Sample records for cationic dna liposome

  1. Chiral DNA packaging in DNA-cationic liposome assemblies. (United States)

    Zuidam, N J; Barenholz, Y; Minsky, A


    Recent studies have indicated that the structural features of DNA-lipid assemblies, dictated by the lipid composition and cationic lipid-to-DNA ratio, critically affect the efficiency of these complexes in acting as vehicles for cellular delivery of genetic material. Using circular dichroism we find that upon binding DNA, positively-charged liposomes induce a secondary conformational transition of the DNA molecules from the native B form to the C motif. Liposomes composed of positively-charged and neutral 'helper' lipids, found to be particularly effective as transfecting agents, induce - in addition to secondary conformational changes - DNA condensation into a left-handed cholesteric-like phase. A structural model is presented according to which two distinct, yet inter-related modes of DNA packaging coexist within such assemblies. The results underline the notion that subtle changes in the components of a supramolecular assembly may substantially modulate the interplay of interactions which dictate its structure and functional properties.

  2. Mode of formation and structural features of DNA-cationic liposome complexes used for transfection. (United States)

    Gershon, H; Ghirlando, R; Guttman, S B; Minsky, A


    Complexes formed between cationic liposomes and nucleic acids represent a highly efficient vehicle for delivery of DNA and RNA molecules into a large variety of eukaryotic cells. By using fluorescence, gel electrophoresis, and metal-shadowing electron microscopy techniques, the factors that affect the, yet unclear, interactions between DNA and cationic liposomes as well as the structural features of the resulting complexes have been elucidated. A model is suggested according to which cationic liposomes bind initially to DNA molecules to form clusters of aggregated vesicles along the nucleic acids. At a critical liposome density, two processes occur, namely, DNA-induced membrane fusion, indicated by lipid mixing studies, and liposome-induced DNA collapse, pointed out by the marked cooperativity of the encapsulation processes, by their modulations by DNA-condensing agents, and also by their conspicuous independence upon DNA length. The DNA collapse leads to the formation of condensed structures which can be completely encapsulated within the fused lipid bilayers in a fast, highly cooperative process since their exposed surface is substantially smaller than that of extended DNA molecules. The formation of the transfecting DNA-liposome complexes in which the nucleic acids are fully encapsulated within a positively-charged lipid bilayer is proposed, consequently, to be dominated by mutual effects exerted by the DNA and the cationic liposomes, leading to interrelated lipid fusion and DNA collapse.

  3. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity

    Directory of Open Access Journals (Sweden)

    Sarker SR


    Full Text Available Satya Ranjan Sarker, Yumiko Aoshima, Ryosuke Hokama, Takafumi Inoue, Keitaro Sou, Shinji Takeoka Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns, Tokyo, Japan Background: Currently available gene delivery vehicles have many limitations such as low gene delivery efficiency and high cytotoxicity. To overcome these drawbacks, we designed and synthesized two cationic lipids comprised of n-tetradecyl alcohol as the hydrophobic moiety, 3-hydrocarbon chain as the spacer, and different counterions (eg, hydrogen chloride [HCl] salt or trifluoroacetic acid [TFA] salt in the arginine head group. Methods: Cationic lipids were hydrated in 4-(2-hydroxyethyl-1-piperazineethanesulfonic acid (HEPES buffer to prepare cationic liposomes and characterized in terms of their size, zeta potential, phase transition temperature, and morphology. Lipoplexes were then prepared and characterized in terms of their size and zeta potential in the absence or presence of serum. The morphology of the lipoplexes was determined using transmission electron microscopy and atomic force microscopy. The gene delivery efficiency was evaluated in neuronal cells and HeLa cells and compared with that of lysine-based cationic assemblies and Lipofectamine™ 2000. The cytotoxicity level of the cationic lipids was investigated and compared with that of Lipofectamine™ 2000. Results: We synthesized arginine-based cationic lipids having different counterions (ie, HCl-salt or TFA-salt that formed cationic liposomes of around 100 nm in size. In the absence of serum, lipoplexes prepared from the arginine-based cationic liposomes and plasmid (p DNA formed large aggregates and attained a positive zeta potential. However, in the presence of serum, the lipoplexes were smaller in size and negative in zeta potential. The morphology of the lipoplexes was vesicular. Arginine-based cationic liposomes with HCl-salt showed the

  4. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes

    DEFF Research Database (Denmark)

    Korsholm, Karen Smith; Agger, Else Marie; Foged, Camilla;


    Cationic liposomes are being used increasingly as efficient adjuvants for subunit vaccines but their precise mechanism of action is still unknown. Here, we investigated the adjuvant mechanism of cationic liposomes based on the synthetic amphiphile dimethyldioctadecylammonium (DDA). The liposomes ...

  5. Cationic liposomes enhance targeted delivery and expression of exogenous DNA mediated by N-terminal modified poly(L-lysine)-antibody conjugate in mouse lung endothelial cells. (United States)

    Trubetskoy, V S; Torchilin, V P; Kennel, S; Huang, L


    A new and improved system for targeted gene delivery and expression is described. Transfection efficiency of N-terminal modified poly(L-lysine) (NPLL) conjugated with anti-thrombomodulin antibody 34A can be improved by adding to the system a lipophilic component, cationic liposomes. DNA, antibody conjugate and cationic liposomes form a ternary electrostatic complex which preserves the ability to bind specifically to the target cells. At the same time the addition of liposomes enhance the specific transfection efficiency of antibody-polylysine/DNA binary complex by 10 to 20-fold in mouse lung endothelial cells in culture.

  6. Characterisation of LMD virus-like nanoparticles self-assembled from cationic liposomes, adenovirus core peptide mu and plasmid DNA. (United States)

    Tagawa, T; Manvell, M; Brown, N; Keller, M; Perouzel, E; Murray, K D; Harbottle, R P; Tecle, M; Booy, F; Brahimi-Horn, M C; Coutelle, C; Lemoine, N R; Alton, E W F W; Miller, A D


    Liposome:mu:DNA (LMD) is a ternary nucleic acid delivery system built around the mu peptide associated with the condensed core complex of the adenovirus. LMD is prepared by precondensing plasmid DNA (D) with mu peptide (M) in a 1:0.6 (w/w) ratio and then combining these mu:DNA (MD) complexes with extruded cationic liposomes (L) resulting in a final lipid:mu:DNA ratio of 12:0.6:1 (w/w/w). Correct buffer conditions, reagent concentrations and rates of mixing are all crucial to success. However, once optimal conditions are established, homogeneous LMD particles (120 +/- 30 nm) will result that each appear to comprise an MD particle encapsulated within a cationic bilammellar liposome. LMD particles can be formulated reproducibly, they are amenable to long-term storage (>1 month) at -80 degrees C and are stable to aggregation at a plasmid DNA concentration up to 5 mg/ml (15 mM nucleotide concentration). Furthermore, LMD transfections are significantly more time and dose efficient in vitro than cationic liposome-plasmid DNA (LD) transfections. Transfection times as short as 10 min and plasmid DNA doses as low as 0.001 microg/well result in significant gene expression. LMD transfections will also take place in the presence of biological fluids (eg up to 100% serum) giving 15-25% the level of gene expression observed in the absence of serum. Results from confocal microscopy experiments using fluorescent-labelled LMD particles suggest that endocytosis is not a significant barrier to LMD transfection, although the nuclear membrane still is. We also confirm that topical lung transfection in vivo by LMD is at least equal in absolute terms with transfection mediated by GL-67:DOPE:DMPE-PEG(5000) (1:2:0.05 m/m/m), an accepted 'gold-standard' non-viral vector system for topical lung transfection, and is in fact at least six-fold more dose efficient. All these features make LMD an important new non-viral vector platform system from which to derive tailor-made non-viral delivery

  7. Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes. (United States)

    Ewert, Kai K; Kotamraju, Venkata Ramana; Majzoub, Ramsey N; Steffes, Victoria M; Wonder, Emily A; Teesalu, Tambet; Ruoslahti, Erkki; Safinya, Cyrus R


    Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles.

  8. Interactions between cationic liposomes and drugs or biomolecules

    Directory of Open Access Journals (Sweden)



    Full Text Available Multiple uses for synthetic cationic liposomes composed of dioctadecyldimethylammonium bromide (DODAB bilayer vesicles are presented. Drugs or biomolecules can be solubilized or incorporated in the cationic bilayers. The cationic liposomes themselves can act as antimicrobial agents causing death of bacteria and fungi at concentrations that barely affect mammalian cells in culture. Silica particles or polystyrene microspheres can be functionalized by coverage with DODAB bilayers or phospholipid monolayers. Negatively charged antigenic proteins can be carried by the cationic liposomes which generate a remarkable immunoadjuvant action. Nucleotides or DNA can be physically adsorbed to the cationic liposomes to be transferred to mammalian cells for gene therapy. An overview of the interactions between DODAB vesicles and some biomolecules or drugs clearly points out their versatility for useful applications in a near future.

  9. Interactions between cationic liposomes and drugs or biomolecules. (United States)

    Carmona-Ribeiro, A M


    Multiple uses for synthetic cationic liposomes composed of dioctadecyldimethylammonium bromide (DODAB) bilayer vesicles are presented. Drugs or biomolecules can be solubilized or incorporated in the cationic bilayers. The cationic liposomes themselves can act as antimicrobial agents causing death of bacteria and fungi at concentrations that barely affect mammalian cells in culture. Silica particles or polystyrene microspheres can be functionalized by coverage with DODAB bilayers or phospholipid monolayers. Negatively charged antigenic proteins can be carried by the cationic liposomes which generate a remarkable immunoadjuvant action. Nucleotides or DNA can be physically adsorbed to the cationic liposomes to be transferred to mammalian cells for gene therapy. An overview of the interactions between DODAB vesicles and some biomolecules or drugs clearly points out their versatility for useful applications in a near future.

  10. DNA-based vaccination against hepatitis B virus using dissolving microneedle arrays adjuvanted by cationic liposomes and CpG ODN. (United States)

    Qiu, Yuqin; Guo, Lei; Zhang, Suohui; Xu, Bai; Gao, Yunhua; Hu, Yan; Hou, Jun; Bai, Bingke; Shen, Honghui; Mao, Panyong


    DNA vaccines are simple to produce and can generate strong cellular and humoral immune response, making them attractive vaccine candidates. However, a major shortcoming of DNA vaccines is their poor immunogenicity when administered intramuscularly. Transcutaneous immunization (TCI) via microneedles is a promising alternative delivery route to enhance the vaccination efficacy. A novel dissolving microneedle array (DMA)-based TCI system loaded with cationic liposomes encapsulated with hepatitis B DNA vaccine and adjuvant CpG ODN was developed and characterized. The pGFP expression in mouse skin using DMA was imaged over time. In vivo immunity tests in mice were performed to observe the capability of DMA to induce immune response after delivery of DNA. The results showed that pGFP could be delivered into skin by DMA and expressed in skin. Further, the amount of expressed GFP was likely to peak at day 4. The immunity tests showed that the DMA-based DNA vaccination could induce effective immune response. CpG ODN significantly improved the immune response and achieved the shift of immune type from predominate Th2 type to a balance Th1/Th2 type. The cationic liposomes could further improve the immunogenicity of DNA vaccine. In conclusion, the novel DMA-based TCI system can effectively deliver hepatitis B DNA vaccine into skin, inducing effective immune response and change the immune type by adjuvant CpG ODN.

  11. Dendritic Cells Stimulated by Cationic Liposomes. (United States)

    Vitor, Micaela Tamara; Bergami-Santos, Patrícia Cruz; Cruz, Karen Steponavicius Piedade; Pinho, Mariana Pereira; Barbuto, José Alexandre Marzagão; De La Torre, Lucimara Gaziola


    Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients' DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration-rehydration method (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated-rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy.

  12. In Vitro Gene Delivery Mediated by Asialofetuin-Appended Cationic Liposomes Associated with γ-Cyclodextrin into Hepatocytes

    Directory of Open Access Journals (Sweden)

    Keiichi Motoyama


    Full Text Available The purpose of this study is to evaluate in vitro gene delivery mediated by asialofetuin-appended cationic liposomes (AF-liposomes associating cyclodextrins (CyD/AF-liposomes as a hepatocyte-selective nonviral vector. Of various CyDs, AF-liposomes associated with plasmid DNA (pDNA and γ-cyclodextrin (γ-CyD (pDNA/γ-CyD/AF-liposomes showed the highest gene transfer activity in HepG2 cells without any significant cytotoxicity. In addition, γ-CyD enhanced the encapsulation ratio of pDNA with AF-liposomes, and also increased gene transfer activity as the entrapment ratio of pDNA into AF-liposomes was increased. γ-CyD stabilized the liposomal membrane of AF-liposomes and inhibited the release of calcein from AF-liposomes. The stabilizing effect of γ-CyD may be, at least in part, involved in the enhancing gene transfer activity of pDNA/γ-CyD/AF-liposomes. Therefore, these results suggest the potential use of γ-CyD for an enhancer of transfection efficiency of AF-liposomes.

  13. In vivo toxicity of cationic micelles and liposomes

    DEFF Research Database (Denmark)

    Knudsen, Kristina Bram; Northeved, Helle; Ek, Pramod Kumar


    This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the last...

  14. Cationic Liposomes Modified with Polyallylamine as a Gene Carrier: Preparation, Characterization and Transfection Efficiency Evaluation

    Directory of Open Access Journals (Sweden)

    Reza Kazemi Oskuee


    Full Text Available Purpose: Cationic polymers and cationic liposomes have shown to be effective non-viral gene delivery vectors. In this study, we tried to improve the transfection efficiency by employing the advantages of both. Methods: For this purpose, modified polyallylamines (PAAs were synthesized. These modifications were done through the reaction of PAA (15 KDa with acrylate and 6-bromoalkanoic acid derivatives. Liposomes comprising of these cationic polymers and cationic lipid were prepared and extruded through polycarbonate filters to obtain desired size. Liposome-DNA nanocomplexes were prepared in three carrier to plasmid (C/P ratios. Size, zeta potential and DNA condensation ability of each complex were characterized separately and finally transfection efficiency and cytotoxicity of prepared vectors were evaluated in Neuro2A cell line. Results: The results showed that mean particle size of all these nanocomplexes was lower than 266 nm with surface charge of 22.0 to 33.9 mV. Almost the same condensation pattern was observed in all vectors and complete condensation was occurred at C/P ratio of 1.5. The lipoplexes containing modified PAA 15 kDa with 10% hexyl acrylate showed the highest transfection efficacy and lowest cytotoxicity in C/P ratio of 0.5. Conclusion: In some cases nanocomplexes consisting of cationic liposome and modified PAA showed better transfection activity and lower cytotoxicity compared to PAA.

  15. In situ SAXS experiment during DNA and liposome complexation

    Energy Technology Data Exchange (ETDEWEB)

    Gasperini, A.A.; Cavalcanti, L.P. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Balbino, T.A.; Torre, L.G. de la [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Oliveira, C.L.P. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil)


    Full text: Gene therapy is an exciting research area that allows the treatment of different diseases. Basically, an engineered DNA that codes a protein is the therapeutic drug that has to be delivered to the cell nucleus. After that, the DNA transfection process allows the protein production using the cell machinery. However, the efficient delivery needs DNA protection against nucleases and interstitial fluids. In this context, the use of cationic liposome/DNA complexes is a promising strategy for non-viral gene therapy. Liposomes are lipid systems that self-aggregate in bilayers and the use of cationic lipids allows the electrostatic complexation with DNA. In this work, we used SAXS technique to study the complexation kinetics between cationic liposomes and plasmid DNA and evaluate the liposome structural modifications in the presence of DNA. Liposomes were prepared according to [1] using as plasmid DNA vector model a modified version of pVAX1-GFP with luciferase as reporter gene [2]. The complexation was promoted in a SAXS sample holder containing a microchannel to get access to the compartment between two mica windows where the X-ray beam could cross through [3]. We obtained in situ complexation using such sample holder coupled to a fed-batch reactor through a peristaltic pump. The scattering curves were recorded each 30 seconds during the cycles. The DNA was added until a certain final ratio between surface charges previously determined. We studied the form and structure factor model for the liposome bilayer to fit the scattering curves [4]. Structural information such as the bilayer electronic density profiles, number of bilayers and fluidity were determined as a function of the complexation with DNA. These differences can reflect in singular in vitro and in vivo effects. [1] L. G. de la Torre et al. Colloids and Surfaces B: Biointerfaces, 73, 175 (2009) [2] A. R. Azzoni et al. The Journal of Gene Medicine, 9, 392 (2007) [3] L. P. Cavalcanti et al. Review of

  16. Cationic liposomal drug delivery system for specific targeting of human cd14+ monocytes in whole blood

    DEFF Research Database (Denmark)


    This invention concerns a liposome comprising lipids and at least one active ingredient, wherein at least one of the lipids is a cationic lipid; said liposome exhibiting a net positive charge at physiological conditions at which said liposome preferentially adheres to monocytes in freshly drawn b......, an infectious disease, an inflammatory disease, an autoimmune disease or allergy....

  17. In vitro delivery of curcumin with cholesterol-based cationic liposomes. (United States)

    Apiratikul, N; Penglong, T; Suksen, K; Svasti, S; Chairoungdua, A; Yingyongnarongkula, B


    A new cholesterol-based cationic lipid was synthesized; liposomes prepared on its basis were evaluated as drug delivery vehicles for curcumin. Free and liposome-encapsulated curcumin cytotoxicity against HeLa, A549, HepG2, K562 and 1301 cell lines was assessed. Liposomal curcumin with ED50 values ranging from 2.5-10 microM exhibited 2-8 times higher cytotoxicity than free curcumin. The synthetic cholesterol-based cationic lipid also enhanced cellular uptake of curcumin into tested cells. Cationic liposome alone showed low cytotoxicity at high doses with ED50 values of 90-210 microM.

  18. Interactions between liposomes and cations in aqueous solution. (United States)

    Ruso, Juan M; Besada, Lina; Martínez-Landeira, Pablo; Seoane, Laura; Prieto, Gerardo; Sarmiento, Félix


    An investigation on the dependence of electrophoretic mobilities of unilamellar vesicles of phosphatidylcholine-cholesterol-phosphatidylinositol (PC-Chol-PI) on the concentration of several cations with variations in the relation charge/radius in the range Na+, K+, Cs+, Mg2+, Ca2+, Ba2+, Al3+, and La3+ has been realized. Plots of zeta potential against ion concentration exhibit a maximum for all the cations under study, the position of the maximum is greatly affected by the charge of the ion. From the feature of these plots two phenomenon were observed: an initial binding of cations into the slipping plane for ion concentration below the maximum and a phenomenon of vesicle association for concentration above the maximum. To confirm these observations measurements on dynamic light scattering were performed to obtain the corresponding size distribution of the liposomes at different ion concentrations. Finally the ability of the Stern isotherm to describe the adsorption of the cations to vesicles was tested by two methods. The two main parameters of the theory: the total number of adsorption sites per unit area, N1, and the equilibrium constant, K; (and consequently the free energy of adsorption, deltaG0ads) were calculated for the different ions, showing good agreement. The equilibrium constants of adsorption have been found to obey a linear relationship with ion radius the slope of which decreases with the ion charge.

  19. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes (United States)

    Torchilin, Vladimir P.; Levchenko, Tatyana S.; Rammohan, Ram; Volodina, Natalia; Papahadjopoulos-Sternberg, Brigitte; D'Souza, Gerard G. M.


    Liposomes modified with TAT peptide (TATp-liposomes) showed fast and efficient translocation into the cell cytoplasm with subsequent migration into the perinuclear zone. TATp-liposomes containing a small quantity (10 mol %) of a cationic lipid formed firm noncovalent complexes with DNA. Here, we present results demonstrating both in vitro and in vivo transfection with TATp-liposome-DNA complexes. Mouse NIH/3T3 fibroblasts and rat H9C2 cardiomyocytes were transfected with such complexes in vitro. The transfection with the TATp-liposome-associated pEGFP-N1 plasmid encoding for the green fluorescent protein (GFP) was high, whereas the cytotoxicity was lower than that of commonly used cationic lipid-based gene-delivery systems. Intratumoral injection of TATp-liposome-DNA complexes into the Lewis lung carcinoma tumor of mice also resulted in an expression of GFP in tumor cells. This transfection system should be useful for various protocols of cell treatment in vitro or ex vivo as well as for localized in vivo gene therapy.

  20. Cationic Lipid Content in Liposome-Encapsulated Nisin Improves Sustainable Bactericidal Activity against Streptococcus mutans (United States)

    Yamakami, Kazuo; Tsumori, Hideaki; Shimizu, Yoshitaka; Sakurai, Yutaka; Nagatoshi, Kohei; Sonomoto, Kenji


    An oral infectious disease, dental caries, is caused by the cariogenic streptococci Streptococcus mutans. The expected preventive efficiency for prophylactics against dental caries is not yet completely observed. Nisin, a bacteriocin, has been demonstrated to be microbicidal against S. mutans, and liposome-encapsulated nisin improves preventive features that may be exploited for human oral health. Here we examined the bactericidal effect of charged lipids on nisin-loaded liposomes against S. mutans and inhibitory efficiency for insoluble glucan synthesis by the streptococci for prevention of dental caries. Cationic liposome, nisin-loaded dipalmitoylphosphatidylcholine/phytosphingosine, exhibited higher bactericidal activities than those of electroneutral liposome and anionic liposome. Bactericidal efficiency of the cationic liposome revealed that the vesicles exhibited sustained inhibition of glucan synthesis and the lowest rate of release of nisin from the vesicles. The optimizing ability of cationic liposome-encapsulated nisin that exploit the sustained preventive features of an anti-streptococcal strategy may improve prevention of dental caries. PMID:27583045

  1. Delivery of Therapeutic siRNA to the CNS Using Cationic and Anionic Liposomes. (United States)

    Bender, Heather R; Kane, Sarah; Zabel, Mark D


    Prion diseases result from the misfolding of the normal, cellular prion protein (PrP(C)) to an abnormal protease resistant isomer called PrP(Res). The emergence of prion diseases in wildlife populations and their increasing threat to human health has led to increased efforts to find a treatment for these diseases. Recent studies have found numerous anti-prion compounds that can either inhibit the infectious PrP(Res) isomer or down regulate the normal cellular prion protein. However, most of these compounds do not cross the blood brain barrier to effectively inhibit PrP(Res) formation in brain tissue, do not specifically target neuronal PrP(C), and are often too toxic to use in animal or human subjects. We investigated whether siRNA delivered intravascularly and targeted towards neuronal PrP(C) is a safer and more effective anti-prion compound. This report outlines a protocol to produce two siRNA liposomal delivery vehicles, and to package and deliver PrP siRNA to neuronal cells. The two liposomal delivery vehicles are 1) complexed-siRNA liposome formulation using cationic liposomes (LSPCs), and 2) encapsulated-siRNA liposome formulation using cationic or anionic liposomes (PALETS). For the LSPCs, negatively charged siRNA is electrostatically bound to the cationic liposome. A positively charged peptide (RVG-9r [rabies virus glycoprotein]) is added to the complex, which specifically targets the liposome-siRNA-peptide complexes (LSPCs) across the blood brain barrier (BBB) to acetylcholine expressing neurons in the central nervous system (CNS). For the PALETS (peptide addressed liposome encapsulated therapeutic siRNA), the cationic and anionic lipids were rehydrated by the PrP siRNA. This procedure results in encapsulation of the siRNA within the cationic or anionic liposomes. Again, the RVG-9r neuropeptide was bound to the liposomes to target the siRNA/liposome complexes to the CNS. Using these formulations, we have successfully delivered PrP siRNA to Ach

  2. Chapter 17 - Engineering cationic liposome siRNA complexes for in vitro and in vivo delivery. (United States)

    Podesta, Jennifer E; Kostarelos, Kostas


    RNA interference, the sequence-specific silencing of gene expression by introduction of short interfering RNA (siRNA) is a powerful tool that that the potential to act as a therapeutic agent and the advantage of decreasing toxic effects on normal tissue sometimes seen with conventional treatments i.e. small molecule inhibitors. Naked, unmodified siRNA is poorly taken up by cells and is subject to degradation when exposed to blood proteins during systemic administration. It has also been shown to produce non-specific immune response as well as having the potential to generate 'off-target' effects. Therefore there is a requirement for a delivery system to not only protect the siRNA and facilitate its uptake, but additionally to offer the potential for targeted delivery with an aim of exploiting the high specificity afforded by RNA interference. Cationic liposomes are the most studied, non-viral delivery system used for nucleic acid delivery. As such, the use of cationic liposomes is promising for siRNA for delivery. Furthermore, polyethylene glycol (PEG) can be incorporated into the liposome formulation to create sterically stabilized or 'stealth' liposomes. Addition of PEG can reduce recognition by the reticuloendothelial system (RES) thereby prolonging circulation time. Here we describe a methodology for the complexation of siRNA with cationic liposomes and PEGylated liposomes using two protocols: mixing and encapsulation. Moreover, the different formulations are compared head to head to demonstrate their efficacy for gene silencing.

