Sample records for cationic gold clusters

  1. Cationic Gold Clusters Ligated with Differently Substituted Phosphines: Effect of Substitution on Ligand Reactivity and Binding

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Olivares, Astrid M.; Hill, David E.; Laskin, Julia


    We present a systematic study of the effect of the number of methyl (Me) and cyclohexyl (Cy) functional groups in monodentate phosphine ligands on the solution-phase synthesis of ligated sub-nanometer gold clusters and their gas-phase fragmentation pathways. Small mixed ligand cationic gold clusters were synthesized using ligand exchange reactions between pre-formed triphenylphosphine ligated (PPh3) gold clusters and monodentate Me- and Cy-substituted ligands in solution and characterized using electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation (CID) experiments. Under the same experimental conditions, larger gold-PPh3 clusters undergo efficient exchange of unsubstituted PPh3 ligands for singly Me- and Cy-substituted PPh2Me and PPh2Cy ligands. The efficiency of ligand exchange decreases with an increasing number of Me or Cy groups in the substituted phosphine ligands. CID experiments performed for a series of ligand-exchanged gold clusters indicate that loss of a neutral Me-substituted ligand is preferred over loss of a neutral PPh¬3 ligand while the opposite trend is observed for Cy-substituted ligands. The branching ratio of the competing ligand loss channels is strongly correlated with the electron donating ability of the phosphorous lone pair as determined by the relative proton affinity of the ligand. The results indicate that the relative ligand binding energies increase in the order PMe3 < PPhMe2 < PPh2Me < PPh3< PPh2Cy < PPhCy2< PCy3. Furthermore, the difference in relative ligand binding energies increases with the number of substituted PPh3-mMem or PPh3-mCym ligands (L) exchanged onto each cluster. This study provides the first experimental determination of the relative binding energies of ligated gold clusters containing differently substituted monophosphine ligands, which are important to controlling their synthesis and reactivity in solution. The results also indicate that ligand substitution is an important

  2. Theoretical study of oxygen adsorption on pure Au-n+1(+) and doped MAun+ cationic gold clusters for M = Ti, Fe and n=3-7

    DEFF Research Database (Denmark)

    Torres, M. Begona; Fernandez Sanchez, Eva; Balbas, Luis C.


    A comparative study of the adsorption of an O-2 molecule on pure Au-n+1(+) and doped MAun+ cationic gold clusters for n = 3-7 and M = Ti, Fe is presented. The simultaneous adsorption of two oxygen atoms also was studied. This work was performed by means of first principles calculations based...... with adsorption energies of 0.56 and 0.69 eV, respectively. The ground-state geometry of Au-n(+) is almost unperturbed after O-2 adsorption. The electronic charge flows towards O-2 when the molecule is adsorbed in bridge positions and towards the gold cluster when O-2 is adsorbed on top of An atoms, and both...... the adsorption energy and the O-O bond length of adsorbed oxygen increase when the amount of electronic charge on O-2 increases. On the other hand, we studied the adsorption of an O-2 molecule on doped MAun+ clusters, leading to the formation of (MAunO2+)(ad) complexes with different equilibrium configurations...

  3. Chirality in thiolate-protected gold clusters. (United States)

    Knoppe, Stefan; Bürgi, Thomas


    Over recent years, research on thiolate-protected gold clusters Au(m)(SR)n has gained significant interest. Milestones were the successful determination of a series of crystal structures (Au102(SR)44, Au25(SR)18, Au38(SR)24, Au36(SR)24, and Au28(SR)20). For Au102(SR)44, Au38(SR)24, and Au28(SR)20, intrinsic chirality was found. Strong Cotton effects (circular dichroism, CD) of gold clusters protected by chiral ligands have been reported a long time ago, indicating the transfer of chiral information from the ligand into the cluster core. Our lab has done extensive studies on chiral thiolate-protected gold clusters, including those protected with chiral ligands. We demonstrated that vibrational circular dichroism can serve as a useful tool for the determination of conformation of the ligand on the surface of the cluster. The first reports on crystal structures of Au102(SR)44 and Au38(SR)24 revealed the intrinsic chirality of these clusters. Their chirality mainly arises from the arrangement of the ligands on the surface of the cluster cores. As achiral ligands are used to stabilize the clusters, racemic mixtures are obtained. However, the separation of the enantiomers by HPLC was demonstrated which enabled the measurement of their CD spectra. Thermally induced inversion allows determination of the activation parameters for their racemization. The inversion demonstrates that the gold-thiolate interface is anything but fixed; in contrast, it is rather flexible. This result is of fundamental interest and needs to be considered in future applications. A second line of our research is the selective introduction of chiral, bidentate ligands into the ligand layer of intrinsically chiral gold clusters. The ligand exchange reaction is highly diastereoselective. The bidentate ligand connects two of the protecting units on the cluster surface and thus effectively stabilizes the cluster against thermally induced inversion. A minor (but significant) influence of chiral ligands to

  4. Site-Specific Biomolecule Labeling with Gold Clusters


    Ackerson, Christopher J.; Powell, Richard D.; Hainfeld, James F.


    Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: Linker-mediated bioconjugation, direct gold–biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (...

  5. Blackbody-induced radiative dissociation of cationic SF 6 clusters

    DEFF Research Database (Denmark)

    Toker, Jonathan; Rahinov, I.; Schwalm, D.;


    The stability of cationic SF5+(SF6)n−1 clusters was investigated by measuring their blackbody-induced radiative dissociation (BIRD) rates. The clusters were produced in a supersonic expansion ion source and stored in an electrostatic ion-beam trap at room temperature, where their abundances...... and lifetimes were measured. Using the “master equation” approach, relative binding energies of an SF6 unit in the clusters could be extracted from the storage-time dependence of the survival probabilities. The results allow for a deeper insight into the effect of a localized charge on the structure...... and stability of SF6-based clusters....

  6. Semi-quantitative determination of cationic surfactants in aqueous solutions using gold nanoparticles as reporter probes. (United States)

    Kuong, Chi-Lap; Chen, Wei-Yu; Chen, Yu-Chie


    Concentrations of cationic surfactants in aqueous solutions have been estimated on the basis of changes in the color of gold nanoparticles, used as reporter probes. We have shown that the colors of gold nanoparticles with anionic protective groups on their surfaces shift from red to indigo/purple and then back to red in a range of cationic surfactant solutions in which concentrations vary from very low to above the theoretical CMCs. The color changes occur near the theoretical CMCs, presumably because the presence of surfactant micelles in the solution prevents the gold nanoparticles from aggregating. We have used gold nanoparticles as reporter probes to determine the concentrations of cationic surfactants in products such as hair conditioners, which often contain large amounts of alkyltrimethylammonium halides. Although this approach can only provide an estimate, it can be performed simply by addition of a given amount of gold nanoparticles to a series of diluted solutions, without the need for instruments or labor-intensive procedures.


    Energy Technology Data Exchange (ETDEWEB)



    Although intensely colored, even the largest colloidal gold particles are not, on their own, sufficiently colored for routine use as a light microscopy stain: only with very abundant antigens or with specialized illumination methods can bound gold be seen. Colloidal gold probes were developed primarily as markers for electron microscopy, for which their very high electron density and selectivity for narrow size distributions when prepared in different ways rendered them highly suited. The widespread use of gold labeling for light microscopy was made possible by the introduction of autometallographic enhancement methods. In these processes, the bound gold particles are exposed to a solution containing metal ions and a reducing agent; they catalyze the reduction of the ions, resulting in the deposition of additional metal selectively onto the particles. On the molecular level, the gold particles are enlarged up to 30-100 nm in diameter; on the macroscale level, this results in the formation of a dark stain in regions containing bound gold particles, greatly increasing visibility and contrast. The applications of colloidal gold have been described elsewhere in this chapter, we will focus on the use of covalently linked cluster complexes of gold and other metals. A gold cluster complex is a discrete molecular coordination compound comprising a central core, or ''cluster'' of electron-dense metal atoms, ligated by a shell of small organic molecules (ligands), which are linked to the metal atoms on the surface of the core. This structure gives clusters several important advantages as labels. The capping of the metal surface by ligands prevents non-specific binding to cell and tissue components, which can occur with colloidal gold. Cluster compounds are more stable and may be used under a wider range of conditions. Unlike colloidal gold, clusters do not require additional macromolecules such as bovine serum albumin or polyethylene glycol for

  8. A grand unified model for liganded gold clusters (United States)

    Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi


    A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three `flavours' (namely, bottom, middle and top) to represent three possible valence states. The `composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.

  9. A theoretical study on interaction of proline with gold cluster

    Indian Academy of Sciences (India)

    Sandhya Rai; N V Suresh Kumar; Harjinder Singh


    Interaction of proline with gold cluster was studied using density functional theory (DFT). Two types of mixed basis sets UB3LYP/6-311++G ∪ LANL2MB and UB3LYP/6-311++G ∪ LANL2DZ were used for optimization of complex structures. Proline interacts with gold cluster either through one anchor bond, N–Au or an anchor bond O–Au associated with a non-conventional O–H…Au hydrogen bond. Among these interactions, higher tendency for interaction is seen with Au cluster through amide terminal. Natural bond orbital analysis (NBO) is used to substantiate the results.

  10. Fluorescent Thiol-Derivatized Gold Clusters Embedded in Polymers

    Directory of Open Access Journals (Sweden)

    G. Carotenuto


    Full Text Available Owing to aurophilic interactions, linear and/or planar Au(I-thiolate molecules spontaneously aggregate, leading to molecular gold clusters passivated by a thiolate monolayer coating. Differently from the thiolate precursors, such cluster compounds show very intensive visible fluorescence characteristics that can be tuned by alloying the gold clusters with silver atoms or by conjugating the electronic structure of the metallic core with unsaturated electronic structures in the organic ligand through the sulphur atom. Here, the photoluminescence features of some examples of these systems are shortly described.

  11. Structures of 38-atom gold-platinum nanoalloy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yee Pin; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)


    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atoms are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.

  12. Understanding ligand effects in gold clusters using mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Laskin, Julia


    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because “each-atom-counts” toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted that may be compared with the results of high-level theoretical calculations. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well

  13. Understanding ligand effects in gold clusters using mass spectrometry. (United States)

    Johnson, Grant E; Laskin, Julia


    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because "each-atom-counts" toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation of numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on well-defined surfaces may be explored using ion soft landing (SL) in a custom

  14. Chemically induced magnetism in atomically precise gold clusters. (United States)

    Krishna, Katla Sai; Tarakeshwar, Pilarisetty; Mujica, Vladimiro; Kumar, Challa S S R


    Comparative theoretical and experimental investigations are reported into chemically induced magnetism in atomically-precise, ligand-stabilized gold clusters Au25 , Au38 and Au55 . The results indicate that [Au25 (PPh3 )10 (SC12 H25 )5 Cl2 ](2+) and Au38 (SC12 H25 )24 are diamagnetic, Au25 (SC2 H4 Ph)18 is paramagnetic, and Au55 (PPh3 )12 Cl6 , is ferromagnetic at room temperature. Understanding the magnetic properties resulting from quantum size effects in such atomically precise gold clusters could lead to new fundamental discoveries and applications.

  15. Ligand-protected gold clusters: the structure, synthesis and applications (United States)

    Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.


    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.

  16. Highly stable noble metal nanoparticles dispersible in biocompatible solvents: synthesis of cationic phosphonium gold nanoparticles in water and DMSO. (United States)

    Ju-Nam, Yon; Abdussalam-Mohammed, Wanisa; Ojeda, Jesus J


    In this work, we report the synthesis of novel cationic phosphonium gold nanoparticles dispersible in water and dimethyl sulfoxide (DMSO) for their potential use in biomedical applications. All the cationic-functionalising ligands currently reported in the literature are ammonium-based species. Here, the synthesis and characterisation of an alternative system, based on phosphonioalkylthiosulfate zwitterions and phosphonioalkylthioacetate were carried out. We have also demonstrated that our phosphonioalkylthiosulfate zwitterions readily disproportionate into phosphonioalkylthiolates in situ during the synthesis of gold nanoparticles produced by the borohydride reduction of gold(III) salts. The synthesis of the cationic gold nanoparticles using these phosphonium ligands was carried out in water and DMSO. UV-visible spectroscopic and TEM studies have shown that the phosphonioalkylthiolates bind to the surface of gold nanoparticles which are typically around 10 nm in diameter. The resulting cationic-functionalised gold nanoparticles are dispersible in aqueous media and in DMSO, which is the only organic solvent approved by the U.S. Food and Drug Administration (FDA) for drug carrier tests. This indicates their potential future use in biological applications. This work shows the synthesis of a new family of phosphonium-based ligands, which behave as cationic masked thiolate ligands in the functionalisation of gold nanoparticles. These highly stable colloidal cationic phosphonium gold nanoparticles dispersed in water and DMSO can offer a great opportunity for the design of novel biorecognition and drug delivery systems.

  17. Uv Photodissociation Spectroscopy of Temperature Controlled Hydrated Phenol Cluster Cation (United States)

    Kurusu, Itaru; Yagi, Reona; Kasahara, Yasutoshi; Ishikawa, Haruki


    Owing to various developments of spectroscopic techniques, microscopic hydration structures of various clusters in the gas phase have been determined so far. The next step for further understanding of the microscopic hydration is to reveal the temperature effect, such as a fluctuation of the hydration structure. Thus, we have been carrying out photodissociation spectroscopy on the hydrated phenol cation clusters, [PhOH(H_2O)_n]^+, trapped in our temperature-variable ion trap. After the last symposium, we succeeded in improving our experimental condition and recorded the UV photodissociation spectra of [PhOH(H_2O)_5]^+ at the trap temperatures of 20, 50, and 100 K. We identified three groups of bands by their temperature dependence in the spectra. Based on the results of the DFT calculations, we estimated the temperature dependence of the relative populations among the isomers. As a results, the isomers were grouped into three groups having different motifs of the hydrogen-bond structures. Comparing the experimental with the theoretical results, we assigned the relation between the band carriers and the hydrogen-bond structure motifs. Details of the discussion will be presented in the paper. H. Ishikawa, T. Nakano, T. Eguchi, T. Shibukawa, K. Fuke, Chem. Phys. Lett. 514, 234 (2011) R. Yagi, Y. Kasahara, H. Ishikawa, WH12, the 70th International Symposium on Molecular Spectroscopy (2015)

  18. Photo-induced brightening and broadening effects of gold quantum clusters (United States)

    Huang, Hsiu-Ying; Lin, Chia-Hui; Lin, Cheng-An J.


    We describe the use of UV light under different radiation time induces a variety of fluorescence wavelength of gold quantum clusters. First, we synthesize blue-emitted gold quantum clusters by dissolving the gold trichloride in pure toluene. To simplify the expression, we assume that the several featured PL peak (425, 450, 470 nm) is the signal for blue-emitted gold quantum clusters. Undergo UV irradiation can brighten and broaden the PL spectra of gold quantum clusters, which are observed by the evolutional spectra versus exposure time. After UV light exposure, the major population of gold quantum clusters @425nm decreased and turned to gold quantum clusters@450nm, followed by the growing population of gold quantum clusters@470nm clusters. Until 2 hour exposure, the spectra become broad with major peak shifted to 525 nm. The tunable spectra from blue to green attributes to the induced growth of gold quantum clusters by UV irradiation. The UV energy indeed tunes and broadens the emission covering the whole visible-spectra range. Finally, we also utilize via proper selection of organic surfactant (such as: trioctyl phosphine, TOP) can coordinate the quantum yield enhancement of blue-emitted gold quantum clusters under UV irradiation. The experiment method is easily for gold quantum clusters synthesis. Thus we expect this materials can be developed for fluorescence labeling application in the future.

  19. Molecular dynamics simulation of gold cluster growth during sputter deposition (United States)

    Abraham, J. W.; Strunskus, T.; Faupel, F.; Bonitz, M.


    We present a molecular dynamics simulation scheme that we apply to study the time evolution of the self-organized growth process of metal cluster assemblies formed by sputter-deposited gold atoms on a planar surface. The simulation model incorporates the characteristics of the plasma-assisted deposition process and allows for an investigation over a wide range of deposition parameters. It is used to obtain data for the cluster properties which can directly be compared with recently published experimental data for gold on polystyrene [M. Schwartzkopf et al., ACS Appl. Mater. Interfaces 7, 13547 (2015)]. While good agreement is found between the two, the simulations additionally provide valuable time-dependent real-space data of the surface morphology, some of whose details are hidden in the reciprocal-space scattering images that were used for the experimental analysis.

  20. The electrokinetic characterization of gold nanoparticles, functionalized with cationic functional groups, and its' interaction with DNA. (United States)

    Lazarus, Geraldine Genevive; Revaprasadu, Neerish; López-Viota, Julián; Singh, Moganavelli


    Gold nanoparticles have attracted strong biomedical interest for drug delivery due to their low toxic nature, surface plasmon resonance and capability of increasing the stability of the payload. However, gene transfection represents another important biological application. Considering that cellular barriers keep enclosed their secret to deliver genes using nanoparticles, an important step can be achieved by studying the functionalization of nanoparticles with DNA. In the present contribution the synthesis of nanoparticles consisting of a gold core coated with one or more layers of amino acid (l-lysine), and cationic polyelectrolytes (poly-ethyleneimine and poly-l-lysine) is reported. All nanoparticles were subjected to dynamic light scattering, electrophoretic mobility measurements, UV-vis optical spectrophotometry analysis and transmission electron microscopy imaging. In addition, the adsorption of DNA plasmid (pSGS) with linear and supercoiled configurations was studied for those gold nanoparticles under the most suitable surface modifications. Preliminary results showed that the gold nanoparticles functionalized with poly-ethyleneimine and poly-l-lysine, respectively, and bound to linear DNA configurations, present in absolute value a higher electrophoretic mobility irrespective of the pH of the media, compared to the supercoiled and nicked configuration. The findings from this study suggest that poly-ethyleneimine and poly-l-lysine functionalized gold nanoparticles are biocompatible and may be promising in the chemical design and future optimization of nanostructures for biomedical applications such as gene and drug delivery.

  1. Cationic gold staining of glomerular anionic sites in archived tissue, reprocessed from paraffin wax into LR gold resin. (United States)

    Goode, N P; Shires, M; Aparicio, S R; Davison, A M


    Glomerular capillary wall anionic sites have been demonstrated by cationic gold staining of archived renal biopsy tissue (up to 10 years old), obtained from six patients, originally embedded in paraffin wax, and subsequently reprocessed into LR gold resin. The staining patterns at pH 2.5 and pH 7.0, demonstrating different glomerular basement membrane (GBM) anionic constituents, were compared in three patients from whom tissue directly processed into LR gold and reprocessed tissue was available. Ultrastructural preservation was poorer and shrinkage artefact greater in paraformaldehyde-lysine periodate (PLP) as opposed to formol saline-fixed reprocessed tissue. However, GBM anionic site expression was well preserved, or even enhanced (lamina rara externa, pH 7.0) in reprocessed tissue, using either fixative. Although it may not be possible to compare subtle changes in anionic site distribution in variously fixed and processed tissues, due to these artefacts, the technique enables retrospective study of charge status in archived material from disease groups in which there are distinct anionic site aberrations.

  2. Change Color Effect and Spectral Properties of Gold Nanoparticle-cationic Surfactants System

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhi-liang; PAN Hong-cheng; YUAN Wei-en


    The change color effect of gold nanoparticle solutions was studied by means of resonance scattering and absorption spectrometry and scan electron microscopy. The red Au nanoparticles with a size of 10 nm exhibit a resonance absorption peak and a resonance scattering peak all at 525 nm. After some inorganic electrolyte was added to a red Au nanoparticles solution, the color of the solution became blue and the absorbance at 600-700 nm was significantly increased. The ratio of the concentration of monovalent cations, at which the resonance scattering of the system at 525 nm is maximal to that of divalent cations, is in the range of 100 : 1 -100 : 1.8. It is in good agreement with the Schulze-Hardy rule of the coagulation value of electrolyte. After adding some cationic surfactants to the above solution, the color of the solution is in deep blue, with two resonance absorption peaks at 550 and 680 nm, and a greatly enhanced resonance scattering peak at 525 nm.The experiments demonstrate that the stronger the hydrophobicity of the cationic surfactant is, the stronger the change color effect of the Au nanoparticle solution promoted by cationic surfactant is. The change color effect of Au nanoparticle solution is resulted from the increased diameter of Au nanoparticles, and the changes of resonance absorption peak and resonance scattering.

  3. Temperature effects on the stability of gold nanoparticles in the presence of a cationic thermoresponsive copolymer (United States)

    Pamies, Ramón; Zhu, Kaizheng; Kjøniksen, Anna-Lena; Nyström, Bo


    New hybrid complexes composed by a thermoresponsive copolymer and gold nanoparticles (Rh = 22 nm) have been characterized by dynamic light scattering (DLS) and UV-visible spectroscopy. A cationic thermoresponsive triblock copolymer, methoxy-poly(ethylene glycol)- block-poly( N-isopropylacrylamide)- block-poly((3-acrylamidopropyl) trimethyl ammonium chloride), abbreviated as MPEG- b-PNIPAAM- b-PN(+), has been synthesized by atom transfer radical polymerization (ATRP). We have evaluated the thermal response at low concentrations of this triblock copolymer in bulk solution and the effect of concentration on the interaction between this thermosensitive copolymer and the gold nanoparticles (AuNPs) to form new hybrid complexes (60-1000 nm) at different temperatures. The thermosensitive nature of the copolymer causes both aggregation and contraction of the aggregates at elevated temperatures. The AuNPs were found to be separately embedded in the hybrid complexes. Interestingly, the AuNPs prevent macroscopic phase separation of the system at high temperatures.

  4. Non-covalent interactions at bis(pyrazole)silver(i) or -gold(i) cations. (United States)

    García-Pacios, Vanesa; Arroyo, Marta; Antón, Noelia; Miguel, Daniel; Villafañe, Fernando


    The reaction of AgBF(4) with two equivalents of pzH (pyrazole) or dmpzH (3,5-dimethylpyrazole) leads to [Ag(pzH)(2)]BF(4) or [Ag(dmpzH)(2)]BF(4). The reaction of [AuCl(tht)] with an equimolar amount of dmpzH in refluxing hexane leads to [Au(dmpzH)(2)][AuCl(2)]. Similar complexes [Au(dmpzH)(2)]A (A = BF(4) or NO(3)) are obtained from [AuCl(tht)], two equivalents of dmpzH, and AgBF(4) or AgNO(3). The complexes [Ag(dmpzH)(2)]BF(4) and [Au(dmpzH)(2)]A (A = [AuCl(2)], BF(4) or NO(3)) crystallize as ionic pairs where the NH groups of the pyrazoles are involved in short cation-anion interactions. The nitrate complex crystallizes as a dimer, where both molecules are supported by pi-stacking interactions between the pyrazole rings. The crystal structure of [Ag(pzH)(2)]BF(4) reveals a three dimensional array of cations and anions. In solution, [Ag(pzH)(2)]BF(4) and [Ag(dmpzH)(2)]BF(4) undergo intermolecular processes involving pyrazole decoordination, and behave as 1/1 electrolytes; whereas dimethylpyrazole gold complexes do not display any dynamic behavior, and show cation-anion association also in solution.

  5. Comparative hyperthermia effects of silica-gold nanoshells with different surface coverage of gold clusters on epithelial tumor cells. (United States)

    Park, Sang-Eun; Lee, Jaewon; Lee, Taeksu; Bae, Saet-Byeol; Kang, Byunghoon; Huh, Yong-Min; Lee, Sang-Wha; Haam, Seungjoo


    Silica-gold nanoshell (SGNS), which is a silica core surrounded by a gold layer, was synthesized by seed-mediated coalescence of gold clusters in an electroless plating solution. SGNS variations with different surface coverage of gold clusters were prepared by adjusting the amounts of gold salts in the presence of formaldehyde-reducing agents. Fully covered SGNS (f-SGNS) with connected gold clusters exhibited stronger intensity and more redshift of plasmon bands located around 820 nm than those of partially covered SGNS (p-SGNS) with disconnected gold clusters. Upon irradiation with near-infrared light (30 W/cm(2), 700-800 nm), f-SGNS caused a larger hyperthermia effect, generating a large temperature change (ΔT =42°C), as compared to the relatively small temperature change (ΔT =24°C) caused by p-SGNS. The therapeutic antibody, Erbitux™ (ERB), was further conjugated to SGNS for specific tumor cell targeting. The f-ERB-SGNS showed excellent therapeutic efficacy based on the combined effect of both the therapeutic antibody and the full hyperthermia dose under near-infrared irradiation. Thus, SGNS with well-controlled surface morphology of gold shells may be applicable for near-infrared-induced hyperthermia therapy with tunable optical properties.

  6. The Next Generation Virgo Cluster Survey. XX. RedGOLD Background Galaxy Cluster Detections (United States)

    Licitra, Rossella; Mei, Simona; Raichoor, Anand; Erben, Thomas; Hildebrandt, Hendrik; Muñoz, Roberto P.; Van Waerbeke, Ludovic; Côté, Patrick; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Ferrarese, Laura; Gwyn, Stephen D. J.; Huertas-Company, Marc; Lançon, Ariane; Parroni, Carolina; Puzia, Thomas H.


    We build a background cluster candidate catalog from the Next Generation Virgo Cluster Survey (NGVS) using our detection algorithm RedGOLD. The NGVS covers 104 deg2 of the Virgo cluster in the {u}* ,g,r,i,z-bandpasses to a depth of g ˜ 25.7 mag (5σ). Part of the survey was not covered or has shallow observations in the r band. We build two cluster catalogs: one using all bandpasses, for the fields with deep r-band observations (˜20 deg2), and the other using four bandpasses ({u}* ,g,i,z) for the entire NGVS area. Based on our previous Canada-France-Hawaii Telescope Legacy Survey W1 studies, we estimate that both of our catalogs are ˜100% (˜70%) complete and ˜80% pure, at z ≤ 0.6 (z ≲ 1), for galaxy clusters with masses of M ≳ 1014 M ⊙. We show that when using four bandpasses, though the photometric redshift accuracy is lower, RedGOLD detects massive galaxy clusters up to z ˜ 1 with completeness and purity similar to the five-band case. This is achieved when taking into account the bias in the richness estimation, which is ˜40% lower at 0.5 ≤ z z X-ray clusters in the area with mass M 500 > 1.4 × 1014 M ⊙ and 0.08 z < 0.5. Because of our different cluster richness limits and the NGVS depth, our catalogs reach lower masses than the published redMaPPer cluster catalog over the area, and we recover ˜90%-100% of its detections.

  7. Size-dependent mobility of gold nano-clusters during growth on chemically modified graphene

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Gavin R., E-mail:; Dawson, Peter M.; Pandey, Priyanka A.; Wilson, Neil R. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Mulheran, Paul A. [Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose St., Glasgow G1 1XJ (United Kingdom)


    Gold nano-clusters were grown on chemically modified graphene by direct sputter deposition. Transmission electron microscopy of the nano-clusters on these electron-transparent substrates reveals an unusual bimodal island size distribution (ISD). A kinetic Monte Carlo model of growth incorporating a size-dependent cluster mobility rule uniquely reproduces the bimodal ISD, providing strong evidence for the mobility of large clusters during surface growth. The cluster mobility exponent of −5/3 is consistent with cluster motion via one-dimensional diffusion of gold atoms around the edges of the nano-clusters.

  8. Size-dependent mobility of gold nano-clusters during growth on chemically modified graphene

    Directory of Open Access Journals (Sweden)

    Gavin R. Bell


    Full Text Available Gold nano-clusters were grown on chemically modified graphene by direct sputter deposition. Transmission electron microscopy of the nano-clusters on these electron-transparent substrates reveals an unusual bimodal island size distribution (ISD. A kinetic Monte Carlo model of growth incorporating a size-dependent cluster mobility rule uniquely reproduces the bimodal ISD, providing strong evidence for the mobility of large clusters during surface growth. The cluster mobility exponent of −5/3 is consistent with cluster motion via one-dimensional diffusion of gold atoms around the edges of the nano-clusters.

  9. Cluster Analysis in Patients with GOLD 1 Chronic Obstructive Pulmonary Disease.

    Directory of Open Access Journals (Sweden)

    Philippe Gagnon

    Full Text Available We hypothesized that heterogeneity exists within the Global Initiative for Chronic Obstructive Lung Disease (GOLD 1 spirometric category and that different subgroups could be identified within this GOLD category.Pre-randomization study participants from two clinical trials were symptomatic/asymptomatic GOLD 1 chronic obstructive pulmonary disease (COPD patients and healthy controls. A hierarchical cluster analysis used pre-randomization demographics, symptom scores, lung function, peak exercise response and daily physical activity levels to derive population subgroups.Considerable heterogeneity existed for clinical variables among patients with GOLD 1 COPD. All parameters, except forced expiratory volume in 1 second (FEV1/forced vital capacity (FVC, had considerable overlap between GOLD 1 COPD and controls. Three-clusters were identified: cluster I (18 [15%] COPD patients; 105 [85%] controls; cluster II (45 [80%] COPD patients; 11 [20%] controls; and cluster III (22 [92%] COPD patients; 2 [8%] controls. Apart from reduced diffusion capacity and lower baseline dyspnea index versus controls, cluster I COPD patients had otherwise preserved lung volumes, exercise capacity and physical activity levels. Cluster II COPD patients had a higher smoking history and greater hyperinflation versus cluster I COPD patients. Cluster III COPD patients had reduced physical activity versus controls and clusters I and II COPD patients, and lower FEV1/FVC versus clusters I and II COPD patients.The results emphasize heterogeneity within GOLD 1 COPD, supporting an individualized therapeutic approach to NCT01360788 and NCT01072396.

  10. The minimum-energy structure of nanometer-scale gold clusters (United States)

    Patil, A. N.; Paithankar, D. Y.; Otsuka, N.; Andres, R. P.


    We report results of experiments in which gold clusters with controlled diameters ranging from 1nm to 20nm are grown in a gas aggregation reactor and are subsequently melted and slowly cooled in the gas phase. These clusters are soft landed on thin carbon films and their structure determined by means of HRTEM. All of the clusters down to the smallest whose lattice fringes could be resolved (N≈405) are single fcc crystals. MD calculations using an EAM potential for gold predict that the fcc motif seen in these experiments may indeed be the minimum-energy structure for gold clusters containing more than a few hundred atoms.

  11. Comparative hyperthermia effects of silica–gold nanoshells with different surface coverage of gold clusters on epithelial tumor cells

    Directory of Open Access Journals (Sweden)

    Park SE


    Full Text Available Sang-Eun Park,1,* Jaewon Lee,2,* Taeksu Lee,2 Saet-Byeol Bae,1 Byunghoon Kang,2 Yong-Min Huh,3 Sang-Wha Lee,1 Seungjoo Haam,2 1Department of Chemical and Biochemical Engineering, Gachon University, Gyeonggi-Do, Republic of Korea; 2Department of Chemical Engineering, Yonsei University, Seoul, Republic of Korea; 3Department of Radiology, College of Medicine, Yonsei University, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: Silica–gold nanoshell (SGNS, which is a silica core surrounded by a gold layer, was synthesized by seed-mediated coalescence of gold clusters in an electroless plating solution. SGNS variations with different surface coverage of gold clusters were prepared by adjusting the amounts of gold salts in the presence of formaldehyde-reducing agents. Fully covered SGNS (f-SGNS with connected gold clusters exhibited stronger intensity and more redshift of plasmon bands located around 820 nm than those of partially covered SGNS (p-SGNS with disconnected gold clusters. Upon irradiation with near-infrared light (30 W/cm2, 700–800 nm, f-SGNS caused a larger hyperthermia effect, generating a large temperature change (ΔT =42°C, as compared to the relatively small temperature change (ΔT =24°C caused by p-SGNS. The therapeutic antibody, Erbitux™ (ERB, was further conjugated to SGNS for specific tumor cell targeting. The f-ERB-SGNS showed excellent therapeutic efficacy based on the combined effect of both the therapeutic antibody and the full hyperthermia dose under near-infrared irradiation. Thus, SGNS with well-controlled surface morphology of gold shells may be applicable for near-infrared-induced hyperthermia therapy with tunable optical properties. Keywords: gold nanoshell, plasmon resonance, Erbitux, human epithelial cancer, hyperthermia

  12. One_dimensional chains of gold clusters on the surface of highly oriented pyrolytic graphite

    Institute of Scientific and Technical Information of China (English)


    We have investigated the growth of gold nanoclusters on thesurface of highly oriented pyrolytic graphite in ultrahigh vacuum. Studies of ultrahigh vacuum scanning tunneling microscopy revealed that the size distribution of gold clusters was very narrow and quasi-one-dimensional chains of gold nanoclusters of approximately 2 nm diameter were produced after being annealed at 74℃. Unlike the results obtained by previous workers, these chains of gold clusters were not formed along steps on the substrate surface, and some of them could even go across monoatomic steps. The orientation of chains of gold clusters was also dependent on the size of gold nanoclusters. These results suggest the viability of a new route to the creation of ordered nanoscale structures.

  13. Photodissociation studies of calcium-coronene and calcium-pyrene cation clusters (United States)

    Scott, A. C.; Buchanan, J. W.; Flynn, N. D.; Duncan, M. A.


    Gas-phase cluster cations combining calcium atoms and the polycyclic aromatic hydrocarbons (PAHs) coronene (C24H12) and pyrene (C16H10) are produced in a molecular beam using laser vaporization in a pulsed nozzle cluster source. Time-of-flight mass spectrometry reveals the formation of clusters of the form Cax(coronene)y+ for up to x = 4 and y = 3 and Cax(pyrene)y+ for up to x = 2 and y = 3. Mass-selected photodissociation studies show that the calcium cation is the most prominent fragment for each system. Photoinduced calcium carbide formation is prominent when two or more calcium atoms are present. Additionally, there is evidence that these clusters can form sandwich structures.

  14. Microhydrated aromatic cluster cations: Binding motifs of 4-aminobenzonitrile-(H2O)n cluster cations with n ≤ 4 (United States)

    Schmies, Matthias; Miyazaki, Mitsuhiko; Fujii, Masaaki; Dopfer, Otto


    Infrared photodissociation (IRPD) spectra of mass-selected 4-aminobenzonitrile-(water)n cluster cations, ABN+-(H2O)n with n ≤ 4, recorded in the N-H and O-H stretch ranges are analyzed by quantum chemical calculations at the M06-2X/aug-cc-pVTZ level to determine the evolution of the initial microhydration process of this bifunctional aromatic cation in its ground electronic state. IRPD spectra of cold clusters tagged with Ar and N2 display higher resolution and allow for a clear-cut structural assignment. The clusters are generated in an electron impact source, which generates predominantly the most stable isomers. The IRPD spectra are assigned to single isomers for n = 1-3. The preferred cluster growth begins with sequential hydration of the two acidic NH protons of the amino group (n = 1-2), which is followed by attachment of secondary H2O ligands hydrogen-bonded to the first-shell ligands (n = 3-4). These symmetric and branched structures are more stable than those with a cyclic H-bonded solvent network. Moreover, in the size range n ≤ 4 the formation of a solvent network stabilized by strong cooperative effects is favored over interior ion hydration which is destabilized by noncooperative effects. The potential of the ABN+-H2O dimer is characterized in detail and supports the cluster growth derived from the IRPD spectra. Although the N-H bonds are destabilized by stepwise microhydration, which is accompanied by increasing charge transfer from ABN+ to the solvent cluster, no proton transfer to the solvent is observed for n ≤ 4.

  15. Microhydrated aromatic cluster cations: Binding motifs of 4-aminobenzonitrile-(H{sub 2}O){sub n} cluster cations with n ≤ 4

    Energy Technology Data Exchange (ETDEWEB)

    Schmies, Matthias; Dopfer, Otto, E-mail: [Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Miyazaki, Mitsuhiko; Fujii, Masaaki [Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)


    Infrared photodissociation (IRPD) spectra of mass-selected 4-aminobenzonitrile-(water){sub n} cluster cations, ABN{sup +}-(H{sub 2}O){sub n} with n ≤ 4, recorded in the N–H and O–H stretch ranges are analyzed by quantum chemical calculations at the M06-2X/aug-cc-pVTZ level to determine the evolution of the initial microhydration process of this bifunctional aromatic cation in its ground electronic state. IRPD spectra of cold clusters tagged with Ar and N{sub 2} display higher resolution and allow for a clear-cut structural assignment. The clusters are generated in an electron impact source, which generates predominantly the most stable isomers. The IRPD spectra are assigned to single isomers for n = 1–3. The preferred cluster growth begins with sequential hydration of the two acidic NH protons of the amino group (n = 1–2), which is followed by attachment of secondary H{sub 2}O ligands hydrogen-bonded to the first-shell ligands (n = 3–4). These symmetric and branched structures are more stable than those with a cyclic H-bonded solvent network. Moreover, in the size range n ≤ 4 the formation of a solvent network stabilized by strong cooperative effects is favored over interior ion hydration which is destabilized by noncooperative effects. The potential of the ABN{sup +}-H{sub 2}O dimer is characterized in detail and supports the cluster growth derived from the IRPD spectra. Although the N–H bonds are destabilized by stepwise microhydration, which is accompanied by increasing charge transfer from ABN{sup +} to the solvent cluster, no proton transfer to the solvent is observed for n ≤ 4.

  16. On the feasibility of designing hyperalkali cations using superalkali clusters as ligands (United States)

    Sun, Wei-Ming; Li, Xiang-Hui; Li, Ying; Liu, Jia-Yuan; Wu, Di; Li, Chun-Yan; Ni, Bi-Lian; Li, Zhi-Ru


    The possibility of using superalkali clusters instead of alkali atoms as ligands to design a class of cationic compounds, referred to as hyperalkali cations, has been examined by using gradient-corrected density functional theory. By taking typical superalkalis (FLi2, OLi3, and NLi4) as examples, a series of hyperalkali cations ML2+ [M = (super)halogen; L = superalkali] have been constructed and investigated. Calculational results show that all the superalkali moieties preserve their geometric and electronic integrity in these proposed cations. The stability of these studied cations is guaranteed by the strong ionic bonds between superalkali ligand and (super)halogen core, as well as their large highest occupied molecular orbital-lowest unoccupied molecular orbital gaps and positive dissociation energies. In particular, all these proposed cations possess lower vertical electron affinities (2.36-3.56 eV) than those of their corresponding cationic superalkali ligands, verifying their hyperalkali nature. We, therefore, hope that this study will provide an approach to obtain new species with excellent reducing capability by utilizing various superalkalis as building blocks.

  17. Alkali metal-cationized serine clusters studied by sonic spray ionization tandem mass spectrometry. (United States)

    Nanita, Sergio C; Sokol, Ewa; Cooks, R Graham


    Serine solutions containing salts of alkali metals yield magic number clusters of the type (Ser(4)+C)(+), (Ser(8)+C)(+), (Ser(12)+C)(+), and (Ser(17)+2C)(+2) (where C = Li(+), Na(+), K(+), Rb(+), or Cs(+)), in relative abundances which are strongly dependent on the cation size. Strong selectivity for homochirality is involved in the formation of serine tetramers cationized by K(+), Rb(+), and Cs(+). This is also the case for the octamers cationized by the smaller alkalis but there is a strong preference for heterochirality in the octamers cationized by the larger alkali cations. Tandem mass spectrometry shows that the octamers and dodecamers cationized by K(+), Rb(+), and Cs(+) dissociate mainly by the loss of Ser(4) units, suggesting that the neutral tetramers are the stable building blocks of the observed larger aggregates, (Ser(8)+C)(+) and (Ser(12)+C)(+). Remarkably, although the Ser(4) units are formed with a strong preference for homochirality, they aggregate further regardless of their handedness and, therefore, with a preference for the nominally racemic 4D:4L structure and an overall strong heterochiral preference. The octamers cationized by K(+), Rb(+), or Cs(+) therefore represent a new type of cluster ion that is homochiral in its internal subunits, which then assemble in a random fashion to form octamers. We tentatively interpret the homochirality of these tetramers as a consequence of assembly of the serine molecules around a central metal ion. The data provide additional evidence that the neutral serine octamer is homochiral and is readily cationized by smaller ions.

  18. Self-Assembly of Hexanuclear Clusters of 4f and 5f Elements with Cation Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Diwu, J.; Good, Justin J.; DiStefano, Victoria H.; Albrecht-Schmitt, Thomas E.


    Six hexanuclear clusters of 4f and 5f elements were synthesized by room-temperature slow concentration experiments. Cerium(IV), thorium(IV), and plutonium(IV) each form two different hexanuclear clusters, among which the cerium and plutonium clusters are isotypic, whereas the thorium clusters show more diversity. The change in ionic radii of approximately 0.08 Å between these different metal ions tunes the cavity size so that NH{sub 4}{sup +} (1.48 Å) has the right dimensions to assemble the cerium and plutonium clusters, whereas Cs{sup +} (1.69 Å) is necessary to assemble the thorium clusters. If these cations are not used in the reactions, only amorphous material is obtained.

  19. Mixed monolayer protected gold atom-oxide cluster synthesis and characterization (United States)

    Nambiar, Sindhu R.; Aneesh, Padamadathil K.; Sukumar, Chinthu; Rao, Talasila P.


    Small atomic gold clusters in solution, Aun, stabilized by cetyl trimethylammonium bromide (CTAB) and cysteine, have been synthesized potentiodynamically in quiescent aqueous solutions. The electrodissolution of gold to gold ions during an anodic scan and subsequent cluster formation during a cathodic scan in underpotential (UPDD) and overpotential dissolution-deposition (OPDD) regions were studied. The experimental potentiodynamic I-E profiles and chronoamperometric i-t transients are fit into reported theoretical models of adsorption and electrocrystallization. The plausible application of clusters/cluster film to cysteine sensing based on fluorescence quenching and square wave stripping voltammetry is demonstrated.Small atomic gold clusters in solution, Aun, stabilized by cetyl trimethylammonium bromide (CTAB) and cysteine, have been synthesized potentiodynamically in quiescent aqueous solutions. The electrodissolution of gold to gold ions during an anodic scan and subsequent cluster formation during a cathodic scan in underpotential (UPDD) and overpotential dissolution-deposition (OPDD) regions were studied. The experimental potentiodynamic I-E profiles and chronoamperometric i-t transients are fit into reported theoretical models of adsorption and electrocrystallization. The plausible application of clusters/cluster film to cysteine sensing based on fluorescence quenching and square wave stripping voltammetry is demonstrated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30446e

  20. Liquid-like cationic sub-lattice in copper selenide clusters (United States)

    White, Sarah L.; Banerjee, Progna; Jain, Prashant K.


    Super-ionic solids, which exhibit ion mobilities as high as those in liquids or molten salts, have been employed as solid-state electrolytes in batteries, improved thermoelectrics and fast-ion conductors in super-capacitors and fuel cells. Fast-ion transport in many of these solids is supported by a disordered, `liquid-like' sub-lattice of cations mobile within a rigid anionic sub-lattice, often achieved at high temperatures or pressures via a phase transition. Here we show that ultrasmall clusters of copper selenide exhibit a disordered cationic sub-lattice under ambient conditions unlike larger nanocrystals, where Cu+ ions and vacancies form an ordered super-structure similar to the bulk solid. The clusters exhibit an unusual cationic sub-lattice arrangement wherein octahedral sites, which serve as bridges for cation migration, are stabilized by compressive strain. The room-temperature liquid-like nature of the Cu+ sub-lattice combined with the actively tunable plasmonic properties of the Cu2Se clusters make them suitable as fast electro-optic switches.

  1. A colorimetric aptasensor for the diagnosis of malaria based on cationic polymers and gold nanoparticles. (United States)

    Jeon, Weejeong; Lee, Seonghwan; Manjunatha, D H; Ban, Changill


    Malaria, a major burden of disease caused by parasites of the genus Plasmodium, is widely spread in tropical and subtropical regions. Here, we have successfully developed a diagnostic technique for malaria. The proposed method is based on the interaction among the Plasmodium lactate dehydrogenase (pLDH), which is a biomarker for malaria, and pL1 aptamer against Plasmodium vivax lactate dehydrogenase (PvLDH) and Plasmodium falciparum lactate dehydrogenase (PfLDH). In addition, the cationic polymers, poly(diallyldimethylammonium chloride) (PDDA) and poly(allylamine hydrochloride) (PAH), aggregate gold nanoparticles (AuNPs) that should be possible to observe the change in color from red to blue, which depends on the concentration of pLDH. Using this aptasensor, pLDH proteins were successfully detected with low detection limits. Moreover, the specificity test proved that the aptasenor is very specific in targeting proteins over other interfering proteins. In addition, the pLDH from infected blood samples of the two main species of malaria were also detected. The limits of detection for P. vivax were determined as 80 parasites/μl for PDDA and 74 parasites/μl for PAH. The aptasenor has great advantages that can simply and rapidly diagnose malaria. Thus, the developed aptasensor for detection of pLDH can offer an effective and sensitive diagnosis of malaria.

  2. Analysis of cardiac tissue by gold cluster ion bombardment (United States)

    Aranyosiova, M.; Chorvatova, A.; Chorvat, D.; Biro, Cs.; Velic, D.


    Specific molecules in cardiac tissue of spontaneously hypertensive rats are studied by using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The investigation determines phospholipids, cholesterol, fatty acids and their fragments in the cardiac tissue, with special focus on cardiolipin. Cardiolipin is a unique phospholipid typical for cardiomyocyte mitochondrial membrane and its decrease is involved in pathologic conditions. In the positive polarity, the fragments of phosphatydilcholine are observed in the mass region of 700-850 u. Peaks over mass 1400 u correspond to intact and cationized molecules of cardiolipin. In animal tissue, cardiolipin contains of almost exclusively 18 carbon fatty acids, mostly linoleic acid. Linoleic acid at 279 u, other fatty acids, and phosphatidylglycerol fragments, as precursors of cardiolipin synthesis, are identified in the negative polarity. These data demonstrate that SIMS technique along with Au 3+ cluster primary ion beam is a good tool for detection of higher mass biomolecules providing approximately 10 times higher yield in comparison with Au +.

  3. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. (United States)

    Turner, Mark; Golovko, Vladimir B; Vaughan, Owain P H; Abdulkin, Pavel; Berenguer-Murcia, Angel; Tikhov, Mintcho S; Johnson, Brian F G; Lambert, Richard M


    Supported gold nanoparticles have excited much interest owing to their unusual and somewhat unexpected catalytic properties, but the origin of the catalytic activity is still not fully understood. Experimental work on gold particles supported on a titanium dioxide (110) single-crystal surface has established a striking size threshold effect associated with a metal-to-insulator transition, with gold particles catalytically active only if their diameters fall below approximately 3.5 nm. However, the remarkable catalytic behaviour might also in part arise from strong electronic interaction between the gold and the titanium dioxide support. In the case of industrially important selective oxidation reactions, explanation of the effectiveness of gold nanoparticle catalysts is complicated by the need for additives to drive the reaction, and/or the presence of strong support interactions and incomplete understanding of their possible catalytic role. Here we show that very small gold entities ( approximately 1.4 nm) derived from 55-atom gold clusters and supported on inert materials are efficient and robust catalysts for the selective oxidation of styrene by dioxygen. We find a sharp size threshold in catalytic activity, in that particles with diameters of approximately 2 nm and above are completely inactive. Our observations suggest that catalytic activity arises from the altered electronic structure intrinsic to small gold nanoparticles, and that the use of 55-atom gold clusters may prove a viable route to the synthesis of robust gold catalysts suited to practical application.

  4. Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals. (United States)

    Philip, Reji; Chantharasupawong, Panit; Qian, Huifeng; Jin, Rongchao; Thomas, Jayan


    Atomic clusters of metals are an emerging class of extremely interesting materials occupying the intermediate size regime between atoms and nanoparticles. Here we report the nonlinear optical (NLO) characteristics of ultrasmall, atomically precise clusters of gold, which are smaller than the critical size for electronic energy quantization (∼2 nm). Our studies reveal remarkable features of the distinct evolution of the optical nonlinearity as the clusters progress in size from the nonplasmonic regime to the plasmonic regime. We ascertain that the smallest atomic clusters do not show saturable absorption at the surface plasmon wavelength of larger gold nanocrystals (>2 nm). Consequently, the third-order optical nonlinearity in these ultrasmall gold clusters exhibits a significantly lower threshold for optical power limiting. This limiting efficiency, which is superior to that of plasmonic nanocrystals, is highly beneficial for optical limiting applications.

  5. Enantiopure Radical Cation Salt Based on Tetramethyl-Bis(ethylenedithio-Tetrathiafulvalene and Hexanuclear Rhenium Cluster

    Directory of Open Access Journals (Sweden)

    Flavia Pop


    Full Text Available Electrocrystallization of the (S,S,S,S enantiomer of tetramethyl-bis(ethylenedithio-tetrathiafulvalene donor 1 in the presence of the dianionic hexanuclear rhenium (III cluster [Re6S6Cl8]2− affords a crystalline radical cation salt formulated as [(S-1]2·Re6S6Cl8, in which the methyl substituents of the donors adopt an unprecedented all-axial conformation. A complex set of intermolecular TTF···TTF and cluster···TTF interactions sustain an original tridimensional architecture.

  6. Cyclic Trinuclear Gold(I) Clusters with N,N and Unusual C,C Mixed-Ligand Bridges. (United States)

    Melgarejo, Doris Y; Chiarella, Gina M; Fackler, John P


    Three crystalline trinuclear gold(I) clusters, [Au3f2y] (1), [Au3fy2] (2), and [Au3y3] (3), where f = N,N'-bis(2,6-dimethylphenyl)methanimidamidate and y = dimethylendiphenylphosphinate, exhibit bridges from the N,N-formamidinate and/or from the ylide anion ligand whose P-methylene groups chelate in an unusual fashion, where the chelate CPC unit is perpendicular to the trigonal plane of the metal atoms. Assemblies 1 and 2 are the first gold(I) trinuclear clusters featuring mixed-ligand bridges from different N,N and C,C donors; 3 is a previously unknown homoleptic ylide anion cyclic trinuclear assembly. Formamidinate bridges in 1 and 2 connect gold(I) atoms at aurophilic distances of 3.084(2) and 3.0543(4) Å, whereas an out-of-plane (perpendicular) P-ylide anion bite produces Au(I)-Au(I) distances of as large as 3.900(2) Å in 3. The crystal space groups for 1 and 2 are triclinic P1̅ and that for 3 is monoclinic P21/c, with Z = 2 for 1 and 2 and Z = 4 for 3. Compounds are synthesized under Schlenk conditions at -20 °C in toluene by reacting the proper ratios of the gold(I) formamidinate [Au2f2] with the phosphorus ylide [Hy] under basic conditions (KOH), followed by extraction with ether. This synthesis also produces a dinuclear cation, [Au2f(Hy)2](+), previously reported by our group. A neutral mixed-ligand dinuclear complex, [Au2fy], was not observed. Under UV light, 1 and 2 display a bright-green luminescence at room temperature and in frozen methyltetrahydrofuran solutions under liquid nitrogen, with microsecond lifetimes. All three complexes 1-3 are characterized by their X-ray crystal structures, (1)H NMR, IR, UV-visible, and luminescence spectroscopies, and elemental analysis.

  7. Comparative Study of Formation and Stabilization of Gold and Silver Clusters and Nanoparticles in Mordenites

    NARCIS (Netherlands)

    Bogdanchikova, N.; Tuzovskaya, I.; Pestryakov, A.; Susarrey-Arce, A.


    Supporting silver and gold on mordenites by ion-exchange method with further reduction with H2 leads to formation of neutral and charged metal clusters inside zeolite channels as well as metal nanoparticles on external surface of mordenite. A portion of the cluster states of the metals and stability

  8. Structure and dynamics of cationic van-der-Waals clusters. II. Dynamics of protonated argon clusters (United States)

    Ritschel, T.; Zuhrt, Ch.; Zülicke, L.; Kuntz, P. J.


    A diatomics-in-molecules (DIM) model with ab-initio input data, which in part I successfully described the structure and bonding properties of protonated argon clusters ArnH+, is used here to investigate some aspects of the dynamics of such aggregates for n up to 30. The simple triatomic ionic fragment, Ar2H+, is studied in some detail with respect to normal vibrations, characteristics of classical intramolecular dynamics as reflected in the Fourier spectra of dynamical variables, and accurate quantum states of the vibrational motion. For larger clusters ArnH+ (n ≤30), the normal vibrational frequencies (and displacement eigenvectors) are calculated and related to the cluster structure. In addition, the Fourier spectra are analyzed with respect to their variation with changing internal energy and cluster size. As expected, the clusters show some floppy character. Even a little vibrational excitation can lead to internal rearrangement and to Ar-atom evaporation from the clusters; this is studied in more detail for one small complex (n = 3). Electronic excitation to one of the low-lying excited states, which are all globally repulsive, leads to complete fragmentation (atomization) of the clusters. A variety of conceivable elementary collision processes involving protonated argon clusters are discussed. Some of these may play a role in the gas-phase formation of medium-sized ArnH+ aggregates.

  9. Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hao-Bo [ORNL; Liang, Liyuan [ORNL; Parks, Jerry M [ORNL; Smith, Jeremy C [ORNL; Riccardi, Demian M [ORNL; Gu, Baohua [ORNL


    Understanding aqueous phase processes involving group 12 metal cations is relevant to both environmental and biological sciences. Here, quantum chemical methods and polarizable continuum models are used to compute the hydration free energies of a series of divalent group 12 metal cations (Zn2+, Cd2+, and Hg2+) together with Cu2+ and the anions OH , SH , Cl , and F . A cluster-continuum method is employed, in which gas-phase clusters of the ion and explicit solvent molecules are immersed in a dielectric continuum. Two approaches to define the size of the solute-water cluster are compared, in which the number of explicit waters used is either held constant or determined variationally as that of the most favorable hydration free energy. Results obtained with various polarizable continuum models are also presented. Each leg of the relevant thermodynamic cycle is analyzed in detail to determine how different contributions yield the observed mean signed error (MSE) and the standard deviation of the error (STDEV) between theory and experiment. The use of a constant number of water molecules for each set of ions is found to lead to predicted relative trends that benefit from error cancellation. Overall, the best results are obtained with MP2 and the Solvent Model D polarizable continuum model (SMD), with eight explicit water molecules for anions and ten for the metal cations, yielding a STDEV of 2.3 kcal/mol and MSE of 0.9 kcal/mol between theoretical to experimental hydration free energies, which range from -72.4 kcal/mol for SH to -505.9 kcal/mol for Cu2+. Using B3PW91 with DFT-D3 dispersion corrections (B3PW91-D) and SMD yields a STDEV of 3.3 kcal mol 1 and MSE of 1.6 kcal/mol, to which adding MP2 corrections from smaller divalent metal ion water molecule clusters yields very good agreement with the full MP2 results. Using B3PW91-D and SMD, with two explicit water molecules for anions and six for divalent metal cations also yields reasonable agreement with experiment

  10. Melting behaviour of gold-platinum nanoalloy clusters by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yee Pin; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)


    The melting behavior of bimetallic gold-platinum nanoclusters is studied by applying Brownian-type isothermal molecular dynamics (MD) simulation, a program modified from the cubic coupling scheme (CCS). The process begins with the ground-state structures obtained from global minimum search algorithm and proceeds with the investigation of the effect of temperature on the thermal properties of gold-platinum nanoalloy clusters. N-body Gupta potential has been employed in order to account for the interactions between gold and platinum atoms. The ground states of the nanoalloy clusters, which are core-shell segregated, are heated until they become thermally segregated. The detailed melting mechanism of the nanoalloy clusters is studied via this approach to provide insight into the thermal stability of the nanoalloy clusters.

  11. Cd/Hg cationic substitution in magic-sized CdSe clusters: Optical characterization and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Antanovich, Artsiom; Prudnikau, Anatol; Gurin, Valerij; Artemyev, Mikhail, E-mail:


    Highlights: • HgSe magic-sized clusters were prepared via Cd/Hg cationic exchange in pyridine. • Upon cationic exchange CdSe clusters behave differently from quantum dots or rods. • Theoretical calculations of magic-sized clusters agree well with experimental data. - Abstract: We examine conversion of magic-sized CdSe clusters (MSCs) into HgSe ones by means of Cd/Hg cation exchange. With this procedure Cd{sub 8}Cd{sub 17}– and Cd{sub 32}–selenide clusters can be converted into corresponding Hg{sub 8}–, Hg{sub 17}– and Hg{sub 32}–selenide ones. Upon cationic exchange MSCs behavior differs from that of bulkier counterparts – larger (2–3 nm) quantum dots. Unlike CdSe colloidal quantum dots, magic-sized clusters are converted in fast and complete manner without a formation of intermediate mixed Cd{sub x}Hg{sub 1−x} compounds that was established on the basis of optical absorption spectroscopy and chemical composition analysis. These assumptions were supported by DFT quantum chemical calculations performed for Cd{sub 8}–, Cd{sub 17}– and Hg{sub 8}–, Hg{sub 17}–selenide model clusters. Energies of experimental and calculated optical transitions were compared in order to prove the isostructural character of cationic substitution in magic-sized clusters.

