photoinduced electron transfer from TMAP to ZnO NPs. © 2014 American Chemical Society.

  20. Protein profiles of Escherichia coli and Staphylococcus warneri are altered by photosensitization with cationic porphyrins. (United States)

    Alves, Eliana; Esteves, Ana Cristina; Correia, António; Cunha, Ângela; Faustino, Maria A F; Neves, Maria G P M S; Almeida, Adelaide


    Oxidative stress induced by photodynamic treatment of microbial cells causes irreversible damages to vital cellular components such as proteins. Photodynamic inactivation (PDI) of bacteria, a promising therapeutic approach for the treatment of superficial and localized skin and oral infections, can be achieved by exciting a photosensitizing agent with visible light in an oxygenated environment. Although some studies have addressed the oxidative alterations of PDI in bacterial proteins, the present study is the first to compare the electrophoretic profiles of proteins of Gram-positive and Gram-negative bacteria, having two structurally different porphyrins, with different kinetics of photoinactivation. The cationic porphyrins 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide (Tri-Py(+)-Me-PF) and 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetra-iodide (Tetra-Py(+)-Me) were used to photosensitize Escherichia coli and Staphylococcus warneri upon white light irradiation at an irradiance of 4.0 mW cm(-2). After different photosensitization periods, proteins were extracted from bacteria and analyzed using one-dimensional SDS-PAGE. Apparent molecular weights and band intensities were determined after an irradiation period corresponding to a reduction of 4 log10 in cell viability. After photodynamic treatment, there was a general loss of bacterial proteins, assigned to large-scale protein degradation. Protein loss was more pronounced after PDI with Tri-Py(+)-Me-PF in both bacteria. There was also an increase in the concentration of some proteins as well as an increase in the molecular weight of other proteins. We show that proteins of E. coli and S. warneri are important targets of PDI. Although there is an attempt of cellular response to the PDI-induced damage by overexpression of a limited number of proteins, the damage is lethal. Our results show that changes occurring in the protein pattern during photodynamic treatment are

  1. Conformational conversion of DNA G-quadruplex induced by a cationic porphyrin. (United States)

    Zhang, Huijuan; Xiao, Xiao; Wang, Peng; Pang, Siping; Qu, Feng; Ai, Xicheng; Zhang, Jianping


    The interactions between cationic meso-tetrakis(4-(N-methylpyridiumyl))porphyrin (TMPyP4) and the G-quadruplex (G4) of human telomeric single-strand oligonucleotide d(TTAGGG)(2) (S12) have been investigated by means of circular dichroism (CD), UV-visible absorption and fluorescence spectroscopies. It is found that TMPyP4 can preferentially induce the conformational conversion of the G4 structure from the parallel type to the parallel/antiparallel mixture in the presence of K(+), and that it can directly induce the formation of antiparallel G4 structure from the single-strand oligonucleotide S12 in the absence of K(+). Furthermore, the comparable experiments of TMPyP4 with two single-strand oligonucleotides S6 d(TTAGGG) and S24 d(TAGGG(TTAGGG)(3)T) in the absence of K(+) show that TMPyP4 can also induce the formation of antiparallel G4 from S24 but not from S6, indicating that the end-loops of the G4 structure are the key factors for the formation of G4 induced by TMPyP4.

  2. Formation of a porphyrin pi-cation radical in the fluoride complex of horseradish peroxidase. (United States)

    Farhangrazi, Z S; Sinclair, R; Powers, L; Yamazaki, I


    Horseradish peroxidase (HRP) was oxidized by IrCl6(2-) to a mixture of compounds I and II, the rate of oxidation and the ratio of the mixture being greatly affected by pH (Hayashi & Yamazaki, 1979). Oxidation of HRP by IrCl6(2-) in the presence of fluoride was significantly accelerated. This resulted in the formation of a new compound which is a ferric fluoride complex containing a porphyrin pi-cation radical. The spectrum of the new compound showed a decreased absorption band in the Soret region and a broad band at 570 nm; which was converted to that of the original ferric fluoride complex by addition of ascorbate or hydroquinone. Addition of cyanide slowed down the oxidation of HRP by IrCl6(2-), and the oxidation product was the same as that obtained in the absence of cyanide. Compound I was formed when H2O2 was added to HRP in the presence of fluoride or cyanide. The one-electron reduction potential (Eo') of the oxidized HRP-fluoride complex was measured at several pH values, the Eo' value at pH 7 being 861 +/- 4 mV. The ratio of delta Eo' to delta pH was 49 mV/pH unit.

  3. Ultrafast electron injection at the cationic porphyrin-graphene interface assisted by molecular flattening

    KAUST Repository

    Aly, Shawkat Mohammede


    The steady-state and femtosecond (fs) time-resolved data clearly demonstrate that the charge transfer (CT) process at the porphyrin-graphene carboxylate (GC) interfaces can be tuned from zero to very sufficient and ultrafast by changing the electronic structure of the meso unit and the redox properties of the porphyrin cavity. This journal is © the Partner Organisations 2014.

  4. Meso-functionalized octamethoxyporphyrins: A new class of nonasubstituted porphyrins

    Indian Academy of Sciences (India)

    Pradeepta K Panda; V Krishnan


    Octamethoxyporphyrin containing multiple-donor substituents has been functionalized for the first time. A large number of its mono-meso-substituted derivatives with substituents such as nitro, amino, N-methylamino, formyl, hydroxymethyl, oxime, cyano and carboxy functional groups have been synthesized and characterized. They form a new class of nonasubstituted porphyrins. Crystallographic studies on the cyano derivative show that the -C N group is in conjugation with the prophyrin -system. The calculated optical transition energies and the electron densities on the imino nitrogens of the synthesised porphyrins using AMI calculations correlate well with the experimentally observed data. Mesosubstituted porphyrins are found to be essentially planar.

  5. Water Soluble Cationic Porphyrin Sensor for Detection of Hg2+, Pb2+, Cd2+, and Cu2+

    Directory of Open Access Journals (Sweden)

    Matibur Zamadar


    Full Text Available Here we report the sensing properties of the aqueous solution of meso-tetra(N-methyl-4-pyridylporphine tetrachloride (1 for simultaneous detection of toxic metal ions by using UV-vis spectroscopy. Cationic porphyrin 1 displayed different electronic absorptions in UV-vis region upon interacting with Hg2+, Pb2+, Cd2+, and Cu2+ ions in neutral water solution at room temperature. Quite interestingly, the porphyrin 1 showed that it can function as a single optical chemical sensor and/or metal ion receptor capable of detecting two or more toxic metal ions, particularly Hg2+, Pb2+, and Cd2+ ions coexisting in a water sample. Porphyrin 1 in an aqueous solution provides a unique UV-vis sensing system for the determination of Cd2+ in the presence of larger metal ions such as Hg2+, or Pb2+. Finally, the examination of the sensing properties of 1 demonstrated that it can operate as a Cu2+ ion selective sensor via metal displacement from the 1-Hg2+, 1-Pb2+, and 1-Cd2+.

  6. Molecular-structure control of ultrafast electron injection at cationic porphyrin-CdTe quantum dot interfaces

    KAUST Repository

    Aly, Shawkat Mohammede


    Charge transfer (CT) at donor (D)/acceptor (A) interfaces is central to the functioning of photovoltaic and light-emitting devices. Understanding and controlling this process on the molecular level has been proven to be crucial for optimizing the performance of many energy-challenge relevant devices. Here, we report the experimental observations of controlled on/off ultrafast electron transfer (ET) at cationic porphyrin-CdTe quantum dot (QD) interfaces using femto- and nanosecond broad-band transient absorption (TA) spectroscopy. The time-resolved data demonstrate how one can turn on/off the electron injection from porphyrin to the CdTe QDs. With careful control of the molecular structure, we are able to tune the electron injection at the porphyrin-CdTe QD interface from zero to very efficient and ultrafast. In addition, our data demonstrate that the ET process occurs within our temporal resolution of 120 fs, which is one of the fastest times recorded for organic photovoltaics. © 2015 American Chemical Society.

  7. Synthesis and characterization of some heteroleptic copper(II) complexes based on meso-substituted dipyrrins

    Indian Academy of Sciences (India)

    Rakesh Kumar Gupta; Mahendra Yadav; Rampal Pandey; Daya Shankar Pandey


    The syntheses and characterizations of meso-substituted dipyrrins, 5-(4-imidazol-1-yl-phenyl)-dipyrromethene (4-impdpm), 5-(4-nitro-imidazol-1-yl-phenyl)-dipyrromethene, (4-nimpdpm), 5-(4-benzimidazol-1-yl-phenyl)-dipyrromethene (4-bimp-dpm) and heteroleptic complexes [Cu3(4-impdpm)2(hfacac)4] 1, [Cu(4-nimpdpm)(acac)] 2, [Cu(4-nimpdpm)(hfacac)] 3, [{Cu(4-bimpdpm)(acac)}] 4 and [{Cu(4-bimpdpm)-(hfacac)}] 5, imparting acetylacetonato (acac) and hexafluoroacetylacetonato (hfacac) groups as co-ligand have been described. The dipyrrins and complexes 1-5 have been characterized by elemental analyses and spectral (IR ESI-MS, NMR, electronic absorption and emission) studies. Crystal structures of 1, 3 and 4 have been authenticated by X-ray single crystal analyses. The reaction between 4-impdpm and Cu(hfacac)2 gave a trimetallic complex, under analogous conditions 4-nimpdpm and 4-bimpdpm reacted with Cu(acac)2 and Cu(hfacac)2·2H2O to afford mononuclear (2, 3) and 1D polymeric (4, 5) complexes.

  8. SDS-PAGE and IR spectroscopy to evaluate modifications in the viral protein profile induced by a cationic porphyrinic photosensitizer. (United States)

    Costa, Liliana; Esteves, Ana Cristina; Correia, António; Moreirinha, Catarina; Delgadillo, Ivonne; Cunha, Ângela; Neves, Maria G P S; Faustino, Maria A F; Almeida, Adelaide


    Reactive oxygen species can be responsible for microbial photodynamic inactivation due to its toxic effects, which include severe damage to proteins, lipids and nucleic acids. In this study, the photo-oxidative modifications of the proteins of a non-enveloped T4-like bacteriophage, induced by the cationic porphyrin 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide were evaluated. Two methods were used: sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and infrared spectroscopy. SDS-PAGE analysis showed that the phage protein profile was considerably altered after photodynamic treatment. Seven protein bands putatively corresponding to capsid and tail tube proteins were attenuated and two other were enhanced. Infrared spectroscopy confirmed the time-dependent alteration on the phage protein profile detected by SDS-PAGE, indicative of a response to oxidative damage. Infrared analysis showed to be a promising and rapid screening approach for the analysis of the modifications induced on viral proteins by photosensitization. In fact, one single infrared spectrum can highlight the changes induced to all viral molecular structures, overcoming the delays and complex protocols of the conventional methods, in a much simple and cost effective way.

  9. Quantum confinement-tunable intersystem crossing and the triplet state lifetime of cationic porphyrin-CdTe quantum dot nano-assemblies

    KAUST Repository

    Ahmed, Ghada H.


    Here, we report a ground-state interaction between the positively charged cationic porphyrin and the negatively charged carboxylate groups of the thiol ligands on the surface of CdTe quantum dots (QDs), leading to the formation of a stable nanoassembly between the two components. Our time-resolved data clearly demonstrate that we can dramatically tune the intersystem crossing (ISC) and the triplet state lifetime of porphyrin by changing the size of the QDs in the nanoassembly. © 2015 The Royal Society of Chemistry.

  10. Chiroptical properties of anionic and cationic porphyrins and metalloporphyrins in complex with left-handed Z-DNA and right-handed B-DNA. (United States)

    Choi, Jung Kyu; D'Urso, Alessandro; Balaz, Milan


    We report the chiroptical signature and binding interactions of cationic (meso-tetrakis(4-N-methylptridyl)porphyrin, 2HT4) and anionic (meso-tetrakis(4-sulfonatophenyl)porphyrin, 2HTPPS) porphyrins and their zinc(II) and nickel(II) derivatives (ZnT4, ZnTPPS, NiT4, and NiTPPS) with right-handed B-form and two forms of left-handed Z-form of alternating guanine-cytosine polydeoxynucleotide poly(dG-dC)2. NiTPPS is able to spectroscopically discriminate between spermine-induced Z-DNA and Co(III)-induced Z-DNA via new induced circular dichroism signal in the visible region of the electromagnetic spectrum.

  11. Mixed-Valence Porphyrin π-Cation Radical Derivatives: Electrochemical Investigations. (United States)

    Scheidt, W Robert; Buentello, Kristin E; Ehlinger, Noelle; Cinquantini, Arnaldo; Fontani, Marco; Laschi, Franco


    The electrochemistry of [Cu(OEP)] and [Ni(OEP)] are compared with the mixed-valence π-cations [Cu(OEP•/2)]2+and[Ni(OEP•/2)]2+. These electrochemical studies, carried out with cyclic voltametry and hydrodynamic voltametry, show that the mixed valence π-cations have distinct electrochemical properties, although the differences between the [M(OEP)](+/0) and [M(OEP•/2)]2+/0 processes are subtle.

  12. Porphyrin amino acids-amide coupling, redox and photophysical properties of bis(porphyrin) amides. (United States)

    Melomedov, Jascha; Wünsche von Leupoldt, Anica; Meister, Michael; Laquai, Frédéric; Heinze, Katja


    New trans-AB2C meso-substituted porphyrin amino acid esters with meso-substituents of tunable electron withdrawing power (B = mesityl, 4-C6H4F, 4-C6H4CF3, C6F5) were prepared as free amines 3a-3d, as N-acetylated derivatives Ac-3a-Ac-3d and corresponding zinc(II) complexes Zn-Ac-3a-Zn-Ac-3d. Several amide-linked bis(porphyrins) with a tunable electron density at each porphyrin site were obtained from the amino porphyrin precursors by condensation reactions (4a-4d) and mono- and bis(zinc(II)) complexes Zn(2)-4d and Zn(1)Zn(2)-4d were prepared. The electronic interaction between individual porphyrin units in bis(porphyrins) 4 is probed by electrochemical experiments (CV, EPR), electronic absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy in combination with DFT/PCM calculations on diamagnetic neutral bis(porphyrins) 4 and on respective charged mixed-valent radicals 4(+/-). The interaction via the -C6H4-NHCO-C6H4- bridge, the site of oxidation and reduction and the lowest excited singlet state S1, is tuned by the substituents on the individual porphyrins and the metalation state.

  13. Interaction between a cationic porphyrin and ctDNA investigated by SPR, CV and UV-vis spectroscopy. (United States)

    Xu, Zi-Qiang; Zhou, Bo; Jiang, Feng-Lei; Dai, Jie; Liu, Yi


    The interaction between ctDNA and a cationic porphyrin was studied in this work. The binding process was monitored by surface plasmon resonance (SPR) spectroscopy in detail. The association, dissociation rate constants and the binding constants calculated by global analysis were 2.4×10(2)±26.4M(-1)s(-1), 0.011±0.0000056s(-1) and 2.18×10(4)M(-1), respectively. And the results were confirmed by cyclic voltammetry and UV-vis absorption spectroscopy. The binding constants obtained from cyclic voltammetry and UV-vis absorption spectroscopy were 8.28×10(4)M(-1) and 6.73×10(4)M(-1) at 298K, respectively. The covalent immobilization methodology of ctDNA onto gold surface modified with three different compounds was also investigated by SPR. These compounds all contain sulfydryl but with different terminated functional groups. The results indicated that the 11-MUA (HS(CH2)10COOH)-modified gold film is more suitable for studying the DNA-drug interaction.

  14. An efficient solvent-free synthesis of meso-substituted dipyrromethanes using SnCl2•2H2O catalysis

    Directory of Open Access Journals (Sweden)

    Kabeer Ahmed Shaikh


    Full Text Available Highly rapid and simple methodology has been developed for the quantitative synthesis of meso-substituted dipyrromethanes from lowest pyrrole/aldehyde ratio. The method was carried out by using SnCl2•2H2O as a catalyst under solvent free condition. The method is environmentally friendly, easy to workup, and gives excellent yield of the products.

  15. Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III Reaction Intermediate Models of Peroxidase Enzymes

    Directory of Open Access Journals (Sweden)

    Samuel Hernández Anzaldo


    Full Text Available The spectroscopic and kinetic characterization of two intermediates from the H2O2 oxidation of three dimethyl ester [(proto, (meso, (deuteroporphyrinato (picdien]Fe(III complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III quantum mixed spin (qms ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1–3 + guaiacol + H2O2 → oxidation guaiacol products. The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III and H2O2, resulting in only two types of kinetics that were developed during the first 0–4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III family with the ligand picdien [N,N’-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, 1H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity.

  16. The impact of Au doping on the charge carrier dynamics at the interfaces between cationic porphyrin and silver nanoclusters

    KAUST Repository

    Almansaf, Abdulkhaleq A.


    We explore the impact of Au doping on the charge transfer dynamics between the positively charged porphyrin (TMPyP) and negatively charged silver nanoclusters (Ag29 NCs). Our transient absorption (TA) spectroscopic results demonstrate that the interfacial charge transfer, the intersystem crossing and the triplet state lifetime of porphyrin can be tuned by the doping of Au atoms in Ag29 NCs. Additionally, we found that the electrostatic interaction between the negative charge of the cluster and the positive charge on the TMPyP is the driving force that brings them close to each other for complex formation and subsequently facilitates the transfer process.

  17. Ultrafast stimulated emission and structural dynamics in nickel porphyrins.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Wasinger, E. C.; Muresan, A. Z.; Attenkofer, K.; Jennings, G.; Lindsey, J. S.; Chen, L. X.; North Carolina State U.


    The excited-state structural dynamics of nickel(II)tetrakis(2,4,6-trimethylphenyl)porphyrin (NiTMP) and nickel(II)tetrakis(tridec-7-yl)porphyrin (NiSWTP) in a toluene solution were investigated via ultrafast transient optical absorption spectroscopy. An ultrashort stimulated emission between 620 and 670 nm from the S{sub 1} state was observed in both nickel porphyrins only when this state was directly generated via Q-band excitation, whereas such a stimulated emission was absent under B (Soret)-band excitation. Because the stimulated emission in the spectral region occurs only from the S{sub 1} state, this photoexcitation-wavelength-dependent behavior of Ni(II) porphyrins is attributed to a faster intersystem crossing from the S{sub 2} state than the internal conversion S{sub 2} {yields} S{sub 1}. The dynamics of the excited-state pathways involving the ({pi}, {pi}*) and (d, d) states varies with the meso-substituted peripheral groups, which is attributed to the nickel porphyrin macrocycle distortion from a planar configuration. Evidence for intramolecular vibrational relaxation within 2 ps and vibrational cooling in 6-20 ps of a (d, d) excited state has been established for NiTMP and NiSWTP. Finally, the lifetimes of the vibrationally relaxed (d, d) state also depend on the nature of the peripheral groups, decreasing from 200 ps for NiTMP to 100 ps for the bulkier NiSWTP.

  18. Electronically asymmetric bis(porphyrin) sandwich complexes

    Energy Technology Data Exchange (ETDEWEB)

    Girolami, G.S.; Gorlin, P.A.; Suslick, K.S. [Univ. of Illinois, Urbana, IL (United States)


    Bis(porphyrin)metal(IV) complexes (M(porph){sub 2}) have been extensively studies in recent years due to their structural, chemical, and spectroscopic similarity to the {open_quotes}special pair{close_quotes} found in the reaction center of photosynthetic bacteria. Strong interactions arise in the bis(porphyrin) complexes due to the short inter-porphyrin separation (< 3 {angstrom}), which results in properties not seen in mono(porphyrin) analogs. For example, the bis(porphyrin) complexes are considerably easier to oxidize than analogous mono(porphyrin) species, and the M(porph){sub 2{sup n+}} cations (n = 1,2) exhibit near-IR absorptions not found in simple mono(porphyrin)cations. As part of the authors continuing effort to understand the factors that govern the electronic structures of bis(porphyrin) supermolecules, the authors now describe the synthesis of a series of zirconium sandwich complexes. Introduction of electron-withdrawing or -donating groups on the {beta}-pyrrole position considerably affects the electronic properties of these molecules without altering their steric parameters. Thus, peripheral substitution allows modification of the inter-porphyrin {pi} interactions while keeping the inter-porphyrin separation constant. Previous studies have changed the identity of the central metal, but the electronic structure and the interplanar distance could not be varied independently.

  19. Porphyrin Tests (United States)

    ... Blood Cell Porphyrins Acute intermittent porphyria Increased Increased URO* Normal Normal Variegate porphyria Increased Increased COPRO Increased ... COPRO Increased PROTO Porphyria cutanea tarda Normal Increased URO, 7-carboxyl Increased Isocoproporphyrin Normal Erythropoietic Protoporphyria Normal ...

  20. Spectroscopic investigation on porphyrins nano-assemblies onto gold nanorods (United States)

    Trapani, Mariachiara; De Luca, Giovanna; Romeo, Andrea; Castriciano, Maria Angela; Scolaro, Luigi Monsù


    The interaction between gold nanorods (Au NRs), synthesized by a conventional seeded growth protocol, and the anionic tetrakis-(4-sulfonatophenyl)porphyrin (TPPS4) has been investigated through various spectroscopic techniques. At neutral pH, the formation of H-aggregates and the inclusion of porphyrin monomers in CTAB micelles covering the nanorods have been evidenced. Under mild acidic conditions (pH = 3) a nano-hybrid assembly of porphyrin J-aggregates and Au NRs has been revealed. For the sake of comparison, Cu(II) and Zn(II) metal porphyrin derivatives as well as a cationic porphyrin have been studied in the same experimental conditions, showing that: i) CuTPPS4 forms porphyrin H-dimers onto the Au NRs; ii) ZnTPPS4 undergoes to demetallation, followed by acidification of the central core and eventually aggregation onto Au NRs; iii) cationic porphyrin does not interact with Au NRs.

  1. Dermal administration of manganese porphyrin by iontophoresis. (United States)

    Ito, Fuminori; Imamura, Shinya; Asayama, Shoichiro; Kanamura, Kiyoshi; Kawakami, Hiroyoshi


    The present study describes a technique for dermal administration of cationic manganese porphyrin (Mn-porphyrin), an antioxidant with superoxide dismutase (SOD) activity, in hairless mouse. In general, the stratum corneum on the surface of the skin represents a barrier to passive diffusion of therapeutic agents by standard dermal administration. The present study investigated whether, dermal administration of Mn-porphyrin solution using iontophoresis, the electrical dermal administration technique, could overcome this barrier. We visually confirmed that Mn-porphyrin had penetrated to the reverse side of the hairless mouse skin after iontophoresis for a short period. With prolonged iontophoresis, the ratio of detectable Mn-porphyrin solution on the reverse side of the hairless mouse skin increased. In the future, this technique could provide an innovative approach for delivery of this antioxidant in intractable disease.

  2. Porphyrin-aminoquinoline conjugates as telomerase inhibitors. (United States)

    Maraval, Alexandrine; Franco, Sonia; Vialas, Corine; Pratviel, Geneviève; Blasco, Maria A; Meunier, Bernard


    A series of metalloporphyrins was prepared in order to target the G-quadruplex structure of telomeric DNA for the design of antitelomerase compounds. The initial cationic tetramethylpyridiniumyl porphyrin was modified by the replacement of one or two methylpyridiniumyl groups by one or two 4-aminoquinoline moieties, at the meso position, in order to increase the cell penetration and the quadruplex affinity. The porphyrins were either metallated by manganese or by nickel. The degradation of quadruplex DNA was assayed in vitro with the manganese redox-active derivatives. All porphyrins complexes were capable of inhibiting the telomerase enzyme with IC50 values in the micromolar range (TRAP assay).

  3. Cationic Mn2+/H+ exchange leading a slow solid-state transformation of a 2D porphyrinic network at ambient conditions (United States)

    Amayuelas, Eder; Fidalgo-Marijuan, Arkaitz; Bazán, Begoña; Urtiaga, Miren Karmele; Barandika, Gotzone; Lezama, Luis; Arriortua, María Isabel


    Metalloporphyrins exhibit outstanding chemical, physical and biological properties in dissolution, however, it is a challenge to synthesize them as stable solid frameworks. Long-time stability is crucial for future applications of these materials, and we have detected a slow, solid-state transformation of a 2D MnII-porphyrin at RT. The remarkable point is that this transformation showed up as a result of Electronic Paramagnetic Resonance measurements. Otherwise, the evolution of the system could have remained undetected. Thus, 2D [Mn3(TCPP)(H2O)4]·nD (1) (where TCPP is meso-tetra(4-carboxyphenyl)porphyrin and D is the solvent) has been synthesized hydrothermally, and characterised by means of X-ray diffraction (XRD), Thermogravimetry and X-ray thermodiffractometry (XRTD). This compound slowly transforms into [Mn(H4TCPP)(H2O)2]·nD (2) according to the equilibrium [Mn3(TCPP)]+4H+ ↔ [Mn(H4TCPP)]+2Mn2+. The evolution of the system has been studied through analysis of the distortion (both of the coordination sphere and the tetrapyrrolic macrocycle) and Density Functional Theory (DFT) quantum mechanical calculations.

  4. Rational Design of Superoxide Dismutase (SOD) Mimics: The Evaluation of the Therapeutic Potential of New Cationic Mn Porphyrins with Linear and Cyclic Substituents (United States)


    Our goal herein has been to gain further insight into the parameters which control porphyrin therapeutic potential. Mn porphyrins (MnTnOct-2-PyP5+, MnTnHexOE-2-PyP5+, MnTE-2-PyPhP5+, and MnTPhE-2-PyP5+) that bear the same positive charge and same number of carbon atoms at meso positions of porphyrin core were explored. The carbon atoms of their meso substituents are organized to form either linear or cyclic structures of vastly different redox properties, bulkiness, and lipophilicities. These Mn porphyrins were compared to frequently studied compounds, MnTE-2-PyP5+, MnTE-3-PyP5+, and MnTBAP3–. All Mn(III) porphyrins (MnPs) have metal-centered reduction potential, E1/2 for MnIIIP/MnIIP redox couple, ranging from −194 to +340 mV versus NHE, log kcat(O2•–) from 3.16 to 7.92, and log kred(ONOO–) from 5.02 to 7.53. The lipophilicity, expressed as partition between n-octanol and water, log POW, was in the range −1.67 to −7.67. The therapeutic potential of MnPs was assessed via: (i) in vitro ability to prevent spontaneous lipid peroxidation in rat brain homogenate as assessed by malondialdehyde levels; (ii) in vivo O2•– specific assay to measure the efficacy in protecting the aerobic growth of SOD-deficient Saccharomyces cerevisiae; and (iii) aqueous solution chemistry to measure the reactivity toward major in vivo endogenous antioxidant, ascorbate. Under the conditions of lipid peroxidation assay, the transport across the cellular membranes, and in turn shape and size of molecule, played no significant role. Those MnPs of E1/2 ∼ +300 mV were the most efficacious, significantly inhibiting lipid peroxidation in 0.5–10 μM range. At up to 200 μM, MnTBAP3– (E1/2 = −194 mV vs NHE) failed to inhibit lipid peroxidation, while MnTE-2-PyPhP5+ with 129 mV more positive E1/2 (−65 mV vs NHE) was fully efficacious at 50 μM. The E1/2 of MnIIIP/MnIIP redox couple is proportional to the log kcat(O2•–), i.e., the SOD-like activity of MnPs. It is further

  5. Platinum porphyrins as ionophores in polymeric membrane electrodes

    DEFF Research Database (Denmark)

    Lvova, Larisa; Verrelli, Giorgio; Nardis, Sara


    A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined by potenti...

  6. Fabrication of optochemical and electrochemical sensors using thin films of porphyrin and phthalocyanine derivatives

    Indian Academy of Sciences (India)

    Palanisamy Kalimuthu; Arumugam Sivanesan; S Abraham John


    This paper describes the fabrication of thin films of porphyrin and metallophthalocyanine derivatives on different substrates for the optochemical detection of HCl gas and electrochemical determination of L-cysteine (CySH). Solid state gas sensor for HCl gas was fabricated by coating meso-substituted porphyrin derivatives on glass slide and examined optochemical sensing of HCl gas. The concentration of gaseous HCl was monitored from the changes in the absorbance of Soret band. Among the different porphyrin derivatives, meso-tetramesitylporphyrin (MTMP) coated film showed excellent sensitivity towards HCl and achieved a detection limit of 0.03 ppm HCl. Further, we have studied the self-assembly of 1,8,15,22-tetraaminometallophthalocyanine (4-MTAPc; M = Co and Ni) from DMF on GC electrode. The CVs for the self-assembled monolayers (SAMs) of 4-CoIITAPc and 44-NiIITAPc show two pairs of well-defined redox couple corresponding to metal and ring. Using the 4-CoIITAPc SAM modified electrode, sensitive and selective detection of L-cysteine was demonstrated. Further, the SAM modified electrode also successfully separates the oxidation potentials of AA and CySH with a peak separation of 320mV.

  7. Effect of metallation, substituents and inter/intra-molecular polarization on electronic couplings for hole transport in stacked porphyrin dyads. (United States)

    Hernández-Fernández, F; Pavanello, M; Visscher, L


    We carried out a systematic study of the hole transport properties for a series of symmetrically stacked porphyrin dimers. In the first part of this study, we evaluated the sensitivity of electronic couplings to orbital relaxation due to molecular ionization and intermolecular interactions for a series of halogenated porphyrins. The effect of polarization was estimated by comparing electronic couplings from fragment orbital density functional theory (FODFT) and frozen density embedding electron transfer (FDE-CT). For the dimers considered, the effect of polarization was estimated to be less than 20%, in line with previous studies on different molecular dimers. Thus, we decided to employ a computationally cheaper FODFT method to continue our study of the effect of metals and substituents on the electronic couplings for hole transfer. We find that, compared to the non-metallated porphyrins, Ni, Fe and Pt significantly reduce the coupling, while Zn, Ti, Cd and Pd increase it. The effect of substituents was studied on a series of meso-substituted porphyrins (meso-tetrapyridineporphyrin, meso-tetraphenylporphyrin and derivatives) for which we could relate a reduction of the coupling to steric effects that reduce the overlap between the frontier orbitals of the monomers.

  8. Electrospray mass and tandem mass spectrometry of homologous and isomeric singly, doubly, triply and quadruply charged cationic ruthenated meso-(phenyl)m-(meta- and para-pyridyl)n (m + n = 4) macrocyclic porphyrin complexes. (United States)

    Tomazela, Daniela M; Gozzo, Fabio C; Mayer, Ildemar; Engelmann, Fábio M; Araki, Koiti; Toma, Henrique E; Eberlin, Marcos N


    Ten homologous or isomeric singly, doubly, triply and quadruply charged cationic macrocyclic complexes I-Va, bn+ (n = 1-4) formed by the coordination of [Ru(bipy)2Cl]+ to the pyridyl N-atoms of a series of meso-(phenyl)m-(meta or para-pyridyl)n-porphyrins (m + n = 4) were transferred to the gas phase and structurally characterized by electrospray ionization (ESI) mass (MS) and tandem mass (MS/MS) spectrometry. Previously known to be stable in solution and in the solid state, I-Va, bn+ are found to constitute also a new class of stable, long-lived multiply charged gas-phase ions with spatially separated charge sites. Increasing intramolecular electrostatic repulsion from Ia, b+ to IVa, b3+ facilitates in-source and tandem collision-induced dissociation (CID). However, for the quadruply charged ions Va, b4+, electrostatic repulsion is alleviated mainly by ion pairing with the CF3SO3- counterion forming the salt clusters [Va,b/CF3SO3]3+ and [Va,b/(CF3SO3)2]2+ with reduced charge states. Ion-pairing that yields [IVa,b/CF3SO3]2+ is also observed as a minor ESI process for the triply charged ions IVa, b3+. The gaseous ions I-Va, bn+ (n = 2, 3 or 4) dissociate by sequential 'charge partitioning' with the formation of two cationic fragments by the release of [Ru(bipy)2Cl]+. The meta (a) and para (b) isomers and the positional isomers II2+ and III2+ display nearly identical ESI-MS and ESI-MS/MS spectra. ESI-MS/MS of I-Va, bn+ shows that the Ru-py(P) is, intrinsically, the weakest bond since this bond breaks preferentially upon CID.

  9. Structures and properties of novel 5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl] porphyrin derivatives:Density functional theory calculations

    Institute of Scientific and Technical Information of China (English)


    Density functional theory (DFT) calculations have been carried out in order to compare the molecular structures, atomic charges, molecular orbitals, electronic absorption spectra, and infrared (IR) spectra of the metal-free 5,15 -di[4-(5-acetylsul-fanylpentyloxy)phenyl]porphyrin H2[DPP(OC5H10SCOCH3)2] (1) (DPP = 5,15-diphenylporphyrin) and its zinc complex Zn[DPP(OC5H10SCOCH3)2] (2), which exhibit novel structures with two 5-acetylsulfanylpentyloxy side chains at the para-positions of opposite meso-attached phenyl groups. The calculated molecular structure and electronic absorption and IR spectra of 1 and 2 are consistent with the experimental results. The influences of meso-substitution, polar solvents, and central metal substitution on the structure and properties of porphyrin derivatives have been investigated by comparing the corresponding data for 1 and 2 with the help of data for the unsubstituted porphyrin derivatives, namely the metal-free porphyrin H2Por (3) and the porphyrinato-zinc compound (4). The identities of the main transitions in the electronic absorption spectra of 1 and 2 are assigned and the vibrational modes in their IR spectra are identified with the assistance of animated pictures produced based on normal coordinates. The theoretical work presented here will be helpful in increasing our understanding of the structure and spectroscopic properties, as well as substituent and solvent effects, for these novel porphyrin compounds.

  10. Tunable photophysical processes of porphyrin macrocycles on the surface of ZnO nanoparticles

    KAUST Repository

    Parida, Manas R.


    We investigated the impact of the molecular structure of cationic porphyrins on the degree of electrostatic interactions with zinc oxide nanoparticles (ZnO NPs) using steady-state and time-resolved fluorescence and transient absorption spectroscopy. Our results demonstrate that the number of cationic pyridinium units has a crucial impact on the photophysics of the porphyrin macrocycle. Fluorescence enhancement, relative to initial free porphyrin fluorescence, was found to be tuned from 3.4 to 1.3 times higher by reducing the number of cationic substituents on the porphyrin from 4 to 2. The resulting enhancement of the intensity of the fluorescence is attributed to the decrease in the intramolecular charge transfer (ICT) character between the porphyrin cavity and its meso substituent. The novel findings reported in this work provide an understanding of the key variables involved in nanoassembly, paving the way toward optimizing the interfacial chemistry of porphyrin-ZnO NP assembly for photodynamic therapy and energy conversion.

  11. Inverted porphyrins and expanded porphyrins: An overview

    Indian Academy of Sciences (India)

    S K Pushpan; S Venkatraman; V G Anand; J Sankar; H Rath; T K Chandrashekar


    Porphyrins and metallopophyrins have attracted the attention of chemists for the past 100 years or more owing to their widespread involvement in biology. More recently, synthetic porphyrins and porphyrin-like macrocycles have attracted the attention of researchers due to their diverse applications as sensitizers for photodynamic therapy, MRI contrasting agents, and complexing agents for larger metal ions and also for their anion binding abilities. The number of -electrons in the porphyrin ring can be increased either by increasing the number of conjugated double bonds between the pyrrole rings or by increasing the number of heterocyclic rings. Thus, 22 sapphyrins, 26 rubyrins, 30 heptaphyrins, 34 octaphyrins and higher cyclic polypyrrole analogues containing 40, 48, 64, 80 and 96 systems have recently been reported in the literature. These macrocycles show rich structural diversity where normal and different kinds of inverted structures have been identified. In this review, an attempt has been made to collect the literature of the inverted porphyrins and expanded porphyrins reported until December 2001. Since the meso aryl expanded porphyrins have tendency to form both inverted and non-inverted structures more emphasis has been given to meso aryl expanded porphyrins.

  12. Synthesis of porphyrin nanostructures (United States)

    Fan, Hongyou; Bai, Feng


    The present disclosure generally relates to self-assembly methods for generating porphyrin nanostructures. For example, in one embodiment a method is provided that includes preparing a porphyrin solution and a surfactant solution. The porphyrin solution is then mixed with the surfactant solution at a concentration sufficient for confinement of the porphyrin molecules by the surfactant molecules. In some embodiments, the concentration of the surfactant is at or above its critical micelle concentration (CMC), which allows the surfactant to template the growth of the nanostructure over time. The size and morphology of the nanostructures may be affected by the type of porphyrin molecules used, the type of surfactant used, the concentration of the porphyrin and surfactant the pH of the mixture of the solutions, and the order of adding the reagents to the mixture, to name a few variables.

  13. To what extent can charge localization influence electron injection efficiency at graphene-porphyrin interfaces?

    KAUST Repository

    Parida, Manas R.


    Controlling the electron transfer process at donor- acceptor interfaces is a research direction that has not yet seen much progress. Here, with careful control of the charge localization on the porphyrin macrocycle using β -Cyclodextrin as an external cage, we are able to improve the electron injection efficiency from cationic porphyrin to graphene carboxylate by 120% . The detailed reaction mechanism is also discussed.

  14. Porphyrin Diacid-Polyelectrolyte Assemblies: Effective Photocatalysts in Solution

    Directory of Open Access Journals (Sweden)

    Sabine Frühbeißer


    Full Text Available Developing effective and versatile photocatalytic systems is of great potential in solar energy conversion. Here we investigate the formation of supramolecular catalysts by electrostatic self-assembly in aqueous solution: Combining positively charged porphyrins with negatively charged polyelectrolytes leads to nanoscale assemblies where, next to electrostatic interactions, π–π interactions also play an important role. Porphyrin diacid-polyelectrolyte assemblies exhibit a substantially enhanced catalytic activity for the light-driven oxidation of iodide. Aggregates with the hexavalent cationic porphyrin diacids show up to 22 times higher catalytic activity than the corresponding aggregates under neutral conditions. The catalytic activity can be increased by increasing the valency of the porphyrin and by choice of the loading ratio. The structural investigation of the supramolecular catalysts took place via atomic force microscopy and small angle neutron scattering. Hence, a new facile concept for the design of efficient and tunable self-assembled photocatalysts is presented.

  15. 1,1’,1’’,1’’’-[Porphyrin-5,10,15,20-tetrayltetrakis(3,1-phenylenemethylene]tetraquinolinium Tetrabromide

    Directory of Open Access Journals (Sweden)

    Satoshi Fujii


    Full Text Available Cationic porphyrins interact strongly with guanine quadruplex DNA (G-quadruplex. We herein report the preparation of a cationic porphyrin bearing quinolinium side arms, 1,1’,1’’,1’’’-[porphyrin-5,10,15,20-tetrayltetrakis(3,1-phenylenemethylene]­tetra­quinolinium tetrabromide (mQu, as a potential G-quadruplex ligand.

  16. Soluble porphyrin polymers (United States)

    Gust, Jr., John Devens; Liddell, Paul Anthony


    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.


    Directory of Open Access Journals (Sweden)

    Vašutová V.


    Full Text Available Samples representing two modifications of halloysites, dehydrated (7 Å and hydrated (10 Å forms, respectively, were examined with the aim to select suitable candidates for to be used as carriers of porphyrine photoactive molecules. The samples were analysed by powder X-ray diffraction (pXRD, infrared spectroscopy (FT-IR, and high resolution transmission electron microscopy (HRTEM. Chemical composition was also determined. For the determination of cationic exchange capacity (CEC the silver thiourea method (AgTU was used. Silver cations concentrations in the solution before and after the interaction were determined by atomic absorption spectrometry (AAS. By the interaction of two pure hydrated halloysites with porphyrine it was found that porphyrine does not intercalate the interlayer space, but it is adsorbed on the outer surface of halloysite. This interaction changed the colour of clay sample from white to green. The changes were also clearly visible on diffuse reflectance spectra (DRS.

  18. Comparative Study of the Structural and Vibroelectronic Properties of Porphyrin and Its Derivatives

    Directory of Open Access Journals (Sweden)

    Metin Aydin


    Full Text Available Density functional theory (DFT and time-dependent-DFT (TD-DFT were employed to investigate the vibroelectronic structural properties of porphyrin and some derivatives: unsubstituted porphyrin (TPyr, meso-tetraphenylporphyrin (TPP, meso-tetrakis(p-sulfonatophenylporphyrin (TSPP, protonated-TPyr (H2TPyr, deuterated-H2TPyr (D4TPyr, protonated-TPP (H2TPP and deuterated-H2TPP (D4TPP, protonated TSPP (H2TSPP, deuterated-H2TSPP (D4TSPP, dicationic TSPP (H6TSPP and deuterated-H6TSPP (D8TSPP. The possible internal conversion (IC and intersystem crossing (ISC processes of these compounds were investigated. Finally, the relaxed ground state potential energy surface (PES (S0, and singlet (Sn, n = 1–24 and triplet (Tn excited state PESs of the TSPP molecule were calculated as function of the dihedral angle (Cα-Cm-Cϕ-C(ph rotation. The results of the calculations indicated that while the meso-substitutions caused a significant shift in frequencies when the meso-carbons within the parent-porphine (or TPyr are involved in the vibrational motion of molecules; the protonation of the N atoms at the porphine/porphyrin core causes a significant blue shift when the H on the N atoms within the pyrroline are dominantly involved in the vibrational motions. The deuteration of N atoms not only caused a red-shift in the frequencies of the corresponding peaks below 1600 cm−1, but also produced new vibrational modes of frequencies in the 2565–2595 cm−1 range caused by the N-D bond stretching. Similarly, the deuteration of O atoms within the sulfonato groups (-SO3− exhibited a new peak at around 2642 cm−1 due to O-D bond stretching. The measured Raman spectrum of the H2TSPP is assigned based on the predicted Raman spectra of the compounds studied here and measured Raman spectrum of the TPP (from our previous work. The IR spectrum is assigned based on our calculations and measured IR spectra obtained from the literature. The results of the TD-DFT calculations did

  19. 新型中位取代七甲川菁染料的合成及光稳定性研究%Synthesis, Characterization and Spectral Properties of Novel Meso-Substituted Heptamethine Cyanine Dye

    Institute of Scientific and Technical Information of China (English)

    陈秀英; 郭琳; 贾显林; 高海燕; 郑昌戈


    Two novel meso-substituted heptamethine cyanine dyes were prepared and characterized by ' HNMR and HRMS spectra. The absorption and emission spectral properties in different solvents were studied. The maxima of the absorption and fluorescent spectra of the dyes 3b and 3c were at 677/790 nm and 647/786 run in methanol respectively with larger stokes shifts of 113 nm and 139 nm. The photo-degradation reaction showed that the rate constants for the three dyes 3a-3c were 1. 21× l0-3mol/min, 1. 81× l0-3mol/min and 2. 14× l0-3mol/ min respectively. Cyclic voltammetry showed that the oxidative potentials for 3a-3c were 0. 729 V, 0. 624 V and 0. 598 V respectively. The experiment of photodegradation showed that electron-withdrawing group on methine chain of heptamethine cyanine dye enhanced the photostability and electron-donating group on methine chain decreased the photostability of the dyes. The ability of donating and withdrawing affected the photostability of the dyes. The hydrogen bond on substituted atom on methine chain was favor for enhancing the photostability of the dyes. And hydrogen bond of chlorine atom on methine chain was in favor of enhancing the photostability of the dyes. But nitrogen atom on methine chain can not form hydrogen bond and not helpful for the photostability of the dyes.%本文合成了两种新型中位取代近红外七甲川菁染料,采用核磁1 HN-MR和HRMS质谱对其结构进行了表征,并测试了染料在不同溶剂中的吸收光谱和荧光发射光谱性质.染料3b、3c在甲醇中的最大吸收波长和最大荧光发射波长分别为677/790 nm和647/786 nm,斯托克斯位移分别为113 nm、139 nm,经过光降解实验测试得到3种染料3a—3c在乙醇中的光降解速率常数分别为1.21×10-3 mol/min、1.81×l0-3mol/min和2.14×103mol/min.循环伏安法测得染料3a—3c的氧化电位分别在0.729 V、0.624V和0.598V.光降解实验表明:七甲川菁染料中位亚甲基链上吸电基取代增强染

  20. New dyads using (metallo)porphyrins as ancillary ligands in polypyridine ruthenium complexes. Synthesis and electronic properties. (United States)

    Lachaud, Fabien; Jeandon, Christophe; Monari, Antonio; Assfeld, Xavier; Beley, Marc; Ruppert, Romain; Gros, Philippe C


    Porphyrins bearing enaminoketones at their periphery have been used as ancillary ligands in ruthenium complexes. Free base, nickel and zinc porphyrins were successfully coordinated to Ru(bpy)(2)Cl(2) under microwave irradiation. The positive contribution of the ruthenium complex was demonstrated by the complexes' wide absorption domains that covered the 500-600 nm region where the parent porphyrins did not absorb. Electrochemical as well as computational data revealed an efficient electronic communication between the porphyrins and the ruthenium cation in the dyads.

  1. Supramolecular assemblies of pyridyl porphyrin and diazadithia phthalocyanine

    Directory of Open Access Journals (Sweden)



    Full Text Available In this paper we report for the first time on a mixed complex between the cationic porphyrin 5, 10, 15, 20-tetra-N- -methyl-pyrydinium-p-il porphyrin (TMPyP and a new metal phthalocyanine with four 16-membered diazadithia macrocycles (denoted here as Pc16, in order to obtain an active complex with an intense absorption on the lower energy side of the visible spectrum and with a higher sensitivity in photodynamic therapy of cancer. The dimerization constant for Pc16 and also the ratio between the oscillator strengths for monomeric and dimeric forms of this compound, were evaluated. The ratio between these oscillator strengths was 2.01 showing a certain dimerization process. The Job mathematical method allowed the establishment of the stoichiometry and the formation constants for the heteroaggregates between the porphyrin and the phthalocy- anine (a diad between one phthalocyanine molecule and one porphyrin molecule and a triad between two phthalocyanine molecules and only one porphyrin molecule. The coulombic attraction resulting from the p-p interaction of the two highly conjugated macrocycles and from the interaction between the substituents, favors a face-to-face geometry.

  2. Synthesis, spectroscopic, and photophysical characterization and photosensitizing activity toward prokaryotic and eukaryotic cells of porphyrin-magainin and -buforin conjugates. (United States)

    Dosselli, Ryan; Ruiz-González, Rubén; Moret, Francesca; Agnolon, Valentina; Compagnin, Chiara; Mognato, Maddalena; Sella, Valentina; Agut, Montserrat; Nonell, Santi; Gobbo, Marina; Reddi, Elena


    Cationic antimicrobial peptides (CAMPs) and photodynamic therapy (PDT) are attractive tools to combat infectious diseases and to stem further development of antibiotic resistance. In an attempt to increase the efficiency of bacteria inactivation, we conjugated a PDT photosensitizer, cationic or neutral porphyrin, to a CAMP, buforin or magainin. The neutral and hydrophobic porphyrin, which is not photoactive per se against Gram-negative bacteria, efficiently photoinactivated Escherichia coli after conjugation to either buforin or magainin. Conjugation to magainin resulted in the considerable strengthening of the cationic and hydrophilic porphyrin's interaction with the bacterial cells, as shown by the higher bacteria photoinactivation activity retained after washing the bacterial suspension. The porphyrin-peptide conjugates also exhibited strong interaction capability as well as photoactivity toward eukaryotic cells, namely, human fibroblasts. These findings suggest that these CAMPs have the potential to carry drugs and other types of cargo inside mammalian cells similar to cell-penetrating peptides.

  3. Stacked antiaromatic porphyrins (United States)

    Nozawa, Ryo; Tanaka, Hiroko; Cha, Won-Young; Hong, Yongseok; Hisaki, Ichiro; Shimizu, Soji; Shin, Ji-Young; Kowalczyk, Tim; Irle, Stephan; Kim, Dongho; Shinokubo, Hiroshi


    Aromaticity is a key concept in organic chemistry. Even though this concept has already been theoretically extrapolated to three dimensions, it usually still remains restricted to planar molecules in organic chemistry textbooks. Stacking of antiaromatic π-systems has been proposed to induce three-dimensional aromaticity as a result of strong frontier orbital interactions. However, experimental evidence to support this prediction still remains elusive so far. Here we report that close stacking of antiaromatic porphyrins diminishes their inherent antiaromaticity in the solid state as well as in solution. The antiaromatic stacking furthermore allows a delocalization of the π-electrons, which enhances the two-photon absorption cross-section values of the antiaromatic porphyrins. This feature enables the dynamic switching of the non-linear optical properties by controlling the arrangement of antiaromatic π-systems on the basis of intermolecular orbital interactions.

  4. [Formylation of porphyrin platinum complexes]. (United States)

    Rumiantseva, V D; Konovalenko, L I; Nagaeva, E A; Mironov, A F


    The formylation reaction of platinum complexes of beta-unsubstituted porphyrins was studied. The interaction of deuteroporphyrin IX derivatives with the Vilsmeyer reagent led to the selective formylation of their macrocycles in the beta position. The resulting formyl derivatives of the porphyrins are of interest for fluorescent immunoassay.

  5. Molecular Simulations of Porphyrins and Heme Proteins

    Energy Technology Data Exchange (ETDEWEB)



    An overview of the use of classical mechanical molecular simulations of porphyrins, hydroporphyrins, and heme proteins is given. The topics cover molecular mechanics calculations of structures and conformer energies of porphyrins, energies of barriers for interconversion between stable conformers, molecular dynamics of porphyrins and heme proteins, and normal-coordinate structural analysis of experimental and calculated porphyrin structures. Molecular mechanics and dynamics are currently a fertile area of research on porphyrins. In the future, other computational methods such as Monte Carlo simulations, which have yet to be applied to porphyrins, will come into use and open new avenues of research into molecular simulations of porphyrins.

  6. Bis(cyano) Iron(III) Porphyrinates: What Is the Ground State? (United States)

    Li, Jianfeng; Noll, Bruce C; Schulz, Charles E; Scheidt, W Robert


    The synthesis of six new bis(cyano) iron(III) porphyrinate derivatives is reported. The anionic porphyrin complexes utilized tetraphenylporphyrin, tetramesitylporphyrin, and tetratolylporphyrin as the porphyrin ligand. The potassium salts of Kryptofix-222 and 18-C-6 were used as the cations. These complexes have been characterized by X-ray structure analysis, solid-state Mössbauer spectroscopy, and EPR spectroscopy, both in frozen CH2Cl2 solution and in the microcrystalline state. These data show that these anionic complexes can exist in either the (dxz,dyz)(4)(dxy)(1) or the (dxy)(2)(dxz,dyz)(3) electronic configuration and some can clearly readily interconvert. This is a reflection that these two states can be very close in energy. In addition to the effects of varying the porphyrin ligand, subtle effects of the cyanide ligand environment in the solid state and in solution are sufficient to shift the balance between the two electronic states.

  7. Porphyrins at interfaces (United States)

    Auwärter, Willi; Écija, David; Klappenberger, Florian; Barth, Johannes V.


    Porphyrins and other tetrapyrrole macrocycles possess an impressive variety of functional properties that have been exploited in natural and artificial systems. Different metal centres incorporated within the tetradentate ligand are key for achieving and regulating vital processes, including reversible axial ligation of adducts, electron transfer, light-harvesting and catalytic transformations. Tailored substituents optimize their performance, dictating their arrangement in specific environments and mediating the assembly of molecular nanoarchitectures. Here we review the current understanding of these species at well-defined interfaces, disclosing exquisite insights into their structural and chemical properties, and also discussing methods by which to manipulate their intramolecular and organizational features. The distinct characteristics arising from the interfacial confinement offer intriguing prospects for molecular science and advanced materials. We assess the role of surface interactions with respect to electronic and physicochemical characteristics, and describe in situ metallation pathways, molecular magnetism, rotation and switching. The engineering of nanostructures, organized layers, interfacial hybrid and bio-inspired systems is also addressed.

  8. Merging porphyrins with organometallics: synthesis and applications. (United States)

    Suijkerbuijk, Bart M J M; Klein Gebbink, Robertus J M


    The coordination chemistry of porphyrins has traditionally involved the ability of the porphyrin's tetrapyrrolic core to accommodate metal ions of varying charges and sizes, and on the organometallic chemistry of the resulting metalloporphyrins. However, the organometallic chemistry of porphyrins is not necessarily restricted to the metal bound in the porphyrin core, but can also be extended to the porphyrin periphery, be it through direct metalation of the porphyrin macrocycle at the meso or beta position, or by attachment to or merger of the porphyrin skeleton with ligands, followed by metalation. This Review focuses on the synthetic strategies used for porphyrins with peripheral metal-carbon bonds. The exciting results that have been produced underscore the importance and future potential of this field.

  9. Fluorinated Dodecaphenylporphyrins: Synthetic and Electrochemical Studies Including the First Evidence of Intramolecular Electron Transfer Between an Fe(II) Porphyrin -Anion Radical and an Fe(I) Porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    D' Souza, F.; Forsyth, T.P.; Fukuzumi, S.; Kadish, K.M.; Krattinger, B.; Lin, M.; Medforth, C.J.; Nakanishi, I.; Nurco, D.J.; Shelnutt, J.A.; Smith, K.M.; Van Caemelbecke, E.


    Dodecaphenylporphyrins with varying degrees of fluorination of the peripheral phenyl rings (FXDPPS) were synthesized as model compounds for studying electronic effects in nonplan~ porphyrins, and detailed electrochemical studies of the chloroiron(HI) complexes of these compounds were undertaken. The series of porphyrins, represented as FeDPPCl and as FeFXDPPCl where x = 4, 8 (two isomers), 12, 20,28 or 36, could be reversibly oxidized by two electrons in dichloromethane to give n-cation radicals and n-dications. All of the compounds investigated could also be reduced by three electrons in benzonitrile or pyridine. In benzonitrile, three reversible reductions were observed for the unfluorinated compound FeDPPC1, whereas the FeFXDPPCl complexes generally exhibited irreversible first and second reductions which were coupled to chemical reactions. The chemical reaction associated with the first reduction involved a loss of the chloride ion after generation of Fe FXDPPC1. The second chemical reaction involved a novel intramolecular electron transfer between the initially generated Fe(H) porphyrin n-anion radical and the final Fe(I) porphyrin reduction product. In pyridine, three reversible one electron reductions were observed with the second reduction affording stable Fe(II) porphyrin o - anion radicals for ail of the complexes investigated.

  10. Optical Gas Sensing of Ammonia and Amines Based on Protonated Porphyrin/TiO2 Composite Thin Films (United States)

    Castillero, Pedro; Roales, Javier; Lopes-Costa, Tânia; Sánchez-Valencia, Juan R.; Barranco, Angel; González-Elipe, Agustín R.; Pedrosa, José M.


    Open porous and transparent microcolumnar structures of TiO2 prepared by physical vapour deposition in glancing angle configuration (GLAD-PVD) have been used as host matrices for two different fluorescent cationic porphyrins, 5-(N-methyl 4-pyridyl)-10,15,20-triphenyl porphine chloride (MMPyP) and meso-tetra (N-methyl 4-pyridyl) porphine tetrachloride (TMPyP). The porphyrins have been anchored by electrostatic interactions to the microcolumns by self-assembly through the dip-coating method. These porphyrin/TiO2 composites have been used as gas sensors for ammonia and amines through previous protonation of the porphyrin with HCl followed by subsequent exposure to the basic analyte. UV–vis absorption, emission, and time-resolved spectroscopies have been used to confirm the protonation–deprotonation of the two porphyrins and to follow their spectral changes in the presence of the analytes. The monocationic porphyrin has been found to be more sensible (up to 10 times) than its tetracationic counterpart. This result has been attributed to the different anchoring arrangements of the two porphyrins to the TiO2 surface and their different states of aggregation within the film. Finally, there was an observed decrease of the emission fluorescence intensity in consecutive cycles of exposure and recovery due to the formation of ammonium chloride inside the film. PMID:28025570

  11. Porphyrins Fused with Unactivated Polycyclic Aromatic Hydrocarbons

    KAUST Repository

    Diev, Vyacheslav V.


    A systematic study of the preparation of porphyrins with extended conjugation by meso,β-fusion with polycyclic aromatic hydrocarbons (PAHs) is reported. The meso-positions of 5,15-unsubstituted porphyrins were readily functionalized with PAHs. Ring fusion using standard Scholl reaction conditions (FeCl 3, dichloromethane) occurs for perylene-substituted porphyrins to give a porphyrin β,meso annulated with perylene rings (0.7:1 ratio of syn and anti isomers). The naphthalene, pyrene, and coronene derivatives do not react under Scholl conditions but are fused using thermal cyclodehydrogenation at high temperatures, giving mixtures of syn and anti isomers of the meso,β-fused porphyrins. For pyrenyl-substituted porphyrins, a thermal method gives synthetically acceptable yields (>30%). Absorption spectra of the fused porphyrins undergo a progressive bathochromic shift in a series of naphthyl (λ max = 730 nm), coronenyl (λ max = 780 nm), pyrenyl (λ max = 815 nm), and perylenyl (λ max = 900 nm) annulated porphyrins. Despite being conjugated with unsubstituted fused PAHs, the β,meso-fused porphyrins are more soluble and processable than the parent nonfused precursors. Pyrenyl-fused porphyrins exhibit strong fluorescence in the near-infrared (NIR) spectral region, with a progressive improvement in luminescent efficiency (up to 13% with λ max = 829 nm) with increasing degree of fusion. Fused pyrenyl-porphyrins have been used as broadband absorption donor materials in photovoltaic cells, leading to devices that show comparatively high photovoltaic efficiencies. © 2011 American Chemical Society.

  12. Fusing Porphyrins and Phospholes: Synthesis and Analysis of a Phosphorus-Containing Porphyrin. (United States)

    Higashino, Tomohiro; Yamada, Tomoki; Sakurai, Tsuneaki; Seki, Shu; Imahori, Hiroshi


    A phosphole-fused porphyrin dimer, as a representative of a new class of porphyrins with a phosphorus atom, was synthesized for the first time. The porphyrin dimer exhibits remarkably broadened absorption, indicating effective π-conjugation over the two porphyrins through the phosphole moiety. The porphyrin dimer possesses excellent electron-accepting character, which is comparable to that of a representative electron-accepting material, [60]PCBM. These results provide access to a new class of phosphorus-containing porphyrins with unique optoelectronic properties.

  13. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan (United States)

    Huang, Guan; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu


    This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O2. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  14. The Antimicrobial Activity of Porphyrin Attached Polymers (United States)

    Thompson, Lesley


    We are interested in testing the antimicrobial activity of a porphyrin that is attached to a polymer. The porphyrin (5-(4-carboxyphenyl)-10,15,20-tris-(4-pryridyl)) was synthesized from methyl 4-formyl benzoate, 4-pyridinecarboxaldehyde, and pyrrole and attached to a copolymer of polystyrene/poly(vinyl benzyl chloride), which was synthesized by free radical polymerization. The antimicrobial activity of the polymer-attached porphyrin was then determined for gram-negative E. Coli grown to 0.80 OD. In this procedure, glass slides were coated with polymer-attached porphyrin via dip-coating, and the E. Coli bacteria were plated in Luria Broth media. The plates were subsequently exposed to light overnight before they were incubated as porphyrins act as photo-sensitizers when irradiated with light. The polymer-attached porphyrin did exhibit antimicrobial activity and parameters that affect its efficiency will be discussed.

  15. Ultrafast Photoinduced Electron Transfer in a π-Conjugated Oligomer/Porphyrin Complex

    KAUST Repository

    Aly, Shawkat Mohammede


    Controlling charge transfer (CT), charge separation (CS), and charge recombination (CR) at the donor-acceptor interface is extremely important to optimize the conversion efficiency in solar cell devices. In general, ultrafast CT and slow CR are desirable for optimal device performance. In this Letter, the ultrafast excited-state CT between platinum oligomer (DPP-Pt(acac)) as a new electron donor and porphyrin as an electron acceptor is monitored for the first time using femtosecond (fs) transient absorption (TA) spectroscopy with broad-band capability and 120 fs temporal resolution. Turning the CT on/off has been shown to be possible either by switching from an organometallic oligomer to a metal-free oligomer or by controlling the charge density on the nitrogen atom of the porphyrin meso unit. Our time-resolved data show that the CT and CS between DPP-Pt(acac) and cationic porphyrin are ultrafast (approximately 1.5 ps), and the CR is slow (ns time scale), as inferred from the formation and the decay of the cationic and anionic species. We also found that the metallic center in the DPP-Pt(acac) oligomer and the positive charge on the porphyrin are the keys to switching on/off the ultrafast CT process.

  16. Porphyrin coordination polymer nanospheres and nanorods (United States)

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.


    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  17. Porphyrin coordination polymer nanospheres and nanorods (United States)

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.


    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  18. Porphyrin Microparticles for Biological and Biomedical Applications (United States)

    Huynh, Elizabeth

    Lipids are one of the critical building blocks of life, forming the plasma membrane of cells. In addition, porphyrins also play an equally important role in life, for example, through carrying oxygen in blood. The importance of both these components is evident through the biological and biomedical applications of supramolecular structures generated from lipids and porphyrins. This thesis investigates new porphyrin microparticles based on porphyrin-lipid architecture and their potential applications in biology and medicine. In Chapter 1, a background on lipid and porphyrin-based supramolecular structures is presented and design considerations for generating multifunctional agents. Chapter 2 describes the generation of a monolayer porphyrin microparticle as a dual-modal ultrasound and photoacoustic contrast agent and subsequently, a trimodal ultrasound, photoacoustic and fluorescence contrast agent. Chapter 3 examines the optical and morphological response of these multimodality ultrasound-based contrast agents to low frequency, high duty cycle ultrasound that causes the porphyrin microparticles to convertinto nanoparticles. Chapter 4 examines the generation of bilayer micrometer-sized porphyrin vesicles and their properties. Chapter 5 presents a brief summary and potential future directions. Although these microscale structures are similar in structure, the applications of these structures greatly differ with potential applications in biology and also imaging and therapy of disease. This thesis aims to explore and demonstrate the potential of new simplified, supramolecular structures based on one main building block, porphyrin-lipid.

  19. Re(I) bridged porphyrin dyads, triads and tetrads

    Indian Academy of Sciences (India)

    M Yedukondalu; M Ravikanth


    Porphyrin rings containing two meso-pyridyl groups either in cis or trans fashion can be used to construct Re(I) bridged multiporphyrin assemblies. The cis-dipyridyl porphyrins with various porphyrin cores such as N4, N3O, N3S, N2S2 have been used to react with Re(CO)5Cl in THF at refluxing temperature and constructed planar Re(I) bridged porphyrin dyads containing either one type of porphyrin subunit or two types of porphyrin subunits. The trans-dipyridyl porphyrins have been used to construct Re(I) bridged porphyrin squares. The porphyrin dyads have been explored for singlet-singlet energy transfer studies and porphyrin squares have been used for catalysis, chemical sensing, molecular sieving and photocurrent production studies. An overview of synthesis of Re(I) bridged porphyrin dyads, triads and tetrads and their interesting photophysical properties are highlighted in this paper.