  3. Cationic liposomes containing antioxidants reduces pulmonary injury in experimental model of sepsis: Liposomes antioxidants reduces pulmonary damage. (United States)

    Galvão, Andre Martins; Galvão, Júlia Siqueira; Pereira, Marcela Araújo; Cadena, Pabyton Gonçalves; Magalhães, Nereide Stella Santos; Fink, James B; de Andrade, Armele Dornelas; Castro, Celia Maria Machado Barbosa de; de Sousa Maia, Maria Bernadete


    The intracellular redox state of alveolar cells is a determining factor for tolerance to oxidative and pro-inflammatory stresses. This study investigated the effects of intratracheal co-administration of antioxidants encapsulated in liposomes on the lungs of rats subjected to sepsis. For this, male rats subjected to sepsis induced by lipopolysaccharide from Escherichia coli or placebo operation were treated (intratracheally) with antibiotic, 0.9% saline and antioxidants encapsulated or non-encapsulated in liposomes. Experimental model of sepsis by cecal ligation and puncture (CLP) was performed in order to expose the cecum. The cecum was then gently squeezed to extrude a small amount of feces from the perforation site. As an index of oxidative damage, superoxide anions, lipid peroxidation, protein carbonyls, catalase activity, nitrates/nitrites, cell viability and mortality rate were measured. Infected animals treated with antibiotic plus antioxidants encapsulated in liposomes showed reduced levels of superoxide anion (54% or 7.650±1.263 nmol/min/mg protein), lipid peroxidation (33% or 0.117±0.041 nmol/mg protein), protein carbonyl (57% or 0.039 ± 0.022 nmol/mg protein) and mortality rate (3.3%), p value <0.001. This treatment also reduced the level of nitrite/nitrate and increased cell viability (90.7%) of alveolar macrophages. Taken togheter, theses results support that cationic liposomes containing antioxidants should be explored as coadjuvants in the treatment of pulmonary oxidative damage.

  4. Mechanisms of cationic liposome-mediated gene transfer%阳离子脂质体介导的基因转移机制

    Institute of Scientific and Technical Information of China (English)

    王冰; 张树彪; 周集体; 赵不凋; 杨宝灵; 崔绍辉; 赵轶男


    limited to Chinese and English languages. From cationic liposome gene transfer and gene transfer mechanisms were summarized, the cationic liposome-mediated gene transfer mechanisms were reviewed.RESULTS AND CONCLUSION: Totally 108 literature were retrieved and selected according to inclusion and exclusion criteria,20 of them were included. The cationic liposome-mediated gene transfer mechanisms were reviewed, including the formation of the cationic lipid / DNA complexes, cell uptake, inclusion body release, complex dissolution, and nucleus intake research. The results indicated that research on structure-activity relationship of lipids and the mechanism of gene transfer is the key to improve cationic liposome transfection efficiency and optimize gene therapy.

  5. Influence of charge ratio of liposome/DNA complexes on their size after extrusion and transfection efficiency

    Directory of Open Access Journals (Sweden)

    Brgles M


    Full Text Available Marija Brgles, Maja Šantak, Beata Halassy, Dubravko Forcic, Jelka TomašicInstitute of Immunology, Research and Development Department, Zagreb, CroatiaBackground: Physicochemical characteristics of liposome/DNA complexes influence transfection efficiency and affect each other in a very intricate way. The result of this is discrepancies in conclusions drawn about the individual influence of each one.Methods: Aiming to elucidate the influence of liposome/DNA charge ratio and size on transfection efficiency and on each other, we used liposome/DNA complexes with charge ratio (+/- in the range of 1–50 and extruded through membranes of 400, 200, and 100 nm. Plasmid DNA encoding green fluorescent protein was used to measure transfection efficiency by flow cytometry. Sizes of liposome/DNA complexes were measured by dynamic light scattering.Results: Liposome size was reduced after extrusion but this was mainly driven by the charge ratio and not by the size of the membrane pores. Reduction of complex size at each charge ratio positively correlated with transfection efficiency. When the size of the complexes was approximately constant, increasing the charge ratio was found to promote transfection efficiency. Cationic lipid N-(1-(2,3-dioleoyloxypropylN,N,N trimethylammonium chloride was used for modulation of positive charge and a cytotoxicity test showed that increasing its amount increases cytotoxicity.Conclusion: It can be concluded that charge ratio dictates the size of the complex whereas overall size reduction and higher charge ratios promote transfection efficiency in vitro.Keywords: transfection efficiency, liposome charge, liposome size

  6. Induction of CD8+ T-cell responses against subunit antigens by the novel cationic liposomal CAF09 adjuvant

    DEFF Research Database (Denmark)

    Korsholm, Karen Smith; Hansen, Jon; Karlsen, Kasper


    Vaccines inducing cytotoxic T-cell responses are required to achieve protection against cancers and intracellular infections such as HIV and Hepatitis C virus. Induction of CD8+ T cell responses in animal models can be achieved by the use of viral vectors or DNA vaccines but so far without much...... clinical success. Here we describe the novel CD8+ T-cell inducing adjuvant, cationic adjuvant formulation (CAF) 09, consisting of dimethyldioctadecylammonium (DDA)-liposomes stabilized with monomycoloyl glycerol (MMG)-1 and combined with the TLR3 ligand, Poly(I:C). Different antigens from tuberculosis (TB......10.3, H56), HIV (Gag p24), HPV (E7) and the model antigen ovalbumin were formulated with CAF09 and administering these vaccines to mice resulted in a high frequency of antigen-specific CD8+ T cells. CAF09 was superior in its ability to induce antigen-specific CD8+ T cells as compared to other...

  7. Evidence of interlipidic ion-pairing in anion-induced DNA release from cationic amphiphile-DNA complexes. Mechanistic implications in transfection. (United States)

    Bhattacharya, S; Mandal, S S


    Complex formation of DNA with a number of cationic amphiphiles has been examined using fluorescence, gel electrophoresis, and chemical nuclease digestion. Here we have addressed the status of both DNA and lipid upon complexation with each other. DNA upon binding with cationic amphiphiles changes its structure in such a way that it loses the ability to intercalate and becomes resistant to nuclease digestion. Fluorescence anisotropy measurements due to 1, 6-diphenylhexatriene (DPH) doped in cationic liposomes demonstrated that upon complexation with DNA, the resulting complexes still retain lamellar organizations with modest enhancement in thermal stabilities. The lipid-DNA complexation is most effective only when the complexation was carried out at or around the phase transition temperatures of the cationic lipid employed in the complexation with DNA. The release of DNA from cationic lipid-DNA complexes could be induced by several anionic additives. Determination of fluorescence anisotropies (due to DPH) as a function of temperature clearly demonstrates that the addition of equivalent amounts of anionic amphiphile into cationic lipid-DNA complexes leads to the ion-pairing of the amphiphiles, the melting profiles of which are virtually the same as those obtained in the absence of DNA. In this process DNA gets released from its complexes with cationic lipids and regains its natural intercalation ability, movement, and staining ability on agarose gel and also the sensitivities toward nuclease digestion. This clearly suggests that combination of ion-pairing and hydrophobic interactions between cationic and anionic amphiphiles is stronger than the electrostatic forces involved in the cationic lipid-DNA complexation. It is further revealed that the DNA release by anions is most efficient from the cationic lipid-DNA complexes at or around the Tm of the cationic lipid used in DNA complexation. This explains why more effective DNA delivery is achieved with cationic lipids

  8. A new vaginal delivery system of amphotericin B: a dispersion of cationic liposomes in a thermosensitive gel. (United States)

    Kang, June-Woo; Davaa, Enkhzaya; Kim, Ye-Tae; Park, Jeong-Sook


    Amphotericin B (AmB) is used in the treatment of fungal infections; however, its clinical use is limited by its toxic side effects. In this study, AmB-loaded cationic liposome gels were formulated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and cholesterol (CH) at a molar ratio of DOPE:DOTAP:CH = 4:5:1 in thermosensitive gel composed of poloxamer 407 (P407) and poloxamer 188 (P188). To enhance the solubility of AmB, 6 mol% of distearoyl phosphatidyl ethanolamine-polyethylene glycol was added prior to encapsulation of the drug into liposomes. Scanning electron microscopy was used to observe the AmB encapsulated cationic liposome gels. In vitro release, stability and cytotoxicity of AmB in cationic liposome gels were evaluated. The particle size and zeta potential of AmB-loaded liposomes were in the range of 400-500 nm and 40-60 mV, respectively. The thermosensitive gel at the ratio of P407:P188 = 15:15 (w/w) gelled at 37 degrees C, approximating body temperature. Encapsulation efficiency of AmB was approximately 50-60%, which was influenced by the ratio of AmB to lipid. Moreover, AmB-loaded cationic liposome gels were more stable and less toxic than free AmB. From these results, cationic liposome gel formulations may be useful for vaginal delivery of AmB.

  9. Effect of transfection with human interferon-beta gene entrapped in cationic multilamellar liposomes in combination with 5-fluorouracil on the growth of human esophageal cancer cells in vitro. (United States)

    Tsunoo, Hideo; Komura, Sadaaki; Ohishi, Nobuko; Yajima, Haruyoshi; Akiyama, Seiji; Kasai, Yasushi; Ito, Katsuki; Nakao, Akimasa; Yagi, Kunio


    When human esophageal cancer cells were transfected with the human interferon-beta (hIFN-beta) gene entrapped in cationic multilamellar liposomes, the growth of all cancer cells tested was suppressed in a dose-dependent manner. The 50% inhibitory concentration (IC50) of the hIFN-beta gene entrapped in the liposomes ranged from 16 to 176 ng plasmid DNA/ml culture medium. Among the 10 cell lines examined, NUEC3, NUEC4, TE-3 and WSSC cell lines were highly susceptible to transfection with this gene entrapped in the liposomes. The IC50 values of the hIFN-beta gene entrapped in the liposomes with respect to cell growth were positively-correlated with those of exogenous cytokine hIFN-beta, suggesting that the antiproliferative effect of hIFN-beta gene entrapped in the liposomes can be mainly ascribed to the function of hIFN-beta produced by cells transfected with the gene. Two days after transfection with the liposome-entrapped gene, the concentration of hIFN-beta secreted into the medium was determined. Even though the level of hIFN-beta observed in the medium was lower than that of the IC50 of exogenously added hIFN-beta, the inhibitory potency of the hIFN-beta gene entrapped in the liposomes on the cell growth was remarkable. When the esophageal cancer cells were treated with 5-fluorouracil (5-FU) in the presence of a low concentration of liposome-entrapped-gene, the rate of growth inhibition of these cells increased over that caused by either 5-FU or hIFN-beta gene entrapped in the liposomes alone. All these data suggest that combination therapy with the hIFN-beta gene entrapped in cationic multilamellar liposomes and the anticancer drug 5-FU would be beneficial for preoperative treatment of carcinoma of the esophagus.

  10. Inhibition of hepatic fibrosis with artificial microRNA using ultrasound and cationic liposome-bearing microbubbles. (United States)

    Yang, D; Gao, Y-H; Tan, K-B; Zuo, Z-X; Yang, W-X; Hua, X; Li, P-J; Zhang, Y; Wang, G


    We sought to investigate the antifibrotic effects of an artificial microRNA (miRNA) targeting connective tissue growth factor (CTGF) using the ultrasound-targeted cationic liposome-bearing microbubble destruction gene delivery system. Cationic liposomes were conjugated with microbubbles using a biotin-avidin system. Plasmids carrying the most effective artificial miRNA sequences were delivered by ultrasound-targeted cationic liposome-bearing microbubble destruction gene delivery system to rats with hepatic fibrosis. The results show that this method of gene delivery effectively transported the plasmids to the rat liver. The artificial miRNA reduced hepatic fibrosis pathological alterations as well as the protein and mRNA expressions of CTGF and transforming growth factor β1. Furthermore, the CTGF gene silencing decreased the levels of type I collagen and α-smooth muscle actin (Pliposome-bearing microbubble destruction may be an efficacious therapeutic method to ameliorate hepatic fibrosis.

  11. Targeting of small molecule anticancer drugs to the tumour and its vasculature using cationic liposomes: lessons from gene therapy

    Directory of Open Access Journals (Sweden)

    Choong Peter FM


    Full Text Available Abstract Cationic (positively charged liposomes have been tested in various gene therapy clinical trials for neoplastic and other diseases. They have demonstrated selectivity for tumour vascular endothelial cells raising hopes for both antiangiogenic and antivascular therapies. They are also capable of being selectively delivered to the lungs and liver when administered intravenously. These vesicles are being targeted to the tumour in various parts of the body by using advanced liposomal systems such as ligand-receptor and antibody-antigen combinations. At present, the transferrin receptor is commonly used for cancer-targeted drug delivery systems including cationic liposomes. This review looks at the growing utility of these vesicles for delivery of small molecule anticancer drugs.

  12. Dopamine-loaded liposome and its application in electrochemical DNA biosensor. (United States)

    Mahmoudi-Badiki, Tohid; Alipour, Esmaeel; Hamishehkar, Hamed; Golabi, Seyed Mahdi


    In this study, disruption and lyophilization-rehydration of dopamine-loaded liposome and its application in electrochemical DNA biosensor was investigated. The liposomes containing soyphosphatidylcholine and cholesterol were prepared through thin-layer hydration. First, an investigation was carried out to find an appropriate lysing agent for disruption of prepared liposomes. Differential pulse voltammetry, as a high sensitive electrochemical technique, was used along with a multi-walled carbon nanotubes modified glassy carbon electrode for sensitive electrochemical detection of released dopamine from disrupted liposomes. Various lysing agents were investigated and finally, the disruption of liposomes using methanol was selected without any surfactant, because of its least fouling effect. Then, lyophilization of dopamine-loaded liposomes was carried out using sucrose as cryoprotectant. The electrochemical studies of lyophilized liposomes showed that the remained dopamine in sucrose-protected liposomes was higher than sucrose-free liposomes. Furthermore, sucrose has no interference in electrochemical studies. Then, with the addition of biotin-X-DHPE to liposome formulation, the lyophilized sucrose protected dopamine-loaded biotin-tagged liposomes were prepared and the feasibility of application of them in electrochemical DNA biosensor was investigated as signal enhancer and verified for detection of oligonucleotides.

  13. α, ω-Cholesterol-functionalized low molecular weight polyethylene glycol as a novel modifier of cationic liposomes for gene delivery. (United States)

    Ma, Cui-Cui; He, Zhi-Yao; Xia, Shan; Ren, Ke; Hui, Li-Wei; Qin, Han-Xiao; Tang, Ming-Hai; Zeng, Jun; Song, Xiang-Rong


    Here, three novel cholesterol (Ch)/low molecular weight polyethylene glycol (PEG) conjugates, termed α, ω-cholesterol-functionalized PEG (Ch2-PEGn), were successfully synthesized using three kinds of PEG with different average molecular weight (PEG600, PEG1000 and PEG2000). The purpose of the study was to investigate the potential application of novel cationic liposomes (Ch2-PEGn-CLs) containing Ch2-PEGn in gene delivery. The introduction of Ch2-PEGn affected both the particle size and zeta potential of cationic liposomes. Ch2-PEG2000 effectively compressed liposomal particles and Ch2-PEG2000-CLs were of the smallest size. Ch2-PEG1000 and Ch2-PEG2000 significantly decreased zeta potentials of Ch2-PEGn-CLs, while Ch2-PEG600 did not alter the zeta potential due to the short PEG chain. Moreover, the in vitro gene transfection efficiencies mediated by different Ch2-PEGn-CLs also differed, in which Ch2-PEG600-CLs achieved the strongest GFP expression than Ch2-PEG1000-CLs and Ch2-PEG2000-CLs in SKOV-3 cells. The gene delivery efficacy of Ch2-PEGn-CLs was further examined by addition of a targeting moiety (folate ligand) in both folate-receptor (FR) overexpressing SKOV-3 cells and A549 cells with low expression of FR. For Ch2-PEG1000-CLs and Ch2-PEG2000-CLs, higher molar ratios of folate ligand resulted in enhanced transfection efficacies, but Ch2-PEG600-CLs had no similar in contrast. Additionally, MTT assay proved the reduced cytotoxicities of cationic liposomes after modification by Ch2-PEGn. These findings provide important insights into the effects of Ch2-PEGn on cationic liposomes for delivering genes, which would be beneficial for the development of Ch2-PEGn-CLs-based gene delivery system.

  14. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi


    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  15. Isothermal titration calorimetric analysis of the interaction between cationic lipids and plasmid DNA. (United States)

    Lobo, B A; Davis, A; Koe, G; Smith, J G; Middaugh, C R


    The effects of buffer and ionic strength upon the enthalpy of binding between plasmid DNA and a variety of cationic lipids used to enhance cellular transfection were studied using isothermal titration calorimetry at 25.0 degrees C and pH 7.4. The cationic lipids DOTAP (1,2-dioleoyl-3-trimethyl ammonium propane), DDAB (dimethyl dioctadecyl ammonium bromide), DOTAP:cholesterol (1:1), and DDAB:cholesterol (1:1) bound endothermally to plasmid DNA with a negligible proton exchange with buffer. In contrast, DOTAP: DOPE (L-alpha-dioleoyl phosphatidyl ethanolamine) (1:1) and DDAB:DOPE (1:1) liposomes displayed a negative enthalpy and a significant uptake of protons upon binding to plasmid DNA at neutral pH. These findings are most easily explained by a change in the apparent pKa of the amino group of DOPE upon binding. Complexes formed by reverse addition methods (DNA into lipid) produced different thermograms, sizes, zeta potentials, and aggregation behavior, suggesting that structurally different complexes were formed in each titration direction. Titrations performed in both directions in the presence of increasing ionic strength revealed a progressive decrease in the heat of binding and an increase in the lipid to DNA charge ratio at which aggregation occurred. The unfavorable binding enthalpy for the cationic lipids alone and with cholesterol implies an entropy-driven interaction, while the negative enthalpies observed with DOPE-containing lipid mixtures suggest an additional contribution from changes in protonation of DOPE.

  16. Cationic lipids and cationic ligands induce DNA helix denaturation: detection of single stranded regions by KMnO4 probing. (United States)

    Prasad, T K; Gopal, Vijaya; Rao, N Madhusudhana


    Cationic lipids and cationic polymers are widely used in gene delivery. Using 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as a cationic lipid, we have investigated the stability of the DNA in DOTAP:DNA complexes by probing with potassium permanganate (KMnO4). Interestingly, thymidines followed by a purine showed higher susceptibility to cationic ligand-mediated melting. Similar studies performed with other water-soluble cationic ligands such as polylysine, protamine sulfate and polyethyleneimine also demonstrated melting of the DNA but with variations. Small cations such as spermine and spermidine and a cationic detergent, cetyl trimethylammonium bromide, also rendered the DNA susceptible to modification by KMnO4. The data presented here provide direct proof for melting of DNA upon interaction with cationic lipids. Structural changes subsequent to binding of cationic lipids/ligands to DNA may lead to instability and formation of DNA bubbles in double-stranded DNA.

  17. Phase I clinical study of vascular targeting fluorescent cationic liposomes in head and neck cancer. (United States)

    Strieth, Sebastian; Dunau, Christoph; Kolbow, Kristina; Knuechel, Ruth; Michaelis, Uwe; Ledderose, Hannelore; Eichhorn, Martin E; Strelczyk, Donata; Tschiesner, Uta; Wollenberg, Barbara; Dellian, Marc


    The aim of this first-time-in-human non-randomized dose-escalating prospective phase I clinical trial was to analyze safety of two doses of fluorescent rhodamine-labeled cationic liposomes (LDF01) in head and neck squamous cell carcinoma (HNSCC). Patients had resectable UICC stadium I-IV A HNSCCs. LDF01 was administered before tumor resection under general anesthesia as an intravenous infusion with effective lipid doses of 0.5 or 2 mg/kg b.w., respectively. In addition to clinical monitoring for safety assessment, tumor biopsies were taken during the surgical procedure for fluorescence histological analysis. Eight patients were assigned to the two dose groups. During safety follow-up no clinically relevant adverse events occurred. Fluorescence histology revealed some evidence of favorable selectivity of LDF01 for tumor microvessels in the high-dose group. LDF01 is safe applied as infusion at both tested dose levels. Furthermore, LDF01 can be detected in the vicinity of tumor cells and could be assigned to the microvessel target in individual HNSSC cases. Detailed analysis of targeting properties of LDF01 has to be performed in upcoming clinical phase II trials.

  18. Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy. (United States)

    Saengkrit, Nattika; Saesoo, Somsak; Srinuanchai, Wanwisa; Phunpee, Sarunya; Ruktanonchai, Uracha Rungsardthong


    The delivery of curcumin has been explored in the form of liposomal nanoparticles to treat various cancer cells. Since curcumin is water insoluble and an effective delivery route is through encapsulation in liposomes, which were modified with three components of DDAB, cholesterol and non-ionic surfactant. The purpose of this study was to establish a critical role of DDAB in liposomes containing curcumin at cellular response against two types of cell lines (HeLa and SiHa). Here, we demonstrate that DDAB is a potent inducer of cell uptake and cell death in both cell lines. The enhanced cell uptake was found on DDAB-containing liposome, but not on DDAB-free liposome. However, the cytotoxicity of DDAB-containing liposomes was high and needs to be optimized. The cytotoxicity of liposomal curcumin was more pronounced than free curcumin in both cells, suggesting the benefits of using nanocarrier. In addition, the anticancer efficiency and apoptosis effect of the liposomal curcumin formulations with DDAB was higher than those of DDAB-free liposomes. Therefore curcumin loaded liposomes indicate significant potential as delivery vehicles for the treatment of cervical cancers.

  19. Complexation Between Cationic Diblock Copolymers and Plasmid DNA (United States)

    Jung, Seyoung; Reineke, Theresa; Lodge, Timothy

    Deoxyribonucleic acids (DNA), as polyanions, can spontaneously bind with polycations to form polyelectrolyte complexes. When the polycation is a diblock copolymer with one cationic block and one uncharged hydrophilic block, the polyelectrolyte complexes formed with plasmid DNA (pDNA) are often colloidally stable, and show great promise in the field of polymeric gene therapy. While the resulting properties (size, stability, and toxicity to biological systems) of the complexes have been studied for numerous cationic diblocks, the fundamentals of the pDNA-diblock binding process have not been extensively investigated. Herein, we report how the cationic block content of a diblock influences the pDNA-diblock interactions. pDNA with 7164 base pairs and poly(2-deoxy-2-methacrylamido glucopyranose)-block-poly(N-(2-aminoethyl) methacrylamide) (PMAG-b-PAEMA) are used as the model pDNA and cationic diblock, respectively. To vary the cationic block content, two PMAG-b-PAEMA copolymers with similar PMAG block lengths but distinct PAEMA block lengths and a PAEMA homopolymer are utilized. We show that the enthalpy change from pDNA-diblock interactions is dependent on the cationic diblock composition, and is closely associated with both the binding strength and the pDNA tertiary structure.

  20. Cationic lipids delay the transfer of plasmid DNA to lysosomes. (United States)

    Wattiaux, R; Jadot, M; Laurent, N; Dubois, F; Wattiaux-De Coninck, S


    Plasmid 35S DNA, naked or associated with different cationic lipid preparations was injected to rats. Subcellular distribution of radioactivity in the liver one hour after injection, was established by centrifugation methods. Results show that at that time, 35S DNA has reached lysosomes. On the contrary, when 35S DNA was complexed with lipids, radioactivity remains located in organelles whose distribution after differential and isopycnic centrifugation, is clearly distinct from that of arylsulfatase, lysosome marker enzyme. Injection of Triton WR 1339, a specific density perturbant of lysosomes, four days before 35S DNA injection causes a density decrease of radioactivity bearing structures, apparent one hour after naked 35S DNA injection but visible only after more than five hours, when 35S DNA associated with a cationic lipid is injected. These observations show that cationic lipids delay the transfer to lysosomes, of plasmid DNA taken up by the liver.

  1. Competitive Effects of 2+ and 3+ Cations on DNA Compaction

    CERN Document Server

    Tongu, C; Yoshikawa, Y; Zinchenko, A A; Chen, N; Yoshikawa, K


    By using single-DNA observation with fluorescence microscopy, we observed the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA with 166 kbp). It was found that divalent cations, such as Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. These experimental observations are inconsistent with the well-established Debye-Huckel scheme regarding the shielding effect of counter ions, which is given as the additivity of contributions of cations with different valences. We interpreted the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counter ions before and after the folding transition of DNA. For the compaction with SPD(3+), we considered the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly-charged polyelectrolyte, double-st...