  12. Preparation of multi-coloured different sized fluorescent gold clusters from blue to NIR, structural analysis of the blue emitting Au7 cluster, and cell-imaging by the NIR gold cluster. (United States)

    Roy, Subhasish; Baral, Abhishek; Bhattacharjee, Rameswar; Jana, Batakrishna; Datta, Ayan; Ghosh, Surajit; Banerjee, Arindam


    Blue, green, orange-red, red and NIR emitting gold quantum clusters have been prepared in aqueous media by using a bioactive peptide glutathione (reduced) at physiological pH. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analyses show that the core structure sizes of the five different gold clusters are Au7 (blue), Au16 (green), Au19 (orange-red), Au21 (red) and Au22 (NIR). The photo-stability and pH-stability of these quantum clusters have been measured, and these are photo-stable against continuous UV irradiation for a few hours. They also exhibit moderate to good pH-stability within the pH range of 5-12.5. A computational study reveals the organisation of gold atoms in the thiolate-protected blue quantum cluster and its several structural parameters, including the mode of interaction of ligand molecules with Au atoms in the Au7 cluster. Interestingly, it has been found that NIR emitting gold quantum cluster can easily be internalized into the adenocarcinomic human alveolar basal epithelial cell line (A549 cell line). Moreover, a MTT assay indicates that our NIR emitting gold quantum cluster show very low cytotoxicy to A549 cancer cells.


    Institute of Scientific and Technical Information of China (English)

    Xiao-ping Yan; Bao-lin He; Jie Zhang; Han-fan Liu


    Modification of transition metal cations to polymer-stabilized Pt colloidal clusters modified with cinchonidine was studied in enantioselective hydrogenation of methyl pyruvate. Compared to the enantiomeric excess (e.e.) value (71.4%)obtained without the presence of metal cations, obvious e.e. enhancement (up to 82.5%) was resulted from the addition of Zn2+ but with a certain decrease in activity. The reaction parameters in the presence of Zn2+ were also studied. It was found that the Pt colloidal catalysts in the presence of metal cations performed very differently from that in the absence of metal cations.

  14. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis. (United States)

    Liu, Siqi; Xu, Yi-Jun


    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters-TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability.

  15. Synthesis of DPA dendron encapsulated gold clusters with metal-assembling function

    Directory of Open Access Journals (Sweden)

    Yi Men, Masayoshi Higuchi and Kimihisa Yamamoto


    Full Text Available Gold clusters modified with first, second and third generation dendritic polyphenylazomethines (DPA were synthesized by an exchanged reaction of corresponding DPA dendron thiols. Measurements by high performance perfect sizer (HPPS and TEM reveal that their diameters increase with a change in the chain length of the modifying molecules from the first to third generation. These gold clusters with DPA dendrons exhibit coordination quantitatively to metal ions such as Fe3+, Sn2+, etc., because of their imine groups; this then resulted in self-aggregation to form a large sphere.

  16. Composition dependent adsorption of multiple CO molecules on binary silver-gold clusters Ag(n)Au(m)+ (n + m = 5): theory and experiment. (United States)

    Popolan, Denisia M; Nössler, Melanie; Mitrić, Roland; Bernhardt, Thorsten M; Bonacić-Koutecký, Vlasta


    The binding energies of multiple CO molecules to five-atom silver-gold cluster cations have been obtained employing temperature dependent gas phase ion trap measurements and ab initio calculations. The CO binding energies to Ag(n)Au(m)(+) (n + m = 5) decrease with increasing number of silver atoms. Most strikingly, after the adsorption of the fourth CO to Au(5)(+) and of the third CO to Ag(5)(+), respectively, a pronounced decrease in the binding energies of further CO molecules was observed. This is related to a CO-induced structural transformation yielding more compact metal cluster geometries. First principles calculations revealed that the exact structure of the carbonyl complexes with multiple CO and the nature of the CO-induced structural transformation strongly depend on the composition of the metal cluster as well as on the number of adsorbed CO molecules.

  17. Experimental and theoretical studies of the reaction between cationic vanadium oxide clusters and acetylene

    Institute of Scientific and Technical Information of China (English)

    YIN Shi; MA YanPing; DU Lin; HE ShengGui; GE MaoFa


    The time of flight mass spectrometer coupled with a laser ablation/supersonic expansion cluster source and a fast flow reactor was adopted to study the reactivity of cationic vanadium oxide clusters (VmO+n) toward acetylene (C2H2) molecules under gas phase (P, ~ 1.14 kPa), under near room temperature (T, ~ 350 K) conditions. Association products, VmOnC2H+2 (m,n = 2,4; 2,6; 3,7-8; 4,9-11; 5,12-13;6,13-16, and 7,17), are observed. The oxidation of C2H2 by (V2O5)+n, (n = 1-3) is experimentally identified.The reactivity of (V2O5)+n decreases as n increases. Density functional theory (DFT) calculations were carried out to interpret the reaction mechanisms. The DFT results indicate that a terminal oxygen atom from V2O+5 can transfer overall barrierlessly to C2H2 at room temperature, which is in agreement with the experimental observation. Other experimental results such as the observation of V2O6C2H+2 and nonobservation of V2O7,8C2H+2 in the experiments are also well interpreted based on the DFT calculations.The reactivity of vanadium oxide clusters toward acetylene and other hydrocarbons may be considered in identifying molecular level mechanisms for related heterogeneous catalysis.

  18. Genetically Programmed Clusters of Gold Nanoparticles for Cancer Cell-Targeted Photothermal Therapy. (United States)

    Oh, Mi Hwa; Yu, Jeong Heon; Kim, Insu; Nam, Yoon Sung


    Interpretations of the interactions of nanocarriers with biological cells are often complicated by complex synthesis of materials, broad size distribution, and heterogeneous surface chemistry. Herein, the major capsid proteins of an icosahedral T7 phage (55 nm in diameter) are genetically engineered to display a gold-binding peptide and a prostate cancer cell-binding peptide in a tandem sequence. The genetically modified phage attracts gold nanoparticles (AuNPs) to form a cluster of gold nanoparticles (about 70 nanoparticles per phage). The cluster of AuNPs maintains cell-targeting functionality and exhibits excellent dispersion stability in serum. Under a very low light irradiation (60 mW cm(-2)), only targeted AuNP clusters kill the prostate cancer cells in minutes (not in other cell types), whereas neither nontargeted AuNP clusters nor citrate-stabilized AuNPs cause any significant cell death. The result suggests that the prostate cancer cell-targeted clusters of AuNPs are targeted to only prostate cancer cells and, when illuminated, generate local heating to more efficiently and selectively kill the targeted cancer cells. Our strategy can be generalized to target other types of cells and assemble other kinds of nanoparticles for a broad range of applications.

  19. Immunosorbent assay using gold colloid cluster technology for determination of IgEs in patients’ sera

    Directory of Open Access Journals (Sweden)

    Haifa Al-Dubai


    Full Text Available Haifa Al-Dubai1, Irene Lichtscheidl2, Martina Strobl1, Gisela Pittner1, Fritz Pittner11Department of Biochemistry, Max F Perutz Laboratories, University of Vienna, Vienna, Austria; 2Institute of Cell Imaging and Ultrastructure Research, Vienna, AustriaAbstract: This study focuses on the development of a sensitive and simple cluster-linked immunosorbent assay (CLISA using gold colloidal cluster labeling for determination of proteins such as antigens (Ags or antibodies (Abs. Abs for detection can be labeled with gold colloid clusters (GCCs. The Fc domain of the Abs binds to the clusters, and the Fab domain to the Ag on a nitrocellulose membrane or a microtiter plate as a support for dot-blotting. The signal of positive interaction between GCC-labeled Abs and its dotted Ag is detectable by the naked eye and can be quantified by comparison to a color scale prepared from a dilution series of known sample concentrations. The colored reaction product is stable for prolonged periods and does not fade, making this method a simple, fast, and convenient means for detection of Ag or Ab biorecognitions and an alternative to enzyme-linked immunosorbent assay. Several interactions between different Ags or Abs (eg, ß-lactoglobulin and solutions avoiding gold colloidal cluster flocculation (eg, using protein G were studied. CLISA was tested for other analytical purposes such as detection of IgEs in patients’ sera.Keywords: ELISA, allergen, patient sera, CLISA, immunoassay, ß-lactoglobulin

  20. Role of cluster size and substrate in the gas phase CC bond coupling reactions of allyl halides mediated by Agn+ and Agn-1H+ cluster cations (United States)

    Wang, Farrah Qiuyun; Khairallah, George N.; O'Hair, Richard A. J.


    Previous studies have demonstrated that the silver hydride cluster cation Ag4H+ promotes CC bond coupling of allylbromide [G.N. Khairallah, R.A.J. O'Hair, Angewandte Chemie International Edition 44 (2005) 728]. Here the influence of both the nature and the size of the silver cluster cation and the substrate on CC bond coupling are examined. Thus each of the cations Ag2H+, Ag4H+, Ag3+, and Ag5+ were allowed to react with three different halides: allyl chloride, allyl bromide and allyl iodide. No CC bond coupling is observed in the reactions of the cluster cations with allyl chloride. There are four main reaction sequences that result in CC bond coupling for allyl bromide and allyl iodide mediated by Agn+ and Agn-1H+ clusters: (i) A sequence involving the reactions of silver cluster cations with two molecules of C3H5X: Agn+ --> Agn(C3H5X)+ --> AgnX2+. This only occurs in the cases of: n = 3 and X = I; n = 5 and X = Br. (ii) A sequence involving the reactions of silver cluster cations with two molecules of C3H5X via an organometallic intermediate: Agn+ --> Agn-1(C3H5)+ --> Agn-1X+. This only occurs in the cases of: n = 5 and X = Br and I. (iii) A sequence involving the reactions of silver hydride cluster cations with three molecules of C3H5X: Agn-1H+ --> Agn-1X+ --> Agn-1X(C3H5X)+ --> Ag(C3H5)2+ and Agn-1X3+. This only occurs in the cases of: n = 5 and X = Br and I. (iv) A sequence involving the reactions of silver hydride cluster cations with three molecules of C3H5X via an organometallic intermediate: Agn-1H+ --> Agn-1X+ --> Agn-3(C3H5)+ --> Ag(C3H5)2+ and Agn-3X+. This only occurs in the cases of: n = 5 and X = I.

  1. Synthesis of cationic hyperbranched multiarm copolymer and its application in self-reducing and stabilizing gold nanoparticles

    Institute of Scientific and Technical Information of China (English)


    A novel hyperbranched multiarm copolymer of HBPO-star-PDEAEMA with a hydrophobic poly(3-ethyl-3-(hydroxymethyl) oxetane)(HBPO) core and many cationic poly(2-(N,N-diethylamino) ethyl methacrylate)(PDEAEMA) arms has been synthesized through an atom transfer radical polymerization(ATRP) method,and been applied to spontaneously reduce and stabilize gold nanoparticles(AuNPs) in water without other additional agents.The size of the nanoparticles could be effectively controlled at about 4 nm,and the nanoparticles are extremely stable in solution without aggregation even for one year.It was found that solution pH and the molar ratio of N/Au have certain effects on the size and stability of AuNPs.This work provides a simple method for the synthesis of uniform and highly stable AuNPs.

  2. Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Marquez, Miguel A., E-mail:; Guerrero, Estefania; Fernandez, Asuncion [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) (Spain); Crespo, Patricia; Hernando, Antonio [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC) (Spain); Lucena, Raquel; Conesa, Jose C. [Instituto de Catalisis y Petroleoquimica (CSIC) (Spain)


    Magnetometry results have shown that gold NPs ({approx}2 nm in size) protected with phosphine and chlorine ligands exhibit permanent magnetism. When the NPs size decreases down to the subnanometric size range, e.g. undecagold atom clusters, the permanent magnetism disappears. The near edge structure of the X-ray absorption spectroscopy data points out that charge transfer between gold and the capping system occurs in both cases. These results strongly suggest that nearly metallic Au bonds are also required for the induction of a magnetic response. Electron paramagnetic resonance observations indicate that the contribution to magnetism from eventual iron impurities can be disregarded.

  3. Geometries, stabilities, and electronic properties of Be-doped gold clusters: a density functional theory study

    Institute of Scientific and Technical Information of China (English)

    Chen Dong-Dong; Kuang Xiao-Yu; Zhao Ya-Ru; Shao Peng; Li Yan-Fang


    We have systematically investigated the geometrical structures, relative stabilities and electronic properties of small bimetallic AunBe (n = 1, 2, ..., 8) clusters using a density functional method at BP86 level. The optimized geometries reveal that the impurity beryllium atom dramatically affects the structures of the Aun clusters. The averaged binding energies, fragmentation energies, second-order difference of energies, the highest occupied-lowest unoccupied molecular orbital energy gaps and chemical hardness are investigated. All of them exhibit a pronounced odd-even alternation,manifesting that the clusters with even number of gold atoms possess relatively higher stabilities. Especially, the linear Au2Be cluster is magic cluster with the most stable chemical stability. According to the natural population analysis, it is found that charge-transferring direction between Au atom and Be atom changes at the size of n = 4.

  4. First principle study of the interaction of elemental Hg with small neutral, anionic and cationic Pd ( = 1-6) clusters

    Indian Academy of Sciences (India)

    Shamoon Ahmad Siddiqui; Nadir Bouarissa


    Density functional theory (DFT)-based calculations have been performed so as to study the interaction of elemental mercury (Hg) with small neutral, cationic and anionic palladium clusters (Pd, = 1-6). Results of these calculations clearly indicate that frontier molecular orbital (FMO) theory is a useful method to predict the selectivity of Hg adsorption. Binding energies of Hg on cationic Pd clusters are generally found to be greater than those on neutral and anionic clusters. Results of natural bond orbital (NBO) analysis show that the flow of electrons in the neutral and charged complexes is mainly due to s orbitals of Hg. NBO analysis also indicates that, in most of the cases, the binding energies of Hg with Pdn clusters are directly proportional to charge transfer, i.e., greater the charge transfer, higher is the binding energy.

  5. Cationic gold(I) heteroleptic complexes bearing a pyrazole-derived N-heterocyclic carbene: syntheses, characterizations, and cytotoxic activities. (United States)

    Sivaram, Haresh; Tan, Jackie; Huynh, Han Vinh


    A series of cationic gold(I) heteroleptic complexes bearing the pyrazole-derived N-heterocyclic carbene (NHC) FPyr (1,2,3,4,6,7,8,9-octahydropyridazino[1,2-a]indazolin-11-ylidene), and either a 1,3-disubstituted benzimidazole-derived NHC of the type RR'-bimy (3: R = R' = CHPh2; 4: R = CHPh2, R' = (i)Pr; 5: R = R' = CH2Ph; 6: R = R' = (i)Bu; 7: R = R' = n-Pr; 8: R = R' = Et; 9: R = R' = 2-propenyl) or a non-NHC co-ligand L (10: L = PPh3; 11: L = P(OPh)3; 12: L = DMAP) (DMAP = 4-dimethylaminopyridine) have been synthesized from [AuCl(FPyr)] (1). Complexes 3-12 have been characterized using multinuclei NMR spectroscopies, ESI mass spectrometry, and elemental analysis. X-ray diffraction analyses have been performed on complexes 5, 6, and 9-11. To the best of our knowledge, 11 represents the first gold-NHC complex to bear the P(OPh)3 ligand. The cytotoxic activities of complexes 3-12 have been studied in vitro with the NCI-H1666 non-small cell lung cancer cell line.

  6. Phosphane-stabilized gold clusters: investigation of the stability of [Au(13)(PMe (2)Ph) (10)Cl (2)] (3+). (United States)

    Li, Jia; Wang, Shu-Guang


    The phosphane-stabilized gold cluster [Au(13)(PMe(2)Ph)(10)Cl(2)](3+) was studied using density functional theory. The extraordinary stability of the cluster has been attributed to the stability of the gold core and the protection conferred by ligands. Here, five stability factors of the gold core were explained and verified by investigating the Au (13) (5+) core in detail. Interactions between the gold core and several PR(3) ligands (R = Me, H, I, Br, Cl, F) were investigated according to the different electron donor abilities of each ligand; bonding energy between the ligand and the gold core was found to increase with the electronegativity of the R substituent. Furthermore, two other aspects of the ligands were clarified: how the ligand stabilizes the Au (13) (5+) core, and which kind of ligand provides the best stabilization for the cluster.

  7. New data on the age of gold mineralization of the Lugokan ore cluster (Eastern Transbaikalia) (United States)

    Redin, Yu. O.; Dultsev, V. F.; Nevolko, P. A.; Ponomarchuk, A. V.


    The Lugokan ore cluster is located in the southeastern part of Transbaikalia within the Aga-Borzya structural-formational zone of the Mongol-Okhotsk orogenic belt. The 40Ar/39Ar dating of K-bearing minerals of syngenetic to ore parageneses has been carried out applying stepwise heating technique: it has been demonstrated that the earliest gold-ore mineral associations are Au-pyrite-arsenopyrite (163 ±1.9 Ma) and Au-chalcopyrite (160 ±2 Ma). The later parageneses encompass the Au-polymetallic (156.3 ± 1.8 Ma) and Au-Bi (155.9 ± 4.5 Ma) one. By their ages and position in the general scheme of the Late Jurassic magmatism of Eastern Transbaikalia, the Lugokan's ore cluster gold-bearing mineral associations corresponds to the time of intrusion of the Shakhtama pluton (161 Ma) and the Porphyry Complex (159-155 Ma).

  8. Facile Attachment of TAT Peptide on Gold Monolayer Protected Clusters: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Ndabenhle M. Sosibo


    Full Text Available High affinity thiolate-based polymeric capping ligands are known to impart stability onto nanosized gold nanoparticles. Due to the stable gold-sulfur bond, the ligand forms a protective layer around the gold core and subsequently controls the physicochemical properties of the resultant nanogold mononuclear protected clusters (AuMPCs. The choice of ligands to use as surfactants for AuMPCs largely depends on the desired degree of hydrophilicity and biocompatibility of the MPCs, normally dictated by the intended application. Subsequent surface modification of AuMPCs allows further conjugation of additional biomolecules yielding bilayer or multilayered clusters suitable for bioanalytical applications ranging from targeted drug delivery to diagnostics. In this study, we discuss our recent laboratory findings on a simple route for the introduction of Trans-Activator of Transcription (TAT peptide onto the surface of biotin-derivatised gold MPCs via the biotin-strepavidin interaction. By changing the surface loading of biotin, controlled amounts of TAT could be attached. This bioconjugate system is very attractive as a carrier in intercellular delivery of various delivery cargoes such as antibodies, proteins and oligonucleotides.

  9. Optical Imaging of Cells with Gold Nanoparticle Clusters as Light Scattering Contrast Agents

    DEFF Research Database (Denmark)

    Tanev, Stoyan


    developments in advanced cytometry research by pointing out potential new research directions. A brief description of the FDTD method focusing on the features associated with its application to modeling of light scattering and OPCM cell imaging experiments is provided. The examples include light scattering...... from OPCM imaging of single biological cells in conditions of controlled refractive index matching (RIM) and labeling by diffused and clustered gold NPs. The chapter concludes with a discussion and suggestions for future research....

  10. Thiophenol and thiophenol radical and their complexes with gold clusters Au 5 and Au 6 (United States)

    Remacle, F.; Kryachko, E. S.


    The longstanding controversy between experiment and theory regarding which conformer of thiophenol, planar or perpendicular, is the most stable and what is the magnitude of the corresponding rotational barrier of the S-H group is discussed. We propose a variety of rather modest high-level computational methods within the density theory, which corroborate the experimental data. These methods demonstrate that the planar structure of thiophenol is the most stable and the magnitude of the rotational barrier falls within the experimental range of 3.35±0.84 kJ mol -1. However, the barrier is of the order of RT at room temperature, which might prevent to clearly identify the most stable conformer of thiophenol in experiments and leads to a large-amplitude motion of the thiolic hydrogen. On the other hand, such low value of the barrier may lead to some error in evaluating the thermodynamic properties of thiophenol within the rigid-rotor-harmonic oscillator model, in particular for the bond dissociation enthalpy. We also show the existence of a large entropy contribution to the Gibbs free energy difference between the planar and perpendicular conformers which is the order of the rotational barrier (≈4 kJ mol -1). This might be of interest for experimental study. The most stable complexes of thiophenol with the gold clusters Au 5 and Au 6 are also investigated. It is shown that the sulfur atom prefers to anchor to two- and three-coordinated atoms of gold in these clusters to form a strongly directional gold-sulfur bond. The hydrogen abstraction from the S-H group of thiophenol bonded to the two-coordinated gold atom in Au 5 yields the bridging Au-S dibond and results in a spectacular reduction of the bond dissociation energy of thiophenol by nearly a factor of three.

  11. Cation-interlinking network cluster approach in application to extended defects in covalent-bonded glassy semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, Oleh [Lviv Institute of Materials of SRC, Lviv (Ukraine); Institute of Physics, Jan Dlugosz University, Czestochowa (Poland); Boyko, Vitaliy [Lviv Institute of Materials of SRC, Lviv (Ukraine); Lviv Polytechnic National University (Ukraine); Hyla, Malgorzata [Institute of Physics, Jan Dlugosz University, Czestochowa (Poland)


    A principally new cation-interlinking network cluster approach (CINCA) was proposed to describe different types of glass-forming structural units in network covalent-bonded solids like to chalcogenide vitreous semiconductors. Within this approach, two (or three) interconnected cation-centered polyhedra form more stretched structural fragments conditionally named atomic clusters, reflecting in such a way whole backbone of covalent-bonded semiconductor multiply duplicated in a space. The probability of possible atomic clusters is estimated with numerical parameter giving average formation energy in respect to the number of atoms involved in the cluster and average coordination number. This approach was probed at the example of regular network clusters based on AsS{sub 3/2} pyramids mutually-interconnected through bridge -S- atom contrasted with irregular double-bond-based quasi-tetrahedral structural S=AsS{sub 3} defects within binary As-S system. The corresponding mathematical calculations confirming a preference of regularly-linked structural units over irregular ones was performed using HyperChem 7.5 program. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Large clusters of gold deposits and large-scale metallogene-sis in the Jiaodong Peninsula, Eastern China

    Institute of Scientific and Technical Information of China (English)


    The Jiaodong Peninsula is the largest repository of gold in China based on the production in history. It covers less than 0.2% of China's territory, but production of gold accounts for about one fourth of the whole country. Thus, the Jiaodong Peninsula is a typical area or case of large-scale metallogenesis and a large clusters of mineral deposits in China. It is characterized by the large clusters of gold deposits in large scale, high reserve and short mineralizing stage. In this study, we suggest that the eastern boundary of the large clusters of gold deposits is as same as that of North China Block, the gold deposits are hosted by Archean metamorphic rocks or Mesozoic granites, and the age of gold mineralization is 121.6 to 122.7 Ma. Gold and related ore-forming materials are derived from multisources, i.e. Archean metamorphic rocks, granites and intermediate-mafic dikes, especially, intermediate-mafic dikes and calc-alkaline granites. The metallogenic geodynamic process is constrained by the tectonic evolution of eastern North China Block during Late Mesozoic, and it is the result of the interaction between mantle and crust as the boundary plates are playing role on the block.

  13. In situ investigation of the mobility of small gold clusters on cleaved MgO surfaces (United States)

    Metois, J. J.; Heinemann, K.; Poppa, H.


    The mobility of small clusters of gold (about 10 A in diameter) on electron-beam-cleaved MgO surfaces was studied by in situ transmission electron microscopy under controlled vacuum and temperature conditions. During the first 10 min following a deposition at room temperature, over 10 per cent of the crystallites moved over short distances (about 20 A) discontinuously, with a velocity greater than 150 A/sec. Eighty per cent of the mobility events were characterized by the avoidance of proximity of other crystallites, and this was tentatively explained as the result of repulsive elastic forces between the interacting crystallites.

  14. Theoretical studies of the interactions of ethylene and formaldehyde with gold clusters. (United States)

    Kang, Guo-Jun; Chen, Zhao-Xu; Li, Zhe


    We studied the adsorption of C(2)H(4) and CH(2)O on the gold clusters Au(n) (n = 1-5) in various adsorption modes using density functional theory PW91 functional. We found that the binding energies of pi-C(2)H(4) and pi and O-sigma modes of CH(2)O increase first and then decrease with the cluster size. Natural bonding orbital (NBO) analyses reveal that the donor-acceptor interaction plays an important role in these adsorption complexes and there is a nice linear relationship between the calculated binding energy and the stabilization energy estimated with second-order perturbation theory in the framework of NBO analysis. It is demonstrated that the bonding interaction between adsorbates and clusters follows the di-sigma > pi > O-sigma mode. However, due to adsorption induced structural deformation of adsorbates and clusters, the binding energies of different adsorption modes are comparable. It is shown that C(2)H(4) interacts more strongly with the clusters than CH(2)O does and that the previously assigned adsorption mode of C(2)H(4) on Au/MgO may not be the pi modes, but the C-sigma configuration.

  15. AunHgm Clusters: Mercury Aurides, Gold Amalgams, or van der Waals Aggregates? (United States)

    Zaleski-Ejgierd, Patryk; Pyykkö, Pekka


    The class of bimetallic clusters, AunMm (M = Zn, Cd, Hg), is calculated at the ab initio level using the DFT, RI-MP2, and CCSD(T) methods. For the triatomic Au2M (M = Zn, Cd), the auride-type linear Au-M-Au structures are preferred; for Au2Hg, the linear Au-Au-Hg "amalgam" is preferred. The mixed cation [HgAuHg]+, an analog of the known solid-state species Hg32+, is predicted. For larger AunHgm clusters, the results are similar to the isoelectronic AunM- anions. Several local minima and transition states are identified. All are found to be planar.

  16. Asymmetric partitioning of metals among cluster anions and cations generated via laser ablation of mixed aluminum/Group 6 transition metal targets. (United States)

    Waller, Sarah E; Mann, Jennifer E; Jarrold, Caroline Chick


    While high-power laser ablation of metal alloys indiscriminately produces gas-phase atomic ions in proportion to the abundance of the various metals in the alloy, gas-phase ions produced by moderate-power laser ablation sources coupled with molecular beams are formed by more complicated mechanisms. A mass spectrometric study that directly compares the mass distributions of cluster anions and cations generated from laser ablation of pure aluminum, an aluminum/molybdenum mixed target, and an aluminum/tungsten mixed target is detailed. Mass spectra of anionic species generated from the mixed targets showed that both tungsten and molybdenum were in higher abundance in the negatively charged species than in the target material. Mass spectra of the cationic species showed primarily Al(+) and aluminum oxide and hydroxide cluster cations. No molybdenum- or tungsten-containing cluster cations were definitively assigned. The asymmetric distribution of aluminum and Group 6 transition metals in cation and anion cluster composition is attributed to the low ionization energy of atomic aluminum and aluminum suboxide clusters. In addition, the propensity of both molybdenum and tungsten to form metal oxide cluster anions under the same conditions that favor metallic aluminum cluster anions is attributed to differences in the optical properties of the surface oxide that is present in the metal powders used to prepare the ablation targets. Mechanisms of mixed metal oxide clusters are considered.

  17. Structurally Well-Defined Sigmoidal Gold Clusters: Probing the Correlation between Metal Atom Arrangement and Chiroptical Response. (United States)

    He, Xin; Wang, Yuechao; Jiang, Hong; Zhao, Liang


    Asymmetric arrangement of metal atoms is crucial for understanding the chirality origin of chiral metal nanoclusters and facilitating the design and development of new chiral catalysts and chiroptical devices. Here, we describe the construction of four asymmetric gold and gold-silver clusters by chirality transfer from diimido ligands. The acquired metal clusters show strong circular dichroism (CD) response with large anisotropy factors of up to 6 × 10(-3), larger than the values of most reported chiral gold nanoclusters. Regardless of the same absolute configuration of the applied three diimido ligands, sigmoidal and reverse-sigmoidal arrangements of gold atoms both can be achieved, which resultantly produce an opposite Cotton effect within a specific absorption range. On the basis of the detailed structural characterization via X-ray crystallography and contrast experiments, the chirality contribution of the imido ligand, the asymmetrically arranged metal cluster, and the chiral arrangement of aromatic rings of phosphine ligands have been qualitatively evaluated. Time-dependent DFT calculations reveal that the chiroptical property of the acquired metal clusters is mainly influenced by the asymmetrically arranged metal atoms. Correlation of asymmetric arrangements of metal atoms in clusters with their chiroptical response provides a viable means of fabricating a designable chiral surface of metal nanoclusters and opens a broader prospect for chiral cluster application.

  18. Laser fabrication of gold nanoparticle clustered tips for use in apertureless near-field scanning optical microscopy. (United States)

    Park, Kyoung-Duck; Park, Jung Su; Park, Jin-Ho; Ahn, Tae Kyu; Lee, Young Hee; Jeong, Mun Seok


    A laser fabrication method was developed to make gold nanoparticle clustered (GNC) tips for apertureless near-field scanning optical microscopes (ANSOMs) and tip-enhanced Raman spectroscopy (TERS). The near-field Rayleigh and Raman scattering of samples are highly enhanced when a gold nanoparticle cluster is synthesized on the end of the tip. This is due to the lightning rod effect in the sharp tips. The localized electromagnetic field enhancement and the spatial resolution (~30 nm) of the fabricated GNC tip were verified by TERS and ANSOM measurements of carbon nanotubes.

  19. Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances. (United States)

    Muhammed, Madathumpady Abubaker Habeeb; Döblinger, Markus; Rodríguez-Fernández, Jessica


    Exerting control over the near-infrared (NIR) plasmonic response of nanosized metals and semiconductors can facilitate access to unexplored phenomena and applications. Here we combine electrostatic self-assembly and Cd(2+)/Cu(+) cation exchange to obtain an anisotropic core-shell nanoparticle cluster (NPC) whose optical properties stem from two dissimilar plasmonic materials: a gold nanorod (AuNR) core and a copper selenide (Cu(2-x)Se, x ≥ 0) supraparticle shell. The spectral response of the AuNR@Cu2Se NPCs is governed by the transverse and longitudinal plasmon bands (LPB) of the anisotropic metallic core, since the Cu2Se shell is nonplasmonic. Under aerobic conditions the shell undergoes vacancy doping (x > 0), leading to the plasmon-rich NIR spectrum of the AuNR@Cu(2-x)Se NPCs. For low vacancy doping levels the NIR optical properties of the dually plasmonic NPCs are determined by the LPBs of the semiconductor shell (along its major longitudinal axis) and of the metal core. Conversely, for high vacancy doping levels their NIR optical response is dominated by the two most intense plasmon modes from the shell: the transverse (along the shortest transversal axis) and longitudinal (along the major longitudinal axis) modes. The optical properties of the NPCs can be reversibly switched back to a purely metallic plasmonic character upon reversible conversion of AuNR@Cu(2-x)Se into AuNR@Cu2Se. Such well-defined nanosized colloidal assemblies feature the unique ability of holding an all-metallic, a metallic/semiconductor, or an all-semiconductor plasmonic response in the NIR. Therefore, they can serve as an ideal platform to evaluate the crosstalk between plasmonic metals and plasmonic semiconductors at the nanoscale. Furthermore, their versatility to display plasmon modes in the first, second, or both NIR windows is particularly advantageous for bioapplications, especially considering their strong absorbing and near-field enhancing properties.

  20. Carbon nanotubes randomly decorated with gold clusters: from nano{sup 2}hybrid atomic structures to gas sensing prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Charlier, J-C; Zanolli, Z [Unite de Physico-Chimie et de Physique des Materiaux (PCPM), European Theoretical Spectroscopy Facility (ETSF), Universite Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve (Belgium); Arnaud, L; Avilov, I V; Felten, A; Pireaux, J-J [Centre de Recherche en Physique de la Matiere et du Rayonnement (PMR-LISE), Facultes Universitaires Notre-Dame de la Paix, 61 Rue de Bruxelles, B-5000 Namur (Belgium); Delgado, M [Sensotran, s.l., Avenida Remolar 31, E-08820 El Prat de Llobregat, Barcelona (Spain); Demoisson, F; Reniers, F [Service de Chimie Analytique et Chimie des Interfaces (CHANI), Universite Libre de Bruxelles, Faculte des Sciences, CP255, Boulevard du Triomphe 2, B-1050 Bruxelles (Belgium); Espinosa, E H; Ionescu, R; Leghrib, R; Llobet, E [Department of Electronic Engineering, Universitat Rovira i Virgili, Avenida Paisos Catalans 26, E-43007 Tarragona (Spain); Ewels, C P; Suarez-Martinez, I [Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes, 2 rue de la Houssiniere-BP 32229, F-44322 Nantes Cedex 3 (France); Guillot, J; Mansour, A; Migeon, H-N [Departement Science et Analyse des Materiaux, Centre de Recherche Public-Gabriel Lippmann, rue du Brill 41, L-4422 Belvaux (Luxembourg); Watson, G E, E-mail: [Vega Science Trust, Unit 118, Science Park SQ, Brighton, BN1 9SB (United Kingdom)


    Carbon nanotube surfaces, activated and randomly decorated with metal nanoclusters, have been studied in uniquely combined theoretical and experimental approaches as prototypes for molecular recognition. The key concept is to shape metallic clusters that donate or accept a fractional charge upon adsorption of a target molecule, and modify the electron transport in the nanotube. The present work focuses on a simple system, carbon nanotubes with gold clusters. The nature of the gold-nanotube interaction is studied using first-principles techniques. The numerical simulations predict the binding and diffusion energies of gold atoms at the tube surface, including realistic atomic models for defects potentially present at the nanotube surface. The atomic structure of the gold nanoclusters and their effect on the intrinsic electronic quantum transport properties of the nanotube are also predicted. Experimentally, multi-wall CNTs are decorated with gold clusters using (1) vacuum evaporation, after activation with an RF oxygen plasma and (2) colloid solution injected into an RF atmospheric plasma; the hybrid systems are accurately characterized using XPS and TEM techniques. The response of gas sensors based on these nano{sup 2}hybrids is quantified for the detection of toxic species like NO{sub 2}, CO, C{sub 2}H{sub 5}OH and C{sub 2}H{sub 4}.

  1. Gold/Iron Carbonyl Clusters for Tailored Au/FeOx Supported Catalysts

    Directory of Open Access Journals (Sweden)

    Stefania Albonetti


    Full Text Available A novel preparation method was developed for the preparation of gold/iron oxide supported catalysts using the bimetallic carbonyl cluster salts [NEt4]4[Au4Fe4(CO16] and [NEt4][AuFe4(CO16] as precursors of highly dispersed nanoparticles over different supports. A series of catalysts with different metal loadings were prepared and tested in the complete oxidation of dichlorobenzene, toluene, methanol and in the preferential oxidation of CO in the presence of H2 (PROX as model reactions. The characterization by BET, XRD, TEM, H2-TPR, ICP-AES and XPS point out the way the nature of the precursors and the thermal treatment conditions affected the dispersion of the active phase and their catalytic activity in the studied reactions.

  2. Stable oligomeric clusters of gold nanoparticles: preparation, size distribution, derivatization, and physical and biological properties. (United States)

    Smithies, Oliver; Lawrence, Marlon; Testen, Anze; Horne, Lloyd P; Wilder, Jennifer; Altenburg, Michael; Bleasdale, Ben; Maeda, Nobuyo; Koklic, Tilen


    Reducing dilute aqueous HAuCl4 with NaSCN under alkaline conditions produces 2-3 nm diameter yellow nanoparticles without the addition of extraneous capping agents. We here describe two very simple methods for producing highly stable oligomeric grape-like clusters (oligoclusters) of these small nanoparticles. The oligoclusters have well-controlled diameters ranging from ∼5 to ∼30 nm, depending mainly on the number of subunits in the cluster. Our first ["delay-time"] method controls the size of the oligoclusters by varying from seconds to hours the delay time between making the HAuCl4 alkaline and adding the reducing agent, NaSCN. Our second ["add-on"] method controls size by using yellow nanoparticles as seeds onto which varying amounts of gold derived from "hydroxylated gold", Na(+)[Au(OH4-x)Clx](-), are added-on catalytically in the presence of NaSCN. Possible reaction mechanisms and a simple kinetic model fitting the data are discussed. The crude oligocluster preparations have narrow size distributions, and for most purposes do not require fractionation. The oligoclusters do not aggregate after ∼300-fold centrifugal-filter concentration, and at this high concentration are easily derivatized with a variety of thiol-containing reagents. This allows rare or expensive derivatizing reagents to be used economically. Unlike conventional glutathione-capped nanoparticles of comparable gold content, large oligoclusters derivatized with glutathione do not aggregate at high concentrations in phosphate-buffered saline (PBS) or in the circulation when injected into mice. Mice receiving them intravenously show no visible signs of distress. Their sizes can be made small enough to allow their excretion in the urine or large enough to prevent them from crossing capillary basement membranes. They are directly visible in electron micrographs without enhancement, and can model the biological fate of protein-like macromolecules with controlled sizes and charges. The ease of

  3. Gold Cluster Diffusion Kinetics on Stoichiometric and Reduced Surfaces of Rutile TiO 2 (110)

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Nir; Browning, Nigel D.


    Gold clusters on rutile TiO2 are known to serve as efficient oxidation catalysts for pollutants and environmental contaminants. However, the mechanism by which highly mobile small clusters migrate and aggregate into larger species relevant to gold’s catalytic activity remains unresolved. We report herein on ab initio simulations of the diffusion of atomic gold clusters up to the trimer on rutile TiO2(110) surfaces. We show that, on the stoichiometric surface, both the dimer and the trimer can exhibit relatively low surface mobility due to high energetic barriers for diffusion out of their energetic minima coupled with low barriers for the reverse motion. On the reduced surface, these clusters can diffuse relatively quickly between energetic minima within the oxygen vacancy site due to the large degree of vibrational entropy in their transition states. Our computed diffusion times provide a point of comparison for future experiments and will aid in development of models of gold cluster island sintering.

  4. Thorium and uranium carbide cluster cations in the gas phase: similarities and differences between thorium and uranium. (United States)

    Pereira, Cláudia C L; Maurice, Rémi; Lucena, Ana F; Hu, Shuxian; Gonçalves, António P; Marçalo, Joaquim; Gibson, John K; Andrews, Lester; Gagliardi, Laura


    Laser ionization of AnC4 alloys (An = Th, U) yielded gas-phase molecular thorium and uranium carbide cluster cations of composition An(m)C(n)(+), with m = 1, n = 2-14, and m = 2, n = 3-18, as detected by Fourier transform ion-cyclotron-resonance mass spectrometry. In the case of thorium, Th(m)C(n)(+) cluster ions with m = 3-13 and n = 5-30 were also produced, with an intriguing high intensity of Th13C(n)(+) cations. The AnC13(+) ions also exhibited an unexpectedly high abundance, in contrast to the gradual decrease in the intensity of other AnC(n)(+) ions with increasing values of n. High abundances of AnC2(+) and AnC4(+) ions are consistent with enhanced stability due to strong metal-C2 bonds. Among the most abundant bimetallic ions was Th2C3(+) for thorium; in contrast, U2C4(+) was the most intense bimetallic for uranium, with essentially no U2C3(+) appearing. Density functional theory computations were performed to illuminate this distinction between thorium and uranium. The computational results revealed structural and energetic disparities for the An2C3(+) and An2C4(+) cluster ions, which elucidate the observed differing abundances of the bimetallic carbide ions. Particularly noteworthy is that the Th atoms are essentially equivalent in Th2C3(+), whereas there is a large asymmetry between the U atoms in U2C3(+).

  5. Ion-molecule clustering in differential mobility spectrometry: lessons learned from tetraalkylammonium cations and their isomers. (United States)

    Campbell, J Larry; Zhu, Mabel; Hopkins, W Scott


    Differential mobility spectrometry (DMS) can distinguish ions based upon the differences in their high- and low-field ion mobilities as they experience the asymmetric waveform applied to the DMS cell. These mobilities are known to be influenced by the ions' structure, m/z, and charge distribution (i.e., resonance structures) within the ions themselves, as well as by the gas-phase environment of the DMS cell. While these associations have been developed over time through empirical observations, the exact role of ion structures or their interactions with clustering molecules remains generally unknown. In this study, that relationship is explored by observing the DMS behaviors of a series of tetraalkylammonium ions as a function of their structures and the gas-phase environment of the DMS cell. To support the DMS experiments, the basin-hopping search strategy was employed to identify candidate cluster structures for density functional theory treatment. More than a million cluster structures distributed across 72 different ion-molecule cluster systems were sampled to determine global minimum structures and cluster binding energies. This joint computational and experimental approach suggests that cluster geometry, in particular ion-molecule intermolecular separation, plays a critical role in DMS.

  6. Plasmonic Non-linear Conversion of Continuous Wave Light by Gold Nanoparticle Clusters withFluorescent Protein Loaded Gaps

    CERN Document Server

    Salakhutdinov, Ildar; Abak, Musa Kurtulus; Turkpence, Deniz; Piantanida, Luca; Fruk, Ljiljana; Tasgin, Mehmet Emre; Lazzarino, Marco; Bek, Alpan


    We propose and demonstrate a method which is feasible for deterministic activation of few molecules. Our method relies on non-linear optical excitation of few enhanced yellow fluorescent protein molecules that are sandwiched between gaps of asymmetrically constructed plasmonic gold nanoparticle clusters. We observe that as infrared photons, which cannot get absorbed by fluorescent molecules, are converted through efficient second harmonic generation activity of gold nanoparticles to visible photons, the molecules absorb them and fluoresce. Our numerical simulations demonstrate that observation of SHG with cw laser becomes possible owing to the cooperative action of conversion enhancement through Fano resonance, hybridization in the plasmon absorption spectrum and the size asymmetry of nanoparticle dimers.

  7. Synthesis of gold nano-wire and nano-dumbbell shaped colloids and AuC60 nano-clusters (United States)

    Landon, Preston B.; Jarvis, Brandon C.; Gilleland, Cody L.; Renfro, Tim; Gutierrez, Jose; Synowczynski, Jennifer; Hirsch, Samuel G.; Glosser, Robert


    A technique for the fabrication of colloidal gold nano-wire and nano-dumbbell shaped particles using carbon nanotubes and rod shaped viruses as templates is described. The gold (Au) encapsulation process was accomplished by the precipitation of gold chloride from aqueous solutions. When this process was conducted in the presence of hydroxylated C60, small pieces of phase-separated composites of AuC60 appeared to have formed. These nano-clusters may turn out to be large noble metal analogs of the alkali metal fullerides with the smallest geometrically possible Au aggregate consisting of 55 gold atoms. The existence of noble metal fullerene composites has been previously theorized. The alkali metal fullerides are examples of phase separated solids and have exhibited superconductivity with temperatures as high 33K. The mechanism required for the binding energy between C60 and gold has been observed to exist between C60 and many of the mirror metals (Al, Ag, Au, Cu, Ni). This binding energy is a charge transfer from the metal Fermi level into the C60 LUMO. If this bonding energy, is greater than the metals coagulation energy an Au/C60 size terminated mechanism during the formation of the gold aggregates by the adhesion of C60 to the surface is energetically favorable.

  8. Gas phase synthesis, structure and unimolecular reactivity of silver iodide cluster cations, Ag(n)I(m)(+) (n = 2-5, 0 < m < n). (United States)

    Khairallah, George N; O'Hair, Richard A J


    Multistage mass spectrometry (MS(n)) experiments reveal that gas phase silver iodide cluster cations, Ag(n)I(m)(+), are readily built up in a stepwise fashion via ion-molecule reactions between mass selected silver (Ag(3)(+) and Ag(5)(+)) or silver hydride (Ag(2)H(+) and Ag(4)H(+)) cluster cations and allyl iodide, in contrast to their reactions with methyl iodide, which solely result in ligation of the clusters. The stoichiometries of these clusters range from 1 clusters. Collision induced dissociation (CID) experiments were carried out on each of these clusters to shed some light on their possible structures. The products arising from CID of the Ag(n)I(m)(+) clusters are highly dependent on the stoichiometry of the cluster. Thus the odd-electron clusters Ag(4)I(2)(+) and Ag(5)I(+) fragment via loss of a silver atom. In contrast, the even-electron cluster ions all fragment via loss of AgI. In addition, Ag(2)I(2) loss is observed for the Ag(4)I(3)(+) and Ag(5)I(2)(+) clusters, while loss of Ag(3)I(3) occurs for the stoichiometric Ag(5)I(4)(+) cluster. DFT calculations were carried out on these Ag(n)I(m)(+) clusters as well as the neutrals associated with the ion-molecule and CID reactions. A range of different isomeric structures were calculated and their structures are described. A noteworthy aspect is that ligation of these silver clusters by I can have a profound effect on the geometry of the silver cluster. For example, D(3h) Ag(3)(+) becomes C(2v) Ag(3)I(+), which in turn becomes C(2h) Ag(3)I(2)(+). Finally, the DFT predicted thermochemistry supports the different types of reaction channels observed in the ion-molecule reactions and CID experiments.

  9. Structure and photoabsorption properties of cationic alkali dimers solvated in neon clusters. (United States)

    Zanuttini, D; Douady, J; Jacquet, E; Giglio, E; Gervais, B


    We present a theoretical investigation of the structure and optical absorption of M(2)(+) alkali dimers (M=Li,Na,K) solvated in Ne(n) clusters for n=1 to a few tens Ne atoms. For all these alkali, the lowest-energy isomers are obtained by aggregation of the first Ne atoms at the extremity of the alkali molecule. This particular geometry, common to other M(2)(+)-rare gas clusters, is intimately related to the shape of the electronic density of the X  (2)Σ(g)(+) ground state of the bare M(2)(+) molecules. The structure of the first solvation shell presents equilateral Ne(3) and capped pentagonal Ne(6) motifs, which are characteristic of pure rare gas clusters. The size and geometry of the complete solvation shell depend on the alkali and were obtained at n=22 with a D(4h) symmetry for Li and at n=27 with a D(5h) symmetry for Na. For K, our study suggests that the closure of the first solvation shell occurs well beyond n=36. We show that the atomic arrangement of these clusters has a profound influence on their optical absorption spectrum. In particular, the XΣ transition from the X  (2)Σ(g)(+) ground state to the first excited (2)Σ(u)(+) state is strongly blueshifted in the Frank-Condon area.

  10. Large clusters of gold deposits and large-scale metallogene-sis in the Jiaodong Peninsula, Eastern China

    Institute of Scientific and Technical Information of China (English)

    ZHAI; Mingguo


    Peninsula (in Chinese), Beijing: Seismology Press, 1994, 1-56.[21]Luo, W. C., Wu, Q. S., Dating of the mineralizing age of gold deposits in Jiaodong Peninsula using the alteration minerals, Chinese Science Bulletin (in Chinese), 1987, 32 (16): 1245-1248.[22]Farmer, G. L., DePaolo, D. J., Nd and Sr isotope study of hydrothermally altered granites at San Manud, Arizona: Impli-cations for element migration paths during formation of porphyry copper ore deposits, Economic Geology, 1987, 82: 1142-1151.[23]Qiu, H. N., Peng, L., Chronology of 40Ar/39Ar and Dating of Fluid Inclusions (in Chinese), Hefei: University of Science and Technology of China Press, 1997, 206-223.[24]Yang, J. H., Zhou, X. H., Rb-Sr, Sm-Nd, and Pb isotope systematics of pyrites: Implications for the age and genesis of lode deposits, Geology, 2001 (in press).[25]Chen, G. Y., Shao, W., Sun, D., Genetic Mineralogy of Gold Deposits in Jiaodong Region with Emphasis on Gold Pros-pecting (in Chinese), Chongqing: Chongqing Publishing House, 1989: 1-452.[26]Lüders, V., Ziemann, M., Possibilities and limits of infrared light microthermometry applied to studies of pyrite-hosted fluid inclusions, Chemical Geology, 1999, 154(1-4): 169-178.[27]Yang, J. H., Ma, H. M., Zhou, X. H. et al., Genesis and significance of component zones in pyrites from Penglai gold de-posit, Shandong Province, Scientia Geologica Sinica (in Chinese), 2000, 35(2): 168-174.[28]Guan, K., Luo, Z. K., Miao, L. C. et al., SHRIMP in zircon chronology for Guojialing suite granite in Jiaodong district, Scientia Geologica Sinica (in Chinese), 1998, 33: 318-328.[29]Wang, L. G., Qiu, Y. M., McNaughton, N. J. et al., Constraints on crustal evolution and gold metallogeny in the North-western Jiaodong Peninsula,China,from SHRIMP U-Pb zircon studies of granitoids, Ore Geology Reviews, 1998, 13: 275-291.[30]Yang, J. H., Age and metallogenic dynamics of gold mineralization in Jiaodong Peninsula, eastern

  11. Gold conjugate-based liposomes with hybrid cluster bomb structure for liver cancer therapy. (United States)

    Zhang, Ning; Chen, Huan; Liu, Ai-Yun; Shen, Jia-Jia; Shah, Vishva; Zhang, Can; Hong, Jin; Ding, Ya


    Hybrid drug delivery system containing both organic and inorganic nanocarriers is expected to achieve its complementary advantages for the aim of improving the performance of antineoplastic drugs in tumor therapy. Here we report the use of liposomes and gold nanoparticles to construct a liposome with a hybrid Cluster Bomb structure and discuss its unique multi-order drug release property for liver tumor treatment. A very simple method is used for the hybrid liposome preparation and involves mixing two solutions containing liposomes loaded with either non-covalent or covalent Paclitaxel (PTX, namely free PTX or PTX-conjugated GNPs, respectively) by different ratio of volume (25:75, 50:50, 25:75, v/v). Various mixed liposomes were tested to determine the optimal conditions for maximum drug delivery. The optimized liposome was then tested using xenograft Heps tumor-bearing mice and showed the best efficacy for chemotherapeutic inhibition of tumor at PTX liposome: PTX-conjugated GNP liposome of 25:75 ratio (v/v). This system allows for simple and easy preparation while providing a more accurate site- and time-release mode for tumor treatment using antitumor drugs.

  12. Interactions of small gold clusters, Aun (n=1-3), with graphyne: theoretical investigation. (United States)

    Azizi, Elmira; Tehrani, Zahra Aliakbar; Jamshidi, Zahra


    The interactions of gold atom and clusters (Au2 and Au3) with the active sites of graphyne (GY) have been investigated using density functional theory (PBE, PBE-D3, and B3LYP-D3). In order to compare performance of DFT functional (BP86, PBE, TPSSh, B3LYP, PBE-D3, TPSSh-D3, and B3LYP-D3), the interactions of Au2 with various functional groups such as -sp, -sp(2) and aromatic sp(2) carbon atoms, -sp, -sp(2) and aromatic sp(2)-bonds have been investigated and also compared with the ab initio MP2 results. Additionally, the nature of interactions for graphyne-Au2 complexes are interpreted by means of the natural bond orbital (NBO), the quantum theory of atoms in molecules (QTAIM) and energy decomposition analysis (EDA) and compared with those of related graphene-Au2. This study suggests that graphyne shows complex behavior in comparison to those of graphene and could also be useful in modeling of the next generation electronic devices.

  13. Theoretical design of a novel copper doped gold cluster supported on graphene utilizing ab initio molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Kenichi; Nobusada, Katsuyuki [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan); Boero, Mauro [Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504, University of Strasbourg and CNRS, 23 rue du Loess, F-67034 Strasbourg (France)


    Ab initio molecular dynamics simulations have been used to inspect the adsorption of O{sub 2} to a small gold-copper alloy cluster supported on graphene. The exposed Cu atom in this cluster acts as a crucial attractive site for the approaching of O{sub 2} and consequently widens the reaction channel for the adsorption process. Conversely, a pure Au cluster on the same graphene support is inactive for the O{sub 2} adsorption because the corresponding reaction channel for the adsorption is very narrow. These results clearly indicate that doping a different metal to the Au cluster is a way to enhance the oxygen adsorption and to promote catalytic reactions.

  14. Fine-tuned h-ferritin nanocage with multiple gold clusters as near-infrared kidney specific targeting nanoprobe. (United States)

    Sun, Cuiji; Yuan, Yi; Xu, Zhonghe; Ji, Tianjiao; Tian, Yanhua; Wu, Shan; Lei, Jianlin; Li, Jingyuan; Gao, Ning; Nie, Guangjun


    When stabilized and functionalized by biomolecules, noble metal (such as gold and silver) cluster-based hybrid nanocomposites have shown great promise for biomedical applications, due to their unique physiochemical properties originating from the inorganic elements and specific functionality and biocompatibility from their biological components. Although certain promise for bioimaging, biosensing, and biomimetic catalysis has been demonstrated, it is still a great challenge to integrate the defined functionality of the biomolecules with enhanced or novel physiochemical properties of the metal clusters, under control at the molecular level. Herein, based on molecular dynamics simulation of a gold (Au) cluster assembly, we designed near-infrared (NIR) fluorescent hybrid nanocomposites with multiple Au clusters within an apo H-ferritin (HFt) nanocage. The fluorescence quantum yield of near-infrared (NIR) Au-HFt is about 63.4% and the emission peak is 810 nm. The NIR Au-HFt is one of the first native protein-guided Au cluster-based nanomaterials for in vivo biowindow imaging. In vivo fluorescent imaging and quantification of Au element confirmed that Au-HFt not only retained the kidney targeting properties of HFt well (about 10 times higher Au concentration in kidney than in liver and spleen, the most common organs for nanoparticle accumulation), but also gained strong NIR imaging capability for live animals. The NIR Au-HFt showed powerful tissue penetrating ability, strong fluorescent efficiency, and excellent kidney targeting specificity. These results thus open new opportunities for kidney disease imaging and theranostic applications.

  15. Probing the Structures and Electronic Properties of Dual-Phosphorus-Doped Gold Cluster Anions (AunP-2, n = 1–8): A Density functional Theory Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kang-Ming; Huang, Teng; Liu, Yi-Rong; Jiang, Shuai; Zhang, Yang; Lv, Yu-Zhou; Gai, Yan-Bo; Huang, Wei


    The geometries of gold clusters doped with two phosphorus atoms, (AunP-2, n = 1–8) were investigated using density functional theory (DFT) methods. Various two-dimensional (2D) and three-dimensional (3D) structures of the doped clusters were studied. The results indicate that the structures of dual-phosphorus-doped gold clusters exhibit large differences from those of pure gold clusters with small cluster sizes. In our study, as for Au6P-2, two cis–trans isomers were found. The global minimum of Au8P-2 presents a similar configuration to that of Au-20, a pyramid-shaped unit, and the potential novel optical and catalytic properties of this structure warrant further attention. The higher stability of AunP-2 clusters relative to Au-n+2 (n = 1–8) clusters was verified based on various energy parameters, and the results indicate that the phosphorus atom can improve the stabilities of the gold clusters. We then explored the evolutionary path of (n = 1–8) clusters. We found that AunP-2 clusters exhibit the 2D–3D structural transition at n = 6, which is much clearer and faster than that of pure gold clusters and single-phosphorus-doped clusters. The electronic properties of AunP-2 (n = 1–8) were then investigated. The photoelectron spectra provide additional fundamental information on the structures and molecular orbitals shed light on the evolution of AunP-2 (n = 1–8). Natural bond orbital (NBO) described the charge distribution in stabilizing structures and revealed the strong relativistic effects of the gold atoms.

  16. Relativistic Coupled Cluster Calculations with Variational Quantum Electrodynamics Resolve the Discrepancy between Experiment and Theory Concerning the Electron Affinity and Ionization Potential of Gold (United States)

    Pašteka, L. F.; Eliav, E.; Borschevsky, A.; Kaldor, U.; Schwerdtfeger, P.


    The first ionization potential (IP) and electron affinity (EA) of the gold atom have been determined to an unprecedented accuracy using relativistic coupled cluster calculations up to the pentuple excitation level including the Breit and QED contributions. We reach meV accuracy (with respect to the experimental values) by carefully accounting for all individual contributions beyond the standard relativistic coupled cluster approach. Thus, we are able to resolve the long-standing discrepancy between experimental and theoretical IP and EA of gold.

  17. Impedance spectroscopic investigation of the effect of thin azo-calix[4]arene film type on the cation sensitivity of the gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mlika, R., E-mail: [Laboratoire de Physique et Chimie des Interfaces (LPCI), Faculte des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Rouis, A. [Laboratoire de Physique et Chimie des Interfaces (LPCI), Faculte des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia); Bonnamour, I. [Universite de Lyon, Institut de Chimie et Biochimie Moleculaires et Supramoleculaires, Universite Claude Bernar, Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne (France); Ouada, H. Ben [Laboratoire de Physique et Chimie des Interfaces (LPCI), Faculte des Sciences de Monastir, Avenue de l' environnement, 5000 Monastir (Tunisia)


    In this work, we report the impedance spectroscopic investigation of the effect of the thin film type on the selectivity of gold/azo-calix[4]arene electrodes. For this purpose, two C1 and C3 azo-calix[4]arene derivative molecules, used as thin films, are deposited by spin-coating process on the gold surface. These thin films were first studied using contact angle measurements. This revealed a less hydrophobic character for C3 thin film, which has been attributed to the presence of hydroxyl groups at the lower rim. The sensitivity study, by Electrochemical Impedance Spectroscopy (EIS), towards Cu{sup 2+} and Eu{sup 3+} cations, has showed that the C3 thin film is more sensitive and selective towards Eu{sup 3+} than C1. This best performance is due to the presence of two ester groups acting as clips and leading to more complexation stability. The EIS results were modeled by an appropriate equivalent circuit for the aim of elucidating electrical properties of thin films. This modeling has exposed that C3 thin film presents lower ionic conductivity and limited diffusion phenomenon at the interface. Highlights: {yields} C1 and C3 azo-calix[4]arenes thin films are deposited on the gold surface. {yields} The lower hydrophobicity for C3 was attributed to the presence of hydroxyl groups. {yields} The C3 thin film is more sensitive and selective towards Eu{sup 3+} than C1 one. {yields} This best performance is due to the presence of two ester groups acting as clips.