  20. Quantitative measurement of porphyrins in biological tissues and evaluation of tissue porphyrins during toxicant exposures. (United States)

    Woods, J S; Miller, H D


    Porphyrins are formed in most eukaryotic tissues as intermediates in the biosynthesis of heme. Assessment of changes in tissue porphyrin levels occurring in response to the actions of various drugs or toxicants is potentially useful in the evaluation of chemical exposures and effects. The present paper describes a rapid and sensitive method for the extraction and quantitation of porphyrins in biological tissues which overcomes difficulties encountered in previously described methods, particularly the loss of porphyrins during extraction and interference of porphyrin quantitation by coeluting fluorescent tissue constituents. In this procedure 8- through 2-carboxyl porphyrins are quantitatively extracted from tissue homogenates using HCl and methanol and are subsequently separated from potentially interfering contaminants by sequential methanol/phosphate elution on a C-18 preparatory column. Porphyrins are then separated and measured by reversed-phase high-performance liquid chromatography and spectrofluorometric techniques. Recovery of tissue porphyrins using this method is close to 100% with an intraassay variability of less than 10%. We have employed this procedure to measure liver and kidney porphyrin concentrations in male Fischer rats and to define the distinctive changes in tissue porphyrin patterns associated with treatment with the hepatic and renal porphyrinogenic chemicals, allylisopropylacetamide, and methyl mercury hydroxide, respectively. This method is applicable to the measurement of tissue porphyrin changes resulting from drug or toxicant exposures in clinical, experimental or environmental assessments.

  1. 具有叶绿素-a基本骨架的20-meso-位取代二氢卟吩衍生物的合成%Synthesis of 20-meso-Substituted Chlorins with the Basic Skeleton of Chlorophyll-a

    Institute of Scientific and Technical Information of China (English)

    王鲁敏; 王振; 杨泽; 金英学; 王进军


    以脱镁叶绿酸-a甲酯(MPa)为起始原料,分别与氯化、溴化和硫酸重氮苯进行偶联反应,其主要产物为20-卤素取代或者亚硝基取代的二氢卟吩,仅以微量产率的得到期待的产物.焦脱镁叶绿酸的锌配合物与3-N,N-二甲胺基丙烯醛的Vilsmeier反应生成20-甲酰乙烯基焦脱镁叶绿酸.焦脱镁叶绿酸-d与N-溴代丁二酰亚胺(NBS)的溴代反应生成单一的20-溴代产物,再经Wittig反应恢复乙烯基而得到20-溴代焦脱镁叶绿酸-a甲酯.其它叶绿素降解产物的亲电取代反应均以较好的产率得到生成的20-meso-位取代的二氢卟吩衍生物.首次报道的具有叶绿素基本碳架的二氢卟吩衍生物的化学结构均经UV,IR,1H NMR及元素分析得以证实.%Methyl pheophorbide-a (MPa) was used as starting material. The coupling reaction of MPa with diazobenzene hydrochloride, hydrobromide and sulfate was carried out to give traces of expected product, while major products were 20-halogenated and nitroso-substituted chlorins. Zinc methyl pyropheophorbide-a reacted with 3-N-dimethylacrolein to give Vilsmeier product. The bromination of pyropheophorbide-d with N-bromosuccinimide (NBS) formed single 20-brominated product, the vinyl group of which was resumed by Wittig reaction to give 20-bromopyropheophorbide-a The electrophilic substitution of other chlorphyllous degradation products afforded corresponding 20-meso-substituted chlorin derivatives in better yields, respectively. The structures of all the new chlorins with basic skeleton of chlorophyll were characterized by UV, IR, 1H NMR spectra and elemental analysis.

  2. NO2-induced synthesis of nitrato-iron(III) porphyrin with diverse coordination mode and the formation of isoporphyrin

    Indian Academy of Sciences (India)

    Jagannath Bhuyan; Sabyasachi Sarkar


    Two nitrato-iron(III) porphyrinates [Fe(4-Me-TPP)(NO3)] 1 and [Fe(4-OMe-TPP)(NO3)] 2 are reported. Interestingly, [Fe(4-Me-TPP)(NO3)] 1 has nitrate ion coordinated as monodentate (by single oxygen atom), while [Fe(4-OMe-TPP)(NO3)] 2 has nitrate coordination through bidentate mode. Compound 1 was found serendipitously in the reaction of [Fe(4-Me-TPP)Cl] with nitrous acid, which was performed for the synthesis of nitro-iron(III) porphyrin, [Fe(4-Me-TPP)NO2]. The compound 2 was synthesized by passing NO2 gas through a solution of [Fe(4-OMe-TPP)]2O. Upon passing NO2 gas through a solution of a -oxo-dimer, [Fe(4-Me-TPP)]2O also produces 1. It is interesting that in more electron-rich porphyrin 2, binding of the nitrate in a symmetrical bidentate way while in less electron-rich porphyrin 1, binding of the anion is unidentate by a terminal oxygen atom. However, it is expected that the energy difference between the monodentate and bidentate coordination mode is very small and the interchange between these coordination is possible. Upon passing NO2 gas through a solution of -oxo-dimeric iron(III) porphyrin, the nitrato-iron(III) porphyrin forms first, that later gets oxidized to -cation radical to yield hydroxy-isoporphyrin in the presence of trace amount of water. These nitrato-iron(III) porphyrinates in moist air slowly converted back to their respective -oxo-dimeric iron(III) porphyrins.

  3. Sedimentary porphyrins: Correlations with biological precursors

    Energy Technology Data Exchange (ETDEWEB)

    Callot, H.J.; Ocampo, R.; Albrecht, P. (Universite Louis Pasteur, Strasbourg (France))

    Over the past 6 years several sedimentary porphyrins (petroporphyrins, geoporphyrins) were correlated for the first time with biological precursors specific for classes of organisms (algae, photosynthetic bacteria (Chlorobiaceae)). This article discusses the various examples of correlations and the methods that led to these conclusions (isolation of pure porphyrins, structure determination using spectroscopic techniques, total synthesis, isotope measurements).

  4. Synthesis,Characterization,and Electrochemical Property of Nanometer Porphyrin Dimer

    Institute of Scientific and Technical Information of China (English)


    A nanometer porphyrin dimer was synthesized with fumaryl chloride as a bridge-linked reagent. The characterization was carried out with elemental analyses, 1H NMR, UV-Vis, and IR spectrometries, and then the electrochemical properties of the porphyrins were studied. The authors found that there was moderate electronic communication between the two porphyrin rings in the nanometer porphyrin dimer.

  5. Porphyrin-Based Photocatalytic Lithography

    Energy Technology Data Exchange (ETDEWEB)

    Bearinger, J; Stone, G; Christian, A; Dugan, L; Hiddessen, A; Wu, K J; Wu, L; Hamilton, J; Stockton, C; Hubbell, J


    Photocatalytic lithography is an emerging technique that couples light with coated mask materials in order to pattern surface chemistry. We excite porphyrins to create radical species that photocatalytically oxidize, and thereby pattern, chemistries in the local vicinity. The technique advantageously does not necessitate mass transport or specified substrates, it is fast and robust and the wavelength of light does not limit the resolution of patterned features. We have patterned proteins and cells in order to demonstrate the utility of photocatalytic lithography in life science applications.

  6. Porphyrin-based Photocatalytic Nanolithography

    Energy Technology Data Exchange (ETDEWEB)

    Bearinger, J P; Stone, G; Dugan, L C; Dasher, B E; Stockton, C; Conway, J W; Kuenzler, T; Hubbell, J A


    Nanoarray fabrication is a multidisciplinary endeavor encompassing materials science, chemical engineering and biology. We form nanoarrays via a new technique, porphyrin-based photocatalytic nanolithography (PCNL). The nanoarrays, with controlled features as small as 200 nm, exhibit regularly ordered patterns and may be appropriate for (a) rapid and parallel proteomic screening of immobilized biomolecules, (b) protein-protein interactions and/or (c) biophysical and molecular biology studies involving spatially dictated ligand placement. We demonstrate protein immobilization utilizing nanoarrays fabricated via PCNL on silicon substrates, where the immobilized proteins are surrounded by a non-fouling polymer background.

  7. Novel drug delivery strategies for porphyrins and porphyrin precursors (United States)

    Morrow, D. I. J.; Donnelly, R. F.


    superficial lesions, such as actinic keratosis. In addition, photodynamic antimicrobial chemotherapy (PACT) is attracting increasing interest for the treatment of infection. However, delivery strategies for topical PDT and PACT are still based on application of rather simplistic cream and solution formulations, with little consideration given to thermodynamics, targeting or the physicochemical properties of the active agent. Purpose-designed dosage forms for topical delivery of aminolevulinic acid or its esters include creams containing penetration enhancers and/or iron chelators, pressure sensitive patches and bioadhesive patches. Such systems aim to enhance drug delivery across the stratum corneum and keratinised debris overlying neoplastic lesions and improve subsequent protoporphyrin IX (PpIX) production. The alternative to using porphyrin precursors is the use of pre-formed photosensitisers. However, owing to their relatively high molecular weights, conventional topical application is not appropriate. Innovative strategies, such as the use of needle-free injections and microneedle arrays, bypass the stratum corneum, enabling rapid and targeted delivery not only porphyrin precursors but also pre-formed photosensitisers. This presentation will review drug delivery work published to date in the fields of PDT and PACT. In addition, the benefits of employing the latest advances in pharmaceutical technology will be highlighted.

  8. Synthesis and photophysical properties of polyamides containing in-chain porphyrin and [60]fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Haiying; Chen Chen; Zhu Yizhou; Shi Mingzhu; Zheng Jianyu, E-mail: [Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry (China)


    Conjugated polyamides containing porphyrin and [60]fullerene (C{sub 60}) in the main chain were prepared by a direct polycondensation of the 3 Prime H,3 Double-Prime H-dicyclopropa[1, 9:16, 17; 5, 6]fullerene-C{sub 60}-I{sub h}-3 Prime ,3 Double-Prime -dicarboxylic acid and 5,15-bis(4-aminophenyl)-10,20-bis(3,5-dialkoxyphenyl)porphyrin in the presence of triphenyl phosphite and pyridine. Gel permeation chromatography (GPC) analysis of the polyamides showed the weight-average molecular weight was about 23,626-23,736, and the temperature at 5% weight loss determined by thermogravimetric analysis (TGA) was above 216 Degree-Sign C. The transmission electron microscopy (TEM) images displayed the regular one-dimensional linear arrays of the polyamides with lengths exceeded 200 nm. The photoinduced electron transfer from porphyrin to C{sub 60} in the polyamides was observed in nanosecond laser-flash photolysis experiments at ambient temperature, which produced a charge-separated state (porphyrin radical cation-C{sub 60} radical anion pair) with a lifetime as long as 40 {mu}s. The calculated ratio of k{sub CS}/k{sub CR} was found to be 2.1 Multiplication-Sign 10{sup 4}. They could have potential applications for photoelectronic devices, organic solar cells and so on.

  9. Self-assembly of peptide-porphyrin complexes leads to pH-dependent excitonic coupling. (United States)

    Kuciauskas, Darius; Caputo, Gregory A


    Using absorbance, fluorescence, resonance light scattering, and circular dichroism spectroscopy, we studied the self-assembly of the anionic meso-tetra(4-sulfonatophenyl)porphine (TPPS(4)(2-/4-)) and a cationic 22-residue polypeptide. We found that three TPPS(4)(2-/4-) molecules bind to the peptide, which contains nine lysine residues in the primary sequence. In acidic solutions, when the peptide is in the random-coil conformation, TPPS(4)(2-) bound to the peptide forms excitonically coupled J-aggregates. In pH 7.6 solutions, when the peptide secondary structure is partially alpha-helical, the porphyrin-to-peptide binding constants are approximately the same as in acidic solutions (approximately 3 x 10(6) M(-1)), but excitonic interactions between the porphyrins are insignificant. The binding of TPPS(4)(2-/4-) to lysine-containing peptides is cooperative and can be described by the Hill model. Our results show that porphyrin binding can be used to change the secondary structure of peptide-based biomaterials. In addition, binding to peptides could be used to optimize porphyrin intermolecular electronic interactions (exciton coupling), which is relevant for the design of light-harvesting antennas for artificial photosynthesis.

  10. Oxoferryl porphyrin/hydrogen peroxide system whose behavior is equivalent to hydroperoxoferric porphyrin. (United States)

    Kitagishi, Hiroaki; Tamaki, Mariko; Ueda, Takunori; Hirota, Shun; Ohta, Takehiro; Naruta, Yoshinori; Kano, Koji


    The reaction between H(2)O(2) and a pyridine-coordinated ferric porphyrin encapsulated by a cyclodextrin dimer yielded a hydroperoxoferric porphyrin intermediate, PFe(III)-OOH, which rapidly decomposed to oxoferryl porphyrin (PFe(IV)═O). Upon reaction with H(2)O(2), PFe(IV)═O reverted to PFe(III)-OOH, which was converted to carbon monoxide-coordinated ferrous porphyrin under a CO atmosphere. PFe(IV)═O in the presence of excess H(2)O(2) behaves as PFe(III)-OOH.

  11. Emission spectroscopic properties of water soluble porphyrins in hydrogen peroxide chemiluminescence system with d- and f-electron metals (United States)

    Staninski, Krzysztof; Kaczmarek, Małgorzata; Lis, Stefan; Elbanowski, Marian


    Two water-soluble porphyrins: 4,4',4'',4'''-(porphine-5,10,15,20-tetrayl)-tetrakis (benzoic acid) (TCPPH 2) and 4,4',4'',4'''-(porphine-5,10,15,20-tetrayl)-tetrakis (benzenesulfonic acid) (TSPPH 2) have been subjected to spectroscopic study in the presence of d-electron metals: Zn(II) and Cu(II) and f-electron metals: La(III), Eu(III), Gd (III) and Yb(III). Results of the spectrophotometric study have provided evidence proving the complexation of Cu(II) and Zn(II) cations by porphine in water solutions and the complexation of lanthanide ions exclusively by peripheral carboxyl and sulfonic groups. For the first time, chemiluminescence of the systems containing porphyrins has been measured without the use of strongly luminescent reagents such as TCPO or luminol. The emission spectra of the systems porphyrin/metal ion/H 2O 2 have been recorded and the quantum yield of their luminescence has been measured. The absorption spectra of the systems recorded before and after the reaction in the presence of hydrogen peroxide are identical, which means that the porphyrin ring does not undergo destruction. A significant similarity between the fluorescence and chemiluminescence spectra indicates a possibility of excitation of porphyrins and their complexes in the reaction with hydrogen peroxide.

  12. Porphyrin-Based Nanostructures for Photocatalytic Applications

    Directory of Open Access Journals (Sweden)

    Yingzhi Chen


    Full Text Available Well-defined organic nanostructures with controllable size and morphology are increasingly exploited in optoelectronic devices. As promising building blocks, porphyrins have demonstrated great potentials in visible-light photocatalytic applications, because of their electrical, optical and catalytic properties. From this perspective, we have summarized the recent significant advances on the design and photocatalytic applications of porphyrin-based nanostructures. The rational strategies, such as texture or crystal modification and interfacial heterostructuring, are described. The applications of the porphyrin-based nanostructures in photocatalytic pollutant degradation and hydrogen evolution are presented. Finally, the ongoing challenges and opportunities for the future development of porphyrin nanostructures in high-quality nanodevices are also proposed.

  13. Porphyrins and phthalocyanines in solar photovoltaic cells


    Walter, Michael G.; Rudine, Alexander B.; Wamser, Carl C.


    This review summarizes recent advances in the use of porphyrins, phthalocyanines, and related compounds as components of solar cells, including organic molecular solar cells, polymer cells, and dye-sensitized solar cells. The recent report of a porphyrin dye that achieves 11% power conversion efficiency in a dye-sensitized solar cell indicates that these classes of compounds can be as efficient as the more commonly used ruthenium bipyridyl derivatives.

  14. Porphyrin-loaded nanoparticles for cancer theranostics (United States)

    Zhou, Yiming; Liang, Xiaolong; Dai, Zhifei


    Porphyrins have been used as pioneering theranostic agents not only for the photodynamic therapy, sonodynamic therapy and radiotherapy of cancer, but also for diagnostic fluorescence imaging, magnetic resonance imaging and photoacoustic imaging. A variety of porphyrins have been developed but very few of them have actually been employed in clinical trials due to their poor selectivity to tumorous tissue and high accumulation rates in the skin. In addition, most porphyrin molecules are hydrophobic and form aggregates in aqueous media. Nevertheless, the use of nanoparticles as porphyrin carriers shows great promise to overcome these shortcomings. Encapsulating or attaching porphyrins to nanoparticles makes them more suitable for tissue delivery because we can create materials with a conveniently specific tissue lifetime, specific targeting, immune tolerance, and hydrophilicity as well as other characteristics through rational design. In addition, various functional components (e.g. for targeting, imaging or therapeutic functions) can be easily introduced into a single nanoparticle platform for cancer theranostics. This review presents the current state of knowledge on porphyrin-loaded nanoparticles for the interwined imaging and therapy of cancer. The future trends and limitations of prophyrin-loaded nanoparticles are also outlined.

  15. Electron Transport through Porphyrin Molecular Junctions (United States)

    Zhou, Qi

    The goal of this work is to study the properties that would affect the electron transport through a porphyrin molecular junction. This work contributes to the field of electron transport in molecular junctions in the following 3 aspects. First of all, by carrying out experiments comparing the conductance of the iron (III) porphyrin (protected) and the free base porphyrin (protected), it is confirmed that the molecular energy level broadening and shifting occurs for porphyrin molecules when coupled with the metal electrodes, and this level broadening and shifting plays an important role in the electron transport through molecular junctions. Secondly, by carrying out an in-situ deprotection of the acetyl-protected free base porphyrin molecules, it is found out that the presence of acetyl groups reduces the conductance. Thirdly, by incorporating the Matrix-assisted laser desorption/ionization (MALDI) spectrum and the in-situ deprotection prior to formation of molecular junctions, it allows a more precise understanding of the molecules involved in the formation of molecular junctions, and therefore allows an accurate analysis of the conductance histogram. The molecules are prepared by self-assembly and the junctions are formed using a Scanning Tunneling Microscopy (STM) molecular break junction technique. The porphyrin molecules are characterized by MALDI in solution before self-assembly to a gold/mica substrate. The self-assembled monolayers (SAMs) of porphyrins on gold are characterized by Ultraviolet-visible (UV-Vis) reflection spectroscopy to confirm that the molecules are attached to the substrate. The SAMs are then characterized by Angle-Resolved X-ray photoelectron spectroscopy (ARXPS) to determine the thickness and the average molecular orientation of the molecular layer. The electron transport is measured by conductance-displacement (G-S) experiments under a given bias (-0.4V). The conductance value of a single molecule is identified by a statistical analysis

  16. A Convenient Synthetic Method of Metal Dendritic Porphyrins

    Institute of Scientific and Technical Information of China (English)

    Wen Bin CUI; Jie ZHOU; Lei CHEN; Xiao Bin DENG; Chun GUO


    A convenient synthetic method of metal dendritic porphyrins through the convergent synthetic strategy is described. The porphyrin core were linked with the synthetic fragments by forming ether or ester bonds to give five target compounds were prepared.

  17. A light-harvesting array of synthetic porphyrins (United States)

    Davila, Jorge; Harriman, Anthony; Milgrom, Lionel R.


    An array of five porphyrin molecules has been synthesized and used as a simple model of the light-harvesting complex found in natural photosynthesis. Efficient Förster energy transfer occurs from antenna zinc porphyrins to a central free-base porphyrin molecule. This central porphyrin retains long-lived singlet and triplet excited states that can be quenched by diffusional processes, Both electron and energy transfer quenching reactions can be observed.

  18. Characterization of vanadium compounds in selected crudes. I. Porphyrin and non-porphyrin separation

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, W.R.; Fetzer, J.C.; Brown, R.J.; Reynolds, J.G.


    The authors have applied size-exclusion chromatography (SEC-HPLC) and reversed-phase chromatography (RP-HPLC), with element specific detection, (inductively coupled and direct current plasma atomic emission spectroscopy (ICP and DCP)), to selected crude oils - Boscan, Beta, Morichal, Arabian Heavy, and Maya - and their separated fractions. By these procedures, they have further characterized both the V porphyrin and the V non-porphyrin compounds. From the SEC-HPLC-ICP profiles of the heavy crude oils they found the V compounds generally have a bimodal distribution, with maxima at approx. 800 and 9000 polystyrene equivalent (PS) molecular weight (MW). Arabian Heavy, though, had relatively few of the small V compounds. The crude oils were separated into porphyrin and non-porphyrin fractions by methanol extraction. From the SEC-HPLC-ICP profiles of the porphyrin fraction, they identified and quantitated the maximum at approx. MW 800 (PS) as being V porphyrins. The remaining V compounds are non-porphyrin. 39 references, 4 figures, 2 tables.

  19. Resonance Raman study on distorted symmetry of porphyrin in nickel octaethyl porphyrin

    Indian Academy of Sciences (India)

    S Tewari; R Das; A Chakraborty; Ramendu Bhattacharjee


    The resonance Raman (RR) spectra of nickel octaethyl porphyrin, Ni(OEP), in CH2Cl2 (solvent) at different excitations such as 514.5, 488.0, 441.6 and 406.7 nm are recorded and analysed. The results of the theory of distortion-induced RR intensity is applied to the observed spectra to determine the excited electronic state symmetry of porphyrin in Ni(OEP). It is concluded that the porphyrin molecule (D4h structure) attains a non-polar distorted structure of D2 symmetry rather than S4 symmetry in CH2Cl2 solution.

  20. Synthesis, characterization and fluorescence turn-on behavior of new porphyrin analogue: meta-benziporphodimethenes (United States)

    Sharma, Ravi Kumar; Gajanan, Lale Kiran; Mehata, Mohan Singh; Hussain, Firasat; Kumar, Anil


    New fluorescence switch-on meso-substituted free base meta-benziporphodimethenes were synthesized, characterized via acid catalyzed condensation reaction and metallated with Zn2 +. Their photophysical properties were also studied. The fluorescence spectra analysis demonstrates substituent's independent behaviour on emitting λmax. The average Stokes shift of 33 nm was observed. Crystal structure of 8 was obtained and gave expected perturbed geometry.

  1. Quantum confinement-tunable intersystem crossing and the triplet state lifetime of cationic porphyrin–CdTe quantum dot nano-assemblies

    KAUST Repository

    Ahmed, Ghada H.


    Here, we report a ground-state interaction between the positively charged cationic porphyrin and the negatively charged carboxylate groups of the thiol ligands on the surface of CdTe quantum dots (QDs), leading to the formation of a stable nanoassembly between the two components. Our time-resolved data clearly demonstrate that we can dramatically tune the intersystem crossing (ISC) and the triplet state lifetime of porphyrin by changing the size of the QDs in the nanoassembly.

  2. Porphyrin-Metalation-Mediated Tuning of Photoredox Catalytic Properties in Metal–Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jacob A.; Luo, Jian; Zhang, Xu; Chen, Yu-Sheng; Morton, Martha D.; Echeverría, Elena; Torres, Fernand E.; Zhang, Jian


    Photoredox catalytic activation of organic molecules via single-electron transfer processes has proven to be a mild and efficient synthetic methodology. However, the heavy reliance on expensive ruthenium and iridium complexes limits their applications for scale-up synthesis. To this end, photoactive metal–organic frameworks (MOFs) exhibit unique advantages as novel heterogeneous photocatalytic systems, yet their utilization toward organic transformations has been limited. Here we describe the preparation and synthetic applications of four isostructural porphyrinic MOFs, namely, UNLPF-10a, -10b, -11, and -12, which are composed of free base, InIII-, SnIVCl2-, and SnIV-porphyrin building blocks, respectively. We demonstrate that the metalation with high valent metal cations (InIII and SnIV) significantly modifies the electronic structure of porphyrin macrocycle and provides a highly oxidative photoexcited state that can undergo efficient reductive quenching processes to facilitate organic reactions. In particular, UNLPF-12 exhibits both outstanding photostability and efficient photocatalytic activities toward a range of important organic transformations including aerobic hydroxylation of arylboronic acids, amine coupling, and the Mannich reaction.

  3. Binary ionic porphyrin nanosheets: electronic and light-harvesting properties regulated by crystal structure (United States)

    Tian, Yongming; M. Beavers, Christine; Busani, Tito; Martin, Kathleen E.; Jacobsen, John L.; Mercado, Brandon Q.; Swartzentruber, Brian S.; van Swol, Frank; Medforth, Craig J.; Shelnutt, John A.


    Crystalline solids self-assembled from anionic and cationic porphyrins provide a new class of multifunctional optoelectronic micro- and nanomaterials. A 1 : 1 combination of zinc(ii) tetra(4-sulfonatophenyl)porphyrin (ZnTPPS) and tin(iv) tetra(N-methyl-4-pyridiniumyl)porphyrin (SnTNMePyP) gives porphyrin nanosheets with high aspect ratios and varying thickness. The room temperature preparation of the nanosheets has provided the first X-ray crystal structure of a cooperative binary ionic (CBI) solid. The unit cell contains one and one-half molecules of aquo-ZnTPPS4- (an electron donor) and three half molecules of dihydroxy-SnTNMePyP4+ (an electron acceptor). Charge balance in the solid is reached without any non-porphyrinic ions, as previously determined for other CBI nanomaterials by non-crystallographic means. The crystal structure reveals a complicated molecular arrangement with slipped π-π stacking only occurring in isolated dimers of one of the symmetrically unique zinc porphyrins. Consistent with the crystal structure, UV-visible J-aggregate bands indicative of exciton delocalization and extended π-π stacking are not observed. XRD measurements show that the structure of the Zn/Sn nanosheets is distinct from that of Zn/Sn four-leaf clover-like CBI solids reported previously. In contrast with the Zn/Sn clovers that do exhibit J-aggregate bands and are photoconductive, the nanosheets are not photoconductive. Even so, the nanosheets act as light-harvesting structures in an artificial photosynthesis system capable of reducing water to hydrogen but not as efficiently as the Zn/Sn clovers.Crystalline solids self-assembled from anionic and cationic porphyrins provide a new class of multifunctional optoelectronic micro- and nanomaterials. A 1 : 1 combination of zinc(ii) tetra(4-sulfonatophenyl)porphyrin (ZnTPPS) and tin(iv) tetra(N-methyl-4-pyridiniumyl)porphyrin (SnTNMePyP) gives porphyrin nanosheets with high aspect ratios and varying thickness. The room

  4. A p-quinodimethane-bridged porphyrin dimer. (United States)

    Zeng, Wangdong; Ishida, Masatoshi; Lee, Sangsu; Sung, Young Mo; Zeng, Zebing; Ni, Yong; Chi, Chunyan; Kim, Dongho; Wu, Jishan


    A p-quinodimethane (p-QDM)-bridged porphyrin dimer 1 has been prepared for the first time. An unexpected Michael addition reaction took place when we attempted to synthesize compound 1 by reaction of the cross-conjugated keto-linked porphyrin dimers 8a and 8b with alkynyl/aryl Grignard reagents. Alternatively, compound 1 could be successfully prepared by intramolecular Friedel-Crafts alkylation of the diol-linked porphyrin dimer 14 with concomitant oxidation in air. Compound 1 shows intense one-photon absorption (OPA, λ(max)=955 nm, ε=45400 M(-1) cm(-1)) and a large two-photon absorption (TPA) cross-section (σ((2))(max)=2080 GM at 1800 nm) in the near-infrared (NIR) region due to its extended π-conjugation and quinoidal character. It also exhibits a short singlet excited-state lifetime of 25 ps. The cyclic voltammogram of 1 displays multiple redox waves with a small electrochemical energy gap of 0.86 eV. The ground-state geometry, electronic structure, and optical properties of 1 have been further studied by density functional theory (DFT) calculations and compared with those of the keto-linked dimer 8b. This research has revealed that incorporation of a p-QDM unit into the porphyrin framework had a significant impact on its optical and electronic properties, leading to a novel NIR OPA and TPA chromophore.

  5. Langmuir Blodgett films of porphyrins and phthalocyanines

    CERN Document Server

    Portus, D


    Phthalocyanines and porphyrins have been studied for many years as bulk, thick and thin films. Their use in Langmuir and Langmuir-Blodgett films is governed by their peripheral substituents. These can enhance or reduce their ability to form 'quality' ultra-thin films. There are a number of potential and current applications for thin films of porphyrins and phthalocyanines, which include CD-R discs and gas-sensors. It is the latter that this PhD has focussed on. Ultra-thin films of phthalocyanines, porphyrins and a porphyrin/phthalocyanine hybrid dye were deposited onto glass microscope slides, gold-coated glass microscope slides and quartz crystals. These assemblies were then characterised using Ultraviolet-Visible spectroscopy, pressure-area isotherms, surface plasmon resonance and a quartz crystal microbalance to try and determine the nature of the molecules on the surface of the substrate. The thin films were exposed to chlorine gas and the change in their absorption spectrum and (in some cases) their surf...

  6. Fluorescence and Thermostability of Nanometer Porphyrin Trimer

    Institute of Scientific and Technical Information of China (English)


    A nanometer porphyrin trimer was firstly synthesized with 1,3-dibromopropane as a bridge-linked agent and the fluorescence property and thermostability were studied. The results show that the fluorescence property and thermostability of the trimer are different from those of monoporphyrin. The effects of the molecule structure on the optical property and the thermostability were also studied in detail.

  7. Metallic nanoshells on porphyrin-stabilized emulsions (United States)

    Wang, Haorong; Song, Yujiang; Shelnutt, John A; Medforth, Craig J


    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  8. Substituent effects of iron porphyrins: Structural, kinetic, and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xiaoquan, E-mail: [Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070 (China); Ma Junying; Sun Ruiping; Nan Mina; Meng Fanfu; Du Jie; Wang Xiaoyan; Shang Hui [Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070 (China)


    Substituent effects of iron porphyrin complexes on the structures and kinetic processes have been examined for the first time. Basing on the premise that iron porphyrin is functional analogous to heme, a series of iron porphyrin derivatives bearing different substituents at the meso positions of the corrole ring are investigated as to their electrochemistry, the relationships among the electron transfer (ET) processes, their structures, and orbital energies. The good coherence between the experiment and theory indicates that the ET rate can be accelerated when electron-donating substituents are introduced to the iron porphyrin ring. Finally, the implications of the results are discussed in the influence of stability of iron porphyrin complexes on the ability to carry molecular oxygen, which may suggest it possible to dominate the biological activity of heme by selecting the appropriate substituents to iron porphyrin ring.

  9. A pentanuclear lead(II) complex based on a strapped porphyrin with three different coordination modes. (United States)

    Le Gac, Stéphane; Furet, Eric; Roisnel, Thierry; Hijazi, Ismail; Halet, Jean-François; Boitrel, Bernard


    We have previously described Pb(II) and Bi(III) bimetallic complexes with overhanging carboxylic acid strapped porphyrins in which one metal ion is bound to the N-core ("out-of-plane", OOP), whereas the second one is bound to the strap ("hanging-atop", HAT). In such complexes, the hemidirected coordination sphere of a HAT Pb(II) cation provides sufficient space for an additional binding of a neutral ligand (e.g., DMSO). Interestingly, investigations of the HAT metal coordination mode in a single strap porphyrin show that a HAT Pb(II) can also interact via intermolecular coordination bonds, allowing the self-assembly of two bimetallic complexes. In the pentanuclear Pb(II) complex we are describing in this Article, three different coordination modes were found. The OOP Pb(II) remains inert toward the supramolecular assembling process, whereas the HAT Pb(II) cation, in addition to its intramolecular carboxylate and regular exogenous acetate groups, coordinates an additional exogenous acetate. These two acetates are shared with a third lead(II) cation featuring a holo-directed coordination sphere, from which a centro-symmetric complex is assembled. Density functional theory calculations show some electron-density pockets in the vicinity of the hemidirected HAT Pb(II) atoms, which are associated with the presence of a stereochemically active lone pair of electrons. On the basis of the comparison with other HAT Pb(II) and Bi(III) systems, the "volume" of this lone pair correlates well with the bond distance distributions and the number of the proximal oxygen atoms tethered to the post-transition metal cation. It thus follows the order 6-coordinate Bi(III) > 6-coordinate Pb(II) > 5-coordinate Pb(II).

  10. Synthesis of Novel Tailed Porphyrins with Covalently Linked Saccharide

    Institute of Scientific and Technical Information of China (English)


    The reaction of 5-(p-hydroxyphenyl)-10,15,20-(p-methoxy phenyl) porphyrin with Br(CH2)4Br produced monobromo substituted porphyrin 1. The tailed porphyrins 2-4 were synthesized by the reactions of 1 with small molecular offering biological activities such as D-glucose, D-glucuronic acid. These new compounds were confirmed by 1H NMR, IR, UV-vis and element analyses.

  11. Photophysical properties of self-aggregated porphyrin: semiconductor nanoassemblies


    Zenkevich, E.; Blaudeck, T.; Abdel-Mottaleb, M.; Cichos, F.; Shulga, A.; von Borczyskowski, C.


    Colloidal semiconductor nanocrystals from CdSe show photoluminescence quenching via titration with porphyrin derivatives. This quenching is an indication of the formation of nanoassemblies via surface attachment of pyridyl linker groups. As a consequence of the complex formation, dynamic and/or static interactions between QD and porphyrins are induced. Quenching efficiencies depend critically on sample stability, temperature, solvent, and electronic properties of the porphyrins. In order to o...

  12. Photophysical properties of self-aggregated porphyrin: semiconductor nanoassemblies

    Directory of Open Access Journals (Sweden)

    E. Zenkevich


    Full Text Available Colloidal semiconductor nanocrystals from CdSe show photoluminescence quenching via titration with porphyrin derivatives. This quenching is an indication of the formation of nanoassemblies via surface attachment of pyridyl linker groups. As a consequence of the complex formation, dynamic and/or static interactions between QD and porphyrins are induced. Quenching efficiencies depend critically on sample stability, temperature, solvent, and electronic properties of the porphyrins. In order to optimize photoinduced dynamic processes these parameters have to be under control.

  13. Study on Polarographic Absorption Wave of Soluble Porphyrin Copper Complex

    Institute of Scientific and Technical Information of China (English)

    HE; YuFeng


    The porphyrins is a kind of sensitive color-producing reagent. However, its selectivity is low. If the porphyrin is used in polarographic analysis, the selectivity and sensitivity can be improved. Copper is one of the most important trace element in human and mammalian body. The polarographic method is a kind of important method in determination of metal ion [1]. In this paper, meso-tetra (4-sulfonylphenyl) porphyrin (H2TPPS4) is used as the soluble ligand. The polarographic absorption behavior of meso-tetra (4-sulfonylphenyl) porphyrin complex with copper ion has been studied.  ……

  14. Study on Polarographic Absorption Wave of Soluble Porphyrin Copper Complex

    Institute of Scientific and Technical Information of China (English)


    @@ The porphyrins is a kind of sensitive color-producing reagent. However, its selectivity is low. If the porphyrin is used in polarographic analysis, the selectivity and sensitivity can be improved. Copper is one of the most important trace element in human and mammalian body. The polarographic method is a kind of important method in determination of metal ion [1]. In this paper, meso-tetra (4-sulfonylphenyl) porphyrin (H2TPPS4) is used as the soluble ligand. The polarographic absorption behavior of meso-tetra (4-sulfonylphenyl) porphyrin complex with copper ion has been studied.

  15. A Study of Porphyrins in Petroleum Source Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Huseby, Berit


    This thesis discusses several aspects of porphyrin geochemistry. Degradation experiments have been performed on the Messel oil shale (Eocene, Germany) to obtain information on porphyrins bound or incorporated into macromolecular structures. Thermal heating of the preextracted kerogen by hydrous pyrolysis was used to study the release of porphyrins and their temperature dependent changes during simulated diagenesis and catagenesis. Selective chemical degradation experiments were performed on the preextracted sediment to get more detailed information about porphyrins that are specifically bound to the macromolecular structures via ester bonds. From the heating experiments, in a separate study, the porphyrin nitrogen content in the generated bitumens was compared to the bulk of organic nitrogen compounds in the fraction. The bulk nitrogen contents in the generated bitumens, the water phase and the residual organic matter was recorded to establish the distribution of nitrogen between the kerogen and product phases. Porphyrins as biomarkers were examined in naturally matured Kimmeridge clay source rocks (Upper Jurassic, Norway), and the use of porphyrins as general indicators of maturity was evaluated. Underlying maturity trends in the biomarker data was investigated by Partial Least Squares analysis. Porphyrin as indicators of depositional conditions was also addressed, where the correlations between the (amounts) abundance of nickel and vanadyl porphyrins were mapped together with other descriptors that are assumed to be indicative of redox depositional conditions. 252 refs., 28 figs., 4 tabs.

  16. Theoretical study of conjugated porphyrin polymers

    DEFF Research Database (Denmark)

    Pedersen, T.G.; Lynge, T.B.; Kristensen, P.K.


    The optical gap of conjugated triply linked porphyrin chains is exceptionally low (similar to 0.5 eV). Hence, such chains are candidates for organic infrared detectors and solar cells harvesting the infrared part of the solar spectrum. However, a low exciton binding energy is required for these a......The optical gap of conjugated triply linked porphyrin chains is exceptionally low (similar to 0.5 eV). Hence, such chains are candidates for organic infrared detectors and solar cells harvesting the infrared part of the solar spectrum. However, a low exciton binding energy is required...... for these applications. From a theoretical analysis of excitons in long metalloporphyrin chains, we demonstrate that the binding energy is much lower than in usual conjugated polymers. Our calculated absorption spectra are in good agreement with measurements. (c) 2004 Elsevier B.V. All rights reserved....

  17. Past and future: porphyria and porphyrins. (United States)

    Norman, Robert A


    Porphyria is a compelling disease--disrupted enzyme pathways, heightened sensitivities, and a fascinating history tied in with tales of Dracula. This review discusses the history, pathophysiology, classification, and treatment of porphyria. It further discusses the way in which research on the etiologies of the various porphyrias has led to the development of porphyrin-based photodynamic therapy, which shows great promise in targeted therapy for a variety of serious pathologies.

  18. Lighting porphyrins and phthalocyanines for molecular photovoltaics. (United States)

    Martínez-Díaz, M Victoria; de la Torre, Gema; Torres, Tomás


    The field of organic photovoltaics (OPV) represents one of the most promising technological areas. Porphyrins and phthalocyanines are perfectly suited for their integration in light energy conversion systems. These colored macrocycles exhibit very attractive physical properties, particularly very high extinction coefficients in the visible and near IR regions, where the maximum of the solar photon flux occurs, that is necessary for efficient photon harvesting, besides a rich redox chemistry, as well as photoinduced electron transfer and semiconducting capabilities.

  19. Porphyrin and heme metabolism and the porphyrias. (United States)

    Bonkovsky, Herbert L; Guo, Jun-Tao; Hou, Weihong; Li, Ting; Narang, Tarun; Thapar, Manish


    Porphyrins and metalloporphyrins are the key pigments of life on earth as we know it, because they include chlorophyll (a magnesium-containing metalloporphyrin) and heme (iron protoporphyrin). In eukaryotes, porphyrins and heme are synthesized by a multistep pathway that involves eight enzymes. The first and rate-controlling step is the formation of delta-aminolevulinic acid (ALA) from glycine plus succinyl CoA, catalyzed by ALA synthase. Intermediate steps occur in the cytoplasm, with formation of the monopyrrole porphobilinogen and the tetrapyrroles hydroxymethylbilane and a series of porphyrinogens, which are serially decarboxylated. Heme is utilized chiefly for the formation of hemoglobin in erythrocytes, myoglobin in muscle cells, cytochromes P-450 and mitochondrial cytochromes, and other hemoproteins in hepatocytes. The rate-controlling step of heme breakdown is catalyzed by heme oxygenase (HMOX), of which there are two isoforms, called HMOX1 and HMOX2. HMOX breaks down heme to form biliverdin, carbon monoxide, and iron. The porphyrias are a group of disorders, mainly inherited, in which there are defects in normal porphyrin and heme synthesis. The cardinal clinical features are cutaneous (due to the skin-damaging effects of excess deposited porphyrins) or neurovisceral attacks of pain, sometimes with weakness, delirium, seizures, and the like (probably due mainly to neurotoxic effects of ALA). The treatment of choice for the acute hepatic porphyrias is intravenous heme therapy, which repletes a critical regulatory heme pool in hepatocytes and leads to downregulation of hepatic ALA synthase, which is a biochemical hallmark of all forms of acute porphyria in relapse.

  20. Electrochemical studies of tetraphenylporphyrin and vanadyl porphyrin

    Institute of Scientific and Technical Information of China (English)

    庄乾坤; 高小霞


    The electrochemical reductions and oxidations of tetraphenylporphyrin (TPP) and vanadyl por-phyrin (TPP-VO) were investigated in dimethylformamide at platinum,glass carbon and microdisk electrodes.A new eleetrode reaction mechanism of TPP and TPP-VO is proposed.The kinetic parameters have also been determined.In addition,the theory of molecular hybrid orbitals is used to explain the reduction and oxidation regularity of the transition metal porphyrms

  1. Quantum Chemical Investigations on Electron Transport Characteristics of Porphyrin and Metal-porphyrin

    Institute of Scientific and Technical Information of China (English)


    Recently, molecular electronics has become increasingly important. By applying the hybrid density functional theory coupled with the Green's function method, the current-voltage characteristics of the molecular junctions composed of gold-porphyrin-gold and gold-copper porphyrin-gold were investigated. The role of the metal coordination effect in organic molecular electron transport was highlighted. Although the thresholds of the bias voltage for both molecules were almost the same, approximately 0.9 V, the metal compound showed a larger increase in current because of the metal-coordination-enhanced molecule-electrode coupling in the frontier molecular orbitals.

  2. Porphyrin-Embedded Silicate Materials for Detection of Hydrocarbon Solvents (United States)


    Muller, U.; Esser, U. Hysteresis in nitrogen sorption and mecury porosimietry on mesoporous model adsorbents made of aggregated monodisperse silica...14 January 2011 Abstract: The development of porphyrin-embedded mesoporous organosilicate materials for application to the detection of volatile...and design of the mesoporous sorbent. For the porphyrin indicator, high binding affinity and strong changes in spectrophotometric character upon

  3. Cyano- and polycyanometallo-porphyrins as catalysts for alkane oxidation (United States)

    Ellis, Jr., Paul E.; Lyons, James E.


    New compositions of matter comprising cyano-substituted metal complexes of porphyrins are catalysts for the oxidation of alkanes. The metal is iron, chromium, manganese, ruthenium, copper or cobalt. The porphyrin ring has cyano groups attached thereto in meso and/or .beta.-pyrrolic positions.

  4. Photocontrol over cooperative porphyrin self-assembly with phenylazopyridine ligands. (United States)

    Hirose, Takashi; Helmich, Floris; Meijer, E W


    The cooperative self-assembly of chiral zinc porphyrins is regulated by a photoresponsive phenylazopyridine ligand. Porphyrin stacks depolymerize into dimers upon axial ligation and the strength of the coordination is regulated by its photoinduced isomerization, which shows more than 95 % conversion ratio for both photostationary states.

  5. Electrochemical metallization of self-assembled porphyrin monolayers. (United States)

    Nann, Thomas; Kielmann, Udo; Dietrich, Christoph


    Multifunctional sensor systems are becoming increasingly important in electroanalytical chemistry. Together with ongoing miniaturization there is a need for micro- and nanopatterning tools for thin electroactive layers (e.g. self-assembling monolayers). This paper documents a method for production of a micro-array of different metal-porphyrin monolayers with different sensor properties. A new method has been developed for the selective and local metallization of bare porphyrin monolayers by cathodic pulsing and sweeping. The metal-porphyrin monolayers obtained were characterized by cyclic voltammetry. It was shown that porphyrin monolayers can be metallized with manganese, iron, cobalt, and nickel by use of the new method. It is expected that all types of metal-porphyrin monolayers can be produced in the same manner.

  6. Corroles-Porphyrins: A Teamwork for Gas Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Rosamaria Capuano


    Full Text Available Porphyrins provide an excellent material for chemical sensors, and they have been used for sensing species both in air and solution. In the gas phase, the broad selectivity of porphyrins is largely dependant on molecular features, such as the metal ion complexed at the core of the aromatic ring and the peripheral substituents. Although these features have been largely exploited to design gas sensor arrays, so far, little attention has been devoted to modify the sensing properties of these macrocycles by variation of the molecular aromatic ring. In this paper, the gas sensing properties of a porphyrin analog, the corrole, are studied in comparison with those of the parent porphyrin. Results show that changes in the aromatic ring have important consequences on the sensitivity and selectivity of the sensors and that porphyrins and corroles can positively cooperate to enhance the performance of sensor arrays.

  7. Preparation and characterization of monosubstituted porphyrins immobilized on nanosilica

    Indian Academy of Sciences (India)

    Ebrahim Ahmadi; Ali Ramazani; Asemeh Mashhadi-Malekzadeh; Zahra Hamdi; Zahra Mohamadnia


    Three kinds of heteroaldehydes, -(3-triethoxysilylpropyl)-4-formyl benzamide (TPHA/SiO2), were prepared by the reaction of terephthalaldehydic acid with different silica supports such as hexagonal SBA-15, spherical SBA-15 and amorphous SiO2 for comparison purposes. Anchoring of this aldehyde to different supports allows the synthesis of mono-substituted porphyrins without the production of di-, tri- and tetra-substituted porphyrin side products. The exclusion of the aforementioned side products during the synthesis of monosubstituted porphyrins greatly reduced the complexity during purification of the product. Absorption spectrophotometry was performed on silica gel immobilizing porphyrin (CPTTP), free base tetraphenylporphyrin (H2TPP) and heteroaldehydes (TPHA/SiO2) using UV–Visible instrument and confirmed the presence of porphyrin on the structure of CPTTP.

  8. Post-synthetic modification of porphyrin-encapsulating metal-organic materials by cooperative addition of inorganic salts to enhance CO 2/CH 4 selectivity

    KAUST Repository

    Zhang, ZhenJie


    Keeping MOM: Reaction of biphenyl-3,4\\',5-tricarboxylate and Cd(NO 3) 2 in the presence of meso-tetra(N-methyl-4-pyridyl) porphine tetratosylate afforded porph@MOM-11, a microporous metal-organic material (MOM) that encapsulates cationic porphyrins and solvent in alternating open channels. Porph@MOM-11 has cation and anion binding sites that facilitate cooperative addition of inorganic salts (such as M +Cl -) in a stoichiometric fashion. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Porphyrin-magnetite nanoconjugates for biological imaging

    LENUS (Irish Health Repository)

    Nowostawska, Malgorzata


    Abstract Background The use of silica coated magnetic nanoparticles as contrast agents has resulted in the production of highly stable, non-toxic solutions that can be manipulated via an external magnetic field. As a result, the interaction of these nanocomposites with cells is of vital importance in understanding their behaviour and biocompatibility. Here we report the preparation, characterisation and potential application of new "two-in-one" magnetic fluorescent nanocomposites composed of silica-coated magnetite nanoparticles covalently linked to a porphyrin moiety. Method The experiments were performed by administering porphyrin functionalised silica-coated magnetite nanoparticles to THP-1 cells, a human acute monocytic leukaemia cell line. Cells were cultured in RPMI 1640 medium with 25 mM HEPES supplemented with heat-inactivated foetal bovine serum (FBS). Results We have synthesised, characterised and analysed in vitro, a new multimodal (magnetic and fluorescent) porphyrin magnetic nanoparticle composite (PMNC). Initial co-incubation experiments performed with THP-1 macrophage cells were promising; however the PMNC photobleached under confocal microscopy study. β-mercaptoethanol (β-ME) was employed to counteract this problem and resulted not only in enhanced fluorescence emission, but also allowed for elongated imaging and increased exposure times of the PMNC in a cellular environment. Conclusion Our experiments have demonstrated that β-ME visibly enhances the emission intensity. No deleterious effects to the cells were witnessed upon co-incubation with β-ME alone and no increases in background fluorescence were recorded. These results should present an interest for further development of in vitro biological imaging techniques.

  10. Water Dispersible and Biocompatible Porphyrin-Based Nanospheres for Biophotonics Applications: A Novel Surfactant and Polyelectrolyte-Based Fabrication Strategy for Modifying Hydrophobic Porphyrins. (United States)

    Sheng, Ning; Zong, Shenfei; Cao, Wei; Jiang, Jianzhuang; Wang, Zhuyuan; Cui, Yiping


    The hydrophobility of most porphyrin and porphyrin derivatives has limited their applications in medicine and biology. Herein, we developed a novel and general strategy for the design of porphyrin nanospheres with good biocompatibility and water dispersibility for biological applications using hydrophobic porphyrins. In order to display the generality of the method, we used two hydrophobic porphyrin isomers as starting material which have different structures confirmed by an X-ray technique. The porphyrin nanospheres were fabricated through two main steps. First, the uniform porphyrin nanospheres stabilized by surfactant were prepared by an interfacially driven microemulsion method, and then the layer-by-layer method was used for the synthesis of polyelectrolyte-coated porphyrin nanospheres to reduce the toxicity of the surfactant as well as improve the biocompatibility of the nanospheres. The newly fabricated porphyrin nanospheres were characterized by TEM techniques, the electronic absorption spectra, photoluminescence emission spectra, dynamic light scattering, and cytotoxicity examination. The resulting nanospheres demonstrated good biocompatibility, excellent water dispersibility and low toxicity. In order to show their application in biophotonics, these porphyrin nanospheres were successfully applied in targeted living cancer cell imaging. The results showed an effective method had been explored to prepare water dispersible and highly stable porphyrin nanomaterial for biophotonics applications using hydrophobic porphyrin. The approach we reported shows obvious flexibility because the surfactants and polyelectrolytes can be optionally selected in accordance with the characteristics of the hydrophobic material. This strategy will expand the applications of hydrophobic porphyrins owning excellent properties in medicine and biology.

  11. High Fluorescent Porphyrin-PAMAM-Fluorene Dendrimers. (United States)

    Garfias-Gonzalez, Karla I; Organista-Mateos, Ulises; Borja-Miranda, Andrés; Gomez-Vidales, Virginia; Hernandez-Ortega, Simon; Cortez-Maya, Sandra; Martínez-García, Marcos


    Two new classes of dendrimers bearing 8 and 32 fluorene donor groups have been synthesized. The first and second generations of these porphyrin-PAMAM-fluorene dendrimers were characterized by 1H-NMR, 13C-NMR, FTIR, UV-vis spectroscopy, elemental analyses and MALDI-TOF mass spectrometry. The UV-vis spectra showed that the individual properties of donor and acceptor moieties were preserved, indicating that the new dendrimers could be used as photosynthetic antennae. Furthermore, for fluorescent spectroscopy, these dendrimers showed good energy transfer.

  12. Porphyrinic metal-organic framework as electrochemical probe for DNA sensing via triple-helix molecular switch. (United States)

    Ling, Pinghua; Lei, Jianping; Ju, Huangxian


    An electrochemical DNA sensor was developed based on the electrocatalysis of porphyrinic metal-organic framework (MOF) and triple-helix molecular switch for signal transduction. The streptavidin functionalized zirconium-porphyrin MOF (PCN-222@SA) was prepared as signal nanoprobe via covalent method and demonstrated high electrocatalysis for O2 reduction. Due to the large steric effect, the designed nanoprobe was blocked for the interaction with the biotin labeled triple-helix immobilized on the surface of glassy carbon electrode. In the presence of target DNA, the assistant DNA in triple-helix will hybridize with target DNA, resulting in the disassembly of triple-helix molecular. Consequently, the end biotin away from the electrode was ''activated'' for easy access to the signal nanoprobe, PCN-222@SA, on the basis of biotin-streptavidin biorecognition. The introduction of signal nanoprobe to a sensor surface led to a significantly amplified electrocatalytic current towards oxygen reduction. Integrating with DNA recycling amplification of Exonuclease III, the sensitivity of the biosensor was improved significantly with detection limit of 0.29 fM. Moreover, the present method has been successfully applied to detect DNA in complex serum matrix. This porphyrinic MOF-based strategy has promising application in the determination of various analytes for signal transduction and has great potential in bioassays.

  13. Manganese(III) porphyrin-based potentiometric sensors for diclofenac assay in pharmaceutical preparations. (United States)

    Vlascici, Dana; Pruneanu, Stela; Olenic, Liliana; Pogacean, Florina; Ostafe, Vasile; Chiriac, Vlad; Pica, Elena Maria; Bolundut, Liviu Calin; Nica, Luminita; Fagadar-Cosma, Eugenia


    Two manganese(III) porphyrins: manganese(III) tetraphenylporphyrin chloride and manganese(III)-tetrakis(3-hydroxyphenyl)porphyrin chloride were tested as ionophores for the construction of new diclofenac-selective electrodes. The electroactive material was incorporated either in PVC or a sol-gel matrix. The effect of different plasticizers and additives (anionic and cationic) on the potentiometric response was studied. The best results were obtained for the PVC membrane plasticized with dioctylphtalate and having sodium tetraphenylborate as a lipophilic anionic additive incorporated. The sensor response was linear in the concentration range 3 × 10(-6) - 1 × 10(-2) M with a slope of -59.7 mV/dec diclofenac, a detection limit of 1.5 × 10(-6) M and very good selectivity coefficients. It was used for the determination of diclofenac in pharmaceutical preparations, by direct potentiometry. The results were compared with those obtained by the HPLC reference method and a good agreement was found between the two methods.

  14. Porphyrins as Theranostic Agents from Prehistoric to Modern Times

    Directory of Open Access Journals (Sweden)

    Yumiao Zhang, Jonathan F. Lovell


    Full Text Available Long before humans roamed the planet, porphyrins in blood were serving not only as indispensable oxygen carriers, but also as the bright red contrast agent that unmistakably indicates injury sites. They have proven valuable as whole body imaging modalities have emerged, with endogenous hemoglobin porphyrins being used for new approaches such as functional magnetic resonance imaging and photoacoustic imaging. With the capability for both near infrared fluorescence imaging and phototherapy, porphyrins were the first exogenous agents that were employed with intrinsic multimodal theranostic character. Porphyrins have been used as tumor-specific diagnostic fluorescence imaging agents since 1924, as positron emission agents since 1951, and as magnetic resonance (MR contrast agents since 1987. Exogenous porphyrins remain in clinical use for photodynamic therapy. Because they can chelate a wide range of metals, exogenous porphyrins have demonstrated potential for use in radiotherapy and multimodal imaging modalities. Going forward, intrinsic porphyrin biocompatibility and multimodality will keep new applications of this class of molecules at the forefront of theranostic research.

  15. A Porphyrin Based Potentiometric Sensor for Zn2+ Determination

    Directory of Open Access Journals (Sweden)

    H. Lang


    Full Text Available PVC based membranes of disodium salt of porphyrin 3,7,12,17-tetramethyl-8, 13-divinyl 2,18-porphine dipropionic acid (I as ionophore with sodium tetra phenyl borate (NaTPB as anion excluder and dibutyl phthalate (DBP, dioctyl phthalate (DOP, dibutyl butyl phosphonate (DBBP, tris(2- ethyl hexylphosphate (TEP, tri-n-butylphosphate (TBP and 1- chloronaphthalene (CN as plasticizing solvent mediators were prepared and constructed for determination of Zn(II. The PVC based membrane of (I with DBBP as plasticizer and having anion excluder, NaTPB in the ratio PVC: I: NaTPB: DBBP (150: 10: 2: 200 gave the best results in terms of working concentration range (1.3×10-5-1.0 ×10-1M with a Nernstian slope (30.0 mV/decade of activity. The useful pH range of the sensor is 3.0 –7.4, beyond which a drift in potential was observed. The response time of the sensor is 10s and the lifetime was about 2 months during which it could be used without any measurable divergence. It had good stability and reproducibility. The membrane worked satisfactorily in non-aqueous medium up to 40% (v/v non-aqueous content. The selectivity coefficient values indicate that the electrode is highly selective for Zn2+ over a number of other cations except Na+ and Cd2+. Although Na+ and Cd2+ are likely to cause some interference, they would not interfere if present at the concentrations < 1 ×10-5 and < 5 ×10-5 M, respectively. The electrode has been used as an indicator electrode to determine the end point in the potentiometric titration of Zn2+ with EDTA.

  16. Porphyrin Interactions with Wild Type and Mutant Mouse Ferrochelatase

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Gloria C.; Franco, Ricardo; Lu, Yi; Ma, Jian-Guo; Shelnutt, John A.


    Ferrochelatase (EC, the terminal enzyme of the heme biosynthetic pathway, catalyzes Fe2+ chelation into protoporphyrin IX. Resonance Raman and W-visible absorbance spectroscopes of wild type and engineered variants of murine ferrochelatase were used to examine the proposed structural mechanism for iron insertion into protoporphyrin by ferrochelatase. The recombinant variants (i.e., H207N and E287Q) are enzymes in which the conserved amino acids histidine-207 and glutamate-287 of murine ferrochelatase were substituted with asparagine and glutamine, respectively. Both of these residues are at the active site of the enzyme as deduced from the Bacillus subtilis ferrochelatase three-dimensional structure. Addition of free base or metalated porphyrins to wild type ferrochelatase and H207N variant yields a quasi 1:1 complex, possibly a monomeric protein-bound species. In contrast, the addition of porphyrin (either free base or metalated) to E287Q is sub-stoichiometric, as this variant retains bound porphyrin in the active site during isolation and purification. The specificity of porphyrin binding is confirmed by the narrowing of the structure-sensitive resonance Raman lines and the vinyl vibrational mode. Resonance Raman spectra of free base and metalated porphyrins bound to the wild type ferrochelatase indicate a nonplanar distortion of the porphyrin macrocycle, although the magnitude of the distortion cannot be determined without first defining the specific type of deformation. Significantly, the extent of the nonplanar distortion varies in the case of H207N- and E287Q-bound porphyrins. In fact, resonance Raman spectral decomposition indicates a homogeneous ruffled distortion for the nickel protoporphyrin bound to the wild type ferrochelatase, whereas both a planar and ruffled conformations are present for the H207N-bound porphyrin. Perhaps more revealing is the unusual resonance , 3 Raman spectrum of the endogenous E287Q-bound porphyrin, which has

  17. Resolution of isomeric multi-ruthenated porphyrins by travelling wave ion mobility mass spectrometry. (United States)

    Lalli, Priscila M; Iglesias, Bernardo A; Deda, Daiana K; Toma, Henrique E; de Sa, Gilberto F; Daroda, Romeu J; Araki, Koiti; Eberlin, Marcos N


    The ability of travelling wave ion mobility mass spectrometry (TWIM-MS) to resolve cationic meta/para and cis/trans isomers of mono-, di-, tri- and tetra-ruthenated supramolecular porphyrins was investigated. All meta isomers were found to be more compact than the para isomers and therefore mixtures of all isomeric pairs could be properly resolved with baseline or close to baseline peak-to-peak resolution (R(p-p)). Di-substituted cis/trans isomers were found, however, to present very similar drift times and could not be resolved. N(2) and CO(2) were tested as the drift gas, and similar α but considerably better values of R(p) and R(p-p) were always observed for CO(2).

  18. Real-time observation of ultrafast electron injection at graphene–Zn porphyrin interfaces

    KAUST Repository

    Masih, Dilshad


    We report on the ultrafast interfacial electron transfer ( ET) between zinc( II) porphyrin ( ZnTMPyP) and negatively charged graphene carboxylate ( GC) using state- of- the- art femtosecond laser spectroscopy with broadband capabilities. The steady- state interaction between GC and ZnTMPyP results in a red- shifted absorption spectrum, providing a clear indication for the binding affinity between ZnTMPyP and GC via electrostatic and p- p stacking interactions. Ultrafast transient absorption ( TA) spectra in the absence and presence of three different GC concentrations reveal ( i) the ultrafast formation of singlet excited ZnTMPyP*, which partially relaxes into a long- lived triplet state, and ( ii) ET from the singlet excited ZnTMPyP* to GC, forming ZnTMPyP + and GC , as indicated by a spectral feature at 650- 750 nm, which is attributed to a ZnTMPyP radical cation resulting from the ET process.

  19. Preparation and biodistribution of copper-67-labeled porphyrins and porphyrin-A6H immunoconjugates

    Energy Technology Data Exchange (ETDEWEB)

    Bhalgat, Mahesh K.; Roberts, Jeanette C.; Mercer-Smith, Janet A.; Knotts, Brenda D.; Vessella, Robert L.; Lavallee, David K


    The synthetic porphyrins, N-benzyl-5,10,15,20-tetrakis (4-carboxyphenyl)porphine (N-bzHTCPP) and N-4-nitrobenzyl-5-(4-carboxyphenyl)-10,15,20-tris(4-sulfophenyl)porphine (N-bzHCS{sub 3}P), represent excellent radiocopper chelating agents that may find utility in antibody-mediated diagnosis and/or therapy. N-bzHCS{sub 3}P was conjugated to an anti-renal cell carcinoma (RCC) antibody, A6H, and labeled with copper-67. {sup 67}CuCS{sub 3}P-A6H was studied for its biodistribution in human RCC xenograft-bearing nude mice, along with the radiolabeled free porphyrins. The porphyrins resulted in tumor:blood ratios in the range of 3 to 4 after 48 h. The radiolabeled antibody achieved a tumor:blood ratio of over 16 after 45 h, indicating accumulation at the desired site. However, unwanted localization also occurred in the liver and spleen, which will have to be rectified before realizing the full potential of this approach.

  20. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    Directory of Open Access Journals (Sweden)

    Sam P. de Visser


    Full Text Available In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1. This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.