  2. Lipid Phases Eye View to Lipofection. Cationic Phosphatidylcholine Derivatives as Efficient DNA Carriers for Gene Delivery

    Directory of Open Access Journals (Sweden)

    Rumiana Koynova


    Full Text Available Efficient delivery of genetic material to cells is needed for tasks of utmost importance in laboratory and clinic, such as gene transfection and gene silencing. Synthetic cationic lipids can be used as delivery vehicles for nucleic acids and are now considered the most promising non-viral gene carriers. They form complexes (lipoplexes with the polyanionic nucleic acids. A critical obstacle for clinical application of the lipid-mediated DNA delivery (lipofection is its unsatisfactory efficiency for many cell types. Understanding the mechanism of lipid-mediated DNA delivery is essential for their successful application, as well as for rational design and synthesis of novel cationic lipoid compounds for enhanced gene delivery. According to the current understanding, the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids. In particular, recent studies with cationic phospha- tidylcholine derivatives showed that the phase evolution of lipoplex lipids upon interaction and mixing with membrane lipids appears to be decisive for transfection success: specifically, lamellar lipoplex formulations, which were readily susceptible to undergoing lamellar-nonlamellar (precisely lamellar-cubic phase transition upon mixing with cellular lipids, were found rather consistently associated with superior transfection potency, presumably as a result of facilitated DNA release subsequent to lipoplex fusion with the cellular membranes. Further, hydrophobic moiety of the cationic phospholipids was found able to strongly modulate liposomal gene delivery into primary human umbilical artery endothelial cells; superior activity was found for cationic phosphatidylcholine derivatives with two 14-carbon atom monounsaturated hydrocarbon chains, able to induce formation of cubic phase in membranes. Thus, understanding the lipoplex structure and the phase changes upon interacting

  3. Cationic liposomes containing soluble Leishmania antigens (SLA) plus CpG ODNs induce protection against murine model of leishmaniasis. (United States)

    Heravi Shargh, Vahid; Jaafari, Mahmoud Reza; Khamesipour, Ali; Jalali, Seyed Amir; Firouzmand, Hengameh; Abbasi, Azam; Badiee, Ali


    Development of an effective vaccine against leishmaniasis is possible due to the fact that individuals cured from cutaneous leishmaniasis (CL) are protected from further infection. First generation Leishmania vaccines consisting of whole killed parasites reached to phase 3 clinical trials but failed to show enough efficacies mainly due to the lack of an appropriate adjuvant. In this study, an efficient liposomal protein-based vaccine against Leishmania major infection was developed using soluble Leishmania antigens (SLA) as a first generation vaccine and cytidine phosphate guanosine oligodeoxynucleotides (CpG ODNs) as an immunostimulatory adjuvant. 1, 2-Dioleoyl-3-trimethylammonium-propane was used as a cationic lipid to prepare the liposomes due to its intrinsic adjuvanticity. BALB/c mice were immunized subcutaneously (SC), three times in 2-week intervals, with Lip-SLA-CpG, Lip-SLA, SLA + CpG, SLA, or HEPES buffer. As criteria for protection, footpad swelling at the site of challenge and spleen parasite loads were assessed, and the immune responses were evaluated by determination of IFN-γ and IL-4 levels of cultured splenocytes, and IgG subtypes. The group of mice that received Lip-SLA-CpG showed a significantly smaller footpad swelling, lower spleen parasite burden, higher IgG2a antibody, and lower IL-4 level compared to the control groups. It is concluded that cationic liposomes containing SLA and CpG ODNs are appropriate to induce Th1 type of immune response and protection against leishmaniasis.

  4. Efficient encapsulation of plasmid DNA in anionic liposomes by a freeze/thaw extrusion procedure

    NARCIS (Netherlands)

    Schoen, P; Bijl, L; Wilschut, J


    In this study we investigated whether intact plasmid DNA can be efficiently encapsulated in anionic liposomes prepared by freeze/thaw and extrusion techniques. There is controversy about this method of DNA encapsulation, especially as to whether DNA remains intact and retains its biological activity

  5. Condensation of nonstochiometric DNA/polycation complexes by divalent cations. (United States)

    Budker, Vladimir; Trubetskoy, Vladimir; Wolff, Jon A


    This study found that divalent cations induced the further condensation of partially condensed DNA within nonstochiometric polycation complexes. The addition of a few mmol of a divalent cation such as calcium reduced by half the inflection point at which DNA became fully condensed by poly-L-lysine (PLL) and a variety of other polycations. The effect on DNA condensation was initially observed using a new method, which is based on the concentration-dependent self-quenching of fluorescent moieties (e.g., rhodamine) covalently linked to the DNA backbone at relatively high densities. Additional analyses, which employed ultracentrifugation, dynamic light scattering, agarose gel electrophoresis, and atomic force microscopy, confirmed the effect of divalent cations. These results provide an additional accounting of the process by which divalent cations induce greater chromatin compaction that is based on the representation of chromatin fibers as a nonstoichiometric polyelectrolyte complex. They also offer a new approach to assemble nonviral vectors for gene therapy.

  6. Profiling Metal Oxides with Lipids: Magnetic Liposomal Nanoparticles Displaying DNA and Proteins. (United States)

    Wang, Feng; Zhang, Xiaohan; Liu, Yibo; Lin, Zhi Yuan William; Liu, Biwu; Liu, Juewen


    Metal oxides include many important materials with various surface properties. For biomedical and analytical applications, it is desirable to engineer their biocompatible interfaces. Herein, a phosphocholine liposome (DOPC) and its headgroup dipole flipped counterpart (DOCP) were mixed with ten common oxides. Using the calcein leakage assay, cryo-TEM, and ζ-potential measurement, these oxides were grouped into three types. The type 1 oxides (Fe3 O4 , TiO2 , ZrO2 , Y2 O3 , ITO, In2 O3 , and Mn2 O3 ) form supported bilayers only with DOCP. Type 2 (SiO2 ) forms supported bilayers only with DOPC; type 3 (ZnO and NiO) are cationic and damage lipid membranes. Magnetic Fe3 O4 nanoparticles were further studied for conjugation of fluorophores, proteins, and DNA to the supported DOCP bilayers via lipid headgroup labeling, covalent linking, or lipid insertion. Delivery of the conjugates to cells and selective DNA hybridization were demonstrated. This work provides a general solution for coating the type 1 oxides with a simple mixing in water, facilitating applications in biosensing, separation, and nanomedicine.

  7. Comparison of the cellular transport mechanism of cationic, star-shaped polymers and liposomes in HaCat cells

    Directory of Open Access Journals (Sweden)

    Luo H


    Full Text Available Heng-Cong Luo,1,2,* Na Li,1,* Li Yan,1 Kai-jin Mai,3 Kan Sun,1 Wei Wang,1 Guo-Juan Lao,1 Chuan Yang,1 Li-Ming Zhang,3 Meng Ren1 1Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen University, Guangzhou, People’s Republic of China; 2Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China; 3School of Materials Science and Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Several biological barriers must be overcome to achieve efficient nonviral gene delivery. These barriers include target cell uptake, lysosomal degradation, and dissociation from the carrier. In this study, we compared the differences in the uptake mechanism of cationic, star-shaped polymer/MMP-9siRNA complexes (β-CD-(D37/MMP-9siRNA complexes: polyplexes and commercial liposome/MMP-9siRNA complexes (Lipofectamine® 2000/MMP-9siRNA complexes: liposomes. The uptake pathway and transfection efficiency of the polyplexes and liposomes were determined by fluorescence microscopy, flow cytometry, and reverse transcriptase-polymerase chain reaction. The occurrence of intracellular processing was assessed by confocal laser scanning microscopy. Endosomal acidification inhibitors were used to explore the endosomal escape mechanisms of the polyplexes and lysosomes. We concluded that the polyplexes were internalized by non-caveolae- and non-clathrin-mediated pathways, with no lysosomal trafficking, thereby inducing successful transfection, while the majority of liposomes were internalized by clathrin-dependent endocytosis (CDE, caveolae-mediated endocytosis, and macropinocytosis, and only CDE induced successful transfection. Liposomes might escape more quickly than polyplexes, and

  8. Heterogeneous PNA Liposomes for Gene Delivery (United States)

    Marques, Bruno; Morfesis, Ana; Yoon, Diana; Schneider, James


    To circumvent complications of DNA adsorption onto cationic liposomes (i.e. structural reorganization, cytotoxicity), we have developed a liposomal system that binds genetic material via hydrogen bonding interactions. These liposomes contain surfactants linked to peptide nucleic acid (PNA), a synthetic DNA mimic with unique DNA-binding properties. We target multiple short regions of the DNA strand, sequestering the DNA from nuclease in solution, to protect it from nuclease digestion. Here, we present zeta potential measurements quantifying the extent of PNA incorporation in the liposomes, as well as the extent of DNA binding and nuclease activity under various conditions for mixtures of di- and trinucleotide PNA. We also discuss our attempts to identify the minimal PNA oligomer length to achieve stable binding and sequence specificity.

  9. Cationic Polybutyl Cyanoacrylate Nanoparticles for DNA Delivery

    Directory of Open Access Journals (Sweden)

    Jinghua Duan


    Full Text Available To enhance the intracellular delivery potential of plasmid DNA using nonviral vectors, we used polybutyl cyanoacrylate (PBCA and chitosan to prepare PBCA nanoparticles (NPs by emulsion polymerization and prepared NP/DNA complexes through the complex coacervation of nanoparticles with the DNA. The object of our work is to evaluate the characterization and transfection efficiency of PBCA-NPs. The NPs have a zeta potential of 25.53 mV at pH 7.4 and size about 200 nm. Electrophoretic analysis suggested that the NPs with positive charges could protect the DNA from nuclease degradation and cell viability assay showed that the NPs exhibit a low cytotoxicity to human hepatocellular carcinoma (HepG2 cells. Qualitative and quantitative analysis of transfection in HepG2 cells by the nanoparticles carrying plasmid DNA encoding for enhanced green fluorescent protein (EGFP-N1 was done by digital fluorescence imaging microscopy system and fluorescence-activated cell sorting (FACS. Qualitative results showed highly efficient expression of GFP that remained stable for up to 96 hours. Quantitative results from FACS showed that PBCA-NPs were significantly more effective in transfecting HepG2 cells after 72 hours postincubation. The results of this study suggested that PBCA-NPs have favorable properties for nonviral delivery.

  10. Cation permeability of liposomes as a function of the chemical composition of the lipid bilayers

    NARCIS (Netherlands)

    Scarpa, A.; Gier, J. de


    1. 1.|Comparable liposome preparations were obtained from lipids differing in degree of unsaturation and cholesterol content. 2. 2.|An exchange between alkali ions and protons through the bilayers was induced by replacing the alkali ions on the one side of the outer lipid membrane by impermeable

  11. In vitro toxicity of cationic micelles and liposomes in cultured human hepatocyte (HepG2) and lung epithelial (A549) cell lines

    DEFF Research Database (Denmark)

    Roursgaard, Martin; Knudsen, Kristina Bram; Northeved, Helle;


    The aim of this study was to compare the effects of cationic micelle and liposome drug delivery systems on liver and lung cells in a toxicological in vitro screening model, with observations on cytotoxicity and genotoxicity. A screening battery was established for assessment of a broad range...

  12. Efficient delivery of Notch1 siRNA to SKOV3 cells by cationic cholesterol derivative-based liposome (United States)

    Zhao, Yun-Chun; Zhang, Li; Feng, Shi-Sen; Hong, Lu; Zheng, Hai-Li; Chen, Li-Li; Zheng, Xiao-Ling; Ye, Yi-Qing; Zhao, Meng-Dan; Wang, Wen-Xi; Zheng, Cai-Hong


    A novel cationic cholesterol derivative-based small interfering RNA (siRNA) interference strategy was suggested to inhibit Notch1 activation in SKOV3 cells for the gene therapy of ovarian cancer. The cationic cholesterol derivative, N-(cholesterylhemisuccinoyl-amino-3-propyl)-N, N-dimethylamine (DMAPA-chems) liposome, was incubated with siRNA at different nitrogen-to-phosphate ratios to form stabilized, near-spherical siRNA/DMAPA-chems nanoparticles with sizes of 100–200 nm and zeta potentials of 40–50 mV. The siRNA/DMAPA-chems nanoparticles protected siRNA from nuclease degradation in 25% fetal bovine serum. The nanoparticles exhibited high cell uptake and Notch1 gene knockdown efficiency in SKOV3 cells at an nitrogen-to-phosphate ratio of 100 and an siRNA concentration of 50 nM. They also inhibited the growth and promoted the apoptosis of SKOV3 cells. These results may provide the potential for using cationic cholesterol derivatives as efficient nonviral siRNA carriers for the suppression of Notch1 activation in ovarian cancer cells.

  13. The influence of cationic liposome-mediated APOE2 gene transfer on brain structural changes after experimental traumatic brain injury


    Pedachenko E.G.; Biloshytsky V.V.; Semenova V.M.; Gridina N.Ya.; Tsyba L. O.


    The possibilities to prevent the evolution of structural changes caused by secondary damage after traumatic brain injury by means of gene therapy aimed at the induction of apoE2 synthesis in brain tissue were studied. Traumatic brain injury in rats was inflicted under an overall anesthesia by free falling load weighing 450 g, falling from a 1.5 m elevation. The mixture of DOTAP liposome and 25 μg of plasmid vector pCMV•SPORT6 with cDNA of APOE2 gene was infused intraventricularly. At day 10 a...

  14. Measuring cation dependent DNA polymerase fidelity landscapes by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Bradley Michael Zamft

    Full Text Available High-throughput recording of signals embedded within inaccessible micro-environments is a technological challenge. The ideal recording device would be a nanoscale machine capable of quantitatively transducing a wide range of variables into a molecular recording medium suitable for long-term storage and facile readout in the form of digital data. We have recently proposed such a device, in which cation concentrations modulate the misincorporation rate of a DNA polymerase (DNAP on a known template, allowing DNA sequences to encode information about the local cation concentration. In this work we quantify the cation sensitivity of DNAP misincorporation rates, making possible the indirect readout of cation concentration by DNA sequencing. Using multiplexed deep sequencing, we quantify the misincorporation properties of two DNA polymerases--Dpo4 and Klenow exo(---obtaining the probability and base selectivity of misincorporation at all positions within the template. We find that Dpo4 acts as a DNA recording device for Mn(2+ with a misincorporation rate gain of ∼2%/mM. This modulation of misincorporation rate is selective to the template base: the probability of misincorporation on template T by Dpo4 increases >50-fold over the range tested, while the other template bases are affected less strongly. Furthermore, cation concentrations act as scaling factors for misincorporation: on a given template base, Mn(2+ and Mg(2+ change the overall misincorporation rate but do not alter the relative frequencies of incoming misincorporated nucleotides. Characterization of the ion dependence of DNAP misincorporation serves as the first step towards repurposing it as a molecular recording device.

  15. Analysis of plasma protein adsorption onto DC-Chol-DOPE cationic liposomes by HPLC-CHIP coupled to a Q-TOF mass spectrometer

    KAUST Repository

    Capriotti, Anna Laura


    Plasma protein adsorption is regarded as a key factor in the in vivo organ distribution of intravenously administered drug carriers, and strongly depends on vector surface characteristics. The present study aimed to characterize the "protein corona" absorbed onto DC-Chol-DOPE cationic liposomes. This system was chosen because it is one of the most efficient and widely used non-viral formulations in vitro and a potential candidate for in vivo transfection of genetic material. After incubation of human plasma with cationic liposomes, nanoparticle-protein complex was separated from plasma by centrifugation. An integrated approach based on protein separation by one-dimensional 12% polyacrylamide gel electrophoresis followed by the automated HPLC-Chip technology coupled to a high-resolution mass spectrometer was employed for protein corona characterization. Thirty gel lanes, approximately 2 mm, were cut, digested and analyzed by HPLC-MS/MS. Fifty-eight human plasma proteins adsorbed onto DC-Chol-DOPE cationic liposomes were identified. The knowledge of the interactions of proteins with liposomes can be exploited for future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins in body fluids. © 2010 Springer-Verlag.

  16. Cation charge dependence of the forces driving DNA assembly. (United States)

    DeRouchey, Jason; Parsegian, V Adrian; Rau, Donald C


    Understanding the strength and specificity of interactions among biologically important macromolecules that control cellular functions requires quantitative knowledge of intermolecular forces. Controlled DNA condensation and assembly are particularly critical for biology, with separate repulsive and attractive intermolecular forces determining the extent of DNA compaction. How these forces depend on the charge of the condensing ion has not been determined, but such knowledge is fundamental for understanding the basis of DNA-DNA interactions. Here, we measure DNA force-distance curves for a homologous set of arginine peptides. All forces are well fit as the sum of two exponentials with 2.4- and 4.8-Å decay lengths. The shorter-decay-length force is always repulsive, with an amplitude that varies slightly with length or charge. The longer-decay-length force varies strongly with cation charge, changing from repulsion with Arg¹ to attraction with Arg². Force curves for a series of homologous polyamines and the heterogeneous protein protamine are quite similar, demonstrating the universality of these forces for DNA assembly. Repulsive amplitudes of the shorter-decay-length force are species-dependent but nearly independent of charge within each species. A striking observation was that the attractive force amplitudes for all samples collapse to a single curve, varying linearly with the inverse of the cation charge.

  17. Antiviral effect of HPMPC (Cidofovir®), entrapped in cationic liposomes: in vitro study on MDBK cell and BHV-1 virus. (United States)

    Korvasová, Zina; Drašar, Lukáš; Mašek, Josef; Turánek Knotigová, Pavlína; Kulich, Pavel; Matiašovic, Ján; Kovařčík, Kamil; Bartheldyová, Eliška; Koudelka, Štěpán; Škrabalová, Michaela; Miller, Andrew D; Holý, Antonín; Ledvina, Miroslav; Turánek, Jaroslav


    We designed and synthesised a series of new cationic lipids based on spermine linked to various hydrophobic anchors. These lipids could be potentially useful for the preparation of stable cationic liposomes intended for the construction of drug targeting systems applicable in the field of anticancer/antiviral therapy, vaccine carriers, and vectors for the gene therapy. Low in vitro toxicity was found for these compounds, especially for LD1, in several cell lines. The delivery of both a fluorescence marker (calcein) and antiviral drugs into cells has been achieved owing to a large extent of internalization of cationic liposomes (labelled by Lyssamine-Rhodamine PE or fluorescein-PE) as demonstrated by fluorescent microscopy and quantified by flow cytometry. The bovine herpes virus type 1 (BHV-1) virus infection in vitro model using MDBK cells was employed to study the effect of the established antiviral drug HPMPC (Cidofovir®) developed by Prof. A. Holý. Inhibition of BHV-1 virus replication was studied by quantitative RT-PCR and confirmed by both Hoffman modulation contrast microscopy and transmission electron microscopy. We found that in vitro antiviral activity of HPMPC was significantly improved by formulation in cationic liposomes, which decreased the viral replication by about 2 orders of magnitude.

  18. Computational and analytical modeling of cationic lipid-DNA complexes. (United States)

    Farago, Oded; Grønbech-Jensen, Niels


    We present a theoretical study of the physical properties of cationic lipid-DNA (CL-DNA) complexes--a promising synthetically based nonviral carrier of DNA for gene therapy. The study is based on a coarse-grained molecular model, which is used in Monte Carlo simulations of mesoscopically large systems over timescales long enough to address experimental reality. In the present work, we focus on the statistical-mechanical behavior of lamellar complexes, which in Monte Carlo simulations self-assemble spontaneously from a disordered random initial state. We measure the DNA-interaxial spacing, d(DNA), and the local cationic area charge density, sigma(M), for a wide range of values of the parameter (c) representing the fraction of cationic lipids. For weakly charged complexes (low values of (c)), we find that d(DNA) has a linear dependence on (c)(-1), which is in excellent agreement with x-ray diffraction experimental data. We also observe, in qualitative agreement with previous Poisson-Boltzmann calculations of the system, large fluctuations in the local area charge density with a pronounced minimum of sigma(M) halfway between adjacent DNA molecules. For highly-charged complexes (large (c)), we find moderate charge density fluctuations and observe deviations from linear dependence of d(DNA) on (c)(-1). This last result, together with other findings such as the decrease in the effective stretching modulus of the complex and the increased rate at which pores are formed in the complex membranes, are indicative of the gradual loss of mechanical stability of the complex, which occurs when (c) becomes large. We suggest that this may be the origin of the recently observed enhanced transfection efficiency of lamellar CL-DNA complexes at high charge densities, because the completion of the transfection process requires the disassembly of the complex and the release of the DNA into the cytoplasm. Some of the structural properties of the system are also predicted by a continuum

  19. Insights into the therapeutic potential of hypoxia-inducible factor-1α small interfering RNA in malignant melanoma delivered via folate-decorated cationic liposomes

    Directory of Open Access Journals (Sweden)

    Chen Z


    Full Text Available Zhongjian Chen,1,* Tianpeng Zhang,2,* Baojian Wu,2 Xingwang Zhang2 1Department of Pharmaceutics, Shanghai Dermatology Hospital, 2Division of Pharmaceutics, College of Pharmacy, Jinan University, Gangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Malignant melanoma (MM represents the most dangerous form of skin cancer, and its incidence is expected to rise in the coming time. However, therapy for MM is limited by low topical drug concentration and multidrug resistance. This article aimed to develop folate-decorated cationic liposomes (fc-LPs for hypoxia-inducible factor-1α (HIF-1α small interfering (siRNA delivery, and to evaluate the potential of such siRNA/liposome complexes in MM therapy. HIF-1α siRNA-loaded fc-LPs (siRNA-fc-LPs were prepared by a film hydration method followed by siRNA incubation. Folate decoration of liposomes was achieved by incorporation of folate/oleic acid-diacylated oligochitosans. The resulting siRNA-fc-LPs were 95.3 nm in size with a ζ potential of 2.41 mV. The liposomal vectors exhibited excellent loading capacity and protective effect toward siRNA. The in vitro cell transfection efficiency was almost parallel to the commercially available Lipofectamine™ 2000. Moreover, the anti-melanoma activity of HIF-1α siRNA was significantly enhanced through fc-LPs. Western blot analysis and apoptosis test demonstrated that siRNA-fc-LPs substantially reduced the production of HIF-1α-associated protein and induced the apoptosis of hypoxia-tolerant melanoma cells. Our designed liposomal vectors might be applicable as siRNA delivery vehicle to systemically or topically treat MM. Keywords: malignant melanoma, HIF-1α siRNA, chitosan, cationic liposomes, gene therapy

  20. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process. (United States)

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V


    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange.

  1. Electrochemical uranyl cation biosensor with DNA oligonucleotides as receptor layer. (United States)

    Jarczewska, Marta; Ziółkowski, Robert; Górski, Łukasz; Malinowska, Elżbieta


    The present study aims at the further development of the uranyl oligonucleotide-based voltammetric biosensor, which takes advantage of strong interaction between UO2(2+) and phosphate DNA backbone. Herein we report the optimization of working parameters of previously elaborated electrochemical DNA biosensor. It is shown that the sensor sensitivity is highly dependent on the oligonucleotide probe length and the incubation time of sensor in a sample solution. Consequently, the highest sensitivity was obtained for 10-nucleotide sequence and 60 min incubation time. The lower detection limit towards uranyl cation for developed biosensor was 30 nM. The influence of mixed monolayers and the possibility of developing a non-calibration device were also investigated. The selectivity of the proposed biosensor was significantly improved via elimination of adenine nucleobases from the DNA probe. Moreover, the regeneration procedure was elaborated and tested to prolong the use of the same biosensor for 4 subsequent determinations of UO2(2+).

  2. Self-assembly of size-controlled liposomes on DNA nanotemplates (United States)

    Yang, Yang; Wang, Jing; Shigematsu, Hideki; Xu, Weiming; Shih, William M.; Rothman, James E.; Lin, Chenxiang


    Artificial lipid-bilayer membranes are valuable tools for the study of membrane structure and dynamics. For applications such as the study of vesicular transport and drug delivery, there is a pressing need for artificial vesicles with controlled size. However, controlling vesicle size and shape with nanometre precision is challenging, and approaches to achieve this can be heavily affected by lipid composition. Here, we present a bio-inspired templating method to generate highly monodispersed sub-100-nm unilamellar vesicles, where liposome self-assembly was nucleated and confined inside rigid DNA nanotemplates. Using this method, we produce homogeneous liposomes with four distinct predefined sizes. We also show that the method can be used with a variety of lipid compositions and probe the mechanism of templated liposome formation by capturing key intermediates during membrane self-assembly. The DNA nanotemplating strategy represents a conceptually novel way to guide lipid bilayer formation and could be generalized to engineer complex membrane/protein structures with nanoscale precision.