  18. Comparative hyperthermia effects of silica–gold nanoshells with different surface coverage of gold clusters on epithelial tumor cells


    Park SE; Lee J.; Lee T.; Bae SB; Kang B; Huh YM; Lee SW; Haam S


    Sang-Eun Park,1,* Jaewon Lee,2,* Taeksu Lee,2 Saet-Byeol Bae,1 Byunghoon Kang,2 Yong-Min Huh,3 Sang-Wha Lee,1 Seungjoo Haam,2 1Department of Chemical and Biochemical Engineering, Gachon University, Gyeonggi-Do, Republic of Korea; 2Department of Chemical Engineering, Yonsei University, Seoul, Republic of Korea; 3Department of Radiology, College of Medicine, Yonsei University, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: Silica–gold na...

  19. Activation of the C-I and C-OH bonds of 2-iodoethanol by gas phase silver cluster cations yields subvalent silver-iodide and -hydroxide cluster cations. (United States)

    Khairallah, George N; O'Hair, Richard A J


    The gas phase ion-molecule reactions of silver cluster cations (Ag(n)(+)) and silver hydride cluster cations (Ag(m)H(+)) with 2-iodoethanol have been examined using multistage mass spectrometry experiments in a quadrupole ion trap mass spectrometer. These clusters exhibit size selective reactivity: Ag(2)H(+), Ag(3)(+), and Ag(4)H(+) undergo sequential ligand addition only, while Ag(5)(+) and Ag(6)H(+) also promote both C-I and C-OH bond activation of 2-iodoethanol. Collision induced dissociation (CID) of Ag(5)HIO(+), the product of C-I and C-OH bond activation by Ag(5)(+), yielded Ag(4)OH(+), Ag(4)I(+) and Ag(3)(+), consistent with a structure containing AgI and AgOH moieties. Ag(6)H(+) promotes both C-I and C-OH bond activation of 2-iodoethanol to yield the metathesis product Ag(6)I(+) as well as Ag(6)H(2)IO(+). The metathesis product Ag(6)I(+) also promotes C-I and C-OH bond activation.DFT calculations were carried out to gain insights into the reaction of Ag(5)(+) with ICH(2)CH(2)OH by calculating possible structures and their energies for the following species: (i) initial adducts of Ag(5)(+) and ICH(2)CH(2)OH, (ii) the subsequent Ag(5)HIO(+) product, (iii) CID products of Ag(5)HIO(+). Potential adducts were probed by allowing ICH(2)CH(2)OH to bind in different ways (monodentate through I, monodentate through OH, bidentate) at different sites for two isomers of Ag(5)(+): the global minimum "bowtie" structure, 1, and the higher energy trigonal bipyramidal isomer, 2. The following structural trends emerged: (i) ICH(2)CH(2)OH binds in a monodentate fashion to the silver core with little distortion, (ii) ICH(2)CH(2)OH binds to 1 in a bidentate fashion with some distortion to the silver core, and (iii) ICH(2)CH(2)OH binds to 2 and results in a significant distortion or rearrangement of the silver core. The DFT calculated minimum energy structure of Ag(5)HIO(+) consists of an OH ligated to the face of a distorted trigonal bipyramid with I located at a vertex, while

  20. Clustered Conserved Cysteines in Hyaluronan Synthase Mediate Cooperative Activation by Mg(2+) Ions and Severe Inhibitory Effects of Divalent Cations. (United States)

    Tlapak-Simmons, Valarie L; Medina, Andria P; Baggenstoss, Bruce A; Nguyen, Long; Baron, Christina A; Weigel, Paul H


    Hyaluronan synthase (HAS) uses UDP-GlcUA and UDP-GlcNAc to make hyaluronan (HA). Streptococcus equisimilis HAS (SeHAS) contains four conserved cysteines clustered near the membrane, and requires phospholipids and Mg(2+) for activity. Activity of membrane-bound or purified enzyme displayed a sigmoidal saturation profile for Mg(2+) with a Hill coefficient of 2. To assess if Cys residues are important for cooperativity we examined the Mg(2+) dependence of mutants with various combinations of Cys-to-Ala mutations. All Cys-mutants lost the cooperative response to Mg(2+). In the presence of Mg(2+), other divalent cations inhibited SeHAS with different potencies (Cu(2+)~Zn(2+) >Co(2+) >Ni(2+) >Mn(2+) >Ba(2+) Sr(2+) Ca(2+)). Some divalent metal ions likely inhibit by displacement of Mg(2+)-UDP-Sugar complexes (e.g. Ca(2+), Sr(2+) and Ba(2+) had apparent Ki values of 2-5 mM). In contrast, Zn(2+) and Cu(2+) inhibited more potently (apparent Ki ≤ 0.2 mM). Inhibition of Cys-null SeHAS by Cu(2+), but not Zn(2+), was greatly attenuated compared to wildtype. Double and triple Cys-mutants showed differing sensitivities to Zn(2+) or Cu(2+). Wildtype SeHAS allowed to make HA prior to exposure to Zn(2+) or Cu(2+) was protected from inhibition, indicating that access of metal ions to sensitive functional groups was hindered in processively acting HA•HAS complexes. We conclude that clustered Cys residues mediate cooperative interactions with Mg(2+) and that transition metal ions inhibit SeHAS very potently by interacting with one or more of these -SH groups.

  1. Aptasensor for electrochemical sensing of angiogenin based on electrode modified by cationic polyelectrolyte-functionalized graphene/gold nanoparticles composites. (United States)

    Chen, Zhengbo; Zhang, Chenmeng; Li, Xiaoxiao; Ma, He; Wan, Chongqing; Li, Kai; Lin, Yuqing


    Herein, a label-free and highly sensitive electrochemical aptasensor for the detection of angiogenin was proposed based on a conformational change of aptamer and amplification by poly(diallyldimethyl ammonium chloride) (PDDA)-functionalized graphene/gold nanoparticles (AuNPs) composites-modified electrode. PDDA-functionalized graphene (P-GR) nanosheets as the building block in the self-assembly of GR nanosheets/AuNPs heterostructure enhanced the electrochemical detection performance. The electrochemical aptasensor has an extraordinarily sensitive response to angiogenin in a linear range from 0.1pM to 5nM with a detection limit of 0.064pM. The developed sensor provides a promising strategy for the cancer diagnosis in medical application in the future.

  2. The as-prepared gold cluster-based fluorescent sensor for the selective detection of AsIII ions in aqueous solution (United States)

    Roy, Subhasish; Palui, Goutam; Banerjee, Arindam


    Water-soluble fluorescent gold clusters (AuCs) have been successfully synthesized by a wet-chemical approach at room temperature using a dipeptide l-cysteinyl-l-cysteine. We have followed the core-etching mechanism for the synthesis of the gold clusters. Clusters show the excitation maximum at 300 nm and the emission maximum at 410 nm. These gold clusters show interesting fluorescent properties including large Stoke's shift (110 nm), with a quantum yield of 41.3%, and photochemical stability. Transmission electron microscopic analysis shows that most of these particles are HR-MS, 1H NMR, FT-IR, XRPD, I-V, TEM, etc. See DOI: 10.1039/c2nr11786j

  3. Fuel mediated solution combustion synthesis of ZnO supported gold clusters and nanoparticles and their catalytic activity and in vitro cytotoxicity. (United States)

    Chanu, T Inakhunbi; Muthukumar, Thangavelu; Manoharan, Periakaruppan T


    Nanocomposites of gold nanoparticles and semiconductor ZnO with wurtzite structure, made by solution combustion synthesis (SCS), as a function of the Zn/fuel ratio with polyethylene glycol (PEG) as fuel exhibit the presence of both nanoparticles and clusters. Atomic gold clusters present on the surface of ZnO nanorods which can be identified by XPS and SEM are easily monitored and characterized by positive ion MALDI experiments as mostly odd numbered clusters, Au3 to Au11 in decreasing amounts. Low concentrations of the fuel produce AuClO and nanoparticles (NPs), with no clusters. Au-ZnO nanocomposites at all [Au] exhibit single blue shifted plasmon absorption and corresponding photoluminescence (PL). Increasing particle size prefers surface plasmon resonance (SPR) scattering of metal that could lead to PL enhancement; however, available ZnO surface in the Au-ZnO composite becomes more important than the particle size of the composite with higher [Au]. The catalytic activity of these Au-ZnO nanocomposites tested on 4-nitrophenol clearly revealed the presence of an intermediate with both NPs and clusters playing different roles. An in vitro study of cytotoxicity on MCF-7 cell lines revealed that these gold nanostructures have turned out to be powerful nanoagents for destruction of cancer cells even with small amounts of gold particles/clusters. The nanorods of ZnO, known to be nontoxic to normal cells, play a lesser role in the anticancer activity of these Au-ZnO nanocomposites.

  4. A comparative study between all-electron scalar relativistic calculation and all-electron calculation on the adsorption of hydrogen molecule onto small gold clusters

    Indian Academy of Sciences (India)

    Xiang-Jun Kuang; Xin-Qiang Wang; Gao-Bin Liu


    A comparative study between all-electron relativistic (AER) calculation and all-electron (AE) calculation on the H2 molecule adsorption onto small gold clusters has been performed. Compared with the corresponding AuH2 cluster obtained by AE method, the AuH2 cluster obtained by AER method has much shorter Au-H bond-length, much longer H-H distance, larger binding energy and adsorption energy, higher vertical ionization potentials (VIP), greater charge transfer, higher vibrational frequency of Au-H mode and lower vibrational frequency of H-H mode. The delocalization of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) for AuH2 cluster obtained by AER method is obvious. All these characteristics suggest that the scalar relativistic effect might strengthen the Au-H bond and weaken the H-H bond. It is believed that the scalar relativistic effect is favourable to the H2 molecule adsorption onto small gold cluster and the reactivity enhancement of H2 molecule. It may be one of the reasons why the dissociative adsorptions take place in some AuH2 clusters. With increasing size of AuH2 clusters, the influence of scalar relativistic effect becomes more significant. Some further studies focused on the influence of scalar relativistic effect on the adsorption behaviour of other small molecules onto gold clusters are necessary in the future.

  5. Metal Enhanced Fluorescence on Super-Hydrophobic Clusters of Gold Nanoparticles

    KAUST Repository

    Battista, Edmondo


    We used optical lithography, electroless deposition and deep reactive ion etching techniques to realize arrays of super-hydrophobic gold nanoparticles arranged in a hierarchical structure. At the micro-scale, silicon-micro pillars in the chip permit to manipulate and concentrate biological solutions, at the nano-scale, gold nanoparticles enable metal enhanced fluorescence (MEF) effects, whereby fluorescence signal of fluorophores in close proximity to a rough metal surface is amplified by orders of magnitude. Here, we demonstrated the device in the analysis of fluorescein derived gold-binding peptides (GBP-FITC). While super-hydrophobic schemes and MEF effects have been heretofore used in isolation, their integration in a platform may advance the current state of fluorescence-based sensing technology in medical diagnostics and biotechnology. This scheme may be employed in protein microarrays where the increased sensitivity of the device may enable the early detection of cancer biomarkers or other proteins of biomedical interest.

  6. Monoatomic and cluster beam effect on ToF-SIMS spectra of self-assembled monolayers on gold

    Energy Technology Data Exchange (ETDEWEB)

    Tuccitto, N. [Dipartimento di Scienze Chimiche Universita degli Studi di Catania, v.le A. Doria 6, 95125, Catania (Italy)], E-mail:; Torrisi, V.; Delfanti, I.; Licciardello, A. [Dipartimento di Scienze Chimiche Universita degli Studi di Catania, v.le A. Doria 6, 95125, Catania (Italy)


    Self-assembled monolayers represent well-defined systems that is a good model surface to study the effect of primary ion beams used in secondary ion mass spectrometry. The effect of polyatomic primary beams on both aliphatic and aromatic self-assembled monolayers has been studied. In particular, we analysed the variation of the relative secondary ion yield of both substrate metal-cluster (Au{sub n}{sup -}) in comparison with the molecular ions (M{sup -}) and clusters (M{sub x}Au{sub y}{sup -}) by using Bi{sup +}, Bi{sub 3}{sup +}, Bi{sub 5}{sup +} beams. Moreover, the differences in the secondary ion generation efficiency are discussed. The main effect of the cluster beams is related to an increased formation of low-mass fragments and to the enhancement of the substrate related gold-clusters. The results show that, at variance of many other cases, the static SIMS of self-assembled monolayers does not benefit of the use of polyatomic primary ions.

  7. Gold clusters on WO{sub 3} nanoneedles grown via AACVD: XPS and TEM studies

    Energy Technology Data Exchange (ETDEWEB)

    Navio, Cristina [Laboratory of Interaction Chemistry on Plasma Surfaces, University of Mons (Belgium); Vallejos, Stella [MINOS, EMaS, Departament d' Enginyeria Electronica, Universitat Rovira i Virgili, Tarragona (Spain); Department of Chemistry, University College London, London, WC1H 0AJ (United Kingdom); Stoycheva, Toni; Llobet, Eduard; Correig, Xavier [MINOS, EMaS, Departament d' Enginyeria Electronica, Universitat Rovira i Virgili, Tarragona (Spain); Snyders, Rony [Laboratory of Interaction Chemistry on Plasma Surfaces, University of Mons (Belgium); Blackman, Christopher [Department of Chemistry, University College London, London, WC1H 0AJ (United Kingdom); Umek, Polona [Solid State Physcis Department Jozef Stefan Institute, Jamov cesta 39, 1000 Ljubljana (Slovenia); Ke Xiaoxing; Van Tendeloo, Gustaaf [Electron Microscopy for Material Science, University of Antwerp, Antwerp (Belgium); Bittencourt, Carla, E-mail: [Electron Microscopy for Material Science, University of Antwerp, Antwerp (Belgium)


    We have prepared tungsten oxide films decorated with gold particles on Si substrates by aerosol assisted chemical vapor deposition (AACVD) and characterized them using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). SEM shows that the films are composed of needle-like structures and TEM shows that both the needles and the gold particles are crystalline. XPS indicates the presence of oxygen vacancies, i.e. the films are WO{sub 3-x}, and hence the deposited material is composed of semiconducting nanostructures and that the interaction between the gold particles and the WO{sub 3} needles surface is weak. The synthesis of semiconducting tungsten oxide nanostructures decorated with metal particles represents an important step towards the development of sensing devices with optimal properties. - Highlights: Black-Right-Pointing-Pointer Characterization of WO{sub 3} needle-like structures decorated with gold nanoparticles. Black-Right-Pointing-Pointer WO{sub 3} needle-like structures are crystalline. Black-Right-Pointing-Pointer WO{sub 3} needle-like structures are semiconducting.

  8. Density Functional Investigation of the Inclusion of Gold Clusters on a CH3S Self-Assembled Lattice on Au(111

    Directory of Open Access Journals (Sweden)

    Darnel J. Allen


    Full Text Available We employ first-principles density functional theoretical calculations to address the inclusion of gold (Au clusters in a well-packed CH3S self-assembled lattice. We compute CH3S adsorption energies to quantify the energetic stability of the self-assembly and gold adsorption and dissolution energies to characterize the structural stability of a series of Au clusters adsorbed at the SAM-Au interface. Our results indicate that the inclusion of Au clusters with less than four Au atoms in the SAM-Au interface enhances the binding of CH3S species. In contrast, larger Au clusters destabilize the self-assembly. We attribute this effect to the low-coordinated gold atoms in the cluster. For small clusters, these low-coordinated sites have significantly different electronic properties compared to larger islands, which makes the binding with the self-assembly energetically more favorable. Our results further indicate that Au clusters in the SAM-Au interface are thermodynamically unstable and they will tend to dissolve, producing Au adatoms incorporated in the self-assembly in the form of CH3S-Au-SCH3 species. This is due to the strong S-Au bond which stabilizes single Au adatoms in the self-assembly. Our results provide solid insight into the impact of adatom islands at the CH3S-Au interface.

  9. 2D-3D Transition for Cationic and Anionic Gold Clusters: A Kinetic Energy Density Functional Study

    DEFF Research Database (Denmark)

    Ferrighi, Lara; Hammer, Bjørk; Madsen, Georg


    gradient enhancement. Moreover, we show how MGGAs, in contrast to generalize gradient approximations with smaller gradient enhancements, avoid overestimating the bond energies by combining the information contained in the reduced gradient and the kinetic energy. This allows MGGAs to treat differently...

  10. Soft Landing of Mass-Selected Gold Clusters: Influence of Ion and Ligand on Charge Retention and Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Laskin, Julia


    Herein, we employ a combination of reduction synthesis in solution, soft landing of mass-selected precursor and product ions, and in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) to examine the influence of ion and the length of diphosphine ligands on the charge retention and reactivity of ligated gold clusters deposited onto self-assembled monolayer surfaces (SAMs). Product ions (Au10L42+, (10,4)2+, L = 1,3-bis(diphenyl-phosphino)propane, DPPP) were prepared through in-source collision induced dissociation (CID) and precursor ions [(8,4)2+, L = 1,6-bis(diphenylphosphino)hexane, DPPH] were synthesized in solution for comparison to (11,5)3+ precursor ions ligated with DPPP investigated previously (ACS Nano 2012, 6, 573 and J. Phys. Chem. C. 2012, 116, 24977). Similar to (11,5)3+ precursor ions, the (10,4)2+ product ions are shown to retain charge on 1H,1H,2H,2H-perfluorodecanethiol monolayers (FSAMs). Additional abundant peaks at higher m/z indicative of reactivity are observed in the TOF-SIMS spectrum of (10,4)2+ product ions that are not seen for (11,5)3+ precursor ions. The abundance of (10,4)2+ on 16-mercaptohexadecanoic acid (COOH-SAMs) is demonstrated to be lower than on FSAMs, consistent with partial reduction of charge. The (10,4)2+ product ion on 1-dodecanethiol (HSAMs) exhibits peaks similar to those seen on the COOH-SAM. On the HSAM, higher m/z peaks indicative of reactivity are observed similar to those on the FSAM. The (8,4)2+ DPPH precursor ions are shown to retain charge on FSAMs similar to (11,5)3+ precursor ions prepared with DPPP. An additional peak corresponding to attachment of one gold atom to (8,4)2+ is observed at higher m/z for DPPH-ligated clusters. On the COOH-SAM, (8,4)2+ is less abundant than on the FSAM consistent with partial neutralization. The results indicate that although retention of charge by product ions generated by CID is similar to precursor ions their reactivity during analysis with SIMS is different

  11. Neutral and cationic free-space oxygen–silicon clusters SiO{sub n} (1

    Energy Technology Data Exchange (ETDEWEB)

    Forte, G. [Dipartimento di Scienze del Farmaco, Facoltà di Farmacia, Università di Catania, Viale A. Doria, 6, I-95126 Catania (Italy); Angilella, G.G.N., E-mail: [Dipartimento di Fisica e Astronomia, Università di Catania, 64, Via S. Sofia, I-95123 Catania (Italy); Scuola Superiore di Catania, Università di Catania, Via S. Nullo, 5/i, I-95123 Catania (Italy); CNISM, UdR Catania, 64, Via S. Sofia, I-95123 Catania (Italy); INFN, Sezione di Catania, 64, Via S. Sofia, I-95123 Catania (Italy); Pittalà, V. [Dipartimento di Scienze del Farmaco, Facoltà di Farmacia, Università di Catania, Viale A. Doria, 6, I-95126 Catania (Italy); March, N.H. [Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Oxford University, Oxford (United Kingdom); Pucci, R. [Dipartimento di Fisica e Astronomia, Università di Catania, 64, Via S. Sofia, I-95123 Catania (Italy); CNISM, UdR Catania, 64, Via S. Sofia, I-95123 Catania (Italy)


    Motivated by the theoretical study of Saito and Ono (2011) on three crystalline forms of SiO{sub 2} under pressure, quantum-chemical calculations on various free-space clusters of SiO{sub n} and GeO{sub n} for 1cationic clusters have been examined, for both geometry and equilibrium bond lengths. Coupled clusters and correlation-corrected MP2 calculations are presented. For the cations, we emphasize especially the structural distortions occurring in removing degeneracies. -- Highlights: ► Geometry and structure of various SiO{sub n} and GeO{sub n} clusters. ► Both neutral and cationic clusters. ► Varying coordination numbers. ► Relevant for high pressure studies.

  12. Determination of structures, stabilities, and electronic properties for bimetallic cesium-doped gold clusters: a density functional theory study. (United States)

    Cheng, Lu; Xiao-Yu, Kuang; Zhi-Wen, Lu; Ai-Jie, Mao; Yan-Ming, Ma


    The equilibrium geometric structures, stabilities, and electronic properties of bimetallic Au(n)Cs (n = 1-10) and pure gold Au(n) (n ≤ 11) clusters have been systematically investigated by using density functional theory with meta-generalized gradient approximation. The optimized geometries show that one Au atom capped on Au(n-1)Cs structures and Cs atom capped Au(n) structures for different sized Au(n)Cs (n = 1-10) clusters are two dominant growth patterns. Theoretical calculated results indicate that the most stable isomers have three-dimensional structures at n = 4 and 6-10. Averaged atomic binding energies, fragmentation energies, and second-order difference of energies exhibit a pronounced even-odd alternations phenomenon. The same even-odd alternations are found in the highest occupied-lowest unoccupied molecular orbital gaps, vertical ionization potential, vertical electron affinity, and hardnesses. In addition, it is found that the charge in corresponding Au(n)Cs clusters transfers from the Cs atom to the Au(n) host in the range of 0.851-1.036 electrons.

  13. Rotational invariance and double frustration in the structures of gold clusters growing around the F(s)-defected MgO (100) surface. (United States)

    Barcaro, Giovanni; Fortunelli, Alessandro


    The interaction of small gold clusters (Au(n), n = 1-4, 20) and a gold monolayer with the MgO (100) surface surrounding a neutral oxygen vacancy (F(s) center) is investigated using density-functional (DF) calculations. It is found that the presence of the defect modifies the interaction of gold not only with the vacancy itself, but also with the oxygen and magnesium atoms around it by increasing both the adhesion energy and the equilibrium bond distances. This is at variance with the interaction of metal atoms with the regular MgO (100) surface or the F(s) defect itself, in which an increase of the adhesion energy is associated with a shortening of the metal-surface distance. The resulting double frustration and cylindrical invariance of the metal-surface interaction cause small gold clusters growing around an F(s) nucleation center to be highly fluxional in terms both of rotational freedom and of multiple competing structural motifs. Fragmentation energies of the gold clusters are also discussed, finding that the lowest-energy pathway corresponds to the detachment of a dimer.

  14. Systematic Study of Au6 to Au12 Gold Clusters on MgO(100) F Centers Using Density-Functional Theory

    DEFF Research Database (Denmark)

    Vilhelmsen, Lasse; Hammer, Bjørk


    We present an optimized genetic algorithm used in conjunction with density-functional theory in the search for stable gold clusters and O2 adsorption ensembles in F centers at MgO(100). For Au8 the method recovers known structures and identifies several more stable ones. When O2 adsorption...

  15. Adsorption of a single gold or silver atom on vanadium oxide clusters. (United States)

    Ding, Xun-Lei; Wang, Dan; Li, Rui-Jie; Liao, Heng-Lu; Zhang, Yan; Zhang, Hua-Yong


    The bonding properties between a single atom and its support have a close relationship with the stability and reactivity of single-atom catalysts. As a model system, the structural and electronic properties of bimetallic oxide clusters MV3Oy(q) (M = Au or Ag, q = 0, ±1, and y = 6-8) are systematically studied using density functional theory. The single noble metal atom Au or Ag tends to be adsorbed on the periphery of the V oxide clusters. Au prefers V sites for oxygen-poor clusters and O sites for oxygen-rich clusters, while Ag prefers O sites for most cases. According to natural population analysis, Au may possess positive or negative charges in the bimetallic oxide clusters, while Ag usually possesses positive charges. The bonding between Au and V has relatively high covalent character according to the bond order analysis. This work may provide some clues for understanding the bonding properties of single noble metal atoms on the support in practical single-atom catalysts, and serve as a starting point for further theoretical studies on the reaction mechanisms of related catalytic systems.

  16. The interaction of gold clusters with methanol molecules: Infrared photodissociation of mass-selected Aun+(CH3OH)m (United States)

    Dietrich, G.; Krückeberg, S.; Lützenkirchen, K.; Schweikhard, L.; Walther, C.


    Structural and energetic properties of the adducts formed by adsorbing methanol onto size-selected gold clusters are investigated by infrared photodissociation of trapped Aun+(CH3OH)m, n=1-10,15 and m=1-3. The excitation of vibrational modes of methanol leads to the desorption of neutral molecules which is monitored by time-of-flight mass spectrometry. Spectra are obtained by measuring the fragment ion intensity as a function of photon energy. The C-O stretching vibration of adsorbed methanol changes discontinuously with cluster size. By comparison with Car-Parrinello calculations this change is traced back to the dimensionality of the gold clusters. The number of photons necessary for the desorption of methanol molecules provides an estimate of the respective separation energies.

  17. A Simple Method for the Size Controlled Synthesis of Stable Oligomeric Clusters of Gold Nanoparticles under Ambient Conditions. (United States)

    Lawrence, Marlon; Testen, Anze; Koklic, Tilen; Smithies, Oliver


    Reducing dilute aqueous HAuCl4 with sodium thiocyanate (NaSCN) under alkaline conditions produces 2 to 3 nm diameter nanoparticles. Stable grape-like oligomeric clusters of these yellow nanoparticles of narrow size distribution are synthesized under ambient conditions via two methods. The delay-time method controls the number of subunits in the oligoclusters by varying the time between the addition of HAuCl₄ to alkaline solution and the subsequent addition of reducing agent, NaSCN. The yellow oligoclusters produced range in size from ~3 to ~25 nm. This size range can be further extended by an add-on method utilizing hydroxylated gold chloride (Na(+)[Au(OH₄-x)Clx](-)) to auto-catalytically increase the number of subunits in the as-synthesized oligocluster nanoparticles, providing a total range of 3 nm to 70 nm. The crude oligocluster preparations display narrow size distributions and do not require further fractionation for most purposes. The oligoclusters formed can be concentrated >300 fold without aggregation and the crude reaction mixtures remain stable for weeks without further processing. Because these oligomeric clusters can be concentrated before derivatization they allow expensive derivatizing agents to be used economically. In addition, we present two models by which predictions of particle size can be made with great accuracy.

  18. Tuning optical properties of magic number cluster (SiO2)4O2H4 by substitutional bonding with gold atoms. (United States)

    Cai, Xiulong; Zhang, Peng; Ma, Liuxue; Zhang, Wenxian; Ning, Xijing; Zhao, Li; Zhuang, Jun


    By bonding gold atoms to the magic number cluster (SiO(2))(4)O(2)H(4), two groups of Au-adsorbed shell-like clusters Au(n)(SiO(2))(4)O(2)H(4-n) (n = 1-4) and Au(n)(SiO(2))(4)O(2) (n = 5-8) were obtained, and their spectral properties were studied. The ground-state structures of these clusters were optimized by density functional theory, and the results show that in despite of the different numbers and types of the adsorbed Au atoms, the cluster core (SiO(2))(4)O(2) of T(d) point-group symmetry keeps almost unchanged. The absorption spectra were obtained by time-dependent density functional theory. From one group to the other, an extension of absorption wavelength from the UV-visible to the NIR region was observed, and in each group the absorption strengths vary linearly with the number of Au atoms. These features indicate their advantages for exploring novel materials with easily controlled tunable optical properties. Furthermore, due to the weak electronic charge transfer between the Au atoms, the clusters containing Au(2) dimers, especially Au(8)(SiO(2))(4)O(2), absorb strongly NIR light at 900 approximately 1200 nm. Such strong absorption suggests potential applications of these shell-like clusters in tumor cells thermal therapy, like the gold-coated silica nanoshells with larger sizes.

  19. Determining the size-dependent structure of ligand-free gold-cluster ions. (United States)

    Schooss, Detlef; Weis, Patrick; Hampe, Oliver; Kappes, Manfred M


    Ligand-free metal clusters can be prepared over a wide size range, but only in comparatively small amounts. Determining their size-dependent properties has therefore required the development of experimental methods that allow characterization of sample sizes comprising only a few thousand mass-selected particles under well-defined collision-free conditions. In this review, we describe the application of these methods to the geometric structural determination of Au(n)(+) and Au(n)(-) with n = 3-20. Geometries were assigned by comparing experimental data, primarily from ion-mobility spectrometry and trapped ion electron diffraction, to structural models from quantum chemical calculations.

  20. Interaction between ionic liquid cation and water: infrared predissociation study of [bmim](+)·(H2O)n clusters. (United States)

    Voss, Jonathan M; Marsh, Brett M; Zhou, Jia; Garand, Etienne


    The infrared predissociation spectra of [bmim](+)·(H2O)n, n = 1-8, in the 2800-3800 cm(-1) region are presented and analyzed with the help of electronic structure calculations. The results show that the water molecules solvate [bmim](+) by predominately interacting with the imidazolium C2-H moiety for the small n = 1 and 2 clusters. This is characterized by a redshifted and relatively intense C2-H stretch. For n≥ 4 clusters, hydrogen-bond interactions between the water molecules drive the formation of ring isomers which interact on top of the imidazolium ring without any direct interaction with the C2-H. The water arrangement in [bmim](+)·(H2O)n is similar to the low energy isomers of neutral water clusters up to the n = 6 cluster. This is not the case for the n = 8 cluster, which has the imidazolium ring disrupting the otherwise preferred cubic water structure. The evolution of the solvation network around [bmim](+) illustrates the competing [bmim](+)-water and water-water interactions.

  1. UV-visible absorption of small gold clusters in neon: Au(n) (n = 1-5 and 7-9). (United States)

    Lecoultre, S; Rydlo, A; Félix, C; Buttet, J; Gilb, S; Harbich, W


    We present optical absorption spectra in the UV-visible range (1.5 eV < E < 6 eV) for mass selected neutral gold clusters Au(n) (n = 1-5 and 7-9) embedded in solid Ne at 7 K. The experimental spectra are compared with time-dependent density functional calculations. Electronic transitions are distributed over the whole energy range without any concentration of the oscillator strength in a small energy window, characteristic for the more s-like metals such as the alkalis or silver. Contrary to the case of silver and partly copper clusters, transitions issued from mainly d-type states are significantly involved in low energy transitions. The measured integrated cross section is smaller (<20%) than expected from a free-electron system, manifesting the strong screening of the s electrons due to the proximity of the s and d levels in gold.

  2. Photoionization of cold gas phase coronene and its clusters: Autoionization resonances in monomer, dimer, and trimer and electronic structure of monomer cation

    Energy Technology Data Exchange (ETDEWEB)

    Bréchignac, Philippe, E-mail:; Falvo, Cyril; Parneix, Pascal; Pino, Thomas; Pirali, Olivier [Institut des Sciences Moléculaires d’Orsay, CNRS UMR8214, Univ Paris-Sud, F-91405 Orsay (France); Garcia, Gustavo A.; Nahon, Laurent [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, B.P. 48, F-91192 Gif-sur-Yvette (France); Joblin, Christine; Kokkin, Damian; Bonnamy, Anthony [IRAP, Université de Toulouse 3 - CNRS, 9 Av. Colonel Roche, B.P. 44346, F-31028 Toulouse Cedex 4 (France); Mulas, Giacomo [INAF - Osservatorio Astronomico di Cagliari, via della scienza 5, I-09047 Selargius (Italy)


    Polycyclic aromatic hydrocarbons (PAHs) are key species encountered in a large variety of environments such as the Interstellar Medium (ISM) and in combustion media. Their UV spectroscopy and photodynamics in neutral and cationic forms are important to investigate in order to learn about their structure, formation mechanisms, and reactivity. Here, we report an experimental photoelectron-photoion coincidence study of a prototypical PAH molecule, coronene, and its small clusters, in a molecular beam using the vacuum ultraviolet (VUV) photons provided by the SOLEIL synchrotron facility. Mass-selected high resolution threshold photoelectron (TPES) and total ion yield spectra were obtained and analyzed in detail. Intense series of autoionizing resonances have been characterized as originating from the monomer, dimer, and trimer neutral species, which may be used as spectral fingerprints for their detection in the ISM by VUV absorption spectroscopy. Finally, a full description of the electronic structure of the monomer cation was made and discussed in detail in relation to previous spectroscopic optical absorption data. Tentative vibrational assignments in the near-threshold TPES spectrum of the monomer have been made with the support of a theoretical approach based on density functional theory.

  3. The effects of cation-anion clustering on defect migration in MgAl2O4. (United States)

    Zamora, Richard J; Voter, Arthur F; Perez, Danny; Perriot, Romain; Uberuaga, Blas P


    Magnesium aluminate spinel (MgAl2O4), like many other ceramic materials, offers a range of technological applications, from nuclear reactor materials to military body armor. For many of these applications, it is critical to understand both the formation and evolution of lattice defects throughout the lifetime of the material. We use the Speculatively Parallel Temperature Accelerated Dynamics (SpecTAD) method to investigate the effects of di-vacancy and di-interstitial formation on the mobility of the component defects. From long-time trajectories of the state-to-state dynamics, we characterize the migration pathways of defect clusters, and calculate their self-diffusion constants across a range of temperatures. We find that the clustering of Al and O vacancies drastically reduces the mobility of both defects, while the clustering of Mg and O vacancies completely immobilizes them. For interstitials, we find that the clustering of Mg and O defects greatly reduces O interstitial mobility, but has only a weak effect on Mg. These findings illuminate important new details regarding defect kinetics relevant to the application of MgAl2O4 in extreme environments.

  4. Gold-superheavy-element interaction in diatomics and cluster adducts: A combined four-component Dirac-Kohn-Sham/charge-displacement study. (United States)

    Rampino, Sergio; Storchi, Loriano; Belpassi, Leonardo


    The chemistry of superheavy elements (Z ≥ 104) is actively investigated in atom-at-a-time experiments of volatility through adsorption on gold surfaces. In this context, common guidelines for interpretation based on group trends in the periodic table should be used cautiously, because relativistic effects play a central role and may cause predictions to fall short. In this paper, we present an all-electron four-component Dirac-Kohn-Sham comparative study of the interaction of gold with Cn (Z = 112), Fl (Z = 114), and Uuo (Z = 118) versus their lighter homologues of the 6th period, Hg, Pb, and Rn plus the noble gas Xe. Calculations were carried out for Au-E (E = Hg, Cn, Pb, Fl, Xe, Rn, Uuo), Au7- and Au20-E (E = Hg, Cn, Pb, Fl, Rn) complexes, where Au7 (planar) and Au20 (pyramidal) are experimentally determined clusters having structures of increasing complexity. Results are analysed both in terms of the energetics of the complexes and of the electron charge rearrangement accompanying their formation. In line with the available experimental data, Cn and more markedly Fl are found to be less reactive than their lighter homologues. On the contrary, Uuo is found to be more reactive than Rn and Xe. Cn forms the weakest bond with the gold atom, compared to Fl and Uuo. The reactivity of Fl decreases with increasing gold-fragment size more rapidly than that of Cn and, as a consequence, the order of the reactivity of these two elements is inverted upon reaching the Au20-cluster adduct. Density difference maps between adducts and fragments reveal similarities in the behaviour of Cn and Xe, and in that of Uuo and the more reactive species Hg and Pb. These findings are given a quantitative ground via charge-displacement analysis.

  5. Spectroscopic Properties of Novel Aromatic Metal Clusters: NaM4 (M=Al, Ga, In) and their Cations and Anions

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, K; Zhao, C


    The ground and several excited states of metal aromatic clusters, namely NaM4 and NaM{sub 4}{sup {+-}} (M=Al, Ga, In) clusters have been investigated by employing complete activespace self-consistent-field (CASSCF) followed by Multi-reference singles and doubles configuration interaction (MRSDCI) computations that included up to 10 million configurations and other methods. The ground states NaM{sub 4}{sup -} of aromatic anions are found to be symmetric C{sub 4v} ({sup 1}A{sub 1}) electronic states with ideal square pyramid geometries. While the ground state of NaIn4 is also predicted to be a symmetric C{sub 4v} ({sup 2}A{sub 1}) square pyramid, the ground state of the NaAl4 cluster is found to have a C{sub 2v} ({sup 2}A{sub 1}) pyramid with a rhombus base and the ground state of NaGa{sub 4} possesses a C{sub 2v} ({sup 2}A{sub 1}) pyramid with a rectangle base. In general these structures exhibit 2 competing geometries, viz., an ideal C{sub 4v} structure and a distorted rhomboidal or rectangular pyramid structure (C{sub 2v}). All of the ground states of the NaM{sub 4}{sup +} (M= Al, Ga, In) cations are computed to be C{sub 2v} ({sup 3}A{sub 2}) pyramids with rhombus bases. The equilibrium geometries, vibrational frequencies, dissociation energies, adiabatic ionization potentials, adiabatic electron affinities for the electronic states of NaM{sub 4} (M=Al, Ga, In) and their ions are computed and compared with experimental results and other theoretical calculations. On the basis of our computed excited states energy separations, we have tentatively suggested assignments to the observed X and A states in the anion photoelectron spectra of Al{sub 4}Na{sup -} reported by Li et al. The X state can be assigned to a C{sub 2v} ({sup 2}A{sub 1}) rhomboidal pyramid. The A state observed in the anion spectrum is assigned to the first excited state ({sup 2}B{sub 1}) of the neutral NaAl{sub 4} with the C{sub 4v} symmetry. The assignments of the excited states are consistent with

  6. Ultrabright Luminescence from Gold Nanoclusters: Rigidifying the Au(I)-Thiolate Shell. (United States)

    Pyo, Kyunglim; Thanthirige, Viraj Dhanushka; Kwak, Kyuju; Pandurangan, Prabhu; Ramakrishna, Guda; Lee, Dongil


    Luminescent nanomaterials have captured the imagination of scientists for a long time and offer great promise for applications in organic/inorganic light-emitting displays, optoelectronics, optical sensors, biomedical imaging, and diagnostics. Atomically precise gold clusters with well-defined core-shell structures present bright prospects to achieve high photoluminescence efficiencies. In this study, gold clusters with a luminescence quantum yield greater than 60% were synthesized based on the Au22(SG)18 cluster, where SG is glutathione, by rigidifying its gold shell with tetraoctylammonium (TOA) cations. Time-resolved and temperature-dependent optical measurements on Au22(SG)18 have shown the presence of high quantum yield visible luminescence below freezing, indicating that shell rigidity enhances the luminescence quantum efficiency. To achieve high rigidity of the gold shell, Au22(SG)18 was bound to bulky TOA that resulted in greater than 60% quantum yield luminescence at room temperature. Optical measurements have confirmed that the rigidity of gold shell was responsible for the luminescence enhancement. This work presents an effective strategy to enhance the photoluminescence efficiencies of gold clusters by rigidifying the Au(I)-thiolate shell.

  7. Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging

    KAUST Repository

    Croissant, Jonas G.


    Functional nanocarriers capable of transporting high drug contents without premature leakage and to controllably deliver several drugs are needed for better cancer treatments. To address this clinical need, gold cluster bovine serum albumin (AuNC@BSA) nanogates were engineered on mesoporous silica nanoparticles (MSN) for high drug loadings and co-delivery of two different anticancer drugs. The first drug, gemcitabine (GEM, 40 wt%), was loaded in positively-charged ammonium-functionalized MSN (MSN-NH3+). The second drug, doxorubicin (DOX, 32 wt%), was bound with negatively-charged AuNC@BSA electrostatically-attached onto MSN-NH3+, affording highly loaded pH-responsive MSN-AuNC@BSA nanocarriers. The co-delivery of DOX and GEM was achieved for the first time via an inorganic nanocarrier, possessing a zero-premature leakage behavior as well as drug loading capacities seven times higher than polymersome NPs. Besides, unlike the majority of strategies used to cap the pores of MSN, AuNC@BSA nanogates are biotools and were applied for targeted red nuclear staining and in-vivo tumor imaging. The straightforward non-covalent combination of MSN and gold-protein cluster bioconjugates thus leads to a simple, yet multifunctional nanotheranostic for the next generation of cancer treatments.

  8. Scanning the potential energy surface for synthesis of dendrimer-wrapped gold clusters: design rules for true single-molecule nanostructures. (United States)

    Thompson, Damien; Hermes, Jens P; Quinn, Aidan J; Mayor, Marcel


    The formation of true single-molecule complexes between organic ligands and nanoparticles is challenging and requires careful design of molecules with size, shape, and chemical properties tailored for the specific nanoparticle. Here we use computer simulations to describe the atomic-scale structure, dynamics, and energetics of ligand-mediated synthesis and interlinking of 1 nm gold clusters. The models help explain recent experimental results and provide insight into how multidentate thioether dendrimers can be employed for synthesis of true single-ligand-nanoparticle complexes and also nanoparticle-molecule-nanoparticle "dumbbell" nanostructures. Electronic structure calculations reveal the individually weak thioether-gold bonds (325 ± 36 meV), which act collectively through the multivalent (multisite) anchoring to stabilize the ligand-nanoparticle complex (∼7 eV total binding energy) and offset the conformational and solvation penalties involved in this "wrapping" process. Molecular dynamics simulations show that the dendrimer is sufficiently flexible to tolerate the strained conformations and desolvation penalties involved in fully wrapping the particle, quantifying the subtle balance between covalent anchoring and noncovalent wrapping in the assembly of ligand-nanoparticle complexes. The computed preference for binding of a single dendrimer to the cluster reveals the prohibitively high dendrimer desolvation barrier (1.5 ± 0.5 eV) to form the alternative double-dendrimer structure. Finally, the models show formation of an additional electron transfer channel between nitrogen and gold for ligands with a central pyridine unit, which gives a stiff binding orientation and explains the recently measured larger interparticle distances for particles synthesized and interlinked using linear ligands with a central pyridine rather than a benzene moiety. The findings stress the importance of organic-inorganic interactions, the control of which is central to the

  9. Dynamics and fragmentation of van der Waals and hydrogen bonded cluster cations: (NH3)n and (NH3BH3)n ionized at 10.51 eV (United States)

    Yuan, Bing; Shin, Joong-Won; Bernstein, Elliot R.


    A 118 nm laser is employed as a high energy, single photon (10.51 eV/photon) source for study of the dynamics and fragmentation of the ammonia borane (NH3BH3) cation and its cluster ions through time of flight mass spectrometry. The behavior of ammonia ion and its cluster ions is also investigated under identical conditions in order to explicate the ammonia borane results. Charge distributions, molecular orbitals, and spin densities for (NH3BH3)n and its cations are explored at both the second-order perturbation theory (MP2) and complete active space self-consistent field (CASSCF) theory levels. Initial dissociation mechanisms and potential energy surfaces for ionized NH3BH3, NH3, and their clusters are calculated at the MP2/6-311++G(d,p) level. Protonated clusters (NH3)xH+ dominate ammonia cluster mass spectra: our calculations show that formation of (NH3)n-1H+ and NH2 from the nascent (NH3)n+ has the lowest energy barrier for the system. The only common features for the (NH3)n+ and (NH3BH3)n+ mass spectra under these conditions are found to be NHy+ (y = 0,…,4) at m/z = 14-18. Molecular ions with both 11B and 10B isotopes are observed, and therefore, product ions observed for the (NH3BH3)n cluster system derive from (NH3BH3)n clusters themselves, not from the NH3 moiety of NH3BH3 alone. NH3BH2+ is the most abundant ionization product in the (NH3BH3)n+ cluster spectra: calculations support that for NH3BH3+, an H atom is lost from the BH3 moiety with an energy barrier of 0.67 eV. For (NH3BH3)2+ and (NH3BH3)3+ clusters, a Bδ+⋯Hδ-⋯δ-H⋯δ+B bond can form in the respective cluster ions, generating a lower energy, more stable ion structure. The first step in the (NH3BH3)n+ (n = 2, 3) dissociation is the breaking of the Bδ+⋯Hδ-⋯δ-H⋯δ+B moiety, leading to the subsequent release of H2 from the latter cluster ion. The overall reaction mechanisms calculated are best represented and understood employing a CASSCF natural bond orbital

  10. Evaluation of secondary ion yield enhancement from polymer material by using TOF-SIMS equipped with a gold cluster ion source

    Energy Technology Data Exchange (ETDEWEB)

    Aimoto, K. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)]. E-mail:; Aoyagi, S. [Department of Regional Development, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue-shi, Shimane 690-8504 (Japan); Kato, N. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan); Iida, N. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Yamamoto, A. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Kudo, M. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)


    We investigated the enhancement of the secondary ion intensity in the TOF-SIMS spectra obtained by Au{sup +} and Au{sub 3} {sup +} bombardment in comparison with Ga{sup +} excitation using polymer samples with different molecular weight distributions. Since the polymer samples used in this experiment have a wide molecular weight distribution, the advantages of the gold cluster primary ion source over monoatomic ion could accurately be evaluated. It was observed that the degree of fragmentation decreased by the usage of cluster primary ion beam compared with monoatomic ion beam, which was observed as a shift of the intensity distribution in the spectra. It was also found out that the mass effect of Au{sup +} and Ga{sup +} as monoatomic primary ion, resulted in about 10-60 times of enhancement for both samples with different molecular distributions. On the other hand, the Au{sub 3} {sup +} bombardment caused intensity enhancement about 100-2600 compared with Ga{sup +} bombardment, depending on the mass range of the detected secondary ion species. The cluster primary ion effect of Au{sub 3} {sup +}, compared with Au{sup +}, therefore, was estimated to be about 10-45.

  11. A comparative DFT study of interactions of Au and small gold clusters Aun (n = 2-4) with CH3S and CH2 radicals (United States)

    Blaško, Martin; Rajský, Tomáš; Urban, Miroslav


    We compare DFT binding energies (BEs) of Au and small gold clusters interacting with CH3S and CH2 ligands (Aun-L complexes, n = 1-4). The spin state and the binding mechanism in Aun-L varies with the participation of singly occupied non-bonding orbitals or doubly occupied lone-pair orbitals of a ligand and on the number of atoms (even or odd) of Aun. The highest BE, 354 kJ/mol, exhibits the Au3-CH2 complex with the covalent bond in which participate two singly occupied orbitals of the triplet state of CH2. With CH3S the highest BE (277 kJ/mol) is calculated for Au3-SCH3 with the single Au-S bond.

  12. Synthesis of highly fluorescent and thio-linkers stabilize gold quantum dots and nano clusters in DMF for bio-labeling

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Shiva K., E-mail: [University of Idaho, Department of Chemistry (United States); Denn, Benjamin D.; Branen, A. Larry [University of Idaho, Coeur D' Alene, Biosensors and Nanotechnology Application Laboratory (BNAL) (United States)


    This study demonstrates a one versus two-step synthesis of fluorescent gold quantum dots (F-AuQDs) and nano clusters (F-AuNCs) functionalized with thiolated organic linkers using reduction of gold precursor in N,N Prime -dimethylformamide in 1 h of reaction. The F-AuQDs and F-AuNCs show fluorescence emission at 425 {+-} 5 nm upon excitation at 345 {+-} 5 nm of wavelength, with good water solubility and stability. Five different thiolated organic binary linkers consisting of various functional groups including: carboxylic acid, hydroxyl, and aromatic amine, were conjugated with the F-AuQDs and F-AuNCs. The formation mechanism and functionalization of the F-AuQDs and F-AuNCs was characterized using UV-vis absorption spectra, UV-vis light, fluorescent emission spectra, pH, TEM, and FTIR. The fluorescence emission of the F-AuQDs and F-AuNCs is greatly dependent on the thio-linker. This novel one-step approach provides facile and fast synthesis of F-AuQDs and F-AuNCs over the two-step method, with less than 5 h of reaction and workup compared to more than 28 h of reaction for the two-step approach. These thio-linker functionalized F-AuQDs and F-AuNCs have a wide application in fluorescent labeling of biomolecules, optical devices, imaging, energy transfer, and biosensing.

  13. Ultrasensitive electrochemical DNA biosensor based on functionalized gold clusters/graphene nanohybrids coupling with exonuclease III-aided cascade target recycling. (United States)

    Wang, Wei; Bao, Ting; Zeng, Xi; Xiong, Huayu; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu


    In this work, a novel and ultrasensitive electrochemical biosensor was constructed for DNA detection based on functionalized gold clusters/graphene nanohybrids (AuNCs/GR nanobybrids) and exonuclease III (Exo III)-aided cascade target recycling. By utilizing the capacity of GR as universal template, different metal nanoclusters including AuNCs/GR nanobybrids and PtNCs/GR nanohybrids were synthesized through convenient ultrasonic method. Exo III-aided cascade recycling was initiated by target DNA, generating the final cleavage product (S2), which acted as a linkage between capture probe and the functionalized metal nanoclusters/GR conjugates in the construction of the biosensor. The AuNCs/GR-DNA-enzyme conjugates acted as interfaces of enzyme-catalyzed silver deposition reaction, achieving DNA detection ranging from 0.02 fM to 20 pM with a detection limit of 0.057 fM. In addition, PtNCs/GR-DNA conjugates presented peroxidase-like activity and the functionalized PtNCs/GR nanohybrids-based electrochemical biosensor also realized DNA detection by catalyzing the 3,3',5,5'-tetramethylbenzidine-hydrogen peroxide (TMB-H2O2) system to produce electrochemical signal. This metal clusters/GR-based multiple-amplified electrochemical biosensor provided an universal method for DNA detection.

  14. Structural Order in Ultrathin Films of the Monolayer Protected Clusters Based Upon 4-nm Gold Nanocrystals: An Experimental and Theoretical Study (United States)

    Bhattarai, Nabraj; Khanal, Subarna; Bahena, Daniel; Olmos-Asar, Jimena A.; Ponce, Arturo; Whetten, Robert L.; Mariscal, Marcelo M.; Jose-Yacaman, Miguel


    The structural order in ultrathin films of monolayer protected clusters (MPCs) is important in a number of application areas but can be difficult to demonstrate by conventional methods, particularly when the metallic core dimension, d, is in the intermediate size-range, 1.5 < d < 5.0 nm. Here, improved techniques for the synthesis of monodisperse thiolate-protected gold nanoparticles have made possible the production of dodecane-thiolate saturated ~ 4 ± 0.5 nm Au clusters with single-crystal core structure and morphology. An ultrathin ordered film or superlattice of these nanocrystal-core MPCs is prepared and investigated using aberration corrected scanning/transmission electron microscopy (STEM) which allowed imaging of long-range hexagonally ordered superlattices of the nanocrystals, separated by the thiolate groups. The lattice constants determined by direct imaging are in good agreement with those determined by small-angle electron diffraction. The STEM image revealed the characteristic grain boundary (GB) with sigma (Σ) 13 in the interface between two crystals. The formation and structures found are interpreted on the basis of theoretical calculations employing molecular dynamics (MD) simulations and coarse-grained (CG) approach. PMID:24875295

  15. A phosphorescent silver(I)-gold (I) cluster complex that specifically lights up the nucleolus of living cells with FLIM imaging. (United States)

    Chen, Min; Lei, Zhen; Feng, Wei; Li, Chunyan; Wang, Quan-Ming; Li, Fuyou


    The phosphorescent silver(I)-gold(I) cluster complex [CAu6Ag2(dppy)6](BF4)4 (N1) selectively stains the nucleolus, with a much lower uptake in the nucleus and cytoplasm, and exhibits excellent photostability. This Ag-Au cluster, which has a photoluminescent lifetime of microseconds, is particularly attractive as a probe in applications of time-gated microscopy. Investigation of the pathway of cellular entry indicated that N1 permeates the outer membrane and nuclear membrane of living cells through an energy-dependent and non-endocytic route within 10 min. High concentrations of N1 in the nucleolus have been quantified by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and transmission electron microscopy coupled with an energy dispersive X-ray analysis (TEM-EDXA), which also helped to elucidate the mechanism of the specific staining. Intracellular selective staining may be correlated with the microenvironment of the nucleolus, which is consistent with experiments conducted at different phases of the cell cycle. These results prove that N1 is a very attractive phosphorescent staining reagent for visualizing the nucleolus of living cells.

  16. Quantum-chemical study of the effect of ligands on the structure and properties of gold clusters (United States)

    Golosnaya, M. N.; Pichugina, D. A.; Oleinichenko, A. V.; Kuz'menko, N. E.


    The structures of [Au4(dpmp)2X2]2+clusters, where X =-C≡CH,-CH3,-SCH3,-F,-Cl,-Br,-I, dpmp is bis((diphenylphosphino)methyl)(phenyl)phosphine, are calculated at the level of density functional theory with the PBE functional and a modified Dirac-Coulomb-Breit Hamiltonian in an all-electron basis set (Λ). Using the example of [Au4(dpmp)2(C≡CC6H5)2]2+, the interatomic distances and bond angles calculated by means of PBE0/LANL2DZ, TPSS/LANL2DZ, TPSSh/LANL2DZ, and PBE/Λ are compared to X-ray crystallography data. It is shown that PBE/Λ yields the most accurate calculation of the geometrical parameters of this cluster. The ligand effect on the electronic stability of a cluster and the stability in reactions of decomposition into different fragments is studied, along with the capability of ligand exchange. Stability is predicted for [Au4(dpmp)2F2]2+ and [Au4(dpmp)2(SCH3)2]2+, while [Au4(dpmp)2I2]2+ cluster is unstable and its decomposes into two identical fragments is supposed.

  17. Geometric structure, electronic structure and optical absorption properties of one-dimensional thiolate-protected gold clusters containing a quasi-face-centered-cubic (quasi-fcc) Au-core: a density-functional theoretical study. (United States)

    Ma, Zhongyun; Wang, Pu; Pei, Yong


    Based on the recently reported atomic structures of thiolate-protected Au28(SR)20, Au36(SR)24, Au44(SR)28, and Au52(SR)32 clusters, a family of homogeneous, linear, thiolate-protected gold superstructures containing novel quasi-face-centered-cubic (quasi-fcc) Au-cores is theoretically envisioned, denoted as the Au20+8N(SR)16+4N cluster. By means of density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, a unified view of the geometric structure, electronic structure, magic stable size and size-dependent NIR absorption properties of Au20+8N(SR)16+4N clusters is provided. We find that the Au20+8N(SR)16+4N clusters demonstrate oscillating transformation energies dependent on N. The odd-N clusters show more favorable (negative) reaction energies than the even-N clusters. The magic stability of recently reported Au28(SR)20, Au36(SR)24, Au44(SR)28, Au52(SR)32 and Au76(SR)44 clusters can be addressed from the relative reaction energies and geometric distortion of Au-cores. A novel 4N + 4 magic electron-number is suggested for the Au20+8N(SR)16+4N cluster. Using the polyhedral skeletal electron pair theory (PSEPT) and the extended Hückel molecular orbital (EHMO) calculations, we suggest that the magic 4N + 4 electron number is correlated with the quasi-fcc Au-cores, which can be viewed as double helical tetrahedron-Au4 chains. The size-dependent optical absorption properties of Au20+8N(SR)16+4N clusters are revealed based on TD-DFT calculations. We propose that these clusters are potential candidates for the experimental synthesis of atomically precise one-dimensional ligand protected gold superstructures with tunable NIR absorption properties.

  18. Gold Rush! (United States)

    Brahier, Daniel J.


    Describes a mathematical investigation of gold--how it is weighed, stored, used, and valued. For grades 3-4, children estimate the value of treasure chests filled with gold coins and explore the size and weight of gold bars. Children in grades 5-6 explore how gold is mined and used, and how the value of gold changes over time. (PVD)

  19. Selection and Identification of Molecular Gold Clusters at the Nano(gram) Scale: Reversed Phase HPLC-ESI-MS of a Mixture of Au-Peth MPCs. (United States)

    Black, David M; Bhattarai, Nabraj; Bach, Stephan B H; Whetten, Robert L


    Recent advances in cluster synthesis make it possible to produce an enormous variety molecule-like MPCs of size, composition, shape, and surface-chemical combinations. In contrast to the significant growth in the synthetic capability to generate these materials, progress in establishing the physicochemical basis for their observed properties has remained limited. The main reason for this has been the lack of the analytical capability to generate and measure samples of suitably high (molecular) purity; such capability is also essential to support therapeutic and diagnostic MPC development. In order for MPC products to get to market, especially those products that are medical-field related, characterization is required to identify and quantify all components present in a material mixture. Here, we show results from analysis of several synthetic mixtures of gold MPCs by nonaqueous reversed-phase chromatography coupled with mass spectrometry detection. The additional or hidden components, revealed to be present in these mixtures, provide novel insights into their comparative stability and interactions.