  1. Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. (United States)

    Aratani, Naoki; Kim, Dongho; Osuka, Atsuhiro


    The importance of photosynthesis has driven researchers to seek ways to mimic its fundamental features in simplified systems. The absorption of a photon by light-harvesting (antenna) complexes made up of a large number of protein-embedded pigments initiates photosynthesis. Subsequently the many pigments within the antenna system shuttle that photon via an efficient excitation energy transfer (EET) until it encounters a reaction center. Since the 1995 discovery of the circularly arranged chromophoric assemblies in the crystal structure of light-harvesting antenna complex LH2 of purple bacteria Rps. Acidophila, many designs of light-harvesting antenna systems have focused on cyclic porphyrin wheels that allow for efficient EET. In this Account, we review recent research in our laboratories in the synthesis of covalently and noncovalently linked discrete cyclic porphyrin arrays as models of the photosynthetic light-harvesting antenna complexes. On the basis of the silver(I)-promoted oxidative coupling strategy, we have prepared a series of extremely long yet discrete meso-meso-linked porphyrin arrays and covalently linked large porphyrin rings. We examined the photophysical properties of these molecules using steady-state absorption, fluorescence, fluorescence lifetime, fluorescence anisotropy decay, and transient absorption measurements. Both the pump-power dependence on the femtosecond transient absorption and the transient absorption anisotropy decay profiles are directly related to the EET processes within the porphyrin rings. Within these structures, the exciton-exciton annihilation time and the polarization anisotropy rise time are well-described in terms of the Forster-type incoherent energy hopping model. In noncoordinating solvents such as CHCl(3), meso-pyridine-appended zinc(II) porphyrins and their meso-meso-linked dimers spontaneously assemble to form tetrameric porphyrin squares and porphyrin boxes, respectively. In the latter case, we have demonstrated

  2. Supramolecular Organization of Porphyrin and Phthalocyanine by Complementary Coordination

    Institute of Scientific and Technical Information of China (English)

    Yoshiaki; Kobuke; Masakuni; Fujita; Toshimasa; Sugimura; Akiharu; Satake


    1 Results We have already established a methodology of supramolecular organization of porphyrin and phthalocyanine by complementary coordination of the imidazolyl substituent to their metal centers.Since the stability constants reached a range of 1011 to 1012 M-1 in nonpolar solvents,it allowed construction of stable structures such as special pair of photosynthetic reaction center and light-harvesting antenna complex of photosynthetic bacteria.Here,we report one-dimensional array of porphyrin for the d...

  3. Tetrakis(4-tert-butylphenyl) substituted and fused quinoidal porphyrins

    KAUST Repository

    Zeng, Wangdong


    4-tert-Butylphenyl-substituted and fused quinoidal porphyrins 1 and 2 are prepared for the first time. They show (1) intense one-photon absorption in the far-red/near-infrared region, (2) enhanced two-photon absorption compared with aromatic porphyrin monomers, and (3) amphoteric redox behavior. Their geometry and electronic structure are studied by DFT calculations. This journal is © 2012 The Royal Society of Chemistry.

  4. Impact of iron porphyrin complexes when hydroprocessing algal HTL biocrude

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Jacqueline M.; Sudasinghe, Nilusha M.; Albrecht, Karl O.; Schmidt, Andrew J.; Hallen, Richard T.; Anderson, Daniel B.; Billing, Justin M.; Schaub, Tanner M.


    We apply Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for direct characterization of iron-porphyrins in hydrothermal liquefaction (HTL) biocrude oils derived from two algae: Tetraselmis sp. and cyanobacteria. The ironporphyrin compounds are shown to cause catalyst bed plugging during hydroprocessing due to iron deposition. Inductively-coupled plasma optical emission spectrometry (ICPOES) was utilized for iron quantitation in the plugged catalyst beds formed through hydroprocessing of the two HTL biocrudes and identifies an enrichment of iron in the upper five centimeters of the catalyst bed for Tetraselmis sp. (Fe=100,728 ppm) and cyanobacteria (Fe=115,450 ppm). Direct infusion FT-ICR MS analysis of the two HTL biocrudes with optimized instrument conditions facilitates rapid screening and identification of iron-porphyrins without prior chromatographic separation. With FT-ICR MS we identify 138 unique iron-porphyrin compounds in the two HTL biocrudes that are structurally similar to metal-porphyrins (e.g. Ni and V) observed in petroleum. No ironporphyrins are observed in the cyanobacteria HTL biocrude after hydroprocessing, which indicates that iron-porphyrin structures in the HTL biocrude are degraded during hydroprocessing. Hydrodemetallization reactions that occur through hydroprocessing of HTL biocrudes could be responsible for the decomposition of iron-porphyrin structures leading to metal deposition in the catalyst bed that result in catalyst deactivation and bed plugging, and must be addressed for effective upgrading of algal HTL biocrudes.

  5. Crystal fields of porphyrins and phthalocyanines (United States)

    Johnson, P. S.; Boukahil, I.; Himpsel, F. J.; Kennedy, C.; Jersett, N.; Cook, P. L.; Garcia-Lastra, J. M.


    Polarization-dependent X-ray absorption spectroscopy at the N 1s and metal 2p edges is combined with density functional and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal (Mn, Fe, Co, Ni) phthalocyanines and octaethylporphyrins. Octaethyl porphyrins are observed to lie flat on Si with native oxide, while phthalocyanines lie on edge. Strong polarization dependence is found at all edges, which facilitates a unique determination of the crystal field parameters. Crystal field values from PBE density functional calculations provide helpful starting values, which are refined by fitting atomic multiplet calculations to the data. Since the crystal field affects electron-hole separation in solar cells, the systematic set of crystal field parameters obtained here can be useful for optimizing dyes for solar cells.

  6. Heptaphyrins: Expanded porphyrins with seven heterocyclic rings

    Indian Academy of Sciences (India)

    Venkataramanarao G Anand; Simi K Pushpan; Sundararaman Venkatraman; Tavarekere K Chandrashekar


    Expanded porphyrins containing seven pyrrole/heterocyclic rings linked in a cyclic fashion are termed heptaphyrins. The number of -electrons in heptaphyrins depends on the number of meso carbon bridges used to link the heterocyclic rings, accordingly heptaphyrins with 28-electrons and 30 -electrons are reported to date. Both condensation reactions of the appropriate precursors and acid-catalysed oxidative coupling reactions have been utilized to synthesise the heptaphyrins. The 30 heptaphyrins exhibit rich structural diversity where some of the heterocyclic rings in the macrocycle undergo a 180° ring flipping. An overview of the synthetic methods employed for the synthesis of heptaphyrins, their spectroscopic properties, structural behaviour and aromatic properties are highlighted in this paper.

  7. Helical chirality induction of expanded porphyrin analogues

    Indian Academy of Sciences (India)

    Jun-Ichiro Setsune


    Expanded porphyrin analogues with unique figure-eight conformation were prepared by way of useful pyrrole intermediates such as bis(azafulvene)s and 2-borylpyrrole. Supramolecular chirogenesis of cyclooctapyrrole O1 with 32-cycloconjugation was successfully applied to determine absolute configuration of chiral carboxylic acids. Dinuclear CuII complex of cyclooctapyrrole O2 with interrupted -conjugation was resolved by HPLC into enantiomers and their helical handedness was determined by theoretical simulation of their CD spectral pattern. Enantioselective induction of helicity in the metal helicate formation in the presence of a chiral promoter was demonstrated by using ()-(+)-1-(1-phenyl)ethylamine that favoured , helicity. Dinuclear CoII complexes of cyclotetrapyrroletetrapyridine O3 were found to be substitution labile and pick up amino acid anions in water. Those amino acid complexes of O3Co2 were rendered to adopt a particular unidirectional helical conformation preferentially depending on the ligated amino acid anion.

  8. Mechanism and efficiency of cell death of type II photosensitizers: effect of zinc chelation. (United States)

    Pavani, Christiane; Iamamoto, Yassuko; Baptista, Maurício S


    A series of meso-substituted tetra-cationic porphyrins, which have methyl and octyl substituents, was studied in order to understand the effect of zinc chelation and photosensitizer subcellular localization in the mechanism of cell death. Zinc chelation does not change the photophysical properties of the photosensitizers (all molecules studied are type II photosensitizers) but affects considerably the interaction of the porphyrins with membranes, reducing mitochondrial accumulation. The total amount of intracellular reactive species induced by treating cells with photosensitizer and light is similar for zinc-chelated and free-base porphyrins that have the same alkyl substituent. Zinc-chelated porphyrins, which are poorly accumulated in mitochondria, show higher efficiency of cell death with features of apoptosis (higher MTT response compared with trypan blue staining, specific acridine orange/ethidium bromide staining, loss of mitochondrial transmembrane potential, stronger cytochrome c release and larger sub-G1 cell population), whereas nonchelated porphyrins, which are considerably more concentrated in mitochondria, triggered mainly necrotic cell death. We hypothesized that zinc-chelation protects the photoinduced properties of the porphyrins in the mitochondrial environment.

  9. Noncovalent functionalization of single-walled carbon nanotubes with porphyrins

    Energy Technology Data Exchange (ETDEWEB)

    Bassiouk, María; Basiuk, Vladimir A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Basiuk, Elena V., E-mail: [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Álvarez-Zauco, Edgar [Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Martínez-Herrera, Melchor [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Rojas-Aguilar, Aaron [Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360 México D.F. (Mexico); Puente-Lee, Iván [Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico)


    The covalent and noncovalent interactions of porphyrins and related tetraazamacrocyclic compounds with single-walled carbon nanotubes (SWNTs) is a subject of increasing research effort, directed toward the design of novel hybrid nanomaterials combining unique electronic and optical properties of both molecular species. In this report, we used different experimental techniques as well as molecular mechanics (MM) calculations to analyze the adsorption of meso-tetraphenylporphine (or 5,10,15,20-tetraphenyl-21H,23H-porphine, H{sub 2}TPP) and its complexes with Ni(II) and Co(II) (NiTPP and CoTPP, respectively), as well as hemin (a natural porphyrin), onto the surface of SWNTs. Altogether, the results suggested that all four porphyrin species noncovalently interact with SWNTs, forming hybrid nanomaterials. Nevertheless, of all four porphyrin species, the strongest interaction with SWNTs occurs in the case of CoTPP, which is able to intercalate and considerably disperse SWNT bundles, and therefore absorb onto the surface of individual SWNTs. In contrast, NiTPP, CoTPP and hemin, due to a weaker interaction, are unable to do so and therefore are only capable to adsorb onto the surface of SWNT bundles. According to the scanning tunneling microscopy (STM) imaging and MM results, the adsorption of CoTPP onto SWNT sidewalls results in the formation of porphyrin arrays in the shape of long-period interacting helixes with variable periodicity, possibly due to different diameters and chiralities of SWNTs present in the samples. Since the remaining porphyrin species were found to adsorb onto the surface of SWNT bundles, the precise geometry of the corresponding porphyrin/SWNT complexes is difficult to characterize.

  10. Synthesis and Characterization of One-dimensional and Two-Dimensional Porphyrin Polymers* (Ⅰ)

    Institute of Scientific and Technical Information of China (English)


    @@Porphyrin polymers are of interest in relation to conductive materials[1, 2], catalysts for photosynthetic charge separation[3], or the fundamental features in biological systems[4]. There have been many versatile studies about them[5,6]. The one-dimensional “Shish Kebab” porphyrin polymers synthesized with a new method different from those reported and Schiff base porphyrin polymers with two-dimensional nano-structure have provided a new field of study. The present paper covers highly ordered porphyrin polymers.

  11. Synthesis of β,β'-Porphyrin Dimer Linked by Vinylene

    Institute of Scientific and Technical Information of China (English)

    Jiang, Xuliang; Li, Panli; Wang, Yucheng; Shen, Qi; Tao, Jingchao; Shi, Weimin


    Synthesis of a novel β,β'-tetraalkylporphyrin dimer linked by vinylene was discribed, in which the dimer was readily prepared from a porphyrin-derived Wittig reagent and a mono-formylated porphyrin via Wittig reaction. No π-conjugation between the two porphyrin rings was obserbed, and the dimer was in trans form.

  12. Synthesis of Metal Porphyrins Tailed with Salicylic Acid and their Interaction with Bovine Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    Tao JIA; Kai WANG; Yi Mei ZHAO; Zao Ying LI


    A synthetic method of porphyrins tailed with salicylic substituents is described. Reaction of bromoalkoxyphenyl porphyrin 1 with salicylic acid gave porphyrins 2~5. These new compounds were confirmed by 1H NMR, IR, UV-vis, MS and elemental analysis, and observed their interaction with bovine serum albumin (BSA) in fluorescence spectrum.

  13. Morphological characterization of metal porphyrin tailed with aspirin interacting with bovine serum albumin congeries

    Institute of Scientific and Technical Information of China (English)


    The porphyrins tailed with acetylsalicylic acid (ASA) and Zn (or Cu) complexes were prepared. Meanwhile, morphological images, such as shape and size of porphyrins-BSA congeries were observed by using atomic force microscopy (AFM). The result showed the interaction of BSA and prepared porphyrins led to obvious change of shape and size of BSA congeries.

  14. Synthesis and Purification of Porphyrin-Schiff Base Using Ethyl Vanillin

    Institute of Scientific and Technical Information of China (English)


    A novel porphyrin-Schiff base was synthesized via the condensation of 5-(4-aminophenyl)-10,15,20-triphenylporphyrin and ethyl vanillin. After analyzing the level of purification of the porphyrin-Schiff base, it was successfully separated. This porphyrin-Schiff base was characterized by using UV-Vis, IR, 1 H NMR and MS spectroscopy.

  15. Porphyrin and bodipy molecular rotors as microviscometers (United States)

    Kimball, Joseph Daniel, III

    Viscosity, a fluid's internal resistance to flow and resist molecular diffusion, is a fundamental property of fluid media. Determining the bulk viscosity of a fluid has been easy to relatively simple to accomplish for many years, yet in the recent decade there has been a focus on techniques to measure a fluid's microviscosity. Microviscosity differs from bulk viscosity such that microviscosity is the friction experienced by a single particle interacting with its micron-sized local environment. Macroscopic methods to evaluate the viscosity are well established, but methods to determine viscosity on the microscale level remains unclear. This work determines the viability of three molecular rotors designed as probes for microviscosity in organic media, ionic liquids, and in the cellular microenvironment. Understanding microviscosity is important because it one of the main properties of any fluid and thus has an effect on any diffusion related processes. A variety of mass and signal transport phenomena as well as intermolecular interactions are often governed by viscosity. Molecular rotors are a subclass of intramolecular charge transfer fluorophores which form a lower energy twisted state. This results in a charge separated species which is highly sensitive to its surrounding microenviroment's viscosity as high viscosity limits its ability to form this twisted state. Once excited, there are deactivation routes which the excited fluorophore can undergo: radiative and non-radiative. Both were studied in this work. In the case of a radiative decay, as seen in porphyrin dimer, the energy is released in the form of a photon and is seen as a shifted band in the emission structure. The conformation of the porphyrin dimer was found to be influenced differently by ionic liquids as compared to molecular solvents, indicating the microheterogenous nature of ionic liquids play a role in the conformation. For non-radiative decays, BODIPY dyads and triads were investigated. The

  16. A New Composition for Co(II-porphyrin-based Membranes Used in Thiocyanate-selective Electrodes

    Directory of Open Access Journals (Sweden)

    Otilia Bizerea-Spiridon


    Full Text Available In the present paper, the potentiometric response characteristics of ametalloporphyrin-based electrode in o-nitrophenyloctylether (o-NPOE plasticizedpolyvinyl chloride (PVC membrane are presented for a set of monovalent anions. Asmembrane ionophore, 5,10,15,20-tetrakis-(4-methoxyphenyl-porphyrin-Co(II(CoTMeOPP was used. To establish the optimum composition of the membrane, differentmolar percents of cationic derivative (mol.% relative to ionophore were used. Electrodesformulated with membranes containing 1 wt.% ionophore, 66 wt.% o-NPOE, 33 wt.% PVC(plasticizer: PVC = 2:1 and the lipophilic cationic derivative (35 mol% are shown toexhibit high selectivity for thiocyanate with a near-Nernstian slope in the workingconcentration range of 1.0×10−1–1.0×10−5 M, with a good stability in time.

  17. Porphyrin-anthraquinone dyads: Synthesis, spectroscopy and photochemistry

    Indian Academy of Sciences (India)

    P Prashanth Kumar; G Premaladha; Bhaskar G Maiya


    Free-base (H2L2), copper(II) (CuL2) and zinc(II) (ZnL2) derivatives of a porphyrin-anthraquinone conjugate with an azomethine group separating the two photoactive subunits have been synthesized and characterized by mass (FAB), IR, UV-visible, 1H NMR and ESR spectroscopic techniques and also by cyclic and differential pulse voltammetric methods. Analysis of the data reveals that the spectral and electrochemical properties of the individual chromophoric entities are retained and that there is no specific - interaction between the porphyrin and anthraquinone subunits. H2L2 and ZnL2 are shown to exhibit substantial quenching (88-97%) of the porphyrin fluorescence compared to their corresponding monomeric analogues. An intramolecular electron-transfer mechanism is proposed for the substantial decrease in fluorescence in both derivatives. The fluorescence decays of porphyrin-anthraquinone conjugates are fit to 2/3 exponentials and indicate that multiple orientations of the porphyrin and anthraquinone groups contribute to the electron-transfer event. These results are in good agreement with steady-state fluorescence results. From the time-resolved fluorescence data, the electron-transfer rate constants are calculated, indicating ET values in the range of 1.1 × 109 to 9.9 × 1010 s-1 that are dependent upon the solvent.

  18. Photoinduced intermolecular and intramolecular actions between eosin and porphyrin

    Institute of Scientific and Technical Information of China (English)

    何建军; 张曼华; 沈涛


    Two dyads of eosin and porphyrin linked with a semi-rigid (-CH2phCH2-) or flexible (-(CH2)4-) bridge and their reference model compounds were synthesized and characterized The intermoleccular interaction and intramolecular photoinduced singlet energy transfer and electron transfer were studied by their absorp tion spectra,fluorescence emission,excitation spectra and fluorescence lifetime The model compounds,ethyl ester of eosm (EoEt) and porphyrin (PorEt),could form complexes in the ground state.When the eosin moieties in dyads were excited,they could transfer some singlet energy to the porphyrins; in the meantime,they could also ndsce electron transfer between two chromophores.Exciting the porphyrin moieties in dyads could induce electron transfer from eosin moieties to porphyrin moieties.The efficiencies (EnT,ET) and rate constants (kEnT,kET) were related to the polarity of solvents and mutual orientation of the two chromophores in dyads.

  19. Synthesis, characterisation and in vitro investigation of photodynamic activity of 5-(4-octadecanamidophenyl)-10,15,20-tris(N-methylpyridinium-3-yl)porphyrin trichloride on HeLa cells using low light fluence rate. (United States)

    Malatesti, Nela; Harej, Anja; Kraljević Pavelić, Sandra; Lončarić, Martin; Zorc, Hrvoje; Wittine, Karlo; Andjelkovic, Uros; Josic, Djuro


    Photodynamic therapy (PDT) is a treatment that aims to kill cancer cells by reactive oxygen species, mainly singlet oxygen, produced through light activation of a photosensitiser (PS). Amongst photosensitisers that attracted the most attention in the last decade are cationic and amphiphilic molecules based on porphyrin, chlorin and phthalocyanine structures. Our aim was to join this search for more optimal balance of the lipophilic and hydrophilic moieties in a PS. A new amphiphilic porphyrin, 5-(4-octadecanamidophenyl)-10,15,20-tris(N-methylpyridinium-3-yl)porphyrin trichloride (5) was synthesised and characterised by (1)H NMR, UV-vis and fluorescence spectroscopy, and by MALDI-TOF/TOF spectrometry. In vitro photodynamic activity of 5 was evaluated on HeLa cell lines and compared to the activity of the hydrophilic 5-(4-acetamidophenyl)-10,15,20-tris(N-methylpyridinium-3-yl)porphyrin trichloride (7). Low fluence rate (2mWcm(-2)) of red light (643nm) was used for the activation, and both porphyrins showed a drug dose-response as well as a light dose-response relationship, but the amphiphilic porphyrin was presented with significantly lower IC50 values. The obtained IC50 values for 5 were 1.4μM at 15min irradiation time and 0.7μM when the time of irradiation was 30min, while for 7 these values were 37 and 6 times higher, respectively. These results confirm the importance of the lipophilic component in a PS and show a potential for 5 to be used as a PS in PDT applications.

  20. Interfacial organization of achiral porphyrins via unidirectional compression: a general method for chiroptical porphyrin assemblies of selected chirality. (United States)

    Zhang, Xiao; Wang, Yanping; Chen, Penglei; Rong, Yunlong; Liu, Minghua


    Porphyrins are considered to be important scaffolds bridging supramolecular chemistry and chiral chemistry, where chirality selection via physical effects such as directional stirring and spin-coating has aroused particular interest. Nevertheless, these protocols could only work on a limited number of achiral porphyrins. It still remains a formidable challenge to pave a general avenue for the construction of chiral assemblies using achiral porphyrins. By means of a unique Langmuir-Schaefer (LS) technique of a unidirectional compression configuration, we herein have demonstrated that a series of achiral porphyrins could be facilely organized to form chiral interfacial assemblies of controlled supramolecular chirality. It has been disclosed that such a fascinating chirality selection scenario is intimately related to the direction of the compression-generated vortex-like flow, while the compression speed, one of the most significant parameters of the Langmuir technique, contributes less to this issue. With regard to a surface-pressure-dependent chirality selection phenomenon, it is suggested that the directional vortex-like flow generated by lateral compression might play a role in promoting the preferential growth of chiral assemblies showing an enhanced yet controlled CD signal. Our protocol might be, to some extent, a general method for achieving chiral porphyrin assemblies of controlled chirality.

  1. Synthesis of Lactosylated Piperazinyl Porphyrins and Their Biological Activity

    Institute of Scientific and Technical Information of China (English)

    LI,He-Ping; CAO,Zhong; XIAO,Hua-Wu


    The aim of this work is to synthesize of a new family of lactosylated piperazinly porphyrins, in which the galactoside piperazine moieties are linked to the tetra- and mono-phenyl rings of tetraphenylporphyrin (TPP).5,10,15,20-Tetrakis[4-(4-lactobionylpiperazin-1-yl)phenyl]porphyrin (TLPP) and 5-mono[4-(4-lactobionylpiperazin-1-yl)phenyl]-10,15,20-triphenylporphyrin (MLPP) have been synthesized. A detailed 1H NMR study gave their complete structural elucidation. The UV-Visible, mass spectra and elemental analysis are also presented. The biological activity on cancer cells and the pharmacokinetics have also been evaluated, showing a better biological activity, a very high liver to skin ratio and short retention time in tissues. It was suggested that such novel lactosylated piperazinly porphyrins, as potential hepatocyte-selective targeting drugs, exhibit a promising activity in photodynamic therapy (PDT).

  2. A structural study of porphyrins interacting with a metallic surface

    Energy Technology Data Exchange (ETDEWEB)

    Brede, Jens; Hoffmann, Germar; Wiesendanger, Roland [Institut of Applied Physics, University of Hamburg (Germany)


    A porphyrin is a heterocyclic macrocycle derived from pyrrolic subunits interconnected via methine bridges. Porphyrins are an ubiquitous class of naturally occurring compounds with important biological representatives including hemes and chlorophylls. We prepared various tetra phenyl prophyrins (TPP) with different central metal (M) ions on metallic substrates. The molecular systems were investigated by scanning tunnelling microscopy and spectroscopy. The experiments were performed in a home-built low temperature STM working at 6 K in ultra-high vacuum conditions. Upon deposition of porphyrins on metal substrates the aromatic core of the molecule may undergo a structural deformation depending on the details of the molecule-substrate interaction. We will discuss the structural conformation of TPPs and their electronic properties.

  3. Interaction of water-soluble bridged porphyrin with DNA

    Institute of Scientific and Technical Information of China (English)

    Kai WANG; Zhi ZHANG; Qianni GUO; Xiaoping BAO; Zaoying LI


    A water-soluble porphyrin dimer (Por Dimer) containing eight positive charges, bridged by 4,4'-dicarboxy-2,2'-bipyridine, has been synthesized. With Meso-tetrakis(N-methyl-pyridium-4-yl)porphyrin (H2TMPyP) as the reference compound, the water-sol-uble porphyrin dimer was investigated for its inter-action with DNA by absorption, fluorescence, and circular dichroism (CD) spectroscopy. The apparent affinity binding constant (Kapp= 1.2×106) of Por Dimer binding to CT DNA was measured by a com-petition method with ethidium bromide (EB) (that of H2TMPyP was 6.9×106). The cleavage ability of Por Dimer to pBR322 plasmid DNA was studied by gel electrophoresis. The results suggest that the binding modes of Por Dimer were complex and involve both intercalation and outside binding.

  4. Out-of-Plane Coordinated Porphyrin Nanotubes with Enhanced Singlet Oxygen Generation Efficiency (United States)

    Zhao, Qiang; Wang, Yao; Xu, Yanshuang; Yan, Yun; Huang, Jianbin


    A supramolecular porphyrin nanotube displaying J-aggregation feature was constructed by out-of-plane coordinated bismuth-porphyrin. Significantly, compared to traditional J-aggregated porphyrin suffering from fluorescence and singlet oxygen quenching, the nanotube exhibits excellent bio-imaging ability and enhanced production efficiency of singlet oxygen. The out-of-plane structure of bismuth to porphyrin makes the aggregation an appropriate material for theranostics. Furthermore, it is also a potential radio-therapeutic drug owing to the presence of radio-active bismuth. Thus, the self-assembly of out-of-plane coordinated porphyrin can be a facile approach toward effective therapy of tumors and other diseases.

  5. Anticancer therapeutic potential of Mn porphyrin/ascorbate system. (United States)

    Tovmasyan, Artak; Sampaio, Romulo S; Boss, Mary-Keara; Bueno-Janice, Jacqueline C; Bader, Bader H; Thomas, Milini; Reboucas, Julio S; Orr, Michael; Chandler, Joshua D; Go, Young-Mi; Jones, Dean P; Venkatraman, Talaignair N; Haberle, Sinisa; Kyui, Natalia; Lascola, Christopher D; Dewhirst, Mark W; Spasojevic, Ivan; Benov, Ludmil; Batinic-Haberle, Ines


    Ascorbate (Asc) as a single agent suppressed growth of several tumor cell lines in a mouse model. It has been tested in a Phase I Clinical Trial on pancreatic cancer patients where it exhibited no toxicity to normal tissue yet was of only marginal efficacy. The mechanism of its anticancer effect was attributed to the production of tumoricidal hydrogen peroxide (H2O2) during ascorbate oxidation catalyzed by endogenous metalloproteins. The amount of H2O2 could be maximized with exogenous catalyst that has optimized properties for such function and is localized within tumor. Herein we studied 14 Mn porphyrins (MnPs) which differ vastly with regards to their redox properties, charge, size/bulkiness and lipophilicity. Such properties affect the in vitro and in vivo ability of MnPs (i) to catalyze ascorbate oxidation resulting in the production of H2O2; (ii) to subsequently employ H2O2 in the catalysis of signaling proteins oxidations affecting cellular survival pathways; and (iii) to accumulate at site(s) of interest. The metal-centered reduction potential of MnPs studied, E1/2 of Mn(III)P/Mn(II)P redox couple, ranged from -200 to +350 mV vs NHE. Anionic and cationic, hydrophilic and lipophilic as well as short- and long-chained and bulky compounds were explored. Their ability to catalyze ascorbate oxidation, and in turn cytotoxic H2O2 production, was explored via spectrophotometric and electrochemical means. Bell-shape structure-activity relationship (SAR) was found between the initial rate for the catalysis of ascorbate oxidation, vo(Asc)ox and E1/2, identifying cationic Mn(III) N-substituted pyridylporphyrins with E1/2>0 mV vs NHE as efficient catalysts for ascorbate oxidation. The anticancer potential of MnPs/Asc system was subsequently tested in cellular (human MCF-7, MDA-MB-231 and mouse 4T1) and animal models of breast cancer. At the concentrations where ascorbate (1mM) and MnPs (1 or 5 µM) alone did not trigger any alteration in cell viability, combined

  6. Photoinduced triplet-state electron transfer of platinum porphyrin: A one-step direct method for sensing iodide with an unprecedented detection limit

    KAUST Repository

    Masih, Dilshad


    Here, we report for the first time a one-step direct method for sensing halides in aqueous solution using phosphorescence quenching of platinum-cationic porphyrin. This method offers an easy, rapid, environmentally friendly, ultra-sensitive (with a previously unattained detection limit of 1 × 10-12 M) and economical method for the determination of iodide. To fully understand the reaction mechanism responsible for the phosphorescence quenching process, we have employed cutting-edge time-resolved laser spectroscopy with broadband capabilities. This journal is © The Royal Society of Chemistry 2015.

  7. Photoinduced triplet-state electron transfer of platinum porphyrin: a one-step direct method for sensing iodide with an unprecedented detection limit

    KAUST Repository

    Masih, Dilshad


    Here, we report for the first time a one-step direct method for sensing halides in aqueous solution using phosphorescence quenching of platinum-cationic porphyrin. This method offers an easy, rapid, environmentally friendly, ultra-sensitive (with a previously unattained detection limit of 1 × 10−12 M) and economical method for the determination of iodide. To fully understand the reaction mechanism responsible for the phosphorescence quenching process, we have employed cutting-edge time-resolved laser spectroscopy with broadband capabilities.

  8. Nonlinear optical properties of manganese porphyrin-incorporated PVC film

    Directory of Open Access Journals (Sweden)

    Jeong-Hyon Ha


    Full Text Available We measured thermally originated solid phase nonlinear optical properties of manganese porphyrin-incorporated PVC polymer film using CW low-power Z-scan and optical power limiting methods. The nonlinear refractive index (n2 of this porphyrin film is estimated to have a negative value of 7.2 ⅹ10-5 cm2/W at 632.8 nm and to be larger than that of ZnTPP in the Nafion film. The photodegradation effect common in the solution phase appears to be minor in this solid phase system. The large nonlinear effect is thought to limit the optical power due to the aperture effect.

  9. Synthesis and photocurrent response of porphyrin-containing conjugated polymers

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jinling; LI Binsong; BO Zhishan


    Porphyrin-containing conjugated polymers with fluorene or carbazole as spacer groups were prepared by Sonogashira cross-coupling reactions. The polymers were of high molecular weight and the flexible alkyl chains on fluorene or carbazole units made the conjugated polymers soluble in common organic solvents, such as THF and methylene chloride. The polymers could form high quality durable films from solution casting. Their optical and photocurrent responsive properties were investigated. It was found that the photocurrent response was directly proportional to the content of porphyrin. The incorporation of carbazole units into the polymer chains also gave positive contribution to the photocurrent generation in some extent.

  10. Molecular nanostamp based on one-dimensional porphyrin polymers. (United States)

    Kanaizuka, Katsuhiko; Izumi, Atsushi; Ishizaki, Manabu; Kon, Hiroki; Togashi, Takanari; Miyake, Ryosuke; Ishida, Takao; Tamura, Ryo; Haga, Masa-aki; Moritani, Youji; Sakamoto, Masatomi; Kurihara, Masato


    Surface design with unique functional molecules by a convenient one-pot treatment is an attractive project for the creation of smart molecular devices. We have employed a silane coupling reaction of porphyrin derivatives that form one-dimensional polymer wires on substrates. Our simple one-pot treatment of a substrate with porphyrin has successfully achieved the construction of nanoscale bamboo shoot structures. The nanoscale bamboo shoots on the substrates were characterized by atomic force microscopy (AFM), UV-vis spectra, and X-ray diffraction (XRD) measurements. The uneven and rigid nanoscale structure has been used as a stamp for constructing bamboo shoot structures of fullerene.

  11. Third-Order Optical Nonlinearity in Novel Porphyrin Dimers

    Institute of Scientific and Technical Information of China (English)

    PEI Song-Hao; ZHAO Da-Peng; ZHANG Wei; ZHENG Wen-Qi; WANG Xing-Qiao; PENG Wei-Xian; SHI Guang; SONG Ying-Lin


    @@ We investigate the third-order optical nonlinearities in four novel porphyrin dimers (directs A to I)) and a monomeric porphyrin H2 CPTPP measured by using the single-beam z-scan technique with a pulsed Q-switched Nd:YAG nanosecond laser at 532nm.All the samples show strong excited state absorption (ESA) and high value of X(3) in the ns domain at this wavelength.We perform a comparison between dimer A and its monomer H2 CPTPP in their third-order optical nonlinearity, and discuss the relationships between the values of X(3) and the different bridging groups for all the dimers.

  12. Micropatterning of porphyrin nanotubes thin film using focused laser writing. (United States)

    Gupta, Jyotsana; Lim, Xiaodai; Sow, Chorng-Haur; Vijayan, C


    We report an effective process to create micropatterns on a thin film of porphyrin nanotubes PNTs on Si substrate using focused laser beam. The optical properties of the newly synthesized porphyrin nanotubes are investigated and micropatterning is demonstrated using laser fabrication, an increasingly important tool in various fields of research. We made use of this laser cutting method to create interesting and useful two-dimensional patterned structures. The shapes and sizes of the structures created can be controlled by varying the power of the laser, angle of incident of the focused laser beam, the relative speed with which the laser beam traverse through the film and the magnification of objective lens used.

  13. Photoinduced conductivity of a porphyrin-gold composite nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Kilina, Svletana [Los Alamos National Laboratory; Balatsky, Alexander [Los Alamos National Laboratory; Kilin, Dmitri S [UNIV OF FL; Prezhdo, Oleg [UNIV OF WASHINGTON; Tsemekhman, Kiril [NON LANL


    Negatively charged phosphine groups on the backbone of DNA are known to attract gold nanoclusters from a colloid, assembling the clusters at fixed intervals. Bridging these intervals with porphyrin-dye linkers forms an infinite conducting chain, a quantum wire whose carrier mobility can be enhanced by photoexcitation. The resulting nanoassembly can be used as a gate: a wire with a controllable conductivity. The electronic structure of the porphyrin-gold wire is studied here by density functional theory, and the conductivity of the system is determined as a function of the photoexcitation energy. Photoexcitations of the dye are found to enhance the wire conductivity by orders of magnitude.

  14. Time resolved structural dynamics of butadiyne-linked porphyrin dimers. (United States)

    Camargo, Franco V A; Hall, Christopher R; Anderson, Harry L; Meech, Stephen R; Heisler, Ismael A


    In this work, the timescales and mechanisms associated with the structural dynamics of butadiyne-linked porphyrin dimers are investigated through time resolved narrowband pump/broadband probe transient absorption spectroscopy. Our results confirm previous findings that the broadening is partly due to a distribution of structures with different (dihedral) angular conformations. Comparison of measurements with excitations on the red and blue sides of the Q-band unravel the ground and excited state conformational re-equilibration timescales. Further comparison to a planarized dimer, through the addition of a ligand, provides conclusive evidence for the twisting motion performed by the porphyrin dimer in solution.

  15. Time resolved structural dynamics of butadiyne-linked porphyrin dimers

    Directory of Open Access Journals (Sweden)

    Franco V. A. Camargo


    Full Text Available In this work, the timescales and mechanisms associated with the structural dynamics of butadiyne-linked porphyrin dimers are investigated through time resolved narrowband pump/broadband probe transient absorption spectroscopy. Our results confirm previous findings that the broadening is partly due to a distribution of structures with different (dihedral angular conformations. Comparison of measurements with excitations on the red and blue sides of the Q-band unravel the ground and excited state conformational re-equilibration timescales. Further comparison to a planarized dimer, through the addition of a ligand, provides conclusive evidence for the twisting motion performed by the porphyrin dimer in solution.

  16. Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells. (United States)

    Hayashi, Hironobu; Higashino, Tomohiro; Kinjo, Yuriko; Fujimori, Yamato; Kurotobi, Kei; Chabera, Pavel; Sundström, Villy; Isoda, Seiji; Imahori, Hiroshi


    Memory effects in self-assembled monolayers (SAMs) of zinc porphyrin carboxylic acid on TiO2 electrodes have been demonstrated for the first time by evaluating the photovoltaic and electron transfer properties of porphyrin-sensitized solar cells prepared by using different immersion solvents sequentially. The structure of the SAM of the porphyrin on the TiO2 was maintained even after treating the porphyrin monolayer with different neat immersion solvents (memory effect), whereas it was altered by treatment with solutions containing different porphyrins (inverse memory effect). Infrared spectroscopy shows that the porphyrins in the SAM on the TiO2 could be exchanged with the same or analogous porphyrin, leading to a change in the structure of the porphyrin SAM. The memory and inverse memory effects are well correlated with a change in porphyrin geometry, mainly the tilt angle of the porphyrin along the long molecular axis from the surface normal on the TiO2, as well as with kinetics of electron transfer between the porphyrin and TiO2. Such a new structure-function relationship for DSSCs will be very useful for the rational design and optimization of photoelectrochemical and photovoltaic properties of molecular assemblies on semiconductor surfaces.

  17. Dye linked conjugated homopolymers: using conjugated polymer electroluminescence to optically pump porphyrin-dye emission

    DEFF Research Database (Denmark)

    Nielsen, K.T.; Spanggaard, H.; Krebs, Frederik C


    . Electroluminescent devices of the homopolymer itself and of the zinc-porphyrin containing polymer were prepared and the nature of the electroluminescence was characterized. The homopolymer segments were found to optically pump the emission of the zinc-porphyrin dye moities. The homopolymer exhibits blue......Zinc-porphyrin dye molecules were incorporated into the backbone of a conjugated polymer material by a method, which allowed for the incorporation of only one zinc-porphyrin dye molecule into the backbone of each conjugated polymer molecule. The electronic properties of the homopolymer were......-green emission and the zinc-porphyrin linked homopolymers emit near-infrared/infrared light. This was demonstrated to be due to electroluminescence pumping of the zinc-porphyrin moieties that were covalently linked to homopolymer material. When only one zinc-porphyrin dye was incorporated into the backbone...

  18. Observation of vanadyl porphyrins and sulfur-containing vanadyl porphyrins in a petroleum asphaltene by atmospheric pressure photonionization Fourier transform ion cyclotron resonance mass spectrometry. (United States)

    Qian, Kuangnan; Mennito, Anthony S; Edwards, Kathleen E; Ferrughelli, Dave T


    Vanadyl (VO) porphyrins and sulfur-containing vanadyl (VOS) porphyrins of a wide carbon number range (C(26) to C(52)) and Z-number range (-28 to -54) were detected and identified in a petroleum asphaltene by atmospheric pressure photonionization (APPI) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). APPI provides soft ionization of asphaltene molecules (including VO and VOS porphyrins), generating primarily molecular ions (M(+.)). The ultra-high mass resolving power (m/Delta m(FWHM) approximately 500 K) of FTICR-MS enabled resolution and positive identification of elemental formulae for the entire family of VO and VOS porphyrins in a complicated asphaltene matrix. Deocophylerythro-etioporphyrin (DPEP) is found to be the most prevalent structure, followed by etioporphyrins (etio)- and rhodo (benzo)-DPEP. The characteristic Z-distribution of VO porphyrins suggests benzene and naphthene increment in the growth of porphyrin ring structures. Bimodal carbon number distributions of VO porphyrins suggest possible different origins of low and high molecular weight species. To our knowledge, the observation of VOS porphyrins in a petroleum product has not previously been reported. The work is also the first direct identification of the entire vanadyl porphyrin family by ultra-high resolution mass spectrometry without chromatographic separation or demetallation.

  19. 21 CFR 862.1595 - Porphyrins test system. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Porphyrins test system. 862.1595 Section 862.1595 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... metabolism), and other diseases characterized by alterations in the heme pathway. (b) Classification. Class...

  20. Porphyrin Induced Laser Deactivation of Trypsinogen-Trypsin Conversion (United States)

    Perido, Joanna; Brancaleon, Lorenzo


    Pancreatitis is caused by the inflammation of the pancreas, where the digestive enzyme trypsin is activated from the precursor enzyme trypsinogen while still in the pancreas. The presence of trypsin in the pancreas causes auto-activation of trypsinogen, resulting in greater inflammation and auto-digestion of the pancreas. In severe cases, this cascade effect can lead to organ failure, diabetes, and pancreatic cancer. Our hypothesis is that if trypsinogen is prevented from auto-activating into trypsin, then this cascade can be stopped. We propose to do this by inducing conformational changes in trypsinogen when bound to a photoactive porphyrin dye. Porphyrins are comprised of four linked heterocyclic groups forming a flat ring, and bind well with proteins such as trypsinogen. In this study we used spectroscopic techniques to probe the binding of meso-tetrakis (4-sulfonatephenyl) porphyrin (TSPP) to trypsinogen in vitro, as a preliminary step to then prompt and characterize conformational changes of trypsinogen through irradiation. If conformational changes are detected the trypsinogen will be tested for trypsin inactivation. This investigation may provide promising initial results to the possible use of porphyrins as an inhibitor of the self-activation of trypsinogen into trypsin, and a potential inhibitor of pancreatitis. MARC*U-STAR.

  1. A method for determining the nitrogen isotopic composition of porphyrins. (United States)

    Higgins, Meytal B; Robinson, Rebecca S; Casciotti, Karen L; McIlvin, Matthew R; Pearson, Ann


    We describe a new method for analysis of the nitrogen isotopic composition of sedimentary porphyrins. This method involves separation and purification of geoporphyrins from sediment samples using liquid chromatography and HPLC, oxidation of the nitrogen within porphyrin-enriched fractions using a two-step process, and isotopic analysis of the resulting nitrate using the denitrifier method. By analysis of these degradation products of chlorophylls, we are able to measure an isotopic signature that reflects the nitrogen utilized by primary producers. The high sensitivity of the denitrifier method allows measurement of small samples that contain low concentrations of porphyrins. Extraction of only 50 nmol of nitrogen (nmol N) allows the following five analyses to be made (each on approximately 10 nmol N): nitrogen concentration, an assessment of potential contamination by nonporphyrin N, and three replicate isotopic measurements. The measured values of delta15N have an average analytical precision of +/-0.5 per thousand (1sigma) and an average contribution from Rayleigh fractionation of 0.7 per thousand from incomplete oxidation of porphyrin N to nitrate. The overall method will enable high-resolution records of delta15N values to be obtained for geological and ecological applications.

  2. An expeditious synthesis of tailed tren-capped porphyrins. (United States)

    Even, Pascale; Ruzié, Christian; Ricard, David; Boitrel, Bernard


    [structure: see text] A one-pot two-step versatile synthesis of tailed tren-capped porphyrins has been achieved. The two resulting ligands demonstrate that this expeditious method can be applied to various axial bases to obtain highly functionalized macromolecules attractive for heme modeling purposes. Dioxygen binding of the pyridine-tailed iron complex is reported as a direct application.

  3. Solvent effects on photophysical properties of copper and zinc porphyrins

    Institute of Scientific and Technical Information of China (English)

    LI Ye


    The photophysics of Zn(tetraphenylporphyrin,TPP), Zn(tetra-2,4,6-trimethylphenyl porphyrin, TMP), Zn (tetra-(o-dichlorophenyl) porphyrin, TPPCI8), Cu(tetraphenylporphyrin,TPP), Cu(tetra-2,4,6-trimethyl-phenyl porphyrin,TMP), and Cu(tetra-(o-dichlorophenyl) porphyrin, TPPCI8,TPPCI8) in several solvents have been investigated on steady state and time-resolved spectroscopy. The Cu(TPPCI8) is normal and shows no evidence of CT transition in the visible or near UV regions in nonpolar solvent. However,Cu(TPPCI8)shows a blue shift in the absorption spectrum and intramolecular CT bands at absorption spectra in polar solvent, which shows a fluorescence maximum emission at 650 nm and 8.4 ns lifetime.The reason can be attributed to two points. Firstly, the increase of solvent polarity can enlarge outer reorganisational energy, which is favorable to reduce the activation free energy of charger-transfer transition based on Marcus theory of electron transfer. Moreover, the internal heavy-atom effect on Cu(TPPCI8) is encouraging to stabilize the 2T1 state also, which increases the possibility of population to CT band from 2T1 state. This result is in accord with an earlier estimate of a 10 ns lifetime and CT absorption at 640 nm bands for the CT state of Cu (Ⅱ) octethylporphyrins. Other possible reasons arousing unusual fluorescence like H-bonding, axial ligands, molecular aggregation are excluded.

  4. Preparation and characterization of free-standing pure porphyrin nanoparticles

    Indian Academy of Sciences (India)

    Arun Kumar Perepogu; Prakriti Ranjan Bangal


    Preparation and characterization of absolutely pure and stable nanoparticles of 5,10,15,20-meso-tetrakis phenyl porphyrin (TPP) and catalytically repute 5,10,15,20-meso-tetrakis pentaflurophenyl porphyrin (H2F20TPP) by improved ‘reprecipitation method’ is described. The innovation of this modified `reprecipitation method’ lies on the judicial selection of organic solvent and amount of porphyrin solution to be injected in the aqueous media. Exactly similar process produces relatively small nanoparticles for TPP than that of H2F20TPP while the stability of the H2F20TPP nanoparticles is bit higher than nanoparticles of TPP. Absorption and emission spectra reveal that the formation of nanoparticles for both the cases is induced by J- and H-type aggregation. DFT calculations predict the optimized geometries and frontier molecular orbital, which favours the strength of face-to-face interaction with neighbour molecules to be more facile for TPP than that of H2F20TPP helping the latter to form bigger and relatively more stable and free-standing nanoparticles. The use of no other compounds except dichloromethane, a highly volatile organic solvent and respective porphyrins give absolutely pure nanoparticles. This improved method will lead to produce organic nanoparticles of -conjugated systems easily and efficiently.

  5. Absorption Complex between Porphyrin and Phenothiazine in Reverse Micelles

    Institute of Scientific and Technical Information of China (English)


    The interaction between amphiphilic porphyrin and phenothiazine in AOT/isooctane/ water reverse micelle was investigated by UV-Vis spectra. A new absorption complex between the two species is formed in such circumstances, which is ascribed to the enrichment of the components by the reverse micelle. The fluorescence quenching of CHTTP by PTH becomes more efficient after the formation of the absorption complex.

  6. Tunneling electron induced luminescence from porphyrin molecules on monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Feng; Kuang, Yanmin; Yu, Yunjie; Liao, Yuan; Zhang, Yao; Zhang, Yang; Dong, Zhenchao, E-mail:


    Using epitaxially grown graphene on Ru(0001) as a decoupling layer, we investigate the evolution of tunneling electron induced luminescence from different number of layers of porphyrin molecules. Light emission spectra and photon maps, acquired via a combined optical setup with scanning tunneling microscopy (STM), indicate that the electronic decoupling effect of a monolayer (ML) graphene alone is still insufficient for generating molecule-specific emission from both the 1st- and 2nd-layer porphyrin molecules. Nevertheless, interestingly, the plasmonic emission is enhanced for the 1st-layer but suppressed for the 2nd-layer in comparison with the plasmonic emission on the monolayer graphene. Intrinsic intramolecular molecular fluorescence occurs at the 3rd-layer porphyrin. Such molecular thickness is about two MLs thinner than previous reports where molecules were adsorbed directly on metals. These observations suggest that the monolayer graphene does weaken the interaction between molecule and metal substrate and contribute to the reduction of nonradiative decay rates. - Highlights: • Showing molecularly resolved photon maps of graphene and porphyrins on it. • Revealing the influence of spacer thickness on molecular electroluminescence. • Graphene does weaken the interaction between molecules and metal substrate.

  7. Cyclic porphyrin dimers as hosts for coordinating ligands

    Indian Academy of Sciences (India)

    G Vaijayanthimala; V Krishnan; S K Mandal


    Bicovalently linked tetraphenylporphyrins bearing dioxypentane groups at the opposite (transoid, H4A) and adjacent (cisoid, H4B) aryl groups have been synthesised. Protonation of the free-base porphyrins leads to fully protonated species H8A4+/H8A4+ accompanied by expansion of cavity size of the bisporphyrins. The electrochemical redox studies of these porphyrins and their Zinc(II) derivatives revealed that the first ring oxidation proceeds through a two-electron process while the second ring oxidation occurs at two distinct one-electron steps indicating unsymmetrical charge distribution in the oxidized intermediate. The axial ligation properties of the Zinc(Il) derivatives of H4A/H4B with DABCO and PMDA investigated by spectroscopic and single crystal X-ray diffraction studies showed predominant existence of 1 : I complex. The Zn2A.DABCO complex assumes an interesting eclipsed structure wherein DABCO is located inside the cavity between the two porphyrin planes with Zn-N distances at 2.08 and 2.22 Å. The Zn atoms are pulled into the cavity due to coordination towards nitrogen atoms of DABCO and deviate from the mean porphyrin plane by 0.35 Å. The electrochemical redox potentials of the axially ligated metal derivatives are found to be sensitive function of the relative coordinating ability of the ligands and the conformation of the hosts.

  8. Synthesis of metallic nanoshells on porphyrin-stabilized emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haorong (Albuquerque, NM); Song, Yujiang (Albuquerque, NM); Shelnutt, John A. (Tijeras, NM); Medforth, Craig J. (Winters, CA)


    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  9. A More Efficient Synthetic Route to Perylene-porphyrin Arrays

    Institute of Scientific and Technical Information of China (English)

    Xin Guo YANG; Jing Zhi SUN; Mang WANG; Hong Zheng CHEN


    We present an efficient synthetic route towards two kinds of perylene-porphyrin arrays. Starting from 5, 10, 15, 20-meso-tetraphenylporphyrin, two novel 9a and 9b were designed and synthesized with 40.3% and 35.1% yield, respectively.

  10. Porphyrin involvement in redshift fluorescence in dentin decay (United States)

    Slimani, A.; Panayotov, I.; Levallois, B.; Cloitre, T.; Gergely, C.; Bec, N.; Larroque, C.; Tassery, H.; Cuisinier, F.


    The aim of this study was to evaluate the porphyrin involvement in the red fluorescence observed in dental caries with Soprolife® light-induced fluorescence camera in treatments mode (SOPRO, ACTEON Group, La Ciotat, France) and Vistacam® camera (DÜRR DENTAL AG, Bietigheim-Bissingen, Germany). The International Caries Detection and Assessment System (ICDAS) was used to rand the samples. Human teeth cross-sections, ranked from ICDAS score 0 to 6, were examined by epi-fluorescence microscopy and Confocal Raman microscopy. Comparable studies were done with Protoporphyrin IX, Porphyrin I and Pentosidine solutions. An RGB analysis of Soprolife® images was performed using ImageJ Software (1.46r, National Institutes of Health, USA). Fluorescence spectroscopy and MicroRaman spectroscopy revealed the presence of Protoporphyrin IX, in carious enamel, dentin and dental plaque. However, the presence of porphyrin I and pentosidine cannot be excluded. The results indicated that not only porphyrin were implicated in the red fluorescence, Advanced Glygation Endproducts (AGEs) of the Maillard reaction also contributed to this phenomenon.

  11. Highly fluorescent peptide nanoribbon impregnated with Sn-porphyrin as a potent DNA sensor. (United States)

    Parayil, Sreenivasan Koliyat; Lee, Jooran; Yoon, Minjoong


    Highly fluorescent and thermo-stable peptide nanoribbons (PNRs) were fabricated by solvothermal self-assembly of a single peptide (D,D-diphenyl alanine peptides) with Sn-porphyrin (trans-dihydroxo[5,10,15,20-tetrakis(p-tolyl)porphyrinato] Sn(IV) (SnTTP(OH)2)). The structural characterization of the as-prepared nanoribbons was performed by transmitting electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), FT-IR and Raman spectroscopy, indicating that the lipophilic Sn-porphyrins are impregnated into the porous surface formed in the process of nanoribbon formation through intermolecular hydrogen bonding of the peptide main chains. Consequently the Sn-porphyrin-impregnated peptide nanoribbons (Sn-porphyrin-PNRs) exhibited typical UV-visible absorption spectrum of the monomer porphyrin with a red shifted Q-band, and their fluorescence quantum yield was observed to be enhanced compared to that of free Sn-porphyrin. Interestingly the fluorescence intensity and lifetimes of Sn-porphyrin-PNRs were selectively affected upon interaction with nucleotide base sequences of DNA while those of free Sn-porphyrins were not affected by binding with any of the DNA studied, indicating that DNA-induced changes in the fluorescence properties of Sn-porphyrin-PNRs are due to interaction between DNA and the PNR scaffold. These results imply that Sn-porphyrin-PNR will be useful as a potent fluorescent protein analogue and as a biocompatible DNA sensor.

  12. The effects of urea, guanidinium chloride and sorbitol on porphyrin aggregation: Molecular dynamics simulation

    Indian Academy of Sciences (India)

    Maryam Ghadamgahi; Davood Ajloo


    This paper compares the inhibition effect of porphyrin aggregation in the presence of urea, guanidinium chloride (Gdn) and sorbitol by molecular dynamics simulation. It demonstrates that porphyrin aggregation increases in sorbitol, but decreases towards addition of urea and Gdn. It shows that urea, Gdn and sorbitol can have a large effect — positive or negative, depending on the concentration — on the aggregation of the porphyrin. The effect of urea, Gdn and sorbitol on porphyrin aggregation has been inferred from the effect of these solutes on the hydration layer of porphyrin. It appears that the Gdn is more suitable than urea for decreasing the hydration layer of porphyrin while several osmolites like sorbitol are known to increase hydration layer and thus might stabilize the porphyrin aggregation. Results of radial distribution function (RDF), distributed atoms or molecules around target species, indicated that the increase and exclusion of solvent around porphyrin by osmolytes and Gdn would affect significantly on porphyrin aggregation. There was a sizeable difference in potency between the Gdn and urea, with the urea being less potent to decrease hydration layer and porphyrin aggregation.

  13. Homozygous acute intermittent porphyria in a 7-year-old boy with massive excretions of porphyrins and porphyrin precursors.

    NARCIS (Netherlands)

    Hessels, J.; Voortman, G.; Wagen, A. van der; Elzen, C. van der; Scheffer, H.; Zuijderhoudt, F.M.


    A 7-year-old boy demonstrating hepatosplenomegaly, mild anaemia, mild mental retardation, yellow-brown teeth and dark red urine had excessively elevated levels of urinary delta-aminolevulinic acid, porphobilinogen and uroporphyrin. Furthermore hepta-, hexa-, penta- and copro(I)porphyrins were highly

  14. Comparison of maturity based on steroid and vanadyl porphyrin parameters: A new vanadyl porphyrin maturity parameter for higher maturities (United States)

    Sundararaman, Padmanabhan; Moldowan, J. Michael


    Correlations are demonstrated between steroid maturity parameters and the porphyrin maturity parameter (PMP) which is based on the ratio of specific vanadyl porphyrins C 28E /(C 28E + C 32D) measured by HPLC. Measurements from a global selection of > 100 rock extracts and oils show that PMP parallels changes in the C 29-sterane 20S/(20S + 20R) and tri/(tri + mono) aromatic steroid ratios, and that all three parameters appear to attain their maximum values at similar maturity levels. The triaromatic steroid side chain cracking parameter, TA I/(I + II), reaches approximately 20% of its maximum value when PMP has reached 100%. These results suggest that PMP is effective in the early to peak portion of the oil window. A new parameter, PMP-2, based on changes in the relative concentrations of two peaks in the HPLC fingerprint (vanadyl "etio" porphyrins), appears effective in assessing the maturity of source rocks beyond peak oil generation. In combination with PMP this parameter extends the effective range of vanadyl porphyrins parameters to higher maturities as demonstrated by a suite of oils from the Oriente Basin, Ecuador, South America.

  15. The Role of Porphyrin-Free-Base in the Electronic Structures and Related Properties of N-Fused Carbazole-Zinc Porphyrin Dye Sensitizers

    Directory of Open Access Journals (Sweden)

    Xing-Yu Li


    Full Text Available Dye sensitizers can significantly affect power conversion efficiency of dye-sensitized solar cells (DSSCs. Porphyrin-based dyes are promising sensitizers due to their performances in DSSCs. Here, based upon a N-fused carbazole-zinc porphyrin-free-base porphyrin triad containing an ethynyl-linkage (coded as DTBC, the novel porphyrin dyes named DTBC-MP and DTBC-TP were designed by varying the porphyrin-free-base units in the π conjugation of DTBC in order to study the effect of porphyrin-free-base in the modification of electronic structures and related properties. The calculated results indicate that, the extension of the conjugate bridge with the porphyrin-free-base unit results in elevation of the highest occupied molecular orbital (HOMO energies, decrease of the lowest unoccupied molecular orbital (LUMO energies, reduction of the HOMO-LUMO gap, red-shift of the absorption bands, and enhancement of the absorbance. The free energy changes demonstrate that introducing more porphyrin-free-base units in the conjugate bridge induces a faster rate of electron injection. The transition properties and molecular orbital characters suggest that the different transition properties might lead to a different electron injection mechanism. In terms of electronic structure, absorption spectra, light harvesting capability, and free energy changes, the designed DTBC-TP is a promising candidate dye sensitizer for DSSCs.

  16. A New Approach to Non-Coordinating Anions: Lewis Acid Enhancement of Porphyrin Metal Centers in a Zwitterionic Metal$-$Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jacob A. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry; Petersen, Brenna M. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry; Kormos, Attila [Hungarian Academy of Sciences, Budapest (Hungary); Echeverría, Elena [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Physics and Astronomy; Chen, Yu-Sheng [Univ. of Chicago, Argonne, IL (United States). ChemMatCARS, Center for Advanced Radiation Sources; Zhang, Jian [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry


    Here, we describe a new strategy to generate non-coordinating anions using zwitterionic metal–organic frameworks (MOFs). By assembly of anionic inorganic secondary building blocks (SBUs) ([In(CO2)4]$-$) with cationic metalloporphyrin-based organic linkers, we prepared zwitterionic MOFs in which the complete internal charge separation effectively prevents the potential binding of the counteranion to the cationic metal center. We demonstrate the enhanced Lewis acidity of MnIII- and FeIII-porphyrins in the zwitterionic MOFs in three representative electrocyclization reactions: [2 + 1] cycloisomerization of enynes, [3 + 2] cycloaddition of aziridines and alkenes, and [4 + 2] hetero-Diels–Alder cycloaddition of aldehydes with dienes. Lastly, this work paves a new way to design functional MOFs for tunable chemical catalysis.

  17. An investigation on fluorescence quenching of certain porphyrins by colloidal CdS

    Energy Technology Data Exchange (ETDEWEB)

    Asha Jhonsi, M.; Kathiravan, A. [School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India); Renganathan, R., E-mail: [School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India)


    Certain porphyrin derivatives namely meso-tetraphenylporphyrin (TPP), meso-tetrakis(4-carboxyphenyl)porphyrin (TCPP), meso-tetrakis(4-sulfonatophenyl)porphyrin (TSPP) were examined as sensitizers for colloidal CdS. The interaction of these porphyrins and colloidal CdS were studied by absorption, infrared, steady state and time resolved fluorescence spectroscopy and transient absorption techniques. The apparent association constants (K{sub app}) resulting from adsorption of porphyrins on CdS surface were calculated from both absorption and fluorescence studies and they agree well. Using all the spectroscopic measurements we confirmed that the interaction between porphyrins and colloidal CdS occurs through ground state complex formation and the quenching follows static mechanism.

  18. Porphyrin-Based Dye-Sensitized Solar Cells (DSSCs): a Review. (United States)

    Birel, Özgül; Nadeem, Said; Duman, Hakan


    The current review aims to collect short information about photovoltaic performance and structure of porphyrin-based sensitizers used in dye-sensitized solar cells (DSSC). Sensitizer is the key component of the DSSC device. Structure of sensitizer is important to achieve high photovoltaic performance. Porphyrin derivatives are suitable for DSSC applications due to their thermal, electronic and photovoltaic properties. It describes some electrochemical and spectral properties as well as thestructure of porphyrin dyes used in dye based-solar cells.

  19. Convenient Approach to Access Octa-Glycosylated Porphyrins via “Click Chemistry”

    Directory of Open Access Journals (Sweden)

    Misako Okada


    Full Text Available Easy, quantitative, and one-pot introduction of eight β-lactoside-modules onto a porphyrin-core was achieved through Cu+-catalyzed chemoselective coupling (click chemistry between a porphyrin carrying eight alkyne-terminals and β-lactosyl azides. The obtained porphyrin-based glycocluster shows not only good water-solubility but also strong/specific lectin-affinity.

  20. Effect of hypoxia on porphyrin metabolism in bone marrow mesenchymal stem cells. (United States)

    Poleshko, A G; Lobanok, E S; Volotovskii, I D


    Under hypoxic conditions, aminolevulinic acid-induced accumulation of porphyrin pigments and increase in heme content was observed in bone marrow mesenchymal stem cells. The expression of transferrin receptor CD71 responsible for Fe(2+) transport into the cell was also enhanced. Blockade of porphyrin-transporting protein ABCG2 with fumitremorgin C under conditions of normoxia and hypoxia induced accumulation of porphyrin pigments; in hypoxia, these changes were more pronounced.

  1. Stepwise transformation of the molecular building blocks in a porphyrin-encapsulating metal-organic material

    KAUST Repository

    Zhang, ZhenJie


    When immersed in solutions containing Cu(II) cations, the microporous metal-organic material P11 ([Cd4(BPT)4]·[Cd(C 44H36N8)(S)]·[S], BPT = biphenyl-3,4′,5-tricarboxylate) undergoes a transformation of its [Cd 2(COO)6]2- molecular building blocks (MBBs) into novel tetranuclear [Cu4X2(COO)6(S) 2] MBBs to form P11-Cu. The transformation occurs in single-crystal to single-crystal fashion, and its stepwise mechanism was studied by varying the Cd2+/Cu2+ ratio of the solution in which crystals of P11 were immersed. P11-16/1 (Cd in framework retained, Cd in encapsulated porphyrins exchanged) and other intermediate phases were thereby isolated and structurally characterized. P11-16/1 and P11-Cu retain the microporosity of P11, and the relatively larger MBBs in P11-Cu permit a 20% unit cell expansion and afford a higher surface area and a larger pore size. © 2013 American Chemical Society.

  2. Manganese(III Porphyrin-based Potentiometric Sensors for Diclofenac Assay in Pharmaceutical Preparations

    Directory of Open Access Journals (Sweden)

    Eugenia Fagadar-Cosma


    Full Text Available Two manganese(III porphyrins: manganese(III tetraphenylporphyrin chloride and manganese(III-tetrakis(3-hydroxyphenylporphyrin chloride were tested as ionophores for the construction of new diclofenac−selective electrodes. The electroactive material was incorporated either in PVC or a sol−gel matrix. The effect of different plasticizers and additives (anionic and cationic on the potentiometric response was studied. The best results were obtained for the PVC membrane plasticized with dioctylphtalate and having sodium tetraphenylborate as a lipophilic anionic additive incorporated. The sensor response was linear in the concentration range 3 × 10−6 – 1 × 10−2 M with a slope of −59.7 mV/dec diclofenac, a detection limit of 1.5 × 10−6 M and very good selectivity coefficients. It was used for the determination of diclofenac in pharmaceutical preparations, by direct potentiometry. The results were compared with those obtained by the HPLC reference method and a good agreement was found between the two methods.