  3. Liposomes as a gene delivery system

    Directory of Open Access Journals (Sweden)

    C. Ropert


    Full Text Available Gene therapy is an active field that has progressed rapidly into clinical trials in a relatively short time. The key to success for any gene therapy strategy is to design a vector able to serve as a safe and efficient gene delivery vehicle. This has encouraged the development of nonviral DNA-mediated gene transfer techniques such as liposomes. Many liposome-based DNA delivery systems have been described, including molecular components for targeting given cell surface receptors or for escaping from the lysosomal compartment. Another recent technology using cationic lipids has been evaluated and has generated substantial interest in this approach to gene transfer.

  4. Hypolipidemic effect of SR‑BI gene delivery by combining cationic liposomal microbubbles and ultrasound in hypercholesterolemic rats. (United States)

    Liu, Fang; Zhu, Jiaan; Huang, Yunxia; Guo, Wei; Rui, Mengjie; Xu, Yuhong; Hu, Bing


    High-density lipoprotein (HDL) is a key mediator in reverse cholesterol transport and is involved in a mechanism known as 'selective lipid uptake', a process mediated by scavenger receptor B type I (SR‑BI), which is a HDL receptor. The aim of the present study was to investigate the therapeutic effect of the SR‑BI gene when delivered by combining cationic liposomal microbubbles (CLMs) and ultrasound (US) in hypercholesterolemic rats. Hypercholesterolemia was induced by administration of excessive doses of vitamin D3 and cholesterol in rats. The CLMs consisted of perfluoropropane gas encapsulated in a phospholipid shell using the sonication‑lyophilization method. The SR‑BI gene, mixed with the self‑made microbubbles, was transfected into hypercholesterolemic rat arteries using therapeutic US. SR‑BI protein expression was determined by western blot analysis 2 days post-transfection. Two weeks after transfection, total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL) and HDL serum concentrations were measured. Transfection efficiency of the SR‑BI gene in the SR‑BI + US/CLM group increased 6‑7‑fold compared with the SR‑BI group. Two weeks after transfection, plasma lipid levels in treated hypercholesterolemic rats were observed to be significantly reduced compared with rats that did not receive treatment. However, no significant change was observed in the SR‑BI group compared with that in the SR‑BI + US/CLM group. Results of the present study indicate that the combination of US and CLMs loaded with the SR‑BI gene may exert a protective role in hypercholesterolemia.

  5. Small cationic DDA:TDB liposomes as protein vaccine adjuvants obviate the need for TLR agonists in inducing cellular and humoral responses. (United States)

    Milicic, Anita; Kaur, Randip; Reyes-Sandoval, Arturo; Tang, Choon-Kit; Honeycutt, Jared; Perrie, Yvonne; Hill, Adrian V S


    Most subunit vaccines require adjuvants in order to induce protective immune responses to the targeted pathogen. However, many of the potent immunogenic adjuvants display unacceptable local or systemic reactogenicity. Liposomes are spherical vesicles consisting of single (unilamellar) or multiple (multilamellar) phospholipid bi-layers. The lipid membranes are interleaved with an aqueous buffer, which can be utilised to deliver hydrophilic vaccine components, such as protein antigens or ligands for immune receptors. Liposomes, in particular cationic DDA:TDB vesicles, have been shown in animal models to induce strong humoral responses to the associated antigen without increased reactogenicity, and are currently being tested in Phase I human clinical trials. We explored several modifications of DDA:TDB liposomes--including size, antigen association and addition of TLR agonists--to assess their immunogenic capacity as vaccine adjuvants, using Ovalbumin (OVA) protein as a model protein vaccine. Following triple homologous immunisation, small unilamellar vesicles (SUVs) with no TLR agonists showed a significantly higher capacity for inducing spleen CD8 IFNγ responses against OVA in comparison with the larger multilamellar vesicles (MLVs). Antigen-specific antibody reponses were also higher with SUVs. Addition of the TLR3 and TLR9 agonists significantly increased the adjuvanting capacity of MLVs and OVA-encapsulating dehydration-rehydration vesicles (DRVs), but not of SUVs. Our findings lend further support to the use of liposomes as protein vaccine adjuvants. Importantly, the ability of DDA:TDB SUVs to induce potent CD8 T cell responses without the need for adding immunostimulators would avoid the potential safety risks associated with the clinical use of TLR agonists in vaccines adjuvanted with liposomes.

  6. Development of monodispersed and functional magnetic polymeric liposomes via simple liposome method

    Energy Technology Data Exchange (ETDEWEB)

    Liang Xiaofei; Wang Hanjie [Tianjin University and Tianjin Key Laboratory of Composites and Functional Materials, Institute of Nanobiotechnology, School of Materials Science and Engineering (China); Jiang Xinguo [Fudan University, School of Pharmacy (China); Chang Jin, E-mail: [Tianjin University and Tianjin Key Laboratory of Composites and Functional Materials, Institute of Nanobiotechnology, School of Materials Science and Engineering (China)


    We are reporting a simple and rapid method to prepare superparamagnetic, controlled size, and monodispersed magnetic cationic polymeric liposomes (MCPL) by octadecyl quaternized carboxymethyl chitosan (OQCMC) and cholesterol. The whole process is only about 25 min with simple thin-film dispersion and solvent evaporation method. Hydrophilic magnetic nanoparticles (LM) and hydrophobic magnetic nanoparticles (BM) can be encapsulated into these cationic polymeric liposomes, simultaneously or respectively. A model hydrophobic drug indomethacin can be successfully filled in MCPL with high drug loading capacity 22%. MCPL encapsulating BM also showed strong DNA (pEGFP) binding ability. Drug-loaded MCPL have a long and controlled sustained release profile by changing the number of polymeric lipid layer. These functional MCPL nanospheres can be allowed to serve as ideal candidates for many biomedical applications.Graphical AbstractA simple and rapid liposome method was reported to prepare superparamagnetic, controlled size, and monodispersed magnetic cationic polymeric liposomes (MCPL) by polymeric surfactant, octadecyl quaternized carboxymethyl chitosan (OQCMC), and cholesterol. Hydrophilic Fe{sub 3}O{sub 4} ferrofluid and hydrophobic magnetic nanoparticles can be encapsulated into these cationic polymeric liposomes, simultaneously or respectively. Hydrophobic drug indomethacin can be encapsulated into this MCPL with high encapsulating efficiency and with controlled release profile by changing the number of polymeric lipid layer.

  7. Liposomes for Use in Gene Delivery

    Directory of Open Access Journals (Sweden)

    Daniel A. Balazs


    Full Text Available Liposomes have a wide array of uses that have been continuously expanded and improved upon since first being observed to self-assemble into vesicular structures. These arrangements can be found in many shapes and sizes depending on lipid composition. Liposomes are often used to deliver a molecular cargo such as DNA for therapeutic benefit. The lipids used to form such lipoplexes can be cationic, anionic, neutral, or a mixture thereof. Herein physical packing parameters and specific lipids used for gene delivery will be discussed, with lipids classified according to overall charge.

  8. DNA induced sequestration of a bioactive cationic fluorophore from the lipid environment: A spectroscopic investigation. (United States)

    Ghosh, Saptarshi; Kundu, Pronab; Chattopadhyay, Nitin


    The effect of calf-thymus DNA (ctDNA) on the lipid bound probe, formed by the cationic phenazinium dye phenosafranin (PSF) and the anionic lipid dimyristoyl-L-α-phosphatidylglycerol (DMPG), has been unearthed exploiting various spectroscopic techniques. Steady state and time-resolved fluorometric studies and measurements of circular dichroism and DNA helix melting temperature reveal that in the presence of DNA the probe is dislodged from the lipid environment and gets intercalated within the DNA helix. The work qualitatively illustrates that the anionic lipid can be used as a potential nanocarrier for delivering the cationic drugs to the most relevant biomacromolecular target, DNA.

  9. Thermodynamics of cationic lipid binding to DNA and DNA condensation: roles of electrostatics and hydrophobicity. (United States)

    Matulis, Daumantas; Rouzina, Ioulia; Bloomfield, Victor A


    Alkylammonium binding to DNA was studied by isothermal titration calorimetry. Experimental data, obtained as functions of alkyl chain length, salt concentration, DNA concentration, and temperature, provided a detailed thermodynamic description of lipid-DNA binding reactions leading to DNA condensation. Lipid binding, counterion displacement, and DNA condensation were highly cooperative processes, driven by a large increase in entropy and opposed by a relatively small endothermic enthalpy at room temperature. Large negative heat capacity change indicated a contribution from hydrophobic interactions between aliphatic tails. An approximation of lipid-DNA binding as dominated by two factors-ionic and hydrophobic interactions-yielded a model that was consistent with experimental data. Chemical group contributions to the energetics of binding were determined and could be used to predict energetics of other lipid binding to DNA. Electrostatic and hydrophobic contributions to Gibbs free energy, enthalpy, entropy, and heat capacity could be distinguished by applying additivity principles. Binding of lipids with two, three, and four aliphatic tails was investigated and compared to single-tailed lipid binding. Structurally, the model suggests that lipid cationic headgroups and aliphatic tails distribute evenly and lay down on DNA surface without the formation of micelles.

  10. Intermolecular forces between low generation PAMAM dendrimer condensed DNA helices: role of cation architecture. (United States)

    An, Min; Parkin, Sean R; DeRouchey, Jason E


    In recent years, dendriplexes, complexes of cationic dendrimers with DNA, have become attractive DNA delivery vehicles due to their well-defined chemistries. To better understand the nature of the forces condensing dendriplexes, we studied low generation poly(amidoamine) (PAMAM) dendrimer-DNA complexes and compared them to comparably charged linear arginine peptides. Using osmotic stress coupled with X-ray scattering, we have investigated the effect of molecular chain architecture on DNA-DNA intermolecular forces that determine the net attraction and equilibrium interhelical distance within these polycation condensed DNA arrays. In order to compact DNA, linear cations are believed to bind in DNA grooves and to interact with the phosphate backbone of apposing helices. We have previously shown a length dependent attraction resulting in higher packaging densities with increasing charge for linear cations. Hyperbranched polycations, such as polycationic dendrimers, presumably would not be able to bind to DNA and correlate their charges in the same manner as linear cations. We show that attractive and repulsive force amplitudes in PAMAM-DNA assemblies display significantly different trends than comparably charged linear arginines resulting in lower DNA packaging densities with increasing PAMAM generation. The salt and pH dependencies of packaging in PAMAM dendrimer-DNA and linear arginine-DNA complexes were also investigated. Significant differences in the force curve behaviour and salt and pH sensitivities suggest that different binding modes may be present in DNA condensed by dendrimers when compared to linear polycations.

  11. Cationic Lipid-Nucleic Acid Complexes for Gene Delivery And Silencing: Pathways And Mechanisms for Plasmid Dna And Sirna

    Energy Technology Data Exchange (ETDEWEB)

    Ewert, K.K.; Zidovska, A.; Ahmad, A.; Bouxsein, N.F.; Evans, H.M.; McAllister, C.S.; Samuel, C.E.; Safinya, C.R.; /SLAC


    Motivated by the promises of gene therapy, there is great interest in developing non-viral lipid-based vectors for therapeutic applications due to their low immunogenicity, low toxicity, ease of production, and the potential of transferring large pieces of DNA into cells. In fact, cationic liposome (CL) based vectors are among the prevalent synthetic carriers of nucleic acids (NAs) currently used in gene therapy clinical trials worldwide. These vectors are studied both for gene delivery with CL-DNA complexes and gene silencing with CL-siRNA (short interfering RNA) complexes. However, their transfection efficiencies and silencing efficiencies remain low compared to those of engineered viral vectors. This reflects the currently poor understanding of transfection-related mechanisms at the molecular and self-assembled levels, including a lack of knowledge about interactions between membranes and double stranded NAs and between CL-NA complexes and cellular components. In this review we describe our recent efforts to improve the mechanistic understanding of transfection by CL-NA complexes, which will help to design optimal lipid-based carriers of DNA and siRNA for therapeutic gene delivery and gene silencing.

  12. From conventional to stealth liposomes: a new frontier in cancer chemotherapy. (United States)

    Cattel, Luigi; Ceruti, Maurizio; Dosio, Franco


    myelotoxic than doxorubicin. Typical forms of toxicity associated to it are acute infusion reaction, mucositis and palmar plantar erythrodysesthesia, which occur especially at high doses or short dosing intervals. Active and cell targeted liposomes can be obtained by attaching some antigen-directed monoclonal antibodies (Moab or Moab fragments) or small proteins and molecules (folate, epidermal growth factor, transferrin) to the distal end of polyethylene glycol in pegylated liposomal doxorubicin. The most promising therapeutic application of liposomes is as non-viral vector agents in gene therapy, characterized by the use of cationic phospholipids complexed with the negatively charged DNA plasmid. The use of liposome formulations in local-regional anticancer therapy is also discussed. Finally, pegylated liposomal doxorubicin containing radionuclides are used in clinical trials as tumor-imaging agents or in positron emission tomography.

  13. Intravenous Delivery of pDNA and siRNA into Muscle with Bubble Liposomes and Ultrasound (United States)

    Negishi, Yoichi; Sekine, Shohko; Endo, Yoko; Nishijima, Nobuaki; Suzuki, Ryo; Maruyama, Kazuo; Aramaki, Yukihiko


    Skeletal muscle is an attractive target tissue for numerous gene therapy strategies. Gene delivery into muscle has been extensively studied. Of the strategies, intravascular delivery of naked pDNA is desirable. Muscle has a high density of capillaries that are in close contact with myofibers. Previously, we developed polyethylene glycol (PEG)-modified liposomes entrapping echo-contrast gas, known as ultrasound (US) imaging gas. We called the liposomes "Bubble liposomes" (BLs). It has been reported that BLs improve the tissue permeability by cavitation on US exposure. Here, we modified the naked pDNA or siRNA transfer method into hind limb muscle through blood vessels using BLs and US. The intravenous delivery of pDNA into muscle can be markedly enhanced when the pDNA is delivered in combination with BLs and US. In addition, the expression of pDNA is high in the US-focused site. Moreover, efficient gene delivery can be achieved by the intravenous delivery of pDNA into muscle with BLs and US. Expression is also down-regulated by delivering siRNA with BLs and US. Thus, this US-mediated BL technique involving veins may be an effective method for gene therapy.

  14. Cationic amphiphiles as delivery system for genes into eukaryotic cells

    NARCIS (Netherlands)

    Oberle, Volker; Zuhorn, Inge S.; Audouy, Sandrine; Bakowsky, Udo; Smisterová, Jarmila; Engberts, Jan B.F.N.; Hoekstra, Dick; Gregoriadis, G; McCormack, B


    Cationic liposomes, consisting of synthetic amphiphiles and a so-called helper lipid, rapidly form complexes with DNA, known as lipoplexes. When incubated with cells in culture, the DNA can be delivered into the cell and becomes expressed. Because of these properties, lipoplexes are considered a use

  15. Protective effect of DNA-mediated immunization with liposome-encapsulated GRA4 against infection of Toxoplasma gondii

    Institute of Scientific and Technical Information of China (English)

    Rui CHEN; Shao-hong LU; Qun-bo TONG; Di LOU; Dong-yan SHI; Bing-bing JIA; Guo-ping HUANG; Jin-fu WANG


    The dense granule protein 4 (GRA4) is a granular protein from Toxoplasma gondii, and is a candidate for vaccination against this parasite. In this study, the plasmid pcDNA3. 1-GRA4 (pGRA4), encoding for the GRA4 antigen, was incorporated by the dehydration-rehydration method into liposomes composed of 16 mmol/L egg phosphatidylcholine (PC), 8 mmol/L dioleoyl phosphatidylethanolamine (DOPE), and 4 mmol/L 1,2-diodeoyl-3-(trimethylammonium) propane (DOTAP). C57BL/6 mice and BALB/c mice were immunized intramuscularly three times with liposome-encapsulated pGRA4 to determine whether DNA immunization could elicit a protective immune response to T. gondii. Enzyme-linked immunosorbent assay (ELISA) of sera from immunized mice showed that liposome-encapsulated pGRA4 generated high levels of IgG antibodies to GRA4. Production of primary interferon (IFN)-γ and interleukin (IL)-2 in GRA4-stimulated splenocytes from vaccinated mice suggested a modulated Th1-type response. 72.7% of C57BL/6 mice immunized with liposome-encapsulated pGRA4 survived the challenge with 80 tissue cysts of ME49 strain, whereas C57BL/6 mice immunized with pGRA4 had only a survival rate of 54.5%. When immunized BALB/c mice were intraperitoneally challenged with 103 tachyzoites of the highly virulent RH strain, the survival time of mice immunized with liposome-encapsulated pGRA4 was markedly longer than that of other groups. Our observations show that liposome-encapsulated pGRA4 enhanced the protective effect against infection of T. gondii.

  16. Production of antibodies with peptide-CpG-DNA-liposome complex without carriers

    Directory of Open Access Journals (Sweden)

    Kim Doo-Sik


    Full Text Available Abstract Background The screening of peptide-based epitopes has been studied extensively for the purpose of developing therapeutic antibodies and prophylactic vaccines that can be potentially useful for treating cancer and infectious diseases such as influenza virus, malaria, hepatitis B, and HIV. To improve the efficacy of antibody production by epitope-based immunization, researchers evaluated liposomes as a means of delivering vaccines; they also formulated adjuvants such as flagella and CpG-DNA to enhance the magnitude of immune responses. Here, we provide a potent method for peptide-based epitope screening and antibody production without conventional carriers. Results We present that a particular form of natural phosphodiester bond CpG-DNA encapsulated in a specific liposome complex (Lipoplex(O induces potent immunomodulatory activity in humans as well as in mice. Additionally, Lipoplex(O enhances the production of IgG2a specific to antigenic protein in mice. Most importantly, immunization of mice with several peptides co-encapsulated with Lipoplex(O without carriers significantly induces each peptide-specific IgG2a production in a TLR9-dependent manner. A peptide-specific monoclonal antibody produced against hepatocellular carcinoma-associated antigen has functional effects on the cancer cells. Conclusions Our overall results show that Lipoplex(O is a potent adjuvant and that complexes of peptide and Lipoplex(O are extremely useful for B cell epitope screening and antibody production without carriers. Therefore, our strategy may be promptly used for the development of therapeutic antibodies by rapid screening of potent B cell epitopes.

  17. Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens. (United States)

    Gao, Jie; Ochyl, Lukasz J; Yang, Ellen; Moon, James J


    Cationic liposomes (CLs) have been widely examined as vaccine delivery nanoparticles since they can form complexes with biomacromolecules, promote delivery of antigens and adjuvant molecules to antigen-presenting cells (APCs), and mediate cellular uptake of vaccine components. CLs are also known to trigger antigen cross-presentation - the process by which APCs internalize extracellular protein antigens, degrade them into minimal CD8(+) T-cell epitopes, and present them in the context of major histocompatibility complex-I (MHC-I). However, the precise mechanisms behind CL-mediated induction of cross-presentation and cross-priming of CD8(+) T-cells remain to be elucidated. In this study, we have developed two distinct CL systems and examined their impact on the lysosomal pH in dendritic cells (DCs), antigen degradation, and presentation of peptide:MHC-I complexes to antigen-specific CD8(+) T-cells. To achieve this, we have used 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as the prototypical components of CLs with tertiary amine groups and compared the effect of CLs and anionic liposomes on lysosomal pH, antigen degradation, and cross-presentation by DCs. Our results showed that CLs, but not anionic liposomes, elevated the lysosomal pH in DCs and reduced antigen degradation, thereby promoting cross-presentation and cross-priming of CD8(+) T-cell responses. These studies shed new light on CL-mediated cross-presentation and suggest that intracellular fate of vaccine components and subsequent immunological responses can be controlled by rational design of nanomaterials.

  18. Cationic liposomes promote antigen cross-presentation in dendritic cells by alkalizing the lysosomal pH and limiting the degradation of antigens (United States)

    Gao, Jie; Ochyl, Lukasz J; Yang, Ellen; Moon, James J


    Cationic liposomes (CLs) have been widely examined as vaccine delivery nanoparticles since they can form complexes with biomacromolecules, promote delivery of antigens and adjuvant molecules to antigen-presenting cells (APCs), and mediate cellular uptake of vaccine components. CLs are also known to trigger antigen cross-presentation – the process by which APCs internalize extracellular protein antigens, degrade them into minimal CD8+ T-cell epitopes, and present them in the context of major histocompatibility complex-I (MHC-I). However, the precise mechanisms behind CL-mediated induction of cross-presentation and cross-priming of CD8+ T-cells remain to be elucidated. In this study, we have developed two distinct CL systems and examined their impact on the lysosomal pH in dendritic cells (DCs), antigen degradation, and presentation of peptide:MHC-I complexes to antigen-specific CD8+ T-cells. To achieve this, we have used 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as the prototypical components of CLs with tertiary amine groups and compared the effect of CLs and anionic liposomes on lysosomal pH, antigen degradation, and cross-presentation by DCs. Our results showed that CLs, but not anionic liposomes, elevated the lysosomal pH in DCs and reduced antigen degradation, thereby promoting cross-presentation and cross-priming of CD8+ T-cell responses. These studies shed new light on CL-mediated cross-presentation and suggest that intracellular fate of vaccine components and subsequent immunological responses can be controlled by rational design of nanomaterials. PMID:28243087

  19. Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing. (United States)

    Bhuvana, M; Narayanan, J Shankara; Dharuman, V; Teng, W; Hahn, J H; Jayakumar, K


    Immobilization of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposome-gold nano-particle (DOPE-AuNP) nano-composite covalently on 3-mercaptopropionic acid (MPA) on gold surface is demonstrated for the first time for electrochemical label free DNA sensing. Spherical nature of the DOPE on the MPA monolayer is confirmed by the appearance of sigmoidal voltammetric profile, characteristic behavior of linear diffusion, for the MPA-DOPE in presence of [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+) redox probes. The DOPE liposome vesicle fusion is prevented by electroless deposition of AuNP on the hydrophilic amine head groups of the DOPE. Immobilization of single stranded DNA (ssDNA) is made via simple gold-thiol linkage for DNA hybridization sensing in the presence of [Fe(CN)(6)](3-/4-). The sensor discriminates the hybridized (complementary target hybridized), un-hybridized (non-complementary target hybridized) and single base mismatch target hybridized surfaces sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 0.1×10(-12)M. Cyclic voltammetry (CV), electrochemical impedance (EIS), differential pulse voltammetry (DPV) and quartz crystal microbalance (QCM) techniques are used for DNA sensing on DOPE-AuNP nano-composite. Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Ultraviolet-Visible (UV) spectroscopic techniques are used to understand the interactions between the DOPE, AuNP and ssDNA. The results indicate the presence of an intact and well defined spherical DOPE-AuNP nano-composite on the gold surface. The method could be applied for fabrication of the surface based liposome-AuNP-DNA composite for cell transfection studies at reduced reagents and costs.

  20. [Development of ultrasonic cancer therapy using ultrasound sensitive liposome]. (United States)

    Suzuki, Ryo; Oda, Yusuke; Utoguchi, Naoki; Maruyama, Kazuo


    Ultrasound (US) has been utilized as a useful tool for diagnosis and therapy. US mediated drug and gene delivery is paid to attention as a non-invasive system. The combination of US and microbubbles generated microjet stream by inducing disruption of bubbles and resulted in enhancing permeability of cell membrane. This phenomenon has been utilized as driving force for drug and gene delivery. Recently, we developed ultrasound sensitive liposome [Bubble liposome (BL)] containing perfluoropropane gas. US combined with BL could effectively transfer gene in vivo compared to conventional cationic liposomes. Using this method, we succeeded to obtain a therapeutic effect in cancer gene therapy with Interleukin-12 corded plasmid DNA. Therefore, it is expected that US combined with BL might be a useful non-viral vector system. From this result, the fusion of liposomal and ultrasound technologies would be important for establishment of advanced cancer therapy.

  1. High DNA-Binding Affinity and Gene-Transfection Efficacy of Bioreducible Cationic Nanomicelles with a Fluorinated Core. (United States)

    Wang, Long-Hai; Wu, De-Cheng; Xu, Hang-Xun; You, Ye-Zi


    During the last two decades, cationic polymers have become one of the most promising synthetic vectors for gene transfection. However, the weak interactions formed between DNA and cationic polymers result in low transfection efficacy. Furthermore, the polyplexes formed between cationic polymers and DNA generally exhibit poor stability and toxicity because of the large excess of cationic polymer typically required for complete DNA condensation. Herein, we report the preparation of a novel class of bioreducible cationic nanomicelles by the use of disulfide bonds to connect the cationic shell to the fluorocarbon core. These bioreducible nanomicelles form strong interactions with DNA and completely condense DNA at an N/P ratio of 1. The resulting nanomicelle/DNA polyplexes exhibited high biocompatibility and performed very effectively as a gene-delivery system.