  20. One-dimensional gold clusters in HP-Ce{sub 7}Au{sub 13+x}Ge{sub 10-x}

    Energy Technology Data Exchange (ETDEWEB)

    Heymann, Gunter; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie; Heying, Birgit; Riecken, Jan F.; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie


    Single crystals of the high-pressure phase Ce{sub 7}Au{sub 13+x}Ge{sub 10-x} were obtained by treating CeAuGe at 9.5 GPa and 1473-1523 K in a multi-anvil press. The structure of Ce{sub 7}Au{sub 13.35}Ge{sub 9.65} was refined on the basis of single-crystal X-ray diffractometer data: new type, Pbam, a = 1571.9(3), b = 1780.3(4), c = 443.58(9) pm, wR2 = 0.0470, 2017 F{sup 2} values, 96 variables. Two of the five germanium sites show a small degree of Ge/Au mixing. The gold and germanium atoms build up a complex three-dimensional, covalently bonded [Au{sub 13.35}Ge{sub 9.65}] network with Au-Ge distances ranging from 249 to 293 pm. The [Au{sub 13.35}Ge{sub 9.65}] network also exhibits a one-dimensional gold cluster with Au-Au distances of 275-301 pm and a weakly bonded germanium dumb-bell with a Ge4-Ge5 bond length of 271 pm. The four crystallographically independent cerium atoms fill cavities of coordination numbers 19 and 20 within the [Au{sub 13.35}Ge{sub 9.65}] network. These coordinations are known from other structure types. Consequently one can describe the [Au{sub 13.35}Ge{sub 9.65}] structure as an intergrowth variant of EuAuGe, HP-CeAuGe (TiNiSi), CeAu{sub 2}Ge{sub 2} (CePt{sub 2}Ge{sub 2}), and Ce{sub 3}Ag{sub 4}Ge{sub 4} (Gd{sub 3}Cu{sub 4}Sn{sub 4}) related slabs. (orig.)

  1. New Word Vector Representation for Semantic Clustering Une nouvelle représentation vectorielle pour la classification sémantique

    Directory of Open Access Journals (Sweden)

    Salma Jamoussi


    Full Text Available The idea we defend in this paper is the possibility to obtain significant semantic concepts using clustering methods. We start by defining some semantic measures to quantify the semantic relations between words. Then, we use some clustering methods to build up concepts in an automatic way. We test two well known methods: the K-means algorithm and the Ko- honen maps. Then, we propose the use of a Bayesian network conceived for clustering and called AutoClass. To group the words of the vocabulary in various classes, we test three vector representations of words. The first is a simple contextual representation. The second associates to each word a vector which represents its similarity with each word of the vocabulary. The third representation is a combination of the first and the second one.

  2. Relativistic effects in homogeneous gold catalysis. (United States)

    Gorin, David J; Toste, F Dean


    Transition-metal catalysts containing gold present new opportunities for chemical synthesis, and it is therefore not surprising that these complexes are beginning to capture the attention of the chemical community. Cationic phosphine-gold(i) complexes are especially versatile and selective catalysts for a growing number of synthetic transformations. The reactivity of these species can be understood in the context of theoretical studies on gold; relativistic effects are especially helpful in rationalizing the reaction manifolds available to gold catalysts. This Review draws on experimental and computational data to present our current understanding of homogeneous gold catalysis, focusing on previously unexplored reactivity and its application to the development of new methodology.

  3. A band Lanczos approach for calculation of vibrational coupled cluster response functions: simultaneous calculation of IR and Raman anharmonic spectra for the complex of pyridine and a silver cation. (United States)

    Godtliebsen, Ian H; Christiansen, Ove


    We describe new methods for the calculation of IR and Raman spectra using vibrational response theory. Using damped linear response functions that incorporate a Lorentzian line-shape function from the outset, it is shown how the calculation of Raman spectra can be carried out through the calculation of a set of vibrational response functions in the same manner as described previously for IR spectra. The necessary set of response functions can be calculated for both vibrational coupled cluster (VCC) and vibrational configuration interaction (VCI) anharmonic vibrational wave-functions. For the efficient and simultaneous calculation of the full set of necessary response functions, a non-hermitian band Lanczos algorithm is implemented for VCC, and a hermitian band Lanczos algorithm is implemented for VCI. It is shown that the simultaneous calculation of several response functions is often advantageous. Sample calculations are presented for pyridine and the complex between pyridine and the silver cation.

  4. Simultaneous Interaction of Hydrophilic and Hydrophobic Solvents with Ethylamino Neurotransmitter Radical Cations: Infrared Spectra of Tryptamine(+)-(H2O)m-(N2)n Clusters (m,n ≤ 3). (United States)

    Schütz, Markus; Sakota, Kenji; Moritz, Raphael; Schmies, Matthias; Ikeda, Takamasa; Sekiya, Hiroshi; Dopfer, Otto


    Solvation of biomolecules by a hydrophilic and hydrophobic environment strongly affects their structure and function. Here, the structural, vibrational, and energetic properties of size-selected clusters of the microhydrated tryptamine cation with N2 ligands, TRA(+)-(H2O)m-(N2)n (m,n ≤ 3), are characterized by infrared photodissociation spectroscopy in the 2800-3800 cm(-1) range and dispersion-corrected density functional theory calculations at the ωB97X-D/cc-pVTZ level to investigate the simultaneous solvation of this prototypical neurotransmitter by dipolar water and quadrupolar N2 ligands. In the global minimum structure of TRA(+)-H2O generated by electron ionization, H2O is strongly hydrogen-bonded (H-bonded) as proton acceptor to the acidic indolic NH group. In the TRA(+)-H2O-(N2)n clusters, the weakly bonded N2 ligands do not affect the H-bonding motif of TRA(+)-H2O and are preferentially H-bonded to the OH groups of the H2O ligand, whereas stacking to the aromatic π electron system of the pyrrole ring of TRA(+) is less favorable. The natural bond orbital analysis reveals that the H-bond between the N2 ligand and the OH group of H2O cooperatively strengthens the adjacent H-bond between the indolic NH group of TRA(+) and H2O, while π stacking is slightly noncooperative. In the larger TRA(+)-(H2O)m clusters, the H2O ligands form a H-bonded solvent network attached to the indolic NH proton, again stabilized by strong cooperative effects arising from the nearby positive charge. Comparison with the corresponding neutral TRA-(H2O)m clusters illustrates the strong impact of the excess positive charge on the structure of the microhydration network.

  5. Laser Desorption Ionization Quadrupole Ion Trap Time-of-Flight Mass Spectrometry of Au m Fe n +/- Clusters Generated from Gold-Iron Nanoparticles and their Giant Nanoflowers. Electrochemical and/or Plasma Assisted Synthesis (United States)

    Mawale, Ravi Madhukar; Ausekar, Mayuri Vilas; Pavliňák, David; Galmiz, Oleksandr; Kubáček, Pavel; Havel, Josef


    Gold nanoparticles (NP) with average diameter 100 nm synthesized from tetrachloroauric acid solution using stainless steel as a reducing agent were found to contain iron. Applying simultaneously high frequency (HF) plasma discharge in solution during the electrochemical reduction, giant gold-iron nanoflowers with average size 1000-5000 nm were formed. Scanning electron microscopy (SEM) shows the morphology of the nanopowders produced as polygonal yet nearly spherical, whereas iron content in both products determined by energy dispersive X-ray analysis (EDX) was found to be at 2.5 at. %. Laser desorption ionization (LDI) of both nanomaterials and mass spectrometric analysis show the formation of Au m Fe n +/- ( m = 1-35; n = 1-3) clusters. Structure of few selected clusters in neutral or monocharged forms were computed by density functional theory (DFT) calculations and it was found that typical distances of an iron nucleus from adjacent gold nuclei lie in the interval 2.5 to 2.7 Å. Synthetized Au-Fe nanoparticles were found stable for at least 2 mo at room temperature (even in aqueous solution) without any stabilizing agent. Produced Au-Fe nanoparticles in combination with standard MALDI matrices enhance ionization of peptides and might find use in nanomedicine.

  6. H2O Nucleation Around Noble Metal Cations (United States)

    Calaminici, Patrizia; Oropeza Alfaro, Pavel; Juarez Flores, Martin; Köster, Andreas; Beltran, Marcela; Ulises Reveles, J.; Khanna, Shiv N.


    First principle electronic structure calculations have been carried out to investigate the ground state geometry, electronic structure and binding energy of noble metal cations (H2O)n^+ clusters containing up to 10 H2O molecules. The calculations are performed with the density functional theory code deMon2k [1]. Due to the very flat potential energy surface of these systems special care to the numerical stability of energy and gradient calculation must be taken.Comparison of the results obtained with Cu^+, Ag^+ and Au^+ will be shown. This investigation provides insight into the structural arrangement of the water molecules around these metals and a microscopic understanding of the observed incremental binding energy in the case of the gold cation based on collision induced dissociation experiments. [1] A.M. Köster, P. Calaminici, M.E. Casida, R. Flores-Moreno, G. Geudtner, A. Goursot, T. Heine, A. Ipatov, F. Janetzko, J. Martin del Campo, S. Patchkovski, J.U. Reveles, A. Vela and D.R. Salahub, deMon2k, The deMon Developers, Cinvestav, 2006

  7. Cluster-cluster clustering (United States)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C. S.


    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales.

  8. Cluster-cluster clustering

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.


    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references.

  9. Photodissociation of Cerium Oxide Nanocluster Cations. (United States)

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A


    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)).

  10. Effect of subsurface Ti-interstitials on the bonding of small gold clusters on rutile TiO2(110)

    DEFF Research Database (Denmark)

    Madsen, Georg; Hammer, Bjørk


    dependent on the density functional used. As expected, a redshift in the CO stretch vibration is calculated for CO adsorbed on a negatively charged cluster. Somewhat surprisingly a larger redshift is found for CO adsorbed on an overall positively charged Au3 cluster. This is explained by CO being a local...

  11. Kinetic evaluation of highly active supported gold catalysts prepared from monolayer-protected clusters: an experimental Michaelis-Menten approach for determining the oxygen binding constant during CO oxidation catalysis. (United States)

    Long, Cormac G; Gilbertson, John D; Vijayaraghavan, Ganesh; Stevenson, Keith J; Pursell, Christopher J; Chandler, Bert D


    Thiol monolayer-protected Au clusters (MPCs) were prepared using dendrimer templates, deposited onto a high-surface-area titania, and then the thiol stabilizers were removed under H2/N2. The resulting Au catalysts were characterized with transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy of adsorbed CO. The Au catalysts prepared via this route displayed minimal particle agglomeration during the deposition and activation steps. Structural data obtained from the physical characterization of the Au catalysts were comparable to features exhibited from a traditionally prepared standard Au catalyst obtained from the World Gold Council (WGC). A differential kinetic study of CO oxidation catalysis by the MPC-prepared Au and the standard WGC catalyst showed that these two catalyst systems have essentially the same reaction order and Arrhenius apparent activation energies (28 kJ/mol). However, the MPC-prepared Au catalyst shows 50% greater activity for CO oxidation. Using a Michaelis-Menten approach, the oxygen binding constants for the two catalyst systems were determined and found to be essentially the same within experimental error. To our knowledge, this kinetic evaluation is the first experimental determination of oxygen binding by supported Au nanoparticle catalysts under working conditions. The values for the oxygen binding equilibrium constant obtained from the Michaelis-Menten treatment (ca. 29-39) are consistent with ultra-high-vacuum measurements on model catalyst systems and support density functional theory calculations for oxygen binding at corner or edge atoms on Au nanoparticles and clusters.

  12. Local density variation of gold nanoparticles in aquatic environments (United States)

    Hosseinzadeh, F.; Shirazian, F.; Shahsavari, R.; Khoei, A. R.


    Gold (Au) nanoparticles are widely used in diagnosing cancer, imaging, and identification of therapeutic methods due to their particular quantum characteristics. This research presents different types of aqueous models and potentials used in TIP3P, to study the effect of the particle size and density of Au clusters in aquatic environments; so it can be useful to facilitate future investigation of the interaction of proteins with Au nanoparticles. The EAM potential is used to model the structure of gold clusters. It is observed that in the systems with identical gold/water density and different cluster radii, gold particles are distributed in aqueous environment almost identically. Thus, Au particles have identical local densities, and the root mean square displacement (RMSD) increases with a constant slope. However in systems with constant cluster radii and different gold/water densities, Au particle dispersion increases with density; as a result, the local density decreases and the RMSD increases with a larger slope. In such systems, the larger densities result in more blunted second peaks in gold-gold radial distribution functions, owing to more intermixing of the clusters and less FCC crystalline features at longer range, a mechanism that is mediated by the competing effects of gold-water and gold-gold interactions.

  13. Slow-Reduction Synthesis of a Thiolate-Protected One-Dimensional Gold Cluster Showing an Intense Near-Infrared Absorption. (United States)

    Takano, Shinjiro; Yamazoe, Seiji; Koyasu, Kiichirou; Tsukuda, Tatsuya


    Slow reduction of Au ions in the presence of 4-(2-mercaptoethyl)benzoic acid (4-MEBA) gave Au76(4-MEBA)44 clusters that exhibited a strong (3 × 10(5) M(-1) cm(-1)) near-infrared absorption band at 1340 nm. Powder X-ray diffraction studies indicated that the Au core has a one-dimensional fcc structure that is elongated along the {100} direction.

  14. Enhanced thermal lens effect in gold nanoparticle-doped Lyotropic liquid crystal by nanoparticle clustering probed by Z-scan technique

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, S.L.; Lenart, V.M., E-mail: [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Dept. de Fisica; Turchiello, R.T. [Universidade Federal Tecnologica do Parana (UFTPR), Ponta Grossa, PR (Brazil). Dept. de Fisica; Goya, G.F. [Department of Condensed Matter Physics, Aragon Institute of Nanoscience, Zaragoza (Spain)


    This work presents an experimental study of the thermal lens effect in Au nanoparticles-doped lyotropic liquid crystals under cw 532 nm optical excitation. Spherical Au nanoparticles of about 12 nm were prepared by Turkevich’s method, and the lyotropic liquid crystal was a ternary mixture of SDS, 1-DeOH, and water that exhibits an isotropic phase at room temperature. The lyotropic matrix induces aggregation of the nanoparticles, leading to a broad and a red-shifted surface plasmon resonance. The thermal nonlinear optical refraction coefficient n{sub 2} increases as a power of number density of nanoparticles, being possible to address this behavior to nanoparticle clustering. (author)

  15. Chirality in Bare and Passivated Gold Nanoclusters

    CERN Document Server

    Garzon, I L; Rodrigues-Hernandez, J I; Sigal, I; Beltran, M R; Michaelian, K


    Chiral structures have been found as the lowest-energy isomers of bare (Au$_{28}$ and Au$_{55}) and thiol-passivated (Au$_{28}(SCH$_{3})$_{16}$ and Au$_{38}$(SCH$_{3}$)$_{24}) gold nanoclusters. The degree of chirality existing in the chiral clusters was calculated using the Hausdorff chirality measure. We found that the index of chirality is higher in the passivated clusters and decreases with the cluster size. These results are consistent with the observed chiroptical activity recently reported for glutahione-passivated gold nanoclusters, and provide theoretical support for the existence of chirality in these novel compounds.

  16. Phase transitions and kinetic properties of gold nanoparticles confined between two-layer graphene nanosheets (United States)

    Wang, Gang; Wu, Nanhua; Chen, Jionghua; Wang, Jinjian; Shao, Jingling; Zhu, Xiaolei; Lu, Xiaohua; Guo, Lucun


    The thermodynamic and kinetic behaviors of gold nanoparticles confined between two-layer graphene nanosheets (two-layer-GNSs) are examined and investigated during heating and cooling processes via molecular dynamics (MD) simulation technique. An EAM potential is applied to represent the gold-gold interactions while a Lennard-Jones (L-J) potential is used to describe the gold-GNS interactions. The MD melting temperature of 1345 K for bulk gold is close to the experimental value (1337 K), confirming that the EAM potential used to describe gold-gold interactions is reliable. On the other hand, the melting temperatures of gold clusters supported on graphite bilayer are corrected to the corresponding experimental values by adjusting the εAu-C value. Therefore, the subsequent results from current work are reliable. The gold nanoparticles confined within two-layer GNSs exhibit face center cubic structures, which is similar to those of free gold clusters and bulk gold. The melting points, heats of fusion, and heat capacities of the confined gold nanoparticles are predicted based on the plots of total energies against temperature. The density distribution perpendicular to GNS suggests that the freezing of confined gold nanoparticles starts from outermost layers. The confined gold clusters exhibit layering phenomenon even in liquid state. The transition of order-disorder in each layer is an essential characteristic in structure for the freezing phase transition of the confined gold clusters. Additionally, some vital kinetic data are obtained in terms of classical nucleation theory.

  17. New Trends in Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Leonarda F. Liotta


    Full Text Available Gold is an element that has fascinated mankind for millennia. The catalytic properties of gold have been a source of debate, due to its complete chemical inertness when in a bulk form, while it can oxidize CO at temperatures as low as ~200 K when in a nanocrystalline state, as discovered by Haruta in the late 1980s [1]. Since then, extensive activity in both applied and fundamental research on gold has been initiated. The importance of the catalysis by gold represents one of the fasted growing fields in science and is proven by the promising applications in several fields, such as green chemistry and environmental catalysis, in the synthesis of single-walled carbon nanotubes, as modifiers of Ni catalysts for methane steam and dry reforming reactions and in biological and electrochemistry applications. The range of reactions catalyzed by gold, as well as the suitability of different supports and the influence of the preparation conditions have been widely explored and optimized in applied research [2]. Gold catalysts appeared to be very different from the other noble metal-based catalysts, due to their marked dependence on the preparation method, which is crucial for the genesis of the catalytic activity. Several methods, including deposition-precipitation, chemical vapor deposition and cation adsorption, have been applied for the preparation of gold catalysts over reducible oxides, like TiO2. Among these methods, deposition-precipitation has been the most frequently employed method for Au loading, and it involves the use of tetrachloroauric (III acid as a precursor. On the other hand, the number of articles dealing with Au-loaded acidic supports is smaller than that on basic supports, possibly because the deposition of [AuCl4]− or [AuOHxCl4−x]− species on acidic supports is difficult, due to their very low point of zero charge. Despite this challenge, several groups have reported the use of acidic zeolites as supports for gold. Zeolites

  18. Black gold

    CERN Document Server

    Fletcher, MW


    Following the Yom Kippur war of October 1973, OPEC raises the price of oil by 70% along with a 5% reduction in oil production. Len Saunders a highly skilled and knowledgeable British engineer for Jaguar motors, is approached by the UK energy commission in the January of 1974 to create a new propulsion system; using a secret document from a German WW2 scientist, that they have come into possession of. Len Saunders sets to work on creating the holy grail of energy. Seven years later 1981, Haidar Farooq the Kuwait oil minister working at OPEC and head of a secret organisation named Black Gold bec

  19. Going for Gold

    Institute of Scientific and Technical Information of China (English)


    While the international gold price in February hit the highest point in 25 years at $541.20 per ounce for futures delivery, a new gold rush is sweeping across China. According to the World Gold Council, the London-based gold marketing organization funded by leading global gold mining firms, the purchase of gold products in China grew by 9 percent in the first nine

  20. Trapping atmospheric CO2 with gold. (United States)

    Collado, Alba; Gómez-Suárez, Adrián; Webb, Paul B; Kruger, Hedi; Bühl, Michael; Cordes, David B; Slawin, Alexandra M Z; Nolan, Steven P


    The ability of gold-hydroxides to fix CO2 is reported. [Au(IPr)(OH)] and [{Au(IPr)}2(μ-OH)][BF4] react with atmospheric CO2 to form the trigold carbonate complex [{Au(IPr)}3(μ(3)-CO3)][BF4]. Reactivity studies revealed that this complex behaves as two basic and one cationic Au centres, and that it is catalytically active. DFT calculations and kinetic experiments have been carried out.

  1. Electronic Origins of the Variable Efficiency of Room-Temperature Methane Activation by Homo- and Heteronuclear Cluster Oxide Cations [XYO2](+) (X, Y = Al, Si, Mg): Competition between Proton-Coupled Electron Transfer and Hydrogen-Atom Transfer. (United States)

    Li, Jilai; Zhou, Shaodong; Zhang, Jun; Schlangen, Maria; Weiske, Thomas; Usharani, Dandamudi; Shaik, Sason; Schwarz, Helmut


    The reactivity of the homo- and heteronuclear oxide clusters [XYO2](+) (X, Y = Al, Si, Mg) toward methane was studied using Fourier transform ion cyclotron resonance mass spectrometry, in conjunction with high-level quantum mechanical calculations. The most reactive cluster by both experiment and theory is [Al2O2](•+). In its favorable pathway, this cluster abstracts a hydrogen atom by means of proton-coupled electron transfer (PCET) instead of following the conventional hydrogen-atom transfer (HAT) route. This mechanistic choice originates in the strong Lewis acidity of the aluminum site of [Al2O2](•+), which cleaves the C-H bond heterolytically to form an Al-CH3 entity, while the proton is transferred to the bridging oxygen atom of the cluster ion. In addition, a comparison of the reactivity of heteronuclear and homonuclear oxide clusters [XYO2](+) (X, Y = Al, Si, Mg) reveals a striking doping effect by aluminum. Thus, the vacant s-p hybrid orbital on Al acts as an acceptor of the electron pair from methyl anion (CH3(-)) and is therefore eminently important for bringing about thermal methane activation by PCET. For the Al-doped cluster ions, the spin density at an oxygen atom, which is crucial for the HAT mechanism, acts here as a spectator during the course of the PCET mediated C-H bond cleavage. A diagnostic plot of the deformation energy vis-à-vis the barrier shows the different HAT/PCET reactivity map for the entire series. This is a strong connection to the recently discussed mechanism of oxidative coupling of methane on magnesium oxide surfaces proceeding through Grignard-type intermediates.

  2. Gold in Modern Economy

    Directory of Open Access Journals (Sweden)

    Boryshkevych Olena V.


    Full Text Available The article studies the role of gold in modern economy. It analyses dynamics and modern state of the gold market. It studies volumes of contracts in exchange and off-exchange markets. In order to reveal changes of key features of the gold market, it focuses on the study of gold demand volumes, studies volumes and geographical changes in the world gold mining, and analyses volumes of monetary gold of central banks and its share in gold and currency reserves. It analyses price fluctuations in the gold market during 1968 – 2013 and identifies main factors that determine the gold price. It identifies interconnection between the state of the gold market and financial markets of countries. The study showed that namely geopolitical and economic instability restricts the spectrum of financial assets for investing and gold is not only a safe investment object but also a profitable one.

  3. 水合碱金属离子团簇Rb+(H2O)n和Cs+(H2O)n的量子化学研究%Quantum chemical studies on the hydrated clusters of alkaline-metal cation Rb+ (H2O) n and Cs+ (H2O) n

    Institute of Scientific and Technical Information of China (English)

    宫利东; 龚海丹


    Abstract-.he hydrated clusters of Rb+ (H2O)n and Cs+ (HiO)n(w=l~6) in gas phase were investigated by a high level ab initio method, QCISD/aug-cc-pVDZ. The geometries were optimized. For the lowest-energy structures of the hydra ted clusters, the binding energies and vibrational frequencies were calculated. The results show that as the hydration number of water increases? The distances from the cation to the water oxygen, RM0? And the total binding energies behave the same variation tendency for the Rb+ (H2O), and Cs+ (H2O)n; the charge distribution analysis indicates that the positive charge of the cation decreases gradually, while the negative charge of the water oxygen increases gradually, and the positive charge of the hydrogen does not change evidently.%应用高水平的从头计算方法QCISD/aug-cc-pVDZ,对气相中的Rb+(H2O)n和Cs+(H2O)m(n=1~6)体系进行研究,优化几何构型,对能量最低的结构,计算结合能和振动频率.结果表明,随着水分子数目的增加,对于Rb+和Cs+,RMO和总结合能有相同的变化趋势;电荷分布显示位于离子上的正电荷逐渐减小,位于氧原子上的负电荷逐渐增大,位于氢原子上的正电荷变化不明显.

  4. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet


    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...... nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catalytic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final...... efficiency of Au-based catalysts. Finally, our theoretical simulations allow us to discuss the selectivity of supported Au nanoparticles....

  5. Design Principles of Inert Substrates for Exploiting Gold Clusters’ Intrinsic Catalytic Reactivity (United States)

    Gao, Wang; Ting Cui, Ting; Fu Zhu, Yong; Wen, Zi; Zhao, Ming; Chen Li, Jian; Jiang, Qing


    Ultralow stability of gold clusters prohibits the understanding of their intrinsic reactivity (that is vital for revealing the origin of gold’s catalytic properties). Using density functional theory including many-body dispersion method, we aim to ascertain effective ways in exploiting gold clusters’ intrinsic reactivity on carbon nanotubes (CNTs). We find that the many body van der Waals interactions are essential for gold clusters’ reactivity on CNTs and even for O2 activation on these supported clusters. Furthermore, curvature and dopant of CNTs are found to qualitatively change the balance between physisorption and chemisorption for gold clusters on CNTs, determining the clusters’ morphology, charge states, stability, and reactivity, which rationalize the experimental findings. Remarkably, N doped small curvature CNTs, which effectively stabilize gold clusters and retain their inherent geometric/electronic structures, can be promising candidates for exploiting gold clusters’ intrinsic reactivity.

  6. Synthesis and molecular structure of the trinuclear ruthenium cluster cations [H3Ru3(C6H6)(C6H2Me4)2(O)]+ and [H3Ru3{C6H5(CH2)2OH}(C6H2Me4)2(O)]+


    Vieille-Petit, Ludovic; Therrien, Bruno; Süss-Fink, Georg


    The trinuclear arene–ruthenium cluster cations [H3Ru3(C6H6)(C6H2Me4)2(O)]+ (2) and [H3Ru3{C6H5(CH2)2OH}(C6H2Me4)2(O)]+ (3) have been synthesised from the dinuclear precursor [H3Ru2(C6H2Me4)2]+ (1) and the mononuclear complexes [Ru(C6H6)(H2O)3]2+ and [Ru{C6H5(CH2)2OH}(H2O)3]2+, isolated and characterised as the tetrafluoroborate salts. Cations 2 and 3 are analogues of the cluster cation [H3Ru3(C6H6)(C6Me6)2(O)]+ which was found to catalyse the hydrogenation of benzene to give cyclohexane under...

  7. Experimental and DFT studies of gold nanoparticles supported on MgO(111) nano-sheets and their catalytic activity. (United States)

    Li, Zhi; Ciobanu, Cristian V; Hu, Juncheng; Palomares-Báez, Juan-Pedro; Rodríguez-López, José-Luis; Richards, Ryan


    A wet chemical preparation of MgO with the (111) facet as the primary surface has recently been reported and with alternating layers of oxygen anions and magnesium cations, this material shows unique chemical and physical properties. The potential to utilize the MgO(111) surface for the immobilization of metal particles is intriguing because the surface itself offers a very different environment for the metal particle with an all oxygen interface, as opposed to the typical (100) facet that possesses alternating oxygen anion and magnesium cation sites on the surface. Gold nanoparticles have demonstrated a broad range of interesting catalytic properties, but are often susceptible to aggregation at high temperatures and are very sensitive to substrate effects. Here, we investigate gold-supported on MgO(111) nanosheets as a catalyst system for the aerobic oxidation of benzyl alcohol. Gold nanoparticles deposited on MgO(111) show an increased level of activity in the solvent-free benzyl alcohol aerobic oxidation as compared to gold nanoparticles deposited on a typical MgO aerogel. TEM studies reveal that the gold nanoparticles have a hemispherical shape while sitting on the main surface of MgO(111) nanosheets, with a large Au-MgO interface. Given that the gold nanoparticles deposited on the two types of MgO have similar size, and that the two types of unmodified MgO show almost the same activities in the blank reaction, we infer that the high activity of Au/MgO(111) is due to the properties of the (111) support and/or those of the gold-support interface. To understand the binding of Au on low-index MgO surfaces and the charge distribution at the surface of the support, we have performed density functional theory (DFT) calculations on all low-index MgO substrates (with and without gold), using a model Au(10) cluster. Due to similar lattice constants of Au(111) and MgO(111) planes, the Au cluster retains its structural integrity and binds strongly on MgO(111) with either

  8. A New Nanometer-Sized Ga(III-Oxyhydroxide Cation

    Directory of Open Access Journals (Sweden)

    William H. Casey


    Full Text Available A new 30-center Ga(III-oxy-hydroxide cation cluster was synthesized by hydrolysis of an aqueous GaCl3 solution near pH = 2.5 and crystallized using 2,6-napthalene disulfonate (NDS. The cluster has 30 metal centers and a nominal stoichiometry: [Ga30(μ4-O12(μ3-O4(μ3-OH4(μ2-OH42(H2O16](2,6-NDS6, where 2,6-NDS = 2,6-napthalene disulfonate This cluster augments the very small library of Group 13 clusters that have been isolated from aqueous solution and closely resembles one other Ga(III cluster with 32 metal centers that had been isolated using curcurbit ligands. These clusters have uncommon linked Ga(O4 centers and sets of both protonated and unprotonated μ3-oxo.

  9. Two-dimensional magic numbers in mass abundances of photofragmented bimetallic clusters

    CERN Document Server

    Janssens, E; Neukermans, S; Silverans, R E; Lievens, P


    The stability of cationic gold clusters doped with one transition metal atom was investigated by a mass spectrometric analysis of fragments resulting from high fluence irradiation of a cluster beam. Strongly enhanced abundances are found for Au sub 5 X sup + , X = V, Mn, Cr, Fe, Co, Zn, which implies that these species are far more stable towards fragmentation than their neighbouring cluster sizes. Here we interpret the enhanced stability of these clusters within a shell model approach for two-dimensional (2D) systems: the number of delocalized electrons in Au sub 5 X sup + is six, which is a magic number for 2D systems. Quantum chemical calculations for Au sub N Zn sup + (N = 2-6) predict planar structures that are stabilized by the influence of the dopant atom. Also, the main features of the calculated molecular orbitals are well reproduced by a simple electron-in-a-box model. The present report constitutes the first observation of 2D magic numbers in size dependent properties of metal clusters.

  10. Probing the Intact Cluster Catalysis Concept by Tetrahedral Clusters With Framework Chirality

    Institute of Scientific and Technical Information of China (English)

    G. Süss-Fink; L. Vieille-Petit


    @@ 1Results and Discussion In order to bring evidence for or against the hypothesis of catalytic hydrogenation by intact trinuclear arene ruthenium clusters containing an oxo cap, the substrate being hydrogenated inside the hydrophobic pocket spanned by the three arene ligands ("supramolecular cluster catalysis")[1], we synthesized cationic Ru3O clusters (See Fig. 1) with three different arene ligands (intrinsically chiral tetrahedra).

  11. Surface reconstruction precursor to melting in Au309 clusters

    Directory of Open Access Journals (Sweden)

    Fuyi Chen


    Full Text Available The melting of gold cluster is one of essential properties of nanoparticles and revisited to clarify the role played by the surface facets in the melting transition by molecular dynamics simulations. The occurrence of elaborate surface reconstruction is observed using many-body Gupta potential as energetic model for 309-atom (2.6 nm decahedral, cuboctahedral and icosahedral gold clusters. Our results reveal for the first time a surface reconstruction as precursor to the melting transitions. The surface reconstruction lead to an enhanced melting temperature for (100 faceted decahedral and cuboctahedral cluster than (111 faceted icosahedral gold cluster, which form a liquid patch due to surface vacancy.

  12. Electronic shell structure and chemisorption on gold nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Ask Hjorth; Kleis, Jesper; Thygesen, Kristian Sommer


    We use density functional theory (DFT) to investigate the electronic structure and chemical properties of gold nanoparticles. Different structural families of clusters are compared. For up to 60 atoms we optimize structures using DFT-based simulated annealing. Cluster geometries are found to dist...

  13. Gold-alkynyls in catalysis: alkyne activation, gold cumulenes and nuclearity. (United States)

    Halliday, Connor J V; Lynam, Jason M


    The use of cationic gold(i) species in the activation of substrates containing C[triple bond, length as m-dash]C bonds has become a valuable tool for synthetic chemists. Despite the seemingly simple label of 'alkyne activation', numerous patterns of reactivity and product structure are observed in systems employing related substrates and catalysts. The complications of mechanistic determination are compounded as the number of implicated gold(i) centres involved in catalysis increases and debate about the bonding in proposed intermediates clouds the number and importance of potential reaction pathways. This perspective aims to illustrate some of the principles underpinning gold-alkynyl interactions whilst highlighting some of the contentious areas in the field and offering some insight into other, often ignored, mechanistic possibilities based on recent findings.

  14. Reactions of the dianion [1,1,1-(CO)3-2-Ph-closo-1,2-MnCB9H9]2- with transition-metal cations: facile insertion and then extrusion of cluster vertexes. (United States)

    Du, Shaowu; Jeffery, John C; Kautz, Jason A; Lu, Xiu Lian; McGrath, Thomas D; Miller, Thomas A; Riis-Johannessen, T; Stone, F Gordon A


    The manganacarborane dianion in [N(PPh(3))(2)][NEt(4)][1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(9)] (1b) reacts with cationic transition metal-ligand fragments to give products in which the electrophilic metal groups (M') are exo-polyhedrally attached to the {closo-1,2-MnCB(9)} cage system via three-center two-electron B-H --> M' linkages and generally also by Mn-M' bonds. With {Cu(PPh(3))}(+), the Cu-Mn-Cu trimetallic species [1,6-{Cu(PPh(3))}-1,7-{Cu(PPh(3))}-6,7-(mu-H)(2)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(7)] (3a) is formed, whereas reactions with {M'(dppe)}(2+) (M' = Ni, Pd; dppe = Ph(2)PCH(2)CH(2)PPh(2)) give [1,3-{Ni(dppe)}-3-(mu-H)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(8)] (5a) and [1,3,6-{Pd(dppe)}-3,6-(mu-H)(2)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(7)] (5b), both of which contain M'-Mn bonds. The latter reaction with M' = Pt affords [3,6-{Pt(dppe)}-3,6-(mu-H)(2)-1,1,1-(CO)(3)-2-Ph-closo-1,2-MnCB(9)H(7)] (6), which lacks a Pt-Mn connectivity. Compound 6 itself spontaneously converts to [1-Ph-2,2,2-(CO)(3)-8,8-(dppe)-hypercloso-8,2,1-PtMnCB(9)H(9)] (7b) and thence to [3,6,7-{Mn(CO)(3)}-3,7-(mu-H)(2)-1-Ph-6,6-(dppe)-closo-6,1-PtCB(8)H(6)] (8). This sequence occurs via initial insertion of the {Pt(dppe)} unit and then extrusion of {Mn(CO)(3)} and one {BH} vertex. In the presence of alcohols ROH, compound 6 is transformed to the 7-OR substituted analogues of 7b. X-ray diffraction studies were essential in elucidating the structures encountered in compounds 5-8 and hence in understanding their behavior.

  15. Theoretical Investigation on the Adsorption of Ag+ and Hydrated Ag+ Cations on Clean Si(111)Surface

    Institute of Scientific and Technical Information of China (English)

    SHENG Yong-Li; LI Meng-Hua; WANG Zhi-Guo; LIU Yong-Jun


    In this paper,the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111)surface were investigated by using cluster(Gaussian 03)and periodic(DMol3)ab initio calculations.Si(111)surface was described with cluster models(Si14H17 and Si22H21)and a four-silicon layer slab with periodic boundary conditions.The effect of basis set superposition error(BSSE)was taken into account by applying the counterpoise correction.The calculated results indicated that the binding energies between hydrated Ag+ cations and clean Si(111)surface are large,suggesting a strong interaction between hydrated Ag+ cations and the semiconductor surface.With the increase of number,water molecules form hydrogen bond network with one another and only one water molecule binds directly to the Ag+ cation.The Ag+ cation in aqueous solution will safely attach to the clean Si(111)surface.

  16. Structures and electronic properties of Aun-1Cu and Aun (n≤9) clusters

    Institute of Scientific and Technical Information of China (English)

    Wang Hong-Yan; Li Xi-Bo; Tang Yong-Jian; R. Bruce King; Henry F. Schaefer III


    A systematic study on the structure and electronic properties of gold clusters doped each with one copper atom has been performed using the density functional theory. The average bond lengths in the Aun-1 Cu (n ≤ 9) bimetallic clusters are shorter than those in the corresponding pure gold clusters. The ionization potentials of the bimetallic clusters Aun-1 Cu (n ≤ 9) are larger than those of the corresponding homoatomic gold clusters except for Au5. The energy gaps of the Au-Cu binary clusters are narrower than those of the Aun clusters except AuCu and Au3Cu. No obvious even-odd effect exists in the variations of the electron affinities and ionization potentials for the Aun-1 Cu (n ≤ 9) clusters, which is in contrast to the case of gold clusters Aun.

  17. Electroless selective deposition of gold nano-array for silicon nanowires growth

    Directory of Open Access Journals (Sweden)

    Ruiz-Gomes E.


    Full Text Available Nanopatterns of gold clusters on a large surface of oriented Si(111 substrates, from the galvanic displacement of gold salt (via the spontaneous reduction of AuCl4 -, are demonstrated in this work. The Si substrate is patterned by Focused Ion Beam (FIB prior to being dipped in a gold solution. Here, we show that these patterns lead to successful control of the position and size of gold clusters. Sequential patterning reveals a powerful maskless alternative to surface preparation prior to Si nanowire growth

  18. Using Glutamic Acid, Phenylalanine and Tryptophan to Synthesize Capped Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kamyar Khoshnevisan


    Full Text Available Introduction: The study and investigation of gold nanoparticles produced by amino acid is one of the interesting and applied issues in nanotechnology. In this study, amino acids were used to reduce gold cations as well as an agent to cap gold nanoparticles. In fact, strong bound of amino groups to amino acid and protein on the gold nanoparticles surface indicate the medical applications of these materials. Methods: In this study, gold nanoparticles were prepared and functionalized by using solution reduction containing gold cations with optimum concentration (0.005 M, and also prepared by using glutamic acid, phenylalanine and tryptophan with optimum concentration (0.025 M. Results: The investigation of optimum condition for gold solution and amino acids and also determination of gold nanoparticles were done by UV-Vis. The nanoparticles size were reported 5-20, 10-20 and 20-30 nm respectively by transmission electron microscopy and dynamic light scattering techniques, which is appropriate for biological activities. Conclusion: The comparison of the data from experimental and quantum calculations demonstrated that amino acids have strong band when they are conjugated by anion state. Free carboxylic groups of capped gold nanoparticles with glutamic acid are one of the suitable and capable beads for binding to biological agents.

  19. Rapid and quantitative quality control of microarrays using cationic nanoparticles. (United States)

    Sun, Ye; Fan, Wenhua; McCann, Michael P; Golovlev, Val


    The fabrication quality of microarrays significantly influences the accuracy and reproducibility of microarray experiments. In this report, we present a simple and fast quality control (QC) method for spotted oligonucleotide and cDNA microarrays. It employs a nonspecific electrostatic interaction of colloidal gold nanoparticles with the chemical groups of DNA molecules and other biomolecules immobilized on the microarray surface that bear positive or negative charges. An inexpensive flatbed scanner is used to visualize and quantify the binding of cationic gold particles to the anionic DNA probes on the microarray surface. An image analysis software was designed to assess the various parameters of the array spots including spot intensity, shape and array homogeneity, calculate the overall array quality score, and save the detailed array quality report in an Excel file. The gold staining technique is fast and sensitive. It can be completed in 10 min and detect less than 1% of the probe amount commonly recommended for microarrays. Compared to the current microarray QC method that utilizes the hybridization of probes with short random sequence oligonucleotides labeled with fluorophore, our gold staining method requires less time for the analysis, reduces the reagent cost, and eliminates the need for the expensive laser scanner.

  20. Controlled Aspect Ratios of Gold Nanorods in Reduction-Limited Conditions

    Directory of Open Access Journals (Sweden)

    Jong-Yeob Kim


    Full Text Available Aspect ratios of gold nanorods have been finely modified in reduction-limited conditions via two electrochemical ways: by changing the amount of a growth solution containing small gold clusters in the presence of already prepared gold nanorods as seeds or by changing electrolysis time in the presence or absence of a silver plate. While the atomic molar ratio of gold in the growth solution to gold in the seed solution is critical in the former method, the relative molar ratio of gold ions to silver ions in the electrolytic solution is important in the latter way for the control of the aspect ratios of gold nanorods. The aspect ratios of gold nanorods decrease with an increase of electrolysis time in the absence of a silver plate, but they increase with an increase of electrolysis time in the presence of a silver plate.

  1. Two new polyoxovanadate clusters templated through cysteamine

    Indian Academy of Sciences (India)

    K Pavani; S Upreti; A Ramanan


    Two new fully oxidized polyoxovanadate cluster-based solids (C4N2S2H14)2[H2V10O28]$\\cdot$4H2O, 1 and (C4N2S2H14)5[H4V15O42]2.10H2O, 2 are crystallized under self-assembly process in the presence of cysteamine. In both 1 and 2, cysteamines are oxidized forming disulphide linkages and occur as counter cations. The organic cations assemble around V10O28 cluster anions in 1 whereas they aggregate around V15O42 clusters in 2. pH appears to be the structure determinant in the occurrence of decavanadate cluster in 1 and pentadecavanadate in 2, with the same counter cation.

  2. Gold-Mining

    DEFF Research Database (Denmark)

    Raaballe, J.; Grundy, B.D.


    sooner than a manager of lower type. Third, a non-operating gold mine is valued as being of the lowest type in the pool and all else equal, high-asymmetri mines are valued lower than low-asymmetri mines. In a qualitative sense these results are robust with respect to different assumptions (re cost......  Based on standard option pricing arguments and assumptions (including no convenience yield and sustainable property rights), we will not observe operating gold mines. We find that asymmetric information on the reserves in the gold mine is a necessary and sufficient condition for the existence...... of operating gold mines. Asymmetric information on the reserves in the mine implies that, at a high enough price of gold, the manager of high type finds the extraction value of the company to be higher than the current market value of the non-operating gold mine. Due to this under valuation the maxim of market...

  3. Synthetic cation-selective nanotube: Permeant cations chaperoned by anions (United States)

    Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho


    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  4. Tetrahedron DNA dendrimers and their encapsulation of gold nanoparticles. (United States)

    Zhou, Tao; Wang, Yijie; Dong, Yuanchen; Chen, Chun; Liu, Dongsheng; Yang, Zhongqiang


    DNA dendrimers have achieved increasing attention recently. Previously reported DNA dendrimers used Y-DNA as monomers. Tetrahedron DNA is a rigid tetrahedral cage made of DNA. Herein, we use tetrahedron DNA as monomers to prepare tetrahedron DNA dendrimers. The prepared tetrahedron DNA dendrimers have larger size compared with those made of Y-DNA. In addition, thanks to the central cavity of tetrahedron DNA monomers, some nanoscale structures (e.g., gold nanoparticles) can be encapsulated within tetrahedron DNA monomers. Tetrahedron DNA encapsulated with gold nanoparticles can be further assembled into dendrimers, guiding gold nanoparticles into clusters.

  5. Molecular modeling of organic corrosion inhibitors: why bare metal cations are not appropriate models of oxidized metal surfaces and solvated metal cations. (United States)

    Kokalj, Anton


    The applicability of various models of oxidized metal surfaces - bare metal cations, clusters of various size, and extended (periodic) slabs - that are used in the field of quantum-chemical modeling of corrosion inhibitors is examined and discussed. As representative model systems imidazole inhibitor, MgO surface, and solvated Mg(2+) ion are considered by means of density-functional-theory calculations. Although the results of cluster models are prone to cluster size and shape effects, the clusters of moderate size seem useful at least for qualitative purposes. In contrast, the bare metal cations are useless not only as models of oxidized surfaces but also as models of solvated cations, because they bind molecules several times stronger than the more appropriate models. In particular, bare Mg(2+) binds imidazole by 5.9 eV, while the slab model of MgO(001) by only 0.35 eV. Such binding is even stronger for 3+ cations, e.g., bare Al(3+) binds imidazole by 17.9 eV. The reasons for these fantastically strong binding energies are discussed and it is shown that the strong bonding is predominantly due to electron charge transfer from molecule to metal cation, which stems from differences between molecular and metal ionization potentials.

  6. [Potential-dependent Cation Selective Ion Channels Formed by Peroxiredoxin 6 in the Lipid Bilayer]. (United States)

    Grigoriev, P A; Sharapov, M G; Novoselov, V I


    The antioxidant enzyme peroxiredoxin 6 forms cation selective ion cluster-type channels in the lipid bilayer. Channel clustering as oligomeric structure consists of three or more subunits--channels with conductance of about 350 pS in the 200 mM KCl. Mean dwell time of the channel's open states decreases with increasing membrane voltage. A possible molecular mechanism of the observed potential-dependent inactivation of the channel cluster is discussed.

  7. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong


    and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...

  8. The relative valuation of gold


    Baur, Dirk G.; Beckmann, Joscha; Czudaj, Robert


    Gold is a globally traded asset and held in large quantities by investors and central banks. Since there is no established model to assess if the price of gold is overvalued or undervalued, we propose a relative valuation framework based on gold price ratios. We analyze gold prices relative to commodity prices, consumer prices, stock prices, dividend and bond yields and find that the relative value of gold varies significantly over time indicating pronounced periods of mispricing of gold rela...

  9. Vibrational properties of gold nanoparticles obtained by green synthesis (United States)

    Alvarez, Ramón A. B.; Cortez-Valadez, M.; Bueno, L. Oscar Neira; Britto Hurtado, R.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C. E.; Serrano-Corrales, Luis Ivan; Arizpe-Chávez, H.; Flores-Acosta, M.


    This study reports the synthesis and characterization of gold nanoparticles through an ecological method to obtain nanostructures from the extract of the plant Opuntia ficus-indica. Colloidal nanoparticles show sizes that vary between 10-20 nm, and present various geometric morphologies. The samples were characterized through optical absorption, Raman Spectroscopy and Transmission Electron Microscopy (TEM). Additionally, low energy metallic clusters of Aun (n=2-20 atoms) were modeled by computational quantum chemistry. The theoretical results were obtained with Density Functional Theory (DFT). The predicted results of Au clusters show a tendency and are correlated with the experimental results concerning the optical absorption bands and Raman spectroscopy in gold nanoparticles.

  10. Cluster headache (United States)

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache; Vascular headache - cluster ... A cluster headache begins as a severe, sudden headache. The headache commonly strikes 2 to 3 hours after you fall ...

  11. Cluster Forests

    CERN Document Server

    Yan, Donghui; Jordan, Michael I


    Inspired by Random Forests (RF) in the context of classification, we propose a new clustering ensemble method---Cluster Forests (CF). Geometrically, CF randomly probes a high-dimensional data cloud to obtain "good local clusterings" and then aggregates via spectral clustering to obtain cluster assignments for the whole dataset. The search for good local clusterings is guided by a cluster quality measure $\\kappa$. CF progressively improves each local clustering in a fashion that resembles the tree growth in RF. Empirical studies on several real-world datasets under two different performance metrics show that CF compares favorably to its competitors. Theoretical analysis shows that the $\\kappa$ criterion is shown to grow each local clustering in a desirable way---it is "noise-resistant." A closed-form expression is obtained for the mis-clustering rate of spectral clustering under a perturbation model, which yields new insights into some aspects of spectral clustering.

  12. Gold in the Books

    Institute of Scientific and Technical Information of China (English)



    In the present Chinese market, more and more businessmen turn to the profit-making trade. Even some counters in the bookstores are selling gold rings, necklaces, bracelets, etc. One day a school teacher asked a store assistant,“Why are you selling gold in your bookstore?”

  13. Star Clusters


    Gieles, M.


    Star clusters are observed in almost every galaxy. In this thesis we address several fundamental problems concerning the formation, evolution and disruption of star clusters. From observations of (young) star clusters in the interacting galaxy M51, we found that clusters are formed in complexes of stars and star clusters. These complexes share similar properties with giant molecular clouds, from which they are formed. Many (70%) of the young clusters will not survive the fist 10 Myr, due to t...

  14. A novel method of supporting gold nanoparticles on MWCNTs: Synchrotron X-ray reduction

    Institute of Scientific and Technical Information of China (English)

    Kuan-Nan Lin; Tsung-Yeh Yang; Hong-Ming Lin; Yeu-Kuang Hwu; She-Huang Wu; Chung-Kwei Lin


    Gold nanoparticles decorating the surface of multiwalled carbon nanotubes (MWCNTs) are prepared by photochemical reduction. The gold clusters form different interesting geometrical faceted shapes in accordance to time duration of synchrotron X-ray irradiation. The shape of nanogold could be spherical, rod-like, or triangular. Carbon nanotubes serve as optimal templates for the heterogeneous nucleation of gold nanocrystals. These nanocrystal structures are characterized by transmission electron microscope (TEM) and element analysis by energy dispersive spectroscopy (EDS).

  15. Design Principles of Inert Substrates for Exploiting Gold Clusters’ Intrinsic Catalytic Reactivity


    Wang Gao; Ting Ting Cui; Yong Fu Zhu; Zi Wen; Ming Zhao; Jian Chen Li; Qing Jiang


    Ultralow stability of gold clusters prohibits the understanding of their intrinsic reactivity (that is vital for revealing the origin of gold’s catalytic properties). Using density functional theory including many-body dispersion method, we aim to ascertain effective ways in exploiting gold clusters’ intrinsic reactivity on carbon nanotubes (CNTs). We find that the many body van der Waals interactions are essential for gold clusters’ reactivity on CNTs and even for O2 activation on these supp...

  16. Star-like superalkali cations featuring planar pentacoordinate carbon. (United States)

    Guo, Jin-Chang; Tian, Wen-Juan; Wang, Ying-Jin; Zhao, Xue-Feng; Wu, Yan-Bo; Zhai, Hua-Jin; Li, Si-Dian


    Superalkali cations, known to possess low vertical electron affinities (VEAs), high vertical detachment energies, and large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, are intriguing chemical species. Thermodynamically, such species need to be the global minima in order to serve as the promising targets for experimental realization. In this work, we propose the strategies of polyhalogenation and polyalkalination for designing the superalkali cations. By applying these strategies, the local-minimum planar pentacoordinate carbon (ppC) cluster CBe5 can be modified to form a series of star-like superalkali ppC or quasi-ppC CBe5X5 (+) (X = F, Cl, Br, Li, Na, K) cations containing a CBe5 moiety. Polyhalogenation and polyalkalination on the CBe5 unit may help eliminate the high reactivity of bare CBe5 molecule by covering the reactive Be atoms with noble halogen anions and alkali cations. Computational exploration of the potential energy surfaces reveals that the star-like ppC or quasi-ppC CBe5X5 (+) (X = F, Cl, Br, Li, Na, K) clusters are the true global minima of the systems. The predicted VEAs for CBe5X5 (+) range from 3.01 to 3.71 eV for X = F, Cl, Br and 2.12-2.51 eV for X = Li, Na, K, being below the lower bound of the atomic ionization potential of 3.89 eV in the periodic table. Large HOMO-LUMO energy gaps are also revealed for the species: 10.76-11.07 eV for X = F, Cl, Br and 4.99-6.91 eV for X = Li, Na, K. These designer clusters represent the first series of superalkali cations with a ppC center. Bonding analyses show five Be-X-Be three-center two-electron (3c-2e) σ bonds for the peripheral bonding, whereas the central C atom is associated with one 6c-2e π bond and three 6c-2e σ bonds, rendering (π and σ) double aromaticity. Born-Oppenheimer molecular dynamics simulations indicate that the CBe5 motif is robust in the clusters. As planar hypercoordination carbon species are often thermodynamically

  17. First-Principles Investigation of Ag-Doped Gold Nanoclusters

    Directory of Open Access Journals (Sweden)

    Fei-Yue Fan


    Full Text Available Gold nanoclusters have the tunable optical absorption property, and are promising for cancer cell imaging, photothermal therapy and radiotherapy. First-principle is a very powerful tool for design of novel materials. In the present work, structural properties, band gap engineering and tunable optical properties of Ag-doped gold clusters have been calculated using density functional theory. The electronic structure of a stable Au20 cluster can be modulated by incorporating Ag, and the HOMO–LUMO gap of Au20−nAgn clusters is modulated due to the incorporation of Ag electronic states in the HOMO and LUMO. Furthermore, the results of the imaginary part of the dielectric function indicate that the optical transition of gold clusters is concentration-dependent and the optical transition between HOMO and LUMO shifts to the low energy range as the Ag atom increases. These calculated results are helpful for the design of gold cluster-based biomaterials, and will be of interest in the fields of radiation medicine, biophysics and nanoscience.

  18. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled... (United States)


    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate... be considered in any assay for quality of a gold filled, gold overlay and rolled gold plate...

  19. Effect of the counter cation on the third order nonlinearity in anionic Au dithiolene complexes (United States)

    Iliopoulos, K.; El-Ghayoury, A.; Derkowska, B.; Ranganathan, A.; Batail, P.; Gindre, D.; Sahraoui, B.


    In this work, we present the third order nonlinear optical investigation of two gold complexes, which differ by the nature of the counter cations. The impact of the different design in the architecture through a set of hydrogen bonds in the case of Au-Mel of the systems on the nonlinearity has been studied by means of the Z-scan setup under 532 nm, 30 ps laser excitation, allowing for the determination of the nonlinear absorption and refraction of the samples. Significant modification of the nonlinear optical response between the two metal complexes has been found suggesting a clear effect of the counter cation.

  20. Light-Induced In Situ Transformation of Metal Clusters to Metal Nanocrystals for Photocatalysis. (United States)

    Xiao, Fang-Xing; Zeng, Zhiping; Hsu, Shao-Hui; Hung, Sung-Fu; Chen, Hao Ming; Liu, Bin


    In situ transformation of glutathione-capped gold (Aux) clusters to gold (Au) nanocrystals under simulated solar light irradiation was achieved and utilized as a facile synthetic approach to rationally fabricate Aux/Au/TiO2 ternary and Au/TiO2 binary heterostructures. Synergistic interaction of Aux clusters and Au nanocrystals contributes to enhanced visible-light-driven photocatalysis.

  1. Titration of gold nanoparticles in phase extraction. (United States)

    Cheng, Han-Wen; Schadt, Mark J; Zhong, Chuan-Jian


    In the organic-aqueous phase transfer process of gold nanoparticles, there are two types of distinctive interfaces involving hydrophilic and hydrophobic ligands, the understanding of which is important for the design of functional nanomaterials for analytical/bioanalytical applications and the control over the nanoparticles' nanoactivity and nanotoxicity in different phases. This report describes new findings of an investigation of the quantitative aspect of ligand ion pairing at the capping monolayer structure that drives the phase extraction of gold nanoparticles. Alkanethiolate-capped gold nanoparticles of 8 nm diameter with high size monodispersity (RSD ∼ 5%) were first derivatized by a ligand place exchange reaction with 11-mercaptoundecanoic acid to form a mixed monolayer shell consisting of both hydrophobic (-CH3) and hydrophilic (-COOH) groups. It was followed by quantitative titration of the resulting nanoparticles with a cationic species (-NR4(+)) in a toluene phase, yielding ion pairing of -NR4(+) and -COO(-) on part of the capping monolayer. Analysis of the phase extraction allowed a quantitative determination of the percentage of ion pairing and structural changes in the capping monolayer on the nanoparticles. The results, along with morphological characterization, are discussed in terms of the interfacial structural changes and their implications on the rational design of surface-functionalized nanoparticles and fine tuning of the interfacial reactivity.

  2. Structural Analysis of a Gene Cluster Encoding Two Cationic and Three Anionic Peroxidases from Rice Chromosome 4%对水稻第4号染色体长臂近端粒区一个过氧化物酶基因簇的结构分析

    Institute of Scientific and Technical Information of China (English)

    陈泽华; 周波; 韩斌; 钱跃民; 洪国藩


    通过对定位BAC克隆q3037(H0207F01)的序列测定和分析,在其中一个22.5kb的区域发现一个由5个第三类过氧化物酶基因(依次命名为osp1、osp2、osp3、osp4、osp5)组成的基因簇。分析表明,osp1、osp2和osp3分别含1个内含子,osp4和osp5分别含2个内含子。该5个基因分别编码338、335、336、343和346个氨基酸残基的蛋白质,而且都具有N端信号肽序列,其中OSP1、OSP4、OSP5为阴离子过氧化物酶,OSP2、OSP3为阳离子过氧化物酶。对5个基因间的两两比较分析和进化分析结果表明:该基因簇是通过一系列的串联基因复制事件而形成;osp5与来自玉米的ap1和来自大麦(Hordeum vulgare)的prx7为潜在的直向同源基因,而且,osp1-5与ap1、prx7构成了分泌性植物过氧化物酶基因家族中一个新的分枝。%Sequence analysis of a rice BAC q3037(H0207F01) identified a cluster of five tandemly arranged peroxidase genes, osp1, osp2, osp3, osp4 and osp5, within a 22.5 kb region. osp4, osp5 each have three exons interrupted by two introns, while osp1, osp2 and osp3 each have two exons interrupted by a single intron.The five genes were predicted products of 338, 335, 336, 343 and 346 amino acid residues, respectively, including putative signal peptide sequence at the amino-termini. And OSP1, OSP4 and OSP5 were predicted to be anionic peroxidase, OSP2 and OSP3 are cationic. Comparative analysis and evolutionary analysis of the clustered genes and other peroxidase family members revealed that the gene cluster occurred by tandemly gene duplications (from osp5 to osp1); and that osp5, ap1 and prx7 were potential orthologies, and ospl-5, apl and prx7 constituted a novel evolutionary branch of class III peroxidases.