  3. Template-directed synthesis of flexible porphyrin nanocage and nanorings via one-step olefin metathesis. (United States)

    Zhu, Bin; Chen, Huanxin; Lin, Wei; Ye, Yang; Wu, Jing; Li, Shijun


    We describe the fabrication of a suite of flexible porphyrin cages and nanorings from a simple tetraalkene-derived zinc porphyrin monomer via a highly efficient template-directed strategy. The zinc porphyrin monomers were preorganized together by coordination with N atoms of multidentate ligands. Subsequent one-step olefin metathesis furnished a bisporphyrin cage, a triporphyrin nanoring, and a hexaporphyrin nanoring. In the case of the hexaporphyrin nanoring, 24 terminal olefins from six porphyrin monomers reacted with each other to form 12 new double bonds, delivering the final product. The triporphyrin and hexaporphyrin nanorings were further employed as hosts to encapsulate C60 and C70.

  4. Protonation of 5, 10, 15, 20-Tetra(4-hydroxyphenyl)-porphyrin in SDS Micellar Solution

    Institute of Scientific and Technical Information of China (English)

    Xiao Hong ZHAO; Yun Hong ZHANG


    An amphiphilic porphyrin, 5, 10, 15, 20-tetra(4-hydroxyphenyl)-porphyrin (P) was solubilized in SDS micellar solutions. By taking advantage of protonation property of pyridine groups of amphiphilic porphyrin and the UV-Vis spectral sensitivity of Soret band and Q bands to the microenvironment of the porphyrin moiety, two-step protonation was studied in detail by means of UV-Vis spectroscopy. The free base, monocation and dication were described in detail in SDS micellar solution. The possibility of microphase transition was proposed to relate to the observation of two isosbestic points.

  5. Synthesis and Characterization of One-dimensional and Two-Dimensional Porphyrin Polymers* (

    Institute of Scientific and Technical Information of China (English)

    LI; Xiang-qing


    Porphyrin polymers are of interest in relation to conductive materials[1, 2], catalysts for  photosynthetic charge separation[3], or the fundamental features in biological systems[4].There have been many versatile studies about them[5,6]. The one-dimensional “Shish Kebab”porphyrin polymers synthesized with a new method different from those reported and Schiff base porphyrin polymers with two-dimensional nano-structure have provided a new field of study. The present paper covers highly ordered porphyrin polymers.……

  6. Synthesis and anion binding properties of porphyrins and related compounds

    KAUST Repository

    Figueira, Flávio


    Over the last two decades the preparation of pyrrole-based receptors for anion recognition has attracted considerable attention. In this regard porphyrins, phthalocyanines and expanded porphyrins have been used as strong and selective receptors while the combination of those with different techniques and materials can boost their applicability in different applications as chemosensors and extracting systems. Improvements in the field, including the synthesis of this kind of compounds, can contribute to the development of efficient, cheap, and easy-to-prepare anion receptors. Extensive efforts have been made to improve the affinity and selectivity of these compounds and the continuous expansion of related research makes this chemistry even more promising. In this review, we summarize the most recent developments in anion binding studies while outlining the strategies that may be used to synthesize and functionalize these type of macrocycles. © 2016 World Scientific Publishing Company.

  7. Spatially resolved micro-photoluminescence imaging of porphyrin single crystals (United States)

    Marin, Dawn M.; Castaneda, Jose; Kaushal, Meesha; Kaouk, Ghallia; Jones, Daniel S.; Walter, Michael G.


    We describe the collection of both time-resolved and steady-state micro-photoluminescence data from solution-grown single crystals of 5,15-bis(4-carbomethoxyphenyl)porphyrin (BCM2PP). Linking molecular orientation and structure with excited-state dynamics is crucial for engineering efficient organic solar cells, light-emitting diodes, and related molecular electronics. Photoluminescence features of single porphyrin crystals were imaged using a laser scanning confocal microscope equipped with time-correlated single photon counting (TCSPC). We show enhanced exciton lifetimes (τs1 = 2.6 ns) and stronger steady-state emission in crystalline BCM2PP samples relative to semicrystalline thin films (τs1 = 1.8 ns).

  8. Synthesis of Diazepine-fused Porphyrinoids and Annulated Porphyrin Arrays




    PUBLISHED Porphyrins with exocyclic rings allow for significant modulation of the photochemical properties of the macrocycle via modulation of the aromatic system through electronic and conformational effects. Here we sought to generate such porphyrinoids via a stepwise strategy involving two cycloaddition steps, the first improving the synthesis of a relatively unstable dehydropurpurin intermediate which ring opens to form a key 1,5-diketone species. A library of a new clas...

  9. Synthesis of Polymer-Bonded Quaternary Ammonium Type Metal Porphyrins

    Institute of Scientific and Technical Information of China (English)


    The reaction of pyrrole with 4-hydroxybenzaldehyde and 4-pyridinecarboxaldehyde afforded new porphyrin ligand 1.Treatment of 1 with copper(Ⅱ) acetate, cobalt (Ⅱ) acetate gave complexes 2-3 respectively.2 and 3 reacted with Merrifield's peptide resin produced 4 and 5.Complexes 4 and 5 reacted with methyl iodide respectively gave 6-7.The new compounds 1-7 have been identified by 1H NMR, IR, MS and UV-visible spectra, elemental analysis and AES.

  10. Porphyrin-based Nanostructure-Dependent Photodynamic and Photothermal Therapies (United States)

    Jin, Cheng S.

    This thesis presents the investigation of nanostructure-dependent phototherapy. We reviewed the liposomal structures for delivery of photosensitizers, and introduced a novel class of phototransducing liposomes called "porphysomes". Porphysomes are self-assembled from high packing density of pyropheophorbide alpha-conjugated phospholipids, resulting in extreme self-quenching of porphyrin fluorescence and comparable optical absorption to gold nanoparticles for high photothermal efficiency. We demonstrated this self-assembly of porphyrin-lipid conjugates converts a singlet oxygen generating mechanism (photodynamic therapy PDT activity) of porphyrin to photothermal mechanism (photothermal therapy PTT activity). The efficacy of porphysome-enhanced PTT was then evaluated on two pre-clinical animal models. We validated porphysome-enabled focal PTT to treat orthotopic prostate cancer using MRI-guided focal laser placement to closely mimic the current clinic procedure. Furthermore, porphysome-enabled fluorescence-guided transbronchial PTT of lung cancer was demonstrated in rabbit orthotopic lung cancer models, which led to the development of an ultra-minimally invasive therapy for early-stage peripheral lung cancer. On the other hand, the nanostructure-mediated conversion of PDT to PTT can be switched back by nanoparticle dissociation. By incorporating folate-conjugated phospholipids into the formulation, porphysomes were internalized into cells rapidly via folate receptor-mediated endocytosis and resulted in efficient disruption of nanostructures, which turned back on the photodynamic activity of densely packed porphyrins, making a closed loop of conversion between PDT and PTT. The multimodal imaging and therapeutic features of porphysome make it ideal for future personalized cancer treatments.

  11. Antibacterial effect of cationic porphyrazines and anionic phthalocyanine and their interaction with plasmid DNA (United States)

    Hassani, Leila; Hakimian, Fatemeh; Safaei, Elham; Fazeli, Zahra


    Resistance to antibiotics is a public health issue and identification of new antibacterial agents is one of the most important goals of pharmacological research. Among the novel developed antibacterial agents, porphyrin complexes and their derivatives are ideal candidates for use in medical applications. Phthalocyanines differ from porphyrins by having nitrogen atoms link the individual pyrrol units. The aza analogues of the phthalocyanines (azaPcs) such as tetramethylmetalloporphyrazines are heterocyclic Pc analogues. In this investigation, interaction of an anionic phthalocyanine (Cu(PcTs)) and two cationic tetrapyridinoporphyrazines including [Cu(2,3-tmtppa)]4+ and [Cu(3,4-tmtppa)]4+ complexes with plasmid DNA was studied using spectroscopic and gel electrophoresis methods. In addition, antibacterial effect of the complexes against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria was investigated using dilution test method. The results indicated that both porphyrazines have significant antibacterial properties, but Cu(PcTs) has weak antibacterial effect. Compairing the binding of the phthalocyanine and the porphyrazines to DNA demonstrated that the interaction of cationic porphyrazines is stronger than the anionic phthalocyanine remarkably. The extent of hypochromicity and red shift of absorption spectra indicated preferential intercalation of the two porphyrazine into the base pairs of DNA helix. Gel electrophoresis result implied Cu(2,3-tmtppa) and Cu(3,4-tmtppa) are able to perform cleavage of the plasmid DNA. Consequently, DNA binding and cleavage might be one of the antibacterial mechanisms of the complexes.

  12. Syntheses and Properties of Lanthanide Hydroxy-meso-tetra(p-chlorophenyl)porphyrin Complexes

    Institute of Scientific and Technical Information of China (English)

    YU Miao; YU Lian-xiang; JIAN Wen-ping; YANG Wen-sheng; LIU Guo-fa


    @@ Introduction The syntheses and characterization of porphyrins and metalloporphyrins have been studied extensively[1]. Hemoglobin, myoglobin or cytochrome P450, has been applied as a model compound[2]. Wong C. P. et al.[3] synthesized the first lanthanide porphyrin, acetylacetonate tetraphenylporphyrin europium, in 1974.

  13. Simple and efficient method for synthesis of metallodeutero-porphyrin derivatives bearing symmetrical disulphide bond

    Institute of Scientific and Technical Information of China (English)

    Cheng Guo Sun; Bing Cheng Hu; Wei You Zhou; Shi Chao Xu; Quan Zhi Deng; Zu Liang Liu


    A novel thiol-derivative porphyrin [2,7,12,18-tetramethyl-13,17-di(3-disulfidepropyl)porphyrin] bearing the symmetrical disulphide bond and its metal complexes have been successfully prepared by means of modification on naturally easily derived heme. The results are described by MS-MS and UV-vis spectroscopy.

  14. Porphyrins in Reverse Micelles:the Side-chain Length and the Triplet-state Lifetime

    Institute of Scientific and Technical Information of China (English)

    Jun Hua YU; Yu Xiang WENG; Xue Song WANG; Lei ZHANG; Bao Wen ZHANG; Yi CAO


    Using bis(2-ethylhexyl) sodium sulfosuccinate (AOT) as surfactant, two amphiphilic porphyrin terminated with imidazole were studied in AOT/iso-octane/water reverse micelles, intending to mimic the relationship between microenvironments in organism and the amphiphilic properties of porphyrins for photodynamic therapy drugs.

  15. Air oxidation of the kerogen/asphaltene vanadyl porphyrins: an electron spin resonance study

    Directory of Open Access Journals (Sweden)



    Full Text Available The thermal behavior of vanadyl porphyrins was studied by electron spin resonance during heating of kerogens, isolated from the La Luna (Venezuela and Serpiano (Switzerland bituminous rocks, at 25°C for 1 to 20 days in the presence of air. During the thermal treatment of the kerogens, the vanadyl porphyrins resonance signals decrease monotonically and become quite small after 6 days of heating. Concomitantly, new vanadyl signals appear and, at longer heating times, dominate the spectrum. It is suggested that the secondary vanadyl species must have been formed from vanadyl porphyrins. Similar conversions of vanadyl porphyrins are observed under the same experimental conditions for asphaltenes extracted from the La Luna and Serpiano rocks, and floating asphalt from the Dead Sea (Israel. A comparison of the spin-Hamiltonian parameters for vanadyl porphyrins and the vanadyl compounds obtained during pyrolysis of the kerogens/asphaltenes suggests that the latter are of a non-porphyrin type. For comparison a study was conducted on Western Kentucky No. 9 coal enriched with vanadium (>>400 ppm from six mines. All the coal samples show only the presence of predominant by non-porphyrin vanadyl compounds, similar to those generated through laboratory heating of the kerogens/asphaltenes in air. In addition, some samples also contain a minor amount of vanadyl porphyrins.

  16. Palladium-Catalyzed Polyfluorophenylation of Porphyrins with Bis(polyfluorophenylzinc Reagents

    Directory of Open Access Journals (Sweden)

    Toshikatsu Takanami


    Full Text Available A facile and efficient method for the synthesis of pentafluorophenyl- and related polyfluorophenyl-substituted porphyrins has been achieved via palladium-catalyzed cross-coupling reactions of brominated porphyrins with bis(polyfluorophenylzinc reagents. The reaction is applicable to a variety of free-base bromoporphyrins, their metal complexes, and a number of bis(polyfluorophenylzinc reagents.

  17. Fusing porphyrins with polycyclic aromatic hydrocarbons and heterocycles for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Mark E.; Diev, Viacheslav; Hanson, Kenneth; Forrest, Stephen R.


    A compound that can be used as a donor material in organic photovoltaic devices comprising a non-activated porphyrin fused with one or more non-activated polycyclic aromatic rings or one or more non-activated heterocyclic rings can be obtained by a thermal fusion process. The compounds can include structures of Formula I: ##STR00001## By heating the reaction mixture of non-activated porphyrins with non-activated polycyclic aromatic rings or heterocyclic rings to a fusion temperature and holding for a predetermined time, fusion of one or more polycyclic rings or heterocyclic rings to the non-activated porphyrin core in meso,.beta. fashion is achieved resulting in hybrid structures containing a distorted porphyrin ring with annulated aromatic rings. The porphyrin core can be olygoporphyrins.

  18. Development of a radiothallium (III) labeled porphyrin complex as a potential imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Fazaeli, Y.; Feizi, S.; Shadanpour, N. [Nuclear Science and Technology Research Institute (NSTRI), Karaj (Iran, Islamic Republic of). Agricultural, Medical and Industrial Research School (AMIRS); Jalilian, A.R. [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Radiopharmaceutical Research and Development Lab.


    Since {sup 201}Tl is widely used in SPECT and porphyrins are important biological carriers, we tried to obtain a stable complex between thallium and porphyrins. The thallium porphyrin complex was synthesized by reaction of {sup 201}Tl(III) with porphyrin at 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (H2PFPP) for 60 min at 100 C. The complex was analysed via TLC and HPLC stability (in the final formulation and human serum) and the partition coefficient of the complex was determined. The biodistribution of the labeled compound in vital organs of wild-type rats was investigated. The complex was prepared with high radiochemical purity (> 99% ITLC, > 99% HPLC, specific activity: 13-14 GBq/mmol) (log P = 1.92). The stability of the Tl{sup +3}-complex seems to be low since the complex or free thallium is rapidly cleared through the kidneys and the liver. (orig.)

  19. Synthesis of Covalently-linked Linear Donor-Acceptor Copolymers Containing Porphyrins and Oligothiophenes

    Institute of Scientific and Technical Information of China (English)

    DUANMU,Chuan-Song(端木传嵩); CHEN,Zhang-Ping(陈彰评); YU,Xue-Song(余雪松); ZHOU,Xiang(周翔)


    A series of monomers of 5,15-dithienyl porphyrin, 5,15-di-bithienyl porpyrin and their metal complexes were synthesized in high yields. 5,15-Di-bithienyl porphyrin and its metal complexes were polymerized by chemical oxidation using FeCl3 as oxidant (>90%) for making organic conductor and the linear porphyrin-thiophene copolymers were obtained. The structures of the copolymers were identified by elemental analysis and IR spectra. The conductivity of poly 5,15-di-bithienyl porphyrin was measured to reach over 10-6 S/cm. 5,15-Dithienyl porphyrins and its metal complexes could not be polymerized under the similar conditions, but could be polymerized by electrochemical oxidation on the gold-plate electrode.

  20. Characterization of vanadium compounds in selected crudes. II. Electron paramagnetic resonance studies of the first coordination spheres in porphyrin and non-porphyrin fractions

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.G.; Biggs, W.R.; Fetzer, J.C.


    The authors applied electron paramagnetic resonance spectroscopy (EPR) to heavy petroleum fractions to characterize the first coordination sphere around the vanadyl +2 ion. The fractions were generated using a modified porphyrin extraction procedure. For the residual oil from the extraction, which contains the non-porphyrin metals, the first coordination sphere was dominated by 4N and N O 2S for Boscan, Beta, Morichal, and Arabian Heavy crudes. Maya had distinctively different parameters. These findings are significant for determining the overall structure of metal-containing compounds in heavy crude oils. They discuss the difference between the porphyrin and non-porphyrin behavior, possible biogenic precursors, and some process implications. 59 references, 1 figure, 2 tables.

  1. Porphyrin geochemistry of Atlantic Jurassic-Cretaceous black shales

    Energy Technology Data Exchange (ETDEWEB)

    Baker, E.W.; Louda, J.W.


    Late Jurassic-early Cretaceous black shales and an overlying sequence of Albian-Campanian zeolitic claystones from the Falkland Plateau (DSDP/IPOD Leg 71, Site 511) were analyzed for tetrapyrrole pigment type and abundance. The black shale sequence was found to be rich in DPEP-series dominated free-base, nickel (Ni) and, to a lesser extent, vanadyl (V = 0) porphyrins. A low level of organic maturity (i.e. precatagenesis) is indicated for these strata as nickel chelation by free-base porphyrins is only 50-75% complete, proceeding down-hole to 627 meters sub-bottom. Electronic and mass spectral data reveal that the proposed benzo-DPEP (BD) and tetrahydrobenzo-DPEP (THBD) series are present in the free-base and Ni species, as well as the more usual occurrence in V = 0 porphyrin arrays. Highly reducing conditions are suggested by an abundance of the PAH perylene, substantial amounts of the THBD/BD series and a redox equilibrium between free-base DPEP and 7,8-dihydro-DPEP series, which exist in a 7:1 molar ratio. The Albian-Campanian claystone strata were found to be tetrapyrrole poor, and those pigments present were typed as Cu/Ni highly dealkylated (C/sub 26/ max.) etioporphyrins, thought to be derived via redeposition and oxidation of terrestrial organic matter (OM). Results from the present study are correlated to their past analyses of Jurassic-Cretaceous sediments from Atlantic margins in an effort to relate tetrapyrrole quality and quantity to basin evolution and OM sources in the proto-Atlantic.

  2. Effects of meso-substituents and core-modification on photophysical and electrochemical properties of porphyrin-ferrocene conjugates (United States)

    Rai, Smita; Gayatri, G.; Narahari Sastry, G.; Ravikanth, M.


    The effects of meso-substituents and porphyrin core-modification on electronic communication between ferrocene and porphyrin in covalently linked porphyrin-ferrocene conjugates are described. The electrochemical and photophysical studies indicated that the electronic communication between porphyrin and ferrocene is strong when meso-substituents are five membered aryl groups than six membered aryl groups. This may be traced to the near orthogonal arrangement of porphyrin ring with six membered meso-aryl groups leading to weaker interaction between the porphyrin and ferrocenyl groups in conjugates, while the five membered furyl and thienyl groups are closer to the porphyrin plane than being orthogonal. Molecular orbital studies are performed at semiempirical PM3 and BLYP levels to rationalize the results.

  3. Enhanced Anion Transport Using Some Expanded Porphyrins as Carriers. (United States)


    step, an acid catalyzed 1: 1 Schiff - base condensation between I ,8-diaminoanthracene 4 and 2,5-bis((3-ethylS_-formyl-4- methy’lpyrrol-2-yl) methyl... Schiff base "expanded porphyrin," 1, which when diprotonated effectively binds chloride anion in the solid state.8- 10 In addition, we present the results...parent, 1, is shown in Scheme 1. It involves, as the critical step, the acid catalyzed 1:1 Schiff - base condensation between 1.8-diaminoanthracene 49

  4. Femtosecond coherent Raman spectroscopy and its application to porphyrins. (United States)

    Schmitt, M; Heid, M; Schlücker, S; Kiefer, W


    The results on femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) experiments for the analysis and control of ground state vibrational dynamics of porphyrin systems are briefly reviewed. By detecting the spectrum of the transient CARS signal, a detailed mapping of the dynamics initiated by the stimulated Raman pump process is achieved. The method yields the dephasing behavior and spectral information of the investigated system at the same time. The different contributions to the ground state vibrational dynamics are selected by changing the direction of the CARS signal analyzer in the polarization arrangement used.

  5. Antibatic photovoltaic response in zinc-porphyrin-liked oligothiophenes

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Spanggaard, H.


    (SEC), NMR, MALDI-TOF and elemental analysis and purified by preparative SEC before subjecting them to photophysical studies. UV-vis and emission spectroscopy were used to determine quantum yields and energy transfer. The photon balance was established and used to rationalise the photovoltaic behaviour...... of 4 and 5. While 4 gave rise to photovoltaic devices giving a moderate photovoltaic response that was symbatic with the absorption spectrum, 5 showed a photovoltaic response that was antibatic with a part of the absorption spectrum of the zinc-porphyrin constituent. We ascribe this behaviour...

  6. Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights. (United States)

    Higashino, Tomohiro; Imahori, Hiroshi


    Dye-sensitized solar cells (DSSCs) have attracted much attention as an alternative to silicon-based solar cells because of their low-cost production and high power conversion efficiency. Among various sensitizers, numerous research activities have been focused on porphyrins due to their strong absorption bands in the visible region, versatile modifications of their core, and facile tuning of the electronic structures. In 2005-2007, Officer and Grätzel et al. had achieved a rapid increase in the power conversion efficiency of porphyrin DSSCs from a few percent to as much as 7%. Encouraged by these pioneering works, further high-performance porphyrin dyes have been developed in the last decade. These studies have provided us profound hints for the rational design of sensitizers toward highly efficient DSSCs. Push-pull structures and/or π-extensions have made porphyrins panchromatic in visible and even near-infrared regions. Consequently, porphyrin sensitizers have exhibited power conversion efficiencies that are comparable to or even higher than those of well-established highly efficient DSSCs based on ruthenium complexes. So far the power conversion efficiency has increased up to ca. 13% by using a push-pull porphyrin with a cobalt-based redox shuttle. In this perspective, we review the recent developments in the synthetic design of porphyrins for highly efficient DSSCs.

  7. Supramolecular ssDNA templated porphyrin and metalloporphyrin nanoassemblies with tunable helicity. (United States)

    Sargsyan, Gevorg; Leonard, Brian M; Kubelka, Jan; Balaz, Milan


    Free-base and nickel porphyrin-diaminopurine conjugates were formed by hydrogen-bond directed assembly on single-stranded oligothymidine templates of different lengths into helical multiporphyrin nanoassemblies with highly modular structural and chiroptical properties. Large red-shifts of the Soret band in the UV/Vis spectroscopy confirmed strong electronic coupling among assembled porphyrin-diaminopurine units. Slow annealing rates yielded preferentially right-handed nanostructures, whereas fast annealing yielded left-handed nanostructures. Time-dependent DFT simulations of UV/Vis and CD spectra for model porphyrin clusters templated on the canonical B-DNA and its enantiomeric form, were employed to confirm the origin of observed chiroptical properties and to assign the helicity of porphyrin nanoassemblies. Molar CD and CD anisotropy g factors of dialyzed templated porphyrin nanoassemblies showed very high chiroptical anisotropy. The DNA-templated porphyrin nanoassemblies displayed high thermal and pH stability. The structure and handedness of all assemblies was preserved at temperatures up to +85 °C and pH between 3 and 12. High-resolution transition electron microscopy confirmed formation of DNA-templated nickel(II) porphyrin nanoassemblies and their self-assembly into helical fibrils with micrometer lengths.

  8. Novel porphyrin-preparation, characterization, and applications in solar energy conversion. (United States)

    Lu, Jianfeng; Li, Hao; Liu, Shuangshuang; Chang, Yu-Cheng; Wu, Hui-Ping; Cheng, Yibing; Wei-Guang Diau, Eric; Wang, Mingkui


    Porphyrins have been demonstrated as one of the most efficient sensitizers in dye-sensitized solar cells (DSSC). Herein, we investigated a series of porphyrin sensitizers functionalized with various π-spacers, such as phenyl for LD14, thiophene for LW4, thiophene-phenyl for LW5, and 2,1,3-benzothiadiazole (BTD)-phenyl for LW24. Photo-physical investigation by means of time-resolved fluorescence and nanosecond transient absorption spectroscopy revealed an accelerated inner charge transfer in porphyrins containing the BTD-phenyl π-spacer. Implementation of an auxiliary electron-deficient BTD unit to the porphyrin spacer also results in a broad light-harvesting ability extending up to 840 nm, contributing to an enhanced charge transfer character from the porphyrin ring to the anchoring group. When utilized as a sensitizer in DSSCs, the LW24 device achieved a power conversion efficiency of 9.2%, higher than those based on LD14 or LW5 porphyrins (PCE 9.0% or 8.2%, respectively) but lower than that of the LW4 device (PCE 9.5%). Measurements of transient photovoltage decays demonstrate that the LW24 device features the up-shifted potential band edge of the conduction band of TiO2, but involves serious charge recombination in the dye/TiO2 interface. The findings provide insights into the molecular structure and the charge-transfer characteristics for designing efficient porphyrin sensitizers for DSSC applications.

  9. Electropolymerized supramolecular tetraruthenated porphyrins applied as a voltammetric sensor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Monize M. da; Ribeiro, Gabriel H.; Faria, Anizio M. de; Bogado, Andre L.; Dinelli, Luis R., E-mail: [Universidade Federal de Uberlandia (UFU), Ituiutaba, MG (Brazil). Faculdade de Ciencias Integradas do Pontal; Batista, Alzir A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica


    Porphyrin 5,10,15,20-Tetra(4-pyridyl)manganese(III), [Mn-TPyP(H{sub 2}O){sub 2}]PF{sub 6}, and electropolymerized supramolecular porphyrins (ESP), {l_brace}Mn-TPyP(H{sub 2}O){sub 2}[RuCl{sub 3}(dppb)]{sub 4}{r_brace}PF{sub 6} (dppb = 1,4-bis(diphenylphosphine)butane), were synthesized and characterized. A thin solid film of ESP was obtained on a glass carbon electrode surface by a cyclic voltammetry method. The peak current increased with the number of voltammetric cycles, which shows a typical behavior of the species being adsorbed on the surface of the electrode. Cyclic voltammetry was also employed for acetaminophen quantification using an ESP modified electrode. The modified electrode shows a linear relationship between the anodic peak current and the concentration of acetaminophen (in the rage 0.05 to 0.7 mmol L{sup -1}. The performance of the modified electrode was verified by the determination of acetaminophen in a commercial pharmaceutical product and the results were in good agreement with those obtained by a control HPLC method. (author)

  10. Tin-porphyrin-assisted formation of coordination frameworks (United States)

    Titi, Hatem M.


    Novel 3D networks synthesized by two different methods are reported in this article. Structure 1 {[CdL2]·(solvent)}n consists of CdII-single metallic nodes held together by coordinated isonicotinate ligands (L) to form a 3D chiral framework (P41212). The resulting structure exhibits threefold-interpenetrated dia coordination networks. After a few weeks the crystals were re-measured to form 1a {[Cd(L)2(H2O)]·DMF}n with two interpenetrated dia nets which is thermodynamically more stable. On the other hand, the addition of the tin(IV)-porphyrin to the same reaction mixture led to the formation of 3D pseudo-isostructures, based on oxo-centered CdII and MnII/III cluster nodes, 2 {[Cd3(OH)L4(H2O)3](ClO4)}n and 3 {[Mn3(O)L4(DMF)3](ClO4)}n. These structures represent topologically bcg nets. Possible synthetic mechanism was proposed to emphasize the role of the tin(IV)-porphyrin that led to the construction of oxo-centered trinuclear clusters in 2 and 3.

  11. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Directory of Open Access Journals (Sweden)

    Jia-Jia Zheng


    Full Text Available Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn. Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  12. Imaging of photoinduced tautomerism in single porphyrin molecules (United States)

    Jäger, Regina; Chizhik, Anna M.; Chizhik, Alexey I.; Mack, Hans-Georg; Lyubimtsev, Alexey; Hanack, Michael; Meixner, Alfred J.


    In this work we present our new experimental and theoretical results upon investigations of the photoinduced tautomerism processes of single metal-free porphyrin-type molecules. During tautomerization a molecule changes its structure, therefore the excitation transition dipole moment (TDM) of the molecule changes its orientation. Using confocal microscopy in combination with azimuthally and radially polarized laser beams we are able to determine the orientation of the TDM as well as the orientation of a single molecule itself. In the case of tautomerism we are able to visualize this process and even the involved isomers separately. The study first focuses on two symmetrical compounds: a phthalocyanine and a porphyrin. Additionally, differences of the single molecules embedded in a polymer matrix or just spin-coated on a glass cover slide and under nitrogen flow are investigated. In the latter case we observe a higher frequency of the change of the TDM orientation. The experimental studies are supplemented by quantum chemical calculations. Variations of the molecular substituents, the environment and excitation wavelength can give new insights into the excited-state tautomerism process of a single molecule. We also introduce some suggestions for future experiments to support the understanding of the photoinduced tautomerism.

  13. Magnetic and electronic properties of porphyrin-based molecular nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Jia; Li, Qiao-Zhi; Dang, Jing-Shuang; Zhao, Xiang, E-mail: [Institute for Chemical Physics & Department of Chemistry, MOE Key Laboratory for Non-equilibrium Condensed Matter and Quantum Engineering, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Wei-Wei [Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan)


    Using spin-polarized density functional theory calculations, we performed theoretical investigations on the electronic and magnetic properties of transition metal embedded porphyrin-based nanowires (TM-PNWs, TM = Cr, Mn, Co, Ni, Cu, and Zn). Our results indicate that Ni-PNW and Zn-PNW are nonmagnetic while the rest species are magnetic, and the magnetic moments in TM-PNWs and their corresponding isolated monomer structures are found to be the same. In addition, the spin coupling in the magnetic nanowires can be ignored leading to their degenerate AFM and FM states. These results can be ascribed to the weak intermetallic interactions because of the relatively large distances between neighbor TM atoms. Among all TM-PNW structures considered here, only Mn-PNW shows a half-metallic property while the others are predicted to be semiconducting. The present work paves a new way of obtaining ferromagnetic porphyrin-based nanowires with TM atoms distributed separately and orderly, which are expected to be good candidates for catalysts, energy storage and molecular spintronics.

  14. Cu(II) porphyrins modified TiO{sub 2} photocatalysts: Accumulated patterns of Cu(II) porphyrin molecules on the surface of TiO{sub 2} and influence on photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Su, Xiao-qin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069 (China); Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an, Shaanxi 710021 (China); Li, Jun, E-mail: [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069 (China); Zhang, Zeng-qi; Yu, Mi-mi; Yuan, Lin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069 (China)


    Highlights: • Two new crystal structures of copper porphyrins containing meso-tetra(ester and carboxyl) were obtained. • The two copper porphyrins were used to modify TiO{sub 2} for the first time. • The accumulated patterns of copper porphyrin molecules on the TiO{sub 2} surface is an important factor for the photocatalytic activity. • The peripheral groups of copper porphyrins influence their stacking patterns in solid state. - Abstract: The accumulated patterns of porphyrin molecules on the surface of TiO{sub 2} have an important effect on the photoactivity of porphyrin/TiO{sub 2} photocatalysts. Herein, two copper porphyrins containing flexible peripheral functional groups (meso-tetra(ester, carboxy)), Cu(II)5,10,15,20-tetrakis[4-(carboethoxymethyleneoxy)phenyl]porphyrin (CuPp(2a)) and Cu(II)5,10,15,20-tetrakis[4-(carboxymethyleneoxy)phenyl]porphyrin (CuPp(2b)), were synthesized and characterized spectroscopically. Their crystal structures were also determined by single crystal X-ray diffraction. The Cu(II) porphyrin-TiO{sub 2} composites were also prepared and characterized. The accumulated patterns of synthesized copper porphyrins on the surface of TiO{sub 2} were proposed for the first time. The photoactivity of the composites was investigated by carrying out the degradation of 4-nitrophenol (4-NP) in aqueous solution under UV–visible light. The results indicated that the CuPp(2b)-TiO{sub 2} showed the higher photocatalytic activity than that of CuPp(2a)-TiO{sub 2}. Above all, it can be concluded that the accumulated patterns of porphyrins on the surface of TiO{sub 2} is an important factor for the photocatalytic efficiency of porphyrin/TiO{sub 2}.

  15. The self-aggregation of chiral threonine-linked porphyrins and their zinc(Ⅱ) complexes

    Institute of Scientific and Technical Information of China (English)


    The self-aggregation of chiral threonine-linked porphyrins and their zinc(Ⅱ) complexes in water-alcohol system and water-alcohol-NaCl system has been studied by circular dichroism (CD),UV-Vis absorption spectra and fluorescence spectra methods.The experiment results indicate that chiral threonine-linked porphyrins and their zinc(Ⅱ) complexes have two different kinds of aggregates in water-alcohol system and water-alcohol-NaCl system.And the porphyrins may form highly organized and orientated aggregates in water-alcohol-NaCl system.The aggregates in water-alcohol-NaCl system may have helical structures.

  16. The aerobic oxidation of alcohols with a ruthenium porphyrin catalyst in organic and fluorinated solvents. (United States)

    Korotchenko, Vasily N; Severin, Kay; Gagné, Michel R


    Carbonylruthenium tetrakis(pentafluorophenyl)porphyrin Ru(TPFPP)(CO) was utilized for the aerobic oxidation of alcohols. The in situ activation of the catalyst with mCPBA provided a species capable of catalyzing the oxidation of alcohols with molecular oxygen. The choice of solvent and additive was crucial to obtaining high activity and selectivity. Secondary aromatic alcohols were oxidized in the presence of the ruthenium porphyrin and tetrabutyl ammonium hydroxide in the solvent bromotrichloromethane, enabling high yields to be achieved (up to 99%). Alternatively, alcohols could be oxidized in perfluoro(methyldecalin) with the ruthenium porphyrin at higher temperatures (140 degrees C) and elevated oxygen pressures (50 psi).

  17. Characterization of self-assembled monolayers of porphyrins bearing multiple-thiol and photoelectric response

    Institute of Scientific and Technical Information of China (English)

    Jian Dong Yang; Xiao Quan Lu


    Self-assembled monolayers (SAMs) of thiol-derivatized porphyrin molecules on Au substrate have attracted extensively interest for use in sensing,optoelectronic devices and molecular electronics.In this paper,tetra-[p-(3-mercaptopropyloxy)-phenyl]-porphyrin was synthesized and self-assembled with thiol on Au substrate for porphyrin SAMs (PPS4).The electrochemical results demonstrated that PPS4 could form excellent SAMs on gold surface.Self-assembled nanojunctions of PPS4 were fabricated by using gold nanogap electrodes (gap width:ca.100 nm).With the light on/off,the nanojunctions showed current high/low as nanometer scaled photo switch.

  18. Identification and assignment of porphyrin-CdSe hetero-nanoassemblies

    Energy Technology Data Exchange (ETDEWEB)

    Zenkevich, E.I. [National Academy of Science, F. Skaryna Avenue, 220072 Minsk (Belarus); Blaudeck, T. [Photonics and Optical Materials, TU Chemnitz (Germany); Shulga, A.M. [National Academy of Science, F. Skaryna Avenue, 220072 Minsk (Belarus); Cichos, F. [Photonics and Optical Materials, TU Chemnitz (Germany); Center for Nanostructured Materials and Analytics (NanoMA), Chemnitz University of Technology, 09107 Chemnitz (Germany); Borczyskowski, C. von [Optical Spectroscopy and Molecular Physics, TU Chemnitz (Germany) and Center for Nanostructured Materials and Analytics (NanoMA), Chemnitz University of Technology, 09107 Chemnitz (Germany)]. E-mail:


    Hetero-nanoassemblies in toluene solution are formed via anchoring pyridyl substituted free base porphyrin molecules on the colloidal core-shell semiconductor nanocrystals CdSe/ZnS. The formation can be identified via quenching of semiconductor photoluminescence and followed via spectral changes of porphyrin spectral properties such as fluorescence, fluorescence decay and absorption. Interpreting these changes we estimate that even at high molar ratios on average only one molecule is anchored on one nanocrystal. Experimentally determined complexation constants are comparable to those observed for multi-porphyrin complexes.

  19. Synthetic cation-selective nanotube: Permeant cations chaperoned by anions (United States)

    Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho


    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  20. Thin films of porphyrin-perylene molecular array fabricated by electrophoresis methodology

    Institute of Scientific and Technical Information of China (English)

    SUN Jingzhi; YANG Xinguo; WANG Mang


    Thin solid films of organic conjugated molecules are at the center of organic electronics. Low solubility and high sublimation temperature of porphyrin-perylene arrays make it impossible to fabricate uniform solid films with spin-coating and vacuum deposition methodology, though these arrays have important applications in the area of opto-electronics. Here we show that high quality thin films of a porphyrin-perylene array can be prepared by electrochemical deposition, a facile and widely used film-forming technique. The electrophoretic species are protonated porphyrin-perylene molecules, which allow us to grow molecular array films on electrodes. By annealing in ammonia atmosphere or in vacuum at elevated temperature, the protons coordinated with molecular arrays on the deposited films can be eliminated and the porphyrin-perylene arrays recovered to their pristine state.

  1. Functionalized Nanostructures: Redox-Active Porphyrin Anchors for Supramolecular DNA Assemblies

    KAUST Repository

    Börjesson, Karl


    We have synthesized and studied a supramolecular system comprising a 39-mer DNA with porphyrin-modified thymidine nucleosides anchored to the surface of large unilamellar vesicles (liposomes). Liposome porphyrin binding characteristics, such as orientation, strength, homogeneity, and binding site size, was determined, suggesting that the porphyrin is well suited as a photophysical and redox-active lipid anchor, in comparison to the inert cholesterol anchor commonly used today. Furthermore, the binding characteristics and hybridization capabilities were studied as a function of anchor size and number of anchoring points, properties that are of importance for our future plans to use the addressability of these redox-active nodes in larger DNA-based nanoconstructs. Electron transfer from photoexcited porphyrin to a lipophilic benzoquinone residing in the lipid membrane was characterized by steady-state and time-resolved fluorescence and verified by femtosecond transient absorption. © 2010 American Chemical Society.

  2. Electrocatalytic miRNA Detection Using Cobalt Porphyrin-Modified Reduced Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Camille De Souza


    Full Text Available Metalated porphyrins have been described to bind nucleic acids. Additionally, cobalt porphyrins present catalytic properties towards oxygen reduction. In this work, a carboxylic acid-functionalized cobalt porphyrin was physisorbed on reduced graphene oxide, then immobilized on glassy carbon electrodes. The carboxylic groups were used to covalently graft amino-terminated oligonucleotide probes which are complementary to a short microRNA target. It was shown that the catalytic oxygen electroreduction on cobalt porphyrin increases upon hybridization of miRNA strand (“signal-on” response. Current changes are amplified compared to non-catalytic amperometric system. Apart from oxygen, no added reagent is necessary. A limit of detection in the sub-nanomolar range was reached. This approach has never been described in the literature.

  3. Synthesis, Spectroscopic, and Biological Studies on New Zirconium(IV Porphyrins with Axial Ligand

    Directory of Open Access Journals (Sweden)

    Gauri D. Bajju


    Full Text Available A series of parasubstituted tetraphenylporphyrin zirconium(IV salicylate complexes (SA/5-SSAZr(IVRTPP, R = p-H, p-CH3, p-NO2, p-Cl, SA = salicylate, and 5-SSA = 5-sulfosalicylate have been synthesized, and the spectral properties of free base porphyrins, their corresponding metallated, and axially ligated zirconium(IV porphyrin compounds were compared with each other. A detailed analysis of ultraviolet-visible (UV-vis, proton nulcear magnetic resonance (1H NMR spectroscopy, infrared (IR spectroscopy, and elemental analysis suggested the transformation from free base porphyrins to zirconium(IV porphyrins. The ability of the metal in this complex for extra coordination of solvent molecules was confirmed by ESI-MS spectra. Besides the fluorescence, cyclic voltammetry, and thermogravimetric studies, the complexes were also screened for antimicrobial and anticancer activities. Among all the complexes, 5-SSAZr(p-NO2TPP shows high antibacterial activity.

  4. Synthesis and characterization of a novel meso-porphyrin and its metallo derivatives

    Directory of Open Access Journals (Sweden)

    Paulo Cesar Bega


    Full Text Available There has been a growing interest in the properties of substituted meso-tetraarylporphyrins and metallo porphyrins as catalysts for oxidation of hydrocarbons, oxygen detection, among others. This work describes the synthesis of a new porphyrin, 5,10,15,20-tetrakis(4-butoxy-3-methoxyphenylporphyrin, and its metallo complexes. Herein it was used a readily available reactant, vanillin, as starting material which was submitted to alkylation with n-bromobutane affording the synthetic precursor. The desired porphyrin was obtained by reacting the O-alkylated aldehyde with pyrrole in the presence of propionic acid (Alder-Longo method. The purified porphyrin was then subjected to the metallation process using iron (II and manganese (II salts. The synthesized compounds were characterized by IR, UV-Vis, NMR and EPR spectroscopy.

  5. Synthesis, characterization and photophysical studies of -triazolomethyl-bridged porphyrin-benzo--pyrone dyads

    Indian Academy of Sciences (India)

    Dileep Kumar Singh; Mahendra Nath


    A new series of zinc(II) -triazolomethyl-bridged porphyrin-benzo--pyrone dyads have been synthesized in appreciable yields through a copper(I)-catalyzed “click” reaction of zinc(II) 2-azidomethyl-5,10,15,20-tetraphenylporphyrin with various benzo--pyronoalkynes. These novel zinc(II) porphyrin-benzo--pyrone dyads successfully underwent demetallation in the presence of concentrated hydrochloric acid in chloroform at 25°C to form the corresponding free-base porphyrin analogues in good yields. The newly synthesized products were characterized on the basis of spectral data and evaluated for their electronic absorption and fluorescence properties. Some of these molecules have shown a significant intramolecular energy transfer between the benzo--pyrone and porphyrin subunits.

  6. Increased Porphyrins in Primary Liver Cancer Mainly Reflect a Parallel Liver Disease

    Directory of Open Access Journals (Sweden)

    Jerzy Kaczynski


    Full Text Available Hepatic porphyries have been associated with an increased risk of primary liver cancer (PLC, which on the other hand may cause an increased porphyrin production. To evaluate the role of an underlying liver disorder we analyzed porphyrins in patients with hepatocellular carcinoma (HCC (n=65, cholangiocellular carcinoma (n=3, or suspected PLC, which turned out to be metastases (n=18 or a benign disorder (n=11. None of the patients had a family history of porphyry or clinical signs of porphyry. Increased aminolevulinic acid or porphyrin values were common not only in patients with PLC (43% but also in metastatic (50% and benign (64% liver disorders. The corresponding proportion for HCC patients with liver cirrhosis (55% was higher (P<.05 than in those without cirrhosis (17%. We conclude that symptomatic porphyries are unusual in PLC, whereas elevated urinary and/or faecal porphyrins are common, primarily reflecting a parallel liver disease and not the PLC.

  7. Determination of Mass Spectrometric Sensitivity of Different Metalloporphyrin Esters Relative to Porphyrin Ester

    DEFF Research Database (Denmark)

    Larsen, Elfinn; Egsgaard, Helge; Møller, J.


    Quantitative determination of metalloporphyrin contamination in preparations of biologically important porphyrins was achieved mass spectrometrically by application of the integrated ion current technique. For this purpose, the relative molecular ion sensitivities of the contaminating metal compl...... complexes were determined from the ratios of the integrated molecular ion currents of a series of calibration samples containing a porphyrin ester and one of its metal complexes in known molar ratio. Complexes formed with divalent ions of Cu, Zn, Fe, Co and Ni of copro- as well as uro......-prophyrin permethylester were all found to have the same molecular ion sensitivities as their metal-free porphyrin ester. The relative metalloporphyrin ester content in a sample of porphyrin ester was thus obtained directly as the integrated ion current ratios of the normalized molecular ions. The preparation...

  8. Porphyrin-quinone compounds as synthetic models of the reaction centre in photosynthesis (United States)

    Borovkov, V. V.; Evstigneeva, Rima P.; Strekova, L. N.; Filippovich, E. I.


    Data on the synthesis, steric structure, and photochemical properties of porphyrin-quinone compounds as synthetic models of the reaction centre in photosynthesis are examined and described systematically. The bibliography includes 113 references.

  9. Hybrid organic – silica nanomaterials based on novel A{sub 3}B mixed substituted porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Fagadar-Cosma, Eugenia [Institute of Chemistry -Timisoara of Romanian Academy, M. Viteazul Ave, No. 24, 300223 Timisoara (Romania); Dudás, Zoltán, E-mail: [Institute of Chemistry -Timisoara of Romanian Academy, M. Viteazul Ave, No. 24, 300223 Timisoara (Romania); MTA Wigner Research Center for Physics, Konkoly Thege Miklós Street, No. 29-33, 1121 Budapest (Hungary); Birdeanu, Mihaela [Institute of Chemistry -Timisoara of Romanian Academy, M. Viteazul Ave, No. 24, 300223 Timisoara (Romania); National Institute for Research and Development in Electrochemistry and Condensed Matter, 1 Plautius Andronescu Street, 300224 Timisoara (Romania); Almásy, László [MTA Wigner Research Center for Physics, Konkoly Thege Miklós Street, No. 29-33, 1121 Budapest (Hungary)


    A new A{sub 3}B porphyrin structure, namely: 5-(4-phenoxyphenyl)-10,15,20-tris(4-pyridyl)-porphyrin was synthetized and characterized by FT-IR, UV–vis, Fluorescence, MS, {sup 1}H NMR, TLC and HPLC. Novel hybrid-silica porphyrin nanomaterials were obtained by immobilizing the porphyrin in silica supports synthesized from tetraethoxysilane, tetramethoxysilane or mixtures of tetraethoxysilane/methyltriethoxysilane. Since the behavior and performance of immobilized porphyrin molecules in the silica matrices strongly depend on the structure of the porous network, a comparative characterization of the silica support and the hybrid porphyrin-silica materials was carried out using specific physicochemical characterization methods: UV–vis, Fluorencence, FT-IR spectroscopy, thermal analysis, AFM, nitrogen adsorption and small-angle neutron scattering. The UV–vis spectra show that no protonation and aggregation of porphyrin takes place in the gels made from methyltriethoxysilane precursor. Most of the emission spectra preserve both the shape and the intensity of the corresponding free porphyrin. Due to the lack of aggregation, when using the methyltriethoxysilane precursor, the quenching of fluorescence is also diminished. No matter of the preparation method the specific surface areas increase in the following order: TEOS < TMOS < TEOS/MTES 3:1 < TEOS/MTES 2:1 < TEOS/MTES 1:1. Due to their optical properties, both the novel porphyrin and its derived hybrid materials, especially those synthesized in situ with mixtures of silica precursors TEOS/MTES will be sent for further medical trials in PDT, having characteristics of second generation photosensitizers. Due to large specific surface areas, the same materials will be used as sensitive materials in microsensors for air quality control, to detect the presence of CO, NO{sub x}, excess of CO{sub 2} and low level of O{sub 2}. - Highlights: • Synthesis of new A{sub 3}B type porphyrin exhibiting high fluorescence

  10. Investigation of Porphyrin and Lipid Supramolecular Assemblies for Cancer Imaging and Therapy (United States)

    Ng, Kenneth Ka-Seng

    Aerobic life on earth is made possible through the functions of the porphyrin. These colorful and ubiquitous chromophores are efficient at concentrating and converting sunlight into chemical energetic potential which sustain biological life. Humans have had a longstanding fascination with these molecules, especially for their applications in photodynamic therapy. The photophysical properties of porphyrins are highly influenced by their surrounding environment. Intermolecular interactions between these pigments can lead to excited state quenching, energy transfer and large changes to their absorption and fluorescence spectra. This thesis is focused on utilizing molecular self-assembly strategies to develop nanoscale porphyrin and phospholipid structures. The rationale being that intermolecular interactions between porphyrins in these nanostructures can induce changes which can be exploited in novel biomedical imaging and therapeutic applications. Four lipid-based structural platforms are studied including: nanoemulsions, bilayer discs and nanovesicles. In Chapter 1, I provide a background on the photophysics of porphyrins and the effect of intermolecular porphyrin interactions on photophysical properties. I also discuss phospholipids and their self-assembly process. Lastly I review current biomedical photonics techniques and discuss how these strategies can be used in conjugation with porphyrin and lipid supramolecular assemblies. In Chapter 2, I investigate the influence that loading a novel bacteriochlorin photosensitizer into a protein-stabilized lipid emulsion has on its spectral properties. I discovered that while the dye can be incorporated into the lipid emulsion, no changes were observed in its spectral properties. In Chapter 3, an amphipathic alpha-helical protein is used to stabilize and organize porphyrin-lipid molecules into bilayer discs. Close packing between porphyrin molecules causes quenching, which can be reversed by structural degradation of the

  11. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong


    and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...

  12. Porphyrin molecules boost the sensitivity of epitaxial graphene for NH3 detection (United States)

    Iezhokin, I.; den Boer, D.; Offermans, P.; Ridene, M.; Elemans, J. A. A. W.; Adriaans, G. P.; Flipse, C. F. J.


    The sensitivity of quasi-free standing epitaxial graphene for NH3 detection is strongly enhanced by chemical functionalization with cobalt porphyrins resulting in a detection limit well below 100 ppb. Hybridization between NH3 and cobalt porphyrins induces a charge transfer to graphene and results in a shift of the graphene Fermi-level as detected by Hall measurements and theoretically explained by electronic structure calculations.

  13. Semi-Natural And Synthetic Chiral Cycloketo-Porphyrin Systems - Approaching Novel Photosensitizers



    Several semi-natural and synthetic cycloketo-porphyrins were synthesized and their properties and usability for different applications was subjected to detailed investigations. It was dealt with porphyrin systems with an exocyclic connection of a meso-position or -substituent to a beta-pyrrolic position of the macrocycle formally originating from an acylation reaction to give a ketone functionality. Such systems can be found in nature amongst the chlorophylls. Thus, derivatives of chlorophyll...

  14. N-annulated perylene fused porphyrins with enhanced near-IR absorption and emission

    KAUST Repository

    Jiao, Chongjun


    N-Annulated perylene fused porphyrins 1 and 2 were synthesized by oxidative dehydrogenation using a Sc(OTf)3/DDQ system. These newly synthesized hybrid molecules are highly soluble in organic solvents and exhibit remarkably intense near-IR absorption, as well as detectable photoluminescence quantum yields, all of which are comparable to or even exceed those of either meso-β doubly linked porphyrin dimer/trimer or bis/tri-N-annulated rylenes. © 2010 American Chemical Society.

  15. Chiral and achiral basket-handle porphyrins: short synthesis and stereostructures of these versatile building blocks. (United States)

    Gehrold, Andreas C; Bruhn, Torsten; Schneider, Heidi; Radius, Udo; Bringmann, Gerhard


    Both, chiral and achiral basket-handle porphyrins were synthesized via a short, reliable, and efficient route in multigram quantities. Standard synthetic protocols such as metalation of the macrocycle, halogenation, and borylation of the porphyrin core or alkyl- and arylation with lithium organyls were successfully adapted. The planar-chiral representatives were resolved into their enantiomers, whose absolute configurations were determined by comparison of experimental CD spectra with TDCAM-B3LYP calculated ones.

  16. Fused porphyrin-single-walled carbon nanotube hybrids: efficient formation and photophysical characterization. (United States)

    Zhong, Qiwen; Diev, Vyacheslav V; Roberts, Sean T; Antunez, Priscilla D; Brutchey, Richard L; Bradforth, Stephen E; Thompson, Mark E


    A systematic study of the interaction between π-extended porphyrins and single-walled carbon nanotubes (SWNTs) is reported here. Zinc porphyrins with 1-pyrenyl groups in the 5,15-meso positions, 1, as well as compounds where one or both of the pyrene groups have been fused at the meso and β positions of the porphyrin core, 2 and 3, respectively, have been examined. The strongest binding to SWNTs is observed for porphyrin 3, leading to debundling of the nanotubes and formation of stable suspensions of 3-SWNT hybrids in a range of common organic solvents. Absorption spectra of 3-SWNT suspensions are broad and continuous (λ=400-1400 nm), and the Q-band of 3 displays a significant bathochromic shift of 33 nm. The surface coverage of the SWNTs in the nanohybrids was estimated by spectroscopic and analytical methods and found to reach 64% for (7,6) nanotubes. The size and shape of π-conjugated porphyrins were found to be important factors in determining the strength of the π-π interactions, as the linear anti-3 isomer displays more than 90% binding selectivity compared to the bent syn-3 isomer. Steady-state photoluminescence measurements show quenching of porphyrin emission from the nanohybrids. Femtosecond transient absorption spectroscopy reveals that this quenching results from ultrafast electron transfer from the photoexcited porphyrin to the SWNT (1/kCT=260 fs) followed by rapid charge recombination on a picosecond time scale. Overall, our data demonstrate that direct π-π interaction between fused porphyrins and SWNTs leads to electronically coupled stable nanohybrids.

  17. Local Electric Field Effects on Rhodium-Porphyrin and NHC-Gold Catalysts (United States)


    AFRL-OSR-VA-TR-2015-0023 (NII) - Local Electric Field Effects on Rhodium-Porphyrin and NHC- Gold Catalysts MATTHEW KANAN LELAND STANFORD JUNIOR UNIV...Effects on Rhodium-Porphyrin and NHC- Gold Catalysts Principal Investigator: Matthew W. Kanan Project Publications: 1. “An Electric Field–Induced Change...electrostatic effects on catalytic reactions, a novel reaction vessel called the “parallel plate cell” was designed and fabricated. The cell is composed

  18. Real-time porphyrin detection in plaque and caries: a case study (United States)

    Timoshchuk, Mari-Alina I.; Ridge, Jeremy S.; Rugg, Amanda L.; Nelson, Leonard Y.; Kim, Amy S.; Seibel, Eric J.


    An ultrathin scanning fiber endoscope, originally developed for cancer diagnosis, was used in a case study to locate plaque and caries. The imaging system incorporated software mitigation of background auto-fluorescence (AF). In conventional fluorescence imaging, varying AF across a tooth surface can mask low-level porphyrin signals. Laser-induced auto-fluorescence signals of dental tissue excited using a 405-nm laser typically produce fluorescence over a wavelength range extending from 440-nm to 750-nm. Anaerobic bacterial metabolism produces various porphyrin species (eg. protoporphyrin IX) that are located in carious enamel, dentin, gingivitis sites, and plaque. In our case study, these porphyrin deposits remained as long as one day after prophylaxis. Imaging the tooth surface using 405-nm excitation and subtracting the natural AF enhances the image contrast of low-level porphyrin deposits, which would otherwise be masked by the high background AF. In a case study, healthy tissues as well as sites of early and advanced caries formations were scanned for visual and quantitative signs of red fluorescence associated with porphyrin species using a background mitigation algorithm. Initial findings show increasing amplitudes of red fluorescence as caries severity increases from early to late stages. Sites of plaque accumulation also displayed red fluorescence similar to that found in carious dental tissue. The use of real-time background mitigation of natural dental AF can enhance the detection of low porphyrin concentrations that are indicators of early stage caries formation.

  19. Copolymerisation of Propylene Oxide and Carbon Dioxide by Dinuclear Cobalt Porphyrins

    KAUST Repository

    Anderson, Carly E.


    Two dinuclear cobalt porphyrins comprising different structural tethering motifs at the porphyrin periphery were synthesised, along with a representative mononuclear cobalt porphyrin, and their catalytic activities tested towards carbon dioxide-propylene oxide copolymerisation in the presence of bis(triphenylphosphoranyl)ammonium chloride cocatalyst. The catalytic activities of the mononuclear and the bis-para-tethered dinuclear cobalt porphyrin with selective formation of poly(propylene carbonate) are largely comparable, showing no benefit of dinuclearity in contrast to the case of cobalt salen complexes and suggesting that polymer growth proceeds exclusively from one metal centre. The alternative bis-ortho-tethered porphyrin demonstrated considerably reduced activity, with dominant formation of cyclic propylene carbonate, as a result of hindered substrate approach at the metal centre. Time-resolved UV/Vis spectroscopic studies suggested a general intolerance of the cobalt(III) porphyrin catalysts towards the copolymerisation conditions in the absence of carbon dioxide pressure, leading to catalytically inactive cobalt(II) species. In the presence of carbon dioxide, the bis-ortho-tethered catalyst showed the fastest deactivation, which is related to an unfavourable steric arrangement of the linker fragment, as was also confirmed by NMR spectroscopic measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis and characterization of porphyrin nanotubes/rods for solar radiation harvesting and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mongwaketsi, N., E-mail: [NANOAFNET, MRD-iThemba LABS, National Research Foundation, 1 Old Faure road, Somerset West (South Africa); Stellenbosch University, Chemistry and Polymer Science Department, Private Bag X1, Matieland 7602 (South Africa); CSIR Biosciences, P.O. Box 395, Pretoria 0001 (South Africa); Khamlich, S. [NANOAFNET, MRD-iThemba LABS, National Research Foundation, 1 Old Faure road, Somerset West (South Africa); Faculty of Sciences, Pretoria-Tshwane University of Technology, Private Bag X 680, Pretoria (South Africa); African Laser Centre, CSIR Campus, P.O. Box 395, Pretoria (South Africa); Klumperman, B. [Stellenbosch University, Chemistry and Polymer Science Department, Private Bag X1, Matieland 7602 (South Africa); Sparrow, R. [CSIR Biosciences, P.O. Box 395, Pretoria 0001 (South Africa); Maaza, M., E-mail: [NANOAFNET, MRD-iThemba LABS, National Research Foundation, 1 Old Faure road, Somerset West (South Africa); Faculty of Sciences, Pretoria-Tshwane University of Technology, Private Bag X 680, Pretoria (South Africa); African Laser Centre, CSIR Campus, P.O. Box 395, Pretoria (South Africa)


    Energy transfer and electron transfer events as they occur between well arranged light harvesting antenna molecules, the reaction center and other factors determine the function of natural photosynthesis. The overall small reorganization energy and the well-balanced electronic coupling between each component bear key characters for the unique efficiency of natural photosynthesis. Such aspects permit the design and assembly of artificial systems that efficiently process solar energy, replicating the natural processes. The rich and extensive transitions seen in porphyrin-based materials hold great expectation as light harvesting building blocks in the construction of molecular architectures, allowing an efficient use of the solar spectrum. Hence in this study porphyrin nanorods are synthesized and characterized for future application in the construction of the artificial light harvesting system. Understanding the sizes and growth mechanism of porphyrins nanorods by self-assembly and molecular recognition is essential for their successful implementation in nanodevices. Spectroscopic and microscopic studies were carried out to investigate the effect that time, concentration and solvents have on the fabrication of porphyrin nanorods by ionic self-assembly of two oppositely charged porphyrins. We investigate in details the heteroaggregate behavior formation of [H{sub 4}TPPS{sub 4}]{sup 2-} and [SnTPyP]{sup 2+} mixture by means of the UV-vis spectroscopy and aggregates structure and morphology by transmission electron microscopy (TEM). This study demonstrates the potential for using different concentrations and solvents to influence the physical and optical properties of porphyrin based nanorods.

  1. ATP-dependent mitochondrial porphyrin importer ABCB6 protects against phenylhydrazine toxicity. (United States)

    Ulrich, Dagny L; Lynch, John; Wang, Yao; Fukuda, Yu; Nachagari, Deepa; Du, Guoqing; Sun, Daxi; Fan, Yiping; Tsurkan, Lyudmila; Potter, Philip M; Rehg, Jerold E; Schuetz, John D


    Abcb6 is a mammalian mitochondrial ATP-binding cassette (ABC) transporter that regulates de novo porphyrin synthesis. In previous studies, haploinsufficient (Abcb6(+/-)) embryonic stem cells showed impaired porphyrin synthesis. Unexpectedly, Abcb6(-/-) mice derived from these stem cells appeared phenotypically normal. We hypothesized that other ATP-dependent and/or -independent mechanisms conserve porphyrins. Here, we demonstrate that Abcb6(-/-) mice lack mitochondrial ATP-driven import of coproporphyrin III. Gene expression analysis revealed that loss of Abcb6 results in up-regulation of compensatory porphyrin and iron pathways, associated with elevated protoporphyrin IX (PPIX). Phenylhydrazine-induced stress caused higher mortality in Abcb6(-/-) mice, possibly because of sustained elevation of PPIX and an inability to convert PPIX to heme despite elevated ferrochelatase levels. Therefore, Abcb6 is the sole ATP-dependent porphyrin importer, and loss of Abcb6 produces up-regulation of heme and iron pathways necessary for normal development. However, under extreme demand for porphyrins (e.g. phenylhydrazine stress), these adaptations appear inadequate, which suggests that under these conditions Abcb6 is important for optimal survival.

  2. Respiratory Monitoring by Porphyrin Modified Quartz Crystal Microbalance Sensors

    Directory of Open Access Journals (Sweden)

    Seung-Woo Lee


    Full Text Available A respiratory monitoring system based on a quartz crystal microbalance (QCM sensor with a functional film was designed and investigated. Porphyrins 5,10,15,20-tetrakis-(4-sulfophenyl-21H,23H-porphine (TSPP and 5,10,15,20-tetrakis-(4-sulfophenyl-21H, 23H-porphine manganese (III chloride (MnTSPP used as sensitive elements were assembled with a poly(diallyldimethyl ammonium chloride (PDDA. Films were deposited on the QCM resonators using layer-by-layer method in order to develop the sensor. The developed system, in which the sensor response reflects lung movements, was able to track human respiration providing respiratory rate (RR and respiratory pattern (RP. The sensor system was tested on healthy volunteers to compare RPs and calculate RRs. The operation principle of the proposed system is based on the fast adsorption/desorption behavior of water originated from human breath into the sensor films deposited on the QCM electrode.