  2. Nature as a source of inspiration for cationic lipid synthesis. (United States)

    Labas, Romain; Beilvert, Fanny; Barteau, Benoit; David, Stéphanie; Chèvre, Raphaël; Pitard, Bruno


    Synthetic gene delivery systems represent an attractive alternative to viral vectors for DNA transfection. Cationic lipids are one of the most widely used non-viral vectors for the delivery of DNA into cultured cells and are easily synthesized, leading to a large variety of well-characterized molecules. This review discusses strategies for the design of efficient cationic lipids that overcome the critical barriers of in vitro transfection. A particular focus is placed on natural hydrophilic headgroups and lipophilic tails that have been used to synthesize biocompatible and non-toxic cationic lipids. We also present chemical features that have been investigated to enhance the transfection efficiency of cationic lipids by promoting the escape of lipoplexes from the endosomal compartment and DNA release from DNA-liposome complexes. Transfection efficiency studies using these strategies are likely to improve the understanding of the mechanism of cationic lipid-mediated gene delivery and to help the rational design of novel cationic lipids.

  3. Fluorescence anisotropy of diphenylhexatriene and its cationic Trimethylamino derivative in liquid dipalmitoylphosphatidylcholine liposomes: opposing responses to isoflurane

    Directory of Open Access Journals (Sweden)

    Nelson Steven C


    Full Text Available Abstract Background The mechanism of action of volatile general anesthetics has not yet been resolved. In order to identify the effects of isoflurane on the membrane, we measured the steady-state anisotropy of two fluorescent probes that reside at different depths. Incorporation of anesthetic was confirmed by shifting of the main phase transition temperature. Results In liquid crystalline dipalmitoylphosphatidylcholine liposomes, isoflurane (7-25 mM in the bath increases trimethylammonium-diphenylhexatriene fluorescence anisotropy by ~0.02 units and decreases diphenylhexatriene anisotropy by the same amount. Conclusions The anisotropy data suggest that isoflurane decreases non-axial dye mobility in the headgroup region, while increasing it in the tail region. We propose that these results reflect changes in the lateral pressure profile of the membrane.

  4. Recharging cationic DNA complexes with highly charged polyanions for in vitro and in vivo gene delivery. (United States)

    Trubetskoy, V S; Wong, S C; Subbotin, V; Budker, V G; Loomis, A; Hagstrom, J E; Wolff, J A


    The intravenous delivery of plasmid DNA complexed with either cationic lipids (CL) or polyethyleneimine (PEI) enables high levels of foreign gene expression in lung. However, these cationic DNA complexes cause substantial toxicity. The present study found that the inclusion of polyacrylic acid (pAA) with DNA/polycation and DNA/CL complexes prevented the serum inhibition of the transfection complexes in cultured cells. The mechanism mediating this increase seems to involve both particle size enlargement due to flocculation and electrostatic shielding from opsonizing serum proteins. The use of pAA also increased the levels of lung expression in mice in vivo substantially above the levels achieved with just binary complexes of DNA and linear PEI (lPEI) or CL and reduced their toxicity. Also, the use of a "chaser" injection of pAA 30 min after injection of the ternary DNA/lPEI/pAA complexes further aided this effort to reduce toxicity while not affecting foreign gene expression. By optimizing the amount of pAA, lPEI, and DNA within the ternary complexes and using the "chaser" injection, substantial levels of lung expression were obtained while avoiding adverse effects in lung or liver. These developments will aid the use of cationic DNA complexes in animals and for eventual human gene therapy.

  5. Decondensation behavior of DNA chains induced by multivalent cations at high salt concentrations:Molecular dynamics simulations and experiments

    Institute of Scientific and Technical Information of China (English)

    蒋杨伟; 冉诗勇; 何林李; 王向红; 章林溪


    Using molecular dynamics simulations and atomic force microscopy (AFM), we study the decondensation process of DNA chains induced by multivalent cations at high salt concentrations in the presence of short cationic chains in solutions. The typical simulation conformations of DNA chains with varying salt concentrations for multivalent cations imply that the concentration of salt cations and the valence of multivalent cations have a strong influence on the process of DNA decondensation. The DNA chains are condensed in the absence of salt or at low salt concentrations, and the compacted conformations of DNA chains become loose when a number of cations and anions are added into the solution. It is explicitly demonstrated that cations can overcompensate the bare charge of the DNA chains and weaken the attraction interactions between the DNA chains and short cationic chains at high salt concentrations. The condensation-decondensation transi-tions of DNA are also experimentally observed in mixing spermidine withλ-phage DNA at different concentrations of NaCl/MgCl2 solutions.

  6. Investigations on the liquid crystalline phases of cation-induced condensed DNA

    Indian Academy of Sciences (India)

    C K S Pillai; Neethu Sundaresan; M Radhakrishnan Pillai; T Thomas; T J Thomas


    Viral and nonviral condensing agents are used in gene therapy to compact oligonucleotides and plasmid DNA into nanostructures for their efficient transport through the cell membranes. Whereas viral vectors are best by the toxic effects on the immune system, most of the nonviral delivery vehicles are not effective for use in clinical system. Recent investigations indicate that the supramolecular organization of DNA in the condensed state is liquid crystalline. The present level of understanding of the liquid crystalline phase of DNA is inadequate and a thorough investigation is required to understand the nature, stability, texture and the influence of various environmental conditions on the structure of the phase. The present study is mainly concerned with the physicochemical investigations on the liquid crystalline transitions during compaction of DNA by cationic species such as polyamines and metallic cations. As a preliminary to the above investigation, studies were conducted on the evolution of mesophase transitions of DNA with various cationic counterion species using polarized light microscopy. These studies indicated significant variations in the phase behaviour of DNA in the presence of Li and other ions. Apart from the neutralization of the charges on the DNA molecule, these ions are found to influence selectively the hydration sphere of DNA that in turn influences the induction and stabilization of the LC phases. The higher stability observed with the liquid crystalline phases of Li-DNA system could be useful in the production of nanostructured DNA. In the case of the polyamine, a structural specificity effect depending on the nature, charge and structure of the polyamine used has been found to be favoured in the crystallization of DNA.

  7. Interaction between cationic agents and small interfering RNA and DNA molecules (United States)

    Unksov, I. N.; Slita, A. V.; Petrova, A. V.; Pereviazko, I.; Bakulev, V. M.; Rolich, V. I.; Bondarenko, A. B.; Kasyanenko, N. A.


    Azobenzene containing surfactant AzoTAB was used for investigation of binding in cationic- agent + nucleic acid in NaCl salt aqueous solutions. Two nucleic acids, macromolecular DNA and small interfering RNA, were examined upon the interaction with the surfactant. For DNA the interaction was studied using spectral methods and the methods of viscometry and flow birefringence measurement. For siRNA the possibility of surfactant-based delivery was checked in vitro.

  8. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA

    Directory of Open Access Journals (Sweden)

    Zou Weiwei


    Full Text Available Abstract The purpose of the present work was to formulate and evaluate cationic poly(lactic acid-poly(ethylene glycol (PLA-PEG nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95% could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable.

  9. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA (United States)

    Zou, Weiwei; Liu, Chunxi; Chen, Zhijin; Zhang, Na


    The purpose of the present work was to formulate and evaluate cationic poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency) and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells) of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95%) could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable.

  10. Binding interaction of cationic phenazinium dyes with calf thymus DNA: a comparative study. (United States)

    Sarkar, Deboleena; Das, Paramita; Basak, Soumen; Chattopadhyay, Nitin


    Absorption, steady-state fluorescence, steady-state fluorescence anisotropy, and intrinsic and induced circular dichroism (CD) have been exploited to explore the binding of calf thymus DNA (ctDNA) with three cationic phenazinium dyes, viz., phenosafranin (PSF), safranin-T (ST), and safranin-O (SO). The absorption and fluorescence spectra of all the three dyes reflect significant modifications upon interaction with the DNA. A comparative study of the dyes with respect to modification of fluorescence and fluorescence anisotropy upon binding, effect of urea, iodide-induced fluorescence quenching, and CD measurements reveal that the dyes bind to the ctDNA principally in an intercalative fashion. The effect of ionic strength indicates that electrostatic attraction between the cationic dyes and ctDNA is also an important component of the dye-DNA interaction. Intrinsic and induced CD studies help to assess the structural effects of dyes binding to DNA and confirm the intercalative mode of binding as suggested by fluorescence and other studies. Finally it is proposed that dyes with bulkier substitutions are intercalated into the DNA to a lesser extent.

  11. Fingerprinting DNA oxidation processes: IR characterization of the 5-methyl-2'-deoxycytidine radical cation. (United States)

    Bucher, Dominik B; Pilles, Bert M; Pfaffeneder, Toni; Carell, Thomas; Zinth, Wolfgang


    Methylated cytidine plays an important role as an epigenetic signal in gene regulation. Its oxidation products are assumed to be involved in active demethylation processes but also in damaging DNA. Here, we report the photochemical production of the 5-methyl-2'-deoxycytidine radical cation via a two-photon ionization process. The radical cation is detected by time-resolved IR spectroscopy and identified by band assignment using density functional theory calculations. Two final oxidation products are characterized with liquid chromatography coupled to mass spectrometry.

  12. Ternary nanoparticles composed of cationic solid lipid nanoparticles, protamine, and DNA for gene delivery

    Directory of Open Access Journals (Sweden)

    He SN


    Full Text Available Sai-Nan He,1 Yun-Long Li,1,2 Jing-Jing Yan,2 Wei Zhang,2 Yong-Zhong Du,2 He-Yong Yu,1 Fu-Qiang Hu,2 Hong Yuan21Women’s Hospital, 2College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of ChinaBackground: The objective of this research was to design an effective gene delivery system composed of cationic solid lipid nanoparticles (SLNs, protamine, and Deoxyribonucleic acid DNA.Methods: Cationic SLNs were prepared using an aqueous solvent diffusion method with octadecylamine as the cationic lipid material. First, protamine was combined with DNA to form binary protamine/DNA nanoparticles, and the ternary nanoparticle gene delivery system was then obtained by combining binary protamine/DNA nanoparticles with cationic SLNs. The size, zeta potential, and ability of the binary and ternary nanoparticles to compact and protect DNA were characterized. The effect of octadecylamine content in SLNs and the SLNS/DNA ratios on transfection efficiency, cellular uptake and cytotoxicity of the ternary nanoparticles were also assessed using HEK293 cells.Results: When the weight ratio of protamine to DNA reached 1.5:1, the plasmid DNA could be effectively compacted and protected. The average hydrodynamic diameter of the ternary nanoparticles when combined with protamine increased from 188.50 ± 0.26 nm to 259.33 ± 3.44 nm, and the zeta potential increased from 25.50 ± 3.30 mV to 33.40 ± 2.80 mV when the weight ratio of SLNs to DNA increased from 16/3 to 80/3. The ternary nanoparticles showed high gene transfection efficiency compared with LipofectamineTM 2000/DNA nanoparticles. Several factors that might affect gene transfection efficiency, such as content and composition of SLNs, post-transfection time, and serum were examined. The ternary nanoparticles composed of SLNs with 15 wt% octadecylamine (50/3 weight ratio of SLNs to DNA showed the best transfection efficiency (26.13% ± 5.22% in the presence of

  13. Determination of the cationic amphiphilic drug-DNA binding mode and DNA-assisted fluorescence resonance energy transfer amplification. (United States)

    Yaseen, Zahid; Banday, Abdul Rouf; Hussain, Mohammed Aamir; Tabish, Mohammad; Kabir-ud-Din


    Understanding the mechanism of drug-DNA binding is crucial for predicting the potential genotoxicity of drugs. Agarose gel electrophoresis, absorption, steady state fluorescence, and circular dichroism have been used in exploring the interaction of cationic amphiphilic drugs (CADs) such as amitriptyline hydrochloride (AMT), imipramine hydrochloride (IMP), and promethazine hydrochloride (PMT) with calf thymus or pUC19 DNA. Agarose gel electrophoresis assay, along with absorption and steady state fluorescence studies, reveal interaction between the CADs and DNA. A comparative study of the drugs with respect to the effect of urea, iodide induced quenching, and ethidium bromide (EB) exclusion assay reflects binding of CADs to the DNA primarily in an intercalative fashion. Circular dichroism data also support the intercalative mode of binding. Besides quenching, there is fluorescence exchange energy transfer (FRET) in between CADs and EB using DNA as a template.

  14. Enzyme therapy of xeroderma pigmentosum: safety and efficacy testing of T4N5 liposome lotion containing a prokaryotic DNA repair enzyme. (United States)

    Yarosh, D; Klein, J; Kibitel, J; Alas, L; O'Connor, A; Cummings, B; Grob, D; Gerstein, D; Gilchrest, B A; Ichihashi, M; Ogoshi, M; Ueda, M; Fernandez, V; Chadwick, C; Potten, C S; Proby, C M; Young, A R; Hawk, J L


    Xeroderma pigmentosum (XP) is a rare genetic disease in which patients are defective in DNA repair and are extremely sensitive to solar UV radiation exposure. A new treatment approach was tested in these patients, in which a prokaryotic DNA repair enzyme specific for UV-induced DNA damage was delivered into the skin by means of topically applied liposomes to supplement the deficient activity. Acute and chronic safety testing in both mice and humans showed neither adverse reactions nor significant changes in serum chemistry or in skin histology. The skin of XP patients treated with the DNA repair liposomes had fewer cyclobutylpyrimidine dimers in DNA and showed less erythema than did control sites. The results encourage further clinical testing of this new enzyme therapy approach.

  15. Antibacterial effect of cationic porphyrazines and anionic phthalocyanine and their interaction with plasmid DNA (United States)

    Hassani, Leila; Hakimian, Fatemeh; Safaei, Elham; Fazeli, Zahra


    Resistance to antibiotics is a public health issue and identification of new antibacterial agents is one of the most important goals of pharmacological research. Among the novel developed antibacterial agents, porphyrin complexes and their derivatives are ideal candidates for use in medical applications. Phthalocyanines differ from porphyrins by having nitrogen atoms link the individual pyrrol units. The aza analogues of the phthalocyanines (azaPcs) such as tetramethylmetalloporphyrazines are heterocyclic Pc analogues. In this investigation, interaction of an anionic phthalocyanine (Cu(PcTs)) and two cationic tetrapyridinoporphyrazines including [Cu(2,3-tmtppa)]4+ and [Cu(3,4-tmtppa)]4+ complexes with plasmid DNA was studied using spectroscopic and gel electrophoresis methods. In addition, antibacterial effect of the complexes against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria was investigated using dilution test method. The results indicated that both porphyrazines have significant antibacterial properties, but Cu(PcTs) has weak antibacterial effect. Compairing the binding of the phthalocyanine and the porphyrazines to DNA demonstrated that the interaction of cationic porphyrazines is stronger than the anionic phthalocyanine remarkably. The extent of hypochromicity and red shift of absorption spectra indicated preferential intercalation of the two porphyrazine into the base pairs of DNA helix. Gel electrophoresis result implied Cu(2,3-tmtppa) and Cu(3,4-tmtppa) are able to perform cleavage of the plasmid DNA. Consequently, DNA binding and cleavage might be one of the antibacterial mechanisms of the complexes.

  16. New potential antitumoral fluorescent tetracyclic thieno[3,2-b]pyridine derivatives: interaction with DNA and nanosized liposomes

    Directory of Open Access Journals (Sweden)

    Calhelha Ricardo


    Full Text Available Abstract Fluorescence properties of two new potential antitumoral tetracyclic thieno[3,2-b]pyridine derivatives were studied in solution and in liposomes of DPPC (dipalmitoyl phosphatidylcholine, egg lecithin (phosphatidylcholine from egg yolk; Egg-PC and DODAB (dioctadecyldimethylammonium bromide. Compound 1, pyrido[2',3':3,2]thieno[4,5-d]pyrido[1,2-a]pyrimidin-6-one, exhibits reasonably high fluorescence quantum yields in all solvents studied (0.20 ≤ ΦF ≤ 0.30, while for compound 2, 3-[(p-methoxyphenylethynyl]pyrido[2',3':3,2]thieno[4,5-d]pyrido[1,2-a]pyrimidin-6-one, the values are much lower (0.01 ≤ ΦF ≤ 0.05. The interaction of these compounds with salmon sperm DNA was studied using spectroscopic methods, allowing the determination of intrinsic binding constants, K i = (8.7 ± 0.9 × 103 M-1 for compound 1 and K i = (5.9 ± 0.6 × 103 M-1 for 2, and binding site sizes of n = 11 ± 3 and n = 7 ± 2 base pairs, respectively. Compound 2 is the most intercalative compound in salmon sperm DNA (35%, while for compound 1 only 11% of the molecules are intercalated. Studies of incorporation of both compounds in liposomes of DPPC, Egg-PC and DODAB revealed that compound 2 is mainly located in the hydrophobic region of the lipid bilayer, while compound 1 prefers a hydrated and fluid environment.

  17. Cationic polymers for DNA origami coating - examining their binding efficiency and tuning the enzymatic reaction rates (United States)

    Kiviaho, Jenny K.; Linko, Veikko; Ora, Ari; Tiainen, Tony; Järvihaavisto, Erika; Mikkilä, Joona; Tenhu, Heikki; Nonappa, Affc; Kostiainen, Mauri A.


    DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The effect of the polymer structure on the binding was investigated and the toxicity of the polymer-origami complexes evaluated. The study shows that all of the analyzed polymers had a suitable binding efficiency irrespective of the block structure. It was also observed that the toxicity of polymer-origami complexes was insignificant at the biologically relevant concentration levels. Besides brick-like DNA origamis, tubular origami carriers equipped with enzymes were also coated with the polymers. By adjusting the amount of cationic polymers that cover the DNA structures, we showed that it is possible to control the enzyme kinetics of the complexes. This work gives a starting point for further development of biocompatible and effective polycation-based block copolymers that can be used in coating different DNA origami nanostructures for various bioapplications.DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The

  18. Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery. (United States)

    Le Corre, Stéphanie S; Belmadi, Nawal; Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain


    In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synthesis strategies were evaluated. The first used the Atherton-Todd coupling reaction to introduce a phenolic derivative to dioleylphosphite. The second strategy used a sequential addition of lipid alcohol and a phenolic derivative on POCl3. The two methods are efficient, but the latter allows larger yields. Different polar head groups were introduced, thus producing amphiphilic compounds possessing either one permanent (N-methyl-imidazolium, pyridinium, trimethylammonium) or two permanent cationic charges. All these cationic lipids were formulated as liposomal solutions and characterized (size and zeta potential). They formed stable liposomal solutions both in water (at pH 7.0) and in a weakly acidic medium (at pH 5.5). Finally, this new generation of cationic lipids was used to deliver DNA into various human-derived epithelial cells cultured in vitro. Compared with Lipofectamine used as a reference commercial lipofection reagent, some cationic dialkylarylphosphates were able to demonstrate potent gene transfer abilities, and noteworthily, monocationic derivatives were much more efficient than dicationic analogues.

  19. Tuning backbones and side-chains of cationic conjugated polymers for optical signal amplification of fluorescent DNA detection. (United States)

    Huang, Yan-Qin; Liu, Xing-Fen; Fan, Qu-Li; Wang, Lihua; Song, Shiping; Wang, Lian-Hui; Fan, Chunhai; Huang, Wei


    Three cationic conjugated polymers (CCPs) exhibiting different backbone geometries and charge densities were used to investigate how their conjugated backbone and side chain properties, together with the transitions of DNA amphiphilic properties, interplay in the CCP/DNA-C* (DNA-C*: fluorophore-labeled DNA) complexes to influence the optical signal amplification of fluorescent DNA detection based on Förster resonance energy transfer (FRET). By examining the FRET efficiencies to dsDNA-C* (dsDNA: double-stranded DNA) and ssDNA-C* (ssDNA: single-stranded DNA) for each CCP, twisted conjugated backbones and higher charge densities were proved to facilitate electrostatic attraction in CCP/dsDNA-C* complexes, and induced improved sensitivity to DNA hybridization. Especially, by using the CCP with twisted conjugated backbone and the highest charge density, a more than 7-fold higher efficiency of FRET to dsDNA-C* was found than to ssDNA-C*, indicating a high signal amplification for discriminating between dsDNA and ssDNA. By contrast, linear conjugated backbones and lower charge density were demonstrated to favor hydrophobic interactions in CCP/ssDNA-C* complexes. These findings provided guidelines for the design of novel sensitive CCP, which can be useful to recognize many other important DNA activities involving transitions of DNA amphiphilic properties like DNA hybridization, such as specific DNA binding with ions, some secondary or tertiary structural changes of DNA, and so forth.

  20. Investigation of DNA-cationic bolaform surfactants interaction with different spacer length. (United States)

    Sohrabi, Beheshteh; Khani, Vahid; Moosavi-Movahedi, Ali Akbar; Moradi, Parviz


    In this paper interaction of DNA with cationic bolaform surfactants is investigated. The structural formula for synthesized bolaforms is as follows: bolaform B1 with structural formula Br(-)(CH3)3N(+)(CH2)3N(+)(CH3)Br(-) and bolaform B2 with structural formula of Br(-)(CH3)3N(+)(CH2)12N(+)(CH3)Br(-). There are stronger electrostatic interactions in bolaform B1 due to shorter spacer length, while there are stronger hydrophobic interactions in bolaform B2 compared to bolaform B1 due to existence of 12 carbons in hydrocarbonic chain. The structure of bolaforms consists of two polar head groups which play important role in DNA compaction. Surface tension change in aqueous solution of bolaform surfactants is measured using tensiometer. Electrical conductivity of surfactants aqueous solution is examined with and without DNA. DNA compaction is tracked in the presence of bolaforms by dynamic light scattering (DLS) technique. Results of DLS indicate bolaforms with shorter spacer length (dominant electrostatic interactions) are more influential in compressing DNA compared to bolaforms with longer spacer length (stronger hydrophobic interactions). UV-vis and fluorescence spectroscopies specify the binding mechanism of bolaform surfactants to DNA.

  1. Optical tweezers reveal a dynamic mechanical response of cationic peptide-DNA complexes (United States)

    Lee, Amy; Zheng, Tai; Sucayan, Sarah; Chou, Szu-Ting; Tricoli, Lucas; Hustedt, Jason; Kahn, Jason; Mixson, A. James; Seog, Joonil


    Nonviral carriers have been developed to deliver nucleic acids by forming nanoscale complexes; however, there has been limited success in achieving high transfection efficiency. Our hypothesis is that a factor affecting gene delivery efficiency is the mechanical response of the condensed complex. To begin to test this hypothesis, we directly measured the mechanical properties of DNA-carrier complexes using optical tweezers. Histidine-lysine (HK) polymer, Asparagine-lysine (NK) polymer and poly-L-lysine were used to form complexes with a single DNA molecule. As carriers were introduced, a sudden decrease in DNA extension occurrs at a force level which is defined as critical force (Fc). Fc is carrier and concentration dependent. Pulling revealed reduction in DNA extension length for HK-DNA complexes. The characteristics of force profiles vary by agent and can be dynamically manipulated by changes in environmental conditions such as ionic strength of the buffer as well as pH. Heparin can remove cationic reagents which are otherwise irreversibly bound to DNA. The implications for optimizing molecular interactions to enhance transfection efficiency will be discussed.

  2. Effect of lipid composition on the structure and theoretical phase diagrams of DC-Chol/DOPE-DNA lipoplexes. (United States)

    Muñoz-Ubeda, Mónica; Rodríguez-Pulido, Alberto; Nogales, Aurora; Martín-Molina, Alberto; Aicart, Emilio; Junquera, Elena


    Lipoplexes constituted by calf-thymus DNA (CT-DNA) and mixed cationic liposomes consisting of varying proportions of the cationic lipid 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol hydrochloride (DC-Chol) and the zwitterionic lipid, 1,2-dioleoyl-sn-glycero-3-phosphoetanolamine (DOPE) have been analyzed by means of electrophoretic mobility, SAXS, and fluorescence anisotropy experiments, as well as by theoretically calculated phase diagrams. Both experimental and theoretical studies have been run at several liposome and lipoplex compositions, defined in terms of cationic lipid molar fraction, α, and either the mass or charge ratios of the lipoplex, respectively. The experimental electrochemical results indicate that DC-Chol/DOPE liposomes, with a mean hydrodynamic diameter of around (120 ± 10) nm, compact and condense DNA fragments at their cationic surfaces by means of a strong entropically driven electrostatic interaction. Furthermore, the positive charges of cationic liposomes are compensated by the negative charges of DNA phosphate groups at the isoneutrality L/D ratio, (L/D)(ϕ), which decreases with the cationic lipid content of the mixed liposome, for a given DNA concentration. This inversion of sign process has been also studied by means of the phase diagrams calculated with the theoretical model, which confirms all the experimental results. SAXS diffractograms, run at several lipoplex compositions, reveal that, irrespectively of the lipoplex charge ratio, DC-Chol/DOPE-DNA lipoplexes show a lamellar structure, L(α), when the cationic lipid content on the mixed liposomes α ≥ 0.4, while for a lower content (α = 0.2) the lipoplexes show an inverted hexagonal structure, H(II), usually related with improved cell transfection efficiency. A similar conclusion is reached from fluorescence anisotropy results, which indicate that the fluidity on liposome and lipoplexes membrane, also related with better transfection results, increases as long as the

  3. Evaluation of Mucorales DNA load in cerebrospinal fluid in a patient with possible cerebral mucormycosis treated with intravenous liposomal amphotericin B

    Directory of Open Access Journals (Sweden)

    Tomonari Shigemura


    Full Text Available We report the case of a 19-year-old male with possible cerebral mucormycosis following chemotherapy. We detected a Lichtheimia DNA load of 2.0 × 104 copies/ml in cerebrospinal fluid (CSF, although a CSF culture showed no growth. After treatment with intravenous liposomal amphotericin B, the Lichtheimia DNA load fell below the detection limit, and at the same time the patient's headache and imaging findings improved. The quantification of Mucorales DNA in CSF may be useful for evaluating cerebral mucormycosis.