  3. Electron attachment and electron ionization of acetic acid clusters embedded in helium nanodroplets

    NARCIS (Netherlands)

    da Silva, F. Ferreira; Jaksch, S.; Martins, G.; Dang, H. M.; Dampc, M.; Denifl, S.; Maerk, T. D.; Limao-Vieira, P.; Liu, J.; Yang, S.; Ellis, A. M.; Scheier, P.


    The effect of incident electrons on acetic acid clusters is explored for the first time. The acetic acid clusters are formed inside liquid helium nanodroplets and both cationic and anionic products ejected into the gas phase are detected by mass spectrometry. The cation chemistry (induced by electro

  4. Surface reconstruction precursor to melting in Au309 clusters


    Fuyi Chen; Li, Z. Y.; Roy L. Johnston


    The melting of gold cluster is one of essential properties of nanoparticles and revisited to clarify the role played by the surface facets in the melting transition by molecular dynamics simulations. The occurrence of elaborate surface reconstruction is observed using many-body Gupta potential as energetic model for 309-atom (2.6 nm) decahedral, cuboctahedral and icosahedral gold clusters. Our results reveal for the first time a surface reconstruction as precursor to the melting transitions. ...

  5. Prelude to Gold

    Institute of Scientific and Technical Information of China (English)


    FEMALE Chinese athletes Fu Mingxia and Wang Junxia recorded outstanding performances at 1996 Atlanta Olympic Games. Fu Mingxia won gold medals in both platform and springboard diving, and in so doing became the first double medal winner in Olympic diving since 1960. Wang Junxia, the holder of several world records in women’s long distance events, struggled against the odds and captured gold in the 5,000-meter event,

  6. Joining the Gold Rush

    Institute of Scientific and Technical Information of China (English)

    LIU BO


    @@ Flush with advanced technology and large amounts of capital, overseas mining firms are carving a place in the Chinese gold industry Dozens of Western mining companies, particularly those from Canada, are making the journey into the kind of remote corners in China that other overseas investors shy away from. What are they looking for? The answer is one of the most precious substances on the planet: gold.

  7. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)


    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.

  8. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    CHENG JiaGao; LUO XiaoMin; YAN XiuHua; LI Zhong; TANG Yun; JIANG HuaLiang; ZHU WeiLiang


    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system, which has been viewed as a new kind of binding force, as being compared with the classical interac-tions (e.g. hydrogen bonding, electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper, we present an overview of the typi-cal cation-π interactions in biological systems, the experimental and theoretical investigations on cation-π interactions, as well as the research results on cation-π interactions in our group.

  9. Intensely luminescent alkynyl-phosphine gold(I)-copper(I) complexes: synthesis, characterization, photophysical, and computational studies. (United States)

    Koshevoy, Igor O; Lin, Yi-Chih; Karttunen, Antti J; Chou, Pi-Tai; Vainiotalo, Pirjo; Tunik, Sergey P; Haukka, Matti; Pakkanen, Tapani A


    The reactions between the diphosphino-alkynyl gold complexes (XC6H4C2Au)PR2-C6H4-PR2(AuC2C6H4X) with Cu+ lead to the formation of a family of heterometallic clusters of the general formula [{Au3Cu2(C2C6H4X)6}Au3(PR2C6H4PR2)3][PF6]2 (X = NO2, H, OMe, NMe2; R = C6H5, NC4H4). These complexes adopt the same structural pattern and consist of a heterometallic alkynyl cluster [Au3Cu2(C2C6H4X)6]- "wrapped" by the cationic [Au3(PR2C6H4PR2)3]3+ "belt". The novel compounds were characterized by NMR spectroscopy and ESI-MS measurements. A systematic study of their luminescence properties revealed efficient room-temperature phosphorescence in solution with remarkably weak quenching by molecular oxygen. The photophysical experiments demonstrate that the increase in the electron donor ability of the alkynyl ligands and the electron-withdrawing character of the diphosphines results in the bathochromic shift of emission maxima (in the 576-686 nm range) and a decrease in the luminescence quantum yield. The electronic structure calculations showed that variations of X or R substituents have very little effect on the structural parameters but display a significant influence on the electronic properties of the clusters and characteristics of luminescence. The metal-centered triplet emission within the heterometallic alkynyl cluster is suggested to play a key role in the observed phosphorescence.

  10. Heavy metal cations permeate the TRPV6 epithelial cation channel. (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A


    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  11. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes

    DEFF Research Database (Denmark)

    Korsholm, Karen Smith; Agger, Else Marie; Foged, Camilla;


    Cationic liposomes are being used increasingly as efficient adjuvants for subunit vaccines but their precise mechanism of action is still unknown. Here, we investigated the adjuvant mechanism of cationic liposomes based on the synthetic amphiphile dimethyldioctadecylammonium (DDA). The liposomes ...

  12. Tripodal Receptors for Cation and Anion Sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman,; Verboom, Willem; Reinhoudt, David N.


    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  13. Meaningful Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.


    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  14. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina


    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both...... the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...... algorithms accordingly....

  15. Solidification of gold nanoparticles in carbon nanotubes. (United States)

    Arcidiacono, S; Walther, J H; Poulikakos, D; Passerone, D; Koumoutsakos, P


    The structure and the solidification of gold nanoparticles in a carbon nanotube are investigated using molecular dynamics simulations. The simulations indicate that the predicted solidification temperature of the enclosed particle is lower than its bulk counterpart, but higher than that observed for clusters placed in vacuum. A comparison with a phenomenological model indicates that, in the considered range of tube radii (R(CNT)) of 0.5 < R(CNT) < 1.6 nm, the solidification temperature depends mainly on the length of the particle with a minor dependence on R(CNT).

  16. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by scanning electron microscopy. (United States)

    Hartsuiker, L; VAN Es, P; Petersen, W; VAN Leeuwen, T G; Terstappen, L W M M; Otto, C


    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample preparation protocol was developed to enable imaging of cells and gold nanoparticles with a conventional below lens scanning electron microscopes. The negative influence of 'charging' on the quality of scanning electron microscopes' images could be limited by deposition of biological cells on a conductive (gold) surface. The novel protocol enabled high-resolution scanning electron microscopes' imaging of small clusters and individual gold nanoparticles on uncoated cell surfaces. Gold nanoparticles could be counted on cancer cells with automated routines.

  17. Application of the superfine fraction analysis method in ore gold geochemical prospecting in the Shamanikha-Stolbovsky Area (Magadan Region) (United States)

    Makarova, Yuliya; Sokolov, Sergey; Glukhov, Anton


    The Shamanikha-Stolbovsky gold cluster is located in the North-East of Russia, in the basin of the Kolyma River. In 1933, gold placers were discovered there, but the search for significant gold targets for more than 50 years did not give positive results. In 2009-2011, geochemical and geophysical studies, mining and drilling were conducted within this cluster. Geochemical exploration was carried out in a modification based on superimposed secondary sorption-salt haloes (sampling density of 250x250 m, 250x50 m, 250x20 m) using the superfine fraction analysis method (SFAM) because of complicated landscape conditions (thick Quaternary sediments, widespread permafrost). The method consists in the extraction of superfine fraction (quartz formation are identified within the anomalous geochemical field core zone. 3. In all these prospects, mining and drilling penetrated gold ore bodies within the identified potentially gold zones. The Nadezhda target now has the status of gold deposit.

  18. Cluster Lenses

    CERN Document Server

    Kneib, Jean-Paul; 10.1007/s00159-011-0047-3


    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining...

  19. Adsorption of doxorubicin on citrate-capped gold nanoparticles: insights into engineering potent chemotherapeutic delivery systems (United States)

    Curry, Dennis; Cameron, Amanda; MacDonald, Bruce; Nganou, Collins; Scheller, Hope; Marsh, James; Beale, Stefanie; Lu, Mingsheng; Shan, Zhi; Kaliaperumal, Rajendran; Xu, Heping; Servos, Mark; Bennett, Craig; Macquarrie, Stephanie; Oakes, Ken D.; Mkandawire, Martin; Zhang, Xu


    Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied. Here, for the first time, we propose empirical and theoretical evidence suggestive of the main adsorption process where (1) hydrophobic forces drive doxorubicin towards the gold nanoparticle surface before (2) cation-π interactions and gold-carbonyl coordination between the drug molecule and the cations on AuNP surface facilitate DOX adsorption. In addition, biologically relevant compounds, such as serum albumin and glutathione, were shown to enhance desorption of loaded drug molecules from AuNP at physiologically relevant concentrations, providing insight into the drug release and in vivo stability of such drug conjugates.Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied

  20. Chemistry for oncotheranostic gold nanoparticles. (United States)

    Trouiller, Anne Juliette; Hebié, Seydou; El Bahhaj, Fatima; Napporn, Teko W; Bertrand, Philippe


    This review presents in a comprehensive ways the chemical methods used to functionalize gold nanoparticles with focus on anti-cancer applications. The review covers the parameters required for the synthesis gold nanoparticles with defined shapes and sizes, method for targeted delivery in tumours, and selected examples of anti-cancers compounds delivered with gold nanoparticles. A short survey of bioassays for oncology based on gold nanoparticles is also presented.

  1. Clusters of Monoisotopic Elements for Calibration in (TOF) Mass Spectrometry (United States)

    Kolářová, Lenka; Prokeš, Lubomír; Kučera, Lukáš; Hampl, Aleš; Peňa-Méndez, Eladia; Vaňhara, Petr; Havel, Josef


    Precise calibration in TOF MS requires suitable and reliable standards, which are not always available for high masses. We evaluated inorganic clusters of the monoisotopic elements gold and phosphorus (Au n +/Au n - and P n +/P n -) as an alternative to peptides or proteins for the external and internal calibration of mass spectra in various experimental and instrumental scenarios. Monoisotopic gold or phosphorus clusters can be easily generated in situ from suitable precursors by laser desorption/ionization (LDI) or matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Their use offers numerous advantages, including simplicity of preparation, biological inertness, and exact mass determination even at lower mass resolution. We used citrate-stabilized gold nanoparticles to generate gold calibration clusters, and red phosphorus powder to generate phosphorus clusters. Both elements can be added to samples to perform internal calibration up to mass-to-charge (m/z) 10-15,000 without significantly interfering with the analyte. We demonstrated the use of the gold and phosphorous clusters in the MS analysis of complex biological samples, including microbial standards and total extracts of mouse embryonic fibroblasts. We believe that clusters of monoisotopic elements could be used as generally applicable calibrants for complex biological samples.

  2. Preparation and Photochemical Behavior of a Cationic Azobenzene Dye-Montmorillonite Intercalation Compound

    Institute of Scientific and Technical Information of China (English)


    Montmorillonite/cationic azobenzene dye(p-(δ-triethylammoniobutoxy)-p'-methyl-azobenzene bromide) intercalation compounds were prepared by the conventional ion exchange method. As compared with that of pure cationic azo-dye, the thermal stability of the intercalated dye was greatly enhanced, and the absorption band corresponding to azobenzene group in intercalated dye shifted towards longer wave length by 38 nm. This could be ascribed to the strong conjugation of cationic azo-dye supramolecular order structure(J cluster) confined in a nanoscale space of montmorillonite interlayer gallery. UV/vis spectra data show that the intercalated azo dye in the montmorillonite interlayer space exhibited reversible trans-to-cis photoisomerization and daylight cis-to-trans back reaction. FTIR indicates the successful intercalation of cationic azo-dye into the montmorillonite interlayer.

  3. Photoinduced conductivity of a porphyrin-gold composite nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Kilina, Svletana [Los Alamos National Laboratory; Balatsky, Alexander [Los Alamos National Laboratory; Kilin, Dmitri S [UNIV OF FL; Prezhdo, Oleg [UNIV OF WASHINGTON; Tsemekhman, Kiril [NON LANL


    Negatively charged phosphine groups on the backbone of DNA are known to attract gold nanoclusters from a colloid, assembling the clusters at fixed intervals. Bridging these intervals with porphyrin-dye linkers forms an infinite conducting chain, a quantum wire whose carrier mobility can be enhanced by photoexcitation. The resulting nanoassembly can be used as a gate: a wire with a controllable conductivity. The electronic structure of the porphyrin-gold wire is studied here by density functional theory, and the conductivity of the system is determined as a function of the photoexcitation energy. Photoexcitations of the dye are found to enhance the wire conductivity by orders of magnitude.

  4. Data Clustering (United States)

    Wagstaff, Kiri L.


    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  5. Redox potential tuning by redox-inactive cations in nature's water oxidizing catalyst and synthetic analogues. (United States)

    Krewald, Vera; Neese, Frank; Pantazis, Dimitrios A


    The redox potential of synthetic oligonuclear transition metal complexes has been shown to correlate with the Lewis acidity of a redox-inactive cation connected to the redox-active transition metals of the cluster via oxo or hydroxo bridges. Such heterometallic clusters are important cofactors in many metalloenzymes, where it is speculated that the redox-inactive constituent ion of the cluster serves to optimize its redox potential for electron transfer or catalysis. A principal example is the oxygen-evolving complex in photosystem II of natural photosynthesis, a Mn4CaO5 cofactor that oxidizes water into dioxygen, protons and electrons. Calcium is critical for catalytic function, but its precise role is not yet established. In analogy to synthetic complexes it has been suggested that Ca(2+) fine-tunes the redox potential of the manganese cluster. Here we evaluate this hypothesis by computing the relative redox potentials of substituted derivatives of the oxygen-evolving complex with the cations Sr(2+), Gd(3+), Cd(2+), Zn(2+), Mg(2+), Sc(3+), Na(+) and Y(3+) for two sequential transitions of its catalytic cycle. The theoretical approach is validated with a series of experimentally well-characterized Mn3AO4 cubane complexes that are structural mimics of the enzymatic cluster. Our results reproduce perfectly the experimentally observed correlation between the redox potential and the Lewis acidities of redox-inactive cations for the synthetic complexes. However, it is conclusively demonstrated that this correlation does not hold for the oxygen evolving complex. In the enzyme the redox potential of the cluster only responds to the charge of the redox-inactive cations and remains otherwise insensitive to their precise identity, precluding redox-tuning of the metal cluster as a primary role for Ca(2+) in biological water oxidation.

  6. Digging for Gold (United States)

    Waters, John K.


    In the case of higher education, the hills are more like mountains of data that "we're accumulating at a ferocious rate," according to Gerry McCartney, CIO of Purdue University (Indiana). "Every higher education institution has this data, but it just sits there like gold in the ground," complains McCartney. Big Data and the new tools people are…

  7. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, a reduction in reaction time from 10 minutes to 1 minute, maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.


    Smith, A.E.


    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  9. Gold Nanoparticle Microwave Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Kelsie E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Christian, Jonathan H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Washington, II, Aaron L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  10. Aiming for Gold

    Institute of Scientific and Technical Information of China (English)


    Twenty-three years ago he claimed China’s first Olympic gold medal,with a win in the 50-meter pistol shooting competition.Now Xu Haifeng is leading the country’s modern pentathlon team in its bid for success at the Beijing Games

  11. Metallogenic epoch and genesis of the gold deposits in Jiaodong Peninsula, Eastern China: a regional review

    Institute of Scientific and Technical Information of China (English)

    YANG Liqiang; DENG Jun; GE Liangsheng; WANG Qingfei; ZHANG Jing; GAO Bangfei; JIANG Shaoqing; XU Hao


    Gold deposits are characterized by multi-sources, superimposition, large scale and temporal-spatial concentration in Jiaodong Peninsula, Eastern China. In this paper, we review the history and the development of the study on metallogenic chronology and genesis of gold deposits, summarize the main features of superimposed metallogenesis, provide evidence of the Mesozoic complex metallogenic system, and point out some problems for further research of Jiaodong gold deposit cluster from a regional view. Although gold deposits are different in genetic types, ore-forming materials and geological settings, our research indicates that the accumulation and emplacement of the ore-forming materials are temporally-spatially concentrated on a large scale, and the main metallogenic epoch of Jiaodong gold deposits was concentrated in Mesozoic. Metallogenic chronology and geological-geochemical data indicate that there are two periods of gold mineralizations occurred in 130-110 Ma and 90-80 Ma respectively in Jiaodong ore cluster. The gold deposit cluster results from the superimposition of the polygenetic mineralization, and further study is needed to investigate the formation and evolution of the Mesozoic complex metallogenic system.

  12. Cluster Chemistry

    Institute of Scientific and Technical Information of China (English)


    @@ Cansisting of eight scientists from the State Key Laboratory of Physical Chemistry of Solid Surfaces and Xiamen University, this creative research group is devoted to the research of cluster chemistry and creation of nanomaterials.After three-year hard work, the group scored a series of encouraging progresses in synthesis of clusters with special structures, including novel fullerenes, fullerene-like metal cluster compounds as well as other related nanomaterials, and their properties study.

  13. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.


    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  14. Cluster decay in very heavy nuclei in Relativistic Mean Field


    Bhattacharya, Madhubrata; Gangopadhyay, G.


    Exotic cluster decay of very heavy nuclei has been studied in the microscopic Super-Asymmetric Fission Model. Relativistic Mean Field model with the force FSU Gold has been employed to obtain the densities of the cluster and the daughter nuclei. The microscopic nuclear interaction DDM3Y1, which has an exponential density dependence, and the Coulomb interaction have been used in the double folding model to obtain the potential between the cluster and the daughter. Half life values have been ca...

  15. Clustered regression with unknown clusters

    CERN Document Server

    Barman, Kishor


    We consider a collection of prediction experiments, which are clustered in the sense that groups of experiments ex- hibit similar relationship between the predictor and response variables. The experiment clusters as well as the regres- sion relationships are unknown. The regression relation- ships define the experiment clusters, and in general, the predictor and response variables may not exhibit any clus- tering. We call this prediction problem clustered regres- sion with unknown clusters (CRUC) and in this paper we focus on linear regression. We study and compare several methods for CRUC, demonstrate their applicability to the Yahoo Learning-to-rank Challenge (YLRC) dataset, and in- vestigate an associated mathematical model. CRUC is at the crossroads of many prior works and we study several prediction algorithms with diverse origins: an adaptation of the expectation-maximization algorithm, an approach in- spired by K-means clustering, the singular value threshold- ing approach to matrix rank minimization u...

  16. Innovative preparation of Au/C by replication of gold-containing mesoporous silica catalysts

    KAUST Repository

    Kerdi, Fatmé


    A new strategy, based on the nanocasting concept, has been used to prepare gold nanoparticles (NPs) highly dispersed in meso-structured carbons. Gold is first introduced in various functionalized mesostructured silicas (MCM-48 and SBA-15) and particles are formed inside the porosity upon reduction of Au 3+ cations. Silica pores are then impregnated with a carbon precursor and the composite material is heated at 900°C under vacuum. Silica is then removed by acid leaching, leading to partially encapsulated gold particles in mesoporous carbon. Carbon prevents aggregation of gold particles at high temperature, both the mean size and distribution being similar to those observed in silica. However, while Au@SiO2 exhibit significant catalytic activity in the aerobic oxidation of trans-stilbene in the liquid phase, its Au@C mesostructured replica is quite inactive. © 2010 Elsevier B.V. All rights reserved.

  17. Recent advances in the gold-catalyzed additions to C–C multiple bonds

    Directory of Open Access Journals (Sweden)

    He Huang


    Full Text Available C–O, C–N and C–C bonds are the most widespread types of bonds in nature, and are the cornerstone of most organic compounds, ranging from pharmaceuticals and agrochemicals to advanced materials and polymers. Cationic gold acts as a soft and carbophilic Lewis acid and is considered one of the most powerful activators of C–C multiple bonds. Consequently, gold-catalysis plays an important role in the development of new strategies to form these bonds in more convenient ways. In this review, we highlight recent advances in the gold-catalyzed chemistry of addition of X–H (X = O, N, C bonds to C–C multiple bonds, tandem reactions, and asymmetric additions. This review covers gold-catalyzed organic reactions published from 2008 to the present.

  18. Selective Gold Recovery and Catalysis in a Highly Flexible Methionine-Decorated Metal-Organic Framework. (United States)

    Mon, Marta; Ferrando-Soria, Jesús; Grancha, Thais; Fortea-Pérez, Francisco R; Gascon, Jorge; Leyva-Pérez, Antonio; Armentano, Donatella; Pardo, Emilio


    A novel chiral 3D bioMOF exhibiting functional channels with thio-alkyl chains derived from the natural amino acid l-methionine (1) has been rationally prepared. The well-known strong affinity of gold for sulfur derivatives, together with the extremely high flexibility of the thioether "arms" decorating the channels, account for a selective capture of gold(III) and gold(I) salts in the presence of other metal cations typically found in electronic wastes. The X-ray single-crystal structures of the different gold adsorbates Au(III)@1 and Au(I)@1 suggest that the selective metal capture occurs in a metal ion recognition process somehow mimicking what happens in biological systems and protein receptors. Both Au(III)@1 and Au(I)@1 display high activity as heterogeneous catalyst for the hydroalkoxylation of alkynes, further expanding the application of these novel hybrid materials.

  19. Subspace clustering through attribute clustering

    Institute of Scientific and Technical Information of China (English)

    Kun NIU; Shubo ZHANG; Junliang CHEN


    Many recently proposed subspace clustering methods suffer from two severe problems. First, the algorithms typically scale exponentially with the data dimensionality or the subspace dimensionality of clusters. Second, the clustering results are often sensitive to input parameters. In this paper, a fast algorithm of subspace clustering using attribute clustering is proposed to over-come these limitations. This algorithm first filters out redundant attributes by computing the Gini coefficient. To evaluate the correlation of every two non-redundant attributes, the relation matrix of non-redundant attributes is constructed based on the relation function of two dimensional united Gini coefficients. After applying an overlapping clustering algorithm on the relation matrix, the candidate of all interesting subspaces is achieved. Finally, all subspace clusters can be derived by clustering on interesting subspaces. Experiments on both synthesis and real datasets show that the new algorithm not only achieves a significant gain of runtime and quality to find subspace clusters, but also is insensitive to input parameters.

  20. Spectroscopic investigation on porphyrins nano-assemblies onto gold nanorods (United States)

    Trapani, Mariachiara; De Luca, Giovanna; Romeo, Andrea; Castriciano, Maria Angela; Scolaro, Luigi Monsù


    The interaction between gold nanorods (Au NRs), synthesized by a conventional seeded growth protocol, and the anionic tetrakis-(4-sulfonatophenyl)porphyrin (TPPS4) has been investigated through various spectroscopic techniques. At neutral pH, the formation of H-aggregates and the inclusion of porphyrin monomers in CTAB micelles covering the nanorods have been evidenced. Under mild acidic conditions (pH = 3) a nano-hybrid assembly of porphyrin J-aggregates and Au NRs has been revealed. For the sake of comparison, Cu(II) and Zn(II) metal porphyrin derivatives as well as a cationic porphyrin have been studied in the same experimental conditions, showing that: i) CuTPPS4 forms porphyrin H-dimers onto the Au NRs; ii) ZnTPPS4 undergoes to demetallation, followed by acidification of the central core and eventually aggregation onto Au NRs; iii) cationic porphyrin does not interact with Au NRs.

  1. π Activation of Alkynes in Homogeneous and Heterogeneous Gold Catalysis. (United States)

    Bistoni, Giovanni; Belanzoni, Paola; Belpassi, Leonardo; Tarantelli, Francesco


    The activation of alkynes toward nucleophilic attack upon coordination to gold-based catalysts (neutral and positively charged gold clusters and gold complexes commonly used in homogeneous catalysis) is investigated to elucidate the role of the σ donation and π back-donation components of the Au-C bond (where we consider ethyne as prototype substrate). Charge displacement (CD) analysis is used to obtain a well-defined measure of σ donation and π back-donation and to find out how the corresponding charge flows affect the electron density at the electrophilic carbon undergoing the nucleophilic attack. This information is used to rationalize the activity of a series of catalysts in the nucleophilic attack step of a model hydroamination reaction. For the first time, the components of the Dewar-Chatt-Duncanson model, donation and back-donation, are put in quantitative correlation with the kinetic parameters of a chemical reaction.

  2. The expanding universe of thiolated gold nanoclusters and beyond. (United States)

    Jiang, De-en


    Thiolated gold nanoclusters form a universe of their own. Researchers in this field are constantly pushing the boundary of this universe by identifying new compositions and in a few "lucky" cases, solving their structures. Such solved structures, even if there are only few, provide important hints for predicting the many identified compositions that are yet to be crystallized or structure determined. Structure prediction is the most pressing issue for a computational chemist in this field. The success of the density functional theory method in gauging the energetic ordering of isomers for thiolated gold clusters has been truly remarkable, but to predict the most stable structure for a given composition remains a great challenge. In this feature article from a computational chemist's point of view, the author shows how one understands and predicts structures for thiolated gold nanoclusters based on his old and new results. To further entertain the reader, the author also offers several "imaginative" structures, claims, and challenges for this field.

  3. Lipid-coated gold nanocomposites for enhanced cancer therapy. (United States)

    Kang, Ji Hee; Ko, Young Tag


    The aim of the work reported here was to develop lipid-coated multifunctional nanocomposites composed of drugs and nanoparticles for use in cancer therapy. We incorporated thermosensitive phospholipids onto the surface of anisotropic gold nanoparticles (AuNPs) to further enhance drug delivery, with possible additional applications for in vivo imaging and photothermal cancer therapy. Lipid-coated nanohybrids loaded with the drug docetaxel (DTX) were prepared by a thin-film formation, hydration, and sonication method. Nanoparticles and their composites were characterized using particle-size analysis, zeta potential measurements, transmission electron microscopy, UV-visible spectroscopy, and reverse-phase high-performance liquid chromatography, demonstrating successful loading of DTX into the lipid bilayer on the surface of the gold nanoparticles. Initial in vitro studies using breast-cancer (MCF-7) and melanoma (B16F10) cell lines demonstrated that the drug-containing nanocomposites at equivalent drug concentrations caused significant cytotoxicity compared to free DTX. Differential flow cytometry analysis confirmed the improved cellular uptake of lipid-coated nanocomposites. Our preliminary results show that DTX-loaded anionic lipid-coated gold nanorod (AL_AuNR_DTX) and cationic lipid-coated gold nanoparticle (CL_AuNP_DTX) possess effective tumor cell-suppression abilities and can therefore be considered promising chemotherapeutic agents. Further evaluation of the therapeutic efficacy of these hybrid nanoparticles combined with external near-infrared photothermal treatment is warranted to assess their synergistic anticancer actions and potential bioimaging applications.

  4. Gold induced apoptsis study

    DEFF Research Database (Denmark)

    Laustsen, Christoffer


    at the moment, especially in the fields of lasers, they though have some problems concerning the placement of the tumor in the human body. Local heating by MR has tremendous advance in comparison too lasers. The first step is to validate the hypothesis of the inductive heating of the gold nano particles trough......Introduction   Cancer cells are highly thermo sensitive. On the basis of an article in Nature the idea arose, for a new non-invasive thermotherapy technique, based on radio frequency inductive heating of nano gold particles in an MR-scanner. Thermotherapy is getting considerably attention...... the low energy radio frequencies. If the method is demonstrated to be feasible, next step is testing in cell line trials.   Confocal microscopy experiments on cells are very hard to do reliable and reproducible statistic on, due to the fact that that it’s user counting which makes the data. Automatic...

  5. Rushing for gold

    DEFF Research Database (Denmark)

    Jønsson, Jesper Bosse; Bryceson, Deborah Fahy


    African rural dwellers have faced depressed economic prospects for several decades. Now, in a number of mineral-rich countries, multiple discoveries of gold and precious stones have attracted large numbers of prospective small-scale miners. While their 'rush' to, and activities within, mining sites...... are increasingly being noted, there is little analysis of miners' mobility patterns and material outcomes. In this article, on the basis of a sample survey and interviews at two gold-mining sites in Tanzania, we probe when and why miners leave one site in favour of another. Our findings indicate that movement...... is often 'rushed' but rarely rash. Whereas movement to the first site may be an adventure, movement to subsequent sites is calculated with knowledge of the many risks entailed. Miners spend considerable time at each site before migrating onwards. Those with the highest site mobility tend to be more...

  6. Spiky gold nanoshells. (United States)

    Sanchez-Gaytan, Brenda L; Park, So-Jung


    We report a high-yield synthetic method for a new type of metal nanostructure, spiky gold nanoshells, which combine the morphological characteristics of hollow metal nanoshells and nanorods. Our method utilizes block copolymer assemblies and polymer beads as templates for the growth of spiky nanoshells. Various shapes of spiky metal nanoshells were prepared in addition to spherical nanoshells by using block copolymer assemblies such as rod-like micelles, vesicles, and bilayers as templates. Furthermore, spiky gold shells encapsulating magnetic nanoparticles or quantum dots were prepared based on the ability of block copolymers to self-assemble with various types of nanoparticles and molecules. The capability to encapsulate other materials in the core, the shape tunability, and the highly structured surface of spiky nanoshells should benefit a range of imaging, sensing, and medical applications of metal nanostructures.

  7. The RHIC gold rush

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, T. [Department of Physics, North Carolina State University (United States)


    Physicists are colliding gold nuclei to recreate the fireball that existed in the very early universe, and they may have found evidence for quark-gluon plasma. What happens to ordinary matter as you heat it to higher and higher temperatures, or compress it to greater and greater densities? This simple question underpins a major effort to create extreme conditions in the lab, which has recently taken the shape of the Relativistic Heavy Ion Collider (RHIC). This machine has been colliding gold nuclei since 2000, and has produced tantalizing hints that a new state of matter - the quark-gluon plasma - is created in the reactions. But it has also sparked surprises that are sending researchers back to the drawing board. (U.K.)

  8. The RHIC gold rush

    CERN Document Server

    Schäfer, T


    Physicists are colliding gold nuclei to recreate the fireball that existed in the very early universe, and they may have found evidence for quark-gluon plasma. What happens to ordinary matter as you heat it to higher and higher temperatures, or compress it to greater and greater densities? This simple question underpins a major effort to create extreme conditions in the lab, which has recently taken the shape of the Relativistic Heavy Ion Collider (RHIC). This machine has been colliding gold nuclei since 2000, and has produced tantalizing hints that a new state of matter - the quark-gluon plasma - is created in the reactions. But it has also sparked surprises that are sending researchers back to the drawing board. (U.K.)

  9. Film Ace Takes Gold

    Institute of Scientific and Technical Information of China (English)


    "Really, I never, never expected to win this," said Chinese director Jia Zhangke on hearing he had taken the top award for his movie Still Life (Sanxia Haoren) at the Venice Film Festival, on September 9. A surprise late entry, Still Life quickly emerged as the favorite and the Gold Lion was again hugged by Chinese. The well-known Chinese director Zhang Yimou won the same award back in 1999, for Not One Less-also a

  10. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick


    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  11. Gold and the Stock Market: 3 Essays on Gold Investments


    Taurasi, Donatella


    This thesis gives an overview of the history of gold per se, of gold as an investment good and offers some institutional details about gold and other precious metal markets. The goal of this study is to investigate the role of gold as a store of value and hedge against negative market movements in turbulent times. I investigate gold’s ability to act as a safe haven during periods of financial stress by employing instrumental variable techniques that allow for time varying conditional covarian...

  12. Gold-gold junction electrodes:the disconnection method. (United States)

    Dale, Sara E C; Vuorema, Anne; Ashmore, Ellen M Y; Kasprzyk-Horden, Barbara; Sillanpää, Mika; Denuault, Guy; Marken, Frank


    The formation of gold-gold junction electrodes for application in electroanalysis is described here based on electro-deposition from a non-cyanide gold plating bath. Converging growth of two hemispherical gold deposits on two adjacent platinum microelectrodes (both 100 µm diameter in glass, ca. 45 µm gap) followed by careful etching in aqueous chloride solution was employed. During growth both gold hemispheres "connect" and during etching "disconnection" is evident in a drop in current. Gold-gold junctions with sub-micron gaps are formed and applied for the electroanalytical detection of sub-micromolar concentrations of hydroquinone in 0.1 M phosphate buffer pH 7 (E(rev) = 0.04 V vs. SCE) and sub-micromolar concentration of dopamine in 0.1 M phosphate buffer pH 7 (E(rev) = 0.14 V vs. SCE). The potential future uses in analysis and limitations of gold-gold junction electrodes are discussed.

  13. Cluster editing

    DEFF Research Database (Denmark)

    Böcker, S.; Baumbach, Jan


    . The problem has been the inspiration for numerous algorithms in bioinformatics, aiming at clustering entities such as genes, proteins, phenotypes, or patients. In this paper, we review exact and heuristic methods that have been proposed for the Cluster Editing problem, and also applications......The Cluster Editing problem asks to transform a graph into a disjoint union of cliques using a minimum number of edge modifications. Although the problem has been proven NP-complete several times, it has nevertheless attracted much research both from the theoretical and the applied side...

  14. Cluster analysis

    CERN Document Server

    Everitt, Brian S; Leese, Morven; Stahl, Daniel


    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  15. Weighted Clustering

    CERN Document Server

    Ackerman, Margareta; Branzei, Simina; Loker, David


    In this paper we investigate clustering in the weighted setting, in which every data point is assigned a real valued weight. We conduct a theoretical analysis on the influence of weighted data on standard clustering algorithms in each of the partitional and hierarchical settings, characterising the precise conditions under which such algorithms react to weights, and classifying clustering methods into three broad categories: weight-responsive, weight-considering, and weight-robust. Our analysis raises several interesting questions and can be directly mapped to the classical unweighted setting.

  16. Interactions of Bacterial Lipopolysaccharides with Gold Nanorod Surfaces Investigated by Refractometric Sensing. (United States)

    Abadeer, Nardine S; Fülöp, Gergő; Chen, Si; Käll, Mikael; Murphy, Catherine J


    The interface between nanoparticles and bacterial surfaces is of great interest for applications in nanomedicine and food safety. Here, we demonstrate that interactions between gold nanorods and bacterial surface molecules are governed by the nanoparticle surface coating. Polymer-coated gold nanorod substrates are exposed to lipopolysaccharides extracted from Pseudomonas aeruginosa, Salmonella enterica and Escherichia coli, and attachment is monitored using localized surface plasmon resonance refractometric sensing. The number of lipopolysaccharide molecules attached per nanorod is calculated from the shift in the plasmon maximum, which results from the change in refractive index after analyte binding. Colloidal gold nanorods in water are also incubated with lipopolysaccharides to demonstrate the effect of lipopolysaccharide concentration on plasmon shift, ζ-potential, and association constant. Both gold nanorod surface charge and surface chemistry affect gold nanorod-lipopolysaccharide interactions. In general, anionic lipopolysaccharides was found to attach more effectively to cationic gold nanorods than to neutral or anionic gold nanorods. Some variation in lipopolysaccharide attachment is also observed between the three strains studied, demonstrating the potential complexity of bacteria-nanoparticle interactions.

  17. An Electrochemical and Raman Spectroelectrochemical Investigation of Underpotentially Deposited Silver on a Gold Substrate. (United States)


    Raman Spectroelectrochemical Investigation of Underpotentially Deposited Silver on a Gold Substrate By Stanley Pons. J. Li, J. Liang DTIC S ELECTE APR 14...ACCCSSIONd 14U. 3. i4CCipIa.ti rs CATALOG. PiumnRi - 4. ITL (sa~utfie) . TYPE Of REPORT a PCI3ioo covEuiv Investigation of Underpotentially Deposited ...spectroelectrochemical data indicate that underpotentially * deposited silver adatoms on gold substrates are photolyzed to form silver meta clusters. *DD

  18. Decoupling of epitaxial graphene via gold intercalation probed by dispersive Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, P. B., E-mail:, E-mail:; DeSouza, M., E-mail:, E-mail: [Semiconductor Materials and Device Group, Electronic and Electrical Engineering, University of Sheffield, Mappin Street, S1 3JD Sheffield (United Kingdom); Narula, R.; Reich, S. [Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany); Wong, L. Y.; Batten, T. [Renishaw, Old Town, Wotton-under-Edge, GL12 7DW Gloucestershire (United Kingdom); Pokorny, J. [Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, S1 3JD Sheffield (United Kingdom); Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Praha 8 (Czech Republic)


    Signatures of a superlattice structure composed of a quasi periodic arrangement of atomic gold clusters below an epitaxied graphene (EG) layer are examined using dispersive Raman spectroscopy. The gold-graphene system exhibits a laser excitation energy dependant red shift of the 2D mode as compared to pristine epitaxial graphene. The phonon dispersions in both the systems are mapped using the experimentally observed Raman signatures and a third-nearest neighbour tight binding electronic band structure model. Our results reveal that the observed excitation dependent Raman red shift in gold EG primarily arise from the modifications of the phonon dispersion in gold-graphene and shows that the extent of decoupling of graphene from the underlying SiC substrate can be monitored from the dispersive nature of the Raman 2D modes. The intercalated gold atoms restore the phonon band structure of epitaxial graphene towards free standing graphene.

  19. Electron Diffraction Determination of Nanoscale Structures

    Energy Technology Data Exchange (ETDEWEB)

    Parks, Joel H


    Dominant research results on adsorption on gold clusters are reviewed, including adsorption of H{sub 2}O and O{sub 2} on gold cluster cations and anions, kinetics of CO adsorption to middle sized gold cluster cations, adsorption of CO on Au{sub n}{sup +} with induced changes in structure, and H{sub 2}O enhancement of CO adsorption.

  20. Oxygen clamps in gold nanowires


    Novaes, Frederico D.; da Silva, Antonio J. R.; da Silva, E. Z.; Fazzio, A.


    We investigate how the insertion of an oxygen atom in an atomically thin gold nanowire can affect its rupture. We find, using ab initio total energy density functional theory calculations, that O atoms when inserted in gold nanowires form not only stable but also very strong bonds, in such a way that they can extract atoms from a stable tip, serving in this way as a clamp that could be used to pull a string of gold atoms.

  1. Green Synthesis of Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hamid Reza Ghorbani


    Full Text Available There is an increased interest in understanding the toxicity and rational design of gold nanoparticles for biomedical applications in recent years. In this study gold nanoparticles were synthesized using dextrose as a reducing agent. The gold nanoparticles displayed characteristic Surface Plasmon Resonance peak at around 550 nm having a mean particle size of 75±30 nm. In order to identify and analyze nanoparticles, UV–Vis spectroscopy, Scanning electron microscopy (SEM, and dynamic light scattering (DLS were used.

  2. Localization versus delocalization in diamine radical cations

    DEFF Research Database (Denmark)

    Brouwer, A.M.; Wiering, P.G.; Zwier, J.M.;


    The optical absorption spectrum of the radical cation of 1,4-diphenylpiperazine 2a shows a strong transition in the near-IR, and only a weak band at 445 nm, in the region where aniline radical cations normally absorb strongly. This indicates that the charge and spin are delocalized over the two...

  3. Advancements in Anion Exchange Membrane Cations

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Long, Hai [National Renewable Energy Lab. (NREL), Golden, CO (United States); Park, Andrew M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pivovar, Bryan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  4. Separation and detection of Atrazine and Paraquat based on gold nanochannels

    Directory of Open Access Journals (Sweden)

    XIE Li


    Full Text Available Gold nanochannels were prepared by electroless deposition of Au onto the inner wall of porous polycarbonate membrane.The surfaces of the as;prepared gold nanochannels are negatively charged and hydrophilic.In aqueous solution,paraquat exists in the hydrophilic cationic form,while atrazine exists in the form of hydrophobic neutral molecule due to their structural difference.Under the applied electric field,paraquat can migrate through the nanotubules due to electrophoresis,resulting in the separation of atrazine and paraquat.

  5. Highly Sensitive Colorimetric Detection of Ochratoxin A by a Label-Free Aptamer and Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yunxia Luan


    Full Text Available A label-free aptamer-based assay for the highly sensitive and specific detection of Ochratoxin A (OTA was developed using a cationic polymer and gold nanoparticles (AuNPs. The OTA aptamer was used as a recognition element for the colorimetric detection of OTA based on the aggregation of AuNPs by the cationic polymer. By spectroscopic quantitative analysis, the colorimetric assay could detect OTA down to 0.009 ng/mL with high selectivity in the presence of other interfering toxins. This study offers a new alternative in visual detection methods that is rapid and sensitive for OTA detection.

  6. Highly Sensitive Colorimetric Detection of Ochratoxin A by a Label-Free Aptamer and Gold Nanoparticles. (United States)

    Luan, Yunxia; Chen, Jiayi; Li, Cheng; Xie, Gang; Fu, Hailong; Ma, Zhihong; Lu, Anxiang


    A label-free aptamer-based assay for the highly sensitive and specific detection of Ochratoxin A (OTA) was developed using a cationic polymer and gold nanoparticles (AuNPs). The OTA aptamer was used as a recognition element for the colorimetric detection of OTA based on the aggregation of AuNPs by the cationic polymer. By spectroscopic quantitative analysis, the colorimetric assay could detect OTA down to 0.009 ng/mL with high selectivity in the presence of other interfering toxins. This study offers a new alternative in visual detection methods that is rapid and sensitive for OTA detection.

  7. The extractive metallurgy of gold (United States)

    Kongolo, K.; Mwema, M. D.


    Mössbauer spectroscopy has been successfully used in investigation of the gold compounds present in ores and the gold species which occur during the process metallurgy of this metal. This paper is a survey of the basic recovery methods and techniques used in extractive metallurgy of gold. Process fundamentals on mineral processing, ore leaching, zinc dust cementation, adsorption on activated carbon, electrowinning and refining are examined. The recovery of gold as a by-product of the copper industry is also described. Alternative processing methods are indicated in order to shed light on new interesting research topics where Mössbauer spectroscopy could be applied.

  8. Transformation of thiolated chitosan-templated gold nanoparticles to huge microcubes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yudie [School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026 (China); Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Liu, Honglin, E-mail: [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Yang, Liangbao, E-mail: [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Sun, Bai; Liu, Jinhuai [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China)


    Graphical abstract: - Highlights: • Mercapto groups were grafted to chitosan molecule by a reactive amine reduction. • Functional polymer with well-defined monomer units controls AuNPs assembly. • Assembled morphologies depend on the ratio of AuNPs to thiolate groups. • Microcubes with side length of ∼20 μm was synthesized through a dialysis step. • A edge-to-middle growth mechanism of gold microcubes was observed. - Abstract: The L-cysteine molecules were successfully grafted to the 2-amino group of chitosan by a reactive amine reduction, and the as-synthesized thiolated chitosan (TC) molecules were used as the templates to direct the self-assembly of gold nanoparticles and induce the transformation of these assemblies to gold microcubes through a deep-going dialysis. We found that the ratio of gold nanoparticles to TC molecules could greatly affect the shape of the assembled clusters. Different stages of these clusters and microstructures during the dialysis process were characterized by scanning electron microscope (SEM), and the microcubes with average side length of about 20 μm were successfully synthesized. According to the morphology evolution of the assembly, it could be concluded that the microcubes were formed from external to internal. The SERS area mapping images of microcubes and some clusters were also collected to study the formation mechanism of gold microcubes. Our work demonstrates a simple and highly effective way to assemble gold nanoparticles into microcubes with unique properties.

  9. Impact of co-adsorbed oxygen on crotonaldehyde adsorption over gold nanoclusters: a computational study. (United States)

    Zeinalipour-Yazdi, Constantinos D; Willock, David J; Machado, Andreia; Wilson, Karen; Lee, Adam F


    Crotonaldehyde (2-butenal) adsorption over gold sub-nanometer particles, and the influence of co-adsorbed oxygen, has been systematically investigated by computational methods. Using density functional theory, the adsorption energetics of crotonaldehyde on bare and oxidised gold clusters (Au13, d = 0.8 nm) were determined as a function of oxygen coverage and coordination geometry. At low oxygen coverage, sites are available for which crotonaldehyde adsorption is enhanced relative to bare Au clusters by 10 kJ mol(-1). At higher oxygen coverage, crotonaldehyde is forced to adsorb in close proximity to oxygen weakening adsorption by up to 60 kJ mol(-1) relative to bare Au. Bonding geometries, density of states plots and Bader analysis, are used to elucidate crotonaldehyde bonding to gold nanoparticles in terms of partial electron transfer from Au to crotonaldehyde, and note that donation to gold from crotonaldehyde also becomes significant following metal oxidation. At high oxygen coverage we find that all molecular adsorption sites have a neighbouring, destabilising, oxygen adatom so that despite enhanced donation, crotonaldehyde adsorption is always weakened by steric interactions. For a larger cluster (Au38, d = 1.1 nm) crotonaldehyde adsorption is destabilized in this way even at a low oxygen coverage. These findings provide a quantitative framework to underpin the experimentally observed influence of oxygen on the selective oxidation of crotyl alcohol to crotonaldehyde over gold and gold-palladium alloys.

  10. Cation diffusion in the natural zeolite clinoptilolite

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, A.; White, K.J. [Science Research Institute, Chemistry Division, Cockcroft Building, University of Salford, Salford (United Kingdom)


    The natural zeolite clinoptilolite is mined commercially in many parts of the world. It is a selective exchanger for the ammonium cation and this has prompted its use in waste water treatment, swimming pools and in fish farming. It is also used to scavenge radioisotopes in nuclear waste clean-up. Further potential uses for clinoptilolite are in soil amendment and remediation. The work described herein provides thermodynamic data on cation exchange processes in clinoptilolite involving the NH{sub 4}, Na, K, Ca, and Mg cations. The data includes estimates of interdiffusion coefficients together with free energies, entropies and energies of activation for the cation exchanges studied. Suggestions are made as to the mechanisms of cation-exchanges involved.

  11. Turning lead into gold

    DEFF Research Database (Denmark)

    Jensen, Steffen Moltrup Ernø

    For years the field of entrepreneurship has been blinded by the alchemical promise of turning lead into gold, of finding the ones most likely to become the next Branson, Zuckerberg or Gates. The promise has been created in the midst of political and scientific agendas where certain individuals...... is not to accumulate state or market wealth, but for entrepreneurial skills to become tools towards the liberation of the individual from oppressive systems of control – essentially to add public value rather than economic value. In this presentation I will sketch an anarchist perspective on entrepreneurship, looking...

  12. Cationic Bolaamphiphiles for Gene Delivery (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad


    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  13. Identification of the Atomic Scale Structures of the Gold-Thiol Interfaces of Molecular Nanowires by Inelastic Tunneling Spectroscopy

    CERN Document Server

    Demir, Firuz


    We examine theoretically the effects of the bonding geometries at the gold-thiol interfaces on the inelastic tunneling spectra of propanedithiolate (PDT) molecules bridging gold electrodes and show that inelastic tunneling spectroscopy combined with theory can be used to determine these bonding geometries experimentally. With the help of density functional theory, we calculate the relaxed geometries and vibrational modes of extended molecules each consisting of one or two PDT molecules connecting two gold nanoclusters. We formulate a perturbative theory of inelastic tunneling through molecules bridging metal contacts in terms of elastic transmission amplitudes, and use this theory to calculate the inelastic tunneling spectra of the gold-PDT-gold extended molecules. We consider PDT molecules with both trans and gauche conformations bound to the gold clusters at top, bridge and hollow bonding sites. Comparing our results with the experimental data of Hihath et al. [Nano Lett. 8, 1673 (2008)], we identify the mo...

  14. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan;


    and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c....... A symptom may belong to more than one class. For instance to the class of very severe disease and to the class of failure of awareness of the own disturbance. The description of language failures by c-mean classification of analyzed factors correspond in many but not in all cases to the traditional......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...

  15. Gold electrodes from recordable CDs (United States)

    Angnes; Richter; Augelli; Kume


    Gold electrodes are widely used in electrochemistry and electroanalytical chemistry. The notable performance when used in stripping analysis of many ionic species and the extraordinary affinity of thio compounds for its surface make these electrodes very suitable for many applications. This paper reports a simple and novel way to construct gold electrodes (CDtrodes) using recordable CDs as the gold source. The nanometer thickness of the gold layer of recordable disks (50-100 nm) favors the construction of band nanoelectrodes with areas as small as 10(-6) cm2. The plane surface can be easily used for the construction of conventional-sized gold electrodes for batch or flow injection analysis or even to obtain electrodes as large as 100 cm2. The low price of commercial recordable CDs allows a "one way use". The evaluation and applicability of these electrodes in the form of nanoelectrodes, in batch and associated with flow cells, are illustrated in this paper.

  16. Cation distributions on rapidly solidified cobalt ferrite (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.


    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  17. Intrinsic multistate switching of gold clusters through electrochemical gating

    DEFF Research Database (Denmark)

    Albrecht, Tim; Mertens, S.F.L.; Ulstrup, Jens


    The electrochemical behavior of small metal nanoparticles is governed by Coulomb-like charging and equally spaced charge-transfer transitions. Using electrochemical gating at constant bias voltage, we show, for the first time, that individual nanoparticles can be operated as multistate switches...... in condensed media at room temperature, displaying distinct peak features in the tunneling current. The tunneling conductance increases with particle charge, suggesting that solvent reorganization and dielectric saturation become increasingly important....

  18. 阳离子多肽CEMA导入棉花引起表型异常及叶绿体降解%Introduction of a Cationic Peptide, CEMA, into Cotton Caused Abnormal Phenotype and Chloroplast Degeneration

    Institute of Scientific and Technical Information of China (English)

    Yu-long GUO; Xiao-ying LUO; Ming-yang LI; Yan PEI; Hao ZHANG


    @@ As a strategy for phytopathogen control through transgenic way, antimicrobial peptide genes have been employed over the last two decades.CEMA is a cationic antimicrobial chimeric peptide, which is produced by fusing eight amino acid residues from the antimicrobial peptide ceropin A with a modified meltin. Three transgenic cotton plants were generated by bombardment of cotton shoot tips using BioRad particle gun. The gold particles were coated with a cationic peptide, CEMA, DNA.

  19. Coalescence and Collisions of Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Eduardo Pérez-Tijerina


    Full Text Available We study the assembling of small gold clusters subject to collisions and close contact coalescence by using molecular dynamics simulations to simulate events that occur typically in the sputtering process of synthesis. Our results support the notion that the kinetics of coalescence processes strongly determine the geometry and structure of the final particle. While impact velocities, relative orientations, and the initial shape of the interacting particles are unlikely to strictly determine the structural details of the newly formed particle, we found that high initial temperatures and/or impact velocities increase the probability of appearance of icosahedral-like structures, Wulff polyhedra are likely to be formed as a product of the interactions between nanospheres, while the appearance of fcc particles of approximately cuboctahedral shape is mainly due to the interaction between icosahedra.

  20. Gold supported on thin oxide films: from single atoms to nanoparticles. (United States)

    Risse, Thomas; Shaikhutdinov, Shamil; Nilius, Niklas; Sterrer, Martin; Freund, Hans-Joachim


    [Figure: see text]. Historically, people have prized gold for its beauty and the durability that resulted from its chemical inertness. However, even the ancient Romans had noted that finely dispersed gold can give rise to particular optical phenomena. A decade ago, researchers found that highly dispersed gold supported on oxides exhibits high chemical activity in a number of reactions. These chemical and optical properties have recently prompted considerable interest in applications of nanodispersed gold. Despite their broad use, a microscopic understanding of these gold-metal oxide systems lags behind their application. Numerous studies are currently underway to understand why supported nanometer-sized gold particles show catalytic activity and to explore possible applications of their optical properties in photonics and biology. This Account focuses on a microscopic understanding of the gold-substrate interaction and its impact on the properties of the adsorbed gold. Our strategy uses model systems in which gold atoms and clusters are supported on well-ordered thin oxide films grown on metal single crystals. As a result, we can investigate the systems with the rigor of modern surface science techniques while incorporating some of the complexity found in technological applications. We use a variety of different experimental methods, namely, scanning probe techniques (scanning tunneling microscopy and spectroscopy, STM and STS), as well as infrared (IR), temperature-programmed desorption (TPD), and electron paramagnetic resonance (EPR) spectroscopy, to evaluate these interactions and combine these results with theoretical calculations. We examined the properties of supported gold with increasing complexity starting from single gold atoms to one- and two-dimensional clusters and three-dimensional particles. These investigations show that the binding of gold on oxide surfaces depends on the properties of the oxide, which leads to different electronic properties of

  1. Effects of cation size disorder and lattice distortion on metamagnetism in phase-separated manganites (United States)

    Mavani, K. R.; Paulose, P. L.


    The effects of A-site cation size disorder in ABO 3 type charge-ordered and antiferromagnetic Pr 0.5Ca 0.5MnO 3 system have been studied by substituting La 3+, Sr 2+ or Ba 2+, while keeping the valency of Mn ions and the tolerance factor ( t=0.921) constant in the substituted compounds. We find that the substitutions by these larger cations induce successive sharp step-like metamagnetic transitions at 2.5 K. The critical field for metamagnetism is the lowest for 3% Ba substituted compound, which has the largest A-site cation size disorder and the least distorted MnO 6 octahedra, among the compounds reported here. These cation substitutions give rise to ferromagnetic clusters within antiferromagnetic matrix, indicating phase-separation at low temperatures. The growth of the clusters is found to vary with the substitution amount. The local lattice distortion of MnO 6 octahedra enhances the charge ordering temperature and reduces the magnetization at high fields (>1 T) in these manganites.

  2. Cationic ruthenium alkylidene catalysts bearing phosphine ligands. (United States)

    Endo, Koji; Grubbs, Robert H


    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  3. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions. (United States)

    Sun, Pengzhan; Zheng, Feng; Zhu, Miao; Song, Zhigong; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Little, Reginald B; Xu, Zhiping; Zhu, Hongwei


    Graphene and graphene oxide (G-O) have been demonstrated to be excellent filters for various gases and liquids, showing potential applications in areas such as molecular sieving and water desalination. In this paper, the selective trans-membrane transport properties of alkali and alkaline earth cations through a membrane composed of stacked and overlapped G-O sheets ("G-O membrane") are investigated. The thermodynamics of the ion transport process reveal that the competition between the generated thermal motions and the interactions of cations with the G-O sheets results in the different penetration behaviors to temperature variations for the considered cations (K(+), Mg(2+), Ca(2+), and Ba(2+)). The interactions between the studied metal atoms and graphene are quantified by first-principles calculations based on the plane-wave-basis-set density functional theory (DFT) approach. The mechanism of the selective ion trans-membrane transportation is discussed further and found to be consistent with the concept of cation-π interactions involved in biological systems. The balance between cation-π interactions of the cations considered with the sp(2) clusters of G-O membranes and the desolvation effect of the ions is responsible for the selectivity of G-O membranes toward the penetration of different ions. These results help us better understand the ion transport process through G-O membranes, from which the possibility of modeling the ion transport behavior of cellular membrane using G-O can be discussed further. The selectivity toward different ions also makes G-O membrane a promising candidate in areas of membrane separations.

  4. Cation locations and dislocations in zeolites (United States)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  5. Organic non-aqueous cation-based redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai; Zhang, Lu; Brushett, Fikile R.


    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.

  6. Molecular Dynamics Study of a Dual-Cation Ionomer Electrolyte. (United States)

    Chen, Xingyu; Chen, Fangfang; Jónsson, Erlendur; Forsyth, Maria


    The poly(N1222 )x Li1-x [AMPS] ionomer system (AMPS=2-acrylamido-2-methylpropane sulfonic acid) with dual cations has previously shown decoupled Li ion dynamics from polymer segmental motions, characterized by the glass-transition temperature, which can result in a conductive electrolyte material whilst retaining an appropriate modulus (i.e. stiffness) so that it can suppress dendrite formation, thereby improving safety when used in lithium-metal batteries. To understand this ion dynamics behavior, molecular dynamics techniques have been used in this work to simulate structure and dynamics in these materials. These simulations confirm that the Li ion transport is decoupled from the polymer particularly at intermediate N1222(+) concentrations. At 50 mol % N1222(+) concentration, the polymer backbone is more rigid than for higher N1222(+) concentrations, but with increasing temperature Li ion dynamics are more significant than polymer or quaternary ammonium cation motions. Herein we suggest an ion-hopping mechanism for Li(+) , arising from structural rearrangement of ionic clusters that could explain its decoupled behavior. Higher temperatures favor an aggregated ionic structure as well as enhancing these hopping motions. The simulations discussed here provide an atomic-level understanding of ion dynamics that could contribute to designing an improved ionomer with fast ion transport and mechanical robustness.