  3. Electron injection dynamics in high-potential porphyrin photoanodes. (United States)

    Milot, Rebecca L; Schmuttenmaer, Charles A


    There is a growing need to utilize carbon neutral energy sources, and it is well known that solar energy can easily satisfy all of humanity's requirements. In order to make solar energy a viable alternative to fossil fuels, the problem of intermittency must be solved. Batteries and supercapacitors are an area of active research, but they currently have relatively low energy-to-mass storage capacity. An alternative and very promising possibility is to store energy in chemical bonds, or make a solar fuel. The process of making solar fuel is not new, since photosynthesis has been occurring on earth for about 3 billion years. In order to produce any fuel, protons and electrons must be harvested from a species in its oxidized form. Photosynthesis uses the only viable source of electrons and protons on the scale needed for global energy demands: water. Because artificial photosynthesis is a lofty goal, water oxidation, which is a crucial step in the process, has been the initial focus. This Account provides an overview of how terahertz spectroscopy is used to study electron injection, highlights trends from previously published reports, and concludes with a future outlook. It begins by exploring similarities and differences between dye-sensitized solar cells (DSSCs) for producing electricity and a putative device for splitting water and producing a solar fuel. It then identifies two important problems encountered when adapting DSSC technology to water oxidation-improper energy matching between sensitizer energy levels with the potential for water oxidation and the instability of common anchoring groups in water-and discusses steps to address them. Emphasis is placed on electron injection from sensitizers to metal oxides because this process is the initial step in charge transport. Both the rate and efficiency of electron injection are analyzed on a sub-picosecond time scale using time-resolved terahertz spectroscopy (TRTS). Bio-inspired pentafluorophenyl porphyrins are

  4. Phenothiazine-bridged cyclic porphyrin dimers as high-affinity hosts for fullerenes and linear array of C60 in self-assembled porphyrin nanotube. (United States)

    Sakaguchi, Ken-ichi; Kamimura, Takuya; Uno, Hidemitsu; Mori, Shigeki; Ozako, Shuwa; Nobukuni, Hirofumi; Ishida, Masatoshi; Tani, Fumito


    Free-bases and a nickel(II) complex of phenothiazine-bridged cyclic porphyrin dimers bearing self-assembling 4-pyridyl groups (M2-Ptz-CPDPy(OCn); M = H2 or Ni, OCn = OC6 or OC3) at opposite meso-positions have been prepared as host molecules for fullerenes. The free-base dimer (H4-Ptz-CPDPy(OC6)) includes fullerenes with remarkably high association constants such as 3.9 ± 0.7 × 10(6) M(-1) for C60 and 7.4 ± 0.8 × 10(7) M(-1) for C70 in toluene. This C60 affinity is the highest value ever among reported receptors composed of free-base porphyrins. The nickel dimer (Ni2-Ptz-CPDPy(OC6)) also shows high affinities for C60 (1.3 ± 0.2 × 10(6) M(-1)) and C70 (over 10(7) M(-1)). In the crystal structure of the inclusion complex of C60 within H4-Ptz-CPDpy(OC3), the C60 molecule is located just above the centers of the porphyrins. The two porphyrin planes are almost parallel to each other and the center-to-center distance (12.454 Å) is close to the optimal separation (∼12.5 Å) for C60 inclusion. The cyclic porphyrin dimer forms a nanotube through its self-assembly induced by C-H···N hydrogen bonds between porphyrin β-CH groups and pyridyl nitrogens as well as π-π interactions of the pyridyl groups. The C60 molecules are linearly arranged in the inner channel of this nanotube.

  5. Dynamic Assembly Inclusion Complexes of Tweezer-type Bis(zinc porphyrin) with 5,15-Di(4-pyridyl)porphyrin Derivatives

    Institute of Scientific and Technical Information of China (English)

    ZHOU,Zai-Chun; YANG,Yi; ZHU,Yi-Zhou; ZHENG,Jian-Yu


    Dynamic assembly inclusion complexes of tweezer-type bis(zinc porphyrin) (1) with di(4-pyridyl)porphyrin derivatives have been designed and constructed. The complexes are induced by Zn-N coordination, and the weak binding allows the large-size di(4-pyridyl)poiphyrin guests in random rotation. Dynamic characteristics of these assemblies, such as ligand exchange and dynamic fluorescence quenching, have been investigated by 'H NMR, UV-Vis and fluorescence spectra. The stability of such assembly has pronounced dependence on the size-matching effect and thermal effect.

  6. A Sensitive A3B Porphyrin Nanomaterial for CO2 Detection

    Directory of Open Access Journals (Sweden)

    Eugenia Fagadar-Cosma


    Full Text Available The present report deals with the tailoring, preparation and characterization of novel nanomaterials sensitive to CO2 for use in detection of this gas during space habitation missions. A new nanostructured material based on mixed substituted asymmetrical A3B porphyrin: 5-(4-pyridyl-10,15,20-tris(3,4-dimethoxyphenyl-porphyrin (PyTDMeOPP was synthesized and characterized by 1H-NMR, FT-IR, UV-vis, fluorescence, MS, HPLC and AFM. Introducing one pyridyl substituent in the 5-meso-position of porphyrin macrocycle confers some degree of hydrophilicity, which may cause self-assembly properties and a better response to increased acidity. The influence of pH and nature of the solvent upon H and J aggregates of the porphyrin are discussed. Porphyrin aggregation at the air–THF interface gave a triangular type morphology, randomly distributed but uniformly oriented. When deposition was made by multiple drop-casting operations, a network of triangles of uniform size was created and a porous structure was obtained, being reorganized finally in rings. When the deposition was made from CHCl3, ring structures ranging in internal diameter from 300 nm to 1 µm, but with the same width of the corona circular of approx. 200 nm were obtained. This porphyrin-based material, capable of generating ring aggregates in both THF and CHCl3, has been proven to be sensitive to CO2 detection. The dependence between the intensity of porphyrin UV-vis absorption and the concentration of CO2 has a good correlation of 98.4%.

  7. Catalytic electron-transfer oxygenation of substrates with water as an oxygen source using manganese porphyrins. (United States)

    Fukuzumi, Shunichi; Mizuno, Takuya; Ojiri, Tetsuya


    Manganese(V)-oxo-porphyrins are produced by the electron-transfer oxidation of manganese-porphyrins with tris(2,2'-bipyridine)ruthenium(III) ([Ru(bpy)(3)](3+); 2 equiv) in acetonitrile (CH(3)CN) containing water. The rate constants of the electron-transfer oxidation of manganese-porphyrins have been determined and evaluated in light of the Marcus theory of electron transfer. Addition of [Ru(bpy)(3)](3+) to a solution of olefins (styrene and cyclohexene) in CH(3)CN containing water in the presence of a catalytic amount of manganese-porphyrins afforded epoxides, diols, and aldehydes efficiently. Epoxides were converted to the corresponding diols by hydrolysis, and were further oxidized to the corresponding aldehydes. The turnover numbers vary significantly depending on the type of manganese-porphyrin used owing to the difference in their oxidation potentials and the steric bulkiness of the ligand. Ethylbenzene was also oxidized to 1-phenylethanol using manganese-porphyrins as electron-transfer catalysts. The oxygen source in the substrate oxygenation was confirmed to be water by using (18)O-labeled water. The rate constant of the reaction of the manganese(V)-oxo species with cyclohexene was determined directly under single-turnover conditions by monitoring the increase in absorbance attributable to the manganese(III) species produced in the reaction with cyclohexene. It has been shown that the rate-determining step in the catalytic electron-transfer oxygenation of cyclohexene is electron transfer from [Ru(bpy)(3)](3+) to the manganese-porphyrins.

  8. Bio-inspired cofacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: Overpotential tuning by substituents at the porphyrin rings (United States)

    Zahran, Zaki N.; Mohamed, Eman A.; Naruta, Yoshinori


    Efficient reduction of CO2 into useful carbon resources particularly CO is an essential reaction for developing alternate sources of fuels and for reducing the greenhouse effect of CO2. The binuclear Ni, Fe-containing carbon monoxide dehydrogenase (CODHs) efficiently catalyzes the reduction of CO2 to CO. The location of Ni and Fe at proper positions allows their cooperation for CO2 to CO conversion through a push-pull mechanism. Bio-inspired from CODHs, we used several cofacial porphyrin dimers with different substituents as suitable ligands for holding two Fe ions with suitable Fe-Fe separation distance to efficiently and selectively promote CO2 to CO conversion with high turnover frequencies, TOFs. The substituents on the porphyrin rings greatly affect the catalysis process. By introducing electron-withdrawing/-donating groups, e.g. electron-withdrawing perfluorophenyl, at all meso positions of the porphyrin rings, the catalysis overpotential, η was minimized by ≈0.3 V compared to that obtained by introducing electron-donating mesityl groups. The Fe porphyrin dimers among reported catalysts are the most efficient ones for CO2 to CO conversion. Control experiments indicate that the high performance of the current CO2 to CO conversion catalysts is due to the presence of binuclear Fe centers at suitable Fe-Fe separation distance.

  9. Porphyrin-beta-oligo-ethynylenephenylene-[60]fullerene triads: synthesis and electrochemical and photophysical characterization of the new porphyrin-oligo-PPE-[60]fullerene systems. (United States)

    Lembo, Angelo; Tagliatesta, Pietro; Guldi, Dirk M; Wielopolski, Mateusz; Nuccetelli, Marzia


    The synthesis and electrochemical and photophysical studies of new electron donor-acceptor arrays, bearing porphyrins covalently linked to fullerene, are described. In the reported investigation, phenyleneethynylene subunits were chosen as a linking bridge to guarantee a high conjugation degree between the donor (i.e., porphyrin), the molecular bridge (i.e., oligo-phenyleneethynylenes), and the acceptor (i.e., fullerene). To enhance the electronic interactions through the extended pi-system, the molecular bridge has been directly linked to the beta-pyrrole position of the porphyrin ring, generating a new example of donor-bridge-acceptor systems where, for the first time, the meso-phenyl ring of the macrocycle is not used to hold the "bridge" between porphyrin and fullerene moieties. This modification allows altering the chemical and physical properties of the tetrapyrrole ring. Steady-state and time-resolved fluorescence studies together with transient absorption measurements reveal that in nonpolar media (i.e., toluene) transduction of singlet excited-state energy governs the excited-state deactivation, whereas in polar media (i.e., tetrahydrofuran) charge transfer prevails generating a long-lived radical ion pair state. The lifetimes hereof range from 300 to 700 ns. The study also sheds light onto the wirelike behavior of the oligo-phenyleneethynylene bridges, for which a damping factor (beta) of 0.11 +/- 0.05 A(-1) has been determined in the current study.

  10. An XPS analysis of the interaction of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin with exfoliated manganese thiophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Silipigni, L [Dipartimento di Fisica della Materia e Tecnologie Fisiche Avanzate, Universita di Messina, Salita Sperone 31, I, 98166 Messina (Italy); Luca, G De [Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica and CIRCMSB, Universita di Messina, Salita Sperone 31, I, 98166 Messina (Italy); Quattrone, T [Centro Siciliano per le Ricerche Atmosferiche e di Fisica dell' Ambiente, Salita Sperone 31, I, 98166 Messina (Italy); Scolaro, L Monsu [Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica and CIRCMSB, Universita di Messina, Salita Sperone 31, I, 98166 Messina (Italy); Salvato, G [Istituto per i Processi Chimico-Fisici del CNR, sezione Messina, Via La Farina 237, I, 98123 Messina (Italy); Grasso, V [Dipartimento di Fisica della Materia e Tecnologie Fisiche Avanzate, Universita di Messina, Salita Sperone 31, I, 98166 Messina (Italy)


    Composite thin films of (C{sub 72}H{sub 66}N{sub 8}O{sub 12}S{sub 4}){sub y}Li{sub 2x}Mn{sub 1-x}PS{sub 3} have been obtained through a solution approach by interacting the tosylate salt of the cationic water soluble 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin (H{sub 2}T{sub 4}) and MnPS{sub 3} exfoliated in the presence of lithium ions. The thin films have been investigated through x-ray diffraction (XRD), ultraviolet/visible (UV/vis) absorption and mainly x-ray photoemission spectroscopy (XPS). N 1s core-level XPS spectra emphasize the presence of three non-equivalent nitrogen atoms, similarly to the film of the pure H{sub 2}T{sub 4} salt. This result, together with the interlayer spacing determined by the XRD pattern and the evidence from absorption measurements, indicates that the porphyrin is intercalated into MnPS{sub 3} layers in a non-protonated form and substantially flattened with respect to the free molecule. The striking likeness between the N 1s core levels in the XPS spectra of the composite material, of the H{sub 2}T{sub 4} salt and of the neutral meso-tetrapyridylporphyrin (H{sub 2}TP{sub y}P) suggests that H{sub 2}T{sub 4} is present between the MnPS{sub 3} nanosheets together with its counter-ion (tosylate). This hypothesis is confirmed by the observation of a structure which can be attributed to the sulfur of the counterion in the S 2p core-level XPS spectra of the composite material. An analysis of the Mn 2p and 3p, S and P 2p core-level regions through XPS reveals a strong similarity between the starting MnPS{sub 3} and the composite material, suggesting that no charge transfer occurs from the guest (H{sub 2}T{sub 4}-tosylate) to the host species (MnPS{sub 3})

  11. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics (United States)

    Zhong, Qiwen

    photosynthesis. Photosynthesis uses light from the sun to drive a series of chemical reactions. Most natural photosynthetic systems utilize chlorophylls to absorb light energy and carry out photochemical charge separation that stores energy in the form of chemical bonds. The sun produces a broad spectrum of light output that ranges from gamma rays to radio waves. The entire visible range of light (400-700 nm) and some wavelengths in the NIR (700-1000 nm), are highly active in driving photosynthesis. Although the most familiar chlorophyll-containing organisms, such as plants, algae and cyanobacteria, cannot use light longer than 700 nm, anoxygenic bacterium containing bacteriochlorophylls can use the NIR part of the solar spectrum. No organism is known to utilize light of wavelength longer than about 1000 nm for photosynthesis. NIR light has a very low-energy content in each photon, so that large numbers of these low-energy photons would have to be used to drive the chemical reactions of photosynthesis. This is thermodynamically possible but would require a fundamentally different molecular mechanism that is more akin to a heat engine than to photochemistry. Early work on developing light absorbing materials for OPVs was inspired by photosynthesis in which light is absorbed by chlorophyll. Structurally related to chlorophyll is the porphyrin family, which has accordingly drawn much interest as the potential light absorbing component in OPV applications. In this dissertation, the design and detail studies of several porphyrin-based NIR absorbing materials, including pi--extended perylenyl porphryins and pyrazole-containing carbaporphyrins, as well as porphyrin modified single-walled carbon nanotube hybrids, will be presented, dedicating efforts to develop novel and application-oriented materials for efficient utilization of sustainable solar energy.

  12. Synthesis, characterization, and reactivities of manganese(V)-oxo porphyrin complexes. (United States)

    Song, Woon Ju; Seo, Mi Sook; George, Serena Debeer; Ohta, Takehiro; Song, Rita; Kang, Min-Jung; Tosha, Takehiko; Kitagawa, Teizo; Solomon, Edward I; Nam, Wonwoo


    The reactions of manganese(III) porphyrin complexes with terminal oxidants, such as m-chloroperbenzoic acid, iodosylarenes, and H(2)O(2), produced high-valent manganese(V)-oxo porphyrins in the presence of base in organic solvents at room temperature. The manganese(V)-oxo porphyrins have been characterized with various spectroscopic techniques, including UV-vis, EPR, 1H and 19F NMR, resonance Raman, and X-ray absorption spectroscopy. The combined spectroscopic results indicate that the manganese(V)-oxo porphyrins are diamagnetic low-spin (S = 0) species with a longer, weaker Mn-O bond than in previously reported Mn(V)-oxo complexes of non-porphyrin ligands. This is indicative of double-bond character between the manganese(V) ion and the oxygen atom and may be attributed to the presence of a trans axial ligand. The [(Porp)Mn(V)=O](+) species are stable in the presence of base at room temperature. The stability of the intermediates is dependent on base concentration. In the absence of base, (Porp)Mn(IV)=O is generated instead of the [(Porp)Mn(V)=O](+) species. The stability of the [(Porp)Mn(V)=O](+) species also depends on the electronic nature of the porphyrin ligands: [(Porp)Mn(V)=O](+) complexes bearing electron-deficient porphyrin ligands are more stable than those bearing electron-rich porphyrins. Reactivity studies of manganese(V)-oxo porphyrins revealed that the intermediates are capable of oxygenating PPh(3) and thioanisoles, but not olefins and alkanes at room temperature. These results indicate that the oxidizing power of [(Porp)Mn(V)=O](+) is low in the presence of base. However, when the [(Porp)Mn(V)=O](+) complexes were associated with iodosylbenzene in the presence of olefins and alkanes, high yields of oxygenated products were obtained in the catalytic olefin epoxidation and alkane hydroxylation reactions. Mechanistic aspects, such as oxygen exchange between [(Porp)Mn(V)=16O](+) and H(2)(18)O, are also discussed.

  13. Host-guest complexation of [60]fullerenes and porphyrins enabled by "click chemistry". (United States)

    Ho, Khanh-Hy Le; Hijazi, Ismail; Rivier, Lucie; Gautier, Christelle; Jousselme, Bruno; de Miguel, Gustavo; Romero-Nieto, Carlos; Guldi, Dirk M; Heinrich, Benoit; Donnio, Bertrand; Campidelli, Stéphane


    Herein the synthesis, characterization, and organization of a first-generation dendritic fulleropyrrolidine bearing two pending porphyrins are reported. Both the dendron and the fullerene derivatives were synthesized by Cu(I) -catalyzed alkyne-azide cycloaddition (CuAAC). The electron-donor-acceptor conjugate possesses a shape that allows the formation of supramolecular complexes by encapsulation of C60 within the jaws of the two porphyrins of another molecule. The interactions between the two photoactive units (i.e., C60 and Zn-porphyrin) were confirmed by cyclic voltammetry as well as by steady-state and time-resolved spectroscopy. For example, a shift of about 85 mV was found for the first reduction of C60 in the electron-donor-acceptor conjugate compared with the parent molecules, which indicates that C60 is included in the jaws of the porphyrin. The fulleropyrrolidine compound exhibits a rich polymorphism, which was corroborated by AFM and SEM. In particular, it was found to form supramolecular fibrils when deposited on substrates. The morphology of the fibrils suggests that they are formed by several rows of fullerene-porphyrin complexes.

  14. The effect of intermolecular interactions on photoluminescence of a porphyrin side-chain polymer

    Institute of Scientific and Technical Information of China (English)

    Wang Hui; Zhang Wei; Yu Han-Cheng; Huang Jin-Wang; Lin Wei-Zhu; Ji Liang-Nian


    Photoluminescence properties and exciton decay dynamics in a porphyrin side-chain polymer, poly[porphyrin acrylate- acrylonitrile (abbreviated p[(por)A-AN]), have been investigated by femtosecond time-resolved photoluminescence spectroscopy. All the luminescences of p[(por)A-AN] films are due to the emissive decay of the photoexcited singlet excitons in the porphyrins. The luminescence efficiencies and lifetimes are increased for samples from pure films to dilute blend films. However, they are increased as the intrachain concentration of the porphyrin sidechain groups is decreased. The intrachain rotation motions of porphyrin sidechain groups result in the initial ultrafast luminescence decays, which are much faster than those due to the interchain interactions. All the samples show no significant red-shift and broadening of the transient luminescence spectra. The interchain and intrachain nonradiative exciton relaxation processes may play an important role in the luminescence dynamics in the p[(por)A-AN] films. The possible origin of different intrachain and interchain dynamic behaviours in p[(por)A-AN] films is discussed.

  15. Synthesis of Covalently-Linked Linear Donor-Acceptor Copolymers Containing Porphyrins and Oligothiophenes

    Institute of Scientific and Technical Information of China (English)

    DUANMU,Chuan-Song; CHEN,Zhang-Ping; YU,Xue-Song


    @@ 5,15-Di-bithienyl porphyrin (1) and its Cu(Ⅱ), Zn (Ⅱ) complexes (2 and 3)[1] were polymerized according to Scheme 1 by chemical oxidation using FeCl3 as oxidant for making organic conductor, and the linear porphyrin-thiophene copolymers were obtained. The structures of the copolymers were identified by elemental analysis and IR spectra. The conductivity of poly 5,15-di-bithienyl porphyrin (4) doped with FeCl3 was measured to reach over 10-6 S/cm, which was in the range of semiconductor and higher than that of other porphyrin-thiophene copolymers prepared by Shimidzu. The higher conductivity may be due to the better conjugation between the thienyl group and the porphyrin ring. The thienylporphyrins 7 and 8 could not be polymerized under the similar conditions, but could be polymerized by electrochemical oxidation (working electrode: gold-plate electrode; counter electrode: platinum; reference: standard calomel electrode SEC; solvent: 0.1 mol·dm-3 n-Bu4NClO4 in dry MeCN).


    Institute of Scientific and Technical Information of China (English)

    Ke-wei Ding; Fei Wang; Fei-peng Wu


    A novel tripyridylporphyrin monomer,5-[4-[2-(acryloyloxy)ethoxy]phenyl]-10,15,20-tris(4-pyridyl)porphyrin (TrPyP),was synthesized and polymerized with acrylamide (AM) to prepare the hydrophobically associating water-soluble polymer PAM-TrPyP.The aggregation behavior of porphyrin pendants was investigated by UV-Visible and fluorescence spectra.The polymer displays a strong tendency of hydrophobic association even in dilute solutions.With increasing the concentration,the maximum absorption wavelength of Sorer band changes from 416 nm to 407 nm,and the fluorescence corrected for the inner filter effect exhibits moderate concentration quenching.All the results indicate that π-π interaction of porphyrin pendants plays a key role in association of PAM-TrPyP,and H-aggregates of porphyrins are mainly formed in the conccntrated solution.On the other hand,dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to follow the changes in size and structure of the macromolecular assemblies with the concentration increase.The polymer aggregation conformation changes from loose "vesicle-like" morphology to solid globule accordingly.When pH value of solution decreases to 4.3,pyridine moieties on porphyrin pendants could be protonated and the H-aggregates formed in macromolecular matrix are destroyed by electrostatic repulsion interactions.

  17. A panchromatic anthracene-fused porphyrin sensitizer for dye-sensitized solar cells

    KAUST Repository

    Ball, James M.


    The development of ruthenium-free sensitizers which absorb light over a broad range of the solar spectrum is important for improving the power conversion efficiency of dye-sensitized solar cells. Here we study three chemically tailored porphyrin-based dyes. We show that by fusing the porphyrin core to an anthracene unit, we can extend the conjugation length and lower the optical gap, shifting the absorption spectrum into the near-infrared (NIR). All three dyes were tested in dye-sensitized solar cells, using both titanium dioxide and tin dioxide as the electron-transport material. Solar cells incorporating the anthracene-fused porphyrin dye exhibit photocurrent collection at wavelengths up to about 1100 nm, which is the longest reported for a porphyrin-based system. Despite extending the photon absorption bandwidth, device efficiency is found to be low, which is a common property of cells based on porphyrin dyes with NIR absorption. We show that in the present case the efficiency is reduced by inefficient electron injection into the oxide, as opposed to dye regeneration, and highlight some important design considerations for panchromatic sensitizers. © 2012 The Royal Society of Chemistry.

  18. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)


    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.

  19. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    CHENG JiaGao; LUO XiaoMin; YAN XiuHua; LI Zhong; TANG Yun; JIANG HuaLiang; ZHU WeiLiang


    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system, which has been viewed as a new kind of binding force, as being compared with the classical interac-tions (e.g. hydrogen bonding, electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper, we present an overview of the typi-cal cation-π interactions in biological systems, the experimental and theoretical investigations on cation-π interactions, as well as the research results on cation-π interactions in our group.

  20. Lanthanide Complexes with Acetylacetonate and 5,10,15,20-Tetra[para-(4-chlorobenzoyloxy)phenyl]porphyrin

    Institute of Scientific and Technical Information of China (English)


    @@ The lanthanide complexes of acetylacetonate and 5,10,15,20-tetra[para-(chlorobenzoyloxy)phenyl]porphyrin having a general formula Ln[(cbop)4p]acac(where Ln=Tb,Ho,Er,Tm;cbop=(4-chlorobenzoyloxy)phenyl;Hacac=acetylacetone;p=porphyrin) were prepared and characterized.The structure of the complexs was proposed.

  1. Spectroscopy and photophysics of self-organized zinc porphyrin nanolayers. 3. Fluorescence detected magnetic resonance of triplet states

    NARCIS (Netherlands)

    Schaafsma, T.J.; Dag, I.; Sitters, R.; Glasbeek, M.; Lifshitz, E.


    Fluorescence detected magnetic resonance (FDMR) has been applied to ~25-nm-thick porphyrin films, containing ordered domains of zinc tetra-(p-octylphenyl)-porphyrin (ZnTOPP) spin-coated onto quartz slides. Illuminating the films at 1.4 K with 457.9-nm light from a continuous wave Ar+ laser produces

  2. Synthesis, Characterization, and Saccharide Binding Studies of Bile Acid − Porphyrin Conjugates

    Directory of Open Access Journals (Sweden)

    Vladimír Král


    Full Text Available Synthesis and characterization of bile acid-porphyrin conjugates (BAPs are reported. Binding of saccharides with BAPs in aqueous methanol was studied by monitoring changes in the visible absorption spectral of the porphyrin-moieties. Although these studies clearly showed absorbance changes, suggesting quite high if non-selective binding, the mass spectral studies do not unambiguously support these results.

  3. Porphyrins from Messel oil shale (Eocene, Germany): Structure elucidation, geochemical and biological significance, and distribution as a function of depth (United States)

    Ocampo, Rubén; Bauder, Claude; Callot, Henry J.; Albrecht, Pierre


    The extraction and isolation procedures of twenty nickel porphyrins (seven alkylporphyrins, thirteen carboxylic acids) from lacustrine Messel shale (Eocene, Germany), as well as the unequivocal structural assignments (obtained using 200 and 400 MHz nuclear magnetic resonance (NMR), nuclear Overhauser effect, mass spectrometry and total or partial synthesis of six reference compounds) are described. Ten porphyrins could be specifically correlated with biological precursors: algal chlorophyll c (4), bacteriochlorophylls d (3) and heme (3), while the remaining ones may arise from several chlorophylls. The structures of these fossil pigments mostly confirm the classical "Treibs scheme," including the origin of some porphyrins from nonchlorophyll sources. They also show that, even in a very immature sediment, deep modifications occur, including, in particular, extensive degradation of chlorophyll E ring. The composition of the porphyrin fractions of Messel oil shale was also studied as a function of depth. A porphyrin acids/alkylporphyrins ratio varying from 0.35 to 24.8 demonstrated that the apparent homogeneity of the shale is not reflected on the molecular scale. This was confirmed when the abundance of the twenty individual porphyrins of known structure was measured along the core. Significant correlations between individual porphyrins were found: fossils of bacteriochlorophylls d, homolog pairs of porphyrins (3-H/3-ethyl), etc.

  4. Syntheses and biological evaluation of F-18 and I-123 labeled porphyrins as potential tumor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H.; Ji, D. Y. [Inha University, Incheon (Korea, Republic of); Moon, B. S.; Lee, T. S.; Lee, D. H.; Lee, K. C.; Ahn, G. I.; Yang, S. D.; Choi, C. W.; Jun, K. S. [KIRAMS, Seoul (Korea, Republic of)


    Photofrin has currently been approved for general use by licensing authorities to treatment for solid tumor and cancer using photodynamic therapy (PDT) that treat to photochemical effect induced by light. Recently, meso-tetra(3-hydroxyphenyl)porphyrin has been developed as one of best tumor localizer and also shown a favorable tissue distribution. We have studied to develop I-123 labeled meso-tetra(3-methoxyphenyl)porphyrins for tumor imaging. We have studied to develop iodine-123 labeled meso-tetra(3-carboxymethoxy phenyl)porphyrin for tumor imaging agent. The radioiodinated porphyrin compound was obtained by the iodination reaction of tin precursor (50 ig) of porphyrin with Na-123I (200 {mu}L, 100-200 mCi), in the presence of peracetic acid (40 {mu}L) in ethanol. Iodine-123 labeled porphyrin derivative was obtained in 20-30% radiochemical yield and purified by HPLC at 2 mL/min using EtOH/water gradient condition and the fraction at 24-26 min was collected and characterized to desired compound by co injection with cold porphyrin analogue. Total time was around 120 min. The in vitro and in vivo of I-123 labeled porphyrin derivative is under studying.

  5. Spatial inhomogeneity in spectra and exciton dynamics in porphyrin micro-rods and micro-brushes: Confocal microscopy

    Indian Academy of Sciences (India)



    In an aqueous acidic solution, the porphyrin meso-tetra(4-sulfonatophenyl) porphyrin tetrasodium salt (TPPS) forms different kinds of assembly (micro-rods and micro-brush) depending on condition of evaporation. The exciton dynamics and emission spectra of the micro-rods and micro-brushes depend on spatialinhomogeneity. This is elucidated by time-resolved confocal microscopy.

  6. Non-covalent synthesis of calix[4]arene-capped porphyrins in polar solvents via ionic interactions

    NARCIS (Netherlands)

    Fiammengo, Roberto; Timmerman, Peter; Huskens, Jurriaan; Versluis, Kees; Heck, Albert J.R.; Reinhoudt, David N.


    Non-covalent synthesis of calix[4]arene capped porphyrins can be achieved in polar solvents (up to 45% molar fraction of water) via ionic interaction. Thus tetracationic meso-tetrakis(N-alkylpyridinium-3-yl) porphyrins 1a–d and tetra anionic 25,26,27,28-tetrakis(2-ethoxyethoxy)-calix[4]arene tetrasu

  7. Highly Efficient Cooperative Catalysis by Co III (Porphyrin) Pairs in Interpenetrating Metal-Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zekai; Zhang, Zhi-Ming; Chen, Yu-Sheng; Lin, Wenbin (UC); (Xiamen)


    A series of porous twofold interpenetrated In-CoIII(porphyrin) metal–organic frameworks (MOFs) were constructed by in situ metalation of porphyrin bridging ligands and used as efficient cooperative catalysts for the hydration of terminal alkynes. The twofold interpenetrating structure brings adjacent CoIII(porphyrins) in the two networks parallel to each other with a distance of about 8.8 Å, an ideal distance for the simultaneous activation of both substrates in alkyne hydration reactions. As a result, the In-CoIII(porphyrin) MOFs exhibit much higher (up to 38 times) catalytic activity than either homogeneous catalysts or MOF controls with isolated CoIII(porphyrin) centers, thus highlighting the potential application of MOFs in cooperative catalysis.

  8. Evidence for porphyrins bound, via ester bonds, to the Messel oil shale kerogen by selective chemical degradation experiments (United States)

    Huseby, B.; Ocampo, R.


    High amounts of nickel mono- and di-acid porphyrins were released from Messel oil shale kerogen (Eocene, Germany) by selective chemical degradation (acid and base hydrolysis). The released porphyrin fractions were quantified (UV-vis) and their constituents isolated and characterized at the molecular level (UV-vis, MS, NMR). The mono-acid porphyrin fraction released contained four compounds of similar abundance which arise from an obvious chlorophyll or bacteriochlorophyll precursor. The di-acid porphyrin fraction was, however, dominated by far by one compound, mesoporphyrin IX, which must have originated from heme-like precursors (heme, cytochromes, etc.). These results show unambigously that the released mono- and di-acid porphyrins were linked to the macromolecular kerogen network via ester bonds and suggest that precursor heme-like pigments could be selectively and/or more readily incorporated into the macromolecular kerogen network than precursor chlorophylls and bacteriochlorophylls.

  9. Photocatalytic degradation of atrazine by porphyrin and phthalocyanine complexes. (United States)

    Héquet, V; Le Cloirec, P; Gonzalez, C; Meunier, B


    This study principally focused on a new kind of photochemical reaction catalyst: porphyrin and phthalocyanine complexes. In a first step, the preparation of the catalysts was optimized. A resin has been chosen to be the support of the complexes. Efficiency of catalytic activity is performed on the degradation of a pesticide: atrazine. The best atrazine degradation occurs with 4.6% of complexes versus substrate. The role of the surface has also been shown to be important. Then, their performances were demonstrated in terms of kinetics and degradation routes, compared to a classical catalyst: titanium dioxide. This study seeks to assess the efficiency of these systems both in a mercury lamp reactor and under solar irradiation which reduces energy costs. The best atrazine degradation half-life found for the complexes is about 200 min with the iron phthalocyanine. These catalysts exhibit particular oxidation activities. Indeed, the degradation routes have been found different between the semi-conductor and the metallic complexes. These complexes are able to cleave the triazinic ring more efficiently than the titanium dioxide.

  10. Magnetic circular dichroism of porphyrin lanthanide M3+ complexes. (United States)

    Andrushchenko, Valery; Padula, Daniele; Zhivotova, Elena; Yamamoto, Shigeki; Bouř, Petr


    Lanthanide complexes exhibit interesting spectroscopic properties yielding many applications as imaging probes, natural chirality amplifiers, and therapeutic agents. However, many properties are not fully understood yet. Therefore, we applied magnetic circular dichroism (MCD) spectroscopy, which provides enhanced information about the underlying electronic structure to a series of lanthanide compounds. The metals in the M(3+) state included Y, La, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu; the spectra were collected for selected tetraphenylporphin (TPP) and octaethylporphin (OEP) complexes in chloroform. While the MCD and UV-VIS absorption spectra were dominated by the porphyrin signal, metal binding significantly modulated them. MCD spectroscopy was found to be better suited to discriminate between various species than absorption spectroscopy alone. The main features and trends in the lanthanide series observed in MCD and absorption spectra of the complexes could be interpreted at the Density Functional Theory (DFT) level, with effective core potentials on metal nuclei. The sum over state (SOS) method was used for simulation of the MCD intensities. The combination of the spectroscopy and quantum-chemical computations is important for understanding the interactions of the metals with the organic compounds.

  11. Modulation of porphyrin photoluminescence by nanoscale spacers on silicon substrates (United States)

    Fang, Y. C.; Zhang, Y.; Gao, H. Y.; Chen, L. G.; Gao, B.; He, W. Z.; Meng, Q. S.; Zhang, C.; Dong, Z. C.


    We investigate photoluminescence (PL) properties of quasi-monolayered tetraphenyl porphyrin (TPP) molecules on silicon substrates modulated by three different nanoscale spacers: native oxide layer (NOL), hydrogen (H)-passivated layer, and Ag nanoparticle (AgNP) thin film, respectively. In comparison with the PL intensity from the TPP molecules on the NOL-covered silicon, the fluorescence intensity from the molecules on the AgNP-covered surface was greatly enhanced while that for the H-passivated surface was found dramatically suppressed. Time-resolved fluorescence spectra indicated shortened lifetimes for TPP molecules in both cases, but the decay kinetics is believed to be different. The suppressed emission for the H-passivated sample was attributed to the weaker decoupling effect of the monolayer of hydrogen atoms as compared to the NOL, leading to increased nonradiative decay rate; whereas the enhanced fluorescence with shortened lifetime for the AgNP-covered sample is attributed not only to the resonant excitation by local surface plasmons, but also to the increased radiative decay rate originating from the emission enhancement in plasmonic "hot-spots".

  12. Reduction in porphyrin excretion as a sensitive indicator of lead toxicity in primary cultures of adult rat hepatocytes. (United States)

    Quintanilla-Vega, B; Hernandez, A; Mendoza-Figueroa, T


    Alterations of specific metabolic pathways can be used as sensitive indicators of toxicity by chemicals and can give valuable information on the mechanism(s) involved. Short-term effects of lead on hepatic haem biosynthesis were studied in an in vitro system. Primary cultures of adult rat hepatocytes were exposed for 24-48 hr to lead (0.024-3.6 mm), and excreted and intracellular porphyrins were measured in untreated and lead-treated cultures. Cytotoxicity, as estimated by enzyme leakage, and morphological alterations were also evaluated. Control hepatocytes produced porphyrins at a rate of 387 pmol/mg cellular protein/day. Most of the released and intracellular porphyrins were protoporphyrins, although uro- and coproporphyrins were also detected in lower amounts. After 24 hr of exposure to 0.1-3.6 mm Pb(2+) , excreted porphyrins decreased by 24-92% and intracellular porphyrins by 36-60%, while 48 hr of exposure to 0.024-3.6 mm Pb(2+) caused a progressive reduction of 77-97% in porphyrin excretion and of 49-67% in intracellular porphyrins. Lead exposure also produced a differential decrease of proto-, copro- and uro-porphyrin excretion. These lead effects can be explained mainly by inhibition of the enzyme 5-aminolaevulinate dehydratase, resulting in a decreased monopyrrole supply for porphyrin biosynthesis, and probably by inhibition of the enzyme uroporphyrinogen decarboxylase. Morphological alterations and enzyme leakage were detected only after 24 hr of exposure to 2.4 mm and 48 hr of exposure to 3.6 mm Pb(2+), respectively. The results show that changes in porphyrin production, and particularly in their excretion, in cultured rat hepatocytes are useful indicators of lead toxicity, since they are more sensitive than enzyme leakage and can give preliminary information on the enzyme(s) that could be affected. They also suggest the potential benefits of the use of this method for the evaluation of compounds that alter haem biosynthesis.


    Directory of Open Access Journals (Sweden)



    Full Text Available Nanostructured TiO2 sensitized with porphyrins for Solar water-splitting.The production of hydrogen from water using solar light is very promising for generations of an ecologically pure carrier contributing to a clean, sustainable and renewable energy system. The selection of specific photocatalyst material for hydrogen production in photoelectrochemical cells (PECs is based on some important characteristics of semiconductor, such as photo-corrosion and chemical corrosion stability, photocatalytic potential, high sensitivity for UV-visible light. In the present paper, different nanocrystalline TiO2 photoanodes have been prepared via wet-chemical techniques followed by annealing treatment and sensitized with porphyrins and supramolecular complexes of porphyrins. The so obtained photocatalysts were characterized with UV-VIS absorption spectroscopy and spectrofluorimetry. The purpose of these experiments is to show if the prepared materials possess the necessary photocatalytic characteristics and if they can be used with success in H2 production from water decomposition in PECs.

  14. Nonlinear optical properties of porphyrin and chlorophyll dimers studied by degenerated four wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.X.Q.


    As one of the important elements in natural and artificial electron transfer and energy transfer processes, porphyrin and its derivatives have received much attention in photoelectronics and photoelectronic materials. As our first attempt to relate the {pi}-{pi} electronic couplings between porphyrin macrocycles to apparent third order nonlinear susceptibilities, we measured {chi}({sup 3}) for several porphyrin and chlorophyll a derivatives, including dimers with different configurations. Our preliminary results show that the dimers have enhanced {chi}({sup 3}) compared to those of the monomer. This enhancement is related to the relative orientations between the two macrocycles in the dimers. The parallel dimers with close face-to-face distances seem to have the highest enhancement in {chi}({sup 3}). Thus, we believe that {chi}({sup 3}) is strongly related to the {pi}-{pi} electronic coupling between the two conjugated ring systems.

  15. Nonlinear optical properties of porphyrin and chlorophyll dimers studied by degenerated four wave mixing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.X.Q.


    As one of the important elements in natural and artificial electron transfer and energy transfer processes, porphyrin and its derivatives have received much attention in photoelectronics and photoelectronic materials. As our first attempt to relate the [pi]-[pi] electronic couplings between porphyrin macrocycles to apparent third order nonlinear susceptibilities, we measured [chi]([sup 3]) for several porphyrin and chlorophyll a derivatives, including dimers with different configurations. Our preliminary results show that the dimers have enhanced [chi]([sup 3]) compared to those of the monomer. This enhancement is related to the relative orientations between the two macrocycles in the dimers. The parallel dimers with close face-to-face distances seem to have the highest enhancement in [chi]([sup 3]). Thus, we believe that [chi]([sup 3]) is strongly related to the [pi]-[pi] electronic coupling between the two conjugated ring systems.

  16. Separation of impurities in diazinon preparations and their effect on porphyrin biosynthesis in tissue culture. (United States)

    Nichol, A W; Elsbury, S; Elder, G H; Jackson, A H; Rao, K R


    The impurities present in commercial diazinon preparations have been examined by high performance liquid chromatography with particular reference to the ability of these compounds to cause porphyrin accumulation in cultures of chicken embryo liver cells. Diazinon and its impurities are readily separated on 10 micron Partisil using cyclohexane-dioxan mixtures. The main impurities are tetraethylpyrophosphate, sulphotetraethylpyrophosphate, 2-isopropyl-6-methylpyrimid-4-one, 2-isopropyl-6-methylpyrimidin-4-thione, and 2-isopropyl-4-ethylthio-6-methylpyrimidine. A previously unreported impurity, 2-isopropyl-6-methyl-4-S-pyrimidinyl diethylthiophosphate (isodiazinon), was also detected. Both diazinon and isodiazinon cause accumulation of coproporphyrin in cultures of chicken embryo liver cells. Isodiazinon has a greater effect on porphyrin biosynthesis in the cultures than has diazinon. It is suggested that the point of interference with porphyrin biosynthesis is towards the end of the pathway.

  17. Methodological CASPT2 study of the valence excited states of an iron-porphyrin complex. (United States)

    Ben Amor, Nadia; Soupart, Adrien; Heitz, Marie-Catherine


    The singlet valence excited states of an iron-porphyrin-pyrazine-carbonyl complex are investigated up to the Soret band (about 3 eV) using multi-state complete active space with perturbation at the second order (MS-CASPT2). This complex is a model for the active site of carboxy-hemoglobin/myoglobin. The spectrum of the excited states is rather dense, comprising states of different nature: d→π* transitions, d→d states, π→π* excitations of the porphyrin, and doubly excited states involving simultaneous intra-porphyrin π→π* and d→d transitions. Specific features of the MS-CASPT2 method are investigated. The effect of varying the number of roots in the state average calculation is quantified as well as the consequence of targeted modifications of the active space. The effect of inclusion of standard ionization potential-electron affinity (IPEA) shift in the perturbation treatment is also investigated.

  18. Dendritic DNA-porphyrin as mimetic enzyme for amplified fluorescent detection of DNA. (United States)

    Xu, Nan; Lei, Jianping; Wang, Quanbo; Yang, Qianhui; Ju, Huangxian


    In this work, a novel dendritic DNA-porphyrin superstructure was designed as mimetic enzyme for the amplified fluorescent detection of DNA. The dendritic DNA superstructure was in situ assembled with three auxiliary DNAs via hybridization chain reaction. With groove interaction between iron porphyrin (FeTMPyP) and double-stranded DNA, the dendritic DNA superstructure is capable to gather abundant FeTMPyP molecules to form dendritic DNA-FeTMPyP mimetic enzyme. Using tyramine as a substrate, the dendritic DNA-FeTMPyP demonstrated excellent peroxidase-like catalytic oxidation of tyramine into fluorescent dityramine in the presence of H2O2. Based on an amplified fluorescence signal, a signal on strategy is proposed for DNA detection with high sensitivity, good specificity and practicability. The assembly of porphyrin with dendritic DNA not only provided the new avenue to construct mimetic enzyme but also established label-free sensing platform for a wide range of analytes.

  19. Expanded Porphyrin-Anion Supramolecular Assemblies: Environmentally Responsive Sensors for Organic Solvents and Anions. (United States)

    Zhang, Zhan; Kim, Dong Sub; Lin, Chung-Yon; Zhang, Huacheng; Lammer, Aaron D; Lynch, Vincent M; Popov, Ilya; Miljanić, Ognjen Š; Anslyn, Eric V; Sessler, Jonathan L


    Porphyrins have been used frequently to construct supramolecular assemblies. In contrast, noncovalent ensembles derived from expanded porphyrins, larger congeners of naturally occurring tetrapyrrole macrocycles, are all but unknown. Here we report a series of expanded porphyrin-anion supramolecular assemblies. These systems display unique environmentally responsive behavior. Addition of polar organic solvents or common anions to the ensembles leads to either a visible color change, a change in the fluorescence emission features, or differences in solubility. The actual response, which could be followed easily by the naked eye, was found to depend on the specifics of the assembly, as well as the choice of analyte. Using the ensembles of this study, it proved possible to differentiate between common solvents, such as diethyl ether, THF, ethyl acetate, acetone, alcohol, acetonitrile, DMF, and DMSO, identify complex solvent systems, as well as distinguish between the fluoride, chloride, bromide, nitrate, and sulfate anions.

  20. Effect of Central Metal on Nonlinear Optical Properties of Porphyrins and Their Graphene Composites (United States)

    Leng, Jian-Cai; Zhao, Li-Yun; Zhang, Yu-Jin; Ma, Hong


    The nonlinear optical properties of a series of newly synthesized porphyrins with different central metals and their covalently linked graphene composites are theoretically studied by numerically solving the rate equations and field intensity equation. Calculated results show that all the studied compounds are promising candidates for optical limiters, and graphene-porphyrin composites are expected to be preferable optical limiters because of their excellent nonlinear absorption abilities. In addition, the central metal in the porphyrin is found to be crucial to the optical power limiting and two-photon absorption performances of the compounds. Our results reproduce the experimental measurements. Additionally, special emphasis is placed on the factors that can affect the nonlinear optical properties of the compounds, indicating that one can create favorable nonlinear optical properties of the compounds by changing either the parameters of the absorber, including the concentration and thickness, or the pulse duration.

  1. Structural and electrochemical properties of -tetrabromo-mesotetrakis(4-alkyloxyphenyl)porphyrins and their metal complexes

    Indian Academy of Sciences (India)

    P Bhyrappa; C Arunkumar


    Crystal structure of 2,3,12,13-tetrabromo-5,10,15,20-tetrakis(4-butyloxy phenyl)porphinato copper(II) tetrahydrofuran solvate was examined and it features enhanced non-planar distortion of the porphyrin ring. The normal coordinate structural decomposition (NSD) analysis for the out-of-plane displacement of atoms of the macrocyclic ring in CuT(4-CnP)PBr4 ( = 4, 6) indicates mainly saddled distortion combined with small contribution from wave conformation. The electrochemical studies on MT (4-CnP)PBr4 (M = 2H, Cu(II), Zn(II)) revealed cathodic shift in redox potentials in contrast to the corresponding brominated porphyrins, MTPPBr4. This is perhaps due to non-planarity of the porphyrin ring and the positive inductive effect of the alkyloxy groups.

  2. Temperature-dependent conformations of a membrane supported zinc porphyrin tweezer by 2D fluorescence spectroscopy. (United States)

    Widom, Julia R; Lee, Wonbae; Perdomo-Ortiz, Alejandro; Rappoport, Dmitrij; Molinski, Tadeusz F; Aspuru-Guzik, Alán; Marcus, Andrew H


    We studied the equilibrium conformations of a zinc porphyrin tweezer composed of two carboxylphenyl-functionalized zinc tetraphenyl porphyrin subunits connected by a 1,4-butyndiol spacer, which was suspended inside the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) liposomes. By combining phase-modulation two-dimensional fluorescence spectroscopy (2D FS) with linear absorbance and fluorimetry, we determined that the zinc porphyrin tweezer adopts a mixture of folded and extended conformations in the membrane. By fitting an exciton-coupling model to a series of data sets recorded over a range of temperatures (17-85 °C) and at different laser center wavelengths, we determined that the folded form of the tweezer is stabilized by a favorable change in the entropy of the local membrane environment. Our results provide insights toward understanding the balance of thermodynamic factors that govern molecular assembly in membranes.

  3. Heavy metal cations permeate the TRPV6 epithelial cation channel. (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A


    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  4. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes

    DEFF Research Database (Denmark)

    Korsholm, Karen Smith; Agger, Else Marie; Foged, Camilla;


    Cationic liposomes are being used increasingly as efficient adjuvants for subunit vaccines but their precise mechanism of action is still unknown. Here, we investigated the adjuvant mechanism of cationic liposomes based on the synthetic amphiphile dimethyldioctadecylammonium (DDA). The liposomes ...

  5. Tripodal Receptors for Cation and Anion Sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman,; Verboom, Willem; Reinhoudt, David N.


    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  6. Molecular Catalysis of O2 Reduction by Iron Porphyrins in Water: Heterogeneous versus Homogeneous Pathways. (United States)

    Costentin, Cyrille; Dridi, Hachem; Savéant, Jean-Michel


    Despite decades of active attention, important problems remain pending in the catalysis of dioxygen reduction by iron porphyrins in water in terms of selectivity and mechanisms. This is what happens, for example, for the distinction between heterogeneous and homogeneous catalysis for soluble porphyrins, for the estimation of H2O2/H2O product selectivity, and for the determination of the reaction mechanism in the two situations. With water-soluble iron tetrakis(N-methyl-4-pyridyl)porphyrin as an example, procedures are described that allow one to operate this distinction and determine the H2O2/H2O product ratio in each case separately. It is noteworthy that, despite the weak adsorption of the iron(II) porphyrin on the glassy carbon electrode, the contribution of the adsorbed complex to catalysis rivals that of its solution counterpart. Depending on the electrode potential, two successive catalytic pathways have been identified and characterized in terms of current-potential responses and H2O2/H2O selectivity. These observations are interpreted in the framework of the commonly accepted mechanism for catalytic reduction of dioxygen by iron porphyrins, after checking its compatibility with a change of oxygen concentration and pH. The difference in intrinsic catalytic reactivity between the catalyst in the adsorbed state and in solution is also discussed. The role of heterogeneous catalysis with iron tetrakis(N-methyl-4-pyridyl)porphyrin has been overlooked in previous studies because of its water solubility. The main objective of the present contribution is therefore to call attention, by means of this emblematic example, to such possibilities to reach a correct identification of the catalyst, its performances, and reaction mechanism. This is a question of general interest, so that reduction of dioxygen remains a topic of high importance in the context of contemporary energy challenges.

  7. β-Cyclodextrin as a Metal-anionic Porphyrin Complexation Accelerator in Aqueous Media. (United States)

    Ohtomo, Takao; Yokoyama, Aya; Konno, Mitsuyuki; Ohno, Osamu; Igarashi, Shukuro; Takagai, Yoshitaka


    The rate of the complexation reaction between anionic porphyrins and 11 metal ions was found to be accelerated by the presence of β-cyclodextrin (β-CD) in aqueous media at room temperature without the need for additional heating or sonication. The porphyrin complexation reaction with metal ions under aqueous conditions can be difficult due to the strong hydration energy between the metal ions and water. In this study, the specific role of β-CD as an accelerator was determined and found to enhance the typically slow reaction of the porphyrin with metal ions. A significant acceleration effect was exhibited when the model anionic porphyrin, 5,10,15,20-tetraphenyl-21H,23H-porphine-tetrasulfonic acid, and Pb(II) ions were combined in the presence of β-CD. Other than for Hg ion, the addition of β-CD decreased the metalation reaction time from 30 to 2 min. The order in the degree of acceleration was Pb > Zn, Cd > Cu > Fe, Pd > Sn > Ag, Co, Mn. Using Pb(II) as the model ion, it was determined that the complexation rate constant was enhanced by a factor of 2.4, while the dissociation rate constant was diminished by a factor of 135 in the presence of added β-CD relative to that in its absence. Overall, the complex was much more stable (formation equilibrium constant 324-fold greater in the β-CD medium. The formation of a ternary complex (cf. bicapped complex; (β-CD)2-porphyrin-metal ion) was demonstrated through the use of nuclear magnetic-resonance spectroscopy and mass spectrometry. This acceleration effect is expected to be applicable systems in which porphyrin ligands are employed for determining of metal ions in chemical analysis and separation science.

  8. Self-assembled nanoscale DNA-porphyrin complex for artificial light harvesting. (United States)

    Woller, Jakob G; Hannestad, Jonas K; Albinsson, Bo


    Mimicking green plants' and bacteria's extraordinary ability to absorb a vast number of photons and harness their energy is a longstanding goal in artificial photosynthesis. Resonance energy transfer among donor dyes has been shown to play a crucial role on the overall transfer of energy in the natural systems. Here, we present artificial, self-assembled, light-harvesting complexes consisting of DNA scaffolds, intercalated YO-PRO-1 (YO) donor dyes and a porphyrin acceptor anchored to a lipid bilayer, conceptually mimicking the natural light-harvesting systems. A model system consisting of 39-mer duplex DNA in a linear wire configuration with the porphyrin attached in the middle of the wire is primarily investigated. Utilizing intercalated donor fluorophores to sensitize the excitation of the porphyrin acceptor, we obtain an effective absorption coefficient 12 times larger than for direct excitation of the porphyrin. On the basis of steady-state and time-resolved emission measurements and Markov chain simulations, we show that YO-to-YO resonance energy transfer substantially contributes to the overall flow of energy to the porphyrin. This increase is explained through energy migration along the wire allowing the excited state energy to transfer to positions closer to the porphyrin. The versatility of DNA as a structural material is demonstrated through the construction of a more complex, hexagonal, light-harvesting scaffold yielding further increase in the effective absorption coefficient. Our results show that, by using DNA as a scaffold, we are able to arrange chromophores on a nanometer scale and in this way facilitate the assembly of efficient light-harvesting systems.

  9. Biomimetic oxidation of carbamazepine with hydrogen peroxide catalyzed by a manganese porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Claudia M.B.; Simoes, Mario M.Q.; Domingues, Fernando M.J.; Neves, M. Graca P.M.S.; Cavaleiro, Jose A.S., E-mail: [Dept. de Quimica, QOPNA, Universidade de Aveiro (Portugal)


    This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H{sub 2}O{sub 2}, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy. (author)

  10. Computer simulation and spectroscopic study of inclusion complexes of cyclodextrins with luminescent porphyrins

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, George R S; Rezende, Thiago dos S; Barreto, Ledjane S; Almeida, Luis E; Da Costa, Nivan B Jr; Gimenez, Iara de F, E-mail: gimenez@ufs.b [Departamento de Quimica, CCET, Universidade Federal de Sergipe (UFS), Campus Universitario Prof. Jose AloIsio de Campos, Av. Marechal Rondon s/n, Sao Cristovao - SE (Brazil)


    Here we report a computational study of the structure, thermodynamic and spectroscopic properties of 1:1 and 2:1 inclusion complexes of luminescent porphyrins in {beta}-cyclodextrin. Semiempirical PM6 (Parametric Method 6) calculation allowed the optimization of the structure of the complexes, showing that the inclusion in the CD cavity changes significantly the porphyrin ring planarity for the 2:1 complexes. Thermodynamic calculations evidenced that the inclusion complex formation is slightly endothermic and that it is a non-spontaneous process in the absence of water molecules. Finally the calculated spectra were found to be in very good agreement to previously reported experimental ones.

  11. Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates. (United States)

    Helmich, Floris; Lee, Cameron C; Schenning, Albertus P H J; Meijer, E W


    Chiral memory at the supramolecular level is obtained via a new approach using chiral Zn porphrins and achiral Cu porphyrins. In a "sergeant-and-soldiers" experiment, the Zn "sergeant" transfers its own chirality to Cu "soldiers" and, after chiral amplification, the "sergeant" is removed from the coaggregates by axial ligation with a Lewis base. After this extraction, the preferred helicity observed for the aggregates containing achiral Cu porphyrins reveals a chiral memory effect that is stable and can be erased and partially restored upon subsequent heating and cooling.

  12. Biomimetic oxidation of carbamazepine with hydrogen peroxide catalyzed by a manganese porphyrin

    Directory of Open Access Journals (Sweden)

    Cláudia M. B. Neves


    Full Text Available This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H2O2, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy.

  13. Application of Thermogravimetry to Study the Kinetics and Stability of Porphyrin Copper-sodium of Ephedra

    Institute of Scientific and Technical Information of China (English)


    Thermogravimetry was used to study the non-isothermal decomposition kinetics and the stability of porphyrin copper-sodium from ephedra. The kinetic equation for the second step can be expressed as dα/(dT)=Ae-(Eα)/(RT)3/2(1-α)4/3/[(1-α)-1/3-1]. The kinetic compensation effect is found to be: lnA=0.2468Ea-8.0513. Ea is 206.61 kJ/mol. The results show that porphyrin copper-sodium has a high activation energy and good stability.

  14. Electron transport property of cobalt-centered porphyrin-armchair graphene nanoribbon (AGNR) junction

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Rajkumar; Sarkar, Utpal, E-mail: [Department of Physics, Assam University, Silchar-788011 (India)


    We have investigated the electron transport properties of Cobalt-centered (Co-centered) porphyrin molecule using the density functional theory and non-equilibrium greens function method. Here we have reported transmission coefficient as well as current voltage characteristics of Co-centered porphyrine molecule connected between armchair graphene nanoribbons. It has been found that at low bias region i.e., 0 V to 0.3 V it does not contribute any current. Gradual increase of bias voltage results different order of magnitude of current in different bias region.

  15. Aspects of investigating scrambling in the synthesis of porphyrins Different analytical methods

    DEFF Research Database (Denmark)

    Nielsen, C.B.; Krebs, Frederik C


    Herein, we discuss the analyses and quantification of the different components in porphyrin mixtures, prepared from p-anisaidehyde, p-tolualdehyde, and 5-(4-bromophenyl)-dipyrromethane with acid catalysis, using NMR and HPLC. The advantages and disadvantages of these analytical methods are emphas......Herein, we discuss the analyses and quantification of the different components in porphyrin mixtures, prepared from p-anisaidehyde, p-tolualdehyde, and 5-(4-bromophenyl)-dipyrromethane with acid catalysis, using NMR and HPLC. The advantages and disadvantages of these analytical methods...

  16. Effect of photocurrent enhancement in porphyrin-graphene covalent hybrids. (United States)

    Tang, Jianguo; Niu, Lin; Liu, Jixian; Wang, Yao; Huang, Zhen; Xie, Shiqiang; Huang, Linjun; Xu, Qingsong; Wang, Yuan; Belfiore, Laurence A


    Graphene oxide (GO) sheets were covalently functionalized with 5-p-aminophenyl-10,15,20-triphenylporphyrin (NH2TPP) by an amidation reaction between the amino group in NH2TPP and carboxyl groups in GO. The Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning and transmission electron microscopies reveal that NH2TPP covalent bonds form on the double surface of graphene oxide sheets, generating a unique nano-framework, i.e., NH2TPP-graphene-NH2TPP. Its UV-visible spectroscopy reveals that the absorption spectrum is not a linear superposition of the spectra of NH2TPP and graphene oxide, because a 59nm red shift of the strong graphene oxide absorption is observed from 238 to 297nm, with significant spectral broadening between 300 and 700nm. Fluorescence emission spectroscopy indicates efficient quenching of NH2TPP photoluminescence in this hybrid material, suggesting that photo-induced electron transfer occurs at the interface between NH2TPP and GO. A reversible on/off photo-current density of 47mA/cm(2) is observed when NH2TPP-graphene-NH2TPP hybrid sandwiches are subjected to pulsed white-light illumination. Covalently-bound porphyrins decrease the optical HOMO/LUMO band gap of graphene oxide by ≈1eV, according to UV-visible spectroscopy. Cyclic voltammetry predicts a small HOMO/LUMO band gap of 0.84eV for NH2TPP-graphene-NH2TPP hybrid sandwiches, which is consistent with efficient electron transfer and fluorescence quenching.

  17. Solution Concentration and Flow Rate of Fe3+-modified Porphyrin (Red Blood Model) on Giant Magnetoresistance (GMR) Sensor Efficiency (United States)

    Aminudin, A.; Tjahyono, D. H.; Suprijadi; Djamal, M.; Zaen, R.; Nandiyanto, A. B. D.


    Red blood has been of great interest for scientists since it relates to human’ and living creature’s life sustainability. One of the important compounds in red blood is porphyrin. Here, the purpose of this study was to develop a method for detecting porphyrin concentration using the assistance of giant magnetoresistance. In short of the method, we added Fe3+ solution to the porphyrin, and the mixed solution was introduced to the magnetic field. Next, the magnetized solution was introduced to the magnetic sensor to indicate the existence of porphyrin in the solution. To confirm the effectiveness of our method in detecting porphyrin, we varied the flow rate and concentration of Fe3+-modified porphyrin solution. The result showed that the more concentration and the slower flow rate affected the higher sensitivity gained. Since this developed method is simple but effective for detecting porphyrin concentration, we believe that further development of this method will be benefit for many applications, specifically relating to the medical uses.

  18. Conformational switching of ethano-bridged Cu,H2-bis-porphyrin induced by aromatic amines

    Directory of Open Access Journals (Sweden)

    Simona Bettini


    Full Text Available Cu,H2-bis-porphyrin (Cu,H2-Por2, in which copper porphyrin and free-base porphyrin are linked together by an ethano-bridge, was dissolved in chloroform and spread at the air/liquid subphase interface of a Langmuir trough. The bis-porphyrin derivative, floating film was characterized by reflection spectroscopy and the surface pressure of the floating film was studied as a function of the mean area per molecule. When aromatic amines are dissolved in the subphase, an evident interaction between the bis-porphyrin host and the aromatic amine guest is observed. A clear-cut variation of the profile of surface pressure vs area per molecule curve is observed. Reflection spectroscopy highlights that the aromatic amines dissolved in the subphase are able to induce the syn-to-anti conformational switching in the bis-porphyrin derivative. The Langmuir–Schaefer technique has been used to transfer the floating bis-porphyrin film (when using pure water as a subphase to a surface plasmon resonance (SPR substrate and the resulting device was able to detect the presence of aniline at concentrations as low as 1 nM in aqueous solution. The high selectivity of the SPR sensing device has been verified by checking the spectral response of the active layer towards other analytes dissolved in the aqueous solutions.

  19. Self-assembly of large-scale aggregates of porphyrin from its dimers and their absorption and luminescence properties (United States)

    Udal'tsov, A. V.; Kazarin, L. A.; Sweshnikov, A. A.


    Properties of aggregates of protonated meso-tetraphenylporphine (TPP) dimers have been investigated by absorption and luminescence spectroscopies and scanning electron microscopy. It was found that the absorption and fluorescence spectra obtained at a low and several times higher concentration of porphyrin differ considerably. The changes in absorption spectra of TPP in the water-THF-glycerol (84:6:10, v/v) mixture in the presence of 0.4 N HCl with time and the appearance of a green precipitate after several days indicate aggregation of the porphyrin. The near IR emission at 1000 nm, which is assigned to the fluorescence of donor-acceptor water-porphyrin dimeric complex, is revealed in the fluorescence spectra of TPP in aqueous solution of THF in the presence of 0.4 N HCl at the low concentration of porphyrin on excitation at 465 nm. In contrast, the near IR emission is not observed in the solution with several times higher concentration of porphyrin, but a shoulder at ca 800 nm is appreciable in the corresponding spectrum. The large-scale aggregates of TPP with sizes approximately from 1 μm to several micrometers are found in thin films of the protonated porphyrin. It is proposed that the aggregates are formed as a result of self-assembly from different protonated porphyrin dimers and have an ordered structure.

  20. Sol-gel hosts doped with porphyrin derivatives. Part I. Spectroscopy, hole-burning and spectral diffusion (United States)

    Kulikov, S. G.; Veret-Lemarinier, A. V.; Galaup, J. P.; Chaput, F.; Boilot, J. P.


    Pure inorganic sol-gel matrices as well as hybrid organic/inorganic xerogels have been doped with porphyrins derivatives and studied using line narrowing techniques. The role of residual hydroxyl groups is investigated. Free-base porphyrins are protonated in pure inorganic hosts, but the matrix acidity is reduced in hybrid matrices or when fluorinated porphyrins derivatives are used. The linear electron-phonon coupling can be controlled with the choice of the organic group in organic/inorganic matrices. Persistent spectral hole widths increase with temperature according a glass-like Tn dependence and evidence of spectral diffusion is shown in one of these systems.