  4. Evaluation of Mucorales DNA load in cerebrospinal fluid in a patient with possible cerebral mucormycosis treated with intravenous liposomal amphotericin B. (United States)

    Shigemura, Tomonari; Nakazawa, Yozo; Matsuda, Kazuyuki; Motobayashi, Mitsuo; Saito, Shoji; Koike, Kenichi


    We report the case of a 19-year-old male with possible cerebral mucormycosis following chemotherapy. We detected a Lichtheimia DNA load of 2.0×10(4) copies/ml in cerebrospinal fluid (CSF), although a CSF culture showed no growth. After treatment with intravenous liposomal amphotericin B, the Lichtheimia DNA load fell below the detection limit, and at the same time the patient's headache and imaging findings improved. The quantification of Mucorales DNA in CSF may be useful for evaluating cerebral mucormycosis.

  5. Induction of immune responses in mice by vaccination with Liposome-entrapped DNA complexes encoding Toxoplasma gondii SAG1 and ROP1 genes

    Institute of Scientific and Technical Information of China (English)

    陈海峰; 陈观今; 郑焕钦; 郭红


    Objective To evaluate the immune responses induced by experimental DNA construct encoding Toxoplasma gondii (T.gondii) surface antigen1 (SAG1) and rhoptry protein 1 (ROP1) in mice as a hybrid gene. Methods Truncated SAG1 and ROP1 DNA fragments were amplified using polymerase chain reaction (PCR) and inserted into pEGFP-N3 vector to construct recombinant plasmid pSAG1-ROP1. NIH3T3 mammalian cells were transiently transfected with the DNA construct. Female BALB/c mice were given three intramuscular injections of 10 μg plasmid DNA entrapped in liposome. Four weeks after the final booster injection, blood samples were collected and subjected to enzyme-linked immuno sorbent assay (ELISA) to investigate humoral and cell-mediated immune responses. Reversal transcript-polymerase chain reaction (RT-PCR) was used to evaluate the transcription of inoculated DNA-liposome complex in the injected site. Dot-blot hybridization was employed in order to detect whether or not the injected DNA was incorporated into the genomic DNA of the immunized mice.Results Green fluorescence was observed in pSAG1-ROP1-transfected cells. Western blot analysis showed antibody recognition of the expressed SAG1-ROP1 was between 58 kDa and 75 kDa. No expression was observed in blank control plasmid-transfected cells. The sera of immunized mice exhibited antibodies to T.gondii tachyzoites and primarily interferon-γ and interlukin-2. RT-PCR showed that the duration of transcribed inoculated liposome entrapped DNA in the injected muscular tissue was at least ten days post the first injection. Dot-blot hybridization revealed that the presence of foreign DNA in the splenocytes and peripheral blood leukocytes was transient and that no foreign DNA had inserted into the genomic DNA of mice immunized with pSAG1-ROP1. Conclusions Immunization with a liposome-encapsulated DNA construct encoding the T.gondii SAG1 and ROP1 can induce humoral and cell-mediated immune responses.

  6. Liposomal chemotherapeutics. (United States)

    Gentile, Emanuela; Cilurzo, Felisa; Di Marzio, Luisa; Carafa, Maria; Ventura, Cinzia Anna; Wolfram, Joy; Paolino, Donatella; Celia, Christian


    Currently, six liposomal chemotherapeutics have received clinical approval and many more are in clinical trials or undergoing preclinical evaluation. Liposomes exhibit low toxicity and improve the biopharmaceutical features and therapeutic index of drugs, thereby increasing efficacy and reducing side effects. In this review we discuss the advantages of using liposomes for the delivery of chemotherapeutics. Gemcitabine and paclitaxel have been chosen as examples to illustrate how the performance of a metabolically unstable or poorly water-soluble drug can be greatly improved by liposomal incorporation. We look at the beneficial effects of liposomes in a variety of solid and blood-borne tumors, including thyroid cancer, pancreatic cancer, breast cancer and multiple myeloma.

  7. Investigation on interaction of DNA and several cationic surfactants with different head groups by spectroscopy, gel electrophoresis and viscosity technologies. (United States)

    Guo, Qing; Zhang, Zhaohong; Song, Youtao; Liu, Shuo; Gao, Wei; Qiao, Heng; Guo, Lili; Wang, Jun


    In this study, the interaction between DNA and several cationic surfactants with different head groups such as ethyl hexadecyl dimethyl ammonium bromide (EHDAB), hexadecyl dimethyl benzyl ammonium chloride (HDBAC), and cetyl pyridinium bromide (CPB) were investigated by UV-vis absorption, fluorescence and circular dichroism (CD) spectroscopy, gel electrophoresis, and viscosity technologies. The results show that these cationic surfactants can interact with DNA and major binding modes are electrostatic and hydrophobic. Also, CPB and HDBAC molecules interact with DNA by partial intercalation, and CPB has slightly stronger intercalation than HDBAC, while EHDAB interacts with DNA by non-intercalation. The different head groups of the surfactant molecules can influence the interaction strength. CPB has the stronger interaction with DNA than the others. Moreover, surfactant concentration, the ratio of DNA and fluorescence probe, ionic strength can influence the interaction. The surfactants may interact with DNA by the competition reactions with BR for DNA-BR. The increase of ionic strength may favor the surface binding between DNA and surfactants to some extent. This work provides deep mechanistic insight on the toxicity of cationic surfactants with different head groups to DNA molecules.

  8. Interaction between a cationic bolaamphiphile and DNA: The route towards nanovectors for oligonucleotide antimicrobials. (United States)

    Mamusa, Marianna; Resta, Claudio; Barbero, Francesco; Carta, Davide; Codoni, Doroty; Hatzixanthis, Kostas; McArthur, Michael; Berti, Debora


    Bacterial resistance to antimicrobials is a global threat that requires development of innovative therapeutics that circumvent its onset. The use of Transcription Factor Decoys (TFDs), DNA fragments that act by blocking essential transcription factors in microbes, represents a very promising approach. TFDs require appropriate carriers to protect them from degradation in biological fluids and transfect them through the bacterial cell wall into the cytoplasm, their site of action. Here we report on a bolaform cationic surfactant, [12-bis-THA]Cl2, with proven transfection activity in vivo. By studying the physical-chemical properties of its aqueous solutions with light scattering, cryo-TEM, ζ-potential, absorption and fluorescence spectroscopies, we prove that the bolaamphiphiles associate into transient vesicles which convert into one-dimensional elongated structures over time. These surfactant assemblies complex TFDs with extremely high efficiency, if compared to common cationic amphiphiles. At Z+/-=11, the nanoplexes are stable and have a size of 120nm, and they form independently of the original morphology of the [12-bis-THA]Cl2 aggregate. DNA is compacted in the nanoplexes, as shown through CD spectroscopy and fluorescence, but is readily released in its native form if sodium taurocholate is added.

  9. Structure of DNA-Cationic Surfactant Complexes at Hydrophobically Modified and Hydrophilic Silica Surfaces as Revealed by Neutron Reflectometry

    DEFF Research Database (Denmark)

    Cardenas Gomez, Marite; Wacklin, Hanna; Campbell, Richard A.;


    layer structure (the location, coverage, and conformation the e DNA and surfactant molecules). Neutron reflectometry is the technique of choice for revealing the surface layer structure by means of selective deuteration. We start by studying the interfacial complexation of DNA...... with dodecyltrimethylammonium bromide (DTAB) and hexadecyltrimethylammonium bromide (CTAB) on hydrophobic surfaces, where we show that DNA molecules are located on top of a self-assembled surfactant monolayer, with the thickness of the DNA layer and the surfactant DNA ratio determined by the surface coverage of the underlying...... cationic layer. The surface coverages of surfactant and DNA are determined by the bulk concentration of the surfactant relative to its critical micelle concentration (cmc). The structure of the interfacial layer is not affected by the choice of cationic surfactant studied. However, to obtain similar...

  10. Cationic lipid/DNA complexes (JVRS-100) combined with influenza vaccine (Fluzone) increases antibody response, cellular immunity, and antigenically drifted protection. (United States)

    Lay, Marla; Callejo, Bernadette; Chang, Stella; Hong, David K; Lewis, David B; Carroll, Timothy D; Matzinger, Shannon; Fritts, Linda; Miller, Christopher J; Warner, John F; Liang, Lily; Fairman, Jeffery


    Safe and effective adjuvants for influenza vaccines that could increase both the levels of neutralizing antibody, including against drifted viral subtypes, and T-cell immunity would be a major advance in vaccine design. The JVRS-100 adjuvant, consisting of DOTIM/cholesterol cationic liposome-DNA complexes, is particularly promising for vaccines that require induction of high levels of antibody and T-cell immunity, including CD8(+) cytotoxic T lymphocytes (CTL). Inclusion of protein antigens with JVRS-100 results in the induction of enhanced humoral and cell-mediated (i.e., CD4(+) and CD8(+) T cells) immune responses. The JVRS-100 adjuvant combined with a split trivalent influenza vaccine (Fluzone-sanofi pasteur) elicited increased antibody and T-cell responses in mice and non-human primates compared to vaccination with Fluzone alone. Mice vaccinated with JVRS-100-Fluzone and challenged with antigenically drifted strains of H1N1 (PR/8/34) and influenza B (B/Lee/40) viruses had higher grade protection, as measured by attenuation of weight loss and increased survival, compared to recipients of unadjuvanted vaccine. The results indicate that the JVRS-100 adjuvant substantially increases immunogenicity and protection from drifted-strain challenge using an existing influenza vaccine.

  11. Investigation of various structures of DNA molecules (Ⅲ)——Coil-globe transition of λ-DNA induced by cationic surfactant

    Institute of Scientific and Technical Information of China (English)

    冯喜增; 林璋; 王琛; 白春礼


    The structure transition of λ-DNA induced by cationic surfactant cellar media was investigated by using CD, SEM and AFM. The experimental data of CD revealed that λ-DNA can be induced from B-form to a collapsed structure with the addition of the cationic surfactant CTAB to the system. The condensed process of λ-DNA from coil state to small globular state (diameter about 1.25 μm) and finally big globular state (diameter about 5.4 μm) was observed by using SEM and AFM.

  12. Thermal treatment effects imposed on solid DNA cationic lipid complex with hexadecyltrimethylammonium chloride, observed by variable angle spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Nizioł, Jacek, E-mail: [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków (Poland)


    DNA cationic lipid complexes are materials of properties required for applications in organic electronics and optoelectronics. Often, their thermal stability demonstrated by thermogravimetry is cited in the literature as important issue. However, little is known about processes occurring in heated solid DNA cationic lipid complexes. In frame of this work, thin films of Deoxyribonucleic acid-hexadecyltrimethylammonium chloride (DNA-CTMA) were deposited on silicon wafers. Samples were thermally annealed, and simultaneously, their optical functions were measured by spectroscopic ellipsometry. At lower temperatures, thermal expansion coefficient of solid DNA-CTMA was negative, but at higher temperatures positive. Thermally induced modification of absorption spectrum in UV-vis was observed. It occurred at a range of temperatures higher than this of DNA denaturation in solution. The observed phenomenon was irreversible, at least in time scale of the experiment (one day)

  13. Ultrasound-mediated microbubble destruction accompanied with cationic liposome enhanced gene transfection in vitro%超声微泡破裂法联合阳离子脂质体介导基因转染的实验研究

    Institute of Scientific and Technical Information of China (English)

    丁璐; 陈云超; 刘晓玲; 刘娜香; 张青萍


    Objective To investigate whether ultrasound-mediated microbubble destruction(UMD) could enhance cationic liposome (CL) induced plasmid DNA delivery or not,and optimize the transfection conditions.Methods Multiple parameters were explored to obtain the optimal transgene efficiency by means of with or without serum in culture medium,various CL or nano-liposomal bubble(NB) concentrations,different time point of ultrasonic irradiation.The transfection efficiency was assessed by fluorescence microscopy and flow cytometer,and cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay.Results The serum could protect the cells but show little impact on transfection efficiency induced by CL.CL and plasmid DNA at a weight ratio of 4 ∶ 1 exhibited high transfection efficiency of (17.71-± 0.79)% and high cell viability of (91.28 ± 0.76) %.CL combining with ultrasonic irradiation at the time point of 1 hour could increase the transfection efficiency to (24.85 ± 0.78)% (P <0.01).Higher transfection rate (32.47 ± 4.01) % was obtained by adding NB at the concentration of 10 % (P <0.05).Conclusions UMD accompanied with CL could enhance gene delivery effectively,which would provide a new method for gene therapy.%目的 探讨超声微泡破裂法联合阳离子脂质体(cationic liposome,CL)介导绿色荧光蛋白质粒在肝癌细胞(HepG2)基因转染的可行性,并探索最佳转染条件.方法 依次采用培养液中是否含有血清和不同的CL浓度、不同超声辐照时间点、不同纳米级脂质微泡造影剂(nano-liposomal bubble,NB)浓度等处理因素进行细胞基因转染.荧光显微镜和流式细胞仪检测基因转染效率,CCK-8法检测细胞活性,以获得优化的转染参数.结果 血清能降低CL的细胞毒性,但对基因转染效率无明显影响,CL与质粒DNA质量比4∶1时可以达到相对高效低毒的转染效果,转染率(17.71±0.79)%,存活率(91.28±0.76)%.CL联合1h时间点辐照

  14. The electrokinetic characterization of gold nanoparticles, functionalized with cationic functional groups, and its' interaction with DNA. (United States)

    Lazarus, Geraldine Genevive; Revaprasadu, Neerish; López-Viota, Julián; Singh, Moganavelli


    Gold nanoparticles have attracted strong biomedical interest for drug delivery due to their low toxic nature, surface plasmon resonance and capability of increasing the stability of the payload. However, gene transfection represents another important biological application. Considering that cellular barriers keep enclosed their secret to deliver genes using nanoparticles, an important step can be achieved by studying the functionalization of nanoparticles with DNA. In the present contribution the synthesis of nanoparticles consisting of a gold core coated with one or more layers of amino acid (l-lysine), and cationic polyelectrolytes (poly-ethyleneimine and poly-l-lysine) is reported. All nanoparticles were subjected to dynamic light scattering, electrophoretic mobility measurements, UV-vis optical spectrophotometry analysis and transmission electron microscopy imaging. In addition, the adsorption of DNA plasmid (pSGS) with linear and supercoiled configurations was studied for those gold nanoparticles under the most suitable surface modifications. Preliminary results showed that the gold nanoparticles functionalized with poly-ethyleneimine and poly-l-lysine, respectively, and bound to linear DNA configurations, present in absolute value a higher electrophoretic mobility irrespective of the pH of the media, compared to the supercoiled and nicked configuration. The findings from this study suggest that poly-ethyleneimine and poly-l-lysine functionalized gold nanoparticles are biocompatible and may be promising in the chemical design and future optimization of nanostructures for biomedical applications such as gene and drug delivery.

  15. Multi-colored fibers by self-assembly of DNA, histone proteins, and cationic conjugated polymers. (United States)

    Wang, Fengyan; Liu, Zhang; Wang, Bing; Feng, Liheng; Liu, Libing; Lv, Fengting; Wang, Yilin; Wang, Shu


    The development of biomolecular fiber materials with imaging ability has become more and more useful for biological applications. In this work, cationic conjugated polymers (CCPs) were used to construct inherent fluorescent microfibers with natural biological macromolecules (DNA and histone proteins) through the interfacial polyelectrolyte complexation (IPC) procedure. Isothermal titration microcalorimetry results show that the driving forces for fiber formation are electrostatic and hydrophobic interactions, as well as the release of counterions and bound water molecules. Color-encoded IPC fibers were also obtained based on the co-assembly of DNA, histone proteins, and blue-, green-, or red- (RGB-) emissive CCPs by tuning the fluorescence resonance energy-transfer among the CCPs at a single excitation wavelength. The fibers could encapsulate GFP-coded Escherichia coli BL21, and the expression of GFP proteins was successfully regulated by the external environment of the fibers. These multi-colored fibers show a great potential in biomedical applications, such as biosensor, delivery, and release of biological molecules and tissue engineering.

  16. Effect of the head-group geometry of amino acid-based cationic surfactants on interaction with plasmid DNA. (United States)

    Jadhav, Vaibhav; Maiti, Souvik; Dasgupta, Antara; Das, Prasanta Kumar; Dias, Rita S; Miguel, Maria G; Lindman, Björn


    The interaction between DNA and different types of amino acid-based cationic surfactants was investigated. Particular attention was directed to determine the extent of influence of surfactant head-group geometry toward tuning the interaction behavior of these surfactants with DNA. An overview is obtained by gel retardation assay, isothermal titration calorimetry, fluorescence spectroscopy, and circular dichroism at different mole ratios of surfactant/DNA; also, cell viability was assessed. The studies show that the surfactants with more complex/bulkier hydrophobic head group interact more strongly with DNA but exclude ethidium bromide less efficiently; thus, the accessibility of DNA to small molecules is preserved to a certain extent. The presence of more hydrophobic groups surrounding the positive amino charge also gave rise to a significantly lower cytotoxicity. The surfactant self-assembly pattern is quite different without and with DNA, illustrating the roles of electrostatic and steric effects in determining the effective shape of a surfactant molecule.

  17. DNA-poly(vinyl alcohol) gel matrices: release properties are strongly dependent on electrolytes and cationic surfactants. (United States)

    Valente, Artur J M; Cruz, Sandra M A; Murtinho, Dina M B; Miguel, M Graça; Muniz, Edvani C


    The release of DNA from cryogel PVA-DNA gel matrices to different electrolyte aqueous solutions was investigated. The rate of release and the distribution coefficient of DNA have been quantified by using a first order kinetic law equation, developed in the frame of a partition-based model. The release of DNA from gels to 1:1 sodium and nitrate salts shows that the transport properties are dependent on the ability of anions/cations to solubilise the DNA in the aqueous phase which, with the exception of bromide, can be related to the Hofmeister series; in the presence of multivalent electrolytes, or increasing the ionic strength, the condensation of DNA inside the gel, followed by a phase separation as seen by scanning electron microscopy, induces the retention of DNA inside the polymer matrix. The DNA condensation and/or phase separation, which contribute to a decrease in the water volume fraction inside the gel, determined by swelling degree experiments, also lead to a decrease in the rate constant of DNA release; such decrease can be justified by the difficulty of the molecular aggregate to move through out the polymeric structure. The DNA release is also dependent on the pH of the bulk solution. The effect of uni- and di-valent cationic surfactants on the release properties of DNA was also evaluated. Our findings suggest that the kinetics of DNA release depends on a complex balance between different structural properties of the surfactants, namely charge, bulkiness of the headgroup and alkyl chain length.

  18. Liposomal immunostimulatory DNA sequence (ISS-ODN): an efficient parenteral and mucosal adjuvant for influenza and hepatitis B vaccines. (United States)

    Joseph, Aviva; Louria-Hayon, Igal; Plis-Finarov, Alla; Zeira, Evelyne; Zakay-Rones, Zichria; Raz, Eyal; Hayashi, Tomoko; Takabayashi, Kenji; Barenholz, Yechezkel; Kedar, Eli


    Synthetic oligodeoxynucleotides (ODNs) containing immunostimulatory sequences (ISS-ODN, also known as CpG-ODNs) have been shown to display in experimental models potent Th1-biassed immunoadjuvant activity upon parenteral or mucosal co-administration with a variety of antigens. In an attempt to potentiate adjuvant activity, and to reduce dose and number of administrations, ISS-ODN was entrapped (up to 90% efficiency) in large (1.5 microm) multilamellar liposomes using a simple and fast (5 min) procedure. Mice were vaccinated once or twice intramuscularly (i.m.) or intranasally (i.n.) with subunit influenza vaccines (consisting of the viral hemagglutinin and neuraminidase, HN) or with hepatitis B surface antigen particles (HBsAg), either non-encapsulated or liposome-encapsulated, together with free or liposomal ISS-ODN (5-25 microg per dose). At 3-12 weeks post-vaccination, the humoral (systemic, mucosal) and cellular responses and protective immunity were assessed. Vaccine formulations containing liposomal ISS-ODN co-administered with either soluble antigen or liposomal antigen (in the same vesicles or in separate vesicles) were up to 30 times more effective than formulations containing un-encapsulated ISS-ODN in inducing: (a) antigen-specific serum and mucosal IgG2a and IgA antibodies; (b) splenocyte proliferative response, cytotoxic activity and IFNgamma production; (c) a DTH response; and (d) protection against virus challenge. The response was Th1-dominant in the influenza model and a mixed Th1+Th2 response in the hepatitis B model. No adverse reactions were noted. Thus, liposomal encapsulation of ISS-ODN further enhances its inherent adjuvant activity.

  19. Asialoglycoprotein receptor and liposome synergistically mediate the gene transfer into primary rat hepatocytes

    Institute of Scientific and Technical Information of China (English)

    李崇辉; 温守明; 翟海峰; 孙曼霁


    Gene transfer into primary rat hepatocytes was performed by employing cationic liposome as DNA carrier and the specific ligand of hepatic asialoglycoprotein receptor (ASGPR), asialofetuin, as liver-targeting ligand. The resuits showed that asialofetuin, when added to the gene transfer complexes, could significantly increase the hepatocyte transfeetion efficiency, and alleviate the cellular toxicity of Lipofectin. Several synthetic ligands of ASGPR (galactosyl albumin) could also increase the transfection efficiency of hepatocyte like asialofetuin. It was proved that ASGPR and cationic liposome could synergistically mediate the gene transfer into primary rat hepatoeytes. This novel gene delivery system provided a safer, more simple and efficient gene transfer method for primary hepatocytes, and showed prospecting application in hepatic gene therapy.

  20. Synthesis and in vitro transfection efficiency of spermine-based cationic lipids with different central core structures and lipophilic tails. (United States)

    Niyomtham, Nattisa; Apiratikul, Nuttapon; Suksen, Kanoknetr; Opanasopit, Praneet; Yingyongnarongkul, Boon-Ek


    Twelve spermine-based cationic lipids with four different central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) and three hydrophobic tails (lauric acid, myristic acid and palmitic acid) were synthesized. The liposomes containing lipids and DOPE showed moderate to good in vitro DNA delivery into HeLa cells. GFP expression experiments revealed that liposomes composed of lipids with 3-amino-1,2-dioxypropyl as a central core structure exhibited highest transfection efficiency under serum-free condition. Whereas, lipid with 2-amino-1,3-dioxypropyl core structure showed highest transfection under 10% serum condition. Moreover, the liposomes and lipoplexes composted of these cationic lipids exhibited low cytotoxicity.