  7. Structural Insights into Mitochondrial Calcium Uniporter Regulation by Divalent Cations. (United States)

    Lee, Samuel K; Shanmughapriya, Santhanam; Mok, Mac C Y; Dong, Zhiwei; Tomar, Dhanendra; Carvalho, Edmund; Rajan, Sudarsan; Junop, Murray S; Madesh, Muniswamy; Stathopulos, Peter B


    Calcium (Ca(2+)) flux into the matrix is tightly controlled by the mitochondrial Ca(2+) uniporter (MCU) due to vital roles in cell death and bioenergetics. However, the precise atomic mechanisms of MCU regulation remain unclear. Here, we solved the crystal structure of the N-terminal matrix domain of human MCU, revealing a β-grasp-like fold with a cluster of negatively charged residues that interacts with divalent cations. Binding of Ca(2+) or Mg(2+) destabilizes and shifts the self-association equilibrium of the domain toward monomer. Mutational disruption of the acidic face weakens oligomerization of the isolated matrix domain and full-length human protein similar to cation binding and markedly decreases MCU activity. Moreover, mitochondrial Mg(2+) loading or blockade of mitochondrial Ca(2+) extrusion suppresses MCU Ca(2+)-uptake rates. Collectively, our data reveal that the β-grasp-like matrix region harbors an MCU-regulating acidic patch that inhibits human MCU activity in response to Mg(2+) and Ca(2+) binding.

  8. Ionomer-like structures and {pi}-cation interactions in Argonne Premium coals

    Energy Technology Data Exchange (ETDEWEB)

    Opaprakasit, P.; Scaroni, A.W.; Painter, P.C. [Pennsylvania State University, University Park, PA (United States). Energy Institute


    The increase in the amount of pyridine-soluble material obtained from Argonne Premium coals after acid treatment is examined. The amount of pyridine-soluble material in most of the coals increases significantly with acid treatment. In low and to some extent medium rank coals this is largely a result of the presence of ionic clusters formed by carboxylate groups. In higher rank coals we are proposing that {pi}-cation interactions play a major role. These ion/coal interactions are of sufficient strength to act as 'reversible' cross-links, in the same way as ionic clusters behave in ionomers. 26 refs., 14 figs., 3 tabs.

  9. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry (United States)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.


    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  10. Understanding the catalytic activity of gold nanoparticles through multi-scale simulations

    DEFF Research Database (Denmark)

    Brodersen, Simon Hedegaard; Vej-Hansen, Ulrik Grønbjerg; Larsen, Britt Hvolbæk


    We investigate how the chemical reactivity of gold nanoparticles depends on the cluster size and shape using a combination of simulation techniques at different length scales, enabling us to model at the atomic level the shapes of clusters in the size range relevant for catalysis. The detailed...... atomic configuration of a nanoparticle with a given number of atoms is calculated by first finding overall cluster shapes with low energy and approximately the right size, and then using Metropolis Monte Carlo simulations to identify the detailed atomic configuration. The equilibrium number of low...... is in excellent agreement with experiments, and we conclude that the experimentally observed trends are mostly explained by the high reactivity of under-coordinated corner atoms on the gold clusters. Other effects, such as the effect of the substrate, may influence the reactivities significantly, but the presence...

  11. Dilution thermodynamics of the biologically relevant cation mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kaczyński, Marek, E-mail:; Borowik, Tomasz, E-mail:; Przybyło, Magda, E-mail:; Langner, Marek, E-mail:


    Graphical abstract: - Highlights: • Dilution energetics of Ca{sup 2+} can be altered by the aqueous phase ionic composition. • Dissipated heat upon Ca{sup 2+} dilution is drastically reduced in the K{sup +} presence. • Reduction of the enthalpy change upon Ca{sup 2+} dilution is K{sup +} concentration dependent. • The cooperativity of Ca{sup 2+} hydration might be of great biological relevance providing a thermodynamic argument for the specific ionic composition of the intracellular environment. - Abstract: The ionic composition of intracellular space is rigorously controlled by a variety of processes consuming large quantities of energy. Since the energetic efficiency is an important evolutional criterion, therefore the ion fluxes within the cell should be optimized with respect to the accompanying energy consumption. In the paper we present the experimental evidence that the dilution enthalpies of the biologically relevant ions; i.e. calcium and magnesium depend on the presence of monovalent cations; i.e. sodium and potassium. The heat flow generated during the dilution of ionic mixtures was measured with the isothermal titration calorimetry. When calcium was diluted together with potassium the dilution enthalpy was drastically reduced as the function of the potassium concentration present in the solution. No such effect was observed when the potassium ions were substituted with sodium ones. When the dilution of magnesium was investigated the dependence of the dilution enthalpy on the accompanying monovalent cation was much weaker. In order to interpret experimental evidences the ionic cluster formation is postulated. The specific organization of such cluster should depend on ions charges, sizes and organization of the hydration layers.

  12. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi


    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  13. Quotients of cluster categories


    Jorgensen, Peter


    Higher cluster categories were recently introduced as a generalization of cluster categories. This paper shows that in Dynkin types A and D, half of all higher cluster categories are actually just quotients of cluster categories. The other half can be obtained as quotients of 2-cluster categories, the "lowest" type of higher cluster categories. Hence, in Dynkin types A and D, all higher cluster phenomena are implicit in cluster categories and 2-cluster categories. In contrast, the same is not...

  14. Recent development of supported monometallic gold as heterogeneous catalyst for selective liquid phase hydrogenation reactions

    Institute of Scientific and Technical Information of China (English)

    Thushara Kandaramath Hari; Zahira Yaakob


    The great potential of gold catalysts for chemical conversions in both industrial and environmental concerns has attracted increasing interest in many fields of research. Gold nanoparticles supported by metal oxides with high surface area have been recognized as highly efficient and effective green heterogeneous catalyst even at room temperature under normal reaction conditions, in gas and liquid phase reactions. In the present review, we dis-cuss the recent development of heterogeneous, supported monometal ic gold catalysts for organic transforma-tions emphasizing mainly liquid phase hydrogenation reactions. Discussions on the catalytic synthesis procedures and the promoting effect of other noble metals are omitted since they are already worked out. Appli-cations of heterogeneous, supported monometal ic catalysts for chemoselective hydrogenations in liquid phase are studied including potential articles during the period 2000–2013.

  15. 20th-Century Gold Rush. (United States)

    Wargo, Joseph G.


    Presents Nevada's gold rush activities spurred by technological advancements in search methods. Describes the events that led to the twentieth-century gold rush, the techniques for finding deposits and the geological formation process of disseminated gold deposits. Vignettes present the gold extraction process, cross-section, and profile of a…

  16. Directed Assembly of Gold Nanoparticles

    DEFF Research Database (Denmark)

    Westerlund, Axel Rune Fredrik; Bjørnholm, Thomas


    As a complement to common "top-down" lithography techniques, "bottom-up" assembly techniques are emerging as promising tools to build nanoscale structures in a predictable way. Gold nanoparticles that are stable and relatively easy to synthesize are important building blocks in many such structures...... due to their useful optical and electronic properties. Programmed assembly of gold nanoparticles in one, two, and three dimensions is therefore of large interest. This review focuses on the progress from the last three years in the field of directed gold nanoparticle and nanorod assembly using...

  17. GOLD and the fixed ratio

    Directory of Open Access Journals (Sweden)

    Vestbo J


    Full Text Available Jørgen VestboUniversity of Manchester, Manchester, UKI read with interest the paper entitled "Diagnosis of airway obstruction in the elderly: contribution of the SARA study" by Sorino et al in a recent issue of this journal.1 Being involved in the Global Initiative for Obstructive Lung Diseases (GOLD, it is nice to see the interest sparked by the GOLD strategy document. However, in the paper by Sorino et al, there are a few misunderstandings around GOLD and the fixed ratio (forced expiratory volume in 1 second/forced volume vital capacity < 0.70 that need clarification.View original paper by Sorino and colleagues.

  18. Nematic director-induced switching of assemblies of hexagonally packed gold nanorods. (United States)

    Thomas, Michael R; Klein, Susanne; Greasty, Robert J; Mann, Stephen; Perriman, Adam W; Richardson, Robert M


    Self-assembled disc-shaped clusters of hexagonally packed, thiol-functionalized gold nanorods are prepared and dispersed in thermotropic nematic liquid crystals. The resultant hybrid complex fluids exhibit colloidal anisotropy with very high orientational order and are characterized by SAXS as shown in the figure. Precise, reconfigurable control of the cluster orientation at very low electric field strengths (0.18 V μm(-1) ) is achieved.

  19. Regional Innovation Clusters (United States)

    Small Business Administration — The Regional Innovation Clusters serve a diverse group of sectors and geographies. Three of the initial pilot clusters, termed Advanced Defense Technology clusters,...

  20. Gold-Catalyzed Synthesis of Heterocycles (United States)

    Arcadi, Antonio


    The following sections are included: * Introduction * Synthesis of Heterocycles via Gold-Catalyzed Heteroatom Addition to Unsaturated C-C Bonds * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cyclization of Polyunsaturated Compounds * Synthesis of Heterocyclic Compounds via α-Oxo Gold Carbenoid * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cycloaddition Reactions * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Activation of Carbonyl Groups and Alcohols * Synthesis of Heterocyclic Compounds through Gold-Mediated C-H Bond Functionalization * Gold-Catalyzed Domino Cyclization/Oxidative Coupling Reactions * Conclusions * References

  1. Metallic gold beads in hyaluronic acid

    DEFF Research Database (Denmark)

    Pedersen, Dan Sonne; Tran, Thao Phuong; Smidt, Kamille;


    by exploiting macrophage-induced liberation of gold ions (dissolucytosis) from gold surfaces. Injecting gold beads in hyaluronic acid (HA) as a vehicle into the cavities of the brain can delay clinical signs of disease progression in the MS model, experimental autoimmune encephalitis (EAE). This study....... In conclusion, our findings support that bio-liberation of gold from metallic gold surfaces have anti-inflammatory properties similar to classic gold compounds, warranting further studies into the pharmacological potential of this novel gold-treatment and the possible synergistic effects of hyaluronic acid....

  2. Ultrasmooth, Highly Spherical Monocrystalline Gold Particles for Precision Plasmonics

    KAUST Repository

    Lee, You-Jin


    Ultrasmooth, highly spherical monocrystalline gold particles were prepared by a cyclic process of slow growth followed by slow chemical etching, which selectively removes edges and vertices. The etching process effectively makes the surface tension isotropic, so that spheres are favored under quasi-static conditions. It is scalable up to particle sizes of 200 nm or more. The resulting spherical crystals display uniform scattering spectra and consistent optical coupling at small separations, even showing Fano-like resonances in small clusters. The high monodispersity of the particles we demonstrate should facilitate the self-assembly of nanoparticle clusters with uniform optical resonances, which could in turn be used to fabricate optical metafluids. Narrow size distributions are required to control not only the spectral features but also the morphology and yield of clusters in certain assembly schemes. © 2013 American Chemical Society.

  3. Protein-mediated autoreduction of gold salts to gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Nivedita; Bhattacharya, Resham; Mukherjee, Priyabrata [Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905 (United States)], E-mail:


    Here we report for the first time that proteins can function as unique reducing agents to produce gold nanoparticles from gold salts. We demonstrate that three different proteins, namely, bovine serum albumin (BSA), Rituximab (RIT-an anti-CD20 antibody) and Cetuximab (C225-anti-EGFR antibody), reduce gold salts to gold nanoparticles (GNP). Interestingly, among all the three proteins tested, only BSA can reduce gold salts to gold nanotriangles (GNT). BSA-induced formation of GNT can be controlled by carefully selecting the reaction condition. Heating or using excess of ascorbic acid (AA) as additional reducing agent shifts the reaction towards the formation of GNP with flower-like morphology, whereas slowing down the reaction either by cooling or by adding small amount of AA directs the synthesis towards GNT formation. GNT is formed only at pH 3; higher pHs (pH 7 and pH 10) did not produce any nanoparticles, suggesting the involvement of specific protein conformation in GNT formation. The nanomaterials formed by this method were characterized using UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). This is an important finding that will have uses in various nanotechnological applications, particularly in the green synthesis of novel nanomaterials based on protein structure.

  4. Cluster forcing

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    -industrialism and the ‘liveable' region. In this paper the cluster strategies that have been applied to the automotive sector in Wales are analysed. The paper includes a theoretical discussion on how the cluster concept has been applied to industrial policies, along with an empirical analysis of the application of the concept...... automotive sector in Wales. The paper draws from a survey of Welsh automotive suppliers on the characteristics of the local business environment and innovation. On the basis of the survey it is concluded that the public sector has an important task ahead concerning the linkages between universities and local...... businesses. The universities were not considered by the participating companies to be important parts of the local business environment and inputs from universities did not appear to be an important source to access knowledge about new product development or new techniques in production, distribution...

  5. On the thermal conductivity of gold nanoparticle colloids. (United States)

    Shalkevich, Natallia; Escher, Werner; Bürgi, Thomas; Michel, Bruno; Si-Ahmed, Lynda; Poulikakos, Dimos


    Nanofluids (colloidal suspensions of nanoparticles) have been reported to display significantly enhanced thermal conductivities relative to those of conventional heat transfer fluids, also at low concentrations well below 1% per volume (Putnam, S. A., et at. J. Appl. Phys. 2006, 99, 084308; Liu, M.-S. L., et al. Int. J. Heat Mass Transfer. 2006, 49; Patel, H. E., et al. Appl. Phys. Lett. 2003, 83, 2931-2933). The purpose of this paper is to evaluate the effect of the particle size, concentration, stabilization method and particle clustering on the thermal conductivity of gold nanofluids. We synthesized spherical gold nanoparticles of different size (from 2 to 45 nm) and prepared stable gold colloids in the range of volume fraction of 0.00025-1%. The colloids were inspected by UV-visible spectroscopy, transmission electron microscope (TEM) and dynamic light scattering (DLS). The thermal conductivity has been measured by the transient hot-wire method (THW) and the steady state parallel plate method (GAP method). Despite a significant search in parameter space no significant anomalous enhancement of thermal conductivity was observed. The highest enhancement in thermal conductivity is 1.4% for 40 nm sized gold particles stabilized by EGMUDE (triethyleneglycolmono-11-mercaptoundecylether) and suspended in water with a particle-concentration of 0.11 vol%.

  6. Gold, currencies and market efficiency (United States)

    Kristoufek, Ladislav; Vosvrda, Miloslav


    Gold and currency markets form a unique pair with specific interactions and dynamics. We focus on the efficiency ranking of gold markets with respect to the currency of purchase. By utilizing the Efficiency Index (EI) based on fractal dimension, approximate entropy and long-term memory on a wide portfolio of 142 gold price series for different currencies, we construct the efficiency ranking based on the extended EI methodology we provide. Rather unexpected results are uncovered as the gold prices in major currencies lay among the least efficient ones whereas very minor currencies are among the most efficient ones. We argue that such counterintuitive results can be partly attributed to a unique period of examination (2011-2014) characteristic by quantitative easing and rather unorthodox monetary policies together with the investigated illegal collusion of major foreign exchange market participants, as well as some other factors discussed in some detail.

  7. Gold island fiber optic sensor (United States)

    Meriaudeau, Fabrice; Wig, A. G.; Passian, A.; Downey, Todd R.; Buncick, Milan; Ferrell, Trinidad L.


    A fiber optic chemical sensor based on gold-island surface plasmon excitation is presented. The sensing part of the fiber is the end of the fiber onto which a thin layer of gold has been deposited to form a particulate surface. Annealing the gold reshapes the particles and produces an optical absorbance near 535 nm with the fiber in air. The optical absorption resonance of the gold particles is shifted if the fiber is immersed in a medium other than air. These resonance shifts are examined by transmission spectroscopy through the fiber. Experimental results for the sensitivity and dynamic range in the measurement of liquid solutions are in agreement with a basic theoretical model which characterizes the surface plasmon using nonretarded electrodynamics.

  8. Single pass kernel -means clustering method

    Indian Academy of Sciences (India)

    T Hitendra Sarma; P Viswanath; B Eswara Reddy


    In unsupervised classification, kernel -means clustering method has been shown to perform better than conventional -means clustering method in identifying non-isotropic clusters in a data set. The space and time requirements of this method are $O(n^2)$, where is the data set size. Because of this quadratic time complexity, the kernel -means method is not applicable to work with large data sets. The paper proposes a simple and faster version of the kernel -means clustering method, called single pass kernel k-means clustering method. The proposed method works as follows. First, a random sample $\\mathcal{S}$ is selected from the data set $\\mathcal{D}$. A partition $\\Pi_{\\mathcal{S}}$ is obtained by applying the conventional kernel -means method on the random sample $\\mathcal{S}$. The novelty of the paper is, for each cluster in $\\Pi_{\\mathcal{S}}$, the exact cluster center in the input space is obtained using the gradient descent approach. Finally, each unsampled pattern is assigned to its closest exact cluster center to get a partition of the entire data set. The proposed method needs to scan the data set only once and it is much faster than the conventional kernel -means method. The time complexity of this method is $O(s^2+t+nk)$ where is the size of the random sample $\\mathcal{S}$, is the number of clusters required, and is the time taken by the gradient descent method (to find exact cluster centers). The space complexity of the method is $O(s^2)$. The proposed method can be easily implemented and is suitable for large data sets, like those in data mining applications. Experimental results show that, with a small loss of quality, the proposed method can significantly reduce the time taken than the conventional kernel -means clustering method. The proposed method is also compared with other recent similar methods.

  9. Composite Hybrid Cluster Built from the Integration of Polyoxometalate and a Metal Halide Cluster: Synthetic Strategy, Structure, and Properties. (United States)

    Li, Xin-Xiong; Ma, Xiang; Zheng, Wen-Xu; Qi, Yan-Jie; Zheng, Shou-Tian; Yang, Guo-Yu


    A step-by-step synthetic strategy, setting up a bridge between the polyoxometalate (POM) and metal halide cluster (MHC) systems, is demonstrated to construct an unprecedented composite hybrid cluster built up from one high-nuclearity cationic MHC [Cu8I6](2+) and eight Anderson-type anionic POMs [HCrMo6O18(OH)6](2-) cross-linked by a tripodal alcohol derivative.

  10. Gold, coal and oil. (United States)

    Dani, Sergio U


    Jared Diamond has hypothesized that guns, germs and steel account for the fate of human societies. Here I propose an extension of Diamond's hypothesis and put it in other terms and dimensions: gold, coal and oil account not only for the fate of human societies but also for the fate of mankind through the bodily accumulation of anthropogenic arsenic, an invisible weapon of mass extinction and evolutionary change. The background is clear; arsenic species fulfill seven criteria for a weapon of mass extinction and evolutionary change: (i) bioavailability to all living organisms; (ii) imperceptibility; (iii) acute toxicity; (iv) bioaccumulation and chronic toxicity; (v) adverse impact on reproductive fitness and reproductive outcomes and early-age development and growth in a wide range of microbial, plant and animal species including man; (vi) widespread geographical distribution, mobility and ecological persistence on a centennial to millennial basis and (vii) availability in necessary and sufficient amounts to exert evolutionarily meaningful effects. The proof is becoming increasingly feasible as human exploitation of gold, coal and oil deposits cause sustainable rises of arsenic concentrations in the biosphere. Paradoxically, humans are among the least arsenic-resistant organisms because humans are long-lived, encephalized and complex social metazoans. An arsenic accumulation model is presented here to describe how arsenic accumulates in the human body with increasing age and at different provisionally safe exposure levels. Arsenic accumulates in the human body even at daily exposure levels which are within the lowest possible WHO provisional tolerance limits, yielding bodily arsenic concentrations which are above WHO provisional limits. Ongoing consequences of global scale arsenic poisoning of mankind include age-specific rises in morbidity and mortality followed by adaptive changes. The potential rise of successful forms of inborn resistance to arsenic in humans

  11. Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

    Directory of Open Access Journals (Sweden)

    Silvia Varela-Aramburu


    Full Text Available Gold nanoclusters are small (1–3 nm nanoparticles with a high surface area that are useful for biomedical studies and drug delivery. The synthesis of small, surface-functionalized gold nanoclusters is greatly dependent on the reaction conditions. Here, we describe a straightforward, efficient and robust room temperature one-pot synthesis of 2 nm gold nanoclusters using thioglucose as a reducing and stabilizing agent, which was discovered by serendipity. The resultant monodisperse gold nanoclusters are more stable than those generated using some other common methods. The carboxylic acid contained in the stabilizing agent on the cluster surface serves as anchor for nanocluster functionalization. Alternatively, the addition of thiols serves to functionalize the nanoclusters. The resulting non-cytotoxic nanoclusters are taken up by cells and constitute a tuneable platform for biomedical applications including drug delivery.

  12. Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters (United States)

    Varela-Aramburu, Silvia; Wirth, Richard; Lai, Chian-Hui; Orts-Gil, Guillermo


    Summary Gold nanoclusters are small (1–3 nm) nanoparticles with a high surface area that are useful for biomedical studies and drug delivery. The synthesis of small, surface-functionalized gold nanoclusters is greatly dependent on the reaction conditions. Here, we describe a straightforward, efficient and robust room temperature one-pot synthesis of 2 nm gold nanoclusters using thioglucose as a reducing and stabilizing agent, which was discovered by serendipity. The resultant monodisperse gold nanoclusters are more stable than those generated using some other common methods. The carboxylic acid contained in the stabilizing agent on the cluster surface serves as anchor for nanocluster functionalization. Alternatively, the addition of thiols serves to functionalize the nanoclusters. The resulting non-cytotoxic nanoclusters are taken up by cells and constitute a tuneable platform for biomedical applications including drug delivery. PMID:27826501

  13. A way to decylamine-stabilized gold nanoparticles of tailored sizes tuning their growth in solution. (United States)

    Evangelisti, Claudio; Raffa, Patrizio; Uccello-Barretta, Gloria; Vitulli, Giovanni; Bertinetti, Luca; Martra, Gianmario


    Acetone solvated Au nanoparticles (Au NPs) were prepared by Metal Vapour Synthesis (MVS) co-condensing Au and acetone vapours. Nanoparticles growth was quenched at different times by using decylamine (DA) as stabilizer and DA-stabilized Au NPs were characterized by UV-Vis, NMR DOSY and HRTEM techniques. The dependence of metal clustering processes on gold concentration was investigated.

  14. An interpretation of the absorption and emission spectra of the gold dimer using modern theoretical tools

    DEFF Research Database (Denmark)

    Geethalakshmi, K. R.; Ruiperez, F.; Knecht, S.


    The excited states of the gold dimer have been investigated using modern theoretical tools including the multiconfigurational exact molecular mean-field intermediate Hamiltonian Fock-space Coupled Cluster, X2Cmmf-IHFSCC, and the complete active space self-consistent field followed by second order...

  15. Unconventional hydrogen bonding to organic ions in the gas phase: stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine. (United States)

    Hamid, Ahmed M; El-Shall, M Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G


    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N(+·)(HCN)n and C4H4N2 (+·)(HCN)n clusters, respectively, with n = 1-4. For comparison, the binding of 1-4 HCN molecules to the protonated pyridine C5H5NH(+)(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH(δ+)⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH(+)⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH(+)⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH(δ+)⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11-12 kcal/mol) are stronger than the similar (CH(δ+)⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH(δ+) centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

  16. Combining Theory and Experiment to Characterize the Atomic Structures of Surface-Deposited Au309 Clusters

    NARCIS (Netherlands)

    Curley, B.C.; Johnston, R.L.; Young, N.P.; Li, Z.; Di Vece, M.; Palmer, R.E.; Bleloch, A.l.


    Gold clusters with icosahedral, decahedral, and cuboctahedral shell structures, have been studied using the Gupta many-body potential, to aid in the structural characterization of surface-deposited Au309 clusters using high-angle annular dark field-scanning transmission electron microscopy (HAADF-ST

  17. Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles. (United States)

    Bucharskaya, Alla; Maslyakova, Galina; Terentyuk, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Bibikova, Olga; Tuchina, Elena; Khlebtsov, Boris; Khlebtsov, Nikolai; Tuchin, Valery


    Gold nanoparticles (AuNPs) of different size and shape are widely used as photosensitizers for cancer diagnostics and plasmonic photothermal (PPT)/photodynamic (PDT) therapy, as nanocarriers for drug delivery and laser-mediated pathogen killing, even the underlying mechanisms of treatment effects remain poorly understood. There is a need in analyzing and improving the ways to increase accumulation of AuNP in tumors and other crucial steps in interaction of AuNPs with laser light and tissues. In this review, we summarize our recent theoretical, experimental, and pre-clinical results on light activated interaction of AuNPs with tissues and cells. Specifically, we discuss a combined PPT/PDT treatment of tumors and killing of pathogen bacteria with gold-based nanocomposites and atomic clusters, cell optoporation, and theoretical simulations of nanoparticle-mediated laser heating of tissues and cells.

  18. Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Alla Bucharskaya


    Full Text Available Gold nanoparticles (AuNPs of different size and shape are widely used as photosensitizers for cancer diagnostics and plasmonic photothermal (PPT/photodynamic (PDT therapy, as nanocarriers for drug delivery and laser-mediated pathogen killing, even the underlying mechanisms of treatment effects remain poorly understood. There is a need in analyzing and improving the ways to increase accumulation of AuNP in tumors and other crucial steps in interaction of AuNPs with laser light and tissues. In this review, we summarize our recent theoretical, experimental, and pre-clinical results on light activated interaction of AuNPs with tissues and cells. Specifically, we discuss a combined PPT/PDT treatment of tumors and killing of pathogen bacteria with gold-based nanocomposites and atomic clusters, cell optoporation, and theoretical simulations of nanoparticle-mediated laser heating of tissues and cells.

  19. Tourmaline from the Archean G.R.Halli gold deposit, Chitradurga greenstone belt, Dharwar craton (India): Implications for the gold metallogeny


    Susmita Gupta; Jayananda, M.; Fareeduddin


    Tourmaline occurs as a minor but important mineral in the alteration zone of the Archean orogenic gold deposit of Guddadarangavanahalli (G.R.Halli) in the Chitradurga greenstone belt of the western Dharwar craton, southern India. It occurs in the distal alteration halo of the G.R.Halli gold deposit as (a) clusters of very fine grained aggregates which form a minor constituent in the matrix of the altered metabasalt (AMB tourmaline) and (b) in quartz-carbonate veins (vein tourmaline). The vein...

  20. Mesoporous Silica Based Gold Catalysts: Novel Synthesis and Application in Catalytic Oxidation of CO and Volatile Organic Compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Leonarda F. Liotta


    Full Text Available Gold nanoparticles, particularly with the particle size of 2–5 nm, have attracted increasing research attention during the past decades due to their surprisingly high activity in CO and volatile organic compounds (VOCs oxidation at low temperatures. In particular, CO oxidation below room temperature has been extensively studied on gold nanoparticles supported on several oxides (TiO2, Fe2O3, CeO2, etc.. Recently, mesoporous silica materials (such as SBA-15, MCM-41, MCM-48 and HMS possessing ordered channel structures and suitable pore diameters, large internal surface areas, thermal stabilities and excellent mechanical properties, have been investigated as suitable hosts for gold nanoparticles. In this review we highlight the development of novel mesoporous silica based gold catalysts based on examples, mostly from recently reported results. Several synthesis methods are described herein. In detail we report: the modification of silica with organic functional groups; the one-pot synthesis with the incorporation of both gold and coupling agent containing functionality for the synthesis of mesoporous silica; the use of cationic gold complexes; the synthesis of silica in the presence of gold colloids or the dispersion of gold colloids protected by ligands or polymers onto silica; the modification of silica by other metal oxides; other conventional preparation methods to form mesoporous silica based gold catalysts. The gold based catalysts prepared as such demonstrate good potential for use in oxidation of CO and VOCs at low temperatures. From the wide family of VOCs, the oxidation of methanol and dimethyldisulfide has been addressed in the present review.

  1. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis. (United States)

    Takale, Balaram S; Bao, Ming; Yamamoto, Yoshinori


    Organic synthesis using gold has gained tremendous attention in last few years, especially heterogeneous gold catalysis based on gold nanoparticles has made its place in almost all organic reactions, because of the robust and green nature of gold catalysts. In this context, gold nanopore (AuNPore) with a 3D metal framework is giving a new dimension to heterogeneous gold catalysts. Interestingly, AuNPore chemistry is proving better than gold nanoparticles based chemistry. In this review, along with recent advances, major discoveries in heterogeneous gold catalysis are discussed.

  2. Modeling of gold production in Malaysia (United States)

    Muda, Nora; Ainuddeen, Nasihah Rasyiqah; Ismail, Hamizun; Umor, Mohd Rozi


    This study was conducted to identify the main factors that contribute to the gold production and hence determine the factors that affect to the development of the mining industry in Malaysia. An econometric approach was used by performing the cointegration analysis among the factors to determine the existence of long term relationship between the gold prices, the number of gold mines, the number of workers in gold mines and the gold production. The study continued with the Granger analysis to determine the relationship between factors and gold production. Results have found that there are long term relationship between price, gold production and number of employees. Granger causality analysis shows that there is only one way relationship between the number of employees with gold production in Malaysia and the number of gold mines in Malaysia.

  3. Influence of α-amylase template concentration on systematic entrapment of highly stable and monodispersed colloidal gold nanoparticles (United States)

    Ananth, A. Nitthin; Ananth, A. Nimrodh; Jose, Sujin P.; Umapathy, S.; Mathavan, T.


    Nano gold / α-amylase colloidal dispersions of profound stability were made using simple procedure with a conventional reducing agent. The surface plasmon resonance of the gold nanocrystals was used to quantify the extent of the dispersion stability and functionalization. It is found that the reduced gold nanoparticles were trapped into the protein network without denaturation the structure of α-amylase protein. This kind of entrapment of particles into the protein network prevents clustering of individual gold nanoparticles (6.42 nm ± 0.92 nm) by acting as a natural spacer. Systematic entrapment was facilitated by the affinity of gold to the sulfur moieties (Au-S) in the protein structure.

  4. Cation Effect on Copper Chemical Mechanical Polishing

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; LIU Bo; SONG Zhi-Tang; FENG Song-Lin


    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demon-strates the worst performance. These results reveal a mechanism that sma//molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  5. Cation Effect on Copper Chemical Mechanical Polishing (United States)

    Wang, Liang-Yong; Liu, Bo; Song, Zhi-Tang; Feng, Song-Lin


    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demonstrates the worst performance. These results reveal a mechanism that small molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  6. Cationically polymerizable monomers derived from renewable sources

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.V.


    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  7. Ionic liquid-based stable nanofluids containing gold nanoparticles. (United States)

    Wang, Baogang; Wang, Xiaobo; Lou, Wenjing; Hao, Jingcheng


    A one-phase and/or two-phase method were used to prepare the stable ionic liquid-based nanofluids containing same volume fraction but different sizes or surface states of gold nanoparticles (Au NPs) and their thermal conductivities were investigated in more detail. Five significant experiment parameters, i.e. temperature, dispersion condition, particle size and surface state, and viscosity of base liquid, were evaluated to supply experimental explanations for heat transport mechanisms. The conspicuously temperature-dependent and greatly enhanced thermal conductivity under high temperatures verify that Brownian motion should be one key effect factor in the heat transport processes of ionic liquid-based gold nanofluids. While the positive influences of proper aggregation and the optimized particle size on their thermal conductivity enhancements under some specific conditions demonstrate that clustering may be another critical effect factor in heat transport processes. Moreover, the remarkable difference of the thermal conductivity enhancements of the nanofluids containing Au NPs with different surface states could be attributed to the surface state which has a strong correlation with not only Brownian motion but also clustering. Whilst the close relationship between their thermal conductivity enhancements and the viscosity of base liquid further indicate Brownian motion must occupy the leading position among various influencing factors. Finally, a promisingly synergistic effect of Brownian motion and clustering based on experimental clues and theoretical analyses was first proposed, justifying different mechanisms are sure related. The results may shed lights on comprehensive understanding of heat transport mechanisms in nanofluids.

  8. An Automatic Clustering Technique for Optimal Clusters

    CERN Document Server

    Pavan, K Karteeka; Rao, A V Dattatreya; 10.5121/ijcsea.2011.1412


    This paper proposes a simple, automatic and efficient clustering algorithm, namely, Automatic Merging for Optimal Clusters (AMOC) which aims to generate nearly optimal clusters for the given datasets automatically. The AMOC is an extension to standard k-means with a two phase iterative procedure combining certain validation techniques in order to find optimal clusters with automation of merging of clusters. Experiments on both synthetic and real data have proved that the proposed algorithm finds nearly optimal clustering structures in terms of number of clusters, compactness and separation.

  9. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaodong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Long, Yunfei, E-mail: [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Wang, Jianxiu, E-mail: [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)


    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ{sub em} {sub max} = 650 nm, λ{sub ex} {sub max} = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O{sub 2} to produce H{sub 2}O{sub 2}, which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10{sup −6}–140 × 10{sup −6} M and a detection limit of 0.7 × 10{sup −6} M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells.

  10. Monoclonal antibody "gold rush". (United States)

    Maggon, Krishan


    The market, sales and regulatory approval of new human medicines, during the past few years, indicates increasing number and share of new biologics and emergence of new multibillion dollar molecules. The global sale of monoclonal antibodies in 2006 were $20.6 billion. Remicade had annual sales gain of $1 billion during the past 3 years and five brands had similar increase in 2006. Rituxan with 2006 sales of $4.7 billion was the best selling monoclonal antibody and biological product and the 6th among the top selling medicinal brand. It may be the first biologic and monoclonal antibody to reach $10 billion annual sales in the near future. The strong demand from cancer and arthritis patients has surpassed almost all commercial market research reports and sales forecast. Seven monoclonal antibody brands in 2006 had sales exceeding $1 billion. Humanized or fully human monoclonal antibodies with low immunogenicity, enhanced antigen binding and reduced cellular toxicity provide better clinical efficacy. The higher technical and clinical success rate, overcoming of technical hurdles in large scale manufacturing, low cost of market entry and IND filing, use of fully human and humanized monoclonal antibodies has attracted funds and resources towards R&D. Review of industry research pipeline and sales data during the past 3 years indicate a real paradigm shift in industrial R&D from pharmaceutical to biologics and monoclonal antibodies. The antibody bandwagon has been joined by 200 companies with hundreds of new projects and targets and has attracted billions of dollars in R&D investment, acquisitions and licensing deals leading to the current Monoclonal Antibody Gold Rush.

  11. Serum gold concentrations during treatment with auranofin. (United States)

    Van Riel, P L; Gribnau, F W; Van de Putte, L B; Arts, C W; Van Aernsbergen, A


    Serum gold concentrations were measured in rheumatoid arthritis patients during chronic treatment with the orally adsorbable gold compound auranofin. In agreement with data in the literature, the highest serum gold concentration was reached after 16 weeks of treatment with 6 mg auranofin daily. A striking finding in this study was that thereafter the serum gold concentrations did not appear to plateau but declined gradually. Statistically this resulted in a significantly lower concentration after one year as compared with week 16 (p less than 0.05, paired t-test). It is suggested that a shift from protein bound gold to cell-bound gold might be the explanation.

  12. Gold process mineralogy: Objectives, techniques, and applications (United States)

    Zhou, Joe Y.; Cabri, Louis J.


    The extractive metallurgy of gold is largely driven by mineralogical factors such as gold particle size; association with other minerals; coatings; presence of cyanicides, oxygen consumers, and preg-robbers; presence of refractory gold minerals; and locking of submicroscopic gold in sulfide and sulfarsenide mineral structures. Gold process mineralogy addresses all issues related to gold ore processing by the detailed study of an ore or a mill product. The methodology is widely used as a predictive tool in feasibility studies and during the process development stage, and as a trouble-shooting tool for mineral processing and hydrometallurgical operations.

  13. Structures and energetics of neutral and ionic silicon-germanium clusters: density functional theory and coupled cluster studies. (United States)

    Wang, Yi-Siang; Chao, Sheng D


    We have calculated the structural and energetic properties of neutral and ionic (singly charged anionic and cationic) semiconductor binary silicon-germanium clusters Si(m)Ge(n) for s = m + n ≤ 12 using the density functional theory (DFT-B3LYP) and coupled cluster [CCSD(T)] methods with Pople's 6-311++G(3df, 3pd) basis set. Neutral and anionic clusters share similar ground state structures for s = 3-7, independent of the stoichiometry and atom locations, but start to deviate at s = 8. The relative energetic stability of the calculated ground state structures among possible isomers has been analyzed through a bond strength propensity model where the pair interactions of Si-Si, Si-Ge, and Ge-Ge are competing. Electron affinities, ionization potentials, energy gaps between the highest and lowest occupied molecular orbitals (HOMO-LUMO gaps), and cluster mixing energies were calculated and analyzed. Overall, for a fixed s, the vertical ionization potential increases as the number of silicon atoms m increases, while the vertical electron affinity shows a dip at m = 2. As s increases, the ionization potentials increase from s = 2 to s = 3 and then decrease slowly to s = 8. The mixing energies for neutral and ionic clusters are all negative, indicating that the binary clusters are more stable than pure elemental clusters. Except for s = 4 and 8, cationic clusters are more stable than anionic ones and, thus, are more likely to be observed in experiments.

  14. Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery. (United States)

    Le Corre, Stéphanie S; Belmadi, Nawal; Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain


    In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synthesis strategies were evaluated. The first used the Atherton-Todd coupling reaction to introduce a phenolic derivative to dioleylphosphite. The second strategy used a sequential addition of lipid alcohol and a phenolic derivative on POCl3. The two methods are efficient, but the latter allows larger yields. Different polar head groups were introduced, thus producing amphiphilic compounds possessing either one permanent (N-methyl-imidazolium, pyridinium, trimethylammonium) or two permanent cationic charges. All these cationic lipids were formulated as liposomal solutions and characterized (size and zeta potential). They formed stable liposomal solutions both in water (at pH 7.0) and in a weakly acidic medium (at pH 5.5). Finally, this new generation of cationic lipids was used to deliver DNA into various human-derived epithelial cells cultured in vitro. Compared with Lipofectamine used as a reference commercial lipofection reagent, some cationic dialkylarylphosphates were able to demonstrate potent gene transfer abilities, and noteworthily, monocationic derivatives were much more efficient than dicationic analogues.

  15. Phage based green chemistry for gold ion reduction and gold retrieval. (United States)

    Setyawati, Magdiel I; Xie, Jianping; Leong, David T


    The gold mining industry has taken its toll on the environment, triggering the development of more environmentally benign processes to alleviate the waste load release. Here, we demonstrate the use of bacteriophages (phages) for biosorption and bioreduction of gold ions from aqueous solution, which potentially can be applied to remediate gold ions from gold mining waste effluent. Phage has shown a remarkably efficient sorption of gold ions with a maximum gold adsorption capacity of 571 mg gold/g dry weight phage. The product of this phage mediated process is gold nanocrystals with the size of 30-630 nm. Biosorption and bioreduction processes are mediated by the ionic and covalent interaction between gold ions and the reducing groups on the phage protein coat. The strategy offers a simple, ecofriendly and feasible option to recover of gold ions to form readily recoverable products of gold nanoparticles within 24 h.

  16. Absorption, fluorescence and resonance Rayleigh scattering spectral characteristics of interaction of gold nanoparticle with safranine T

    Institute of Scientific and Technical Information of China (English)

    HE Youqiu; LIU Shaopu; LIU Qin; LIU Zhongfang; HU Xiaoli


    The interaction between gold nanoparticle and safranine T (ST) has been studied with resonance Rayleigh scattering (RRS) spectra, absorption and fluorescence spectra. In the pH 5 solution, citrate [(H2L)2-] self-assembles on the surface of positively-charged gold nanoparticle, which results in the [(Au)n(H2L)m]x- complex. In other words, one of carboxylate oxygens in (H2L)2- moves inward and combines with gold nanoparticle. The other carboxylate oxygens moves outward to form a supermolecular complex anion with x negative charges. Then by virtue of electrostatic attraction, hydrophobic force and charge transfer action, the complex anion binds with ST cation to form a new ion-association complex. Here (H2L)2- acts as a bridge. The formation of the complex results in the significant enhancement of RRS intensity, the appearance of new RRS spectrum, the red shift of plasma absorption band of gold nanoparticle as well as the decrease in the absorbance and fluorescence quenching for safranine T. In this work, the interaction between gold nanoparticle and ST on the RRS, absorption and fluorescence spectra has been investigated. The reason why RRS intensity increases greatly and the reaction mechanism have been inquired. The results show that RRS spectra can not only be used to study nanoparticle and reaction product, but also are a sensitive means to characterize and detect nanoparticles.

  17. Towards Nano-Materials with Precise Control over Properties via Cluster-Assemblies (United States)

    Qian, Meichun; Reber, Arthur; Khanna, Shiv; Ugrinov, Angel; Chaki, Nirmalya; Mandal, Sukhendu; Saavedra, Héctor; Sen, Ayusman; Weiss, Paul


    One pathway towards nanomaterials with controllable band gaps is to assemble solids where atomic clusters serve as building blocks, because clusters' electronic structures vary with size, composition, and the charged state. To study the role of architecture in cluster assemblies, we synthesized multiple architectures of As7^3- clusters through controlling the counter-cations. Optical measurements revealed that the band gaps vary from 1.1-2.1 eV, even though the assemblies are constructed from identical cluster building blocks. First principles theoretical studies reveal that the variation is a result of altering the LUMO levels by changing the counter-cations. Additional variation in the gap is found by covalently linking the clusters with species of varying electronegativity to alter the degree of charge transfer. The findings offer a novel protocol for synthesis of nanoassemblies with tunable electronic properties.

  18. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation. (United States)

    Finnerty, Justin John; Peyser, Alexander; Carloni, Paolo


    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores.

  19. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  20. Resonance raman studies of phenylcyclopropane radical cations

    NARCIS (Netherlands)

    Godbout, J.T.; Zuilhof, H.; Heim, G.; Gould, I.R.; Goodman, J.L.; Dinnocenzo, J.P.; Myers Kelley, A.


    Resonance Raman spectra of the radical cations of phenylcyclopropane and trans-1-phenyl-2-methylcyclopropane are reported. A near-UV pump pulse excites a photosensitizer which oxidizes the species of interest, and a visible probe pulse delayed by 35 ns obtains the spectrum of the radical ion. The tr

  1. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.;


    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M...... alkali metal chlorides as well as BaCl2, NaBr and (CH3CH2CH2)(4)NBr were used to investigate the effects of both the ionic charge, size and shape. In 1: 1 electrolytes using small ions only three peaks are present: a sharp cathodic peak at ca. - 0.6 V vs, SCE representing both the insertion of cations...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  2. Anionic/cationic complexes in hair care. (United States)

    O'Lenick, Tony


    The formulation of cosmetic products is always more complicated than studying the individual components in aqueous solution. This is because there are numerous interactions between the components, which make the formulation truly more than the sum of the parts. This article will look at interactions between anionic and cationic surfactants and offer insights into how to use these interactions advantageously in making formulations.

  3. Controlled Cationic Polymerization of N-Vinylcarbazol

    NARCIS (Netherlands)

    Nuyken, O.; Rieß, G.; Loontjens, J.A.


    Cationic polymerization of N-Vinylcarbazol (NVC) was initiated with 1-iodo-1-(2-methylpropyloxy)ethane in the presence of N(n-Bu)4ClO4 and without addition of this activator. Furthermore, 1-chloro-1-(2-methylpropyloxy) ethane, with and without activator has been applied as initiator for NVC. These i

  4. Papain-directed synthesis of luminescent gold nanoclusters and the sensitive detection of Cu2+. (United States)

    Chen, Yang; Wang, Yan; Wang, Chuanxi; Li, Wenying; Zhou, Huipeng; Jiao, Huping; Lin, Quan; Yu, Cong


    Highly fluorescent papain stabilized gold nanoclusters (NCs) have been synthesized through a simple wet chemical route. Papain was used for the first time as an effective capping and reducing agent for these clusters. The optimal conditions for the synthesis of the gold nanoclusters, including the concentrations of papain and NaOH, reaction time and temperature, were investigated. The as-prepared Au clusters show intense red emission at ∼660nm (QY ∼4.3%) and are uniform in size. The clusters are quite stable and the intense red emission remained unchanged at a buffer pH range of 6-12. The fluorescent Au NCs were then used as a label-free probe for the sensitive detection of Cu(2+). A limit of detection of 3nM was obtained. The sensing strategy is also highly selective against the various potential interference ions.

  5. Cationic lipids and cationic ligands induce DNA helix denaturation: detection of single stranded regions by KMnO4 probing. (United States)

    Prasad, T K; Gopal, Vijaya; Rao, N Madhusudhana


    Cationic lipids and cationic polymers are widely used in gene delivery. Using 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as a cationic lipid, we have investigated the stability of the DNA in DOTAP:DNA complexes by probing with potassium permanganate (KMnO4). Interestingly, thymidines followed by a purine showed higher susceptibility to cationic ligand-mediated melting. Similar studies performed with other water-soluble cationic ligands such as polylysine, protamine sulfate and polyethyleneimine also demonstrated melting of the DNA but with variations. Small cations such as spermine and spermidine and a cationic detergent, cetyl trimethylammonium bromide, also rendered the DNA susceptible to modification by KMnO4. The data presented here provide direct proof for melting of DNA upon interaction with cationic lipids. Structural changes subsequent to binding of cationic lipids/ligands to DNA may lead to instability and formation of DNA bubbles in double-stranded DNA.

  6. Label-free gold nanoparticles for the determination of neomycin (United States)

    Apyari, Vladimir V.; Dmitrienko, Stanislava G.; Arkhipova, Viktoriya V.; Atnagulov, Aydar G.; Gorbunova, Mariya V.; Zolotov, Yury A.


    A new spectrophotometric method for the determination of neomycin has been developed. The method is based on aggregation of label-free gold nanoparticles leading to change in absorption spectra and color of the solution. Influence of different factors (the concentration of ethylenediaminetetraacetate (EDTA), pH, the concentrations of neomycin and the nanoparticles) on the aggregation and analytical performance of the method was investigated. EDTA plays an important role not only as a masking agent to eliminate interferences of metal cations but strongly affects the sensitivity of the nanoparticles relative to neomycin. The method allows to determine neomycin with detection limit of 28 ng mL-1. It was applied to analysis of eye- and ear-drops. The sample pretreatment is simply done by diluting the formulation with water.

  7. Photodeposition of Gold, Platinum, or Silver onto Titanium Dioxide Nanoparticles at Steps of Highly Oriented Pyrolytic Graphite (United States)

    Taing, James

    The photodeposition of gold, platinum, or silver nanoparticles selectively onto isolated titanium dioxide (TiO2) nanoparticles created metal/TiO2 photocatalysts and heterogeneous catalysts, and validated the photocatalytic property of the semiconductor. The isolated and ordered TiO2 nanoparticles permitted clear observations of the stability, and changes in morphology, of the particles in various experimental conditions. The fabrication of TiO2 nanoparticles at the steps of highly oriented pyrolytic graphite (HOPG), utilizing physical vapor deposition, required heating the graphite substrate to a minimum of 800 °C. The production of a photocurrent, and plating of gold nanoparticles, confirmed the photocatalytic property of the TiO2 nanoparticles on HOPG when utilized as a photoelectrode in a two half-cell setup. Employing sodium chloride (1.0 M) as an electrolyte resulted in an increase/decrease of the photocurrent with the addition of gold cations to the half-cell without/with the TiO2 nanoparticles. A poor distribution of gold nanoparticles, roughly 40-45 nm wide, deposited around few of the TiO2 nanoparticles. A lower concentration of sodium chloride (0.1 M) resulted in a coalescence of Au nanoparticles, roughly 10 nm, around many TiO2 nanoparticles. Using sodium nitrate as an electrolyte resulted in a rapid decay in the photocurrent and a growth of an unidentified material on the TiO2 nanoparticles. The unidentified material hindered the reduction of gold cations introduced midway through the experiment. With gold cations present at the onset of the experiment, disperse gold nanoparticles (˜5-10 nm) deposited around the TiO2 nanoparticles. In the absence of additional electrolyte, many disperse gold nanoparticles less than 5 nm deposited onto the TiO2 nanoparticles. More platinum than gold selectively deposited onto the TiO2 nanoparticles. On the contrary, less silver selectively deposited onto the TiO2 nanoparticles. Scanning electron microscopy and atomic

  8. Mode of formation and structural features of DNA-cationic liposome complexes used for transfection. (United States)

    Gershon, H; Ghirlando, R; Guttman, S B; Minsky, A


    Complexes formed between cationic liposomes and nucleic acids represent a highly efficient vehicle for delivery of DNA and RNA molecules into a large variety of eukaryotic cells. By using fluorescence, gel electrophoresis, and metal-shadowing electron microscopy techniques, the factors that affect the, yet unclear, interactions between DNA and cationic liposomes as well as the structural features of the resulting complexes have been elucidated. A model is suggested according to which cationic liposomes bind initially to DNA molecules to form clusters of aggregated vesicles along the nucleic acids. At a critical liposome density, two processes occur, namely, DNA-induced membrane fusion, indicated by lipid mixing studies, and liposome-induced DNA collapse, pointed out by the marked cooperativity of the encapsulation processes, by their modulations by DNA-condensing agents, and also by their conspicuous independence upon DNA length. The DNA collapse leads to the formation of condensed structures which can be completely encapsulated within the fused lipid bilayers in a fast, highly cooperative process since their exposed surface is substantially smaller than that of extended DNA molecules. The formation of the transfecting DNA-liposome complexes in which the nucleic acids are fully encapsulated within a positively-charged lipid bilayer is proposed, consequently, to be dominated by mutual effects exerted by the DNA and the cationic liposomes, leading to interrelated lipid fusion and DNA collapse.

  9. Dendritic Cells Stimulated by Cationic Liposomes. (United States)

    Vitor, Micaela Tamara; Bergami-Santos, Patrícia Cruz; Cruz, Karen Steponavicius Piedade; Pinho, Mariana Pereira; Barbuto, José Alexandre Marzagão; De La Torre, Lucimara Gaziola


    Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients' DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration-rehydration method (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated-rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy.

  10. Economic geology: Gold buried by oxygen


    Gaillard, Fabrice; Copard, Y.


    International audience; he Witwatersrand Basin in South Africa contains extraordinary amounts of gold. Thermodynamic calculations suggest that the gold may have accumulated there in response to a perfect storm of conditions available only during the Archaean.

  11. 31 CFR 100.4 - Gold coin and gold certificates in general. (United States)


    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Gold coin and gold certificates in general. 100.4 Section 100.4 Money and Finance: Treasury Regulations Relating to Money and Finance EXCHANGE OF PAPER CURRENCY AND COIN In General § 100.4 Gold coin and gold certificates in general....

  12. Land cover classification using reformed fuzzy C-means

    Indian Academy of Sciences (India)

    B Sowmya; B Sheelarani


    This paper explains the task of land cover classification using reformed fuzzy C means. Clustering is the assignment of objects into groups called clusters so that objects from the same cluster are more similar to each other than objects from different clusters. The most basic attribute for clustering of an image is its luminance amplitude for a monochrome image and colour components for a colour image. Since there are more than 16 million colours available in any given image and it is difficult to analyse the image on all of its colours, the likely colours are grouped together by clustering techniques. For that purpose reformed fuzzy C means algorithm has been used. The segmented images are compared using image quality metrics. The image quality metrics used are peak signal to noise ratio (PSNR), error image and compression ratio. The time taken for image segmentation is also used as a comparison parameter. The techniques have been applied to classify the land cover.

  13. Single-crystalline gold nanoplates from a commercial gold plating solution. (United States)

    Li, Zhonghao; Lapeyre, Véronique; Ravaine, Valérie; Ravaine, Serge; Kuhn, Alexander


    A novel route was proposed to synthesize gold nanoplates using a commercial gold plating solution as the reactant. Single-crystalline gold nanoplates can be successfully synthesized by reacting gold plating solution with HCl. The as-prepared nanoplates are from several micrometers to tens of micrometers in size. The effects of reactant concentration and temperature on the morphology of the gold products were investigated. The size of the gold nanoplate increases with the decrease of the amount of gold plating solution, while irregular gold nanoparticles are formed as the HCl concentration becomes low. When the reaction temperature is as low as room temperature, nanoplates with a concavity form. Specifically, it is found that the Cl- plays an important role for the formation of these gold nanoplates. The formation mechanism of the gold nanoplates is studied in detail.

  14. Cluster headache

    Directory of Open Access Journals (Sweden)

    Ducros Anne


    Full Text Available Abstract Cluster headache (CH is a primary headache disease characterized by recurrent short-lasting attacks (15 to 180 minutes of excruciating unilateral periorbital pain accompanied by ipsilateral autonomic signs (lacrimation, nasal congestion, ptosis, miosis, lid edema, redness of the eye. It affects young adults, predominantly males. Prevalence is estimated at 0.5–1.0/1,000. CH has a circannual and circadian periodicity, attacks being clustered (hence the name in bouts that can occur during specific months of the year. Alcohol is the only dietary trigger of CH, strong odors (mainly solvents and cigarette smoke and napping may also trigger CH attacks. During bouts, attacks may happen at precise hours, especially during the night. During the attacks, patients tend to be restless. CH may be episodic or chronic, depending on the presence of remission periods. CH is associated with trigeminovascular activation and neuroendocrine and vegetative disturbances, however, the precise cautive mechanisms remain unknown. Involvement of the hypothalamus (a structure regulating endocrine function and sleep-wake rhythms has been confirmed, explaining, at least in part, the cyclic aspects of CH. The disease is familial in about 10% of cases. Genetic factors play a role in CH susceptibility, and a causative role has been suggested for the hypocretin receptor gene. Diagnosis is clinical. Differential diagnoses include other primary headache diseases such as migraine, paroxysmal hemicrania and SUNCT syndrome. At present, there is no curative treatment. There are efficient treatments to shorten the painful attacks (acute treatments and to reduce the number of daily attacks (prophylactic treatments. Acute treatment is based on subcutaneous administration of sumatriptan and high-flow oxygen. Verapamil, lithium, methysergide, prednisone, greater occipital nerve blocks and topiramate may be used for prophylaxis. In refractory cases, deep-brain stimulation of the

  15. A Study on Tannic Acid-doped Polypyrrole Films on Gold Electrodes for Selective Electrochemical Detection of Dopamine


    Shouzhuo Yao; Yunlong Li; Zhili Li; Qingji Xie; Ling Jiang


    Tannic acid-doped polypyrrole (PPY/TA) films have been grown on gold electrodes for selective electrochemical detection of dopamine (DA). Electrochemical quartz crystal microbalance (EQCM) studies revealed that, in vivid contrast to perchlorate-doped polypyrrole films (PPY/ClO4 -), the redox switching of PPY/TA films in aqueous solutions involved only cation transport if the solution pH was greater than 3∼4. The PPY/TA Au electrodes also exhibited attractive permselectivity for electroactive ...

  16. Highly active thermally stable nanoporous gold catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.; Bagge-Hansen, Michael; Baeumer, Marcus; Wichmann, Andre; Neuman, Bjoern


    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  17. Gold and Silver Extraction from Leach Solutions


    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov


    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  18. Bithiophene radical cation: Resonance Raman spectroscopy and molecular orbital calculations

    DEFF Research Database (Denmark)

    Grage, M.M.-L.; Keszthelyi, T.; Offersgaard, J.F.


    The resonance Raman spectrum of the photogenerated radical cation of bithiophene is reported. The bithiophene radical cation was produced via a photoinduced electron transfer reaction between excited bithiophene and the electron acceptor fumaronitrile in a room temperature acetonitrile solution a...


    Institute of Scientific and Technical Information of China (English)

    Dongmei Yu; Chuanshan Zhao; Kefu Chen


    This study investigated the effects of several different cationic additives on the viscosity 、zeta potential and printing properties of the ink-jet coating. The cationic additives have greatly improved sheet's gloss and printabilities.

  20. Ion dynamics in cationic lipid bilayer systems in saline solutions

    DEFF Research Database (Denmark)

    Miettinen, Markus S; Gurtovenko, Andrey A; Vattulainen, Ilpo


    mixture of cationic dimyristoyltrimethylammoniumpropane (DMTAP) and zwitterionic (neutral) dimyristoylphosphatidylcholine (DMPC) lipids. Using atomistic molecular dynamics simulations, we address the effects of bilayer composition (cationic to zwitterionic lipid fraction) and of NaCl electrolyte...

  1. Infrared Photodissociation Spectroscopy of Vanadium-Carbon Dioxide Cations: Evidence for AN Intracluster Reaction. (United States)

    Brathwaite, Antonio D.; Ricks, Allen M.; Duncan, Michael A.


    Cationic vanadium-carbon dioxide clusters, consisting of up to ten carbon dioxide ligands, are produced in a molecular beam via laser vaporization in a pulsed nozzle source. The cations are mass selected and studied via infrared photodissociation spectroscopy in the 600-4000 cm1 region. The number of infrared active bands, their frequency positions and their relative intensities, allows us to gain insight into the structure and bonding of these species. The sudden appearance of new infrared bands in the spectra of complexes having seven or more ligands provides evidence for an intracluster reaction. We explore possible reaction products by comparing these spectra to those of vanadium and vanadium oxide-carbonyls. Low frequency measurements and DFT calculations have allowed us to identify complexes containing a metal atom bonded to an oxalate-like structure as the product of these reactions.

  2. A Simple Approach to Control the Growth of Non-spherical Gold Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Hong YUAN; Ru Xiu CAI; Dai Wen PANG


    A simple method to prepare the non-spherical gold particles was developed. The result solution included trigonal, truncated trigonal, hexagonal layers, and a pseudo-pentagonal shaped gold nanocrystals. The key factor is to control the relative rates of nucleation and cluster growth in this method. These attributes make seeding growth method as a useful tool in the fabrication of colloidal metal materials. A longitudinal plasmon resonance of 866 nm was observed, which is in the near-IR spectral regions (600-1000 nm). The excellent optical properties as near-IR labels are used to develop highly sensitive analysis method.