  1. First example of a lipophilic porphyrin-cardanol hybrid embedded in a cardanol-based micellar nanodispersion. (United States)

    Bloise, Ermelinda; Carbone, Luigi; Colafemmina, Giuseppe; D'Accolti, Lucia; Mazzetto, Selma Elaine; Vasapollo, Giuseppe; Mele, Giuseppe


    Cardanol is a natural and renewable organic raw material obtained as the major chemical component by vacuum distillation of cashew nut shell liquid. In this work a new sustainable procedure for producing cardanol-based micellar nanodispersions having an embedded lipophilic porphyrin itself peripherally functionalized with cardanol substituents (porphyrin-cardanol hybrid) has been described for the first time. In particular, cardanol acts as the solvent of the cardanol hybrid porphyrin and cholesterol as well as being the main component of the nanodispersions. In this way a "green" micellar nanodispersion, in which a high percentage of the micellar system is derived from renewable "functional" molecules, has been produced.

  2. Redox tuning of cytochrome b562 through facile metal porphyrin substitution

    DEFF Research Database (Denmark)

    Della Pia, Eduardo Antonio; Chi, Qijin; Elliott, Martin;


    The biologically and nanotechnologically important heme protein cytochrome b562 was reconstructed with zinc and copper porphyrins, leading to significant changes in the spectral, redox and electron transfer properties. The Cu form shifts the redox potential by +300 mV and exhibits high electron t...

  3. Supramolecular nanostructuring of silver surfaces via self-assembly of [60]fullerene and porphyrin modules

    NARCIS (Netherlands)

    Bonifazi, Davide; Kiebele, Andreas; Stöhr, Meike; Cheng, Fuyong; Jung, Thomas; Diederich, Francois; Spillmann, Hannes


    Recent achievements in our laboratory toward the "bottom-up" fabrication of addressable multicomponent molecular entities obtained by self-assembly of C-60 and porphyrins on Ag(100) and Ag(111) surfaces are described.. Scanning tunneling microscopy (STM) studies on ad-layers constituting monomeric a

  4. Simultaneous synthesis/assembly of anisotropic cake-shaped porphyrin particles toward colloidal microcrystals. (United States)

    Wang, Ting; Kuang, Minxuan; Jin, Feng; Cai, Jinhua; Shi, Lei; Zheng, Yongmei; Wang, Jingxia; Jiang, Lei


    The one-step synthesis/assembly of a cake-shaped porphyrin colloidal microcrystal with tailored height-diameter was demonstrated based on interfacial assembly and the water-droplet template. The as-fabricated anisotropic colloidal crystals showed special optic properties and enhanced optic-limiting behavior.

  5. Physical origin of third order non-linear optical response of porphyrin nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Mongwaketsi, N., E-mail: [NANOAFNET, MRD- iThemba LABS, 1 Old Faure Road, Somerset West 7129 (South Africa); CSIR Biosciences, P.O. Box 395, Pretoria 0001 (South Africa); Khamlich, S. [NANOAFNET, MRD- iThemba LABS, 1 Old Faure Road, Somerset West 7129 (South Africa); Pranaitis, M. [LUNAM Universite, Universite d' Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 ANGERS cedex (France); Sahraoui, B., E-mail: [LUNAM Universite, Universite d' Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 ANGERS cedex (France); Khammar, F. [Universite Cherif Messadia, BP: 1553, Souk-Ahras 41000 (Algeria); Garab, G. [Institute of Plant Biology, Biological Research Centre, P.O. Box 521, Szeged H-6701 (Hungary); Sparrow, R. [CSIR Biosciences, P.O. Box 395, Pretoria 0001 (South Africa); Maaza, M. [NANOAFNET, MRD- iThemba LABS, 1 Old Faure Road, Somerset West 7129 (South Africa)


    The non-linear optical properties of porphyrin nanorods were studied using Z-scan, Second and Third harmonic generation techniques. We investigated in details the heteroaggregate behaviour formation of [H{sub 4}TPPS{sub 4}]{sup 2-} and [SnTPyP]{sup 2+} mixture by means of the UV-VIS spectroscopy and aggregates structure and morphology by transmission electron microscopy. The porphyrin nanorods under investigation were synthesized by self assembly and molecular recognition method. They have been optimized in view of future application in the construction of the light harvesting system. The focus of this study was geared towards understanding the influence of the type of solvent used on these porphyrins nanorods using spectroscopic and microscopic techniques. Highlights: Black-Right-Pointing-Pointer We synthesized porphyrin nanorods by self assembly and molecular recognition method. Black-Right-Pointing-Pointer TEM images confirmed solid cylindrical shapes. Black-Right-Pointing-Pointer UV-VIS spectroscopy showed the decrease in the absorbance peaks of the precursors. Black-Right-Pointing-Pointer The enhanced third-order nonlinearities were observed.

  6. Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Vanin, Marco; Karamad, Mohammedreza


    Porphyrin-like metal-functionalized graphene structures have been investigated as possible catalysts for CO2 and CO reduction to methane or methanol. The late transition metals (Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) and some p (B, Al, Ga) and s (Mg) metals comprised the center of the po......Porphyrin-like metal-functionalized graphene structures have been investigated as possible catalysts for CO2 and CO reduction to methane or methanol. The late transition metals (Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) and some p (B, Al, Ga) and s (Mg) metals comprised the center...... instead of CO2. Volcano plots were constructed on the basis of scaling relations of reaction intermediates, and from these plots the reaction steps with the highest overpotentials were deduced. The Rh-porphyrin-like functionalized graphene was identified as the most active catalyst for producing methanol...... from CO, featuring an overpotential of 0.22 V. Additionally, we have also examined the hydrogen evolution and oxidation reaction, and in their case, too, Rh-porphyrin turned out to be the best catalyst with an overpotential of 0.15 V. © 2013 American Chemical Society....

  7. The position effect of electron-deficient quinoxaline moiety in porphyrin based sensitizers (United States)

    Fan, Suhua; Lv, Kai; Sun, Hong; Zhou, Gang; Wang, Zhong-Sheng


    An electron-deficient group, 2,3-diphenylquinoxaline (DPQ), is incorporated as an auxiliary acceptor into the different positions of the porphyrin (Por) based donor-π bridge-acceptor (D-π-A) dye (FNE57) to construct D-A‧-Por-π-A (FNE58) and D-Por-A‧-π-A (FNE59) configurations. The incorporation of DPQ unit between the donor and porphyrin unit has negligible influence on the absorption property, whereas the DPQ unit located between the porphyrin unit and acceptor significantly increases the absorbance for the Soret band and the valley between the Soret and Q bands. Theoretical calculation reveals that incorporating the DPQ unit adjacent to the acceptor is more advantageous to delocalize the lowest unoccupied molecular orbital and enhance the electronic asymmetry, which facilitates the intramolecular charge transfer. The effect of DPQ unit and its linkage position on the performance of related quasi-solid-state dye-sensitized solar cells (DSSCs) is systematically investigated. The quasi-solid-state DSSC with sensitizer FNE59 displays a power conversion efficiency of 6.02%, which is 23% and 51% higher than those for FNE57 and FNE58 based DSSCs. Our studies facilitate the understanding of the crucial importance of molecular engineering and pave a new path to design novel porphyrin based sensitizers for highly efficient DSSCs.

  8. Structural modifications to enhance the exciton diffusion in bilayer porphyrin fullerene thin films (United States)

    Kaushal, Meesha; Srinivasamurthy, Praveen; Walter, Michael G.


    The effects of peripheral alkyl groups and thermal annealing on the exciton quenching efficiency in bilayer porphyrinfullerene thin films has been investigated. The thin film UV-vis absorbance spectra, steady-state fluorescence emission, and thermal properties of three carboalkoxyphenyl porphyrin derivatives have been studied: tetra(4-carbohexoxyphenyl)porphyrin (TCH4PP), tetra(4-carbo-2-ethylhexoxyphenyl)porphyrin (TCEH4PP), and tetra(4-carbooctoxyphenyl)-porphyrin (TCO4PP). The quenching efficiencies of these three derivatives have been calculated from their steady-state emission using pristine spin cast films and films with an evaporated C60 bilayer. Structural analyses have been performed using X-ray diffraction (XRD), UV-vis spectroscopy, and thermal properties were studied using differential scanning calorimetry measurements (DSC). Annealing the films caused significant structural changes as was observed in the UV-vis absorbance spectra and XRD diffraction patterns. Prior to thermal annealing, quenching efficiencies are greatest for the TCH4PP and TCO4PP (hexyl and octyl derivatives), which is in agreement with previous bulk quenching experiments to calculate exciton diffusion lengths.1 After annealing, the hexyl derivative (TCH4PP) showed the lowest bilayer quenching efficiency and indicated evidence of significant molecular rearrangements.

  9. Formation and helicity control of ssDNA templated porphyrin nanoassemblies. (United States)

    Sargsyan, Gevorg; Schatz, Alexandra A; Kubelka, Jan; Balaz, Milan


    We report the formation of left- (M-helix) and right-handed (P-helix) nanoassemblies of a porphyrin-diaminopurine conjugate (Por-DAP) templated by a single stranded oligodeoxythymidine (dT40) via directional hydrogen bonding. The supramolecular helicity can be controlled by the ionic strength, Por-DAP : dT40 ratio, and annealing rate.

  10. Study on the supramolecular system of meso-tetrakis (4-sulfonatophenyl) porphyrin and cyclodextrins by spectroscopy (United States)

    Wang, Xiao-ping; Pan, Jing-hao; Shuang, Shao-min


    The ability of β-cyclodextrin (β-CD), sulfurbutylether-β-CD (SBE-β-CD) and hydroxypropyl-β-CD (HP-β-CD) to break the aggregate of the meso-Tetrakis (4-sulfonatophenyl) porphyrin (TPPS 4) and to form 2:1 inclusion complexes has been studied by adsorption and fluorescence spectroscopy. The formation constants are calculated, respectively by fluoremetry, from which the inclusion capacity of different CDs is compared and the inclusion mechanism of charged-β-CD (SBE-β-CD) is quite different from that of parent β-CD. At lower pH, the complexation between HP-β-CD and H 2TPPS 42+ (the form of the diprotonated TPPS 4) hampers the continuous protonation of the pyrrole nitrogen of TPPS 4 and the hydrophobic cavity may prefer to bind an apolar neutral porphyrin molecule. 1HNMR data support the inclusion conformation of the porphyrin-cyclodextrin supramolecular system, indicating the interaction of meso-phenyl groups of TPPS 4 with the cavity of CDs. For this host-guest inclusion model, cyclodextrin, being regarded as the protein component, which acts as a carrier enveloping the active site of heme prosthetic group within its hydrophobic environment, provides a protective sheath for porphyrin, creating artificial analogues of heme-containing proteins. However, the TPPS 4, encapsulated within this saccharide-coated barrier, its physico-chemical, photophysical and photochemical properties changed strongly.

  11. Complexation of diphenyl(phenylacetenyl)phosphine to rhodium(III) tetraphenyl porphyrins

    DEFF Research Database (Denmark)

    Stulz, Eugen; Scott, Sonya M; Bond, Andrew D;


    The coordination of diphenyl(phenylacetenyl)phosphine (DPAP, 1) to (X)Rh(III)TPP (X = I (2) or Me (3); TPP = tetraphenyl porphyrin) was studied in solution and in the solid state. The iodide is readily displaced by the phosphine, leading to the bis-phosphine complex [(DPAP)(2)Rh(TPP)](I) (4). The...

  12. RAFT Synthesis and Self-Assembly of Free-Base Porphyrin Cored Star Polymers

    Directory of Open Access Journals (Sweden)

    Lin Wu


    Full Text Available Reversible addition fragmentation chain transfer (RAFT synthesis and self-assembly of free-base porphyrin cored star polymers are reported. The polymerization, in the presence of a free-base porphyrin cored chain transfer agent (CTA-FBP, produced porphyrin star polymers with controlled molecular weights and narrow polydispersities for a number of monomers including N, N-dimethylacrylamide (DMA and styrene (St. Well-defined amphiphilic star block copolymers, P-(PS-PDMA4 and P-(PDMA-PS4 (P: porphyrin, were also prepared and used for self-assembly studies. In methanol, a selective solvent for PDMA, spherical micelles were observed for both block copolymers as characterized by TEM. UV-vis studies suggested star-like micelles were formed from P-(PS-PDMA4, while P-(PDMA-PS4 aggregated into flower-like micelles. Spectrophotometric titrations indicated that the optical response of these two micelles to external ions was a function of micellar structures. These structure-related properties will be used for micelle studies and functional material development in the future.

  13. Expanded porphyrins as third order non-linear optical materials: Some structure-function correlations

    Indian Academy of Sciences (India)

    Sabapathi Gokulnath; Tavarekere K Chandrashekar


    In this paper, the non-linear optical properties of representative core-modified expanded porphyrins have been investigated with an emphasis on the structure-property relationship between the aromaticity and conformational behaviour. It has been shown that the measured two-photon absorption cross section (2) values depend on the structure of macrocycle, its aromaticity and the number of -electrons in conjugation.

  14. Effect of the layer charge on the interaction of porphyrin dyes in layered silicates dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Ceklovsky, A., E-mail: [Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 36 Bratislava (Slovakia); Czimerova, A. [Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 36 Bratislava (Slovakia); Lang, K. [Institute of Inorganic Chemistry, v.v.i., Academy of Sciences of the Czech Republic, 250 68 Rez (Czech Republic); Bujdak, J. [Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 36 Bratislava (Slovakia)


    Interaction between tetracationic porphyrin, 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP), and layered silicates in aqueous dispersions was studied using absorption, steady-state and time-resolved fluorescence spectroscopies. The charge density of silicates increases in order synthetic laponite (LAP)porphyrin (LSP) systems considered models of dye adsorption on clay mineral colloid particles, analyzing phenomena occurring in similar systems such as structural changes of TMPyP and the formation of dye molecular assemblies. Structural changes of TMPyP, including flattening of the porphyrin molecule, do not fully explain all the spectral observations. One should mention variations of the Q-bands and fluorescence spectra in dependence on the layer charge. The molecular association of the TMPyP molecules is expected to occur to a certain extent in dependence on the layer charge of a clay mineral template. H-aggregates were not observed in any system. Only FHT colloids induced the formation of at least two components with significantly different spectral properties.

  15. Porphyrin Nanodroplets: Sub-micrometer Ultrasound and Photoacoustic Contrast Imaging Agents. (United States)

    Paproski, Robert J; Forbrich, Alexander; Huynh, Elizabeth; Chen, Juan; Lewis, John D; Zheng, Gang; Zemp, Roger J


    A novel class of all-organic nanoscale porphyrin nanodroplet agents is presented which is suitable for multimodality ultrasound and photoacoustic molecular imaging. Previous multimodality photoacoustic-ultrasound agents are either not organic, or not yet demonstrated to exhibit enhanced accumulation in leaky tumor vasculature, perhaps because of large diameters. In the current study, porphyrin nanodroplets are created with a mean diameter of 185 nm which is small enough to exhibit the enhanced permeability and retention effect. Porphyrin within the nanodroplet shell has strong optical absorption at 705 nm with an estimated molar extinction coefficient >5 × 10(9) m(-1) cm(-1) , allowing both ultrasound and photoacoustic contrast in the same nanoparticle using all organic materials. The potential of nanodroplets is that they may be phase-changed into microbubbles using high pressure ultrasound, providing ultrasound contrast with single-bubble sensitivity. Multispectral photoacoustic imaging allows visualization of nanodroplets when injected intratumorally in an HT1080 tumor in the chorioallantoic membrane of a chicken embryo. Intravital microscopy imaging of Hep3-GFP and HT1080-GFP tumors in chicken embryos determines that nanodroplets accumulated throughout or at the periphery of tumors, suggesting that porphyrin nanodroplets may be useful for enhancing the visualization of tumors with ultrasound and/or photoacoustic imaging.

  16. Porphyrin-Based Metal-Organic Frameworks as Heterogeneous Catalysts in Oxidation Reactions

    Directory of Open Access Journals (Sweden)

    Carla F. Pereira


    Full Text Available Porphyrin-based Metal-Organic Frameworks (Por-MOFs constitute a special branch of the wide MOF family that has proven its own value and high potential in different applications. In this mini-review the application of these materials as catalysts in oxidation reactions is highlighted.

  17. The severity of hereditary porphyria is modulated by the porphyrin exporter and Lan antigen ABCB6. (United States)

    Fukuda, Yu; Cheong, Pak Leng; Lynch, John; Brighton, Cheryl; Frase, Sharon; Kargas, Vasileios; Rampersaud, Evadnie; Wang, Yao; Sankaran, Vijay G; Yu, Bing; Ney, Paul A; Weiss, Mitchell J; Vogel, Peter; Bond, Peter J; Ford, Robert C; Trent, Ronald J; Schuetz, John D


    Hereditary porphyrias are caused by mutations in genes that encode haem biosynthetic enzymes with resultant buildup of cytotoxic metabolic porphyrin intermediates. A long-standing open question is why the same causal porphyria mutations exhibit widely variable penetrance and expressivity in different individuals. Here we show that severely affected porphyria patients harbour variant alleles in the ABCB6 gene, also known as Lan, which encodes an ATP-binding cassette (ABC) transporter. Plasma membrane ABCB6 exports a variety of disease-related porphyrins. Functional studies show that most of these ABCB6 variants are expressed poorly and/or have impaired function. Accordingly, homozygous disruption of the Abcb6 gene in mice exacerbates porphyria phenotypes in the Fech(m1Pas) mouse model, as evidenced by increased porphyrin accumulation, and marked liver injury. Collectively, these studies support ABCB6 role as a genetic modifier of porphyria and suggest that porphyrin-inducing drugs may produce excessive toxicities in individuals with the rare Lan(-) blood type.

  18. Vibrational spectroscopy of –/ – stretching vibrations of copper tetramesityl porphyrin: An algebraic approach

    Indian Academy of Sciences (India)

    Srinivasa Rao Karumuri; Joydeep Choudhury; Nirmal Kumar Sarkar; Ramendu Bhattacharjee


    Using Lie algebraic techniques and simpler expressions of the matrix elements of Majorana and Casimir operators given by us, we obtain an effective Hamiltonian operator which conveniently describes stretching vibrations of biomolecules. For a copper tetramesityl porphyrin molecule, the higher excited vibrational levels are calculated by applying the (2) algebraic approach.

  19. Exciton spectra and the microscopic structure of self-assembled porphyrin nanotubes

    NARCIS (Netherlands)

    Vlaming, S. M.; Augulis, R.; Stuart, M. C. A.; Knoester, J.; van Loosdrecht, P. H. M.


    The optical properties of tubular aggregates formed by self-assembly of zwitterionic meso-tetra(4-sulfonatophenyl)porphyrin (TPPS(4)) molecules are studied through a combination of experimental and theoretical techniques. The interest in these systems, with diameters of 18 nm and lengths extending u

  20. Controlled electropolymerisation of a carbazole-functionalised iron porphyrin electrocatalyst for CO2 reduction

    DEFF Research Database (Denmark)

    Hu, Xinming; Salmi, Zakaria; Lillethorup, Mie;


    Using a one-step electropolymerisation procedure, CO2 absorbing microporous carbazole-functionalised films of iron porphyrins are prepared in a controlled manner. The electrocatalytic reduction of CO2 for these films is investigated to elucidate their efficiency and the origin of their ultimate...

  1. High-throughput synthesis and characterization of nanocrystalline porphyrinic zirconium metal-organic frameworks. (United States)

    Kelty, M L; Morris, W; Gallagher, A T; Anderson, J S; Brown, K A; Mirkin, C A; Harris, T D


    We describe and employ a high-throughput screening method to accelerate the synthesis and identification of pure-phase, nanocrystalline metal-organic frameworks (MOFs). We demonstrate the efficacy of this method through its application to a series of porphyrinic zirconium MOFs, resulting in the isolation of MOF-525, MOF-545, and PCN-223 on the nanoscale.

  2. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.


    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  3. Modulation of Energy Transfer into Sequential Electron Transfer upon Axial Coordination of Tetrathiafulvalene in an Aluminum(III) Porphyrin-Free-Base Porphyrin Dyad. (United States)

    Poddutoori, Prashanth K; Bregles, Lucas P; Lim, Gary N; Boland, Patricia; Kerr, Russ G; D'Souza, Francis


    Axially assembled aluminum(III) porphyrin based dyads and triads have been constructed to investigate the factors that govern the energy and electron transfer processes in a perpendicular direction to the porphyrin plane. In the aluminum(III) porphyrin-free-base porphyrin (AlPor-Ph-H2Por) dyad, the AlPor occupies the basal plane, while the free-base porphyrin (H2Por) with electron withdrawing groups resides in the axial position through a benzoate spacer. The NMR, UV-visible absorption, and steady-state fluorescence studies confirm that the coordination of pyridine appended tetrathiafulvalene (TTF) derivative (TTF-py or TTF-Ph-py) to the dyad in noncoordinating solvents afford vertically arranged supramolecular self-assembled triads (TTF-py→AlPor-Ph-H2Por and TTF-Ph-py→AlPor-Ph-H2Por). Time-resolved studies revealed that the AlPor in dyad and triads undergoes photoinduced energy and/or electron transfer processes. Interestingly, the energy and electron donating/accepting nature of AlPor can be modulated by changing the solvent polarity or by stimulating a new competing process using a TTF molecule. In modest polar solvents (dichloromethane and o-dichlorobenzene), excitation of AlPor leads singlet-singlet energy transfer from the excited singlet state of AlPor ((1)AlPor*) to H2Por with a moderate rate constant (k(EnT)) of 1.78 × 10(8) s(-1). In contrast, excitation of AlPor in the triad results in ultrafast electron transfer from TTF to (1)AlPor* with a rate constant (k(ET)) of 8.33 × 10(9)-1.25 × 10(10) s(-1), which outcompetes the energy transfer from (1)AlPor* to H2Por and yields the primary radical pair TTF(+•)-AlPor(-•)-H2Por. A subsequent electron shift to H2Por generates a spatially well-separated TTF(+•)-AlPor-H2Por(-•) radical pair.

  4. Synthesis of water-soluble silicon-porphyrin: protolytic behaviour of axially coordinated hydroxy groups. (United States)

    Remello, Sebastian Nybin; Kuttassery, Fazalurahman; Hirano, Takehiro; Nabetani, Yu; Yamamoto, Daisuke; Onuki, Satomi; Tachibana, Hiroshi; Inoue, Haruo


    A new water-soluble silicon(IV)-tetra(4-carboxyphenyl)porphyrin (SiTCPP) with silicon(iv), the second most abundant element on Earth, in the center of porphyrin was synthesized. Fundamental properties including protolytic behaviour of axially coordinating hydroxy groups, and electrochemical behaviour were characterized. The properties were compared with those of silicon(IV)-tetra(2,4,6-trimethylphenyl)porphyrin (SiTMP) and silicon(IV)-tetra(4-trifluoromethylphenyl)porphyrin (SiTFMPP) and discussed in respect to the electron donating/withdrawing effect of the substituents. Two axially coordinating hydroxy groups of SiTCPP exhibit a four-step protolytic behaviour under the acidic conditions along with a single step protolysis of peripheral carboxyl groups. Though SiTCPP and SiTFMPP did not show any reactivity in the photochemical oxygenation of a substrate with K2PtCl6 as a sacrificial electron acceptor, the first oxidation wave in the electrochemical process of SiTCPP and SiTFMPP showed catalytic behaviour in aqueous acetonitrile solution at any pH condition, in contrast to SiTMP which has only a reversible oxidation wave under neutral and weakly acidic conditions. The criteria for the electrochemical oxidative activation of water and the photooxygenation of the substrate were obtained. The higher oxidation wave of Si-porphyrins than ∼0.86 volt vs. SHE is required for the electrochemical oxidation of water, while suitable protecting groups such as a methyl substituent is a requisite for the photochemical oxygenation with K2PtCl6 as a sacrificial electron acceptor.

  5. Environmental conditions during the Frasnian-Fammenian mass extinction inferred from chlorophyll-derived porphyrin biomarkers. (United States)

    Uveges, B. T.; Junium, C. K.; Cohen, P. A.; Boyer, D.


    The widespread mass extinction that occurred across the Frasnian- Fammenian (F-F) boundary was one of the largest losses of biodiversity in Earth's history. The F-F extinction interval is expressed in western New York State by two organic rich black shale intervals known as the Upper and Lower Kellwasser events. These shale intervals are well preserved, thermally immature, and are well constrained in age by conodont biostratigraphy, and thus provide an exceptional opportunity to study the organic material originating from the F-F boundary. In order to test hypotheses about the cause(s) and consequences of the FF biotic crisis, a broader knowledge of the organic carbon sources is needed, and a characterization of the marine primary producer communities will assist in this endeavor. One such avenue is through the study of chlorophyll-derived biomarkers (porphyrins). The organic extracts of powdered shale samples from the Kellwasser horizons were analyzed using HPLC/LC-MSn and diode array UV-Vis spectroscopy. Preliminary data from the Kellwasser intervals reveal only one porphyrin, with a mass (M+H) of 600. The UV-Vis absorbance spectrum (Soret = 405nm, α = 533nm, β = 570nm) of the metallated compound is consistent with that of a vanadyl porphyrin with a free-base (M+H) of 535. Collision-induced mass spectra displays mass losses of 43 and 57 daltons, which are consistent with an extended alkyl chain at the C-8 position. Extended alkyl chains at C-8 are exclusively associated with porphyrins derived from bacteriochlorophyll c, d or e. The presence of bacterioporphyrins is congruous with the episodic presence of anoxic and sulfidic conditions in the photic zone. What is surprising is that a bacteriochlorophyll- derived porphyrin is the most abundant in these sequences, and their study may help to elucidate the conditions surrounding the F-F mass extinction, and further constrain the fluctuations in marine oxygen content in the Upper Devonian Appalachian Basin.

  6. Octopus Manganese Porphyrin with Polyglycol Chains as a Catalyst for the β-Selective Epoxidation of Cholesterol Derivatives

    Institute of Scientific and Technical Information of China (English)

    Run Hua LI; Yuan Cong ZHAO; Jiang WU; Jing Song YOU; Xiao Qi YU


    Synthesis of a novel octopus porphyrin with polyglycol chains 1a was achieved.The catalytic activity of 1a's manganese complex for the epoxidation of cholesterol derivatives with PhIO give a satisfactory conversion and regioselectivity.

  7. Fluorinated porphyrin tweezer: a powerful reporter of absolute configuration for erythro and threo diols, amino alcohols, and diamines. (United States)

    Li, Xiaoyong; Tanasova, Marina; Vasileiou, Chrysoula; Borhan, Babak


    A general and sensitive nonempirical protocol to determine the absolute configurations of erythro and threo diols, amino alcohols, and diamines is reported. Binding of diols to the porphyrin tweezer system is greatly enhanced by increasing the Lewis acidity of the metalloporphyrin. Supramolecular complexes formed between the porphyrin tweezer host and chiral substrates exhibited exciton-coupled bisignate CD spectra with predictable signs based on the substituents on the chiral center. The working model suggests that the observed helicity of the porphyrin tweezer is dictated via steric differentiation experienced by the porphyrin ring bound to each chiral center. A variety of erythro and threo substrates were investigated to verify this chiroptical method. Their absolute configurations were unequivocally determined, and thus a general mnemonic is provided for the assignment of chirality.

  8. Preparation of fluorescent organometallic porphyrin complex nanogels of controlled molecular structure via reverse-emulsion click chemistry. (United States)

    Fu, Guo-Dong; Jiang, Hua; Yao, Fang; Xu, Li-Qun; Ling, Jun; Kang, En-Tang


    Here, we are the first to report a novel approach to preparing well-defined poly(ethylene glycol) (PEG) fluorescent nanogels, with well-defined molecular structures and desired functionalities via reverse (mini)emulsion copper(I)-catalyzed azide-alkyne cycloaddition (REM-CuAAC). Nanogels with hydroxyl groups and Ga-porphyrin complex (Ga-porphyrin-OH nanogels), as well as with Ga-porphyrin complex and folate functional groups (Ga-porphyrin-FA), are successfully prepared. Nanogels of 30 and 120 nm in diameter are obtained and they exhibit an emission maxima within the wavelength range 700-800 nm. The nanogels could find uses in near infrared (NIR) imaging attributable to their fluorescence and their functionality for cell affinity.

  9. Bromoporphyrins as versatile synthons for modular construction of chiral porphyrins: cobalt-catalyzed highly enantioselective and diastereoselective cyclopropanation. (United States)

    Chen, Ying; Fields, Kimberly B; Zhang, X Peter


    5,10-Bis(2',6'-dibromophenyl)porphyrins bearing various substituents at the 10 and 20 positions were demonstrated to be versatile synthons for modular construction of chiral porphyrins via palladium-catalyzed amidation reactions with chiral amides. The quadruple carbon-nitrogen bond formation reactions were accomplished in high yields with different chiral amide building blocks under mild conditions, forming a family of D2-symmetric chiral porphyrins. Cobalt(II) complexes of these chiral porphyrins were prepared in high yields and shown to be active catalysts for highly enantioselective and diastereoselective cyclopropanation under a practical one-pot protocol (alkenes as limiting reagents and no slow addition of diazo reagents).

  10. A molecular photovoltaic system based on Dawson type polyoxometalate and porphyrin formed by layer-by-layer self assembly. (United States)

    Ahmed, Iftikhar; Farha, Rana; Goldmann, Michel; Ruhlmann, Laurent


    Films based on electrostatic interactions between tetracationic porphyrin and Dawson type polyoxometalate are formed by the so called layer-by-layer method. Their photovoltaic performances are investigated by photocurrent transient measurements which showed significant photocurrent response.

  11. 5,10,15,20-Tetrakis(p-4-fluorobenzoyloxy)phenyl Porphyrin and Its Transition Metal Complexes

    Institute of Scientific and Technical Information of China (English)


    The properties of porphyrins can be changed through the choice of peripheral substituents and inserted metal ions. To obtain porphyrin complexes with novel structures, 5,10,15,20-tetrakis(p-4-fluorobenzoyloxy) phenyl porphyrin(TFBOPPH2) and its transition metal complexes {TFBOPPM [M=Mn(Ⅲ), Fe(Ⅲ), Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ)]} were synthesized and characterized by means of UV-Vis, IR photoacoustic spectrometry, 1H NMR, elemental analyses, molar conductance, and XPS methods. A structure is proposed, in which one porphyrin molecule is coordinated with a transition metal ion in a tetradentate fashion, while the chlorine ion is the balanceable anion in Fe(Ⅲ) and Mn(Ⅲ) complexes.

  12. Synthesis of molecular complexes based on porphyrins for the investigation of the energy transfer and primary charge separation in photosynthesis (United States)

    Gribkova, S. E.; Evstigneeva, Rima P.; Luzgina, Valentina N.


    Data on the synthesis, steric structures, and photochemical properties of molecular diad systems based on porphyrins as synthetic models of the reaction centre in photosynthesis are considered and treated systematically. The bibliography includes 102 references.

  13. Theoretical Investigation on the Second-order Nonlinear Optical Properties of Chiral Amino Acid Zinc(Ⅱ) Porphyrins

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-Yang; TIAN Jun-Chun; YING Xiao; XU Zhi-Guang; LIAO Shi-Jun; CHANG Chi-Kwong


    Static second-order nonlinear optical effects of amino acid zinc(II) porphyrins 1, 2, 3 and 4 were calculated by the TDHF/PM3 method based on the molecular structures optimized at the semiempirical PM3 quantum chemistry level, showing due to the cancellation of symmetric center, these amino acid zinc(II) porphyrins exhibit second order nonlinear optical response. The analysis of β components indicated that these amino acid zinc(II) porphyrins are of multipolarizabilities, and they may be ascribed as the "mixture" of octupolar and dipoar molecules with ||βJ=3||/||βJ=1|| ≈ 5. It is found that there are no significant differences between the static β values of non-chiral and chiral amino acid zinc(II) porphyrins. However, the βxyz component, which is quite important to quadratic macroscopic х (2) susceptibility of chiral material, is increased significantly with the increase of side chain group of amino acids.

  14. Crown ether-appended Fe (Ⅲ) porphyrin:Synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen

    Institute of Scientific and Technical Information of China (English)

    Xiao Dong Li; Yuan Cheng Zhu; Ling Juan Yang


    A new crown ether appended Fe(Ⅲ) porphyrin complex was prepared by sulfuryl chloride appended benzo- 15-crown-5 to the meso position of meso-5,10,15,20-tetra(4-hydrophenyl)porphyrin,and it was applied to catalytic oxidation of cyclohexene with molecular oxygen without reductant,showing a remarkable catalytic activity (conversion is up to 94%) and selectivity for 2-cyclohexen- 1-ol (73%).

  15. Porphyrin production and excretion by long-term cultures of adult rat hepatocytes and effect of lead exposure. (United States)

    Quintanilla-Vega, B; Hernández, A; López, M L; García-Vargas, G; Cebrián, M E; Mendoza-Figueroa, T


    Porphyrin production and excretion and the effects of lead exposure were studied in long-term cultures of adult rat hepatocytes cultured on a feeder layer of 3T3 cells after addition of 5-aminolevulinic acid. Porphyrin excretion into the culture medium showed an irregular profile during the first 10 days, with a maximum increase of 50% at day 4 and at day 10 a value similar to that of day 1. Thereafter, porphyrin excretion decreased progressively to 18% of the initial value after 4 weeks. The cellular porphyrin content, after 7 and 28 days in culture, reached values 3.8 and 2.4-fold higher than the corresponding day 1 value. The exposure to 0.5 and 2.4 microM Pb2+ for up to 28 days produced a biphasic effect on porphyrin excretion. Firstly, there was a progressive decrease up to 81% during the first 6 days of lead exposure and, secondly, this effect was followed by an increase reaching control values at day 15 and of up to 6.7-fold after 22 days of exposure to 2.4 microM Pb2+. Similar changes were observed in cellular porphyrin content. The exposure to 0.5 and 2.4 microM Pb2+ for 2 and 4 weeks also produced morphological alterations and release of cytoplasmic enzymes. Our results show that hepatocytes cultured on 3T3 cells produce and excrete porphyrins for 28 days and that exposure for 4 weeks to micromolar lead concentrations alters these functions and cell morphology and produces cytotoxic effects which are better evaluated by monitoring alterations in porphyrin excretion than by enzyme leakage. They also suggest that this culture system is a useful model for assessing the toxic effects of xenobiotics on the biosynthesis of heme by liver cells.

  16. Synthesis of a multibranched porphyrin-oligonucleotide scaffold for the construction of DNA-based nano-architectures. (United States)

    Clavé, Guillaume; Chatelain, Grégory; Filoramo, Arianna; Gasparutto, Didier; Saint-Pierre, Christine; Le Cam, Eric; Piétrement, Olivier; Guérineau, Vincent; Campidelli, Stéphane


    The interest in the functionalization of oligonucleotides with organic molecules has grown considerably over the last decade. In this work, we report on the synthesis and characterization of porphyrin-oligonucleotide hybrids containing one to four DNA strands (P1-P4). The hybrid P4, which inserts one porphyrin and four DNA fragments, was combined with gold nanoparticles and imaged by transmission electron microscopy.

  17. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick


    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  18. Porphyrin Binding to Gun4 Protein, Facilitated by a Flexible Loop, Controls Metabolite Flow through the Chlorophyll Biosynthetic Pathway. (United States)

    Kopečná, Jana; Cabeza de Vaca, Israel; Adams, Nathan B P; Davison, Paul A; Brindley, Amanda A; Hunter, C Neil; Guallar, Victor; Sobotka, Roman


    In oxygenic phototrophs, chlorophylls, hemes, and bilins are synthesized by a common branched pathway. Given the phototoxic nature of tetrapyrroles, this pathway must be tightly regulated, and an important regulatory role is attributed to magnesium chelatase enzyme at the branching between the heme and chlorophyll pathway. Gun4 is a porphyrin-binding protein known to stimulate in vitro the magnesium chelatase activity, but how the Gun4-porphyrin complex acts in the cell was unknown. To address this issue, we first performed simulations to determine the porphyrin-docking mechanism to the cyanobacterial Gun4 structure. After correcting crystallographic loop contacts, we determined the binding site for magnesium protoporphyrin IX. Molecular modeling revealed that the orientation of α6/α7 loop is critical for the binding, and the magnesium ion held within the porphyrin is coordinated by Asn-211 residue. We also identified the basis for stronger binding in the Gun4-1 variant and for weaker binding in the W192A mutant. The W192A-Gun4 was further characterized in magnesium chelatase assay showing that tight porphyrin binding in Gun4 facilitates its interaction with the magnesium chelatase ChlH subunit. Finally, we introduced the W192A mutation into cells and show that the Gun4-porphyrin complex is important for the accumulation of ChlH and for channeling metabolites into the chlorophyll biosynthetic pathway.

  19. The fast method of Cu-porphyrin complex synthesis for potential use in positron emission tomography imaging (United States)

    Kilian, Krzysztof; Pęgier, Maria; Pyrzyńska, Krystyna


    Porphyrin based photosensitizers are useful agents for photodynamic therapy and fluorescence imaging of cancer. Additionally, porphyrins are excellent metal chelators, forming stable metalo-complexes and 64Cu isotope can serve as a positron emitter (t1/2 = 12.7 h). The other advantage of 64Cu is its decay characteristics that facilitates the use of 64Cu-porphyrin complex as a therapeutic agent. Thus, 64Cu chelation with porphyrin photosensitizer may become a simple and versatile labeling strategy for clinical positron emission tomography. The present study reports a convenient method for the synthesis of Cu complex with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The experimental conditions for labeling, such as the metal-to-ligand molar ratio, pH and time of reaction were optimized to achieve a high complexation efficiency in a short period of time as possible. In order to accelerate the metallation, the use of substitution reactions of cadmium or lead porphyrin and the presence of reducing agent, such as ascorbic acid, hydroxylamine and flavonoid - morin, were evaluated. The optimum conditions for the synthesis of the copper complex were borate buffer at pH 9 with the addition of 10-fold molar excess, with respect to Cu2 + ions and TCPP and ascorbic acid which resulted in reduction of the reaction time from 30 min to below 1 min.

  20. The fast method of Cu-porphyrin complex synthesis for potential use in positron emission tomography imaging. (United States)

    Kilian, Krzysztof; Pęgier, Maria; Pyrzyńska, Krystyna


    Porphyrin based photosensitizers are useful agents for photodynamic therapy and fluorescence imaging of cancer. Additionally, porphyrins are excellent metal chelators, forming stable metalo-complexes and (64)Cu isotope can serve as a positron emitter (t1/2=12.7h). The other advantage of (64)Cu is its decay characteristics that facilitates the use of (64)Cu-porphyrin complex as a therapeutic agent. Thus, (64)Cu chelation with porphyrin photosensitizer may become a simple and versatile labeling strategy for clinical positron emission tomography. The present study reports a convenient method for the synthesis of Cu complex with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The experimental conditions for labeling, such as the metal-to-ligand molar ratio, pH and time of reaction were optimized to achieve a high complexation efficiency in a short period of time as possible. In order to accelerate the metallation, the use of substitution reactions of cadmium or lead porphyrin and the presence of reducing agent, such as ascorbic acid, hydroxylamine and flavonoid - morin, were evaluated. The optimum conditions for the synthesis of the copper complex were borate buffer at pH9 with the addition of 10-fold molar excess, with respect to Cu(2+) ions and TCPP and ascorbic acid which resulted in reduction of the reaction time from 30 min to below 1 min.

  1. Oxygen Availability for Porphyrin Biosynthesis Enzymes Determines the Production of Protoporphyrin IX (PpIX during Hypoxia.

    Directory of Open Access Journals (Sweden)

    Shimpei Otsuka

    Full Text Available 5-Aminolevulinic acid (ALA, a precursor of porphyrin, is specifically converted to the fluorescent substance protoporphyrin IX (PpIX in tumors to be used as a prodrug for photodynamic therapy and diagnosis. Hypoxia, a common feature of solid tumors, decreases the efficacy of ALA-based photodynamic therapy and diagnosis. This decrease results from the excretion of porphyrin precursor coproporphyrinogen III (CPgenIII, an intermediate in the biosynthesis of PpIX. However, the mechanism of CPgenIII excretion during hypoxia remains unclear. In this study, we revealed the importance of mitochondrial respiration for the production of PpIX during hypoxia. Porphyrin concentrations were estimated in human gastric cancer cell lines by HPLC. Expression levels of porphyrin biosynthesis genes were measured by qRT-PCR and immunoblotting. Blockage of porphyrin biosynthesis was an oxygen-dependent phenomenon resulting from decreased PpIX production in mitochondria under hypoxic conditions. PpIX production was increased by the inhibition of mitochondrial respiration complexes, which indicates that the enzymes of porphyrin biosynthesis compete with respiration complexes for molecular oxygen. Our results indicate that targeting the respiration complexes is a rationale for enhancing the effect of ALA-mediated treatment and diagnosis.

  2. Effects of number and position of meta and para carboxyphenyl groups of zinc porphyrins in dye-sensitized solar cells: structure-performance relationship. (United States)

    Ambre, Ram B; Mane, Sandeep B; Chang, Gao-Fong; Hung, Chen-Hsiung


    Porphyrin sensitizers containing meta- and para-carboxyphenyl groups in their meso positions have been synthesized and investigated for their performance in dye-sensitized solar cells (DSSCs). The superior performance of para-derivative compared to meta-derivative porphyrins was revealed by optical spectroscopy, electrochemical property measurements, density functional theory (DFT) calculations, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, incident photon-to-current conversion efficiency (IPCE), electrochemical impedance spectroscopy (EIS), and stability performance. Absorption spectra of para-carboxyphenyl-substituted porphyrins on TiO2 show a broader Soret band compared to meta-carboxyphenyl-substituted porphyrins. ATR-FTIR spectra of the studied porphyrins on TiO2 were applied to investigate the number and mode of carboxyl groups attached to TiO2. The VOC, JSC, and IPCE values of para-series porphyrins were distinctly superior to those of meta-series porphyrins. The Nyquist plots of the studied porphyrins show that charge injection in para-series porphyrins is superior to that in meta-series porphyrins. The orthogonally positioned para derivatives have more efficient charge injection and charge transfer over charge recombination, whereas the efficiencies of flat-oriented meta derivatives are retarded by rapid charge recombination. Photovoltaic measurements of the studied meta- and para-carboxyphenyl-functionalized porphyrins show that the number and position of carboxyphenyl groups play a crucial role in the performance of the DSSC. Our results indicate that para-carboxyphenyl derivatives outperform meta-carboxyphenyl derivatives to give better device performance. This study will serve as a guideline for the design and development of organic, porphyrin, and ruthenium dyes in DSSCs.

  3. Localization versus delocalization in diamine radical cations

    DEFF Research Database (Denmark)

    Brouwer, A.M.; Wiering, P.G.; Zwier, J.M.;


    The optical absorption spectrum of the radical cation of 1,4-diphenylpiperazine 2a shows a strong transition in the near-IR, and only a weak band at 445 nm, in the region where aniline radical cations normally absorb strongly. This indicates that the charge and spin are delocalized over the two...

  4. Advancements in Anion Exchange Membrane Cations

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Long, Hai [National Renewable Energy Lab. (NREL), Golden, CO (United States); Park, Andrew M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pivovar, Bryan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  5. Cation diffusion in the natural zeolite clinoptilolite

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, A.; White, K.J. [Science Research Institute, Chemistry Division, Cockcroft Building, University of Salford, Salford (United Kingdom)


    The natural zeolite clinoptilolite is mined commercially in many parts of the world. It is a selective exchanger for the ammonium cation and this has prompted its use in waste water treatment, swimming pools and in fish farming. It is also used to scavenge radioisotopes in nuclear waste clean-up. Further potential uses for clinoptilolite are in soil amendment and remediation. The work described herein provides thermodynamic data on cation exchange processes in clinoptilolite involving the NH{sub 4}, Na, K, Ca, and Mg cations. The data includes estimates of interdiffusion coefficients together with free energies, entropies and energies of activation for the cation exchanges studied. Suggestions are made as to the mechanisms of cation-exchanges involved.

  6. The synthesis of porphyrin-anthraquinone dyad via an azo-rearrangement

    Institute of Scientific and Technical Information of China (English)

    Cheng Jie Li; Ya Qing Feng; Xiu Jun Liu; Tian Yi Zhang


    One novel porphyrin P-Q2 is planned to be synthesized by condensation between ATPP and Ql. However, after separation by chromatography and characterization with IR, 1H NMR, HR-MS and X-ray, P-Q1 is obtained unexpectedly. Compared the structure of P-Q1 with that of P-Q2, it is realized that an intramolecular cyclization rearrangement takes place when the azo group is situated in the o-position to the amido group. This rearrangement offers a new way to prepare indazole heterocycle. In addition, the spectral properties of P-Ql have been studied by UV-vis and steady state fluorescence spectroscopy. Strong fluorescence quenching is observed in the preliminary emission spectrum due to the proposed electron transfer from the excited porphyrin to the anthraquinone moieties.


    Institute of Scientific and Technical Information of China (English)

    Yu-sheng Qin; Li-jie Chen; Xian-hong Wang; Xiao-jiang Zhao; Fo-song Wang


    Cobalt porphyrin complexes (TPPComx) (TPP =5,10,15,20-tetraphenyl-porphyrin; X =halide) in combination with bis(triphenylphosphine) iminium chloride (PPNC1) were used for the copolymerization of cyclohexene oxide and CO2.The highest turnover frequency of 67.2 h-1 was achieved after 13 h at 20℃,and the obtained poly(1,2-cyclohexylene carbonate) (PCHC) showed number average molecular weight (Mn) of 10 × 103.Though the obtained PCHC showed atactic structure,the m-centered tetrads content reached 58.1% at CO2 pressure of 1.0 MPa,and decreased to 51.9% at CO2 pressure of 6.0 MPa,indicating that it was inclined to form atactic polymer at high CO2 pressure.

  8. Monomeric Chiral and Achiral Basket-Handle Porphyrins: Synthesis, Structural Features, and Arrested Tautomerism. (United States)

    Gehrold, Andreas C; Bruhn, Torsten; Schneider, Heidi; Radius, Udo; Bringmann, Gerhard


    Chiral and achiral basket-handle porphyrins (BHPs) with different p-xylene straps and peripheral solubilizing groups were synthesized using a previously established synthetic approach. Subsequent modification, functionalization, and metalation of the tetrapyrrolic macrocycle yielded more than 80 BHPs. The chiral representatives were resolved into their enantiomers, whose absolute configurations were determined by comparison of their ECD spectra with other experimental or quantum chemically calculated spectra. NMR studies and coupled-cluster calculations proved that the free base BHPs, although highly symmetric, exhibited the phenomenon of "arrested tautomerism". Comparison of the solid-state structures of three metalated BHPs offered detailed insight into their three-dimensional shape. Finally, directly linked dimeric porphyrins with a BHP subunit were synthesized from functionalized BHPs to prove their value as synthetic building blocks.

  9. Molecular electrocatalysis for oxygen reduction by cobalt porphyrins adsorbed at liquid/liquid interfaces. (United States)

    Su, Bin; Hatay, Imren; Trojánek, Antonín; Samec, Zdenek; Khoury, Tony; Gros, Claude P; Barbe, Jean-Michel; Daina, Antoine; Carrupt, Pierre-Alain; Girault, Hubert H


    Molecular electrocatalysis for oxygen reduction at a polarized water/1,2-dichloroethane (DCE) interface was studied, involving aqueous protons, ferrocene (Fc) in DCE and amphiphilic cobalt porphyrin catalysts adsorbed at the interface. The catalyst, (2,8,13,17-tetraethyl-3,7,12,18-tetramethyl-5-p-amino-phenylporphyrin) cobalt(II) (CoAP), functions like conventional cobalt porphyrins, activating O(2) via coordination by the formation of a superoxide structure. Furthermore, due to the hydrophilic nature of the aminophenyl group, CoAP has a strong affinity for the water/DCE interface as evidenced by lipophilicity mapping calculations and surface tension measurements, facilitating the protonation of the CoAP-O(2) complex and its reduction by ferrocene. The reaction is electrocatalytic as its rate depends on the applied Galvani potential difference between the two phases.

  10. Optical switching of electric charge transfer pathways in porphyrin: a light-controlled nanoscale current router. (United States)

    Thanopulos, Ioannis; Paspalakis, Emmanuel; Yannopapas, Vassilios


    We introduce a novel molecular junction based on a thiol-functionalized porphyrin derivative with two almost energetically degenerate equilibrium configurations. We show that each equilibrium structure defines a pathway of maximal electric charge transfer through the molecular junction and that these two conduction pathways are spatially orthogonal. We further demonstrate computationally how to switch between the two equilibrium structures of the compound by coherent light. The optical switching mechanism is presented in the relevant configuration subspace of the compound, and the corresponding potential and electric dipole surfaces are obtained by ab initio methods. The laser-induced isomerization takes place in two steps in tandem, while each step is induced by a two-photon process. The effect of metallic electrodes on the electromagnetic irradiation driving the optical switching is also investigated. Our study demonstrates the potential for using thiol-functionalized porphyrin derivatives for the development of a light-controlled nanoscale current router.

  11. The accuracy of geometries for iron porphyrin complexes from density functional theory

    DEFF Research Database (Denmark)

    Rydberg, Patrik Åke Anders; Olsen, Lars


    Iron porphyrin complexes are cofactors in many important proteins such as cytochromes P450, hemoglobin, heme peroxidases, etc. Many computational studies on these systems have been done over the past decade. In this study, the performance of some of the most commonly used density functional theory...... functionals is evaluated with regard to how they reproduce experimental structures. Seven different functionals (BP86, PBE, PBE0, TPSS, TPSSH, B3LYP, and B97-D) are used to study eight different iron porphyrin complexes. The results show that the TPSSH, PBE0, and TPSS functionals give the best results...... (absolute bond distance deviations of 0.015-0.016 A), but the geometries are well-reproduced by all functionals except B3LYP. We also test four different basis sets of double-zeta quality, and we find that a combination of double-zeta basis set of Schafer et al. on the iron atom and the 6-31G* basis set...

  12. Analysis of carotenoid and porphyrin pigments of geochemical interest by high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Hajibrahim, S.K. (Univ. of Bristol, Eng.); Tibbetts, P.J.C.; Watts, C.D.; Maxwell, J.R.; Eglinton, G.; Colin, H.; Guiochon, G.


    High-performance liquid chromatography (HPLC) is shown to be a powerful tool in the analysis of carotenoid and porphyrin pigments. Columns packed with irregular silica gel particles by a high density and high constant pressure method allow efficient separation of mixtures of total nonsaponifiable carotenoids from recent sedimentary situations. Good reproducibility of retention times (within 2%) is achieved in the gradient elution mode. However, attention must be paid to reequilibration of the column after each injection by washing with the less polar solvent for a minimum of 15 min (for carotenoids) or of 30 min (for porphyrins). HPLC appears to be useful in ''fingerprinting'' petroporphyrin distributions in crude oil.

  13. Tunneling electron induced molecular electroluminescence from individual porphyrin J-aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qiushi; Zhang, Chao; Zhang, Yang, E-mail:, E-mail:; Zhang, Yao; Liao, Yuan; Dong, Zhenchao, E-mail:, E-mail: [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)


    We investigate molecular electroluminescence from individual tubular porphyrin J-aggregates on Au(111) by tunneling electron excitations in an ultrahigh-vacuum scanning tunneling microscope (STM). High-resolution STM images suggest a spiral tubular structure for the porphyrin J-aggregate with highly ordered “brickwork”-like arrangements. Such aggregated nanotube is found to behave like a self-decoupled molecular architecture and shows red-shifted electroluminescence characteristics of J-aggregates originated from the delocalized excitons. The positions of the emission peaks are found to shift slightly depending on the excitation sites, which, together with the changes in the observed spectral profiles with vibronic progressions, suggest a limited exciton coherence number within several molecules. The J-aggregate electroluminescence is also found unipolar, occurring only at negative sample voltages, which is presumably related to the junction asymmetry in the context of molecular excitations via the carrier injection mechanism.

  14. Porphyrin synthesized from cashew nut shell liquid as part of a novel superparamagnetic fluorescence nanosystem

    Energy Technology Data Exchange (ETDEWEB)

    Clemente, C. S.; Ribeiro, V. G. P.; Sousa, J. E. A.; Maia, F. J. N.; Barreto, A. C. H. [Universidade Federal do Ceara, Laboratorio de Produtos e Tecnologia em Processos (LPT) (Brazil); Andrade, N. F. [Universidade Federal do Ceara, Departamento de Fisica (Brazil); Denardin, J. C. [Universidad de Santiago de Chile (USACH), Departamento de Fisica (Chile); Mele, G. [Universita del Salento, Dipartimento di Ingegneria dell' Innovazione (Italy); Carbone, L. [NNL, Istituto Nanoscienze UOS Lecce (Italy); Mazzetto, S. E. [Universidade Federal do Ceara, Laboratorio de Produtos e Tecnologia em Processos (LPT) (Brazil); Fechine, P. B. A., E-mail: [Universidade Federal do Ceara (UFC), Grupo de Quimica de Materiais Avancados (GQMAT), Departamento de Quimica Analitica e Fisico-Quimica (Brazil)


    Magnetic Fe{sub 3}O{sub 4} nanoparticles with average size approximately 11 nm were first oleic acid coated to interact with the meso-porphyrin derivative from CNSL. This procedure produced a novel superparamagnetic fluorescent nanosystem (SFN) linked by van der Waals interactions. This system was characterized by transmission electron microscope, infrared spectroscopy, thermogravimetric analysis, magnetic measurements, UV-Vis absorption, and fluorescence emission measurements. These results showed that SFN has good thermal stability, excellent magnetization, and nanosized dimensions ({approx}13 nm). It exhibited emission peaks at 668 and 725 nm with a maximum emission at 467 nm of excitation wavelength. The type of interaction between porphyrin and magnetic nanoparticles allowed to obtain a material with interesting optical properties which might be used as an imaging agent for contrast in cells as well as heterogeneous photocatalysis.

  15. Electrochemical Rectification of Redox Mediators Using Porphyrin-Based Molecular Multilayered Films on ITO Electrodes. (United States)

    Civic, Marissa R; Dinolfo, Peter H


    Electrochemical charge transfer through multilayer thin films of zinc and nickel 5,10,15,20-tetra(4-ethynylphenyl) porphyrin constructed via copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry was examined. Current rectification toward various outer-sphere redox probes is revealed with increasing numbers of layers, as these films possess insulating properties over the neutral potential range of the porphyrin, then become conductive upon reaching its oxidation potential. Interfacial electron transfer rates of mediator-dye interactions toward [Co(bpy)3](2+), [Co(dmb)3](2+), [Co(NO2-phen)3](2+), [Fe(bpy)3](2+), and ferrocene (Fc), all outer-sphere redox species, were measured by hydrodynamic methods. The ability to modify electroactive films' interfacial electron transfer rates, as well as current rectification toward redox species, has broad applicability in a number of devices, particularly photovoltaics and photogalvanics.

  16. Porphyrin synthesized from cashew nut shell liquid as part of a novel superparamagnetic fluorescence nanosystem (United States)

    Clemente, C. S.; Ribeiro, V. G. P.; Sousa, J. E. A.; Maia, F. J. N.; Barreto, A. C. H.; Andrade, N. F.; Denardin, J. C.; Mele, G.; Carbone, L.; Mazzetto, S. E.; Fechine, P. B. A.


    Magnetic Fe3O4 nanoparticles with average size approximately 11 nm were first oleic acid coated to interact with the meso-porphyrin derivative from CNSL. This procedure produced a novel superparamagnetic fluorescent nanosystem (SFN) linked by van der Waals interactions. This system was characterized by transmission electron microscope, infrared spectroscopy, thermogravimetric analysis, magnetic measurements, UV-Vis absorption, and fluorescence emission measurements. These results showed that SFN has good thermal stability, excellent magnetization, and nanosized dimensions ( 13 nm). It exhibited emission peaks at 668 and 725 nm with a maximum emission at 467 nm of excitation wavelength. The type of interaction between porphyrin and magnetic nanoparticles allowed to obtain a material with interesting optical properties which might be used as an imaging agent for contrast in cells as well as heterogeneous photocatalysis.

  17. Molecular characterization of vanadyl and nickel non-porphyrin compounds in heavy crude petroleums and residua

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.G.; Biggs, W.R.; Fetzer, J.C.; Gallegos, E.J.; Fish, R.H.; Komlenic, J.J.; Wines, B.K.


    The molecular characterization of vanadium and nickel compounds in heavy crude petroleums has been the subject of current research. Arabian Heavy, Maya, Boscan, Cerro Negro, Prudhoe Bay, Wilmington Beta, Kern River, and Morichal crude petroleums have been examined. Fractions from D 2007 separations, porphyrin extractions, and solvent selective extraction with reversed phase column separations of these petroleums have been studied thoroughly by EPR. Important structural aspects are emerging from the presented data: (1) There are non-porphyrin metal complexes in the crude petroleums. (2) They appear to be smaller molecules with MW < 400 which are liberated when the tertiary structure of the large asphaltics is denatured. (3) The first coordination spheres of this class of compounds are possibly 4N, N O 2S, and 4S. 10 references, 3 figures, 1 table.

  18. Effect of ferrocene-substituted porphyrin RL-91 on Candida albicans biofilm formation. (United States)

    Lippert, Rainer; Vojnovic, Sandra; Mitrovic, Aleksandra; Jux, Norbert; Ivanović-Burmazović, Ivana; Vasiljevic, Branka; Stankovic, Nada


    Ferrocene-substituted porphyrin RL-91 exhibits antifungal activity against opportune human pathogen Candida albicans. RL-91 efficiently inhibits growth of both planktonic C. albicans cells and cells within biofilms without photoactivation. The minimal inhibitory concentration for plankton form (PMIC) was established to be 100 μg/mL and the same concentration killed 80% of sessile cells in the mature biofilm (SMIC80). Furthermore PMIC of RL-91 efficiently prevents C. albicans biofilm formation. RL-91 is cytotoxic for human fibroblasts in vitro in concentration of 10 μg/mL, however it does not cause hemolysis in concentrations of up to 50 μg/mL. These findings open possibility for application of RL-91 as an antifungal agent for external antibiofilm treatment of medical devices as well as a scaffold for further development of porphyrin based systemic antifungals.

  19. -pyrrole substituted porphyrin-pyrene dyads using vinylene spacer: Synthesis, characterization and photophysical properties

    Indian Academy of Sciences (India)

    P Silviya Reeta; Ravi Kumar Kanaparthi; L Giribabu


    We have designed and synthesized donor-acceptor conjugates having donor pyrene at the pyrrole- position of either free-base porphyrin or Zn(II) porphyrin using vinylene spacer. Both the dyads have been completely characterized by elemental analysis,MALDI-MS, UV-Vis., and fluorescence (steady state and timeresolved) spectroscopies as well as cyclic voltammetry. The absorption maxima of both dyads are red-shifted by 8-12 nm. The ground state properties showed that there exist minimum - interaction between the aromatic subunits of these D-A systems. Quenched emission was observed in both the dyads when excited at 290 nm. The quenched emission explained in terms of intramolecular excitation energy transfer competes with the photo-induced electron transfer reaction in these D-A system.

  20. Kinetic Studies on Interactions of Ferreous-porphyrins with Hydrogen Peroxide

    Institute of Scientific and Technical Information of China (English)

    YAN Yan; JIAN Wen-ping; GUO Hong-wei; YANG Ke-er; Tong Shan-ling; FANG Chi-guang; LI Qing; CHANG Xin; XIAO Feng-shou


    In an alkali-methanol solution, both 1- and 2-naphthol can be converted into 2-hydroxy-1,4-naphthoquinone (HNQ) with selectivity more than 95% by H2O2 over metalloporphyrin catalyst. The UV-Vis spectra indicate that a high valence oxygen-ferreous porphyrin intermediate has been produced by addition of an aqueous solution of H2O2 into the catalytic system. This intermediate formation rate is influenced by the concentrations of low valence ferrous porphyrin, H2O2, and NaOH existing in the system. With the aid of the UVVis spectrum varieties, the rate equations and formation rate constants of the intermediate at different temperatures can be determined by changing the original concentration of each reactant. The formation activation energy of this intermediate was also determined by changing temperature.

  1. Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy. (United States)

    Penon, Oriol; Marín, María J; Amabilino, David B; Russell, David A; Pérez-García, Lluïsa


    The preparation of novel porphyrin derivatives and their immobilization onto iron oxide nanoparticles to build up suitable nanotools for potential use in photodynamic therapy (PDT) has been explored. To achieve this purpose, a zinc porphyrin derivative, ZnPR-COOH, has been synthesized, characterized at the molecular level and immobilized onto previously synthesized iron oxide nanoparticles covered with oleylamine. The novel nanosystem (ZnPR-IONP) has been thoroughly characterized by a variety of techniques such as UV-Vis absorption spectroscopy, fluorescence spectroscopy, X-ray photoloectron spectroscopy (XPS) and transmission electron microscopy (TEM). In order to probe the capability of the photosensitizer for PDT, the singlet oxygen production of both ZnPR-IONP and the free ligand ZnPR-COOH have been quantified by measuring the decay in absorption of the anthracene derivative 9,10-anthracenedipropionic acid (ADPA), showing an important increase on singlet oxygen production when the porphyrin is incorporated onto the IONP (ZnPR-IONP). On the other hand, the porphyrin derivative PR-TRIS3OH, incorporating several polar groups (TRIS), was synthesized and immobilized with the intention of obtaining water soluble nanosystems (PR-TRIS-IONP). When the singlet oxygen production ability was evaluated, the values obtained were similar to ZnPR-COOH/ZnPR-IONP, again much higher in the case of the nanoparticles PR-TRIS-IONP, with more than a twofold increase. The efficient singlet oxygen production of PR-TRIS-IONP together with their water solubility, points to the great promise that these new nanotools represent for PDT.

  2. Perylene anhydride fused porphyrins as near-infrared sensitizers for dye-sensitized solar cells

    KAUST Repository

    Jiao, Chongjun


    Two perylene anhydride fused porphyrins 1 and 2 have been synthesized and employed successfully in dye-sensitized solar cells (DSCs). Both compounds showed broad incident monochromatic photon-to-current conversion efficiency spectra covering the entire visible spectral region and even extending into the near-infrared (NIR) region up to 1000 nm, which is impressive for ruthenium-free dyes in DSCs. © 2011 American Chemical Society.

  3. Porphyrinic supramolecular daisy chains incorporating pillar[5]arene-viologen host-guest interactions

    KAUST Repository

    Fathalla, Maher


    A porphyrin functionalised with pillar[5]arene and a viologen at its 5- and 15-meso positions assembles in a head-to-tail manner, producing linear supramolecular daisy chains in dichloromethane. At high concentrations, it forms an organogel which has been investigated by electron microscopy and rheological measurements, paving the way for the preparation of other functional supramolecular assemblies which harness viologen"⊂" pillararene host-guest interactions.