  1. Influence of phospholipid composition on cationic emulsions/DNA complexes: physicochemical properties, cytotoxicity, and transfection on Hep G2 cells

    Directory of Open Access Journals (Sweden)

    Fraga M


    Full Text Available Michelle Fraga1,2, Fernanda Bruxel1, Valeska Lizzi Lagranha2,3, Helder Ferreira Teixeira1, Ursula Matte2,31Post Graduation Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, 2Gene Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, 3Post Graduation Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, BrazilBackground: Cationic nanoemulsions have been recently considered as potential delivery systems for nucleic acids. This study reports the influence of phospholipids on the properties of cationic nanoemulsions/DNA plasmid complexes.Methods: Nanoemulsions composed of medium-chain triglycerides, stearylamine, egg lecithin or isolated phospholipids, ie, DSPC, DOPC, DSPE, or DOPE, glycerol, and water were prepared by spontaneous emulsification. Gene transfer to Hep G2 cells was analyzed using real-time polymerase chain reaction.Results: The procedure resulted in monodispersed nanoemulsions with a droplet size and zeta potential of approximately 250 nm and +50 mV, respectively. The complexation of cationic nanoemulsions with DNA plasmid, analyzed by agarose gel retardation assay, was complete when the complex was obtained at a charge ratio of ≥1.0. In these conditions, the complexes were protected from enzymatic degradation by DNase I. The cytotoxicity of the complexes in Hep G2 cells, evaluated by MTT assay, showed that an increasing number of complexes led to progressive toxicity. Higher amounts of reporter DNA were detected for the formulation obtained with the DSPC phospholipid. Complexes containing DSPC and DSPE phospholipids, which have high phase transition temperatures, were less toxic in comparison with the formulations obtained with lecithin, DOPC, and DOPE.Conclusion: The results show the effect of the DNA/nanoemulsion complexes composition on the toxicity and transfection results.Keywords: plasmids, cationic nanoemulsions

  2. Capture of a Transition State Using Molecular Dynamics: Creation of an Intercalation Site in dsDNA with Ethidium Cation

    Directory of Open Access Journals (Sweden)

    Regina R. Monaco


    Full Text Available The mechanism of intercalation and the ability of double stranded DNA (dsDNA to accommodate a variety of ligands in this manner has been well studied. Proposed mechanistic steps along this pathway for the classical intercalator ethidium have been discussed in the literature. Some previous studies indicate that the creation of an intercalation site may occur spontaneously, with the energy for this interaction arising either from solvent collisions or soliton propagation along the helical axis. A subsequent 1D diffusional search by the ligand along the helical axis of the DNA will allow the ligand entry to this intercalation site from its external, electrostatically stabilized position. Other mechanistic studies show that ethidium cation participates in the creation of the site, as a ligand interacting closely with the external surface of the DNA can cause unfavorable steric interactions depending on the ligands' orientation, which are relaxed during the creation of an intercalation site. Briefly, such a site is created by the lengthening of the DNA molecule via bond rotation between the sugars and phosphates along the DNA backbone, causing an unwinding of the dsDNA itself and separation between the adjacent base pairs local to the position of the ligand, which becomes the intercalation site. Previous experimental measurements of this interaction measure the enthalpic cost of this part of the mechanism to be about −8 kcal/mol. This paper reports the observation, during a computational study, of the spontaneous opening of an intercalation site in response to the presence of a single ethidium cation molecule in an externally bound configuration. The concerted motions between this ligand and the host, a dsDNA decamer, are clear. The dsDNA decamer AGGATGCCTG was studied; the central …GATG… site was the intercalation site.

  3. DNA association-enhanced physical stability of catanionic vesicles composed of ion pair amphiphile with double-chain cationic surfactant. (United States)

    Lee, Jung; Chang, Chien-Hsiang


    Physical stability control of vesicle/DNA complexes is a key issue for the development of catanionic vesicles composed of ion pair amphiphile (IPA) as DNA carriers. In this work, physical stability characteristics of the complexes of DNA with positively charged catanionic vesicles composed of an IPA and a double-chain cationic surfactant, dihexadecyldimethylammonium bromide (DHDAB), were explored. It was found that in water, the mixed IPA/DHDAB catanionic vesicles became stable when the mole fraction of DHDAB (xDHDAB) was increased up to 0.5. The improved physical stability of the vesicles with a high xDHDAB could be related to the enhanced electrostatic interaction between the vesicles. When the catanionic vesicles interacted with DNA, excellent physical stability was detected for the vesicle/DNA complexes especially with a high xDHDAB. However, this could not be fully explained by the electrostatic interaction effect, and the role of molecular packing within the vesicular bilayers was apparently important. The corresponding Langmuir monolayer study demonstrated that the molecular packing of mixed IPA/DHDAB layers became ordered with DNA association due to inhibited desorption of the positively charged moiety of the IPA. Moreover, the DNA association-induced improvement in the molecular packing of the mixed IPA/DHDAB layers became pronounced with increased xDHDAB. The results imply that one can fabricate catanionic vesicle/DNA complexes with excellent physical stability through the improved molecular packing in the IPA vesicular bilayers with DHDAB addition and DNA association.

  4. Lamellar cationic lipid-DNA complexes from lipids with a strong preference for planar geometry: A Minimal Electrostatic Model. (United States)

    Perico, Angelo; Manning, Gerald S


    We formulate and analyze a minimal model, based on condensation theory, of the lamellar cationic lipid (CL)-DNA complex of alternately charged lipid bilayers and DNA monolayers in a salt solution. Each lipid bilayer, composed by a random mixture of cationic and neutral lipids, is assumed to be a rigid uniformly charged plane. Each DNA monolayer, located between two lipid bilayers, is formed by the same number of parallel DNAs with a uniform separation distance. For the electrostatic calculation, the model lipoplex is collapsed to a single plane with charge density equal to the net lipid and DNA charge. The free energy difference between the lamellar lipoplex and a reference state of the same number of free lipid bilayers and free DNAs, is calculated as a function of the fraction of CLs, of the ratio of the number of CL charges to the number of negative charges of the DNA phosphates, and of the total number of planes. At the isoelectric point the free energy difference is minimal. The complex formation, already favoured by the decrease of the electrostatic charging free energy, is driven further by the free energy gain due to the release of counterions from the DNAs and from the lipid bilayers, if strongly charged. This minimal model compares well with experiment for lipids having a strong preference for planar geometry and with major features of more detailed models of the lipoplex.

  5. Ultrasound-Mediated Gene Delivery with Cationic Versus Neutral Microbubbles: Effect of DNA and Microbubble Dose on In Vivo Transfection Efficiency

    Directory of Open Access Journals (Sweden)

    Cedric M. Panje, David S. Wang, Marybeth A. Pysz, Ramasamy Paulmurugan, Ying Ren, Francois Tranquart, Lu Tian, Jürgen K. Willmann


    Full Text Available Objective: To assess the effect of varying microbubble (MB and DNA doses on the overall and comparative efficiencies of ultrasound (US-mediated gene delivery (UMGD to murine hindlimb skeletal muscle using cationic versus neutral MBs.Materials and Methods: Cationic and control neutral MBs were characterized for size, charge, plasmid DNA binding, and ability to protect DNA against endonuclease degradation. UMGD of a codon optimized firefly luciferase (Fluc reporter plasmid to endothelial cells (1 MHz, 1 W/cm², 20% duty cycle, 1 min was performed in cell culture using cationic, neutral, or no MBs. In vivo UMGD to mouse hindlimb muscle was performed by insonation (1 MHz, 2 W/cm², 50% duty cycle, 5 min after intravenous administration of Fluc combined with cationic, neutral, or no MBs. Gene delivery efficiency was assessed by serial in vivo bioluminescence imaging. Efficiency of in vivo UMGD with cationic versus neutral MBs was systematically evaluated by varying plasmid DNA dose (10, 17.5, 25, 37.5, and 50 µg while maintaining a constant MB dose of 1x108 MBs and by changing MB dose (1x107, 5x107, 1x108, or 5x108 MBs while keeping a constant DNA dose of 50 µg.Results: Cationic and size-matched control neutral MBs differed significantly in zeta potential with cationic MBs being able to bind plasmid DNA (binding capacity of 0.03 pg/MB and partially protect DNA from nuclease degradation while neutral MBs could not. Cationic MBs enhanced UMGD compared to neutral MBs as well as no MB and no US controls both in cell culture (P < 0.001 and in vivo (P < 0.05. Regardless of MB type, in vivo UMGD efficiency increased dose-dependently with DNA dose and showed overall maximum transfection with 50 µg DNA. However, there was an inverse correlation (ρ = -0.90; P = 0.02 between DNA dose and the degree of enhanced UMGD efficiency observed with using cationic MBs instead of neutral MBs. The delivery efficiency advantage associated with cationic MBs was most

  6. Ultrasound-Mediated Gene Delivery with Cationic Versus Neutral Microbubbles: Effect of DNA and Microbubble Dose on In Vivo Transfection Efficiency (United States)

    Panje, Cedric M.; Wang, David S.; Pysz, Marybeth A.; Paulmurugan, Ramasamy; Ren, Ying; Tranquart, Francois; Tian, Lu; Willmann, Jürgen K.


    Objective: To assess the effect of varying microbubble (MB) and DNA doses on the overall and comparative efficiencies of ultrasound (US)-mediated gene delivery (UMGD) to murine hindlimb skeletal muscle using cationic versus neutral MBs. Materials and Methods: Cationic and control neutral MBs were characterized for size, charge, plasmid DNA binding, and ability to protect DNA against endonuclease degradation. UMGD of a codon optimized firefly luciferase (Fluc) reporter plasmid to endothelial cells (1 MHz, 1 W/cm², 20% duty cycle, 1 min) was performed in cell culture using cationic, neutral, or no MBs. In vivo UMGD to mouse hindlimb muscle was performed by insonation (1 MHz, 2 W/cm², 50% duty cycle, 5 min) after intravenous administration of Fluc combined with cationic, neutral, or no MBs. Gene delivery efficiency was assessed by serial in vivo bioluminescence imaging. Efficiency of in vivo UMGD with cationic versus neutral MBs was systematically evaluated by varying plasmid DNA dose (10, 17.5, 25, 37.5, and 50 µg) while maintaining a constant MB dose of 1x108 MBs and by changing MB dose (1x107, 5x107, 1x108, or 5x108 MBs) while keeping a constant DNA dose of 50 µg. Results: Cationic and size-matched control neutral MBs differed significantly in zeta potential with cationic MBs being able to bind plasmid DNA (binding capacity of 0.03 pg/MB) and partially protect DNA from nuclease degradation while neutral MBs could not. Cationic MBs enhanced UMGD compared to neutral MBs as well as no MB and no US controls both in cell culture (P < 0.001) and in vivo (P < 0.05). Regardless of MB type, in vivo UMGD efficiency increased dose-dependently with DNA dose and showed overall maximum transfection with 50 µg DNA. However, there was an inverse correlation (ρ = -0.90; P = 0.02) between DNA dose and the degree of enhanced UMGD efficiency observed with using cationic MBs instead of neutral MBs. The delivery efficiency advantage associated with cationic MBs was most prominent

  7. Chelation of Membrane-Bound Cations by Extracellular DNA Activates the Type VI Secretion System in Pseudomonas aeruginosa. (United States)

    Wilton, Mike; Wong, Megan J Q; Tang, Le; Liang, Xiaoye; Moore, Richard; Parkins, Michael D; Lewenza, Shawn; Dong, Tao G


    Pseudomonas aeruginosa employs its type VI secretion system (T6SS) as a highly effective and tightly regulated weapon to deliver toxic molecules to target cells. T6SS-secreted proteins of P. aeruginosa can be detected in the sputum of cystic fibrosis (CF) patients, who typically present a chronic and polymicrobial lung infection. However, the mechanism of T6SS activation in the CF lung is not fully understood. Here we demonstrate that extracellular DNA (eDNA), abundant within the CF airways, stimulates the dynamics of the H1-T6SS cluster apparatus in Pseudomonas aeruginosa PAO1. Addition of Mg(2+) or DNase with eDNA abolished such activation, while treatment with EDTA mimicked the eDNA effect, suggesting that the eDNA-mediated effect is due to chelation of outer membrane-bound cations. DNA-activated H1-T6SS enables P. aeruginosa to nonselectively attack neighboring species regardless of whether or not it was provoked. Because of the importance of the T6SS in interspecies interactions and the prevalence of eDNA in the environments that P. aeruginosa inhabits, our report reveals an important adaptation strategy that likely contributes to the competitive fitness of P. aeruginosa in polymicrobial communities.

  8. Polycations XX: New Monodentate Cationic Ligands and Their Coordination with Ruthenium for the Construction of Complexes Expressing Enhanced Interaction with DNA

    Directory of Open Access Journals (Sweden)

    Leslie Babukutty


    Full Text Available Prior investigations from this laboratory concerned with the preparation of new types of organic cations for a variety of biological and nonbiological applications have been extended to the preparation of cation-bearing ligands with nitrogen coordinating sites for use in complexation reactions with ruthenium cores. The syntheses of new cationic ligands as well as ruthenium complexes bearing them are reported here. The introduction of these new types of ligands is intended to provide to the complexes an enhanced ability to interact with DNA, and thereby to have the potential to be enhanced antitumor agents. Preliminary observations of their interactions with DNA are presented.


    Institute of Scientific and Technical Information of China (English)

    杨杜明; 徐永清; 李福兵; 刘华; 何晓清


    目的 制备盐酸万古霉素阳离子多囊脂质体(multivesicular liposome,MVL)并对其质量进行考察.方法 以复乳法制备盐酸万古霉素阳离子MVL;制备万古霉素储备液,建立万古霉素的体外分析方法,并对方法的专属性、精密度及回吸收率进行评估;采用反相高效液相色谱分析法测定万古霉素药物含量、包封率和体外释放特性;以包封率为主要考察指标,单因素筛选和正交设计优化工艺和处方;光镜和透射电镜下观察脂质体形态;激光散射法测定脂质体的粒径和Zeta电位;动态分析法考察脂质体体外稳定性. 结果 建立了反相高效液相色谱分析法测定盐酸万古霉素阳离子MVL中万古霉素含量的方法,该方法简便可行,各项方法学符合要求;确定了最优的制备工艺及处方.以最优工艺和处方制备的盐酸万古霉素阳离子MVL外观呈圆形,粒径均一,平均粒径为3.3 μm,平均包封率为24.9%,平均Zeta电位为24.53 mV;37℃温度下以生理盐水为释放介质,264 h释放药物约为90.5%.将新鲜制备的盐酸万古霉素阳离子MVL放置于4℃冰箱中保存1个月,脂质体稳定性良好.结论 以复乳法制备的盐酸万古霉素阳离子MVL外观良好,包封率高,稳定性好,具有良好的缓释效应.%Objective To prepare cationic Vancomycin hydrochloride multivesicular liposome (MVL) and to inspect its quality. Methods Cationic Vancomycin hydrochloride MVLs were prepared by double emulsion method, and the storing solution of Vancomycin was prepared. The analysis method of Vancomycin in vitro was established; the specificity, precision, and resorption rate were estimated. Reverse phase high performance liquid chromatography (RP-HPLC) was used to determine the concentration of Vancomycin, encapsulation efficiency, and release characteristics in vitro. The formulation and pharmaceutical process were optimized by single factor experiments and orthogonal

  10. Engineering of an Inhalable DDA/TDB Liposomal Adjuvant

    DEFF Research Database (Denmark)

    Ingvarsson, Pall Thor; Yang, Mingshi; Mulvad, Helle;


    The purpose of this study was to identify and optimize spray drying parameters of importance for the design of an inhalable powder formulation of a cationic liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and trehalose-6,6'-dibehenate (TDB).......The purpose of this study was to identify and optimize spray drying parameters of importance for the design of an inhalable powder formulation of a cationic liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and trehalose-6,6'-dibehenate (TDB)....

  11. Efficacy of HGF carried by ultrasound microbubble-cationic nano-liposomes complex for treating hepatic fibrosis in a bile duct ligation rat model, and its relationship with the diffusion-weighted MRI parameters. (United States)

    Zhang, Shou-hong; Wen, Kun-ming; Wu, Wei; Li, Wen-yan; Zhao, Jian-nong


    Hepatic fibrosis is a major consequence of liver aggression. Finding novel ways for counteracting this damaging process, and for evaluating fibrosis with a non-invasive imaging approach, represent important therapeutic and diagnostic challenges. Hepatocyte growth factor (HGF) is an anti-fibrosis cell growth factor that induces apoptosis in activated hepatic stellate cells, reduces excessive collagen deposition, and stimulates hepatocyte regeneration. Thus, using HGF in gene therapy against liver fibrosis is an attractive approach. The aims of the present study were: (i) to explore the efficacy of treating liver fibrosis using HGF expression vector carried by a novel ultrasound microbubble delivery system; (ii) to explore the diagnostic interest of diffusion-weighted MRI (DWI-MRI) in evaluating liver fibrosis. We established a rat model of hepatic fibrosis. The rats were administered HGF linked to novel ultrasound micro-bubbles. Progression of hepatic fibrosis was evaluated by histopathology, hydroxyproline content, and DWI-MRI to determine the apparent diffusion coefficient (ADC). Our targeted gene therapy produced a significant anti-fibrosis effect, as shown by liver histology and significant reduction of hydroxyproline content. Moreover, using DWI-MRI, the b value (diffusion gradient factor) was equal to 300s/mm(2), and the ADC values significantly decreased as the severity of hepatic fibrosis increased. Using this methodology, F0-F2 could be distinguished from F3 and F4 (Pmicrobubble-cationic nano-liposome complex for gene delivery. The data indicate that, this approach is efficient to counteract the fibrosis process. DWI-MRI appears a promising imaging technique for evaluating liver fibrosis.

  12. Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA

    NARCIS (Netherlands)

    Olbrich, C; Bakowsky, U; Muller, RH; Kneuer, C


    The suitability of cationically modified solid-lipid nanoparticles (SLN) as a novel transfection agent was investigated. SLN were produced by hot homogenisation using either Compritol ATO 888 or paraffin as matrix lipid, a mixture of Tween 80 and Span 85 as tenside and either EQ1 (NN-di-(beta-steaor

  13. Integrated microfluidic devices for the synthesis of nanoscale liposomes and lipoplexes. (United States)

    Balbino, Tiago A; Serafin, Juliana M; Radaic, Allan; de Jesus, Marcelo B; de la Torre, Lucimara G


    In this work, pDNA/cationic liposome (CL) lipoplexes for gene delivery were prepared in one-step using multiple hydrodynamic flow-focusing regions. The microfluidic platform was designed with two distinct regions for the synthesis of liposomes and the subsequent assembly with pDNA, forming lipoplexes. The obtained lipoplexes exhibited appropriate physicochemical characteristics for gene therapy applications under varying conditions of flow rate-ratio (FRR), total volumetric flow rate (QT) and pDNA content (molar charge ratio, R±). The CLs were able to condense and retain the pDNA in the vesicular structures with sizes ranging from 140nm to 250nm. In vitro transfection assays showed that the lipoplexes prepared in one step by the two-stage configuration achieved similar efficiencies as lipoplexes prepared by conventional bulk processes, in which each step comprises a series of manual operations. The integrated microfluidic platform generates lipoplexes with liposome formation combined in-line with lipoplex assembly, significantly reducing the number of steps usually required to form gene carrier systems.

  14. Chiroptical properties of anionic and cationic porphyrins and metalloporphyrins in complex with left-handed Z-DNA and right-handed B-DNA. (United States)

    Choi, Jung Kyu; D'Urso, Alessandro; Balaz, Milan


    We report the chiroptical signature and binding interactions of cationic (meso-tetrakis(4-N-methylptridyl)porphyrin, 2HT4) and anionic (meso-tetrakis(4-sulfonatophenyl)porphyrin, 2HTPPS) porphyrins and their zinc(II) and nickel(II) derivatives (ZnT4, ZnTPPS, NiT4, and NiTPPS) with right-handed B-form and two forms of left-handed Z-form of alternating guanine-cytosine polydeoxynucleotide poly(dG-dC)2. NiTPPS is able to spectroscopically discriminate between spermine-induced Z-DNA and Co(III)-induced Z-DNA via new induced circular dichroism signal in the visible region of the electromagnetic spectrum.

  15. Polyelectrolyte Complexes of a Cationic All Conjugated Fluorene Thiophene Diblock Copolymer with Aqueous DNA

    DEFF Research Database (Denmark)

    Knaapila, Matti; Costa, Telma; Garamus, Vasil M.;


    We report on the structural and colorimetric effects of interaction of aqueous ∼0.06–1% poly[9,9-bis(2-ethylhexyl)fluorene]-b-poly[3-6-trimethylammoniumhexyl)thiophene] bromide (PF2/6-P3TMAHT) with double-stranded DNA to form PF2/6-P3TMAHT(DNA)x where x is the molar ratio of DNA base pairs to P3T...... photoluminescence (PL) is significantly quenched by DNA with increasing x, and the changing P3TMAHT/PF2/6 band ratio allows quantitative DNA detection. Sixteen-fold dilution does not change aggregate structure, but PL is blue-shifted, indicating weakened intermolecular interactions....

  16. Detection of target DNA using fluorescent cationic polymer and peptide nucleic acid probes on solid support

    Directory of Open Access Journals (Sweden)

    Leclerc Mario


    Full Text Available Abstract Background Nucleic acids detection using microarrays requires labelling of target nucleic acids with fluorophores or other reporter molecules prior to hybridization. Results Using surface-bound peptide nucleic acids (PNA probes and soluble fluorescent cationic polythiophenes, we show a simple and sensitive electrostatic approach to detect and identify unlabelled target nucleic acid on microarray. Conclusion This simple methodology opens exciting possibilities for applied genetic analysis for the diagnosis of infections, identification of genetic mutations, and forensic inquiries. This electrostatic strategy could also be used with other nucleic acid detection methods such as electrochemistry, silver staining, metallization, quantum dots, or electrochemical dyes.

  17. Development and characterization of an innovative heparin coating to stabilize and protect liposomes against adverse immune reactions. (United States)

    Duehrkop, Claudia; Leneweit, Gero; Heyder, Christoph; Fromell, Karin; Edwards, Katarina; Ekdahl, Kristina N; Nilsson, Bo


    Liposomes have been recognized as excellent drug delivery systems, but when they come in direct contact with different blood components they may trigger an immediate activation of the innate immune system. The aim of the present study was to produce long-circulating, blood-compatible liposomes by developing a construct of liposomes covered by a novel unique heparin complex (CHC; 70 heparin molecules per complex) to avoid recognition by the innate immune system. Unilamellar, cationic liposomes were produced by hand extrusion through a 100-nm polycarbonate membrane. Coating of liposomes with the macromolecular CHC was accomplished by electrostatic interactions. Dynamic light scattering as well as QCM-D measurements were used to verify the electrostatic deposition of the negatively charged CHC to cationic liposomes. The CHC-coated liposomes did not aggregate when in contact with lepirudin anti-coagulated plasma. Unlike previous attempts to coat liposomes with heparin, this technique produced freely moveable heparin strands sticking out from the liposome surface, which exposed AT binding sites reflecting the anticoagulant potentials of the liposomes. In experiments using lepirudin-anticoagulated plasma, CHC-coated liposomes, in contrast to non-coated control liposomes, did not activate the complement system, as evidenced by low C3a and sC5b-9 generation and reduced leakage from the liposomes. In conclusion, we show that liposomes can be successfully coated with the biopolymer CHC, resulting in biocompatible and stable liposomes that have significant application potential.

  18. Influence of biological media on the structure and behavior of ferrocene-containing cationic lipid/DNA complexes used for DNA delivery. (United States)

    Golan, Sharon; Aytar, Burcu S; Muller, John P E; Kondo, Yukishige; Lynn, David M; Abbott, Nicholas L; Talmon, Yeshayahu


    Biological media affect the physicochemical properties of cationic lipid-DNA complexes (lipoplexes) and can influence their ability to transfect cells. To develop new lipids for efficient DNA delivery, the influence of serum-containing media on the structures and properties of the resulting lipoplexes must be understood. To date, however, a clear and general picture of how serum-containing media influences the structures of lipoplexes has not been established. Some studies suggest that serum can disintegrate lipoplexes formed using certain types of cationic lipids, resulting in the inhibition of transfection. Other studies have demonstrated that lipoplexes formulated from other lipids are stable in the presence of serum and are able to transfect cells efficiently. In this article, we describe the influence of serum-containing media on lipoplexes formed using the redox-active cationic lipid bis(n-ferrocenylundecyl)dimethylammonium bromide (BFDMA). This lipoplex system promotes markedly decreased levels of transgene expression in COS-7 cells as serum concentrations are increased from 0 to 2, 5, 10, and 50% (v/v). To understand the cause of this decrease in transfection efficiency, we used cryogenic transmission electron microscopy (cryo-TEM) and measurements of zeta potential to characterize lipoplexes in cell culture media supplemented with 0, 2, 5, 10, and 50% serum. Cryo-TEM revealed that in serum-free media BFDMA lipoplexes form onionlike, multilamellar nanostructures. However, the presence of serum in the media caused disassociation of the intact multilamellar lipoplexes. At low serum concentrations (2 and 5%), DNA threads appeared to separate from the complex, leaving the nanostructure of the lipoplexes disrupted. At higher serum concentration (10%), disassociation increased and bundles of multilamellae were discharged from the main multilamellar complex. In contrast, lipoplexes characterized in serum-free aqueous salt (Li(2)SO(4)) medium and in OptiMEM cell

  19. Interaction between a cationic porphyrin and ctDNA investigated by SPR, CV and UV-vis spectroscopy. (United States)

    Xu, Zi-Qiang; Zhou, Bo; Jiang, Feng-Lei; Dai, Jie; Liu, Yi


    The interaction between ctDNA and a cationic porphyrin was studied in this work. The binding process was monitored by surface plasmon resonance (SPR) spectroscopy in detail. The association, dissociation rate constants and the binding constants calculated by global analysis were 2.4×10(2)±26.4M(-1)s(-1), 0.011±0.0000056s(-1) and 2.18×10(4)M(-1), respectively. And the results were confirmed by cyclic voltammetry and UV-vis absorption spectroscopy. The binding constants obtained from cyclic voltammetry and UV-vis absorption spectroscopy were 8.28×10(4)M(-1) and 6.73×10(4)M(-1) at 298K, respectively. The covalent immobilization methodology of ctDNA onto gold surface modified with three different compounds was also investigated by SPR. These compounds all contain sulfydryl but with different terminated functional groups. The results indicated that the 11-MUA (HS(CH2)10COOH)-modified gold film is more suitable for studying the DNA-drug interaction.