  3. Characterization of citrate capped gold nanoparticle-quercetin complex: Experimental and quantum chemical approach (United States)

    Pal, Rajat; Panigrahi, Swati; Bhattacharyya, Dhananjay; Chakraborti, Abhay Sankar


    Quercetin and several other bioflavonoids possess antioxidant property. These biomolecules can reduce the diabetic complications, but metabolize very easily in the body. Nanoparticle-mediated delivery of a flavonoid may further increase its efficacy. Gold nanoparticle is used by different groups as vehicle for drug delivery, as it is least toxic to human body. Prior to search for the enhanced efficacy, the gold nanoparticle-flavonoid complex should be prepared and well characterized. In this article, we report the interaction of gold nanoparticle with quercetin. The interaction is confirmed by different biophysical techniques, such as Scanning Electron Microscope (SEM), Circular Dichroism (CD), Fourier-Transform InfraRed (FT-IR) spectroscopy and Thermal Gravimetric Analysis (TGA) and cross checked by quantum chemical calculations. These studies indicate that gold clusters are covered by citrate groups, which are hydrogen bonded to the quercetin molecules in the complex. We have also provided evidences how capping is important in stabilizing the gold nanoparticle and further enhances its interaction with other molecules, such as drugs. Our finding also suggests that gold nanoparticle-quercetin complex can pass through the membranes of human red blood cells.

  4. Preparation and characterization of silica–gold core–shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nghiem, Thi Ha Lien, E-mail:; Le, Tuyet Ngan; Do, Thi Hue; Vu, Thi Thuy Duong; Do, Quang Hoa; Tran, Hong Nhung [Vietnam Academy of Science and Technology, Institute of Physics (Viet Nam)


    Silica–gold core–shell nanoparticles (NPs) were prepared by gold ion plating on hydrophilic-functionalized silica core NPs using formaldehyde as a reducing reagent. The monodisperse silica particles were first prepared by a sol–gel method, while the ultrafine gold colloids (diameter 1–2 nm) were synthesized by the reduction of chloroauric acid with tetrakis(hydroxymethyl)phosphonium chloride. The growth and attachment of the gold NPs onto the functionalized surface of the silica NPs with average diameter ranging from 40 to 180 nm, using a low-temperature-mediated route, were systematically investigated. The coverage of the gold NPs and clusters on the surface of the silica NPs have been evaluated by means of UV–Vis/near-infrared spectroscopy and transmission electron microscopy. The surface plasmon resonance absorption spectra from 550 to 1,000 nm of the core–shell NPs can be effectively controlled by the surface gold coverage or the silica core NP’s size.

  5. Gold, Silver and Bronze Citations. (United States)

    American School & University, 2003


    Presents the gold, silver, and bronze winners of a competition, which judged the most outstanding learning environments at educational institutions nationwide. Jurors spent two days reviewing projects, focusing on concepts and ideas that made them exceptional. For each citation, the article offers information on the firm, client, total area, total…

  6. Gold color in dental alloys. (United States)

    Cameron, T


    This article will help the dental laboratory with alloy selection by exploring how the relationship among color, ductility and strength applies to gold and how color can be quantified. Because higher quality materials translate into higher profits, upselling to the dentist and patient is also discussed.

  7. Partitional clustering algorithms

    CERN Document Server


    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  8. Stability of gold cages (Au16 and Au17) at finite temperature

    Indian Academy of Sciences (India)

    Prachi Chandrachud; Kavita Joshi; Sailaja Krishnamurty; D G Kanhere


    We have employed ab initio molecular dynamics to investigate the stability of the smallest gold cages, namely Au16 and Au17, at finite temperatures. First, we obtain the ground state structure along with at least 50 distinct isomers for both the clusters. This is followed by the finite temperature simulations of these clusters. Each cluster is maintained at 12 different temperatures for a time period of at least 150 ps. Thus, the total simulation time is of the order of 2.4 ns for each cluster. We observe that the cages are stable at least up to 850 K. Although both clusters melt around the same temperature, i.e. around 900 K, Au17 shows a peak in the heat capacity curve in contrast to the broad peak seen for Au16.

  9. Clustering and Community Detection with Imbalanced Clusters


    Aksoylar, Cem; Qian, Jing; Saligrama, Venkatesh


    Spectral clustering methods which are frequently used in clustering and community detection applications are sensitive to the specific graph constructions particularly when imbalanced clusters are present. We show that ratio cut (RCut) or normalized cut (NCut) objectives are not tailored to imbalanced cluster sizes since they tend to emphasize cut sizes over cut values. We propose a graph partitioning problem that seeks minimum cut partitions under minimum size constraints on partitions to de...

  10. Robust nanogap electrodes by self-terminating electroless gold plating. (United States)

    Serdio V, Victor M; Azuma, Yasuo; Takeshita, Shuhei; Muraki, Taro; Teranishi, Toshiharu; Majima, Yutaka


    Robust nanogap electrodes for nanodevices with a separation of 3.0 ± 1.7 nm were simultaneously mass-produced at a yield of 90% by a combination of electron beam lithography (EBL) and electroless gold plating (EGP). Nanogap electrodes demonstrated their robustness as they maintained their structure unchanged up to temperatures of 170 °C, during the isotropic oxygen plasma ashing removal of the amorphous carbon overlayer resulting from scanning electron microscopy observations, therefore maintaining their surface reactivity for EGP and formation of a self-assembled monolayer. A gold layer grows over the electrode surface during EGP, narrowing the separation between the electrodes; growth stops around 3 nm due to a self-termination phenomenon. This is the main factor in the high yield and reproducibility of the EGP process because it prevents contact between the electrodes. A 90% yield is achieved by also controlling the etching and physisorption of gold clusters, which is accomplished by reduction of triiodide ions and heat treatment of the EGP solution, respectively. A mixed self-assembled monolayer of octanethiol and decanedithiol can be formed at the surface of the nanogap electrodes after the oxygen plasma treatment, and decanethiol-protected Au nanoparticles were chemisorbed between the self-terminated nanogap electrodes via decanedithiol. Chemically assembled single-electron transistors based on the nanogap electrodes exhibit ideal, stable, and reproducible Coulomb diamonds.

  11. Production of sulfonated cation-exchangers from petroleum asphaltites

    Energy Technology Data Exchange (ETDEWEB)

    Pokonova, Yu.V.; Pol' kin, G.B.; Proskuryakov, V.A.; Vinogradov, M.V.


    Continuing our studies of the preparation of products of practical value from asphaltite, a new by-product of oil refining, we obtained sulfonated cation-exchangers from a mixture of asphaltite and acid tar. It is shown that these cation-exchangers have good kinetic properties and are superior in thermal and thermohydrolytic stability to the commercial cation-exchange resin KU-2.

  12. Cluster chemical reactions at mineral–liquid interface in metal leaching by photo-electroactive water-and-gas emulsions (United States)

    Sekisov, AG


    Possibility of cluster (inter-cluster) reactions at the interface of mineral and liquid phases in leaching of metals mainly in dispersed cluster form by photo-electrically activated water-and-gas emulsions is theoretically evaluated. The governing role of active clusters of water and clustered hydrate envelopes generated under dissolution of active oxygen forms is determined. The scope of the study covers possible processes of transformation of clustered gold in mineral substance under direct interaction with the components of the active water-and-gas emulsions.

  13. Gold recycling; a materials flow study (United States)

    Amey, Earle B.


    This materials flow study includes a description of trends in consumption, loss, and recycling of gold-containing materials in the United States in 1998 in order to illustrate the extent to which gold is presently being recycled and to identify recycling trends. The quantity of gold recycled, as a percent of the apparent supply of gold, was estimated to be about 30 percent. Of the approximately 446 metric tons of gold refined in the United States in 1998, the fabricating and industrial use losses were 3 percent.

  14. New approach to fabricate nanoporous gold film

    Institute of Scientific and Technical Information of China (English)

    Hui Zhou; Lan Jin; Wei Xu


    A simple preparation of ultrathin nanoporous gold film was described. Copper and gold were used to fabricate Cu-Au alloy films through vacuum deposition. The formation of nanoporous gold films from the alloy films involved thermal process and chemical etch by hydrochloric acid or by nitric acid. The free-standing nanoporous gold films have been analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS) and surface-enhanced Raman scattering (SERS). It was noted that the nanoporous gold film etched by hydrochloric acid is uniform with a cover of fog-like moieties.

  15. I. Unbound serum gold: procedure for quantitation. (United States)

    Lorber, A; Vibert, G J; Harralson, A F; Simon, T M


    The unbound fraction of many drugs appears to be the therapeutically active component. However, the major problem encountered in following unbound serum gold (UBSG) concentration during chrysotherapy has been the ability to quantitate such a small quantity of gold reliably without matrix interference. The methodology detailed here overcomes these difficulties and provides an effective means of monitoring the UBSG fraction during chrysotherapy. We have observed that the unbound fraction of gold dissipates quickly after gold sodium thiomalate administration and constitutes less than 2% of the total serum gold concentration.

  16. Hydrofluorination of Alkynes Catalysed by Gold Bifluorides


    Nahra, Fady; Patrick, Scott R.; Bello, Davide; Brill, Marcel; Obled, Alan; Cordes, David B.; Slawin, Alexandra M. Z.; O'Hagan, David; Steven P. Nolan


    We report the synthesis of nine new N-heterocyclic carbene gold bifluoride complexes starting from the corresponding N-heterocyclic carbene gold hydroxides. A new methodology to access N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) fluoride starting from N,N′-bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) hydroxide and readily available potassium bifluoride is also reported. These gold bifluorides were shown to be efficient catalysts in the hydrofluorination of symmetrical an...

  17. Gold nephropathy in juvenile rheumatoid arthritis. (United States)

    Husserl, F E; Shuler, S E


    A 2-year-old girl was treated with gold salts for juvenile rheumatoid arthritis. Treatment had to be discontinued when persistent proteinuria was detected. As this case report indicates, close monitoring of the urine is mandatory during treatment with gold salts to detect early signs of toxicity: hematuria followed by casts and then proteinuria as therapy is continued. Histologic examination with electron microscopy will help to differentiate the different forms of gold toxicity. When the findings are consistent with gold-induced renal involvement, therapy should be discontinued. The gold nephropathy usually resolves in time, with no permanent renal damage.

  18. [Biosynthesis of gold nanoparticles by Azospirillum brasilense]. (United States)

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E


    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.

  19. Cation Permeability in Soybean Aleurone Layer


    Noda, Hiroko; Fukuda, Mitsuru


    The permeation of water and ions into bean seeds is essential for processing and cooking of beans. The permeability of cations, K, Na, Ca, and Mg ions, into soybean seed tissue, especially aleurone layer, during water uptake was investigated to characterize the ion permeation into soybeans. Aleurone layers and seed coats contained relatively high concentration of endogenous K and Ca ions, and endogenous Ca ion, respectively. The amounts of Ca ion entered seed coats and aleurone layers were gr...

  20. Cluster headaches. (United States)

    Ryan, R E; Ryan, R E


    The patient with cluster headaches will be afflicted with the most severe type of pain that one will encounter. If the physician can do something to help this patient either by symptomatic or, more importantly, prophylactic treatment, he or she will have a most thankful patient. This type of headache is seen most frequently in men, and occurs in a cyclic manner. During an acute cycle, the patient will experience a daily type of pain that may occur many times per day. The pain is usually unilateral and may be accompanied by unilateral lacrimation, conjunctivitis, and clear rhinorrhea. Prednisone is the first treatment we employ. Patients are seen for follow-up approximately twice a week, and their medication is lowered in an appropriate manner, depending on their response to the treatment. Regulation of dosage has to be individualized, and when one reaches the lower dose such as 5 to 10 mg per day, the drug may have to be tapered more slowly, or even maintained at that level for a period of time to prevent further recurrence of symptoms. We frequently will use an intravenous histamine desensitization technique to prevent further attacks. We will give the patient an ergotamine preparation to use for symptomatic relief. As these patients often have headaches during the middle of the night, we will place the patient on a 2-mg ergotamine preparation to take prior to going to bed in the evening. This often works in a prophylactic nature, and prevents the nighttime occurrence of a headache. We believe that following these principles to make the accurate diagnosis and institute the proper therapy will help the practicing otolaryngologist recognize and treat patients suffering from this severe pain.

  1. Limited data speaker identification

    Indian Academy of Sciences (India)

    H S Jayanna; S R Mahadeva Prasanna


    In this paper, the task of identifying the speaker using limited training and testing data is addressed. Speaker identification system is viewed as four stages namely, analysis, feature extraction, modelling and testing. The speaker identification performance depends on the techniques employed in these stages. As demonstrated by different experiments, in case of limited training and testing data condition, owing to less data, existing techniques in each stage will not provide good performance. This work demonstrates the following: multiple frame size and rate (MFSR) analysis provides improvement in the analysis stage, combination of mel frequency cepstral coefficients (MFCC), its temporal derivatives $(\\Delta,\\Delta \\Delta)$, linear prediction residual (LPR) and linear prediction residual phase (LPRP) features provides improvement in the feature extraction stage and combination of learning vector quantization (LVQ) and gaussian mixture model – universal background model (GMM–UBM) provides improvement in the modelling stage. The performance is further improved by integrating the proposed techniques at the respective stages and combining the evidences from them at the testing stage. To achieve this, we propose strength voting (SV), weighted borda count (WBC) and supporting systems (SS) as combining methods at the abstract, rank and measurement levels, respectively. Finally, the proposed hierarchical combination (HC) method integrating these three methods provides significant improvement in the performance. Based on these explorations, this work proposes a scheme for speaker identification under limited training and testing data.

  2. Controlling chemistry with cations: photochemistry within zeolites. (United States)

    Ramamurthy, V; Shailaja, J; Kaanumalle, Lakshmi S; Sunoj, R B; Chandrasekhar, J


    The alkali ions present in the supercages of zeolites X and Y interact with included guest molecules through quadrupolar (cation-pi), and dipolar (cation-carbonyl) interactions. The presence of such interactions can be inferred through solid-state NMR spectra of the guest molecules. Alkali ions, as illustrated in this article, can be exploited to control the photochemical and photophysical behaviors of the guest molecules. For example, molecules that rarely phosphoresce can be induced to do so within heavy cation-exchanged zeolites. The nature (electronic configuration) of the lowest triplet state of carbonyl compounds can be altered with the help of light alkali metal ions. This state switch (n pi*-pi pi*) helps to bring out reactivity that normally remains dormant. Selectivity obtained during the singlet oxygen oxidation of olefins within zeolites illustrates the remarkable control that can be exerted on photoreactions with the help of a confined medium that also has active sites. The reaction cavities of zeolites, like enzymes, are not only well-defined and confined, but also have active sites that closely guide the reactant molecule from start to finish. The examples provided here illustrate that zeolites are far more useful than simple shape-selective catalysts.

  3. Mammalian sensitivity to elemental gold (Au?) (United States)

    Eisler, R.


    There is increasing documentation of allergic contact dermatitis and other effects from gold jewelry, gold dental restorations, and gold implants. These effects were especially pronounced among females wearing body-piercing gold objects. One estimate of the prevalence of gold allergy worldwide is 13%, as judged by patch tests with monovalent organogold salts. Eczema of the head and neck was the most common response of individuals hypersensitive to gold, and sensitivity can last for at least several years. Ingestion of beverages containing flake gold can result in allergic-type reactions similar to those seen in gold-allergic individuals exposed to gold through dermal contact and other routes. Studies with small laboratory mammals and injected doses of colloidal gold showed increased body temperatures, accumulations in reticular cells, and dose enhancement in tumor therapy; gold implants were associated with tissue injuries. It is proposed that Au? toxicity to mammals is associated, in part, with formation of the more reactive Au+ and Au3+ species.

  4. Increased localized delivery of piroxicam by cationic nanoparticles after intra-articular injection (United States)

    Kim, Sung Rae; Ho, Myoung Jin; Kim, Sang Hyun; Cho, Ha Ra; Kim, Han Sol; Choi, Yong Seok; Choi, Young Wook; Kang, Myung Joo


    Piroxicam (PRX), a potent nonsteroidal anti-inflammatory drug, is prescribed to relieve postoperative and/or chronic joint pain. However, its oral administration often results in serious gastrointestinal adverse effects including duodenal ulceration. Thus, a novel cationic nanoparticle (NP) was explored to minimize the systemic exposure and increase the retention time of PRX in the joint after intra-articular (IA) injection, by forming micrometer-sized electrostatic clusters with endogenous hyaluronic acid (HA) in the synovial cavity. PRX-loaded NPs consisting of poly(lactic-co-glycolic acid), Eudragit RL, and polyvinyl alcohol were constructed with the following characteristics: particle size of 220 nm, zeta potential of 11.5 mV in phosphate-buffered saline, and loading amount of 4.0% (w/w) of PRX. In optical and hyperspectral observations, the cationic NPs formed more than 50 μm-sized aggregates with HA, which was larger than the intercellular gaps between synoviocytes. In an in vivo pharmacokinetic study in rats, area under the plasma concentration–time curve (AUC0–24 h) and maximum plasma concentration (Cmax) of PRX after IA injection of the cationic NPs were <70% (P<0.05) and 60% (P<0.05), respectively, compared to those obtained from drug solution. Moreover, the drug concentration in joint tissue 24 h after dosing with the cationic NPs was 3.2-fold (P<0.05) and 1.8-fold (P<0.05) higher than that from drug solution and neutrally charged NPs, respectively. Therefore, we recommend the IA cationic NP therapy as an effective alternative to traditional oral therapy with PRX, as it increases drug retention selectively in the joint. PMID:27895468

  5. Leaching behavior of butanedionedioxime as gold ligand

    Institute of Scientific and Technical Information of China (English)


    Butanedionedioxime, a small organic compound with low-toxicity and good chemical stability, has been proposed as an effective gold ligand in gold extraction. The result of experiment shows that: 1) highly effective gold lixiviantcan be composed of butanedionedioxime (BDM) with many oxidants, especially potassium permanganate; 2)in the leaching system of BD M- K M nO4 the suitable Ox/Lig(ratio of oxidants to gold ligands) tange is 0.20 ~ 0. 50, optimally 0.25 ~0.45 at the pH range of 7 ~ 11; 3) BDM-KMnO4 extraction of gold from an oxide ore is similar to cyanide(cyanide-O2)extraction, but the leaching rate of gold by BDM-KMnO4 is faster than that by cyanide-O2; 4) gold may readily be recov-ered by carbon adsorption and zinc precipitation

  6. Cell volume-regulated cation channels. (United States)

    Wehner, Frank


    Considering the enormous turnover rates of ion channels when compared to carriers it is quite obvious that channel-mediated ion transport may serve as a rapid and efficient mechanism of cell volume regulation. Whenever studied in a quantitative fashion the hypertonic activation of non-selective cation channels is found to be the main mechanism of regulatory volume increase (RVI). Some channels are inhibited by amiloride (and may be related to the ENaC), others are blocked by Gd(3) and flufenamate (and possibly linked to the group of transient receptor potential (TRP) channels). Nevertheless, the actual architecture of hypertonicity-induced cation channels remains to be defined. In some preparations, hypertonic stress decreases K(+) channel activity so reducing the continuous K(+) leak out of the cell; this is equivalent to a net gain of cell osmolytes facilitating RVI. The hypotonic activation of K(+) selective channels appears to be one of the most common principles of regulatory volume decrease (RVD) and, in most instances, the actual channels involved could be identified on the molecular level. These are BKCa (or maxi K(+)) channels, IK(Ca) and SK(Ca) channels (of intermediate and small conductance, respectively), the group of voltage-gated (Kv) channels including their Beta (or Kv ancilliary) subunits, two-pore K(2P) channels, as well as inwardly rectifying K(+) (Kir) channels (also contributing to K(ATP) channels). In some cells, hypotonicity activates non-selective cation channels. This is surprising, at first sight, because of the inside negative membrane voltage and the sum of driving forces for Na(+) and K(+) diffusion across the cell membrane rather favouring net cation uptake. Some of these channels, however, exhibit a P(K)/P(Na) significantly higher than 1, whereas others are Ca(++) permeable linking hypotonic stress to the activation of Ca(++) dependent ion channels. In particular, the latter holds for the group of TRPs which are specialised in the

  7. [Antioxidant activity of cationic whey protein isolate]. (United States)

    titova, M E; Komolov, S A; Tikhomirova, N A


    The process of lipid peroxidation (LPO) in biological membranes of cells is carried out by free radical mechanism, a feature of which is the interaction of radicals with other molecules. In this work we investigated the antioxidant activity of cationic whey protein isolate, obtained by the cation-exchange chromatography on KM-cellulose from raw cow's milk, in vitro and in vivo. In biological liquids, which are milk, blood serum, fetal fluids, contains a complex of biologically active substances with a unique multifunctional properties, and which are carrying out a protective, antimicrobial, regenerating, antioxidant, immunomodulatory, regulatory and others functions. Contents of the isolate were determined electrophoretically and by its biological activity. Cationic whey protein isolate included lactoperoxidase, lactoferrin, pancreatic RNase, lysozyme and angeogenin. The given isolate significantly has an antioxidant effect in model experimental systems in vitro and therefore may be considered as a factor that can adjust the intensity of lipid oxidation. In model solutions products of lipid oxidation were obtained by oxidation of phosphatidylcholine by hydrogen peroxide in the presence of a source of iron. The composition of the reaction mixture: 0,4 mM H2O2; 50 mcM of hemin; 2 mg/ml L-alpha-phosphatidylcholine from soybean (Sigma, German). Lipid peroxidation products were formed during the incubation of the reaction mixture for two hours at 37 degrees C. In our studies rats in the adaptation period immediately after isolation from the nest obtained from food given orally native cationic whey protein isolate at the concentration three times higher than in fresh cow's milk. On the manifestation of the antioxidant activity of cationic whey protein isolate in vivo evidence decrease of lipid peroxidation products concentration in the blood of rats from the experimental group receipt whey protein isolate in dos 0,6 mg/g for more than 20% (pwhey protein isolate has an

  8. Factorial PD-Clustering

    CERN Document Server

    Tortora, Cristina; Summa, Mireille Gettler


    Factorial clustering methods have been developed in recent years thanks to the improving of computational power. These methods perform a linear transformation of data and a clustering on transformed data optimizing a common criterion. Factorial PD-clustering is based on Probabilistic Distance clustering (PD-clustering). PD-clustering is an iterative, distribution free, probabilistic, clustering method. Factorial PD-clustering make a linear transformation of original variables into a reduced number of orthogonal ones using a common criterion with PD-Clustering. It is demonstrated that Tucker 3 decomposition allows to obtain this transformation. Factorial PD-clustering makes alternatively a Tucker 3 decomposition and a PD-clustering on transformed data until convergence. This method could significantly improve the algorithm performance and allows to work with large dataset, to improve the stability and the robustness of the method.

  9. Alkali cation specific adsorption onto fcc(111) transition metal electrodes. (United States)

    Mills, J N; McCrum, I T; Janik, M J


    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  10. [Contact allergy to gold and its alloys. Pertinence of gold salt patch tests]. (United States)

    Collet, E; Lacroix, M; Dalac, S; Ponnelle, C; Lambert, D


    Allergic contact dermatitis to gold and its alloys is a rare affection and it is difficult to interpret gold salts patch tests. We report two cases of patients with positive patch tests to 0.5% sodium aurothiosulfate discovered during a dermatology exploration of an occupational contact eczema (for the first patient) and an intolerance to gold jewelry (for the second). There is much confusion in the literature concerning the allergologic exploration of contact dermatitis to gold: no standardized test, possible cross reactions between different gold salts, the tests often irritate. The mechanism of sensitization to gold salts is unknown since pure gold is inalterable and does not contain any salts. The pertinence of a positive test to one or more gold salts must therefore be examined carefully and the diagnosis of gold allergy must not be made without sufficient evidence.

  11. Possibilistic Exponential Fuzzy Clustering

    Institute of Scientific and Technical Information of China (English)

    Kiatichai Treerattanapitak; Chuleerat Jaruskulchai


    Generally,abnormal points (noise and outliers) cause cluster analysis to produce low accuracy especially in fuzzy clustering.These data not only stay in clusters but also deviate the centroids from their true positions.Traditional fuzzy clustering like Fuzzy C-Means (FCM) always assigns data to all clusters which is not reasonable in some circumstances.By reformulating objective function in exponential equation,the algorithm aggressively selects data into the clusters.However noisy data and outliers cannot be properly handled by clustering process therefore they are forced to be included in a cluster because of a general probabilistic constraint that the sum of the membership degrees across all clusters is one.In order to improve this weakness,possibilistic approach relaxes this condition to improve membership assignment.Nevertheless,possibilistic clustering algorithms generally suffer from coincident clusters because their membership equations ignore the distance to other clusters.Although there are some possibilistic clustering approaches that do not generate coincident clusters,most of them require the right combination of multiple parameters for the algorithms to work.In this paper,we theoretically study Possibilistic Exponential Fuzzy Clustering (PXFCM) that integrates possibilistic approach with exponential fuzzy clustering.PXFCM has only one parameter and not only partitions the data but also filters noisy data or detects them as outliers.The comprehensive experiments show that PXFCM produces high accuracy in both clustering results and outlier detection without generating coincident problems.

  12. Enhanced photo-catalytic activity of gold ion and gold modified

    Institute of Scientific and Technical Information of China (English)


    The gold ion modified TiO2 was prepared by means of sol- gelwhereas gold deposited TiO2 was prepared by means of photo- reduction. The physical properties were influenced significantly by the presence of gold ion or gold. The enhanced photo-activity of gold modified TiO2 was quantified in terms of methylene blue degradation. The presence of gold ion in TiO2 lattices or gold on TiO2 surface enhanced their photo-activity. The optimum molar content of gold ion doping and gold deposition all was 0.5%. The first-order rates constants of gold modified TiO2 was more than that of pure TiO2, and decreased by increasing the content of gold ion and gold when their contents were more than 0.5%. Gold iondoped in TiO2 lattices was more effective to enhance the photo-activity than gold on TiO2 surface. Moreover, the relationship between physical properties, chemical properties and photo-activityhas been discussed.

  13. Gold concentration in blood in relation to the number of gold restorations and contact allergy to gold. (United States)

    Ahnlide, Ingela; Ahlgren, Camilla; Björkner, Bert; Bruze, Magnus; Lundh, Thomas; Möller, Halvor; Nilner, Krister; Schütz, Andrejs


    Previous studies have demonstrated an association between gold allergy and the presence of dental gold restorations. The aim of the present study was to investigate the relationship between the concentration of gold in blood (B-Au) and the number of tooth surfaces with gold alloys in subjects with and without contact allergy to gold. In 80 patients referred for patch testing because of eczematous disease, blood samples were taken and analyzed for B-Au using inductively coupled plasma mass spectrometry. The detection limit for the Au determination was 0.04 microg/L. In addition, a dentist made a clinical and radiological examination of the patients and registered the number of dental gold surfaces. Patients with dental gold restorations had a statistically significantly higher B-Au in Mann-Whitney U test (P = 0.025), (range < 0.04-1.07 microg/L) than patients without (range < 0.04-0.15 microg/L). Furthermore, a positive correlation was found between B-Au and the number of dental gold surfaces (P < 0.01). There was no statistically significant difference in B-Au between persons with and without contact allergy to gold. The study thus indicates that gold is released from dental restorations and taken tip into the circulation.

  14. Small angle neutron scattering studies on the interaction of cationic surfactants with bovine serum albumin

    Indian Academy of Sciences (India)

    Nuzhat Gull; S Chodankar; V K Aswal; Kabir-Ud-Din


    The structure of the protein–surfactant complex of bovine serum albumin (BSA) and cationic surfactants has been studied by small angle neutron scattering. At low concentrations, the CTAB monomers are observed to bind to the protein leading to an increase in its size. On the other hand at high concentrations, surfactant molecules aggregate along the unfolded polypeptide chain of the protein resulting in the formation of a fractal structure representing a necklace model of micelle-like clusters randomly distributed along the polypeptide chain. The fractal dimension as well as the size and number of micelles attached to the complex have been determined.

  15. Clustering large number of extragalactic spectra of galaxies and quasars through canopies

    CERN Document Server

    De, Tuli; Chattopadhyay, Asis Kumar


    Cluster analysis is the distribution of objects into different groups or more precisely the partitioning of a data set into subsets (clusters) so that the data in subsets share some common trait according to some distance measure. Unlike classi cation, in clustering one has to rst decide the optimum number of clusters and then assign the objects into different clusters. Solution of such problems for a large number of high dimensional data points is quite complicated and most of the existing algorithms will not perform properly. In the present work a new clustering technique applicable to large data set has been used to cluster the spectra of 702248 galaxies and quasars having 1540 points in wavelength range imposed by the instrument. The proposed technique has successfully discovered ve clusters from this 702248X1540 data matrix.

  16. Chemical sensors based on π-conjugated organic molecules and gold nanoparticles

    Institute of Scientific and Technical Information of China (English)


    Scientists have developed techniques for synthesizing and characterizing many new materials including conjugated small molecules, polymers and gold particles protected by conjugated organic chromophores for testing specific sensing properties in the past decade. Still, the design and synthesis or supermolecular systems fabrication of novel materials with controlled sensing properties is a significant and ongoing challenge within nanoscience and nanotechnology. Recently, our group has successfully constructed a series of chemosensors using small organic molecules, conjugated polymers and gold nanoparticles for real-time detection of specific analytes. The chemosensors show high selectivity and sensitivity in the detection of cations and biologic analytes and thus are potentially promising for applications in sensing assay system. In this review, recent sutdies on the design, synthesis and photo-physical properties of novel materials and construct of chemosensors are summarized with an emphasis on the development in our groups in recent years.

  17. Chemical sensors based on n-conjugated organic molecules and gold nanoparticles

    Institute of Scientific and Technical Information of China (English)

    YUAN MingJian; LI YongJun; LIU HuiBiao; LI YuLiang


    Scientists have developed techniques for synthesizing and characterizing many new materials includ-ing conjugated small molecules, polymers and gold particles protected by conjugated organic chro-mophores for testing specific sensing properties in the past decade. Still, the design and synthesis or supermolecular systems fabrication of novel materials with controlled sensing properties is a signifi-cant and ongoing challenge within nanoscience and nanotechnology. Recently, our group has suc-cessfully constructed a series of chemosensors using small organic molecules, conjugated polymersand gold nanoparticles for real-time detection of specific analytes. The chemosensors show high se-lectivity and sensitivity in the detection of cations and biologic analytes and thus are potentially promising for applications in sensing assay system. In this review, recent sutdies on the design, syn-thesis and photo-physical properties of novel materials and construct of chemosensors are summa-rized with an emphasis on the development in our groups in recent years.

  18. Interaction between alginates and manganese cations: identification of preferred cation binding sites. (United States)

    Emmerichs, N; Wingender, J; Flemming, H-C; Mayer, C


    Algal and bacterial alginates have been studied by means of 13C NMR spectroscopy in presence of paramagnetic manganese ions in order to reveal the nature of their interaction with bivalent cations. It is found that the mannuronate blocks bind manganese cations externally near their carboxylate groups, while guluronate blocks show the capability to integrate Mn2+ into pocket-like structures formed by adjacent guluronate residues. In alternating mannuronate-guluronate blocks, manganese ions preferentially locate in a concave structure formed by guluronate-mannuronate pairs. Partial acetylation of the alginate generally reduces its capability to interact with bivalent cations, however, the selectivity of the binding geometry is conserved. The results may serve as a hint for the better understanding of the alginate gelation in presence of calcium ions.

  19. Monodisperse gold nanoparticles formed on bacterial crystalline surface layers (S-layers) by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dieluweit, S. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Pum, D. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Sleytr, U.B. [Center for Nanobiotechnology, University of Natural Resources and Applied Life Sciences (BOKU), Gregor Mendel-Strasse 33, A-1180 Vienna (Austria); Kautek, W. [Department for Physical Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna (Austria)]. E-mail:


    The fabrication of patterned arrays of nanoparticles whose electronic, optical and magnetic properties will find technological applications, such as ultra-high-density memories, is currently one of the most important objectives of inorganic material research. In this study, the in situ electroless nucleation of ordered two-dimensional arrays of gold nanoparticles (5 nm in size) by using bacterial S-layers as molecular templates and their characterization by small spot X-ray photoelectron emission spectroscopy (XPS) is presented. This yielded the elemental composition of the nanoclusters, which consisted of almost entirely elemental gold, and possible side reactions on the cluster and protein surface. The preferential deposition of the gold nanoparticles on the S-layer suggests that topography and functional groups are important for superlattice formation.

  20. Dissolution of Globular Clusters


    Baumgardt, Holger


    Globular clusters are among the oldest objects in galaxies, and understanding the details of their formation and evolution can bring valuable insight into the early history of galaxies. This review summarises the current knowledge about the dissolution of star clusters and discusses the implications of star cluster dissolution for the evolution of the mass function of star cluster systems in galaxies.

  1. Structures of Mn clusters

    Indian Academy of Sciences (India)

    Tina M Briere; Marcel H F Sluiter; Vijay Kumar; Yoshiyuki Kawazoe


    The geometries of several Mn clusters in the size range Mn13–Mn23 are studied via the generalized gradient approximation to density functional theory. For the 13- and 19-atom clusters, the icosahedral structures are found to be most stable, while for the 15-atom cluster, the bcc structure is more favoured. The clusters show ferrimagnetic spin configurations.

  2. A chronocoulometric aptasensor based on gold nanoparticles as a signal amplification strategy for detection of thrombin. (United States)

    Jiao, Xiao Xia; Chen, Jing Rong; Zhang, Xi Yuan; Luo, Hong Qun; Li, Nian Bing


    A sensitive chronocoulometric aptasensor for the detection of thrombin has been developed based on gold nanoparticle amplification. The functional gold nanoparticles, loaded with link DNA (LDNA) and report DNA (RDNA), were immobilized on an electrode by thrombin aptamers performing as a recognition element and capture probe. LDNA was complementary to the thrombin aptamers and RDNA was noncomplementary, but could combine with [Ru(NH₃)₆]³⁺ (RuHex) cations. Electrochemical signals obtained by RuHex that bound quantitatively to the negatively charged phosphate backbone of DNA via electrostatic interactions were measured by chronocoulometry. In the presence of thrombin, the combination of thrombin and thrombin aptamers and the release of the functional gold nanoparticles could induce a significant decrease in chronocoulometric signal. The incorporation of gold nanoparticles in the chronocoulometric aptasensor significantly enhanced the sensitivity. The performance of the aptasensor was further increased by the optimization of the surface density of aptamers. Under optimum conditions, the chronocoulometric aptasensor exhibited a wide linear response range of 0.1-18.5 nM with a detection limit of 30 pM. The results demonstrated that this nanoparticle-based amplification strategy offers a simple and effective approach to detect thrombin.

  3. Gold Catalysts on Y-Doped Ceria Supports for Complete Benzene Oxidation

    Directory of Open Access Journals (Sweden)

    Lyuba Ilieva


    Full Text Available Gold (3 wt. % catalysts on Y-doped (1, 2.5, 5 and 7.5 wt. % Y2O3 ceria supports prepared by coprecipitation (CP or impregnation (IM were studied in complete benzene oxidation (CBO. A low-extent Y modification was chosen to avoid ordering of oxygen vacancies. The samples were characterized by XRD, TGA, XPS and TPR techniques. A positive role of air pretreatment at 350 °C as compared to 200 °C was established for all Y-containing catalysts and it was explained by cleaning the active sites from carbonates. The oxygen supply cannot be considered as a limiting step for benzene oxidation except for the high 7.5%-doped samples, as suggested by TGA and TPR data. On the basis of XPS results of fresh and used in CBO catalysts, the presence of cationic gold species does not seem important for high CBO activity. The gold catalyst on an IM support with 1% Y-doping exhibited the best performance. A 100% benzene conversion was achieved only over this catalyst and Au/ceria, while it was not reached even at 300 °C over all other studied catalysts. Gold and ceria particle agglomeration or coke formation should be excluded as a possible reason, and the most probable explanation could be associated with the importance of the benzene activation stage.

  4. Gene delivery in conjunction with gold nanoparticle and tumor treating electric field (United States)

    Tiwari, Pawan K.; Soo Lee, Yeon


    The advances in electrotherapy to treat the diseased biological cell instigate its extension in gene therapy through the delivery of gene into the nucleus. The objective of this study is to investigate the application of moderate intensity alternating electric field, also known as tumor treating electric field on a carrier system consisting of a charged gene complex conjugated to the surface of a gold nanoparticle. The gene delivery mechanism relies on the magnitude and direction of the induced electric field inside the cytoplasm in presence of carrier system. The induced electric field strength is significant in breaking the gene complex-gold nanoparticle bonding, and exerting an electric force pushing the charged gene into the nucleus. The electric force orientation is dependent on the aspect ratio (AR) of the gold nanoparticle and a relationship between them is studied via Maxwell two-dimensional (2D) finite element simulation analyzer. The development of charge density on the surface of carrier system and the required electric field strength to break the bonding are investigated utilizing the Gouy-Chapman-Grahame-Stern (GCGS) theoretical model. A carrier system having the aspect ratio of the gold nanoparticle in the range 1 < AR ≤ 5 and AR = 1 are substantial delivering cationic and anionic genes into the nucleus, respectively.

  5. Switchable Imbibition in Nanoporous Gold

    CERN Document Server

    Xue, Yahui; Duan, Huiling; Weissmueller, Joerg; Huber, Patrick


    Spontaneous imbibition enables the elegant propelling of nano-flows because of the dominance of capillarity at small length scales. The imbibition kinetics are, however, solely determined by the static geometry of the porous host, the capillarity, and the fluidity of the imbibed liquid. This makes active control particularly challenging. Here, we show for aqueous electrolyte imbibition in nanoporous gold that the fluid flow can be reversibly switched on and off through electric potential control of the solid-liquid interfacial tension, i.e. we can accelerate the imbibition front, stop it, and have it proceed at will. Simultaneous measurements of the mass flux and the electrical current allow us to document simple scaling laws for the imbibition kinetics, and to explore the charge flow dynamics in the metallic nanopores. Our findings demonstrate that the high electric conductivity along with the pathways for ionic and/or fluid transport render nanoporous elemental gold a versatile, accurately controllable elec...

  6. CMS Industries awarded gold, crystal

    CERN Multimedia


    The CMS collaboration honoured 10 of its top suppliers in the seventh annual awards ceremony The representatives of the firms that recieved the CMS Gold and Crystal Awards stand with their awards after the ceremony. The seventh annual CMS Awards ceremony was held on Monday 13 March to recognize the industries that have made substantial contributions to the construction of the collaboration's detector. Nine international firms received Gold Awards, and General Tecnica of Italy received the prestigious Crystal Award. Representatives from the companies attended the ceremony during the plenary session of CMS week. 'The role of CERN, its machines and experiments, beyond particle physics is to push the development of equipment technologies related to high-energy physics,'said CMS Awards Coordinator Domenico Campi. 'All of these industries must go beyond the technologies that are currently available.' Without the involvement of good companies over the years, the construction of the CMS detector wouldn't be possible...

  7. A naked eye aggregation assay for Pb2+ detection based on glutathione-coated gold nanostars (United States)

    D'Agostino, Agnese; Taglietti, Angelo; Bassi, Barbara; Donà, Alice; Pallavicini, Piersandro


    Gold nanostars (AuNS) with a mean hydrodynamic size of 40 nm, obtained with a seed-growth approach using a zwitterionic surfactant (laurylsulfobetaine, LSB), were successfully coated with glutathione (GSH), obtaining a stable and purified solid product which can be easily stored and re-dissolved on need in 0.1 M aqueous solution of Hepes buffered at pH 7. Upon exposure to micromolar concentrations of Pb2+ cation, the GSH-coated nano-objects undergo a fast aggregation followed by sedimentation leading to complete precipitation in about an hour. The subsequent disappearing of the intense LSPR extinction can of course be followed spectrophotometrically but, most importantly, can be easily detected with the naked eye. No signs of this event are noticed when other divalent cations are added to the colloidal suspension in the same condition. A careful investigation was performed to study this selectivity and the behaviour of aggregation as a function of time and Pb2+ cation concentration. We demonstrate that an easy, rapid, instrument-free, visual detection of micromolar levels of Pb2+ is thus possible with this assay, showing a good selectivity towards other investigated metal cations.

  8. Contextualizing the Cluster

    DEFF Research Database (Denmark)

    Giacomin, Valeria

    This dissertation examines the case of the palm oil cluster in Malaysia and Indonesia, today one of the largest agricultural clusters in the world. My analysis focuses on the evolution of the cluster from the 1880s to the 1970s in order to understand how it helped these two countries to integrate......-researched topic in the cluster literature – the emergence of clusters, their governance and institutional change, and competition between rival cluster locations – through the case of the Southeast Asian palm oil cluster....

  9. Cluster Plasmonics: Dielectric and Shape Effects on DNA-Stabilized Silver Clusters. (United States)

    Copp, Stacy M; Schultz, Danielle; Swasey, Steven M; Faris, Alexis; Gwinn, Elisabeth G


    This work investigates the effects of dielectric environment and cluster shape on electronic excitations of fluorescent DNA-stabilized silver clusters, AgN-DNA. We first establish that the longitudinal plasmon wavelengths predicted by classical Mie-Gans (MG) theory agree with previous quantum calculations for excitation wavelengths of linear silver atom chains, even for clusters of just a few atoms. Application of MG theory to AgN-DNA with 400-850 nm cluster excitation wavelengths indicates that these clusters are characterized by a collective excitation process and suggests effective cluster thicknesses of ∼2 silver atoms and aspect ratios of 1.5 to 5. To investigate sensitivity to the surrounding medium, we measure the wavelength shifts produced by addition of glycerol. These are smaller than reported for much larger gold nanoparticles but easily detectable due to narrower line widths, suggesting that AgN-DNA may have potential for fluorescence-reported changes in dielectric environment at length scales of ∼1 nm.

  10. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)


    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  11. Gemballa Mirage GT Gold Edition

    Institute of Scientific and Technical Information of China (English)


    前不久,保时捷的专业改装厂Gembaila推出了一款Mirage GT Gold Edition,这款车以Carrera GT为基础,并且使用了大量的碳纤维材料,而且在车身内外配备了一些黄金色的涂装。

  12. Ore fluid geochemistry of the Jinlongshan Carlin type gold ore belt in Shaanxi Province, China

    Institute of Scientific and Technical Information of China (English)


    The Jinlongshan gold ore belt in southern Shaanxi Province contains a number of Carlin-type gold deposits in the Qinling collisional orogenic belt. Their fluid inclusions are of the Na+ - Cl- type. From the main metallogenic stage to later stages, the total quantity of anions and cations, temperature and deoxidation parameter (R) for fluid inclusions all gradu ally decreased, suggesting the gradual intensification of fluid oxidation, the reduction of met allogenic depth and the input of meteoric water and organic components. The deposits were formed during crustal uplifting and hence had similar tectonic settings to orogenic gold depos its. The CO2 contents and CO2/H2O values of the ore fluid increased from early to late sta ges, and the wall-rock alteration is represented by decarbonation, which is inconsistent with the characteristics of orogenic gold deposits. It is also discovered that Na + , K + ,SO42-, Cl-and the total amounts of anions and cations in the inclusions in quartz are higher than those in the coexisting calcite. The H, O and C isotope ratios indicate that the ore fluid was sourced from meteoric water and metamorphic devolatilisation of the sedimentary rocks that host the ores. The high background δ18O and δ13C values of wall rocks resulted in high δ18O and δ13 C values of ore fluid and also high δ 18 O and δ 13 C values of hydrothermal minerals such as quartz and carbonate. The carbon in ore fluid stemmed largely from the hosting strata. The δ 18O and δ13C values of Fe-calcite and the δD values of fluid inclusions are lower than those of calcite and quartz. In terms of the theory of coordination chemistry, all these differences can be ascribed to water-rock interaction in the same fluid system, instead, to the multi source of ore fluid.

  13. Calculations of the dynamical Debye-Scherrer electron diffraction pattern from small particles of gold and silver

    Energy Technology Data Exchange (ETDEWEB)

    Hall, B.D. (Inst. de Micro- et Optoelectronique, EPFL, Lausanne (Switzerland)); Reinhard, D. (Inst. de Physique Experimentale, EPFL, Lausanne (Switzerland)); Ugarte, D. (Inst. de Physique Experimentale, EPFL, Lausanne (Switzerland))


    Calculations of the dynamical Debye-Scherrer electron diffraction pattern for ultrafine gold and silver particles have been performed using the multislice method. Two cluster sizes, 31 and 55 A in diameter (923 and 5083 atoms, respectively), of both f.c.c. and icosahedral structures were used, at incident voltages of 40 kV and 100 kV. (orig.)

  14. Gold(I)-Alkanethiolate Nanotubes

    KAUST Repository

    Zhang, Yu Xin


    (Figure Presented) A solution approach to assembling Au(I) - alkanethiolates into nanotube structures at room temperature is presented, in which Au(I) cations and alkanethiolate ligands are coordinated into thin platelet forms that then evolve into an open tubular configuration (see figure). The organic-inorganic hybrid nature of the nanotubes, their ability to be modified, and their high stability make them of interest for practical applications. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA.

  15. Clustering in analytical chemistry. (United States)

    Drab, Klaudia; Daszykowski, Michal


    Data clustering plays an important role in the exploratory analysis of analytical data, and the use of clustering methods has been acknowledged in different fields of science. In this paper, principles of data clustering are presented with a direct focus on clustering of analytical data. The role of the clustering process in the analytical workflow is underlined, and its potential impact on the analytical workflow is emphasized.

  16. Structural Evolution of Core-Shell Gold Nanoclusters: Aun(-) (n = 42-50). (United States)

    Pande, Seema; Huang, Wei; Shao, Nan; Wang, Lei-Ming; Khetrapal, Navneet; Mei, Wai-Ning; Jian, Tian; Wang, Lai-Sheng; Zeng, Xiao Cheng


    Gold nanoclusters have attracted great attention in the past decade due to their remarkable size-dependent electronic, optical, and catalytic properties. However, the structures of large gold clusters are still not well-known because of the challenges in global structural searches. Here we report a joint photoelectron spectroscopy (PES) and theoretical study of the structural evolution of negatively charged core-shell gold nanoclusters (Aun(-)) for n = 42-50. Photoelectron spectra of size-selected Aun(-) clusters are well resolved with distinct spectral features, suggesting a dominating structural type. The combined PES data and density functional calculations allow us to systematically identify the global minimum or candidates of the global minima of these relatively large gold nanoclusters, which are found to possess low-symmetry structures with gradually increasing core sizes. Remarkably, the four-atom tetrahedral core, observed first in Au33(-), continues to be highly robust and is even present in clusters as large as Au42(-). Starting from Au43(-), a five-atom trigonal bipyramidal core appears and persists until Au47(-). Au48(-) possesses a six-atom core, while Au49(-) and Au50(-) feature seven- and eight-atom cores, respectively. Notably, both Au46(-) and Au47(-) contain a pyramidal Au20 motif, which is stacked with another truncated pyramid by sharing a common 10-atom triangular face. The present study sheds light on our understanding of the structural evolution of the medium-sized gold nanoclusters, the shells and core as well as how the core-shell structures may start to embrace the golden pyramid (bulk-like) fragment.

  17. Aggregate Formed by a Cationic Fluorescence Probe

    Institute of Scientific and Technical Information of China (English)

    TIAN, Juan; SANG, Da-Yong; JI, Guo-Zhen


    The aggregation behavior of a cationic fluorescence probe 10-(4,7,10,13,16-pentaoxa-1-azacyclooctadecyl-methyl)anthracen-9-ylmethyl dodecanoate (1) was observed and studied by a fluorescence methodology in acidic and neutral conditions. By using the Py scale, differences between simple aggregates and micelles have been discussed. The stability of simple aggregates was discussed in terms of hydrophobic interaction and electrostatic repulsion. The absence of excimer emission of the anthrancene moiety of probe 1 in neutral condition was attributed to the photoinduced electron transfer mechanism instead of photodimerization.

  18. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.


    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  19. Heart imaging with cationic complexes of technetium

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, E.; Bushong, W.; Glavan, K.A.; Elder, R.C.; Sodd, V.J.; Scholz, K.L.; Fortman, D.L.; Lukes, S.J.


    The cationic technetium-99 complex trans-(99TC(dmpe)2Cl2)+, where dmpe is bis(1,2-dimethylphosphino)ethane or (CH3)2P-CH2-P(CH3)2, has been prepared and characterized by single-crystal, x-ray structural analysis. The technetium-99m analog, trans-(99mTc(dmpe) 2Cl2)+, has also been prepared and shown to yield excellent gamma-ray images of the heart. The purposeful design, characterization, and synthesis of this technetium-99m radiopharmaceutical represents a striking application of fundamental inorganic chemistry to a problem in applied nuclear medicine.

  20. CO extrusion in homogeneous gold catalysis: reactivity of gold acyl species generated through water addition to gold vinylidenes. (United States)

    Bucher, Janina; Stößer, Tim; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K


    Herein, we describe a new gold-catalyzed decarbonylative indene synthesis. Synergistic σ,π-activation of diyne substrates leads to gold vinylidene intermediates, which upon addition of water are transformed into gold acyl species, a type of organogold compound hitherto only scarcely reported. The latter are shown to undergo extrusion of CO, an elementary step completely unknown for homogeneous gold catalysis. By tuning the electronic and steric properties of the starting diyne systems, this new reactivity could be exploited for the synthesis of indene derivatives in high yields.

  1. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA


    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI:

  2. Feasibilty of electroplated gold for hybrid microcircuits

    Energy Technology Data Exchange (ETDEWEB)

    Blessner, P.L.


    Electroplating was investigated as a method of providing thick gold films. Because electroplated gold has never been used for hybrid microcircuit (HMC) substrate metallization, this feasibility study was also designed to determine the characteristics of electroplated gold and its compatibility with present HMC fabrication processes. Ceramic substrates 95 by 114 mm (3.75 by 4.5 in.) were electroplated with 6, 10, and 25 of gold after 0.02 of chromium and 0.5 of gold had been either sputtered or vacuum evaporated onto the substrate surfaces. Substrates vacuum evaporated with 6 of gold were used as a control group. The substrates were evaluated for via resistance, RF electrical characteristics, conductor definition and resolution, solder wettability, thermocompression bondability, and environmental stability.

  3. Cation effects on rotational dynamics of anions and water molecules in alkali (Li+, Na+, K+, Cs+) thiocyanate (SCN-) aqueous solutions. (United States)

    Bian, Hongtao; Chen, Hailong; Zhang, Qiang; Li, Jiebo; Wen, Xiewen; Zhuang, Wei; Zheng, Junrong


    Waiting time dependent rotational anisotropies of SCN(-) anions and water molecules in alkali thiocyanate (XSCN, X = Li, Na, K, Cs) aqueous solutions at various concentrations were measured with ultrafast infrared spectroscopy. It was found that cations can significantly affect the reorientational motions of both water molecules and SCN(-) anions. The dynamics are slower in a solution with a smaller cation. The reorientational time constants follow the order of Li(+) > Na(+) > K(+) ~/= Cs(+). The changes of rotational time constants of SCN(-) at various concentrations scale almost linearly with the changes of solution viscosity, but those of water molecules do not. In addition, the concentration-dependent amplitudes of dynamical changes are much more significant in the Li(+) and Na(+) solutions than those in the K(+) and Cs(+) solutions. Further investigations on the systems with the ultrafast vibrational energy exchange method and molecular dynamics simulations provide an explanation for the observations: the observed rotational dynamics are the balanced results of ion clustering and cation/anion/water direct interactions. In all the solutions at high concentrations (>5 M), substantial amounts of ions form clusters. The structural inhomogeneity in the solutions leads to distinct rotational dynamics of water and anions. The strong interactions of Li(+) and Na(+) because of their relatively large charge densities with water molecules and SCN(-) anions, in addition to the likely geometric confinements because of ion clustering, substantially slow down the rotations of SCN(-) anions and water molecules inside the ion clusters. The interactions of K(+) and Cs(+) with water or SCN(-) are much weaker. The rotations of water molecules inside ion clusters of K(+) and Cs(+) solutions are not significantly different from those of other water species so that the experimentally observed rotational relaxation dynamics are only slightly affected by the ion concentrations.

  4. Photometry Using Kepler "Superstamps" of Open Clusters NGC 6791 & NGC 6819

    CERN Document Server

    Kuehn, Charles A; Stello, Dennis; Bedding, Timothy R


    The Kepler space telescope has proven to be a gold mine for the study of variable stars. Unfortunately, Kepler only returns a handful of pixels surrounding each star on the target list, which omits a large number of stars in the Kepler field. For the open clusters NGC 6791 and NGC 6819, Kepler also reads out larger superstamps which contain complete images of the central region of each cluster. These cluster images can potentially be used to study additional stars in the open clusters. We present preliminary results from using traditional photometric techniques to identify and analyze additional variable stars from these images.

  5. Magnetron sputtering cluster apparatus for formation and deposition of size-selected metal nanoparticles

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir


    The experimental setup utilizing a DC magnetron sputtering source for production of metal clusters, their size (mass) selection and following deposition in high vacuum is described. The source is capable to form clusters of various metals, for example, copper, silver, gold etc. Cluster size...... selection is achieved using an electrostatic quadrupole mass selector. The deposited silver clusters are studied using atomic force microscopy. The height distributions show typical relative standard size deviation of 9-13% for given sizes in the range between 5-23 nm. Thus, the apparatus demonstrates good...

  6. Nature of the lowest excited states of neutral polyenyl radicals and polyene radical cations (United States)

    Starcke, Jan Hendrik; Wormit, Michael; Dreuw, Andreas


    Due to the close relation of the polyenyl radicals C2n+1H2n+3• and polyene radical cations C2nH2n+2•+ to the neutral linear polyenes, one may suspect their excited states to possess substantial double excitation character, similar to the famous S1 state of neutral polyenes and thus to be equally problematic for simple excited state theories. Using the recently developed unrestricted algebraic-diagrammatic construction scheme of second order perturbation theory and the equation-of-motion coupled-cluster method, the vertical excitation energies, their corresponding oscillator strengths, and the nature of the wave functions of the lowest excited electronic states of the radicals are calculated and analyzed in detail. For the polyenyl radicals two one-photon allowed states are found as D1 and D4 states, with two symmetry-forbidden D2 and D3 states in between, while in the polyene radical cations D1 and D2 are allowed and D3 is forbidden. The order of the states is conserved with increasing chain length. It is found that all low-lying excited states exhibit a significant but similar amount of doubly excited configuration in their wave functions of 15%-20%. Using extrapolation, predictions for the excitation energies of the five lowest excited states of the polyene radical cations are made for longer chain lengths.

  7. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev


    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  8. The Gold Standard Since Alec Ford


    Eichengreen, Barry


    This paper surveys studies of the operation of the classical gold standard published subsequent to the appearance of Alec Ford's The Gold Standard 1880-1914: Britain and Argentina in 1962. Contributions tend to fall under two headings: those which emphasize stock equilibrium in money markets (examples of the so-called "monetary approach") and those which emphasize instead stockflow interactions in bond markets. The paper then addresses the perennial question of how the gold standard worked. A...

  9. Electrochemical Assay of Gold-Plating Solutions (United States)

    Chiodo, R.


    Gold content of plating solution is assayed by simple method that required only ordinary electrochemical laboratory equipment and materials. Technique involves electrodeposition of gold from solution onto electrode, the weight gain of which is measured. Suitable fast assay methods are economically and practically necessary in electronics and decorative-plating industries. If gold content in plating bath is too low, poor plating may result, with consequent economic loss to user.

  10. Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers. (United States)

    Wang, Hui; Shi, Xuefeng; Yu, Danfeng; Zhang, Jian; Yang, Guang; Cui, Yingxian; Sun, Keji; Wang, Jinben; Yan, Haike


    The current study is aimed at investigating the effect of cationic charge density and hydrophobicity on the antibacterial and hemolytic activities. Two kinds of cationic surfmers, containing single or double hydrophobic tails (octyl chains or benzyl groups), and the corresponding homopolymers were synthesized. The antimicrobial activity of these candidate antibacterials was studied by microbial growth inhibition assays against Escherichia coli, and hemolysis activity was carried out using human red blood cells. It was interestingly found that the homopolymers were much more effective in antibacterial property than their corresponding monomers. Furthermore, the geminized homopolymers had significantly higher antibacterial activity than that of their counterparts but with single amphiphilic side chains in each repeated unit. Geminized homopolymers, with high positive charge density and moderate hydrophobicity (such as benzyl groups), combine both advantages of efficient antibacterial property and prominently high selectivity. To further explain the antibacterial performance of the novel polymer series, the molecular interaction mechanism is proposed according to experimental data which shows that these specimens are likely to kill microbes by disrupting bacterial membranes, leading them unlikely to induce resistance.

  11. Electronic absorptions of the benzylium cation (United States)

    Dryza, Viktoras; Chalyavi, Nahid; Sanelli, Julian A.; Bieske, Evan J.