  4. A New Synthesis of Porphyrins with Extended Conjugation and their Photophysics (United States)


    optics, conducting materials, photosensitizers for photodynamic therapy ( PDT ), solar systems, and so on.1 Although TBPs and TNPs have already prepared by spin coating of bicyclo[2.2.2]octadine-fused porphyrin on silicon substance followed by the heating showed good performance as...solid line) and 8 (blue solid line) in DMF. 15 Tetrabenzoporphyrins and phthalocyanines are important in the filed of material sciense, they can be

  5. Two-photon excitation of porphyrin-functionalized porous silicon nanoparticles for photodynamic therapy. (United States)

    Secret, Emilie; Maynadier, Marie; Gallud, Audrey; Chaix, Arnaud; Bouffard, Elise; Gary-Bobo, Magali; Marcotte, Nathalie; Mongin, Olivier; El Cheikh, Khaled; Hugues, Vincent; Auffan, Mélanie; Frochot, Céline; Morère, Alain; Maillard, Philippe; Blanchard-Desce, Mireille; Sailor, Michael J; Garcia, Marcel; Durand, Jean-Olivier; Cunin, Frédérique


    Porous silicon nanoparticles (pSiNPs) act as a sensitizer for the 2-photon excitation of a pendant porphyrin using NIR laser light, for imaging and photodynamic therapy. Mannose-functionalized pSiNPs can be vectorized to MCF-7 human breast cancer cells through a mannose receptor-mediated endocytosis mechanism to provide a 3-fold enhancement of the 2-photon PDT effect.

  6. Porphyrin-Cored Polymer Nanoparticles: Macromolecular Models for Heme Iron Coordination. (United States)

    Rodriguez, Kyle J; Hanlon, Ashley M; Lyon, Christopher K; Cole, Justin P; Tuten, Bryan T; Tooley, Christian A; Berda, Erik B; Pazicni, Samuel


    Porphyrin-cored polymer nanoparticles (PCPNs) were synthesized and characterized to investigate their utility as heme protein models. Created using collapsible heme-centered star polymers containing photodimerizable anthracene units, these systems afford model heme cofactors buried within hydrophobic, macromolecular environments. Spectroscopic interrogations demonstrate that PCPNs display redox and ligand-binding reactivity similar to that of native systems and thus are potential candidates for modeling biological heme iron coordination.

  7. Molecular Assemblies of Porphyrins and Macrocyclic Receptors: Recent Developments in Their Synthesis and Applications

    Directory of Open Access Journals (Sweden)

    Abdirahman A. Mohamod


    Full Text Available Metalloporphyrins which form the core of many bioenzymes and natural light harvesting or electron transport systems, exhibit a variety of selective functional properties depending on the state and surroundings with which they exist in biological systems. The specificity and ease with which they function in each of their bio-functions appear to be largely governed by the nature and disposition of the protein globule around the porphyrin reaction center. Synthetic porphyrin frameworks confined within or around a pre-organized molecular entity like the protein network in natural systems have attracted considerable attraction, especially in the field of biomimetic reactions. At the same time a large number of macrocyclic oligomers such as calixarenes, resorcinarenes, spherands, cyclodextrins and crown ethers have been investigated in detail as efficient molecular receptors. These molecular receptors are synthetic host molecules with enclosed interiors, which are designed three dimensionally to ensure strong and precise molecular encapsulation/recognition. Due to their complex structures, enclosed guest molecules reside in an environment isolated from the outside and as a consequence, physical properties and chemical reactions specific to that environment in these guest species can be identified. The facile incorporation of such molecular receptors into the highly photoactive and catalytically efficient porphyrin framework allows for convenient design of useful molecular systems with unique structural and functional properties. Such systems have provided over the years attractive model systems for the study of various biological and chemical processes, and the design of new materials and molecular devices. This review focuses on the recent developments in the synthesis of porphyrin assemblies associated with cyclodextrins, calixarenes and resorcinarenes and their potential applications in the fields of molecular encapsulation/recognition, and

  8. Properties of meso-tetrakis (4-n-alkanoyloxyphenyl) porphyrin liquid crystal Co and Ni complexes

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; SHI TongShun


    Six series of meso-tetrakis (4-n-alkanoyloxyphenyl) porphyrin Co and Ni complexes (12 kinds) were reported. Nine of the compounds were found to exhibit liquid crystal properties and display a hexagonal columnar discotic columnar (Colh) phase. Molecular structure of all synthesized compounds was confirmed by IR, UV, MS, 1H NMR, and elemental analysis. These liquid crystalline compounds have been studied by cyclic voltammetry, luminescence, and surface photovoltage spectroscopy.

  9. Properties of meso-tetrakis (4-n-alkanoyloxyphenyl) porphyrin liquid crystal Co and Ni complexes

    Institute of Scientific and Technical Information of China (English)


    Six series of meso-tetrakis (4-n-alkanoyloxyphenyl) porphyrin Co and Ni complexes (12 kinds) were reported. Nine of the compounds were found to exhibit liquid crystal properties and display a hexago-nal columnar discotic columnar (Colh) phase. Molecular structure of all synthesized compounds was confirmed by IR, UV, MS, 1H NMR, and elemental analysis. These liquid crystalline compounds have been studied by cyclic voltammetry, luminescence, and surface photovoltage spectroscopy.

  10. Sulfonated graphenes catalyzed synthesis of expanded porphyrins and their supramolecular interactions with pristine graphene

    Indian Academy of Sciences (India)

    Sweta Mishra; Smriti Arora; Ritika Nagpal; Shive Murat Singh Chauhan


    A newer synthesis of sulfonic acid functionalized graphenes have been developed, which have been characterized, examined as heterogeneous solid acid carbocatalyst in the synthesis of selected expanded porphyrins in different reaction conditions. This environment-friendly catalyst avoids the use of toxic catalysts and enhances the yields of porphyrinoids. The non-covalent interaction of porphyrinoids has also been studied with exfoliated graphene solution in organic solvents by UV-Visible and fluorescence spectroscopy.

  11. Mn Porphyrin Regulation of Aerobic Glycolysis: Implications on the Activation of Diabetogenic Immune Cells


    Delmastro-Greenwood, Meghan M.; Votyakova, Tatyana; Goetzman, Eric,; Marre, Meghan L.; Previte, Dana M.; Tovmasyan, Artak; Batinic-Haberle,Ines; Trucco, Massimo M.; Piganelli, Jon D.


    Aims: The immune system is critical for protection against infections and cancer, but requires scrupulous regulation to limit self-reactivity and autoimmunity. Our group has utilized a manganese porphyrin catalytic antioxidant (MnTE-2-PyP5+, MnP) as a potential immunoregulatory therapy for type 1 diabetes. MnP has previously been shown to modulate diabetogenic immune responses through decreases in proinflammatory cytokine production from antigen-presenting cells and T cells and to reduce diab...

  12. Clinically Important Features of Porphyrin and Heme Metabolism and the Porphyrias


    Siddesh Besur; Wehong Hou; Paul Schmeltzer; Bonkovsky, Herbert L.


    Heme, like chlorophyll, is a primordial molecule and is one of the fundamental pigments of life. Disorders of normal heme synthesis may cause human diseases, including certain anemias (X-linked sideroblastic anemias) and porphyrias. Porphyrias are classified as hepatic and erythropoietic porphyrias based on the organ system in which heme precursors (5-aminolevulinic acid (ALA), porphobilinogen and porphyrins) are chiefly overproduced. The hepatic porphyrias are further subdivided into acute p...

  13. Spectroscopic evidence of xanthine compounds fluorescence quenching effect on water-soluble porphyrins (United States)

    Makarska-Bialokoz, Magdalena


    The formation of π-stacked complexes between water-soluble porphyrins: 4,4‧,4″,4″‧-(21H,23H-porphine-5,10,15,20-tetrayl)tetrakis-(benzoic acid) (H2TCPP), 5,10,15,20-tetrakis(4-sulfonatophenyl)-21H,23H-porphine (H2TPPS4), 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H2TTMePP), 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine tetra-p-tosylate (H2TMePyP), the Cu(II) complexes of H2TTMePP and H2TMePyP, as well as chlorophyll a with xanthine, theophylline (1,3-dimethylxanthine) and theobromine (3,7-dimethylxanthine) has been studied analysing their absorption and steady-state fluorescence spectra in aqueous (or acetone in case of chlorophyll a) solution. During titration by the compounds from xanthine group the bathochromic effect in the porphyrin absorption spectra as well as the hypochromicity of the porphyrin Soret maximum can be noticed. The fluorescence quenching effect observed during interactions in the systems examined suggests the process of static quenching. The association and fluorescence quenching constants are of the order of magnitude of 103 - 102 mol-1. The results obtained show that xanthine and its derivatives can quench the fluorescence of the porphyrins according to the number of methyl groups in the molecule of quencher.

  14. Electronic and catalytic properties of iron porphyrin complexes: Trends and reaction mechanisms.


    Mala, Alhaji


    ABSTRACTThe University of Manchester,School of Chemical Engineering and Analytical ScienceABSTRACT OF THESIS submitted by Mala Alhaji Sainna for the degree of Doctor of Philosophy (PhD) and entitled “Electronic and catalytic properties of iron porphyrin complexes: Trends and reaction mechanisms” The cytochrome P450s belong to the superfamily of proteins containing a heme cofactor and, thus, are termed hemoproteins. They perform important oxidation reactions in the body, and are, for instance,...

  15. Synthetic molecular systems based on porphyrins as models for the study of energy transfer in photosynthesis (United States)

    Konovalova, Nadezhda V.; Evstigneeva, Rima P.; Luzgina, Valentina N.


    The published data on the synthesis and photochemical properties of porphyrin-based molecular ensembles which represent models of natural photosynthetic light-harvesting complexes are generalised and systematised. The dependence of the transfer of excitation energy on the distance between donor and acceptor components, their mutual arrangement, electronic and environmental factors are discussed. Two mechanisms of energy transfer reactions, viz., 'through space' and 'through bond', are considered. The bibliography includes 96 references.

  16. Porphyrin-induced photodynamic cross-linking of hepatic heme-binding proteins. (United States)

    Vincent, S H; Holeman, B; Cully, B C; Muller-Eberhard, U


    Three types of hepatic proteins, a heme-binding Z protein, a mixture of the glutathione S-transferases and a cytochrome P450 isozyme, were shown to be susceptible to photodynamic cross-linking and loss in antigenicity by naturally occurring porphyrins. At 50 microM, uroporphyrin caused the most and protoporphyrin the least photodecomposition. Hemopexin, a specific serum heme carrier, was photodecomposed but no cross-linking was detected. Heme and scavengers of singlet oxygen partially prevented protein photodecomposition.

  17. Vernier-templated synthesis, crystal structure, and supramolecular chemistry of a 12-porphyrin nanoring. (United States)

    Kondratuk, Dmitry V; Sprafke, Johannes K; O'Sullivan, Melanie C; Perdigao, Luis M A; Saywell, Alex; Malfois, Marc; O'Shea, James N; Beton, Peter H; Thompson, Amber L; Anderson, Harry L


    Vernier templating exploits a mismatch between the number of binding sites in a template and a reactant to direct the formation of a product that is large enough to bind several template units. Here, we present a detailed study of the Vernier-templated synthesis of a 12-porphyrin nanoring. NMR and small-angle X-ray scattering (SAXS) analyses show that Vernier complexes are formed as intermediates in the cyclo-oligomerization reaction. UV/Vis/NIR titrations show that the three-component assembly of the 12-porphyrin nanoring figure-of-eight template complex displays high allosteric cooperativity and chelate cooperativity. This nanoring-template 1:2 complex is among the largest synthetic molecules to have been characterized by single-crystal analysis. It crystallizes as a racemate, with an angle of 27° between the planes of the two template units. The crystal structure reveals many unexpected intramolecular C-H⋅⋅⋅N contacts involving the tert-butyl side chains. Scanning tunneling microscopy (STM) experiments show that molecules of the 12-porphyrin template complex can remain intact on the gold surface, although the majority of the material unfolds into the free nanoring during electrospray deposition.

  18. Iron(III) Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions. (United States)

    Rebelo, Susana L H; Silva, André M N; Medforth, Craig J; Freire, Cristina


    Iron(III) fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H₂TPFPP) and the corresponding iron complex [Fe(TPFPP)Cl], and the use of [Fe(TPFPP)Cl] as an oxidation catalyst in green conditions. The preparations of H₂TPFPP and [Fe(TPFPP)Cl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(III)porphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide) and green solvent (ethanol). Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.

  19. Synthesis, optical and electrochemical properties of Zn-porphyrin for dye sensitized solar cell applications (United States)

    Kotteswaran, S.; Pandian, M. Senthil; Ramasamy, P.


    Zn-Porphyrin dye has been synthesized by the reaction between aldehydes and pyrrole. The dye structure was confirmed by 1H NMR, 13C NMR spectrum. The functional group of the dye molecule was confirmed by FTIR spectrum. The UV-Vis-NIR absorption spectrum of Zn-Porphyrin in DMF solution was recorded in spectrophotometer. The UV-Vis NIR spectrum of dye exhibits a strong Soret band and Q-band. Cyclic Voltammograms were obtained with three electrode systems: Pt as counter electrode, saturated calomel used as a reference electrode and glassy carbon as working electrode at a scan rate of 100 mV/s. The curves recorded the oxidation of 0.5 mM compound Zn-Porphyrin in a dichloromethane solution containing 0.1M TBAP as supporting electrolyte, reveal two successive quasi reversible redox couples with the first anodic and cathodic peak potentials of -0.2 V and -1 V. The second anodic and cathodic peak potentials are 0.82 V and 0.01 V respectively.

  20. Thermodynamics and Kinetics of Guest-Induced Switching between “Basket Handle” Porphyrin Isomers

    Directory of Open Access Journals (Sweden)

    Alexander B. C. Deutman


    Full Text Available The synthesis and switching properties of two “basket handle” porphyrin isomers is described. The cis-oriented meso-phenyl groups of these porphyrins are linked at their ortho-positons via benzocrown-ether-based spacers, which as a result of slow atropisomerization are located either on the same side of the porphyrin plane (cis, or on opposite sides (trans. In solution, the cis-linked isomer slowly isomerizes in the direction of the thermodynamically more stable trans-isomer. In the presence of viologen (N,N'-dialkyl-4,4'-bipyridinium derivatives, which have different affinities for the two isomers, the isomerization equilibrium could be significantly influenced. In addition, the presence of these guests was found to enhance the rate of the switching process, which was suggested to be caused by favorable interactions between the positively charged guest and the crown ethers of the receptor, stabilizing the transition state energies of the isomerization reaction between the two isomers.

  1. A Porphyrin-Based Conjugated Polymer for Highly Efficient In Vitro and In Vivo Photothermal Therapy. (United States)

    Guo, Bing; Feng, Guangxue; Manghnani, Purnima Naresh; Cai, Xiaolei; Liu, Jie; Wu, Wenbo; Xu, Shidang; Cheng, Xiamin; Teh, Cathleen; Liu, Bin


    Conjugated polymers have been increasingly studied for photothermal therapy (PTT) because of their merits including large absorption coefficient, facile tuning of exciton energy dissipation through nonradiative decay, and good therapeutic efficacy. The high photothermal conversion efficiency (PCE) is the key to realize efficient PTT. Herein, a donor-acceptor (D-A) structured porphyrin-containing conjugated polymer (PorCP) is reported for efficient PTT in vitro and in vivo. The D-A structure introduces intramolecular charge transfer along the backbone, resulting in redshifted Q band, broadened absorption, and increased extinction coefficient as compared to the state-of-art porphyrin-based photothermal reagent. Through nanoencapsulation, the dense packing of a large number of PorCP molecules in a single nanoparticle (NP) leads to favorable nonradiative decay, good photostability, and high extinction coefficient of 4.23 × 10(4) m(-1) cm(-1) at 800 nm based on porphyrin molar concentration and the highest PCE of 63.8% among conjugated polymer NPs. With the aid of coloaded fluorescent conjugated polymer, the cellular uptake and distribution of the PorCP in vitro can be clearly visualized, which also shows effective photothermal tumor ablation in vitro and in vivo. This research indicates a new design route of conjugated polymer-based photothermal therapeutic materials for potential personalized theranostic nanomedicine.

  2. In silico study of porphyrin-anthraquinone hybrids as CDK2 inhibitor. (United States)

    Arba, Muhammad; Ihsan, Sunandar; Ramadhan, La Ode Ahmad Nur; Tjahjono, Daryono Hadi


    Cyclin-Dependent Kinases (CDKs) are known to play crucial roles in controlling cell cycle progression of eukaryotic cell and inhibition of their activity has long been considered as potential strategy in anti-cancer drug research. In the present work, a series of porphyrin-anthraquinone hybrids bearing meso-substituents, i.e. either pyridine or pyrazole rings were designed and computationally evaluated for their Cyclin Dependent Kinase-2 (CDK2) inhibitory activity using molecular docking, molecular dynamics simulation, and binding free energy calculation. The molecular docking simulation revealed that all six porphyrin hybrids were able to bind to ATP-binding site of CDK2 and interacted with key residues constituted the active cavity of CDK2, while molecular dynamics simulation indicated that all porphyrins bound to CDK2 were stable for 6ns. The binding free energies predicted by MM-PBSA method showed that most compounds exhibited higher affinity than that of native ligand (4-anilinoquinazoline, DTQ) and the affinity of mono-H2PyP-AQ was about three times better than that of DTQ, indicating its potential to be advanced as a new CDK2 inhibitor.

  3. Porphyrin Metalation at the MgO Nanocube/Toluene Interface. (United States)

    Schneider, Johannes; Kollhoff, Fabian; Bernardi, Johannes; Kaftan, Andre; Libuda, Jörg; Berger, Thomas; Laurin, Mathias; Diwald, Oliver


    Molecular insights into porphyrin adsorption on nanostructured metal oxide surfaces and associated ion exchange reactions are key to the development of functional hybrids for energy conversion, sensing, and light emission devices. Here we investigated the adsorption of tetraphenyl-porphyrin (2HTPP) from toluene solution on two types of MgO powder. We compare MgO nanocubes with an average size d MgO cubes with 10 nm ≤ d ≤ 1000 nm. Using molecular spectroscopy techniques such as UV/vis transmission and diffuse reflectance (DR), photoluminescence (PL), and diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy in combination with structural characterization techniques (powder X-ray diffraction and transmission electron microscopy, TEM), we identified a new room temperature metalation reaction that converts 2HTPP into magnesium tetraphenyl-porphyrin (MgTPP). Mg(2+) uptake from the MgO nanocube surfaces and the concomitant protonation of the oxide surface level off at a concentration that corresponds to roughly one monolayer equivalent adsorbed on the MgO nanocubes. Larger MgO cubes, in contrast, show suppressed exchange, and only traces of MgTPP can be detected by photoluminescence.

  4. A new C=C embedded porphyrin sheet with superior oxygen reduction performance

    Institute of Scientific and Technical Information of China (English)

    Yawei Li[1; Shunhong Zhang[2; Jiabing Yu[1; Qian Wang[2; Qiang Sun[1,2,3; Puru Jena[3


    C2 is a well-known pseudo-oxygen unit with an electron affinity of 3.4 eV. We show that it can exhibit metal-ion like behavior when embedded in a porphyrin sheet and form a metal-free two-dimensional material with superior oxygen reduction performance. Here, the positively charged C=C units are highly active for oxygen reduction reaction (ORR) via dissociation pathways with a small energy barrier of 0.09 eV, much smaller than that of other non-platinum group metal (non-PGM) ORR catalysts. Using a microkinetics-based model we calculated the partial current density to be 3.0 mA/cm2 at 0.65 V vs. a standard hydrogen electrode (SHE), which is comparable to that of the state-of-the-art Pt/C catalyst. We further confirm that the C=C embedded porphyrin sheet is dynamically and thermally stable with a quasi-direct band gap of 1.14 eV. The superior catalytic performance and geometric stability make the metal-free C=C porphyrin sheet ideal for fuel cell applications.

  5. The study of cellulosic fabrics impregnated with porphyrin compounds for use as photo-bactericidal polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Rahmatollah, E-mail: [Bioinorganic Chemistry Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Fayyaz, Fatemeh [Bioinorganic Chemistry Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114 (Iran, Islamic Republic of); Rassa, Mehdi [Department of Biology, Faculty of Science, University of Guilan, Rasht (Iran, Islamic Republic of)


    In the present work, we report on the preparation of cellulosic fabrics bearing two types of photo-sensitizers in order to prepare efficient polymeric materials for antimicrobial applications. The obtained porphyrin-grafted cellulosic fabrics were characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, diffuse reflectance UV–Vis (DRUV) spectroscopy, thermo-gravimetric analysis (TG) and scanning electron microscopy (SEM). Antimicrobial activity of the prepared porphyrin-cellulose was tested under visible light irradiation against Staphylococcus aureus, Pseudomunas aeroginosa and Escherichia coli. In addition, the effect of two parameters on photo-bactericidal activity of treated fibers was studied: illumination time and concentration of photosensitizers (PS). - Highlights: • Cellulosic fabrics were impregnated with various concentrations of porphyrins (TAPP and its zinc ion complex). • The products were characterized by ATR-FTIR, DRUV, SEM and TG. • The photo-antibacterial activity of products was determined against S. aureus, P. aeroginosa and E. coli. • The effect of two parameters were studied on photoinactivation of treated fibers: illumination time and concentration of PS.

  6. Cationic Bolaamphiphiles for Gene Delivery (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad


    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  7. Concerning the Deactivation of Cobalt(III)-Based Porphyrin and Salen Catalysts in Epoxide/CO 2 Copolymerization

    KAUST Repository

    Xia, Wei


    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Functioning as active catalysts for propylene oxide (PO) and carbon dioxide copolymerization, cobalt(III)-based salen and porphyrin complexes have drawn great attention owing to their readily modifiable nature and promising catalytic behavior, such as high selectivity for the copolymer formation and good regioselectivity with respect to the polymer microstructure. Both cobalt(III)-salen and porphyrin catalysts have been found to undergo reduction reactions to their corresponding catalytically inactive cobalt(II) species in the presence of propylene oxide, as evidenced by UV/Vis and NMR spectroscopies and X-ray crystallography (for cobalt(II)-salen). Further investigations on a TPPCoCl (TPP=tetraphenylporphyrin) and NaOMe system reveal that such a catalyst reduction is attributed to the presence of alkoxide anions. Kinetic studies of the redox reaction of TPPCoCl with NaOMe suggests a pseudo-first order in cobalt(III)-porphyrin. The addition of a co-catalyst, namely bis(triphenylphosphine)iminium chloride (PPNCl), into the reaction system of cobalt(III)-salen/porphyrin and PO shows no direct stabilizing effect. However, the results of PO/CO2 copolymerization by cobalt(III)-salen/porphyrin with PPNCl suggest a suppressed catalyst reduction. This phenomenon is explained by a rapid transformation of the alkoxide into the carbonate chain end in the course of the polymer formation, greatly shortening the lifetime of the autoreducible PO-ring-opening intermediates, cobalt(III)-salen/porphyrin alkoxides. CO2 saves: The deactivation of cobalt(III)-porphyrin and salen catalysts in propylene oxide/carbon dioxide copolymerization is systematically investigated, revealing a proposed mechanism for the catalyst reduction (see scheme).

  8. Photodynamic inactivation of Candida albicans by a tetracationic tentacle porphyrin and its analogue without intrinsic charges in presence of fluconazole. (United States)

    Quiroga, Ezequiel D; Mora, S Jimena; Alvarez, M Gabriela; Durantini, Edgardo N


    The photodynamic inactivation mediated by 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]porphyrin (TAPP) and 5,10,15,20-tetrakis[4-(3-N,N,N-trimethylaminepropoxy)phenyl]porphyrin (TAPP(4+)) were compared in Candida albicans cells. A strong binding affinity was found between these porphyrins and the yeast cells. Photosensitized inactivation of C. albicans increased with both photosensitizer concentration and irradiation time. After 30 min irradiation, a high photoinactivation (∼5 log) was found for C. albicans treated with 5 μM porphyrin. Also, the photoinactivation of yeast cells was still elevated after two washing steps. However, the photocytotoxicity decreases with an increase in the cell density from 10(6) to 10(8) cells/mL. The high photodynamic activity of these porphyrins was also established by growth delay experiments. This C. albicans strain was susceptible to fluconazole with a MIC of 1.0 μg/mL. The effect of photosensitization and the action of fluconazole were combined to eradicate C. albicans. After a PDI treatment with 1 μM porphyrin and 30 min irradiation, the value of MIC decreased to 0.25 μg/mL. In addition, a complete arrest in cell growth was found by combining both effects. TAPP was similarly effective to photoinactivate C. albicans than TAPP(4+). This porphyrin without intrinsic positive charges contains basic amino groups, which can be protonated at physiological pH. Moreover, an enhancement in the antifungal action was found using both therapies because lower doses of the agents were required to achieve cell death.

  9. Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solution: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies. (United States)

    Singh, Ambrish; Lin, Yuanhua; Quraishi, Mumtaz A; Olasunkanmi, Lukman O; Fayemi, Omolola E; Sasikumar, Yesudass; Ramaganthan, Baskar; Bahadur, Indra; Obot, Ime B; Adekunle, Abolanle S; Kabanda, Mwadham M; Ebenso, Eno E


    The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin (HPTB), 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin (T4PP), 4,4',4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrakis(benzoic acid) (THP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) was studied using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM) techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR) were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.

  10. Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solution: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies

    Directory of Open Access Journals (Sweden)

    Ambrish Singh


    Full Text Available The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl-21H,23H-porphyrin (HPTB, 5,10,15,20-tetra(4-pyridyl-21H,23H-porphyrin (T4PP, 4,4′,4″,4‴-(porphyrin-5,10,15,20-tetrayltetrakis(benzoic acid (THP and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP was studied using electrochemical impedance spectroscopy (EIS, potentiodynamic polarization, scanning electrochemical microscopy (SECM and scanning electron microscopy (SEM techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.

  11. Cation distributions on rapidly solidified cobalt ferrite (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.


    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  12. Cationic ceramides and analogues, LCL30 and LCL85, as adjuvants to photodynamic therapy of tumors. (United States)

    Korbelik, Mladen; Zhang, Wei; Saw, Kyi Min; Szulc, Zdzislaw M; Bielawska, Alicja; Separovic, Duska


    Photodynamic therapy (PDT) is known to alter the expression of various genes in treated cells. This prompted us to examine the activity of genes encoding two important enzymes in sphingolipid (SL) metabolism, dihydroceramide desaturase (DES) and sphingosine kinase (SPHK), in mouse SCCVII tumor cells treated by PDT using either the porphyrin-based photosensitizer Photofrin or silicon phthalocyanine Pc4. The results revealed that PDT induced an upregulation in the expression of two major isoforms of both genes (DES1 and DES2 as well as SPHK1 and SPHK2). While the changes were generally moderate (2-3-fold gains), the increase in DES2 expression was more pronounced and it was much greater with Photofrin-PDT than with Pc4-PDT (over 23-fold vs. less than 5-fold). Combining either Photofrin-PDT or Pc4-PDT with the cationic C16-ceramide LCL30 (20mg/kg i.p.) for treatment of subcutaneously growing SCCVII tumors rendered important differences in the therapy outcome. Photofrin-PDT, used at a dose that attained good initial response but no tumor cures, produced 50% cures when combined with a single LCL30 treatment. In contrast, the same LCL30 treatment combined with Pc4-PDT had no significant effect on tumor response. The optimal timing of LCL30 injection was immediately after Photofrin-PDT. The therapeutic benefit was lost when LCL30 was given in two 20mg/kg injections encompassing intervals before and after PDT. LCL85, the cationic B13 ceramide analogue and SL-modulating agent, also increased cure rates of Photofrin-PDT treated tumors, but the therapeutic benefit was less pronounced than with LCL30. These results with LCL30 and LCL85, and our previous findings for LCL29 (another SL analogue), assert the potential of SLs for use as adjuvants to augment the efficacy of PDT-mediated tumor destruction.

  13. Optical oxygen-sensing properties of porphyrin derivatives anchored on ordered porous aluminium oxide plates. (United States)

    Araki, Naoko; Amao, Yutaka; Funabiki, Takuzo; Kamitakahara, Masanobu; Ohtsuki, Chikara; Mitsuo, Kazunori; Asai, Keisuke; Obata, Makoto; Yano, Shigenobu


    An optical oxygen-sensing activity of anchored porphyrin derivatives on ordered porous aluminium oxide plates was studied in relevance to development of new oxygen-sensing systems. Porphyrin derivatives, 5,10,15,20-tetrakis(4-carboxylundecane-1-oxy)porphyrin, 5-[4-(11-carboxylundecane-1-oxy)-10,15,20-triphenyl]porphyrin, 5-(4-carboxylphenyl)-10,15,20-triphenylporphyrin, and their platinum complexes, 5,10,15,20-tetrakis(4-carboxylundecane-1-oxy)porphyrinatoplatinum(II), 5-[4-(11-carboxylundecane-1-oxy)-10,15,20-triphenyl]porphyrinatoplatinum(II), 5-(4-carboxylphenyl)-10,15,20-triphenylporphyrinatoplatinum(II), were synthesized and anchored by an equilibrium adsorption method on aluminium oxide plates, which were prepared by an anodic oxidation. The excitation spectra of the porphyrin-anchored layers showed a broadened and blue-shifted Soret band compared with the corresponding porphyrins in DMSO. The luminescence intensity decreased with increasing oxygen concentrations. The oxygen-sensing ability estimated from I(0)/I(100) (I(0) and I(100) denote the luminescence intensity in 0 and 100% oxygen) was 9.08, 6.78, 8.71, 81.9, 35.5, and 39.1, which are greater than those of corresponding porphyrin derivatives in DMSO under the measured conditions, and indicates the remarkable enhancement effect of platinum(II). Non-linear Stern-Volmer plots were well fitted by the two component system to give the oxygen-sensitive constant (K(SV1)/%(-1)), the oxygen-insensitive constant (K(SV2)/%(-1)), and the former contribution (f(1)): 0.232, 3.32 x 10(-2), and 0.642; 0.141, 2.05 x 10(-2), and 0.687; 0.143, 1.05 x 10(-2), and 0.882; 17.3, 7.04 x 10(-3), and 0.980; 10.2, 1.43 x 10(-2), and 0.935; 16.3, 8.35 x 10(-3), and 0.954. The response time for the change of the atmospheric gas from argon to oxygen was 9.4 s, 12.5 s, 9.6 s, 5.0 s, 8.9 s, and 4.6 s, indicating the shortening effect of platinum. The reverse effect of platinum was observed in the change from oxygen to argon: 15.5 s

  14. Calix[4]arene-linked bisporphyrin hosts for fullerenes: binding strength, solvation effects, and porphyrin-fullerene charge transfer bands. (United States)

    Hosseini, Ali; Taylor, Steven; Accorsi, Gianluca; Armaroli, Nicola; Reed, Christopher A; Boyd, Peter D W


    A calix[4]arene scaffolding has been used to construct bisporphyrin ("jaws" porphyrin) hosts for supramolecular binding of fullerene guests. Fullerene affinities were optimized by varying the nature of the covalent linkage of the porphyrins to the calixarenes. Binding constants for C60 and C70 in toluene were explored as a function of substituents at the periphery of the porphyrin, and 3,5-di-tert-butylphenyl groups gave rise to the highest fullerene affinities (26,000 M(-1) for C60). The origin of this high fullerene affinity has been traced to differential solvation effects rather than to electronic effects. Studies of binding constants as a function of solvent (toluene solubility, indicating that desolvation of the fullerene is a major factor determining the magnitude of binding constants. The energetics of fullerene binding have been determined in terms of DelatH and DeltaS and are consistent with an enthalpy-driven, solvation-dependent process. A direct relationship between supramolecular binding of a fullerene guest to a bisporphyrin host and the appearance of a broad NIR absorption band have been established. The energy of this band moves in a predictable manner as a function of the electronic structure of the porphyrin, thereby establishing its origin in porphyrin-to-fullerene charge transfer.

  15. Studies on D-A-π-A structured porphyrin sensitizers with different additional electron-withdrawing unit (United States)

    Lu, Futai; Wang, Xuexiang; Zhao, Yanming; Yang, Guang; Zhang, Jie; Zhang, Bao; Feng, Yaqing


    The introduction of an additional acceptor to a typical donor-π bridge-acceptor (D-π-A) type porphyrin sensitizer results in a D-A-π-A featured porphyrin. Two porphyrins containing an additional acceptor with different electron-withdrawing abilities such as 2,3-diphenylquinoxaline (DPQ) for LP-11 and 2,1,3-benzothiadiazole (BTD) for LP-12 between the porphyrin core and the anchoring group have been synthesized for use as sensitizers in dye-sensitized solar cells (DSCs). Compared to LP-11, LP-12 with the stronger electron-withdrawing additional acceptor BTD possesses better light harvesting properties with regard to red-shifted Q-band absorption and a broader IPCE spectrum, resulting in a greater short circuit photocurrent density (Jsc) output. Interestingly, the steric hindrance of the DPQ group is favorable for suppressing dye aggregation, leading to a larger open-circuit voltage (Voc) value for LP-11-based cell. However, the loss in Voc of LP-12 is overcompensated by an improvement in Jsc. The optimized cell based on LP-12 achieves the better performance with a Jsc of 15.51 mA cm-2, a Voc of 674 mV, a fill factor (FF) of 0.7 and an overall power conversion efficiency (PCE) of 7.37% under standard AM 1.5 G irradiation. The findings provide a guidance for the future molecular design of highly efficient porphyrin sensitizers for use in DSCs.

  16. Self-assembling properties of porphyrinic photosensitizers and their effect on membrane interactions probed by NMR spectroscopy. (United States)

    Vermathen, Martina; Marzorati, Mattia; Bigler, Peter


    Aggregation and membrane penetration of porphyrinic photosensitizers play crucial roles for their efficacy in photodynamic therapy. The current study was aimed at comparing the aggregation behavior of selected photosensitizers and correlating it with membrane affinity. Self-assembling properties of 15 amphiphilic free-base chlorin and porphyrin derivatives bearing carboxylate substituents were studied in phosphate buffered saline (PBS) by (1)H NMR spectroscopy, making use of ring current induced aggregation shifts. All compounds exhibited aggregation in PBS to a different degree with dimers or oligomers showing slow aggregate growth over time. Aggregate structures were proposed on the basis of temperature dependent chemical shift changes. All chlorin compounds revealed similar aggregation maps with their hydrophobic sides overlapping and their carboxylate groups protruding toward the exterior. In contrast, for the porphyrin compounds, the carboxylate groups were located in overlapping regions. Membrane interactions were probed using 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer vesicles and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) micelles as models. The chlorin derivatives had higher membrane affinity and were all monomerized by DHPC micelles as opposed to the porphyrin compounds. The observed differences were attributed to the different aggregate structures proposed for the chlorin and porphyrin derivatives. Free accessibility of the carboxylate groups seemed to promote initial surface interaction with phospholipid bilayers and micelles.

  17. Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal-organic frameworks with high surface area. (United States)

    Liu, Tian-Fu; Feng, Dawei; Chen, Ying-Pin; Zou, Lanfang; Bosch, Mathieu; Yuan, Shuai; Wei, Zhangwen; Fordham, Stephen; Wang, Kecheng; Zhou, Hong-Cai


    Through a topology-guided strategy, a series of Zr6-containing isoreticular porphyrinic metal-organic frameworks (MOFs), PCN-228, PCN-229, and PCN-230, with ftw-a topology were synthesized using the extended porphyrinic linkers. The bulky porphyrin ring ligand effectively prevents the network interpenetration which often appears in MOFs with increased linker length. The pore apertures of the structures range from 2.5 to 3.8 nm, and PCN-229 demonstrates the highest porosity and BET surface area among the previously reported Zr-MOFs. Additionally, by changing the relative direction of the terminal phenyl rings, this series replaces a Zr8 cluster with a smaller Zr6 cluster in a topologically identical framework. The high connectivity of the Zr6 cluster yields frameworks with enhanced stability despite high porosity and ultralarge linker. As a representative example, PCN-230, constructed with the most extended porphyrinic linker, shows excellent stability in aqueous solutions with pH values ranging from 0 to 12 and demonstrates one of the highest pH tolerances among all porphyrinic MOFs. This work not only presents a successful example of rational design of MOFs with desired topology, but also provides a strategy for construction of stable mesoporous MOFs.

  18. Fabrication of a TiO2@porphyrin nanofiber hybrid material: a highly efficient photocatalyst under simulated sunlight irradiation (United States)

    La, Duong Duc; Rananaware, Anushri; Phuong Nguyen Thi, Hoai; Jones, Lathe; Bhosale, Sheshanath V.


    The solar spectrum consists of 8% UV radiation, while 45% of solar energy is from visible light. It is therefore desirable to fabricate a hybrid material which is able to harvest energy from a wide range of photons from the sun for applications such as solar cells, photovoltaics, and photocatalysis. In this study we report on the fabrication of a TiO2@porphyrin hybrid material by surfactant-assisted co-assembly of monomeric porphyrin molecules with TiO2 nanoparticles. The obtained TiO2@porphyrin composite shows excellent integration of TiO2 particles with diameters of 15–30 nm into aggregated porphyrin nanofibers, which have a width of 70–90 nm and are several µm long. SEM, XPS, XRD, FTIR, UV–Vis and fluorescence spectroscopy were employed to characterize the TiO2@TCPP hybrid material. This material exhibits efficient photocatalytic performance under simulated sunlight, due to synergistic photocatalytic activities of the porphyrin aggregates in visible light and TiO2 particles in the UV region. A plausible mechanism for photocatalytic degradation is also proposed and discussed.

  19. Synthesis of Novel Porphyrin and its Complexes Covalently Linked to Multi-Walled Carbon Nanotubes and Study of their Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jin Jun


    Full Text Available Abstract Novel covalent porphyrin and its complexes (Co2+, Zn2+ functionalized multi-walled carbon nanotubes (MWNTs have been successfully synthesized by the reaction of the carboxyl on the surface of MWNTs which was synthesized to use carbon radicals generated by the thermal decomposition of azodiisobutyronitrile (AIBN with 5-p-hydroxyphenyl-10,15,20-triphenyl-porphyrin and its complexes (Co2+, Zn2+. Three resulting nanohybrids were characterized by spectroscopy (FT-IR, Raman, and UV-vis, TGA, and TEM. The quality of porphyrin attached to the MWNTs was determined from thermogravimeric analysis (TGA of the MWNTs, which showed a weight loss of about 60%. The Raman and absorption spectroscopy data showed that the electronic properties of modified MWNTs were mostly retained, without damaging their one-dimensional electronic properties. From fluorescence measurements, it was observed that the porphyrin and its complexes (Co2+, Zn2+ were nearly quenched by MWNTs, indicating that this covalently modified mode facilitated the effective energy or electron transfer between the excited porphyrin moiety and the extended π-system of MWNTs.

  20. Theoretical investigation of one-photon and two-photon absorption properties for multiply N-confused porphyrins. (United States)

    Yang, Zhao-Di; Feng, Ji-Kang; Ren, Ai-Min; Sun, Chia-Chung


    We have theoretically investigated a series of multiply N-confused porphyrins and their Zn or Cu complexes for the first time by using DFT(B3LYP/6-31G*) and ZINDO/SOS methods. The electronic structure, one-photon absorption (OPA), and two-photon absorption (TPA) properties have been studied in detail. The calculated results indicate that the OPA spectra of multiply N-confused porphyrins are red-shifted and the OPA intensities decrease compared to normal porphyrin. The maximum two photon absorption wavelengths lambda(max) are blue-shifted and the TPA cross sections delta(max) are increased 22.7-112.1 GM when the N atoms one by one are inverted from core to beta position to form multiply N-confused porphyrins. Especially delta(max) of N3CP get to 164.7 GM. The electron donors -C6F5s at meso-position can make the TPA cross section delta(max) increase. After forming metal complexes with Cu or Zn, the TPA properties of multiply N-confused porphyrins are further increased except for N3CP, N4CP. Our theoretical findings demonstrate that the multiply N-confused prophyrins as well as their metal complexes and derivatives are promising molecules that can be assembled series of materials with large TPA cross section, and are sure to be the subject of further investigation.

  1. Synthesis of a new iron(Ⅲ) porphyrin acrylate-styrene copolymer and its catalysis for hydroxylation of cyclohexane

    Institute of Scientific and Technical Information of China (English)

    YU Hancheng; CHEN Xianli; LI Xixian; HUANG Jinwang; JI Liangnian


    A new iron(Ⅲ) porphyrin acrylate-styrene copolymer,P[(PorFe)A-S],was synthesized by the reaction of iron(Ⅲ) porphyrin acrylate with styrene and characterized by UV-Vis,Infrared spectra (IR),inductively coupled plasmaatomic emission spectrometry (ICP) and molecular weight determination.Its catalytic activity in the hydroxylation of cyclohexane for model cytochrome/>450 in the P[(PorFe)A-S]-OE-ascrobate-thiosalicylic acid system has been studied.It was found that the P[(PorFe)A-S] has a higher catalytic activity than non-supported iron(Ⅲ) porphyrin and its high catalytic activity remained in reuse.The catalytic activity of P[(PorFe)A-S] was discussed in the view of the microenvironment of iron(Ⅲ) porphyrin.It is proposed that the catalytic activity of the P[(PorFe)A-S] may be further enhanced by construction of a homophase catalytic system containing the iron(Ⅲ) porphyrin acrylate-styrene copolymer.

  2. Porphyrin dyes on TiO2 surfaces with different orientations: a photophysical, photovoltaic, and theoretical investigation. (United States)

    Si, Liping; He, Hongshan


    Porphyrin dyes with a triphenylamino group as an electron donor, para- or meta-benzoic acids as electron acceptors, and hydrogen (H) or mesityl (M) substituents on the meso position as auxiliary groups were synthesized. Their photophysical properties and photovoltaic performance in dye-sensitized solar cells were investigated. All four porphyrins exhibited similar photophysical properties in the solution and dye-loading densities on the surface of TiO2 nanoparticles; however, the p-benzoic acid functionalized porphyrins, p-H(M)PZn, gave better photovoltaic performance than m-benzoic acid functionalized porphyrins, m-H(M)PZn. Theoretical calculations indicated that the electron density on the frontier molecular orbital was more delocalized to p-benzoic acid than to m-benzoic acid. Absorption spectra indicated the stronger H-aggregation in m-H(M)PZn than that in p-H(M)PZn on the surface of TiO2 nanoparticles. The mesityl groups in the meso positions reduced the dye-loading density due to steric hindrance between dyes. As a result, the p-MPZn exhibited the best energy conversion efficiency among the four porphyrins studied. This efficiency was further enhanced when a complementary dye BET was used.

  3. Structure and excited state relaxation dynamics in nanoscale self-assembled arrays: multiporphyrin complexes, porphyrin-quantum dot composites (United States)

    Zenkevich, E. I.; von Borczyskowski, C.


    Self-assembled nanoscale arrays of controllable geometry and composition (up to 8 tetrapyrroles) have been formed via non-covalent binding interactions of the meso-phenyl bridged Zn-octaethylporphyrin chemical dimers or trimers with di- /tetrapyridyl substituted porphyrin extra-ligands. In these complexes using steady-state and time-resolved (ps fluorescence and fs pump-probe) measurements pathways and efficiencies of the energy transfer photoinduced charge separation as well as exchange d-π effects have been studied in solutions of variable polarity at 77-293 K. The same principles of aggregation via the key-hole scheme "Zn-pyridyl" have been used also for the surface passivation of pyridylsubstituted tetrapyrroles on the coreshell semiconductor CdSe/ZnS quantum dots (QD) showing quantum confinement effects. Picosecond time-resolved and steady-state data reveal that CdSe/ZnS QD emission is multiexponential and the efficiency of its quenching by attached porphyrins (due to energy transfer and photoinduced charge separation) depends strongly on the number of anchoring groups their arrangement in the porphyrin molecule as well as on QD size and number of ZnS monolayers. The analysis of spectroscopic and kinetic findings reveals that on average only ~l/5 porphyrin molecules are assembled on the QD and a limited number of "vacancies" accessible for porphyrin attachment is available on the QD surface.

  4. Cationic ruthenium alkylidene catalysts bearing phosphine ligands. (United States)

    Endo, Koji; Grubbs, Robert H


    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  5. Optical Limiting Properties of Porphyrin Monomers and Dimers%卟啉单体和卟啉二聚体的光限幅性质

    Institute of Scientific and Technical Information of China (English)

    郑文琦; 单凝; 法焕宝; 石莹岩


    The authors synthesized three porphyrin monomers with different substituents and three porphyrin dimers with different bridge-linked reagents according to Alder method. The optical limiting properties of the porphyrins were studied via Z-scan and optical limiting properties, and compared with those of other porphyrin molecules under the similar experimental conditions. The Z-scan curves of all the porphyrin samples were similar to each other. The Z-scan curves of all the porphyrin samples showed the characteristics of reverse saturation absorption. Porphyrin 4 had the best optical limiting properties, and the lowest normalized transmittance of porphyrin 4 was 7%.%采用Alder法合成了3种在苯环对位连接性质不同取代基的卟啉单体和3种桥联基团性质各异的卟啉二聚体,并研究卟啉单体和卟啉二聚体的Z-扫描曲线和光限幅性质.Z-扫描研究结果表明,卟啉测试样品的Z-扫描曲线相似,均出现反饱和吸收和光限幅性质,其中卟啉化合物4的光限幅效果明显,入射光的透过率约为7%.

  6. Cation locations and dislocations in zeolites (United States)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  7. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry (United States)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.


    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  8. Removal of CO from CO-contaminated hydrogen gas by carbon-supported rhodium porphyrins using water-soluble electron acceptors (United States)

    Yamazaki, Shin-ichi; Siroma, Zyun; Asahi, Masafumi; Ioroi, Tsutomu


    Carbon-supported Rh porphyrins catalyze the oxidation of carbon monoxide by water-soluble electron acceptors. The rate of this reaction is plotted as a function of the redox potential of the electron acceptor. The rate increases with an increase in the redox potential until it reaches a plateau. This profile can be explained in terms of the electrocatalytic CO oxidation activity of the Rh porphyrin. The removal of CO from CO(2%)/H2 by a solution containing a carbon-supported Rh porphyrin and an electron acceptor is examined. The complete conversion of CO to CO2 is achieved with only a slight amount of Rh porphyrins. Rh porphyrin on carbon black gives higher conversion than that dissolved in solution. This reaction can be used not only to remove CO in anode gas of stationary polymer electrolyte fuel cells but also to regenerate a reductant in indirect CO fuel cell systems.

  9. Electrospun Poly(acrylonitrile-co-acrylic acid) Nanofibrous Membranes for Catalase Immobilization:Effect of Porphyrin Filling on the Enzyme Activity

    Institute of Scientific and Technical Information of China (English)

    KE Bei-bei; WAN Ling-shu; HUANG Xiao-jun; XU Zhi-kang


    Porphyrin-filled nanofibrous membranes were facilely prepared by electrospinning of the mixtures of poly(acryionitrile-co-acrylic acid)(PANCAA) and porphyrins. 5,10,15,20-Tetraphenyiporphyrin(TPP) and its metalloderivatives(ZnTPP and CuTPP) were studied as filling mediators for the immobilization of redox enzyme. Results indicate that the introduction of TPP, ZnTPP and CuTPP improves the retention activity of the immobilized catalase.Among these three porphyrins, the ZnTPP-filled PANCAA nanofibrous membrane exhibits an activity retention of 93%, which is an exciting improvement. This improvement is attributed to both the strong catalase-porphyrin affinity and the possible facilitated electron transfer induced by the porphyrin as evidenced by quartz crystal microbalance (QCM) and fluorescence spectroscopy studies.

  10. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi


    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  11. Remarkable solvent, porphyrin ligand, and substrate effects on participation of multiple active oxidants in manganese(III) porphyrin catalyzed oxidation reactions. (United States)

    Hyun, Min Young; Jo, Young Dan; Lee, Jun Ho; Lee, Hong Gyu; Park, Hyun Min; Hwang, In Hong; Kim, Kyeong Beom; Lee, Suk Joong; Kim, Cheal


    The participation of multiple active oxidants generated from the reactions of two manganese(III) porphyrin complexes containing electron-withdrawing and -donating substituents with peroxyphenylacetic acid (PPAA) as a mechanistic probe was studied by carrying out catalytic oxidations of cyclohexene, 1-octene, and ethylbenzene in various solvent systems, namely, toluene, CH(2) Cl(2) , CH(3) CN, and H(2) O/CH(3) CN (1:4). With an increase in the concentration of the easy-to-oxidize substrate cyclohexene in the presence of [(TMP)MnCl] (1a) with electron-donating substituents, the ratio of heterolysis to homolysis increased gradually in all solvent systems, suggesting that [(TMP)Mn-OOC(O)R] species 2a is the major active species. When the substrate was changed from the easy-to-oxidize one (cyclohexene) to difficult-to-oxidize ones (1-octene and ethylbenzene), the ratio of heterolysis to homolysis increased a little or did not change. [(F(20) TPP)Mn-OOC(O)R] species 2b generated from the reaction of [(F(20) TPP)MnCl] (1b) with electron-withdrawing substituents and PPAA also gradually becomes involved in olefin epoxidation (although to a much lesser degree than with [(TMP)Mn-OOR] 2a) depending on the concentration of the easy-to-oxidize substrate cyclohexene in all aprotic solvent systems except for CH(3) CN, whereas Mn(V)=O species is the major active oxidant in the protic solvent system. With difficult-to-oxidize substrates, the ratio of heterolysis to homolysis did not vary except for 1-octene in toluene, indicating that a Mn(V)=O intermediate generated from the heterolytic cleavage of 2b becomes a major reactive species. We also studied the competitive epoxidations of cis-2-octene and trans-2-octene with two manganese(III) porphyrin complexes by meta-chloroperbenzoic acid (MCPBA) in various solvents under catalytic reaction conditions. The ratios of cis- to trans-2-octene oxide formed in the reactions of MCPBA varied depending on the substrate concentration, further

  12. Studies of Iron-Porphyrin Complexes with Different Axial Ligands by Both Spin-Restrict and Spin-Polarized Density Functional Reactivity Theory%连接不同轴向配体铁卟啉体系的自旋非极化和自旋极化密度泛函活性理论研究

    Institute of Scientific and Technical Information of China (English)

    吴文杰; 张晓青; 惠华英; 李龙; 黄莺


    Heme is a key cofactor of hemoproteins in which porphyrin is often found to be preferen-tially metallated by an iron cation.Density functional reactivity theory ( DFRT ) descriptors and their spin-polarized version have been previously applied to understand the metal-binding specificity of porphy-rin in the literature.It was found that the iron-porphyrin complex significantly differs in many aspects from porphyrin complexes with other metal cations.In this study, we employ DFRT and its spin-polarized version to investigate the reactivity for a series of small ligands axially bonded to the iron-porphyrin com-plex with the general formula of L-Fe(Ⅱ)-porphyrin, where L=SMe, SHMe, 1H-imidazole, imidazol-1-ide, OH, H2 O, H2 O2 , CO, NO, O2 , furan, isoindole, pyrrole, and pyridine.Both global and local DFRT descriptors were examined within this framework.We found that, from the analysis of DFRT and spin-polarized DFRT descriptors, CO is the ligand giving rise to the most stable Fe(Ⅱ)-prophyrin com-plex, which at the same time is less reactive than other systems.We also discovered substantial differ-ences in structural and reactivity descriptors between the systems with L=H2 O and SHMe systems as well as the systems with L=OH and SMe.Quantitative reactivity relationships have been revealed.These re-sults should help better understanding of the reactivity of heme bonding with different ligands for heme-containing enzymes and other metalloproteins alike.%血红素在许多生化反应中起着至关重要的作用,且血红素的核心为卟啉环配位铁离子。文献采用密度泛函活性理论及其自旋极化方法对卟啉环连接的金属离子的选择性进行了研究,发现卟啉环连接铁离子时其结构和活性与连接其他金属离子的体系有很大的差异。实验研究表明,轴向连接不同配体对体系的结构和活性有显著影响。本文采用密度泛函活性理论及其自旋极化方法对铁卟啉体系中铁离

  13. Molecular Engineering of Nonplanar Porphyrin and Carbon Nanotube Assemblies: A Linear and Nonlinear Spectroscopic and Modeling Study

    Directory of Open Access Journals (Sweden)

    Éimhín M. Ní Mhuircheartaigh


    Full Text Available The importance of molecular conformation to the nature and strength of noncovalent interactions existing between a series of increasingly nonplanar tetraphenylporphyrin (TPP derivatives and carbon nanotubes was systematically investigated experimentally in solution using a range of linear and nonlinear optical techniques. Additional complementary molecular dynamics studies were found to support the experimental observations. Convincing evidence of binding between single walled nanotubes (SWNTs and some of these porphyrins was discovered, and a nonplanar macrocycle conformation was found to increase the likelihood of noncovalent binding onto nanotubes. Nonlinear optical studies showed that the optical limiting behavior of the TPP derivatives deteriorated with increasing porphyrin nonplanarity, but that formation of nanotube composites dramatically improved the optical limiting properties of all molecules studied. It was also found that the significant photoluminescence quenching behavior reported in the literature for such porphyrin/SWNT composites is at least partly caused by photoluminescence and excitation self-absorption and is, therefore, an artifact of the system.

  14. Nitric oxide sensor based on carbon fiber covered with nickel porphyrin layer deposited using optimized electropolymerization procedure. (United States)

    Hrbác, Jan; Gregor, Cenek; Machová, Markéta; Králová, Jana; Bystron, Tomás; Cíz, Milan; Lojek, Antonín


    Electropolymerization regime of meso-tetrakis(3-methoxy-4-hydroxyphenyl) porphyrin is optimized to yield films possessing both electrocatalytical and permselective properties towards nitric oxide oxidation. The sensor composed of electrochemically oxidized carbon fiber, covered solely with nickel porphyrin derivative layer electropolymerized using our method, is characterized by high selectivity towards nitrite (1:600), ascorbate (1:8000) and dopamine (>1:80), determined by constant potential amperometry at 830 mV (vs. Ag/AgCl). Selectivity for ascorbate and dopamine as well as detection limit for NO (1.5 nM at S/N=3) is 5-10 times better than parameters usually reported for Nafion coated porphyrinic sensors. Nafion coating can further enhance selectivity properties as well as aids to the stability of the sensors' responses.

  15. Synthesis of 5,10,15,20-Tetra[4-(N-ethylpiperazinyl)phenyl]-porphyrin and Its Interaction with DNA

    Institute of Scientific and Technical Information of China (English)

    郭灿城; 李和平; 张晓兵


    Piperazinyl-porphyrin, 5,10,15,20-tetra[4-(N-ethylpiperazinyl)phenyl]porphyrin (TEPPH2), was synthesized based on the special affinity of porphyrin to cancer cells and the antitumor activity of piperazine compounds. Its structure was characterized by UV-vis and 1H NMR spectra and elemental analysis. A model for the interaction between TEPPH2 and calf thymus DNA was built, and the binding mechanism was investigated by W-vis and fluorescence spectra. The results indicated that TEPPH2 could intercalate into the base pairs of DNA strongly. One calf thymus DNA molecule could bind 88 TEPPH2 molecules, and the binding constant K is 8.4×106 L-mol-1. The binding number and binding constant of TEPPH2 with DNA are higher than those of the known anti-tumor drugs,tetrakis(4-N-methylpyridyl)porphine and the Schiff bases Ca/sal-his and Ni/sal-aln.

  16. First Example of a Lipophilic Porphyrin-Cardanol Hybrid Embedded in a Cardanol-Based Micellar Nanodispersion

    Directory of Open Access Journals (Sweden)

    Giuseppe Vasapollo


    Full Text Available Cardanol is a natural and renewable organic raw material obtained as the major chemical component by vacuum distillation of cashew nut shell liquid. In this work a new sustainable procedure for producing cardanol-based micellar nanodispersions having an embedded lipophilic porphyrin itself peripherally functionalized with cardanol substituents (porphyrin-cardanol hybrid has been described for the first time. In particular, cardanol acts as the solvent of the cardanol hybrid porphyrin and cholesterol as well as being the main component of the nanodispersions. In this way a “green” micellar nanodispersion, in which a high percentage of the micellar system is derived from renewable “functional” molecules, has been produced.

  17. Different J-Type Aggregates of meso-Tetrakis (4-hydroxyphenyl) porphyrin (H2THPP) Formed in Different Solvents

    Institute of Scientific and Technical Information of China (English)

    Ying Hui ZHANG; Yang WU


    The aggregation of meso-tetrakis(4-hydroxyphenyl)porphyrin (H2THPP) in dimethylformamide (DMF)-water solution and in DMF-chloroform solution was studied by UV-vis absorption spectroscopy. The red shift of Soret band indicates the formation of J-type aggregates of H2THPP in these two solutions. However, different shift extent of Soret band, 12 nm in DMF-water solution and 32 nm in DMF-chloroform solution, implies structural difference between these two J-type aggregates. The hydrogen bond between hydroxyl group and N-H bonds in porphyrin ring is thought as the main cause to the formation of J-type aggregate in DMFchloroform solution, whereas the π-σ interaction between two adjacent porphyrin cores is thought as the main cause of the formation of J-type aggregate in DMF-water solution

  18. Synthesis and Characterization of 2, 3, 7, 8, 12, 13, 17, 18, Octabromo 5, 10, 15, 20 tetra phenyl porphyrin

    Directory of Open Access Journals (Sweden)

    Kalpana Raikwar


    Full Text Available Chromium(III porphyrin and its derivative have been synthesized by bromination and demetallation of copper tetra phenyl porphyrin.All the complexes were characterized on the basis of their elemental analysis, UV-vis spectra and magnetic moment properties.The magnetic moment suggested that the complex in the range 3.79 BM indicating an octahedral structure. The comparison of the UV- vis spectra of the free base show that substitution of Br atom at β-pyrrole position lead to greater shift than substitution of electronegative group in the phenyl ring

  19. Synthesis and Characterization of 2, 3, 7, 8, 12, 13, 17, 18, Octabromo 5, 10, 15, 20 tetra phenyl porphyrin


    Kalpana Raikwar


    Chromium(III) porphyrin and its derivative have been synthesized by bromination and demetallation of copper tetra phenyl porphyrin.All the complexes were characterized on the basis of their elemental analysis, UV-vis spectra and magnetic moment properties.The magnetic moment suggested that the complex in the range 3.79 BM indicating an octahedral structure. The comparison of the UV- vis spectra of the free base show that substitution of Br atom at β-pyrrole position lead to greater shift than...

  20. Synthesis and Liquid Crystal Properties of Transition Metal Complexes of Meso-tetra(4-n-myristyloxyphenyl) porphyrin

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; SHI Yu-hua; SHI Tong-shun


    Transition metal complexes of meso-tetra(4-myristyloxyphenyl)porphyrin TMPPM'[M'=Mn, Fe, Co, Ni, Cu, Zn; TMPP=mesotetra(4-myristyloxyphenyl)porphyrin] have been synthesized and characterized by means of elemental analyses, UV-Vis spectra, infrared photoacoustic spectra, 1H NMR spectra, molar conductance and differential scanning calorimetry(DSC). The ligand and the Zn complex show liquid crystalline behavior. According to the DSC thermogram of the Zn complex, it exhibits a lower phase transition temperature -7.453 ℃ and a wide mesophase temperature span, 77 ℃.

  1. Photoinduced electron and energy transfer in a new porphyrin-phthalocyanine triad

    Energy Technology Data Exchange (ETDEWEB)

    Ermilov, Eugeny A. [Institut fuer Physik, Photobiophysik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany)], E-mail:; Tannert, Sebastian [Institut fuer Physik, Photobiophysik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Werncke, Thomas [Institut fuer Physik, Photobiophysik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Choi, Michael T.M. [Department of Chemistry, Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China); Ng, Dennis K.P. [Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China)], E-mail:; Roeder, Beate [Institut fuer Physik, Photobiophysik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany)


    Complexes of porphyrins, phthalocyanines, and chlorophylls are well suited for modelling both the electron and energy transfer processes in photosynthetic reaction centers and natural chlorophyll complexes. In the present paper, we report the synthesis and photophysical characterization of a novel tetraphenylporphyrin-silicon(IV) phthalocyanine triad, where two porphyrins are linked to the central silicon atom of a phthalocyanine moiety. It has been found that the photophysical properties of the triad (Tr) are strongly affected by two different types of interactions between the porphyrin (P) and the phthalocyanine (Pc) parts of Tr, namely excitation energy transfer (EET) and photoinduced electron transfer (ET). The first one results in appearance of the Pc fluorescence when the P-part was initially excited and plays dominant role in fast depopulation of the first excited singlet state of the P moiety. Another competitive process in quenching of P-part fluorescence is electron transfer, but the probability of it is six times less compared to that of EET. If the first excited singlet state of the Pc-part is populated (directly or via EET), it undergoes fast depopulation via ET to the charge-separated state. As a result, the fluorescence quantum yield of the Pc-part of Tr is approximately three orders of magnitude less compared to that of silicon(IV) phthalocyanine with two axial poly(ethylene glycol) chains (SiPc) used as a reference. Analysis of transient absorption data has shown that charge-recombination occurs with a decay time of 30 ps directly to the ground state.

  2. Natural Chlorophyll-Related Porphyrins and Chlorins for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Xiao-Feng Wang


    Full Text Available Natural-chlorophyll-related porphyrins, including (2H, Zn, Cu-protoporphyrin IX (Por-1 and Zn-mesoporphyrin IX (Por-2, and chlorins, including chlorin e6 (Chl-1, chlorin e4 (Chl-2, and rhodin G7 (Chl-3, have been used in dye-sensitized solar cells (DSSCs. For porphyrin sensitizers that have vinyl groups at the β-positions, zinc coordinated Por-1 gives the highest solar-energy-to-electricity conversion efficiency (h of up to 2.9%. Replacing the vinyl groups of ZnPor-1 with ethyl groups increases the open-circuit voltage (Voc from 0.61 V to 0.66 V, but decreases the short-circuit current (Jsc from 7.0 mA·cm−2 to 6.1 mA·cm−2 and the value of h to 2.8%. Density functional theory (DFT and time-dependent DFT (TD-DFT calculations suggest that the higher Jsc values of Zn-based porphyrin sensitizers result from the favorable electron injection from the LUMO at higher energy levels. In the case of the chlorin sensitizers, the number of carboxyl protons has a large effect on the photovoltaic performance. Chl-2 with two carboxyl protons gives much higher values of Jsc, Voc, and h than does Chl-1 with three carboxyl protons. Replacing the protons of Chl-1 with sodium ions can substantially improve the photovoltaic performance of Chl-1-based solar cells. Furthermore, the sodium salt of Chl-3 with an aldehyde group at the C7 position shows poorer photovoltaic performance than does the sodium salt of Chl-1 with methyl groups at the C7 position. This is due to the low light-harvesting capability of Chl-3.