    The electronic transitions of the benzylium cation (Bz+) are investigated over the 250-550 nm range by monitoring the photodissociation of mass-selected C7H7+-Arn (n = 1, 2) complexes in a tandem mass spectrometer. The Bz+-Ar spectrum displays two distinct band systems, the S1←S0 band system extending from 370 to 530 nm with an origin at 19 067 ± 15 cm-1, and a much stronger S3←S0 band system extending from 270 to 320 nm with an origin at 32 035 ± 15 cm-1. Whereas the S1←S0 absorption exhibits well resolved vibrational progressions, the S3←S0 absorption is broad and relatively structureless. Vibronic structure of the S1←S0 system, which is interpreted with the aid of time-dependent density functional theory and Franck-Condon simulations, reflects the activity of four totally symmetric ring deformation modes (ν5, ν6, ν9, ν13). We find no evidence for the ultraviolet absorption of the tropylium cation, which according to the neon matrix spectrum should occur over the 260 - 275 nm range [A. Nagy, J. Fulara, I. Garkusha, and J. Maier, Angew. Chem., Int. Ed. 50, 3022 (2011)], 10.1002/anie.201008036.

  12. Transition-Metal Hydride Radical Cations. (United States)

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R


    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  13. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro


    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  14. High-performance liquid chromatographic analysis of as-synthesised N,N'-dimethylformamide-stabilised gold nanoclusters product (United States)

    Xie, Shunping; Paau, Man Chin; Zhang, Yan; Shuang, Shaomin; Chan, Wan; Choi, Martin M. F.


    Reverse-phase high-performance liquid chromatographic (RP-HPLC) separation and analysis of polydisperse water-soluble gold nanoclusters (AuNCs) stabilised with N,N'-dimethylformamide (DMF) were investigated. Under optimal elution gradient conditions, the separation of DMF-AuNCs was monitored by absorption and fluorescence spectroscopy. The UV-vis spectral characteristics of the separated DMF-AuNCs have been captured and they do not possess distinct surface plasmon resonance bands, indicating that all DMF-AuNCs are small AuNCs. The photoluminescence emission spectra of the separated DMF-AuNCs are in the blue-light region. Moreover, cationic DMF-AuNCs are for the first time identified by ion chromatography. Our proposed RP-HPLC methodology has been successfully applied to separate AuNCs of various Au atoms as well as DMF-stabilised ligands. Finally, the composition of the separated DMF-AuNCs was confirmed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and electrospray ionisation mass spectrometry, proving that the as-synthesised DMF-AuNCs product consists of Au10+, Au10, Au11, Au12, Au13, and Au14 NCs stabilised with various numbers of DMF ligands.Reverse-phase high-performance liquid chromatographic (RP-HPLC) separation and analysis of polydisperse water-soluble gold nanoclusters (AuNCs) stabilised with N,N'-dimethylformamide (DMF) were investigated. Under optimal elution gradient conditions, the separation of DMF-AuNCs was monitored by absorption and fluorescence spectroscopy. The UV-vis spectral characteristics of the separated DMF-AuNCs have been captured and they do not possess distinct surface plasmon resonance bands, indicating that all DMF-AuNCs are small AuNCs. The photoluminescence emission spectra of the separated DMF-AuNCs are in the blue-light region. Moreover, cationic DMF-AuNCs are for the first time identified by ion chromatography. Our proposed RP-HPLC methodology has been successfully applied to separate AuNCs of

  15. α,β-Unsaturated Gold(I) Carbenes by Tandem Cyclization and 1,5-Alkoxy Migration of 1,6-Enynes: Mechanisms and Applications. (United States)

    Calleja, Pilar; Pablo, Óscar; Ranieri, Beatrice; Gaydou, Morgane; Pitaval, Anthony; Moreno, María; Raducan, Mihai; Echavarren, Antonio M


    1,6-Enynes bearing OR groups at the propargyl position generate α,β-unsaturated gold(I)-carbenes/ gold(I) stabilized allyl cations that can be trapped by alkenes to form cyclopropanes or 1,3-diketones to give products of α-alkylation. The best migrating group is p-nitrophenyl ether, which leads to the corresponding products without racemization. Thus, an improved formal synthesis of (+)-schisanwilsonene A has been accomplished. The different competitive reaction pathways have been delineated computationally.

  16. Oxygen reduction catalyzed by gold nanoclusters supported on carbon nanosheets (United States)

    Wang, Qiannan; Wang, Likai; Tang, Zhenghua; Wang, Fucai; Yan, Wei; Yang, Hongyu; Zhou, Weijia; Li, Ligui; Kang, Xiongwu; Chen, Shaowei


    Nanocomposites based on p-mercaptobenzoic acid-functionalized gold nanoclusters, Au102(p-MBA)44, and porous carbon nanosheets have been fabricated and employed as highly efficient electrocatalysts for oxygen reduction reaction (ORR). Au102(p-MBA)44 clusters were synthesized via a wet chemical approach, and loaded onto carbon nanosheets. Pyrolysis at elevated temperatures led to effective removal of the thiolate ligands and the formation of uniform nanoparticles supported on the carbon scaffolds. The nanocomposite structures were characterized by using a wide range of experimental techniques such as transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, UV-visible absorption spectroscopy, thermogravimetric analysis and BET nitrogen adsorption/desorption. Electrochemical studies showed that the composites demonstrated apparent ORR activity in alkaline media, and the sample with a 30% Au mass loading was identified as the best catalyst among the series, with a performance comparable to that of commercial Pt/C, but superior to those of Au102 nanoclusters and carbon nanosheets alone, within the context of onset potential, kinetic current density, and durability. The results suggest an effective approach to the preparation of high-performance ORR catalysts based on gold nanoclusters supported on carbon nanosheets.Nanocomposites based on p-mercaptobenzoic acid-functionalized gold nanoclusters, Au102(p-MBA)44, and porous carbon nanosheets have been fabricated and employed as highly efficient electrocatalysts for oxygen reduction reaction (ORR). Au102(p-MBA)44 clusters were synthesized via a wet chemical approach, and loaded onto carbon nanosheets. Pyrolysis at elevated temperatures led to effective removal of the thiolate ligands and the formation of uniform nanoparticles supported on the carbon scaffolds. The nanocomposite structures were characterized by using a wide range of experimental techniques such as

  17. The Stabilizing Effects in Gold Carbene Complexes. (United States)

    Nunes Dos Santos Comprido, Laura; Klein, Johannes E M N; Knizia, Gerald; Kästner, Johannes; Hashmi, A Stephen K


    Bonding and stabilizing effects in gold carbene complexes are investigated by using Kohn-Sham density functional theory (DFT) and the intrinsic bond orbital (IBO) approach. The π-stabilizing effects of organic substituents at the carbene carbon atom coordinated to the gold atom are evaluated for a series of recently isolated and characterized complexes, as well as intermediates of prototypical 1,6-enyne cyclization reactions. The results indicate that these effects are of particular importance for gold complexes especially because of the low π-backbonding contribution from the gold atom.

  18. Gold Nanoparticle Mediated Phototherapy for Cancer

    Directory of Open Access Journals (Sweden)

    Cuiping Yao


    Full Text Available Gold nanoparticles exhibit very unique physiochemical and optical properties, which now are extensively studied in range of medical diagnostic and therapeutic applications. In particular, gold nanoparticles show promise in the advancement of cancer treatments. This review will provide insights into the four different cancer treatments such as photothermal therapy, gold nanoparticle-aided photodynamic therapy, gold nanoparticle-aided radiation therapy, and their use as drug carrier. We also discuss the mechanism of every method and the adverse effects and its limitations.

  19. Amorphous Carbon Gold Nanocomposite Thin Films: Structural and Spectro-ellipsometric Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montiel-Gonzalez, Z., E-mail: [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Mendoza-Galvan, A. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Unidad Queretaro, 76010 Queretaro, Queretaro (Mexico); Rodriguez-Fernandez, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510, Mexico D.F (Mexico)


    Spectroscopic Ellipsometry was used to determine the optical and structural properties of amorphous carbon:gold nanocomposite thin films deposited by dc magnetron co-sputtering at different deposition power. The incorporation of gold as small particles distributed in the amorphous carbon matrix was confirmed by X-ray Diffraction, Rutherford Backscattering measurements and High Resolution Transmission Electron Microscopy. Based on these results, an optical model for the films was developed using the Maxwell-Garnett effective medium with the Drude-Lorentz model representing the optical response of gold and the Tauc-Lorentz model for the amorphous carbon. The gold volume fraction and particle size obtained from the fitting processes were comparable to those from the physical characterization. The analysis of the ellipsometric spectra for all the samples showed strong changes in the optical properties of the carbon films as a consequence of the gold incorporation. These changes were correlated to the structural modification observed by Raman Spectroscopy, which indicated a clustering of the sp{sup 2} phase with a subsequent decrease in the optical gap. Finally, measurements of Reflection and Transmission Spectroscopy were carried out and Transmission Electron Microscopy images were obtained in order to support the ellipsometric model results.

  20. Cluster decay in very heavy nuclei in Relativistic Mean Field

    CERN Document Server

    Bhattacharya, Madhubrata


    Exotic cluster decay of very heavy nuclei has been studied in the microscopic Super-Asymmetric Fission Model. Relativistic Mean Field model with the force FSU Gold has been employed to obtain the densities of the cluster and the daughter nuclei. The microscopic nuclear interaction DDM3Y1, which has an exponential density dependence, and the Coulomb interaction have been used in the double folding model to obtain the potential between the cluster and the daughter. Half life values have been calculated in the WKB approximation and the spectroscopic factors have been extracted. The latter values are seen to have a simple dependence of the mass of the cluster as has been observed earlier. Predictions have been made for some possible decays.

  1. Gas phase metal cluster model systems for heterogeneous catalysis. (United States)

    Lang, Sandra M; Bernhardt, Thorsten M


    Since the advent of intense cluster sources, physical and chemical properties of isolated metal clusters are an active field of research. In particular, gas phase metal clusters represent ideal model systems to gain molecular level insight into the energetics and kinetics of metal-mediated catalytic reactions. Here we summarize experimental reactivity studies as well as investigations of thermal catalytic reaction cycles on small gas phase metal clusters, mostly in relation to the surprising catalytic activity of nanoscale gold particles. A particular emphasis is put on the importance of conceptual insights gained through the study of gas phase model systems. Based on these concepts future perspectives are formulated in terms of variation and optimization of catalytic materials e.g. by utilization of bimetals and metal oxides. Furthermore, the future potential of bio-inspired catalytic material systems are highlighted and technical developments are discussed.

  2. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. (United States)

    Khlebtsov, Nikolai; Dykman, Lev


    Recent advances in wet chemical synthesis and biomolecular functionalization of gold nanoparticles have led to a dramatic expansion of their potential biomedical applications, including biosensorics, bioimaging, photothermal therapy, and targeted drug delivery. As the range of gold nanoparticle types and their applications continues to increase, human safety concerns are gaining attention, which makes it necessary to better understand the potential toxicity hazards of these novel materials. Whereas about 80 reports on the in vivo biodistribution and in vitro cell toxicity of gold nanoparticles are available in the literature, there is lack of correlation between both fields and there is no clear understanding of intrinsic nanoparticle effects. At present, the major obstacle is the significant discrepancy in experimental conditions under which biodistribution and toxicity effects have been evaluated. This critical review presents a detailed analysis of data on the in vitro and in vivo biodistribution and toxicity of most popular gold nanoparticles, including atomic clusters and colloidal particles of diameters from 1 to 200 nm, gold nanoshells, nanorods, and nanowires. Emphasis is placed on the systematization of data over particle types and parameters, particle surface functionalization, animal and cell models, organs examined, doses applied, the type of particle administration and the time of examination, assays for evaluating gold particle toxicity, and methods for determining the gold concentration in organs and distribution of particles over cells. On the basis of a critical analysis of data, we arrive at some general conclusions on key nanoparticle parameters, methods of particle surface modification, and doses administered that determine the type and kinetics of biodistribution and toxicity at cellular and organismal levels (197 references).

  3. [Intracellular gold content of circulating blood cells using various gold compounds]. (United States)

    Herrlinger, J D; Beress, R; Hecker, U


    Evidence on the action mechanisms of gold salts in the treatment of rheumatoid arthritis is still inconclusive. The intracellular localization of the place of action is likely. Therefore not only the serum gold levels but also the intracellular concentration of gold are of special interest. We measured the gold concentration in the serum and in the blood cells after in vitro application of aurothiomalate (Tauredon), gold keratinate (Auro-Detoxin) and triethylphosphine-gold (Ridaura) and in blood samples of patients undergoing these gold salts treatments. Cell-bound concentrations were found to vary extensively as a function of the gold compound used. While no or very little gold was present intracellularly after administration of the 2 parenteral drugs, up to 40% of the circulating gold was found to bind to the cells after administration of the triethylphosphine compound for gastro-intestinal absorption. The red cell concentration was more or less the same as that in the extracellular compartment. Gold apparently accumulated in the white cells, because the cell-bound concentration relative to unit volume was up to 20 times higher than the plasma level. The method used did not offer any information on the actual binding site of gold in white cells, i.e. cytoplasm versus nucleus versus cell membrane.

  4. Gold Fever! Seattle Outfits the Klondike Gold Rush. Teaching with Historic Places. (United States)

    Blackburn, Marc K.

    This lesson is based on the National Register of Historic Places registration file, "Pioneer Square Historic District," and other sources about Seattle (Washington) and the Klondike Gold Rush. The lesson helps students understand how Seattle exemplified the prosperity of the Klondike Gold Rush after 1897 when news of a gold strike in…

  5. Decrepitation Thermometry and Compositions of Fluid Inclusions of the Damoqujia Gold Deposit,Jiaodong Gold Province,China:Implications for Metallogeny and Exploration

    Institute of Scientific and Technical Information of China (English)

    Yang Liqiang; Deng Jun; Zhang Jing; Guo Chunying; Gao Bangfei; Gong Qingjie; Wang Qingfei; Jiang Shaoqing; Yu Haijun


    The recently discovered Damoqujia (大磨曲家) gold deposit is a large shear zone-hosted gold deposit of disseminated sulphides located in the north of the Zhaoping (招平) fault zone, Jiaodong (胶东) gold province, China. In order to distinguish the temperature range of cluster inclusions from different mineralization stages and measure their compositions, 16 fluid inclusions and 5 isotopic geochemistry samples were collected for this study. Corresponding to different mineralization stages, the multirange peaks of quartz decrepitation temperature (250-270, 310-360 and 380-430℃(2) indicate that the activity of ore-forming fluids is characterized by multistage. The ore-forming fluids were predominantly of high-temperature fluid system (HTFS) by CO2-rich, and SO2-4-K+ type magmatic fluid during the early stage of mineralization and were subsequently affected by low-temperature fluid system (LTFS) of CH4-rich, and Cl--Na+/Ca2+ type meteoric fluid during the late stage of mineralization. Gold is transferred by Au-HS- complex in the HTFS, and Au-Cl- complex can be more important in the LTFS. The transition of fluids from deeper to shallow environments results in mixing between the HTFS and LTFS, which might be one of the most key reasons for gold precipitation and large-scale mineralization. The ore-forming fluids are characterized by high-temperature, strong-activity, and superimposed mineralization, so that there is a great probability of forming large and rich ore deposit in the Damoqujia gold deposit. The main bodies are preserved and extend toward deeper parts, thereby suggesting a great potential in future.

  6. Nature as a source of inspiration for cationic lipid synthesis. (United States)

    Labas, Romain; Beilvert, Fanny; Barteau, Benoit; David, Stéphanie; Chèvre, Raphaël; Pitard, Bruno


    Synthetic gene delivery systems represent an attractive alternative to viral vectors for DNA transfection. Cationic lipids are one of the most widely used non-viral vectors for the delivery of DNA into cultured cells and are easily synthesized, leading to a large variety of well-characterized molecules. This review discusses strategies for the design of efficient cationic lipids that overcome the critical barriers of in vitro transfection. A particular focus is placed on natural hydrophilic headgroups and lipophilic tails that have been used to synthesize biocompatible and non-toxic cationic lipids. We also present chemical features that have been investigated to enhance the transfection efficiency of cationic lipids by promoting the escape of lipoplexes from the endosomal compartment and DNA release from DNA-liposome complexes. Transfection efficiency studies using these strategies are likely to improve the understanding of the mechanism of cationic lipid-mediated gene delivery and to help the rational design of novel cationic lipids.

  7. Induction of apoptosis in human cancer cells by targeting mitochondria with gold nanoparticles (United States)

    Mkandawire, M. M.; Lakatos, M.; Springer, A.; Clemens, A.; Appelhans, D.; Krause-Buchholz, U.; Pompe, W.; Rödel, G.; Mkandawire, M.


    A major challenge in designing cancer therapies is the induction of cancer cell apoptosis, although activation of intrinsic apoptotic pathways by targeting gold nanoparticles to mitochondria is promising. We report an in vitro procedure targeting mitochondria with conjugated gold nanoparticles and investigating effects on apoptosis induction in the human breast cancer cell line Jimt-1. Gold nanoparticles were conjugated to a variant of turbo green fluorescent protein (mitoTGFP) harbouring an amino-terminal mitochondrial localization signal. Au nanoparticle conjugates were further complexed with cationic maltotriose-modified poly(propylene imine) third generation dendrimers. Fluorescence and transmission electron microscopy revealed that Au nanoparticle conjugates were directed to mitochondria upon transfection, causing partial rupture of the outer mitochondrial membrane, triggering cell death. The ability to target Au nanoparticles into mitochondria of breast cancer cells and induce apoptosis reveals an alternative application of Au nanoparticles in photothermal therapy of cancer.A major challenge in designing cancer therapies is the induction of cancer cell apoptosis, although activation of intrinsic apoptotic pathways by targeting gold nanoparticles to mitochondria is promising. We report an in vitro procedure targeting mitochondria with conjugated gold nanoparticles and investigating effects on apoptosis induction in the human breast cancer cell line Jimt-1. Gold nanoparticles were conjugated to a variant of turbo green fluorescent protein (mitoTGFP) harbouring an amino-terminal mitochondrial localization signal. Au nanoparticle conjugates were further complexed with cationic maltotriose-modified poly(propylene imine) third generation dendrimers. Fluorescence and transmission electron microscopy revealed that Au nanoparticle conjugates were directed to mitochondria upon transfection, causing partial rupture of the outer mitochondrial membrane, triggering cell

  8. What Makes Clusters Decline?

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung


    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark....... The longitudinal study on the high-tech cluster reveals that technological lock-in and exit of key firms have contributed to decline. Entrepreneurship has a positive effect on the cluster’s adaptive capabilities, while multinational companies have contradicting effects by bringing in new resources to the cluster...

  9. Structural and optical properties of Si-doped Ag clusters

    KAUST Repository

    Mokkath, Junais Habeeb


    The structural and optical properties of AgN and Ag N-1Si1 (neutral, cationic, and anionic) clusters (N = 5 to 12) are systematically investigated using the density functional based tight binding method and time-dependent density functional theory, providing insight into recent experiments. The gap between the highest occupied and lowest unoccupied molecular orbitals and therefore the optical spectrum vary significantly under Si doping, which enables flexible tuning of the chemical and optical properties of Ag clusters. © 2014 American Chemical Society.

  10. Far- and near-field optical properties of gold nanoparticle ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Nedyalkov, N N; Dikovska, A O; Dimitrov, I; Nikov, Ru; Atanasov, P A; Toshkova, R A; Gardeva, E G; Yossifova, L S; Alexandrov, M T


    The optical properties of gold nanoparticle clusters are presented from the point of view of their applications in biophotonics, where the absorption and scattering spectra are crucial. Generalised multiparticle Mie theory and finite difference time domain (FDTD) technique are used for theoretical description of the far- and nearfield optical properties of two dimensional nanoparticle ensembles. The system under consideration consists of spherical gold nanoparticles from 20 to 200 nm in diameter, forming 2D clusters in water. The properties of the far-field absorption and scattering spectra as a function of the cluster size, particle dimensions, and interparticle distance are investigated for ordered hexagonal structure of the particle arrays. It is found that the absorption efficiency can be shifted to the IR spectral range by increasing array size and decreasing interparticle distance. The increase in the array size also results in enhancement of the scattering efficiency while the absorption is reduced. The near-field intensity distribution is inhomogeneous over the array, as formation of zones with intensity enhancement of about two orders of magnitude is observed in specific areas. The optical properties of an ensemble whose configuration is reproduced from real experiments of gold nanoparticle deposition onto cancer cells are also presented. The results obtained can be used in designing of nanoparticle arrays with applications in biophotonics, bioimaging and photothermal therapy. (nanosystems)

  11. Glycolate adsorption at gold and platinum electrodes: A theoretical and in situ spectroelectrochemical study

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Jose Manuel; Blanco, Raquel; Orts, Jose Manuel; Perez, Juan Manuel [Departamento de Quimica Fisica e Instituto Universitario de Electroquimica, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Rodes, Antonio, E-mail: Antonio.Rodes@ua.e [Departamento de Quimica Fisica e Instituto Universitario de Electroquimica, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)


    The adsorption of glycolate anions at sputtered gold thin-film electrodes was studied in perchloric acid solutions by cyclic voltammetry experiments combined with in situ Surface Enhanced Raman Scattering (SERS) and Surface Enhanced Infrared Reflection Absorption Spectroscopy under attenuated total reflection conditions (ATR-SEIRAS). Theoretical harmonic vibrational frequencies and band intensities obtained from B3LYP/LANL2DZ,6-31+G(d) calculations for glycolate species adsorbed on Au clusters with (1 1 1) orientation were used to interpret the experimental spectra. Vibrational data confirm the bidentate bonding of glycolate anions through the oxygen atoms of the carboxylate group, in a bridge configuration with the OCO plane perpendicular to the metal surface. The DFT calculations show no significant effect of the total charge of the metal cluster-adsorbate adduct on the vibrational frequencies of adsorbed glycolate species. The infrared experimental study is extended to platinum films electrochemically deposited onto sputtered gold thin-film electrodes showing the potential-dependent formation of adsorbed CO upon dissociative adsorption of glycolate anions. As in the case of gold, the reversible adsorption of glycolate anions takes place in a bidentate configuration as predicted by DFT calculations for glycolate adsorbed on Pt(1 1 1) clusters. At low glycolic acid concentration, the in situ ATR-SEIRA spectra evidence the formation of adsorbed oxalate as reaction intermediate.

  12. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga (United States)

    Dahoumane, Si Amar; Yéprémian, Claude; Djédiat, Chakib; Couté, Alain; Fiévet, Fernand; Coradin, Thibaud; Brayner, Roberta


    Recent years have witnessed a boom in the biosynthesis of a large variety of nanomaterials using different biological resources among which algae-based entities have been gaining much more attention within the community of material scientists worldwide. In our previously published findings, we explored some factors that governed the biofabrication of gold nanoparticles using living cultures of microalgae, such as the utilized microalgal genera, the phylum they belong to, and the impact of tetrachloroauric acid concentrations on the ability of these strains to perform the biosynthesis of gold nanoparticles once in contact with these cations. As a follow-up, we present in this paper an improvement of the features of bioproduced gold colloids using living cells of Euglena gracilis microalga when this species is grown under either mixotrophic or autotrophic conditions, i.e., exposed to light and grown in an organic carbon-enriched culture medium versus under autotrophic conditions. As an outcome to this alteration, the growth rate of this photosynthetic microorganism is multiplied 7-8 times when grown under mixotrophic conditions compared to autotrophic ones. Therefore, the yield, the kinetics, and the colloidal stability of the biosynthesized gold nanoparticles are dramatically enhanced. Moreover, the shape and the size of the as-produced nano-objects via this biological method are affected. In addition to round-shaped gold nanoparticles, particular shapes, such as triangles and hexagons, appear. These findings add up to the amassed knowledge toward the design of photobioreactors for the scalable and sustainable production of interesting nanomaterials.

  13. Influence of spin-orbit effects on structures and dielectric properties of neutral lead clusters (United States)

    Götz, D. A.; Shayeghi, A.; Johnston, R. L.; Schwerdtfeger, P.; Schäfer, R.


    Combining molecular beam electric deflection experiments and global optimization techniques has proven to be a powerful tool for resolving equilibrium structures of neutral metal and semiconductor clusters. Herein, we present electric molecular beam deflection experiments on PbN (N = 7-18) clusters. Promising structures are generated using the unbiased Birmingham Cluster Genetic Algorithm approach based on density functional theory. The structures are further relaxed within the framework of two-component density functional theory taking scalar relativistic and spin orbit effects into account. Quantum chemical results are used to model electric molecular beam deflection profiles based on molecular dynamics calculations. Comparison of measured and simulated beam profiles allows the assignment of equilibrium structures for the most cluster sizes in the examined range for the first time. Neutral lead clusters adopt mainly spherical geometries and resemble the structures of lead cluster cations apart from Pb10. Their growth pattern deviates strongly from the one observed for tin and germanium clusters.

  14. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O;


    elucidate the corresponding mode shapes and find that the substrate plays an important role in determining the mode damping. This study demonstrates the need for a plasmonic nano-optics approach to understand the optical excitation and detection mechanisms for the vibrations of plasmonic nanostructures.......We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  15. The Cluster Substructure - Alignment Connection


    Plionis, Manolis


    Using the APM cluster data we investigate whether the dynamical status of clusters is related to the large-scale structure of the Universe. We find that cluster substructure is strongly correlated with the tendency of clusters to be aligned with their nearest neighbour and in general with the nearby clusters that belong to the same supercluster. Furthermore, dynamically young clusters are more clustered than the overall cluster population. These are strong indications that cluster develop in ...

  16. Nuclear Clusters in Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Kubono, S.; Binh, Dam N.; Hayakawa, S.; Hashimoto, H.; Kahl, D.; Wakabayashi, Y.; Yamaguchi, H. [Center for Nuclear Study (CNS), University of Tokyo, Wako Branch at RIKEN 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Teranishi, T. [Department of Physics, Kyushu University, Fukuoka, 812-8581 (Japan); Iwasa, N. [Department of Physics, Tohoku University, Sendai, 980-8578 (Japan); Komatsubara, T. [Department of Physics, Tsukuba University, Ibaraki, 305-8571 (Japan); Kato, S. [Department of Physics, Yamagata University, Yamagata, 990-8560 (Japan); Khiem, Le H. [Institute of Physics, Vietnam Academy for Science and Technology, Hanoi (Viet Nam)


    The role of nuclear clustering is discussed for nucleosynthesis in stellar evolution with Cluster Nucleosynthesis Diagram (CND) proposed before. Special emphasis is placed on alpha-induced stellar reactions together with molecular states for O and C burning.

  17. Cation-π interaction of the univalent silver cation with meso-octamethylcalix[4]pyrrole: Experimental and theoretical study (United States)

    Polášek, Miroslav; Kvíčala, Jaroslav; Makrlík, Emanuel; Křížová, Věra; Vaňura, Petr


    By using electrospray ionization mass spectrometry (ESI-MS), it was proven experimentally that the univalent silver cation Ag+ forms with meso-octamethylcalix[4]pyrrole (abbrev. 1) the cationic complex species 1·Ag+. Further, applying quantum chemical DFT calculations, four different conformations of the resulting complex 1·Ag+ were derived. It means that under the present experimental conditions, this ligand 1 can be considered as a macrocyclic receptor for the silver cation.

  18. Capturing dynamic cation hopping in cubic pyrochlores (United States)

    Brooks Hinojosa, Beverly; Asthagiri, Aravind; Nino, Juan C.


    In direct contrast to recent reports, density functional theory predicts that the most stable structure of Bi2Ti2O7 pyrochlore is a cubic Fd3¯m space group by accounting for atomic displacements. The displaced Bi occupies the 96g(x,x,z) Wyckoff position with six equivalent sites, which create multiple local minima. Using nudged elastic band method, the transition states of Bi cation hopping between equivalent minima were investigated and an energy barrier between 0.11 and 0.21 eV was determined. Energy barriers associated with the motion of Bi between equivalent sites within the 96g Wyckoff position suggest the presence of dielectric relaxation in Bi2Ti2O7.

  19. Retention of Cationic Starch onto Cellulose Fibres (United States)

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur


    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  20. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    DEFF Research Database (Denmark)

    Ellegaard, Anne-Marie; Dehlendorff, Christian; Vind, Anna C.;


    Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We...... then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients...... with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any...

  1. Heart imaging with cationic complexes of technetium

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, E. (Univ. of Cincinnati, Cincinnati, OH); Bushong, W.; Glavan, K.A.; Elder, R.C.; Sodd, V.J.; Scholz, K.L.; Fortman, D.L.; Lukes, S.J.


    The cationic technetium-99 complex trans-(/sup 99/Tc(dmpe)/sub 2/Cl/sub 2/)/sup +/, where dmpe is bis(1,2-dimethylphosphino)ethane or (CH/sub 3/)/sub 2/P-CH/sub 2/CH/sub 2/-P(CH/sub 3/)/sub 2/, has been prepared and characterized by single-crystal, x-ray structural analysis. The technetium-99m analog, trans-(/sup 99m/Tc (dmpe)/sub 2/Cl/sub 2/)/sup +/, has also been prepared and shown to yield excellent gamma-ray images of the heart. The purposeful design, characterization, and synthesis of this technetium-99m radiopharmaceutical represents a striking application of fundamental inorganic chemistry to a problem in applied nuclear medicine.

  2. Electron spectra of radical cations of heteroanalogs

    Energy Technology Data Exchange (ETDEWEB)

    Petrushenko, K.B.; Turchaninov, V.K.; Vokin, A.I.; Ermikov, A.F.; Frolov, Yu.L.


    Radical cation spectra of indazole and benzothiophene in the visible region were obtained by laser photolysis during the reaction of photoexcited quinones with these compounds in acetonitrile. The charge transfer bands of the complexes of the test compounds with p-chloranil and 7,7,8,8-tetracyanoquinodimethane in dioxane were recorded on a Specord M-40. Photoelectron spectra were obtained on a ES-3201 electron spectrometer. The He(I) resonance band (21.21 eV) was used for excitation. Measurements were carried out in the 60-120/sup 0/C range. The energy scale was calibrated form the first ionization potentials of Ar (15.76 eV) and chlorobenzene (9.06 eV). The error in the determination of the ionization potentials for the first four photoelectron bands was 0.05 eV.

  3. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo


    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  4. [Pathophysiology of cluster headache]. (United States)

    Donnet, Anne


    The aetiology of cluster headache is partially unknown. Three areas are involved in the pathogenesis of cluster headache: the trigeminal nociceptive pathways, the autonomic system and the hypothalamus. The cluster headache attack involves activation of the trigeminal autonomic reflex. A dysfunction located in posterior hypothalamic gray matter is probably pivotal in the process. There is a probable association between smoke exposure, a possible genetic predisposition and the development of cluster headache.

  5. Antiviral effect of cationic compounds on bacteriophages

    Directory of Open Access Journals (Sweden)

    Mai Huong eChatain-Ly


    Full Text Available The antiviral activity of several cationic compounds - cetytrimethylammonium (CTAB, chitosan, nisin and lysozyme - was investigated on the bacteriophage c2 (DNA head and non-contractile tail infecting Lactococcus strains and the bacteriophage MS2 (F-specific RNA infecting E.coli. Firstly, these activities were evaluated in a phosphate buffer pH 7- 10 mM. The CTAB had a virucidal effect on the Lactococcus bacteriophages, but not on the MS2. After 1 min of contact with 0.125 mM CTAB, the c2 population was reduced from 6 log(pfu/mL to 1,5 log(pfu/mL and completely deactivated at 1 mM. On the contrary, chitosan inhibited the MS2 more than it did the bacteriophages c2. No antiviral effect was observed for the nisin or the lysozyme on bacteriophages after 1 min of treatment. A 1 and 2.5 log reduction was respectively observed for nisin and lysozyme when the treatment time increased (5 or 10 min. These results showed that the antiviral effect depended both on the virus and structure of the antimicrobial compounds. The antiviral activity of these compounds was also evaluated in different physico-chemical conditions and in complex matrices. The antiviral activity of CTAB was impaired in acid pH and with an increase of the ionic strength. These results might be explained by the electrostatic interactions between cationic compounds and negatively charged particles such as bacteriophages or other compounds in a matrix. Milk proved to be protective suggesting the components of food could interfere with antimicrobial compounds.

  6. Raman spectroscopy and quantum-mechanical analysis of tautomeric forms in cytosine and 5-methylcytosine on gold surfaces (United States)

    Nguyen, Dinh Bao; Nguyen, Thanh Danh; Kim, Sangsoo; Joo, Sang-Woo


    Spectral differences between cytosine (Cyt) and 5-methylcytosine (5MC) were investigated by means of Raman spectroscopy with a combination of density functional theory (DFT) calculations. Surface-enhanced Raman scattering (SERS) revealed discriminating peaks of 5MC from those of Cyt upon adsorption on gold nanoparticles (AuNPs). Among the notable features, the multiple bands between 850 and 700 cm- 1 for the ring-breathing modes of 5MC and Cyt could be correlated well with the simulated spectra based on the DFT calculations of the adsorbates on the gold cluster atoms. The relative energetic stabilities of the enol/keto and the amino/imino tautomeric forms of Cyt and 5MC have been estimated using DFT calculations, before and after binding six atom gold clusters. Among the six tautomeric forms, the 7H keto amino and the 4H imino trans forms are expected to be predominant in binding gold atoms, whereas the enol trans/cis conformers would coexist in the free gas phase. Our approach may provide useful theoretical guidelines for identifying 5MC from Cyt by analyzing Raman spectra on gold surfaces on the basis of quantum-mechanical calculations.

  7. Preparation of cellular vehicles for delivery of gold nanorods to tumors (United States)

    Centi, S.; Borri, C.; Lai, S.; Tatini, F.; Colagrande, S.; Ratto, F.; Pini, R.


    Over recent years, gold nanorods (GNRs) have emerged as a promising material in biomedical optics and have been proposed as contrast agents for the photothermal therapy and the photoacoustic imaging of tumors. A pioneering approach to target tumors is the use of cellular vehicles, i.e. cells of the immune system that exhibit an innate tropism to tumors and that can be serve as Trojan horses. This strategy relies on cell types, such as tumor-associated macrophages or T cells, that are recruited by or naturally traffic to the microenvironment of tumors and that can be isolated from a patient and loaded with plasmonic particles in vitro. In this work, GNRs were synthesized and designed to combine high optical and photo-stability and the ability to accumulate into cells of the immuno system. Particles were silanized, PEGylated and conjugated with cationic moieties. Different cationic compounds were tested and the cell viability and uptake of the particles were studied on complementary cell types. The cytotoxicity test was based on a colorimetric WST-8 assay while the intracellular amount of gold and the optical absorbance of the cells were quantified by spectrophotometry. Moreover, we investigated the effect of GNRs on the cell migration and the production of cytokines in the presence of pro-inflammatory stimuli, which provide a functional overview on the feasibility of this approach to target.

  8. RF Sputtering of Gold Contacts On Niobium (United States)

    Barr, D. W.


    Reliable gold contacts are deposited on niobium by combination of RF sputtering and photolithography. Process results in structures having gold only where desired for electrical contact. Contacts are stable under repeated cycling from room temperature to 4.2 K and show room-temperature contact resistance as much as 40 percent below indium contacts made by thermalcompression bonding.

  9. Gold-Collar Workers. ERIC Digest. (United States)

    Wonacott, Michael E.

    The gold-collar worker has problem-solving abilities, creativity, talent, and intelligence; performs non-repetitive and complex work difficult to evaluate; and prefers self management. Gold-collar information technology workers learn continually from experience; recognize the synergy of teams; can demonstrate leadership; and are strategic thinkers…

  10. Galvanic Synthesis of Hollow Gold Nanoshells (United States)


    pulses in the NIR.2 The advantage of hollow nanoshells over solid gold (Au) or silver (Ag) nanoparticles , or alloys thereof,3 is that the...Karna SP. Synthesis of gold and silver nanoparticles and characterization of structural, optical, and electronic properties. Aberdeen Proving Ground...

  11. 2008: Golden Time in Gold Market

    Institute of Scientific and Technical Information of China (English)

    Guo; Yan


      Pushed by increased demand from both jewelers and investors, China has become the drivin, g force behind the world's gold market in 2007. Chinas gold market this year has maintained its growing momentum with booming demand, not only in the domestic market but also in the international market.……

  12. 2008: Golden Time in Gold Market

    Institute of Scientific and Technical Information of China (English)


    @@ Pushed by increased demand from both jewelers and investors, China has become the drivin, g force behind the world's gold market in 2007. Chinas gold market this year has maintained its growing momentum with booming demand, not only in the domestic market but also in the international market.

  13. Sorption Recovery of Gold Thiosulphate Complexes

    Institute of Scientific and Technical Information of China (English)

    A.G.Kholmogorov; O.N.Kononova; 等


    The gold sorption from thiosulphate solutions on carbon sorbents and on anion exchangers was studied. It was shown that the anion exchangers AV-17-10P and AP-100 are the most effective and selective at pH=5-8. These anion exchangers can be recommended for the gold recovery from the industrial solutions.

  14. Computational approaches to homogeneous gold catalysis. (United States)

    Faza, Olalla Nieto; López, Carlos Silva


    Homogenous gold catalysis has been exploding for the last decade at an outstanding pace. The best described reactivity of Au(I) and Au(III) species is based on gold's properties as a soft Lewis acid, but new reactivity patterns have recently emerged which further expand the range of transformations achievable using gold catalysis, with examples of dual gold activation, hydrogenation reactions, or Au(I)/Au(III) catalytic cycles.In this scenario, to develop fully all these new possibilities, the use of computational tools to understand at an atomistic level of detail the complete role of gold as a catalyst is unavoidable. In this work we aim to provide a comprehensive review of the available benchmark works on methodological options to study homogenous gold catalysis in the hope that this effort can help guide the choice of method in future mechanistic studies involving gold complexes. This is relevant because a representative number of current mechanistic studies still use methods which have been reported as inappropriate and dangerously inaccurate for this chemistry.Together with this, we describe a number of recent mechanistic studies where computational chemistry has provided relevant insights into non-conventional reaction paths, unexpected selectivities or novel reactivity, which illustrate the complexity behind gold-mediated organic chemistry.

  15. Goudafzettingen in Suriname (Gold deposits in Surinam)

    NARCIS (Netherlands)

    Brinck, J.W.


    THE GOLD DEPOSITS IN SURINAM AND THE DISTRIBUTION OF CONCESSIONS THROUGH THE COUNTRY The fieldwork on the occurrence of primary and secondary gold deposits in Surinam on which this thesis is based was carried out by order of the Welfare Fund Surinam (Welvaarts Fonds Suriname) during the periods Dece

  16. Sesquicentennial: Gold Rush to Golden Statehood. (United States)

    Sabato, George


    Provides an annotated bibliography of educational resources that can be used to support instructional units on the Gold Rush or the sesquicentennial of California's statehood. The materials include workbooks, videos, teacher's guides, monographs, and magazines. Offers a brief history of the Gold Rush and a set of relevant discussion questions.…

  17. Cluster Physics with Merging Galaxy Clusters

    Directory of Open Access Journals (Sweden)

    Sandor M. Molnar


    Full Text Available Collisions between galaxy clusters provide a unique opportunity to study matter in a parameter space which cannot be explored in our laboratories on Earth. In the standard LCDM model, where the total density is dominated by the cosmological constant ($Lambda$ and the matter density by cold dark matter (CDM, structure formation is hierarchical, and clusters grow mostly by merging.Mergers of two massive clusters are the most energetic events in the universe after the Big Bang,hence they provide a unique laboratory to study cluster physics.The two main mass components in clusters behave differently during collisions:the dark matter is nearly collisionless, responding only to gravity, while the gas is subject to pressure forces and dissipation, and shocks and turbulenceare developed during collisions. In the present contribution we review the different methods used to derive the physical properties of merging clusters. Different physical processes leave their signatures on different wavelengths, thusour review is based on a multifrequency analysis. In principle, the best way to analyze multifrequency observations of merging clustersis to model them using N-body/HYDRO numerical simulations. We discuss the results of such detailed analyses.New high spatial and spectral resolution ground and space based telescopeswill come online in the near future. Motivated by these new opportunities,we briefly discuss methods which will be feasible in the near future in studying merging clusters.

  18. The Durban Auto Cluster

    DEFF Research Database (Denmark)

    Lorentzen, Jochen; Robbins, Glen; Barnes, Justin


    The paper describes the formation of the Durban Auto Cluster in the context of trade liberalization. It argues that the improvement of operational competitiveness of firms in the cluster is prominently due to joint action. It tests this proposition by comparing the gains from cluster activities i...

  19. Preparation of conductive gold nanowires in confined environment of gold-filled polymer nanotubes. (United States)

    Mitschang, Fabian; Langner, Markus; Vieker, Henning; Beyer, André; Greiner, Andreas


    Continuous conductive gold nanofibers are prepared via the "tubes by fiber templates" process. First, poly(l-lactide) (PLLA)-stabilized gold nanoparticles (AuNP) with over 60 wt% gold are synthesized and characterized, including gel permeation chromatography coupled with a diode array detector. Subsequent electrospinning of these AuNP with template PLLA results in composite nanofibers featuring a high gold content of 57 wt%. Highly homogeneous gold nanowires are obtained after chemical vapor deposition of 345 nm of poly(p-xylylene) (PPX) onto the composite fibers followed by pyrolysis of the polymers at 1050 °C. The corresponding heat-induced transition from continuous gold-loaded polymer tubes to smooth gold nanofibers is studied by transmission electron microscopy and helium ion microscopy using both secondary electrons and Rutherford backscattered ions.

  20. Role of extracellular cations in cell motility, polarity, and chemotaxis

    Directory of Open Access Journals (Sweden)

    Soll D


    Full Text Available David R Soll1, Deborah Wessels1, Daniel F Lusche1, Spencer Kuhl1, Amanda Scherer1, Shawna Grimm1,21Monoclonal Antibody Research Institute, Developmental Studies, Hybridoma Bank, Department of Biology, University of Iowa, Iowa City; 2Mercy Medical Center, Surgical Residency Program, Des Moines, Iowa, USAAbstract: The concentration of cations in the aqueous environment of free living organisms and cells within the human body influence motility, shape, and chemotaxis. The role of extracellular cations is usually perceived to be the source for intracellular cations in the process of homeostasis. The role of surface molecules that interact with extracellular cations is believed to be that of channels, transporters, and exchangers. However, the role of Ca2+ as a signal and chemoattractant and the discovery of the Ca2+ receptor have demonstrated that extracellular cations can function as signals at the cell surface, and the plasma membrane molecules they interact with can function as bona fide receptors that activate coupled signal transduction pathways, associated molecules in the plasma membrane, or the cytoskeleton. With this perspective in mind, we have reviewed the cationic composition of aqueous environments of free living cells and cells that move in multicellular organisms, most notably humans, the range of molecules interacting with cations at the cell surface, the concept of a cell surface cation receptor, and the roles extracellular cations and plasma membrane proteins that interact with them play in the regulation of motility, shape, and chemotaxis. Hopefully, the perspective of this review will increase awareness of the roles extracellular cations play and the possibility that many of the plasma membrane proteins that interact with them could also play roles as receptors.Keywords: extracellular cations, chemotaxis, transporters, calcium, receptors

  1. The Effect of Hydration on the Cation-π Interaction Between Benzene and Various Cations

    Indian Academy of Sciences (India)



    The effect of hydration on cation-π interaction in Mq+ BmWn (B = benzene; W = water; Mq+ =Na⁺, K⁺, Mg²⁺, Ca²⁺, Al³⁺, 0 ≤ n,m ≤ 4, 1≤ m + n ≤ 4) complexes has been investigated using ab initio quantum chemical methods. Interaction energy values computed at the MP2 level of theory using the 6-31G(d,p) basis set reveal a qualitative trend in the relative affinity of different cations for benzene and water in these complexes. The π–cloud thickness values for benzene have also been estimated for these systems.

  2. Ordering Gold Nanoparticles with DNA Origami Nanoflowers. (United States)

    Schreiber, Robert; Santiago, Ibon; Ardavan, Arzhang; Turberfield, Andrew J


    Nanostructured materials, including plasmonic metamaterials made from gold and silver nanoparticles, provide access to new materials properties. The assembly of nanoparticles into extended arrays can be controlled through surface functionalization and the use of increasingly sophisticated linkers. We present a versatile way to control the bonding symmetry of gold nanoparticles by wrapping them in flower-shaped DNA origami structures. These "nanoflowers" assemble into two-dimensonal gold nanoparticle lattices with symmetries that can be controlled through auxiliary DNA linker strands. Nanoflower lattices are true composites: interactions between the gold nanoparticles are mediated entirely by DNA, and the DNA origami will fold into its designed form only in the presence of the gold nanoparticles.

  3. Gold Photoluminescence: Wavelength and Polarization Engineering

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Pors, Anders Lambertus; Bozhevolnyi, Sergey I.


    We demonstrate engineering of the spectral content and polarization of photoluminescence (PL) from arrayed gold nanoparticles atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances (GSPRs). Choice of shapes and dimen......We demonstrate engineering of the spectral content and polarization of photoluminescence (PL) from arrayed gold nanoparticles atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances (GSPRs). Choice of shapes...... and dimensions of gold nanoparticles influences the GSPR wavelength and polarization characteristics, thereby allowing us to enhance and spectrally mold the plasmon-assisted PL while simultaneously controlling its polarization. In order to understand the underlying physics behind the plasmon-enhanced PL, we...

  4. Tailored nanoporous gold for ultrahigh fluorescence enhancement. (United States)

    Lang, X Y; Guan, P F; Fujita, T; Chen, M W


    We report molecular fluorescence enhancement of free-standing nanoporous gold in which the nanoporosity can be arbitrarily tailored by the combination of dealloying and electroless gold plating. The nanoporous gold fabricated by this facile method possesses unique porous structures with large gold ligaments and very small pores, and exhibits significant improvements in surface enhanced fluorescence as well as structure rigidity. It demonstrates that the confluence effect of improved quantum yield and excitation of fluorophores is responsible for the large fluorescence enhancement due to the near-field enhancement of nanoporous gold, which arises from the strong electromagnetic coupling between neighboring ligaments and the weakening of plasmon damping of the large ligaments because of the small pore size and large ligament size, respectively.

  5. Magnetically mediated vortexlike assembly of gold nanoshells. (United States)

    Sun, Jianfei; Dong, Jian; Sun, Dongke; Guo, Zhirui; Gu, Ning


    Gold nanoshells currently attract increasing research interests due to the important role in many subjects. For practical applications, random arrangement of the nanoparticles is often unfavored so that the assembly of gold nanoshells is becoming a central issue. We here proposed to utilize time-variant magnetic field to direct the assembly of gold nanoshells. It was discovered that the alternating magnetic field can mediate the vortex-like assembly of gold nanoshells. The mechanism was explored and thought to be relative with the electric field of induction which caused the thermal gradient on the substrate and the electric force. The vortexlike structure as well as the assembly mechanism will play an important role in research and application of gold nanomaterials.

  6. Divergent synthetic routes for ring expansion or cyclization from 1,4-allylic diol derivatives via gold(I) catalysis or zinc(II) mediation. (United States)

    Zhu, Li-Li; Li, Xiao-Xiao; Zhou, Wen; Li, Xin; Chen, Zili


    A new efficient method was developed to transform cyclic alkanols into one-carbon higher homologated ketones using various esters as the leaving groups through gold-catalyzed allylic cation-promoted pinacol-type rearrangement. This reaction, coupled with oxy-Cope rearrangement, provided a new strategy to synthesize five-carbon homologated ring ketones. In addition, using ZnBr(2), 2,5-dihydrofuran products were obtained in moderate to good yields via an intramolecular cyclization process.

  7. Gold nanoclusters with enhanced tunable fluorescence as bioimaging probes. (United States)

    Palmal, Sharbari; Jana, Nikhil R


    Development of unique bioimaging probes offering essential information's about bio environments are an important step forward in biomedical science. Nanotechnology offers variety of novel imaging nanoprobes having high-photo stability as compared to conventional molecular probes which often experience rapid photo bleaching problem. Although great advances have been made on the development of semiconductor nanocrystals-based fluorescent imaging probes, potential toxicity issue by heavy metal component limits their in vivo therapeutic and clinical application. Recent works show that fluorescent gold clusters (FGCs) can be a promising nontoxic alternative of semiconductor nanocrystals. FGCs derived imaging nanoprobes offer stable and tunable visible emission, small hydrodynamic size, high biocompatibility and have been exploited in variety in vitro and in vivo imaging applications. In this review, we will focus on the synthetic advances and bioimaging application potentials of FGCs. In particular, we will emphasize on functional FGCs that are bright and stable enough to be useful as bioimaging probes.

  8. Cluster analysis for applications

    CERN Document Server

    Anderberg, Michael R


    Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis.Comprised of 10 chapters, this book begins with an introduction to the subject o

  9. Management of cluster headache

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer C; Jensen, Rigmor H


    and agitation. Patients may have up to eight attacks per day. Episodic cluster headache (ECH) occurs in clusters of weeks to months duration, whereas chronic cluster headache (CCH) attacks occur for more than 1 year without remissions. Management of cluster headache is divided into acute attack treatment....... In drug-resistant CCH, neuromodulation with either occipital nerve stimulation or deep brain stimulation of the hypothalamus is an alternative treatment strategy. For most cluster headache patients there are fairly good treatment options both for acute attacks and for prophylaxis. The big problem...

  10. Cluster Decline and Resilience

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    -2011. Our longitudinal study reveals that technological lock-in and exit of key firms have contributed to impairment of the cluster’s resilience in adapting to disruptions. Entrepreneurship has a positive effect on cluster resilience, while multinational companies have contradicting effects by bringing......Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark, 1963...

  11. Synthesis and characterization of human transferrin-stabilized gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Le Guevel, Xavier; Schneider, Marc [Pharmaceutical Nanotechnology, Saarland University, Saarbruecken (Germany); Daum, Nicole, E-mail: [Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbruecken (Germany)


    Human transferrin has been biolabelled with gold nanoclusters (Au NCs) using a simple, fast and non-toxic method. These nanocrystals (<2 nm) are stabilized in the protein via sulfur groups and have a high fluorescence emission in the near infrared region (QY = 4.3%; {lambda}{sub em} = 695 nm). Structural investigation and photophysical measurements show a high population of clusters formed of 22-33 gold atoms covalently bound to the transferrin. In solutions with pH ranging from 5 to 10 and in buffer solutions (PBS, HEPES), those biolabelled proteins exhibit a good stability. No significant quenching effect of the fluorescent transferrin has been detected after iron loading of iron-free transferrin (apoTf) and in the presence of a specific polyclonal antibody. Additionally, antibody-induced agglomeration demonstrates no alteration in the protein activity and the receptor target ability. MTT and Vialight Plus tests show no cytotoxicity of these labelled proteins in cells (1 {mu}g ml{sup -1}-1 mg ml{sup -1}). Cell line experiments (A549) indicate also an uptake of the iron loaded fluorescent proteins inside cells. These remarkable data highlight the potential of a new type of non-toxic fluorescent transferrin for imaging and targeting.

  12. In vivo toxicity of cationic micelles and liposomes

    DEFF Research Database (Denmark)

    Knudsen, Kristina Bram; Northeved, Helle; Ek, Pramod Kumar


    This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the last...

  13. How mobile are sorbed cations in clays and clay rocks? (United States)

    Gimmi, T; Kosakowski, G


    Diffusion of cations and other contaminants through clays is of central interest, because clays and clay rocks are widely considered as barrier materials for waste disposal sites. An intriguing experimental observation has been made in this context: Often, the diffusive flux of cations at trace concentrations is much larger and the retardation smaller than expected based on their sorption coefficients. So-called surface diffusion of sorbed cations has been invoked to explain the observations but remains a controversial issue. Moreover, the corresponding surface diffusion coefficients are largely unknown. Here we show that, by an appropriate scaling, published diffusion data covering a broad range of cations, clays, and chemical conditions can all be modeled satisfactorily by a surface diffusion model. The average mobility of sorbed cations seems to be primarily an intrinsic property of each cation that follows inversely its sorption affinity. With these surface mobilities, cation diffusion coefficients can now be estimated from those of water tracers. In pure clays at low salinities, surface diffusion can reduce the cation retardation by a factor of more than 1000.

  14. Molecular Beam Optical Study of Gold Sulfide and Gold Oxide (United States)

    Zhang, Ruohan; Yu, Yuanqin; Steimle, Timothy


    Gold-sulfur and gold-oxygen bonds are key components to numerous established and emerging technologies that have applications as far ranging as medical imaging, catalysis, electronics, and material science. A major theoretical challenge for describing this bonding is correctly accounting for the large relativistic and electron correlation effects. Such effects are best studied in diatomic, AuX, molecules. Recently, the observed AuS electronic state energy ordering was measured and compared to a simple molecular orbital diagram prediction. Here we more thoroughly investigate the nature of the electronic states of both AuS and AuO from the analysis of high-resolution (FWHM\\cong35MHz) optical Zeeman spectroscopy of the (0,0){B}2Σ--{X}2Π3/2 bands. The determined fine and hyperfine parameters for the {B}2Σ- state of AuO differ from those extracted from the analysis of a hot, Doppler-limited, spectrum. It is demonstrated that the nature of the {B}2Σ- states of AuO and AuS are radically different. The magnetic tuning of AuO and AuS indicates that the {B}2Σ- states are heavily contaminated. Supported by the National Science Foundation under Grant No.1265885. D. L. Kokkin, R. Zhang, T. C. Steimle, I. A. Wyse, B. W. Pearlman and T. D. Varberg, J. Phys. Chem. A., 119(48), 4412, 2015. L. C. O'Brien, B. A. Borchert, A. Farquhar, S. Shaji, J. J. O'Brien and R. W. Field, J. Mol. Spectrosc., 252(2), 136, 2008

  15. Removal of phase transfer agent leads to restricted dynamics of alkyl chains in monolayer protected clusters

    Indian Academy of Sciences (India)

    V R Rajeev Kumar; R Mukhopadhyay; T Pradeep


    The effect of phase transfer agent in the dynamics of monolayer protected gold nanoparticles has been investigated by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies. The experiments were performed with octadecane thiol and dodecane thiol protected gold nanoparticles. The materials prepared were characterized by UV-Visible spectroscopy, transmission electron microscopy and IR spectroscopy. Repeated purification of the monolayer protected gold clusters made the alkyl chains defect-free. Such effects are reflected in the infrared spectra. Interdigitation of the monolayers that followed the purification leads to alkyl chains with limited mobility. This was reflected in 13C and 1H NMR linewidths. The NMR measurements indicate that the removal of phase transfer agent affects the dynamics of isolated clusters and those with interdigitated monolayers in different ways.

  16. Quantum-Mechanical Study of Small Au2Pdn (n = 1~4) Clusters

    Institute of Scientific and Technical Information of China (English)

    GUO Jian-Jun; YANG Ji-Xian; DIE Dong


    Gold-doped palladium clusters, Au2Pdn (n = 1~4), are investigated using the density functional method B3LYP with relativistic effective core potentials (RECP) and LANL2DZ basis set. The possible geometrical configurations with their electronic states are determined, and the stability trend is investigated. Several low-lying isomers are determined, and many of them are in electronic configurations with a high-spin multiplicity. Our results indicate that the palladium-gold interaction is strong enough to modify the known pattern of bare palladium clusters, and the lower stability as the structures grow in size. The present calculations are useful to understanding the enhanced catalytic activity and selectivity gained by using gold-doped palladium catalyst.

  17. Clustering high dimensional data

    DEFF Research Database (Denmark)

    Assent, Ira


    to render traditional clustering algorithms ineffective. The curse of dimensionality, among other effects, means that with increasing number of dimensions, a loss of meaningful differentiation between similar and dissimilar objects is observed. As high-dimensional objects appear almost alike, new approaches...... for clustering are required. Consequently, recent research has focused on developing techniques and clustering algorithms specifically for high-dimensional data. Still, open research issues remain. Clustering is a data mining task devoted to the automatic grouping of data based on mutual similarity. Each cluster...... that provide different cluster models and different algorithmic approaches for cluster detection. Common to all approaches is the fact that they require some underlying assessment of similarity between data objects. In this article, we provide an overview of the effects of high-dimensional spaces...

  18. Clusters in nuclei

    CERN Document Server

    Beck, Christian

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  19. Unconventional methods for clustering (United States)

    Kotyrba, Martin


    Cluster analysis or clustering is a task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is the main task of exploratory data mining and a common technique for statistical data analysis used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics. The topic of this paper is one of the modern methods of clustering namely SOM (Self Organising Map). The paper describes the theory needed to understand the principle of clustering and descriptions of algorithm used with clustering in our experiments.

  20. Spatial cluster modelling

    CERN Document Server

    Lawson, Andrew B


    Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this book reviews the state-of-the-art in spatial clustering and spatial cluster modelling, bringing together research and applications previously scattered throughout the literature. It begins with an overview of the field, then presents a series of chapters that illuminate the nature and purpose of cluster modelling within different application areas, including astrophysics, epidemiology, ecology, and imaging. The focus then shifts to methods, with discussions on point and object process modelling, perfect sampling of cluster processes, partitioning in space and space-time, spatial and spatio-temporal process modelling, nonparametric methods for clustering, and spatio-temporal ...