  3. Studies on the synthesis of new porphyrins from cardanol and glycerol

    Directory of Open Access Journals (Sweden)

    Daiane Santana Souza


    Full Text Available Porphyrins are very attractive compounds due to their wide application in many areas of new materials as chemical technology, ecology, medicine and, electronics. In the last years, they are also been a focus of attention owing to their implications to many photocatalytic reactions. Cardanol (isolated form cashew nut shell liquid and glycerol (side product of biodiesel industry are raw materials of low aggregated value; however, they hold chemical structures with functionalities that can lead to products of high commercial value to Brazilian industry. Aiming to use these chemical materials, our research group has proposed the synthesis of new hybrid molecular structures of porphyrin-cardanol-glycerol, which will be submitted to test of their photocatalytic properties. The synthetic proposal is based on the reaction of 4-hydroxybenzaldehyde (1 and epichloriridine (2 (derived from glycerol, using pyridine in dichloromethane and FeCl3 as a catalyst, under reflux and stirring. This process will provide the mixture of intermediate 3 and 4. These compounds will be attacked by the nucleophile cardanol (5 in sealed tube, using pyridine and dichloromethane at 120 ºC for 80 hours, giving the intermediate 6. After oxidation of the alcohol 6, the corresponding ketone will be achieved. Continuing the synthesis, these intermediates will separately react with pyrrol, giving the wished porphyrins that in turn will be transformed in macromolecules by treatment with Grubbs catalyst, according to methodologies already known in the literature. The previously synthesized compounds 3, 4, 5 and 6 had their structures confirmed by spectroscopy analyses of NMR (1H and 13C.

  4. Synthesis of Cyclic Porphyrin Trimers through Alkyne Metathesis Cyclooligomerization and Their Host–Guest Binding Study

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Long, Hai; Jin, Yinghua; Zhang, Wei


    Cyclic porphyrin trimers were synthesized through one-step cyclooligomerization via alkyne metathesis from diyne monomers. These macrocycles show interesting host-guest binding interactions with fullerenes, selectively binding C70 (6 x 103 M-1) over C60 and C84 (no binding observed). The fullerene-encapsulated host-guest complex can undergo guest or host exchange in the presence of another guest (2,4,6-tri(4-pyridyl)-1,3,5-triazine) or host (cage COP5) molecule with higher binding affinity.

  5. Computational modelling of panchromatic porphyrins with strong NIR absorptions for solar energy capture (United States)

    Agnihotri, Neha


    Five potential push-pull porphyrin dyes (PR1-PR5) substituted with extended rylene anhydride units (n = 1-5) as electron acceptors and (4-dimethylamino) phenyl ethynylene as an electron donor have been investigated computationally using density functional theory and time dependent-density functional theory. Their molecular orbital energies are reported together with their singlet and triplet electronic transition energies, oscillator strengths and charge transfer characteristics. These sensitizers are panchromatic, their fully-allowed charge transfer transitions extend well into the near infrared and their HOMO and LUMO energies appear well-matched to the band gap and electrochemical potential requirements of dye-sensitized solar cells (DSSCs).

  6. Computational screening of functionalized zinc porphyrins for dye sensitized solar cells

    DEFF Research Database (Denmark)

    Ørnsø, Kristian Baruël; García Lastra, Juan Maria; Thygesen, Kristian Sommer


    An efficient dye sensitized solar cell (DSSC) is one possible solution to meet the world's rapidly increasing energy demands and associated climate challenges. This requires inexpensive and stable dyes with well-positioned frontier energy levels for maximal solar absorption, efficient charge...... quality is estimated. Out of the initial 1029 molecules, we find around 50 candidates with level alignment qualities within 5% of the optimal limit. We show that the level alignment of five zinc porphyrin dyes which were recently used in DSSCs with high efficiencies can be further improved by simple side...

  7. Flavin and porphyrin-micro optical fibre biosensor: analysis and design (United States)

    Velazquez-Gonzalez, J. S.; Mujica-Ascencio, S.; Aguilar Morales, A. I.; Marrujo-Garcia, S.; Alvarez-Chavez, J. A.; Martinez-Pinon, F.


    Micro Optical Fibre Biosensors (MOFBs) are emerging as one of the most sensitive bio-detection system technologies which do not require of labelling or amplification of the analyte. In these devices, a short region of the fibre core is exposed to the external environment so that the evanescent field can interact with biological species such as cells, proteins, and DNA. In order to increase the sensitivity and selectivity, MOFBs are often used in combination with other optical transduction mechanisms such as changes in refractive index, absorption, fluorescence and surface plasmon resonance. In this work we present the full characteristics, analysis and design of a MOFBs for Flavin and Porphyrin detection.

  8. Optimizing porphyrins for dye sensitized solar cells using large-scale ab initio calculations

    DEFF Research Database (Denmark)

    Ørnsø, Kristian Baruël; Pedersen, Christian S.; García Lastra, Juan Maria;


    different side and anchoring groups. Based on the calculated frontier orbital energies and optical gaps we quantify the energy level alignment with the TiO2 conduction band and different redox mediators. An analysis of the energy level-structure relationship reveals a significant structural diversity among......In the search for sustainable energy sources, dye sensitized solar cells (DSSCs) represent an attractive solution due to their low cost, relatively high efficiencies, and flexible design. Porphyrin-based dyes are characterized by strong absorption in the visible part of the spectrum and easy...

  9. [Synthesis and luminescent spectral characteristics of porphyrin complexes with platinum group metals]. (United States)

    Rumiantseva, V D; Ivanovskaia, N P; Konovalenko, L I; Tsukanov, S V; Mironov, A F; Osin, N S


    The synthesis of natural and synthetic porphyrin complexes with Pt, Pd, Rh, and Ru is reported. Their electronic absorption spectra, phosphorescence spectra, and lifetimes at room temperature both in the presence and in the absence of oxygen were studied. It has been shown that the variation of the nature of the central metal atom and of the substituents in pyrrole and phenyl rings allows the obtaining of metalloporphyrins with various phosphorescence excitation and phosphorescing emission spectra at room temperature. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also

  10. Central atom/substituent effects onmagnetothermal properties of metal porphyrins in aqueous suspension

    Energy Technology Data Exchange (ETDEWEB)

    Lomova, T.N., E-mail:; Korolev, V.V.; Zakharov, A.G.


    Highlights: • Magnetothermal properties of Mn/Ln(III) porphyrins were obtained by microcalorimetry. • (AcO)GdTPP shows giant magnetocaloric effect compared to La{sub 0.8}Ag{sub 0.15}MnO{sub 3}. • Mn porphyrins’ heat capacities depend on induction with a maximum at 0.25–0.35 T. • Dependences of MCE on molecules structure were determined for the first time. • We explored the prospects of using metal porphyrin magnetothermal properties for various applications. - Abstract: Magnetothermal properties of (X)Mn{sup III}P and (X)Ln{sup III}P, where X = chloro-, bromo-, acetate-ligand; Ln = Eu, Gd, Tm and P = (2,3,7,8,12,13,17,18-octaethylporphyrinato)-, (5,10,15,20-tetraphenylporphyrinato)- or (2,3,7,8,12,13,17, 18-octa-para-tert-butylphenyltetraazaporphyrinato)-ligand, as 6% water suspensions were determined by the microcalorimetric method at 298–353 K in a magnetic induction of 0–1.0 T. High-disperse complex particles were found to have paramagnetic properties. It was established that positive MCE increases with an increase in magnetic induction at all temperatures and decreases with an increase in temperature at all magnetic inductions; in the case of (Cl)GdTPP actually MCE does not depend on temperature. Dependences of specific heat capacity and that of the change in enthalpy and magnetic entropy of the studied complexes on magnetic induction were explored. The first of these dependencies has a maximum at 0.25–0.35 T at all temperatures. Heat capacity of the lanthanide complexes slightly increases with an increase in temperature; a magnetic component of heat capacity takes place only in (AcO)GdTPP at temperatures above 298 K. The regularities of the influence of central atom, acidoligand and a macrocycle composition in porphyrin complexes on their magnetothermal properties were established. Both a macrocycle composition in the case of manganese complexes and an acidoligand variation in the case of lanthanide complexes are bigger than the other

  11. Photoinduced processes in self-assembled porphyrin/perylene bisimide metallosupramolecular boxes. (United States)

    Indelli, M Teresa; Chiorboli, Claudio; Scandola, Franco; Iengo, Elisabetta; Osswald, Peter; Würthner, Frank


    Two new supramolecular boxes, (ZnMC)(2)(rPBI)(2) and (ZnMC)(2)(gPBI)(2), have been obtained by axial coordination of N,N'-dipyridyl-functionalized perylene bisimide (PBI) dyes to the zinc ion centers of two 2+2 porphyrin metallacycles (ZnMC = [trans,cis,cis-RuCl(2)(CO)(2)(Zn·4'-cis-DPyP)](2)). The two molecular boxes involve PBI pillars with different substituents at the bay area: the "red" PBI (rPBI = N,N'-di(4-pyridyl)-1,6,7,12-tetra(4-tert-butylphenoxy)perylene-3,4:9,10-tetracarboxylic acid bisimide) containing tert-butylphenoxy substituents and the "green" PBI (gPBI = N,N'-di(4-pyridyl)-1,7-bis(pyrrolidin-1-yl)perylene-3,4:9,10-tetracarboxylic acid bisimide) bearing pyrrolidinyl substituents. Due to the rigidity of the modules and the simultaneous formation of four pyridine-zinc bonds, these discrete adducts self-assemble quantitatively and are remarkably stable in dichloromethane solution. The photophysical behavior of the new supramolecular boxes has been studied in dichloromethane by emission spectroscopy and ultrafast absorption techniques. A different photophysical behavior is observed for the two systems. In (ZnMC)(2)(rPBI)(2), efficient electron transfer quenching of both perylene bisimide and zinc porphyrin chromophores is observed, leading to a charge separated state, PBI(-)-Zn(+), in which a perylene bisimide unit is reduced and zinc porphyrin is oxidized. In the deactivation of the perylene bisimide localized excited state, an intermediate zwitterionic charge transfer state of type PBI(-)-PBI(+) seems to play a relevant role. In (ZnMC)(2)(gPBI)(2), singlet energy transfer from the Zn porphyrin chromophores to the perylene bisimide units occurs with an efficiency of 0.7. This lower than unity value is due to a competing electron transfer quenching, leading to the charge separated state PBI(-)-Zn(+). The distinct photophysical behavior of these two supramolecular boxes is interpreted in terms of energy changes occurring upon replacement of the "red" r

  12. A porphyrin-based metal-organic framework as a pH-responsive drug carrier (United States)

    Lin, Wenxin; Hu, Quan; Jiang, Ke; Yang, Yanyu; Yang, Yu; Cui, Yuanjing; Qian, Guodong


    A low cytotoxic porphyrin-based metal-organic framework (MOF) PCN-221, which exhibited high PC12 cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay, was selected as an oral drug carrier. Methotrexate (MTX) was chosen as the model drug molecule which was absorbed into inner pores and channels of MOFs by diffusion. PCN-221 showed high drug loading and sustained release behavior under physiological environment without "burst effect". The controlled pH-responsive release of drugs by PCN-221 revealed its promising application in oral drug delivery.

  13. Photoinduced energy and electron transfer in rubrene-benzoquinone and rubrene-porphyrin systems

    KAUST Repository

    Khan, Jafar Iqbal


    Excited-state electron and energy transfer from singlet excited rubrene (Ru) to benzoquinone (BQ) and tetra-(4-aminophenyl) porphyrin (TAPP) were investigated by steady-state absorption and emission, time-resolved transient absorption, and femtosecond (fs)-nanosecond (ns) fluorescence spectroscopy. The low reduction potential of BQ provides the high probability of electron transfer from the excited Ru to BQ. Steady-state and time-resolved results confirm such an excited electron transfer scenario. On the other hand, strong spectral overlap between the emission of Ru and absorption of TAPP suggests that energy transfer is a possible deactivation pathway of the Ru excited state.

  14. Cation Effect on Copper Chemical Mechanical Polishing

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; LIU Bo; SONG Zhi-Tang; FENG Song-Lin


    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demon-strates the worst performance. These results reveal a mechanism that sma//molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  15. Cation Effect on Copper Chemical Mechanical Polishing (United States)

    Wang, Liang-Yong; Liu, Bo; Song, Zhi-Tang; Feng, Song-Lin


    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demonstrates the worst performance. These results reveal a mechanism that small molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  16. Cationically polymerizable monomers derived from renewable sources

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.V.


    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  17. Self-assembly into temperature dependent micro-/nano-aggregates of 5,10,15,20-tetrakis(4-carboxyl phenyl)-porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingyun, E-mail: [School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510 (China); Zhou, Hangyue; Zhu, Jiqin; Yang, Yanting; Liu, Xiaodong; Wang, Dongmei [School of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510 (China); Zhang, Xiaomei [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Zhuo, Linhai, E-mail: [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China)


    Various nanostructures of 5,10,15,20-tetrakis(4-carboxyl phenyl)-porphyrin (H{sub 2}TCPP) can be easily synthesized by a surfactant-assisted self-assembly (SAS) method at different temperatures. When the DMF solution of porphyrin monomer was injected into cetyltimethylammonium bromide (CTAB) aqueous solution by a syringe, diverse H{sub 2}TCPP nanostructures dependent on the different temperatures, including hollow nanospheres, solid nanospheres and nanospheres with holes, were successfully obtained. As a result, the suitable concentration of the CTAB aqueous solution used to form nanostructues of porphyrin ranges from 0.15 to 0.2 mM. The various morphologies of porphyrin nanostructures were characterized by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM). UV–vis adsorption spectra showed that the micro-/nano-aggregate properties of porphyrin transformed from H-aggretates to J-aggregates during the process of self-assembly of porphyrin at different temperatures. Fluorescence spectra revealed a greater fluorescence quenching of various micro-/nano-aggregatess of porphyrin formed at different temperatures in aqueous solution, compared to the DMF solution of porphyrin monomer. - Graphical abstract: Temperature dependent morphologies of nanoaggregates of 5,10,15,20-tetra(4-carboxyl phenyl)-porphyrin (H{sub 2}TCPP) can be easily prepared by a surfactant-assisted self-assembly method. - Highlights: • Temperature dependent aggregates of H{sub 2}TCPP can be fabricated by self-assembly method. • The aggregate properties transformed from H to J aggregates with different speed. • A possible explanation for the formation of nanoaggregates has been proposed. • Fluorescence spectra revealed a greater fluorescence quenching of nanoaggregates.

  18. Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery. (United States)

    Le Corre, Stéphanie S; Belmadi, Nawal; Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain


    In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synthesis strategies were evaluated. The first used the Atherton-Todd coupling reaction to introduce a phenolic derivative to dioleylphosphite. The second strategy used a sequential addition of lipid alcohol and a phenolic derivative on POCl3. The two methods are efficient, but the latter allows larger yields. Different polar head groups were introduced, thus producing amphiphilic compounds possessing either one permanent (N-methyl-imidazolium, pyridinium, trimethylammonium) or two permanent cationic charges. All these cationic lipids were formulated as liposomal solutions and characterized (size and zeta potential). They formed stable liposomal solutions both in water (at pH 7.0) and in a weakly acidic medium (at pH 5.5). Finally, this new generation of cationic lipids was used to deliver DNA into various human-derived epithelial cells cultured in vitro. Compared with Lipofectamine used as a reference commercial lipofection reagent, some cationic dialkylarylphosphates were able to demonstrate potent gene transfer abilities, and noteworthily, monocationic derivatives were much more efficient than dicationic analogues.

  19. Single-Molecule Tribology: Force Microscopy Manipulation of a Porphyrin Derivative on a Copper Surface. (United States)

    Pawlak, Rémy; Ouyang, Wengen; Filippov, Alexander E; Kalikhman-Razvozov, Lena; Kawai, Shigeki; Glatzel, Thilo; Gnecco, Enrico; Baratoff, Alexis; Zheng, Quanshui; Hod, Oded; Urbakh, Michael; Meyer, Ernst


    The low-temperature mechanical response of a single porphyrin molecule attached to the apex of an atomic force microscope (AFM) tip during vertical and lateral manipulations is studied. We find that approach-retraction cycles as well as surface scanning with the terminated tip result in atomic-scale friction patterns induced by the internal reorientations of the molecule. With a joint experimental and computational effort, we identify the dicyanophenyl side groups of the molecule interacting with the surface as the dominant factor determining the observed frictional behavior. To this end, we developed a generalized Prandtl-Tomlinson model parametrized using density functional theory calculations that includes the internal degrees of freedom of the side group with respect to the core and its interactions with the underlying surface. We demonstrate that the friction pattern results from the variations of the bond length and bond angles between the dicyanophenyl side group and the porphyrin backbone as well as those of the CN group facing the surface during the lateral and vertical motion of the AFM tip.

  20. Non-destructive mobile monitoring of microbial contaminations on meat surfaces using porphyrin fluorescence intensities. (United States)

    Durek, J; Fröhling, A; Bolling, J; Thomasius, R; Durek, P; Schlüter, O K


    A non-destructive mobile system for meat quality monitoring was developed and investigated for the possible application along the whole production chain of fresh meat. Pork and lamb meat was stored at 5 °C for up to 20 days post mortem and measured with a fluorescence spectrometer. Additionally, the bacterial influence on the fluorescence signals was evaluated by different experimental procedures. Fluorescence of NADH and different porphyrins could be correlated to the growth of diverse bacteria and hence used for contamination monitoring. The increase of porphyrin fluorescence started after 9 days p.m. for pork and after 2 days p.m. for lamb meat. Based on the results, a mobile fluorescence system was built and compared with the laboratory system. The corrected function of the meat slices showed a root mean square error of 1156.97 r.u. and a mean absolute percentage error of 12.59%; for lamb the values were 470.81 r.u. and 15.55%, respectively. A mobile and non-invasive measurement system would improve the microbial security of fresh meat.

  1. Conformational adaptation and manipulation of manganese tetra(4-pyridyl)porphyrin molecules on Cu(111) (United States)

    Chen, Xianwen; Lei, Shulai; Lotze, Christian; Czekelius, Constantin; Paulus, Beate; Franke, Katharina J.


    Porphyrins are highly flexible molecules and well known to adapt to their local environment via conformational changes. We studied the self-assembly of manganese meso-tetra(4-pyridyl)porphyrin (Mn-TPyP) molecules on a Cu(111) surface by low temperature scanning tunneling microscopy (STM) and atomic force microscopy (ATM). We observe molecular chains along the ⟨1 1 ¯ 0 ⟩ direction of the substrate. Within these chains, we identify two molecular conformations, which differ by the orientation of the upward bending of the macrocycle. Using density functional theory, we show that this saddle shape is a consequence of the rotation and inclination of the pyridyl groups towards Cu adatoms, which stabilize the metal-organic chains. The molecular conformations obey a strict alternation, reflecting the mutual enforcement of conformational adaptation in densely packed structures. Tunneling electrons from the STM tip can induce changes in the orientation of the pyridyl endgroups. The switching behaviour varies with the different adsorption configurations.

  2. Dynamics of molecular self-ordering in tetraphenyl porphyrin monolayers on metallic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Brede, Jens; Kuck, Stefan; Schwoebel, Joerg; Scarfato, Alessandro; Chang, Shih-Hsin; Hoffmann, Germar; Wiesendanger, Roland [Institute of Applied Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg (Germany); Linares, Mathieu; Stafstroem, Sven [Department of Physics, Chemistry and Biology, Linkoeping University, 581 83 Linkoeping (Sweden); Lensen, Roy; Kouwer, Paul H J; Hoogboom, Johan; Rowan, Alan E [Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Broering, Martin; Funk, Markus [Fachbereich Chemie, Philipps-University Marburg, Hans-Meerwein-Strasse, 35032 Marburg (Germany); Zerbetto, Francesco [Dipartimento di Chimica G Ciamician, Universita di Bologna, Via F Selmi 2, 40126 Bologna (Italy); Lazzaroni, Roberto [Service de Chimie des Materiaux Nouveaux, Universite de Mons, 20 Place du Parc, 7000 Mons (Belgium)], E-mail:


    A molecular model system of tetraphenyl porphyrins (TPP) adsorbed on metallic substrates is systematically investigated within a joint scanning tunnelling microscopy/molecular modelling approach. The molecular conformation of TPP molecules, their adsorption on a gold surface and the growth of highly ordered TPP islands are modelled with a combination of density functional theory and dynamic force field methods. The results indicate a subtle interplay between different contributions. The molecule-substrate interaction causes a bending of the porphyrin core which also determines the relative orientations of phenyl legs attached to the core. A major consequence of this is a characteristic (and energetically most favourable) arrangement of molecules within self-assembled molecular clusters; the phenyl legs of adjacent molecules are not aligned parallel to each other (often denoted as {pi}-{pi} stacking) but perpendicularly in a T-shaped arrangement. The results of the simulations are fully consistent with the scanning tunnelling microscopy observations, in terms of the symmetries of individual molecules, orientation and relative alignment of molecules in the self-assembled clusters.

  3. A Novel Sensor for Monitoring of Iron(III Ions Based on Porphyrins

    Directory of Open Access Journals (Sweden)

    Mayte Gil-Agusti


    Full Text Available Three A3B porphyrins with mixed carboxy-, phenoxy-, pyridyl- and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III. The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore. The performance characteristics (linear concentration range, slope and selectivity of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl-10,15,20-tris(4-phenoxyphenyl-porphyrin plasticized with bis(2-ethylhexylsebacate, in a linear range from 1 × 10−7–1 × 10−1 M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III in tap water samples.

  4. Bulky melamine-based Zn-porphyrin tweezer as a CD probe of molecular chirality. (United States)

    Petrovic, Ana G; Vantomme, Ghislaine; Negrón-Abril, Yashira L; Lubian, Elisa; Saielli, Giacomo; Menegazzo, Ileana; Cordero, Roselynn; Proni, Gloria; Nakanishi, Koji; Carofiglio, Tommaso; Berova, Nina


    The transfer of chirality from a guest molecule to an achiral host is the subject of significant interest especially when, upon chiral induction, the chiroptical response of the host/guest complex can effectively report the absolute configuration (AC) of the guest. For more than a decade, dimeric metalloporphyrin hosts (tweezers) have been successfully applied as chirality probes for determination of the AC for a wide variety of chiral synthetic compounds and natural products. The objective of this study is to investigate the utility of a new class of melamine-bridged Zn-porphyrin tweezers as sensitive AC reporters. A combined approach based on an experimental CD analysis and a theoretical prediction of the prevailing interporphyrin helicity demonstrates that these tweezers display favorable properties for chiral recognition. Herein, we discuss the application of the melamine-bridged tweezer to the chiral recognition of a diverse set of chiral guests, such as 1,2-diamines, α-amino-esters and amides, secondary alcohols, and 1,2-amino-alcohols. The bulky periphery and the presence of a rigid porphyrin linkage lead, in some cases, to a more enhanced CD sensitivity than that reported earlier with other tweezers.

  5. A Novel Sensor for Monitoring of Iron(III) Ions Based on Porphyrins (United States)

    Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte


    Three A3B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10−7–1 × 10−1 M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples. PMID:22969395

  6. Photovoltaic Performance of ZnO Nanosheets Solar Cell Sensitized with Beta-Substituted Porphyrin

    Directory of Open Access Journals (Sweden)

    Arumugam Mahesh


    Full Text Available The photoanode of dye-sensitized solar cell (DSSC was fabricated using two-dimensional ZnO nanosheets (2D ZnO NSs sensitized with beta-substituted porphyrins photosensitizer, and its photovoltaic performance in solid-state DSSC with TiO2 nanotubes (TiO2 TNs modified poly (ethylene oxide (PEO polymer electrolyte was studied. The ZnO NSs were synthesized through hydrothermal method and were characterized through high-resolution scanning electron microscopy (HRSEM, diffused reflectance spectra (DRS, photoluminescence spectra (PL, and X-ray diffraction (XRD analysis. The crystallinity of the polymer electrolytes was investigated using X-ray diffraction analysis. The photovoltaic performance of the beta-substituted porphyrins sensitized solar cells was evaluated under standard AM1.5G simulated illumination (100 mW cm−2. The efficiency of energy conversion from solar to electrical due to 2D ZnO NSs based DSSCs is 0.13%, which is about 1.6 times higher than that of the control DSSC using ZnO nanoparticles (ZnO NPs as photoanode (0.08%, when TiO2 NTs fillers modified PEO electrolyte was incorporated in the DSSCs. The current-voltage (- and photocurrent-time (- curves proved stable with effective collection of electrons, when the 2D ZnO nanostructured photoanode was introduced in the solid-state DSSC.

  7. Multiporphyrin coordination arrays based on complexation of magnesium(II) porphyrins with porphyrinylphosphine oxides. (United States)

    Atefi, Farzad; McMurtrie, John C; Arnold, Dennis P


    Di- and triporphyrin arrays consisting of 5,15-diphenylporphyrinatomagnesium(II) (MgDPP) coordinated to free-base and Ni(II) porphyrinyl mono- and bis-phosphine oxides, as well as the self-coordinating diphenyl[10,20-diphenylporphyrinatomagnesium(II)-5-yl]phosphine oxide [MgDPP(Ph(2)PO)], were synthesised in excellent yields and characterised by various spectroscopic techniques. Phosphine oxides stabilise Mg(II) coordination to porphyrins and the resulting complexes have convenient solubilities, while the Ni(II) complexes exhibit interesting intramolecular fluorescence quenching behaviour. The binding constant of MgDPP to triphenylphosphine oxide (5.3 +/- 0.1 x 10(5) M(-1)) and the very high self-association constant of [MgDPP(Ph(2)PO)] (5.5 +/- 0.5 x 10(8) M(-1)) demonstrate the strong affinity of phosphine oxides towards Mg(II) porphyrins. These complexes are the first strongly bound synthetic Mg(II) multiporphyrin complexes and could potentially mimic the "special pair" in the photosynthetic reaction centre.

  8. A novel sensor for monitoring of iron(III) ions based on porphyrins. (United States)

    Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte


    Three A(3)B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10(-7)-1 × 10(-1) M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples.

  9. An unsymmetrical porphyrin and its metal complexes: synthesis, spectroscopy, thermal analysis and liquid crystal properties

    Directory of Open Access Journals (Sweden)



    Full Text Available The synthesis and characterization of a new unsymmetrical porphyrin liquid crystal, 5-(4-stearoyloxyphenylphenyl-10,15,20-triphenylporphyrin (SPTPPH2 and its transition metal complexes (SPTPPM, M(II = Zn, Fe, Co, Ni, Cu or Mn are reported. Their structure and properties were studied by elemental analysis, and UV–Vis, IR, mass and 1H-HMR spectroscopy. Their luminescent properties were studied by excitation and emission spectroscopy. The quantum yields of the S1 ® S0 fluorescence were measured at room temperature. According to thermal studies, the complexes have a higher thermal stability (no decomposition until 200 °C. Differential scanning calorimetry (DSC data and an optical textural photograph, obtained using a polarizing microscope (POM, indicate that the porphyrin ligand had liquid crystalline character and that it exhibited more than one mesophase and a low-lying phase transition temperature, with transition temperatures of 19.3 and 79.4 °C; the temperature range of the liquid crystal (LC phase of the ligand was 70.1 °C.

  10. Solar cells based on the poly(N-vinylcarbazole):porphyrin:tris(8-hydroxyquinolinato) aluminium blend system

    Institute of Scientific and Technical Information of China (English)

    Zhang Tian-Hui; Zhao Su-Ling; Piao Ling-Yu; Xu Zheng; Ju Si-Ting; Liu Xiao-Dong; Kong Chao; Xu Xu-Rong


    Organic solar cells based on poly(N-vinylcarbazole) (PVK): porphyrin: tris (8-hydroxyquinolinato) aluminium (Alq3) blend p-n junction systems have been fabricated in this work. The roles of the different components in the blend system and of the amount of porphyrin have been investigated. The 5, 10, 15, 20-tetraphenylporphyrin (TPP) and 5, 10, 15, 20-tetra(o-chloro)phenylporphyrinato-copper (CuTCIPP) are used in the solar cells. The results show that TPP is better than CuTClPP in enhancing the performance of PVK:Alq3 solar cells. When the weight ratio of PVK:TPP:Alq3 is 1:1.5:1, the best performance of solar cell is obtained. The open circuit voltage (Voc) is 0.87 V, and the short circuit current (Jsc) is 17.5 μA·cm-2. In the ternary bulk hereojunction system, the device may be regarded as a cascade of three devices of PVK:TPP, TPP:Alq3 and PVK:Alq3. PVK, TPP and Alq3 can improve the hole mobility, light absorption intensity and electron mobility of the ternary bulk hereojunction system, respectively.

  11. Graphene oxide vs. reduced graphene oxide as carbon support in porphyrin peroxidase biomimetic nanomaterials. (United States)

    Socaci, C; Pogacean, F; Biris, A R; Coros, M; Rosu, M C; Magerusan, L; Katona, G; Pruneanu, S


    The paper describes the preparation of supramolecular assemblies of tetrapyridylporphyrin (TPyP) and its metallic complexes with graphene oxide (GO) and thermally reduced graphene oxide (TRGO). The two carbon supports are introducing different characteristics in the absorption spectra of the investigated nanocomposites. Raman spectroscopy shows that the absorption of iron-tetrapyridylporphyrin is more efficient on GO than TRGO, suggesting that oxygen functionalities are involved in the non-covalent interaction between the iron-porphyrin and graphene. The biomimetic peroxidase activity is investigated and the two iron-containing composites exhibit a better catalytic activity than each component of the assembly, and their cobalt and manganese homologues, respectively. The main advantages of this work include the demonstration of graphene oxide as a very good support for graphene-based nanomaterials with peroxidase-like activity (K(M)=0.292 mM), the catalytic activity being observed even with very small amounts of porphyrins (the TPyP:graphene ratio=1:50). Its potential application in the detection of lipophilic antioxidants (vitamin E can be measured in the 10(-5)-10(-4) M range) is also shown.

  12. Sensitive Method for Biomolecule Detection Utilizing Signal Amplification with Porphyrin Nanoparticles. (United States)

    Gibson, Lauren E; Wright, David W


    Disease diagnosis requires identification of biomarkers that occur in small quantities, making detection a difficult task. Effective diagnosis is an even greater challenge in low-resource areas of the world. Methods must be simple, stable, and sensitive so that tests can be easily administered and withstand uncontrolled environmental conditions. One approach to this issue is development of stable signal amplification strategies. In this work, we applied the nanocrystal-based signal amplification method to tetra(4-carboxyphenyl)porphyrin nanoparticles (TCPP NPs). The dissolution of the nanoparticle into thousands of porphyrin molecules results in amplified detection of the biomarker. By using nanoparticles as the signal-generating moiety, stability of the detection method is increased relative to commonly used enzyme-based assays. Additionally, the inherent fluorescent signal of TCPP molecules can be measured after nanoparticle dissolution. The ability to directly read the TCPP fluorescent signal increases assay simplicity by reducing the steps required for the test. This detection method was optimized by detecting rabbit IgG and then was applied to the detection of the malarial biomarker Plasmodium falciparum histidine-rich protein II (pfHRPII) from a complex matrix. The results for both biomarkers were assays with low picomolar limits of detection.

  13. Charge transfer complexes of fullerene[60] with porphyrins as molecular rectifiers. A theoretical study. (United States)

    Montiel, Filiberto; Fomina, Lioudmila; Fomine, Serguei


    Molecular diodes based on charge transfer complexes of fullerene[60] with different metalloporphyrins have been modeled. Their current-voltage characteristics and the rectification ratios (RR) were calculated using direct ab initio method at PBE/def2-SVP level of theory with D3 dispersion correction, for voltages ranging from -2 to +2 V. The highest RR of 32.5 was determined for the complex of fullerene[60] with zinc tetraphenylporphyrin at 0.8 V. Other molecular diodes possessed lower RR, however, all complexes showed RR higher than 1 at all bias voltages. The asymmetric evolutions and alignment of the molecular orbitals with the applied bias were found to be essential for generating the molecular diode rectification behavior. Metal nature of metalloporphyrins and the interaction porphyrin-electrode significantly affect RR of molecular diode. Large metal ions like Cd(2+) and Ag(2+) in metalloporphyrins disfavor rectification creating conducting channels in two directions, while smaller ions Zn(2+) and Cu(2+) favor rectification increasing the interaction between gold electrode and porphyrin macrocycle.

  14. Theoretical Analysis on Molecular Magnetic Properties of N-Confused Porphyrins and Its Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei; Bai, Fuquan; Xia, Baohui; Zhang, Hongxing [Jilin Univ., Jilin (China)


    We have theoretically investigated the magnetic properties of N-confused porphyrin (NCP), tetraphenyl-Nconfused porphyrin (TPNCP) and their substituted derivatives with O, S and Se heteroatoms (2ONCP, 2STPNCP, 2SeNCP, 2OTPNCP, etc.) by using DFT method. In the minimum energy structures of the 2OTPNCP, the two couples opposite phenyl substitutes are staggered. In the case of TPNCP, 2STPNCP and 2SeTPNCP, two phenyls being respectively close to or opposite to N-confused pyrrole are found to be pointed the same direction, whilst others are in the opposite direction. Based on the equilibrium structures, the {sup 1}H chemical shifts and nucleus-independent chemical shifts (NICS) are calculated in this paper. The π current density being induced by the tridimensional perpendicular magnetic field transmits the inner section of the pyrrole segments for NCP and TPNCP. As for their substituted derivatives with O, S and Se atoms, the current path passes through the outer section of the two heterorings. The NICS values at the ring critical points of the heterorings are much lower (in absolute value) than those of which is at the center of an isolated pyrrole molecule. The {sup 1}H NMR for β H atoms of the heterorings decreases from O, S to with Se.

  15. Iron(III Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions

    Directory of Open Access Journals (Sweden)

    Susana L. H. Rebelo


    Full Text Available Iron(III fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H2TPFPP and the corresponding iron complex [Fe(TPFPPCl], and the use of [Fe(TPFPPCl] as an oxidation catalyst in green conditions. The preparations of H2TPFPP and [Fe(TPFPPCl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(IIIporphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide and green solvent (ethanol. Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.

  16. Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer (United States)

    Kang, Xinmei; Guo, Ximing; An, Weiwei; Niu, Xingjian; Li, Suhan; Liu, Zhaoliang; Yang, Yue; Wang, Na; Jiang, Qicheng; Yan, Caichuan; Wang, Hui; Zhang, Qingyuan


    Gold nanorods are effective photothermal agents in diagnosis and treatment of cancer due to their specific near-infrared laser absorption. However, tumor photothermal therapy by nanorods alone is lack of targeting. Here, we described a novel nanocomplex made up of gold nanorods, porphyrin, and trastuzumab, called TGNs and investigated the TGN-mediated photothermal therapy as a potential alternative treatment of targeting HER2-positive breast cancers. By conjugating trastuzumab and porphyrin to the surface of gold nanorods, we have increased the targeting specificity and amplified the detecting effectiveness at the same time. TGN-mediated photothermal ablation by near-infrared laser led to a selective destruction of HER2-positive cancer cells and significantly inhibited tumor growth in mouse models bearing HER2 over-expressed breast cancer xenograft with less toxicity. Moreover, TGNs provided better therapeutic efficacy in comparison with the conventional molecule targeted therapy. Our current data suggest a highly promising future of TGNs for its therapeutic application in trastuzumab-resistant breast cancers. PMID:28155894

  17. A Novel Supramolecular Assembly Film of Porphyrin Bound DNA: Characterization and Catalytic Behaviors Towards Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Osamu Ikeda


    Full Text Available A stable Fe(4-TMPyP-DNA-PADDA (FePyDP film was characterized onpyrolytic graphite electrode (PGE or an indium-tin oxide (ITO electrode through thesupramolecular interaction between water-soluble iron porphyrin (Fe(4-TMPyP and DNAtemplate, where PADDA (poly(acrylamide-co-diallyldimethylammonium chloride isemployed as a co-immobilizing polymer. Cyclic voltammetry of FePyDP film showed a pairof reversible FeIII/FeII redox peaks and an irreversible FeIV/FeIII peak at –0.13 V and 0.89vs. Ag|AgCl in pH 7.4 PBS, respectively. An excellent catalytic reduction of NO wasdisplayed at –0.61 V vs. Ag|AgCl at a FePyDP film modified electrode.Chronoamperometric experiments demonstrated a rapid response to the reduction of NOwith a linear range from 0.1 to 90 μM and a detection limit of 30 nM at a signal-to-noiseratio of 3. On the other hand, it is the first time to apply high-valent iron porphyrin ascatalyst at modified electrode for NO catalytic oxidation at 0.89 vs. Ag|AgCl. The sensorshows a high selectivity of some endogenous electroactive substances in biological systems.The mechanism of response of the sensors to NO is preliminary studied.

  18. Electrocatalytic behaviour and application of manganese porphyrin/gold nanoparticle- surface modified glassy carbon electrodes (United States)

    Sebarchievici, I.; Tăranu, B. O.; Birdeanu, M.; Rus, S. F.; Fagadar-Cosma, E.


    The main purpose of this research was to obtain manganese porphyrin/gold nanoparticle-modified glassy carbon electrodes and to use them for the detection of H2O2. Two sets of modified electrodes were prepared by drop-cast deposition of 5,10,15,20-tetra(4-methyl-phenyl)porphyrinato manganese(III) chloride alone and of the same Mn-porphyrin and gold-colloid solution and comparatively characterized by Raman, UV-vis, ellipsometry, AFM and TEM microscopy, XPS and cyclic voltammetry. XPS spectrum recorded for GC_MnP_nAu modified electrode displayed the characteristic signals of gold nanoparticles. The optical parameters have greater values for GC_MnP_nAu in comparison with GC_MnP, due to increasing charge transfer efficiency. The MnP_nAu film mediates the electron transfer between H2O2 and GC, evidenced by an increase in the current intensity of the anodic peak, and facilitates the electrochemical regeneration of oxidized H2O2 at cathodic potentials. From the cyclic voltammetry experiments a linear relationship between H2O2 concentration vs oxidation and reduction currents was observed. The linear dependence between density of current and the square root of the scan rate indicates that the oxidation and reduction processes of H2O2 are diffusion controlled. The GC_MnP_nAu modified electrode shows great potential as electrochemical sensor for determination of hydrogen peroxide.

  19. Porphyrins produce uniquely ephemeral animal colouration: a possible signal of virginity (United States)

    Galván, Ismael; Camarero, Pablo R.; Mateo, Rafael; Negro, Juan J.


    Colours that underlie animal pigmentation can either be permanent or renewable in the short term. Here we describe the discovery of a conspicuous salmon-pink colouration in the base of bustard feathers and down that has never been reported because of its extraordinarily brief expression. HPLC analyses indicated that its constituent pigments are coproporphyrin III and protoporphyrin IX, which are prone to photodegradation. Accordingly, an experimental exposure of feathers of three bustard species to sunlight produced a rapid disappearance of the salmon-pink colouration, together with a marked decrease in reflectance around 670 nm coinciding with the absorption of porphyrin photoproducts. The disappearance of the salmon-pink colouration can occur in a period as short as 12 min, likely making it the most ephemeral colour phenotype in any extant bird. The presence of this colour trait in males performing sexual displays may thus indicate to females a high probability that the males were performing their first displays and would engage in their first copulations in the breeding season. In dominant males, sperm quality decreases over successive copulations, thus porphyrin-based colouration may evolve as a signal of virginity that allows females to maximize their fitness in lek mating systems.

  20. Gold-catalyzed Synthesis of Pyridine Containing Macrocycles, Related to Porphyrin

    Institute of Scientific and Technical Information of China (English)

    DYKER,Gerald; LIU,Jian-Hui; MERZ,Klaus


    @@ Porphyrins are very important substances used in a wide range of model systems in many areas, such as biomimic chemistry and material science. This kind of macrocycle generally consists of 5-membered ring to form a cyclic extended aromatic network. Recently much work have been done concerning the modification of porphyrins core structures, and many kinds of analogues have been recorded. One of the important aspects was the research of the porphyrinogen ligand.These macrocycles bear functional resemblance to certain kind of polydentate ligand, and provide a variety of tri-dimensional binding cavities for metal ions. In addition, some other kinds of analogues have been recorded, involving the introduction of a CH unit to replace one of the nitrogen atoms. We also notice the fact that pyridine is a very effective ligand, and it can coordinate with many kinds of metals. Based on these observations, we would like to design and synthesize a new porphyrinogen (5) analogue containing a NNNN core, two of the N atoms from pyrrole and the other two N from pyridine. Such core modifications may alter the electronic structure of the ring and provide variable cavity for metal coordination.

  1. A porphyrin-based metal–organic framework as a pH-responsive drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wenxin [State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027 (China); Hu, Quan [Department of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou 310036 (China); Jiang, Ke; Yang, Yanyu [State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027 (China); Yang, Yu, E-mail: [State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027 (China); Cui, Yuanjing [State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027 (China); Qian, Guodong, E-mail: [State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027 (China)


    A low cytotoxic porphyrin-based metal–organic framework (MOF) PCN-221, which exhibited high PC12 cell viability via 3-(4,5-dimethylthiazol-2-yl)−2,5-diphenyl tetrazolium (MTT) assay, was selected as an oral drug carrier. Methotrexate (MTX) was chosen as the model drug molecule which was absorbed into inner pores and channels of MOFs by diffusion. PCN-221 showed high drug loading and sustained release behavior under physiological environment without “burst effect”. The controlled pH-responsive release of drugs by PCN-221 revealed its promising application in oral drug delivery. - Graphical abstract: The porous crystals PCN-221 with pore openings (MOF) PCN-221 was prepared exhibiting low cytotoxicity. PCN-221 showed high drug Methotrexate loading and controlled pH-responsive release of Methotrexate. - Highlights: • A porphyrin-based metal–organic framework (MOF) PCN-221 was prepared showing low cytotoxicity. • PCN-221 showed high drug Methotrexate loading. • PCN-221 showed controlled pH-responsive release of Methotrexate.

  2. From hydrogen bonding to metal coordination and back: Porphyrin-based networks on Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Studener, F., E-mail:; Müller, K.; Stöhr, M., E-mail: [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen (Netherlands); Marets, N.; Bulach, V., E-mail:; Hosseini, M. W., E-mail: [Laboratoire de Tectonique Moléculaire, UMR UDS-CNRS 7140, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg (France)


    The self-assembly of a metal-free porphyrin bearing two pyridyl coordinating sites and two pentyl chains at trans meso positions was investigated under ultrahigh vacuum on a Ag(111) surface by scanning tunneling microscopy (STM). The STM measurements revealed a well-ordered close-packed structure with a rhombic unit cell for coverages ≤1 monolayer with their molecular plane parallel to the surface. The growth direction of the molecular islands is aligned along the step edges, which are restructured due to molecule-substrate interactions. The shorter unit cell vector of the molecular superstructure follows the 〈1-10〉 direction of the Ag(111) substrate. Hydrogen bonds between pyridyl and pyrrole groups of neighboring molecules as well as weak van der Waals forces between the pentyl chains stabilize the superstructure. Deposition of cobalt atoms onto the close-packed structure at room temperature leads to the formation of a hexagonal porous network stabilized by metal-ligand bonding between the pyridyl ligands and the cobalt atoms. Thermal annealing of the Co-coordination network at temperatures >450 K results in the transformation of the hexagonal network into a second close-packed structure. Changes in the molecule-substrate interactions due to metalation of the porphyrin core with Co as well as intermolecular interactions can explain the observed structural transformations.

  3. Mg-Al layered double hydroxide intercalated with porphyrin anions: molecular simulations and experiments. (United States)

    Kovár, Petr; Pospísil, Miroslav; Káfunková, Eva; Lang, Kamil; Kovanda, Frantisek


    Molecular modeling in combination with powder X-ray diffraction (XRD) provided new information on the organization of the interlayer space of Mg-Al layered double hydroxide (LDH) containing intercalated porphyrin anions [5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS)]. Anion-exchange and rehydration procedures were used for the preparation of TPPS-containing LDH with an Mg/Al molar ratio of 2. Molecular modeling was carried out in the Cerius(2) and Materials Studio modeling environment. Three types of models were created in order to simulate the experimental XRD patterns of LDH intercalates with a TPPS loading of 70-80% with respect to the theoretical anion exchange capacity (AEC). The models represent single-phase systems with a 100% TPPS loading in the interlayer space (Type 1) and models represent the coexistence of two phases corresponding to the total exchange from 75 to 92% (Type 2). To cover other possible arrangements, models with the coexistence of both TPPS and NO(3)(-) anions in the same interlayer space were calculated (Type 3). The models are described and compared with experimental data. In all cases, guest TPPS anions are tilted with respect to the hydroxide layers, and are horizontally shifted to each other by up to one-half of the TPPS diameter. According to the energy characteristics and simulated XRD, the most probable arrangement is of Type 2, where some layers are saturated with TPPS anions and others are filled with original NO(3)(-) anions.

  4. Electronic Configuration of Five-Coordinate High-Spin Pyrazole-Ligated Iron(II) Porphyrinates (United States)

    Hu, Chuanjiang; Noll, Bruce C.; Schulz, Charles E.; Scheidt, W. Robert


    Pyrazole, a neutral nitrogen ligand and an isomer of imidazole, has been used as a fifth ligand to prepare two new species, [Fe(TPP)(Hdmpz)] and [Fe(Tp-OCH3PP)(Hdmpz)] (Hdmpz = 3,5-dimethylpyrazole), the first structurally characterized examples of five-coordinate iron(II) porphyrinates with a nonimidazole neutral ligand. Both complexes are characterized by X-ray crystallography, and structures show common features for five-coordinate iron(II) species, such as an expanded porphinato core, large equatorial Fe–Np bond distances and a significant out-of-plane displacement of the iron(II) atom. The Fe–N(pyrazole) and Fe–Np bond distances are similar to those in imidazole-ligated species. These suggest that the coordination abilities to iron(II) for imidazole and pyrazole are very similar even though pyrazole is less basic than imidazole. Mössbauer studies reveal that [Fe(TPP)(Hdmpz)] has the same behavior as those of imidazole-ligated species, such as negative quadrupole splitting values and relative large asymmetry parameters. Both the structures and Mössbauer spectra suggest pyrazole-ligated five-coordinate iron(II) porphyrinates have the same electronic configuration as imidazole-ligated species. PMID:21047081

  5. Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer (United States)

    Kang, Xinmei; Guo, Ximing; An, Weiwei; Niu, Xingjian; Li, Suhan; Liu, Zhaoliang; Yang, Yue; Wang, Na; Jiang, Qicheng; Yan, Caichuan; Wang, Hui; Zhang, Qingyuan


    Gold nanorods are effective photothermal agents in diagnosis and treatment of cancer due to their specific near-infrared laser absorption. However, tumor photothermal therapy by nanorods alone is lack of targeting. Here, we described a novel nanocomplex made up of gold nanorods, porphyrin, and trastuzumab, called TGNs and investigated the TGN-mediated photothermal therapy as a potential alternative treatment of targeting HER2-positive breast cancers. By conjugating trastuzumab and porphyrin to the surface of gold nanorods, we have increased the targeting specificity and amplified the detecting effectiveness at the same time. TGN-mediated photothermal ablation by near-infrared laser led to a selective destruction of HER2-positive cancer cells and significantly inhibited tumor growth in mouse models bearing HER2 over-expressed breast cancer xenograft with less toxicity. Moreover, TGNs provided better therapeutic efficacy in comparison with the conventional molecule targeted therapy. Our current data suggest a highly promising future of TGNs for its therapeutic application in trastuzumab-resistant breast cancers.

  6. The depth of porphyrin in a membrane and the membrane's physical properties affect the photosensitizing efficiency. (United States)

    Lavi, Adina; Weitman, Hana; Holmes, Robert T; Smith, Kevin M; Ehrenberg, Benjamin


    Photosensitized biological processes, as applied in photodynamic therapy, are based on light-triggered generation of molecular singlet oxygen by a membrane-residing sensitizer. Most of the sensitizers currently used are hydrophobic or amphiphilic porphyrins and their analogs. The possible activity of the short-lived singlet oxygen is limited to the time it is diffusing in the membrane, before it emerges into the aqueous environment. In this paper we demonstrate the enhancement of the photosensitization process that is obtained by newly synthesized protoporphyrin derivatives, which insert their tetrapyrrole chromophore deeper into the lipid bilayer of liposomes. The insertion was measured by fluorescence quenching by iodide and the photosensitization efficiency was measured with 9,10-dimethylanthracene, a fluorescent chemical target for singlet oxygen. We also show that when the bilayer undergoes a melting phase transition, or when it is fluidized by benzyl alcohol, the sensitization efficiency decreases because of the enhanced diffusion of singlet oxygen. The addition of cholesterol or of dimyristoyl phosphatydilcholine to the bilayer moves the porphyrin deeper into the bilayer; however, the ensuing effect on the sensitization efficiency is different in these two cases. These results could possibly define an additional criterion for the choice and design of hydrophobic, membrane-bound photosensitizers. PMID:11916866

  7. Peripheral-type benzodiazepine receptor: a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, S.H.; Verma, A.; Trifiletti, R.R.


    The peripheral-type benzodiazepine receptor is a site identified by its nanomolar affinity for (/sup 3/H)diazepam, similar to the affinity of diazepam for the central-type benzodiazepine receptor in the brain. The peripheral type benzodiazepine receptor occurs in many peripheral tissues but has discrete localizations as indicated by autoradiographic studies showing uniquely high densities of the receptors in the adrenal cortex and in Leydig cells of the testes. Subcellular localization studies reveal a selective association of the receptors with the outer membrane of mitochondria. Photoaffinity labeling of the mitochondrial receptor with (/sup 3/H)flunitrazepam reveals two discrete labeled protein bands of 30 and 35 kDa, respectively. The 35-kDa band appears to be identical with the voltage-dependent anion channel protein porin. Fractionation of numerous peripheral tissues reveals a single principal endogenous ligand for the receptor, consisting of porphyrins, which display nanomolar affinity. Interactions of porphyrins with the mitochondrial receptor may clarify its physiological role and account for many pharmacological actions of benzodiazepines.

  8. Electronic configuration of five-coordinate high-spin pyrazole-ligated iron(II) porphyrinates. (United States)

    Hu, Chuanjiang; Noll, Bruce C; Schulz, Charles E; Scheidt, W Robert


    Pyrazole, a neutral nitrogen ligand and an isomer of imidazole, has been used as a fifth ligand to prepare two new species, [Fe(TPP)(Hdmpz)] and [Fe(Tp-OCH(3)PP)(Hdmpz)] (Hdmpz = 3,5-dimethylpyrazole), the first structurally characterized examples of five-coordinate iron(II) porphyrinates with a nonimidazole neutral ligand. Both complexes are characterized by X-ray crystallography, and structures show common features for five-coordinate iron(II) species, such as an expanded porphyrinato core, large equatorial Fe-N(p) bond distances, and a significant out-of-plane displacement of the iron(II) atom. The Fe-N(pyrazole) and Fe-N(p) bond distances are similar to those in imidazole-ligated species. These suggest that the coordination abilities to iron(II) for imidazole and pyrazole are very similar even though pyrazole is less basic than imidazole. Mössbauer studies reveal that [Fe(TPP)(Hdmpz)] has the same behavior as those of imidazole-ligated species, such as negative quadrupole splitting values and relative large asymmetry parameters. Both the structures and the Mössbauer spectra suggest pyrazole-ligated five-coordinate iron(II) porphyrinates have the same electronic configuration as imidazole-ligated species.

  9. Organic solid solution composed of two structurally similar porphyrins for organic solar cells. (United States)

    Zhen, Yonggang; Tanaka, Hideyuki; Harano, Koji; Okada, Satoshi; Matsuo, Yutaka; Nakamura, Eiichi


    A solid solution of a 75:25 mixture of tetrabenzoporphyrin (BP) and dichloroacenaphtho[q]tribenzo[b,g,l]porphyrin (CABP) forms when they are generated in a matrix of (dimethyl(o-anisyl)silylmethyl)(dimethylphenylsilylmethyl)[60]fullerene. This solid solution provides structural and optoelectronic properties entirely different from those of either pristine compounds or a mixture at other blending ratios. The use of this BP:CABP solid solution for organic solar cell (OSC) devices resulted in a power conversion efficiency (PCE) value higher by 16 and 300% than the PCE values obtained for the devices using the single donor BP and CABP, respectively, in a planar heterojunction architecture. This increase originates largely from the increase in short circuit current density, and hence by enhanced charge carrier separation at the donor/acceptor interface, which was probably caused by suitable energy level for the solid solution state, where electronic coupling between the two porphyrins occurred. The results suggest that physical and chemical modulation in solid solution is beneficial as an operationally simple method to enhance OSC performance.

  10. Synthesis of Meso-tetra(4-hydroxyl-3-sulfonate-phenyl) Porphyrin and Its Palladium(Ⅱ) Complex

    Institute of Scientific and Technical Information of China (English)

    WANG,Xiao-Ying; ZHANG,Xiao-Ling


    @@ Porphyrin is the core of haemachrome, cytochrome and chlorophyll and is known as an important compound related to life. The simulation of the haemachrome, cytochrome and chlorophyll in life with the artificial metalloporphyrin complex[1,2] is an active research area in recent years.

  11. Spectroscopy and photophysics of self-organized zinc porphyrin nanolayers. 1. Optical spectroscopy of excitonic interactions involving the soret band

    NARCIS (Netherlands)

    Donker, H.; Koehorst, R.B.M.; Schaafsma, T.J.


    The photophysical properties of excited singlet states of zinc tetra-(p-octylphenyl)-porphyrin in 5-25-nm-thick films spin-coated onto quartz slides have been investigated by optical spectroscopy. Analysis of the polarized absorption spectra using a dipole-dipole exciton model with two mutually perp

  12. Platinum(II)-porphyrin as a sensitizer for visible-light driven water oxidation in neutral phosphate buffer

    NARCIS (Netherlands)

    Chen, H.C.; Hetterscheid, D.G.H.; Williams, R.M.; van der Vlugt, J.I.; Reek, J.N.H.; Brouwer, A.M.


    A water-soluble Pt(II)-porphyrin with a high potential for one-electron oxidation (similar to 1.42 V vs. NHE) proves very suitable for visible-light driven water oxidation in neutral phosphate buffer solution in combination with a variety of water oxidation catalysts (WOCs) . Two homogeneous WOCs (i

  13. Spectroscopic analysis of porphyrin compounds irradiated with visible light in chloroform with addition of β-myrcene (United States)

    Makarska-Bialokoz, Magdalena; Gladysz-Plaska, Agnieszka


    The behaviour of two porphyrins, 5,10,15,20-tetraphenyl-21H,23H-porphine (H2TPP) and 5,10,15,20-tetra(4-pyridyl)-21H, 23H-porphine (H2TPyP), as well as their Zn(II) complexes (ZnTPP and ZnTPyP), have been studied analysing their absorption and steady-state fluorescence spectra in chloroform with addition of β-myrcene. After irradiation with visible light the free-base porphyrins have been converted to the form of dication on account of hydrochloric acid generated as a result of chloroform decomposition induced by β-myrcene. Whereas in case of their Zn(II) complexes the mechanism of action is more complicated, leading presumably to the formation of the aggregated metalloporphyrin species with chloride ions playing the bridging role. The pseudo-first-order rate constants of the absorption quenching process were calculated for all the systems examined, with respect to the porphyrin concentration. The most effective irradiation was observed in case of H2TPP porphyrin.

  14. Spectroscopic studies of porphyrin functionalized multiwalled carbon nanotubes and their interaction with TiO2 nanoparticles surface (United States)

    Zannotti, Marco; Giovannetti, Rita; D'Amato, Chiara Anna; Rommozzi, Elena


    UV-vis and fluorescence investigations about the non-covalent interaction, in ethanolic solutions, of multi-wall carbon nanotube (MWCNT) with Coproporphyrin-I, and its Cu(II) and Zn(II) complexes (MCPIs) have been reported. Evidence of binding between MWCNTs and porphyrins was discovered from spectral adsorption decrease with respect to free porphyrins and by the exhibition of photoluminescence quenching with respect to free porphyrins demonstrating that MWCNT@MCPIs are potential donor-acceptor complexes. Equilibrium and kinetic aspects in the interactions with monolayer transparent TiO2 thin films with the obtained MWCNT@MCPIs are clarified showing their effective adsorption by porphyrin links on the TiO2 monolayer support, with respect to not only MWCNTs, according to the Langmuir model and with pseudo-first-order kinetics. Morphological description of the adsorption of MWCNT@MCPIs on TiO2 with scanning electron microscopy has been reported. The obtained experimental evidences describe therefore MWCNT@MCPIs as potential sensitizers in the DSSC (Dye-Sensitized Solar Cell) applications.

  15. N-Annulated perylene substituted zinc–porphyrins with different linking modes and electron acceptors for dye sensitized solar cells

    KAUST Repository

    Luo, Jie


    Three new N-annulated perylene (NP) substituted porphyrin dyes WW-7-WW-9 with different linking modes and accepting groups were synthesized and applied in Co(ii)/(iii) based dye sensitized solar cells (DSCs). The bay-linked porphyrins WW-7 and WW-8 exhibited moderate power conversion efficiency (PCE = 4.4% and 4.8%, respectively), while the peri-linked porphyrin dye WW-9 showed a PCE up to 9.2% which is slightly lower than that of our reference dye WW-6. Detailed physical measurements (optical and electrochemical), DFT calculations, and photovoltaic characterizations were performed to understand how the structural changes affect their light-harvesting ability, molecular orbital profile, energy level alignment, and eventually the photovoltaic performance. It turned out that the lower efficiencies of the cells based on WW-7 and WW-8 could be ascribed to the weak π-conjugation between the bay-substituted NP and phenylethynyl substituted porphyrin unit. The introduction of a benzothiadiazole acceptor at the anchoring group has induced a significant red shift of the IPCE action spectra of WW-8 and WW-9, by about 90 nm and 50 nm as compared to that of WW-7 and WW-6, respectively. However, less efficient electron injection was observed. Our studies gave some insight into the important role of electronic interactions between different components when one designs a dye for high-efficiency DSCs. © The Royal Society of Chemistry 2016.

  16. Complexation of Diphenyl(phenylacetenyl)phosphine to Rhodium(III) Tetraphenyl Porphyrins : Synthesis and Structural, Spectroscopic, and Thermodynamic Studies

    NARCIS (Netherlands)

    Stulz, Eugen; Scott, Sonya M.; Bond, Andrew D.; Otto, Sijbren; Sanders, Jeremy K.M.


    The coordination of diphenyl(phenylacetenyl)phosphine (DPAP) to (X)RhIIITPP (X = I or Me (3); TPP = tetraphenyl porphyrin) was studied in solution and in the solid state. The iodide is readily displaced by the phosphine, leading to the bis-phosphine complex [(DPAP)2Rh(TPP)](I) (4). The methylide on

  17. Ab initio description of photoabsorption and electron transfer in a doubly-linked porphyrin-fullerene dyad. (United States)

    Cramariuc, Oana; Hukka, Terttu I; Rantala, Tapio T; Lemmetyinen, Helge


    Structure, photoabsorption and excited states of two representative conformations obtained from molecular dynamics (MD) simulations of a doubly-linked porphyrin-fullerene dyad DHD6ee are studied by using both DFT and wavefunction based methods. Charge transfer from the donor (porphyrin) to the acceptor (fullerene) and the relaxation of the excited state are of special interest. The results obtained with LDA, GGA, and hybrid functionals (SVWN, PBE, and B3LYP, respectively) are analyzed with emphasis on the performance of used functionals as well as from the point of view of their comparison with wavefunction based methods (CCS, CIS(D), and CC2). Characteristics of the MD structures are retained in DFT optimization. The relative orientation of porphyrin and fullerene is significantly influencing the MO energies, the charge transfer (CT) in the ground state of the dyad and the excitation of ground state CT complex (g-CTC). At the same time, the excitation to the locally excited state of porphyrin is only little influenced by the orientation or cc distance. TD-DFT underestimates the excitation energy of the CT state, however for some cases (with relatively short donor-acceptor separations), the use of a hybrid functional like B3LYP alleviates the problem. Wavefunction based methods and CC2 in particular appear to overestimate the CT excitation energies but the inclusion of proper solvation models can significantly improve the results.

  18. Fibrous materials on polyhydroxybutyrate and ferric iron (III)-based porphyrins basis: physical-chemical and antibacterial properties (United States)

    Olkhov, A.; Lobanov, A.; Staroverova, O.; Tyubaeva, P.; Zykova, A.; Pantyukhov, P.; Popov, A.; lIordanskii, A.


    Ferric iron (III)-based complexes with porphyrins are the homogenous catalysts of auto-oxidation of several biogenic substances. The most perspective carrier for functional low-molecular substances is the polymer fibers with nano-dimensional parameters. Application of natural polymers, poly-(3-hydroxybutyrate) or polylactic acid for instance, makes possible to develop fiber and matrice systems to solve ecological problem in biomedicine The aim of the article is to obtain fibrous material on poly-(3-hydroxybutyrate) and ferric iron (III)-based porphyrins basis and to examine its physical-chemical and antibacterial properties. The work is focused on possibility to apply such material to biomedical purposes. Microphotographs of obtained material showed that addition of 1% wt. ferric iron (III)-based porphyrins to PHB led to increased average diameter and disappeared spindly structures in comparison with initial PHB. Biological tests of nonwoven fabrics showed that fibers, containing ferric iron (III)-based tetraphenylporphyrins, were active in relation to bacterial test-cultures. It was found that materials on polymer and metal complexes with porphyrins basis can be applied to production of decontamination equipment in relation to pathogenic and opportunistic microorganisms.

  19. Doubly and triply linked porphyrin-perylene monoimides as near IR dyes with large dipole moments and high photostability

    KAUST Repository

    Jiao, Chongjun


    Doubly and triply linked porphyrin-perylene monoimides 3 and 4, with extraordinary stability, large dipole moments, and strong near IR absorption, were prepared by means of one-pot oxidative cyclodehydrogenation promoted by FeCl 3. © 2010 American Chemical Society.

  20. An experimental study on the molecular organization and exciton diffusion in a bilayer of a porphyrin and poly(3-hexylthiophene)

    NARCIS (Netherlands)

    Huijser, A.; Savenije, T.J.; Shalav, A.; Siebbeles, L.D.A.


    The exciton root-mean-square displacement (ΛD) in regioregular poly(3-hexylthiophene) (P3HT) deposited onto meso-tetrakis (n-methyl-4-pyridyl) porphyrin tetrachloride (H2TMPyP) has been determined from the photovoltaic response of a device based on these materials in a bilayer configuration. Exciton