  20. Liposomal nanoparticles encapsulating iloprost exhibit enhanced vasodilation in pulmonary arteries

    Directory of Open Access Journals (Sweden)

    Jain PP


    Full Text Available Pritesh P Jain,1 Regina Leber,1,2 Chandran Nagaraj,1 Gerd Leitinger,3 Bernhard Lehofer,4 Horst Olschewski,1,5 Andrea Olschewski,1,6 Ruth Prassl,1,4 Leigh M Marsh11Ludwig Boltzmann Institute for Lung Vascular Research, 2Biophysics Division, Institute of Molecular Biosciences, University of Graz, 3Research Unit Electron Microscopic Techniques, Institute of Cell Biology, Histology, and Embryology, 4Institute of Biophysics, 5Division of Pulmonology, Department of Internal Medicine, 6Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, AustriaAbstract: Prostacyclin analogues are standard therapeutic options for vasoconstrictive diseases, including pulmonary hypertension and Raynaud’s phenomenon. Although effective, these treatment strategies are expensive and have several side effects. To improve drug efficiency, we tested liposomal nanoparticles as carrier systems. In this study, we synthesized liposomal nanoparticles tailored for the prostacyclin analogue iloprost and evaluated their pharmacologic efficacy on mouse intrapulmonary arteries, using a wire myograph. The use of cationic lipids, stearylamine, or 1,2-di-(9Z-octadecenoyl-3-trimethylammonium-propane (DOTAP in liposomes promoted iloprost encapsulation to at least 50%. The addition of cholesterol modestly reduced iloprost encapsulation. The liposomal nanoparticle formulations were tested for toxicity and pharmacologic efficacy in vivo and ex vivo, respectively. The liposomes did not affect the viability of human pulmonary artery smooth muscle cells. Compared with an equivalent concentration of free iloprost, four out of the six polymer-coated liposomal formulations exhibited significantly enhanced vasodilation of mouse pulmonary arteries. Iloprost that was encapsulated in liposomes containing the polymer polyethylene glycol exhibited concentration-dependent relaxation of arteries. Strikingly, half the concentration of iloprost in liposomes elicited

  1. Carbamate-linked cationic lipids with different hydrocarbon chains for gene delivery. (United States)

    Shi, Jia; Yu, Shijun; Zhu, Jie; Zhi, Defu; Zhao, Yinan; Cui, Shaohui; Zhang, Shubiao


    A series of carbamate-linked cationic lipids containing saturated or unsaturated hydrocarbon chains and quaternary ammonium head were designed and synthesized. After recrystallization, carbamate-linked cationic lipids with high purity (over 95%) were obtained. The structures of these lipids were proved by IR spectrum, HR-ESI-MS, HPLC, (1)H NMR and (13)C NMR. The liposomes were prepared by using these cationic lipids and neutral lipid DOPE. Particle size and zeta-potential were studied to show that they were suitable for gene transfection. The DNA-bonding ability of C12:0, C14:0 and C18:1 cationic liposomes was much better than others. The results of transfection showed that hydrophobic chains of these lipids have great effects on their transfection activity. The lipids bearing C12:0, C14:0 saturated chains or C18:1 unsaturated chain showed relatively higher transfection efficiency and lower cytotoxicity. So these cationic lipids could be used as non-viral gene carriers for further studies.

  2. Cationic solid-lipid nanoparticles are as efficient as electroporation in DNA vaccination against visceral leishmaniasis in mice. (United States)

    Saljoughian, N; Zahedifard, F; Doroud, D; Doustdari, F; Vasei, M; Papadopoulou, B; Rafati, S


    The use of an appropriate delivery system has recently emerged as a promising approach for the development of effective vaccination against visceral leishmaniasis (VL). Here, we compare two vaccine delivery systems, namely electroporation and cationic solid-lipid nanoparticle (cSLN) formulation, to administer a DNA vaccine harbouring the L. donovani A2 antigen along with L. infantum cysteine proteinases [CPA and CPB without its unusual C-terminal extension (CPB(-CTE) )] and evaluate their potential against L. infantum challenge. Prime-boost administration of the pcDNA-A2-CPA-CPB(-CTE) delivered by either electroporation or cSLN formulation protects BALB/c mice against L. infantum challenge and that protective immunity is associated with high levels of IFN-γ and lower levels of IL-10 production, leading to a strong Th1 immune response. At all time points, the ratio of IFN-γ: IL-10 induced upon restimulation with rA2-rCPA-rCPB and F/T antigens was significantly higher in vaccinated animals. Moreover, Th2-efficient protection was elicited through a high humoral immune response. Nitric oxide production, parasite burden and histopathological analysis were also in concordance with other findings. Overall, these data indicate that similar to the electroporation delivery system, cSLNs as a nanoscale vehicle of Leishmania antigens could improve immune response, hence indicating the promise of these strategies against visceral leishmaniasis.

  3. Conformational conversion of DNA G-quadruplex induced by a cationic porphyrin. (United States)

    Zhang, Huijuan; Xiao, Xiao; Wang, Peng; Pang, Siping; Qu, Feng; Ai, Xicheng; Zhang, Jianping


    The interactions between cationic meso-tetrakis(4-(N-methylpyridiumyl))porphyrin (TMPyP4) and the G-quadruplex (G4) of human telomeric single-strand oligonucleotide d(TTAGGG)(2) (S12) have been investigated by means of circular dichroism (CD), UV-visible absorption and fluorescence spectroscopies. It is found that TMPyP4 can preferentially induce the conformational conversion of the G4 structure from the parallel type to the parallel/antiparallel mixture in the presence of K(+), and that it can directly induce the formation of antiparallel G4 structure from the single-strand oligonucleotide S12 in the absence of K(+). Furthermore, the comparable experiments of TMPyP4 with two single-strand oligonucleotides S6 d(TTAGGG) and S24 d(TAGGG(TTAGGG)(3)T) in the absence of K(+) show that TMPyP4 can also induce the formation of antiparallel G4 from S24 but not from S6, indicating that the end-loops of the G4 structure are the key factors for the formation of G4 induced by TMPyP4.

  4. Co-liposomes having anisamide tagged lipid and cholesteryl tryptophan trigger enhanced gene transfection in sigma receptor positive cells. (United States)

    Misra, Santosh K; Moitra, Parikshit; Kondaiah, Paturu; Bhattacharya, Santanu


    Selective gene transfection could be strategy of interest for reducing off-target gene expression and toxicity. In this respect, sigma receptors are found to be over-expressed in many human tumors and liposomal formulations with ability to target these sigma receptors may improve the transfection efficiency to a significant level. To this direction, six novel lipids have been synthesized with different hydrophobic segments such as a long hydrophobic chain or a cholesteryl group and L-tryptophan as the head group. Three of them, Lipid 1, 3 and 5 possessed cationic Me3N(+) moiety at the distal end. In contrast each of the other three Lipid 2, 4 and 6 possessed sigma receptor targeting anisamide group with no cationic charge. Mixing of cationic and anisamide counterparts of the same lipid in a molar ratio of 1:1 produced co-liposomes L-M-1 (Lipid 1+2), L-M-2 (Lipid 3+4) and L-M-3 (Lipid 5+6). These co-liposomes, while keeping the sigma targeting anisamide tag intact, showed good DNA binding and release which were optimized from EB intercalation and gel electrophoresis assays. Inclusion of a zwitterionic, fusogenic natural lipid, DOPE, into the co-liposomes further improved the binding efficiencies of the lipid mixtures with DNA. These co-liposomes having cationic and anisamide lipids and DOPE were highly selective toward sigma positive HEK293 and HEK293T cells compared to the sigma negative HeLa cells. As evidenced from both FACS and luciferase assay, a lipid mixture comprising Lipid 3, 4 and DOPE in a molar ratio of 1:1:1 (L-M-2D1) was the best for transfection of reporter pEGFP-C3 and functional pCEP4-p53 gene plasmids. Anisamide mediated sigma receptor selectivity was further probed by pre-incubating the transfecting cells with lipids possessing anisamide and by quantification of the un-transfected plasmid DNA. Also each formulation was highly non-toxic in the cell lines examined.

  5. Cell interactions in concanavalin A activated cation flux and DNA synthesis of mouse lymphocytes

    DEFF Research Database (Denmark)

    Owens, T; Kaplan, J G


    Co-culture at constant cell density of nude mouse spleen cells (by themselves unresponsive to the T-cell mitogen concanavalin A (Con A)), with congenic T-enriched lymphocyte suspensions and Con A caused anomalously high activation of K+ transport (measured by 86Rb uptake) and of incorporation...... of thymidine into DNA; the expected dilution of these two responses by nude spleen cells did not occur. However, if the nude splenocytes were added immediately prior to assay to the enriched T cells that had been precultured in presence of Con A, the expected dilution of the activated T-cell responses occurred......; both 86Rb uptake and thymidine incorporation were reduced proportionally to the degree of dilution of the T cells by the nonresponding cells. These data indicate that during co-culture in presence of Con A there is interaction between the T cells, capable of responding to mitogens, and the nude spleen...

  6. TACN-based cationic lipids with amino acid backbone and double tails: materials for non-viral gene delivery. (United States)

    Wang, Bing; Yi, Wen-Jing; Zhang, Ji; Zhang, Qin-Fang; Xun, Miao-Miao; Yu, Xiao-Qi


    Cationic lipids have become an efficient type of non-viral vectors for gene delivery. In this Letter, four cationic lipids containing 1,4,7-triazacyclononane (TACN) headgroup, glutamic/aspartic acid backbone and dioleyl tails were designed and synthesized. The TACN headgroup gives these lipids excellent pH buffering capacities, which were higher than branched 25 kDa PEI. Cationic liposomes prepared from these lipids and DOPE showed good DNA affinity, and full DNA condensation was found at N/P ratio of 3 via agarose gel electrophoresis. The lipoplexes were characterized by dynamic light scattering (DLS) assay, which gave proper particle sizes and zeta-potentials for transfection. In vitro gene transfection results in two cell lines reveal that TAN (with aspartic acid and amide bond in the structure) shows the best transfection efficiency, which is close to commercially available transfection agent Lipofectamine 2000.


    Directory of Open Access Journals (Sweden)

    Erhan Süleymanoglu,


    Full Text Available Human gene therapy research is currently discouraging due to the lack of suitable delivery vehicles for nucleic acid transfer to affected cell types. There is an urgent need for optimized gene delivery tools capable of protecting the polynucleotide from degradation through its route from site of administration to gene expression. Besides difficulties arising during the preparation of the currently employed cationic lipids, their cytotoxicity has been an unavoidable hurdle. Some energetics issues related to preparation and use of self-assemblies formed between neutral lipid and polynucleotides with various conformation and size are presented. The divalent metal cation-governed adsorption, aggregation and adhesion between single- and double-stranded polynucleotides with multilamellar and unilamellar phosphatidylcholine vesicles was followed turbidimetrically. Thermotropic phase transitions of zwitterionic liposomes and their complexes with polynucleotides and calf thymus DNA with Ca2+ and Mg2+ is presented and compared to the previous data for various electrostatic lipid - nucleic acid complexes. Differential scanning microcalorimetric measurements of synthetic phosphatidylcholine vesicles and polynucleotides and their ternary complexes with inorganic cations were used to build the thermodynamic model of their structural transitions. The increased thermal stability of the phospholipid bilayers is achieved by affecting their melting transition temperature by nucleic acid induced electrostatic charge screening. Thermodynamic measurements give evidence for the stabilization of polynucleotide helices upon their association with liposomes in presence of divalent metal cations. It is thus possible to suggest this self-assembly as an improved formulation with further potential in gene therapy trials. Although the pharmacodynamical features of the zwitterionic lipid-metal ion-DNA nanocondensates remain to be tested in further transfection experiments, at

  8. Binding and interstitial penetration of liposomes within avascular tumor spheroids. (United States)

    Kostarelos, Kostas; Emfietzoglou, Dimitris; Papakostas, Alexandros; Yang, Wei-Hong; Ballangrud, Ase; Sgouros, George


    The liposomal delivery of cancer therapeutics, including gene therapy vectors, is an area of intense study. Poor penetration of liposomes into interstitial tumor spaces remains a problem, however. In this work, the penetration of different liposomal formulations into prostate carcinoma spheroids was examined. Spheroid penetration was assessed by confocal microscopy of fluorescently labeled liposomes. The impact of liposomal surface charge, mean diameter, lipid bilayer fluidity and fusogenicity on spheroid penetration was examined. A variety of different liposome systems relevant to clinical or preclinical protocols have been studied, including classical zwitterionic (DMPC:chol) and sterically stabilized liposomes (DMPC:chol:DOPE-PEG2000), both used clinically, and cationic liposomes (DMPC:DOPE:DC-chol and DOTAP), forming the basis of the vast majority of nonviral gene transfer vectors tested in various cancer trials. Surface interactions between strongly cationic vesicles and the tumor cells led to an electrostatically derived binding-site barrier effect, inhibiting further association of the delivery systems with the tumor spheroids (DMPC:DC-chol). However, inclusion of the fusogenic lipid DOPE and use of a cationic lipid of lower surface charge density (DOTAP instead of DC-chol) led to improvements in the observed intratumoral distribution characteristics. Sterically stabilized liposomes did not interact with the tumor spheroids, whereas small unilamellar classical liposomes exhibit extensive distribution deeper into the tumor volume. Engineering liposomal delivery systems with a relatively low charge molar ratio and enhanced fusogenicity, or electrostatically neutral liposomes with fluid bilayers, offered enhanced intratumoral penetration. This study shows that a delicate balance exists between the strong affinity of delivery systems for the tumor cells and the efficient penetration and distribution within the tumor mass, similar to previous work studying

  9. Liposomes as nanomedical devices. (United States)

    Bozzuto, Giuseppina; Molinari, Agnese


    Since their discovery in the 1960s, liposomes have been studied in depth, and they continue to constitute a field of intense research. Liposomes are valued for their biological and technological advantages, and are considered to be the most successful drug-carrier system known to date. Notable progress has been made, and several biomedical applications of liposomes are either in clinical trials, are about to be put on the market, or have already been approved for public use. In this review, we briefly analyze how the efficacy of liposomes depends on the nature of their components and their size, surface charge, and lipidic organization. Moreover, we discuss the influence of the physicochemical properties of liposomes on their interaction with cells, half-life, ability to enter tissues, and final fate in vivo. Finally, we describe some strategies developed to overcome limitations of the "first-generation" liposomes, and liposome-based drugs on the market and in clinical trials.

  10. Firefly bioluminescent assay of ATP in the presence of ATP extractant by using liposomes. (United States)

    Kamidate, Tamio; Yanashita, Kenji; Tani, Hirofumi; Ishida, Akihiko; Notani, Mizuyo


    Liposomes containing phosphatidylcholine (PC) and cholesterol (Chol) were applied to the enhancer for firefly bioluminescence (BL) assay for ATP in the presence of cationic surfactants using as an extractant for the release of ATP from living cells. Benzalkonium chloride (BAC) was used as an ATP extractant. However, BAC seriously inhibited the activity of luciferase, thus resulting in the remarkable decrease in the sensitivity of the BL assay for ATP. On the other hand, we found that BAC was associated with liposomes to form cationic liposomes containing BAC. The association rate of BAC with liposomes was faster than that of BAC with luciferase. As a result, the inhibitory effect of BAC on luciferase was eliminated in the presence of liposomes. In addition, cationic liposomes thus formed enhanced BL emission. BL measurement conditions were optimized in terms of liposome charge type, liposome size, and total concentration of PC and Chol. ATP can be sensitively determined without dilution of analytical samples by using liposomes. The detection limit of ATP with and without liposomes was 100 amol and 25 fmol in aqueous ATP standard solutions containing 0.06% BAC, respectively. The method was applied to the determination of ATP in Escherichia coli extracts. The BL intensity was linear from 4 x 10(4) to 1 x 10(7) cells mL(-1) in the absence of liposomes. On the other hand, the BL intensity was linear from 4 x 10(3) to 4 x 10(6) cells mL(-1) in the presence of liposomes. The detection limit of ATP in E. coli extracts was improved by a factor of 10 via use of liposomes.

  11. Anchoring of self-assembled plasmid DNA/ anti-DNA antibody/cationic lipid micelles on bisphosphonate-modified stent for cardiovascular gene delivery

    Directory of Open Access Journals (Sweden)

    Ma G


    Full Text Available Guilei Ma,1,# Yong Wang,1,# Ilia Fishbein,2 Mei Yu,1 Linhua Zhang,1 Ivan S Alferiev,2 Jing Yang,1 Cunxian Song,1 Robert J Levy2 1Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China; 2Children's Hospital of Philadelphia, Abramson Research Building, Philadelphia, PA, USA #These authors contributed equally to this work Purpose: To investigate the anchoring of plasmid DNA/anti-DNA antibody/cationic lipid tri-complex (DAC micelles onto bisphosphonate-modified 316 L coronary stents for cardiovascular site-specific gene delivery. Methods: Stents were first modified with polyallylamine bisphosphonate (PAA-BP, thereby enabling the retention of a PAA-BP molecular monolayer that permits the anchoring (via vector-binding molecules of DAC micelles. DAC micelles were then chemically linked onto the PAA-BP-modified stents by using N-succinimidyl-3-(2-pyridyldithiol-propionate (SPDP as a crosslinker. Rhodamine-labeled DNA was used to assess the anchoring of DAC micelles, and radioactive-labeled antibody was used to evaluate binding capacity and stability. DAC micelles (encoding green fluorescent protein were tethered onto the PAA-BP-modified stents, which were assessed in cell culture. The presence of a PAA-BP molecular monolayer on the steel surface was confirmed by X-ray photoelectron spectroscopy and atomic force microscope analysis. Results: The anchoring of DAC micelles was generally uniform and devoid of large-scale patches of defects. Isotopic quantification confirmed that the amount of antibody chemically linked on the stents was 17-fold higher than that of the physical adsorbed control stents and its retention time was also significantly longer. In cell culture, numerous green fluorescent protein-positive cells were found on the PAA-BP modified stents, which demonstrated high localization and efficiency of gene delivery. Conclusion: The DAC micelle

  12. Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm.

    Directory of Open Access Journals (Sweden)

    Dong Dong

    Full Text Available Staphylococcus aureus and Pseudomonas aeruginosa are major pathogens in chronic rhinosinusitis (CRS and their biofilms have been associated with poorer postsurgical outcomes. This study investigated the distribution and anti-biofilm effect of cationic (+ and anionic (- phospholipid liposomes with different sizes (unilamellar and multilamellar vesicle, ULV and MLV respectively on S. aureus and P. aeruginosa biofilms.Specific biofilm models for S. aureus ATCC 25923 and P. aeruginosa ATCC 15692 were established. Liposomal distribution was determined by observing SYTO9 stained biofilm exposed to DiI labeled liposomes using confocal scanning laser microscopy, followed by quantitative image analysis. The anti-biofilm efficacy study was carried out by using the alamarBlue assay to test the relative viability of biofilm treated with various liposomes for 24 hours and five minutes.The smaller ULVs penetrated better than larger MLVs in both S. aureus and P. aeruginosa biofilm. Except that +ULV and -ULV displayed similar distribution in S. aureus biofilm, the cationic liposomes adhered better than their anionic counterparts. Biofilm growth was inhibited at 24-hour and five-minute exposure time, although the decrease of viability for P. aeruginosa biofilm after liposomal treatment did not reach statistical significance.The distribution and anti-biofilm effects of cationic and anionic liposomes of different sizes differed in S. aureus and P. aeruginosa biofilms. Reducing the liposome size and formulating liposomes as positively charged enhanced the penetration and inhibition of S. aureus and P. aeruginosa biofilms.

  13. Morphological Analysis of Effect of Metal Cations on Structural Stability of Phosphatidylcholine/Cholesterol Liposomes%金属阳离子影响卵磷脂-胆固醇脂质体结构稳定性的形态学分析

    Institute of Scientific and Technical Information of China (English)

    张诗音; 肖启; 寇贝贝; 朱杰; 王国栋


    This article showed primary study and analyses on the impacts done by the metal cations to the stability of liposomes which are made of cholesterol and lecithin.Using images given by atomic force mi-croscope,the interaction mechanism in nanoscale was investigated and conducted by methods combining basic principles of thermodynamics,electrostatics and colloid science.The study illustrated that the pro-portion of cholesterol significantly influenced the fluidity and stability of the lipid membrane.Meanwhile, it also indicated that the cations could influence these liposomes both on the ability of assembling them-selves and on the thermodynamic stability by interactions with polar heads of the phospholipid molecules.%以胆固醇和卵磷脂二元脂质体为研究模型,采用原子力显微镜显微技术,结合基本的热力学、静电力学与胶体科学原理,从微观成像的结果追溯和推测更微观层面上的作用机制,对金属阳离子对脂质体结构稳定性形态学特征进行了初步分析。研究发现,胆固醇的含量对脂膜的流动性和稳定性有着明显的影响,而金属阳离子可与磷脂分子极性头基发生作用,从而影响到脂质体的组装能力以及脂质体胶体系统的热力学稳定性。

  14. Lipid rafts-mediated endocytosis and physiology-based cell membrane traffic models of doxorubicin liposomes. (United States)

    Li, Yinghuan; Gao, Lei; Tan, Xi; Li, Feiyang; Zhao, Ming; Peng, Shiqi


    The clathrin-mediated endocytosis is likely a major mechanism of liposomes' internalization. A kinetic approach was used to assess the internalization mechanism of doxorubicin (Dox) loaded cationic liposomes and to establish physiology-based cell membrane traffic mathematic models. Lipid rafts-mediated endocytosis, including dynamin-dependent or -independent endocytosis of noncaveolar structure, was a dominant process. The mathematic models divided Dox loaded liposomes binding lipid rafts (B) into saturable binding (SB) and nonsaturable binding (NSB) followed by energy-driven endocytosis. The intracellular trafficking demonstrated early endosome-late endosome-lysosome or early/late endosome-cytoplasm-nucleus pathways. The three properties of liposome structures, i.e., cationic lipid, fusogenic lipid, and pegylation, were investigated to compare their contributions to cell membrane and intracellular traffic. The results revealed great contribution of cationic lipid DOTAP and fusogenic lipid DOPE to cell membrane binding and internalization. The valid Dox in the nuclei of HepG2 and A375 cells treated with cationic liposomes containing 40mol% of DOPE were 1.2-fold and 1.5-fold higher than that in the nuclei of HepG2 and A375 cells treated with liposomes containing 20mol% of DOPE, respectively, suggesting the dependence of cell type. This tendency was proportional to the increase of cell-associated total liposomal Dox. The mathematic models would be useful to predict intracellular trafficking of liposomal Dox.

  15. Synthesis and characterization of homopolymers bearing acid-cleavable cationic side-chains for pH-modulated release of DNA. (United States)

    Xu, Zhangyan; Lai, Junping; Tang, Rupei; Ji, Weihang; Wang, Rui; Wang, Jun; Wang, Chun


    A new type of homopolymers, PMAOE, bearing acid-cleavable cationic side-chains is synthesized and characterized. PMAOE is obtained via free radical polymerization, and they could efficiently bind and condense plasmid DNA at neutral pH. The strength of DNA binding is dependent on the length of PMAOE chains. NMR analysis reveals that hydrolysis of the ortho ester group of PMAOE follows an exocyclic mechanism and the rate of hydrolysis is much accelerated at mildly acidic pH, leading to accelerated disruption of polyplexes and release of DNA in mildly acidic environment. PMAOE is not toxic to cultured NIH 3T3 and COS-7 cells measured by MTT. This study demonstrates a unique mechanism of achieving pH-modulated binding and release of DNA from polymers with potential applications for gene delivery.

  16. Impact of atomization technique on the stability and transport efficiency of nebulized liposomes harboring different surface characteristics. (United States)

    Lehofer, Bernhard; Bloder, Florian; Jain, Pritesh P; Marsh, Leigh M; Leitinger, Gerd; Olschewski, Horst; Leber, Regina; Olschewski, Andrea; Prassl, Ruth


    The objective of this study was to evaluate the impact of nebulization on liposomes with specific surface characteristics by applying three commercially available inhaler systems (air-jet, ultrasonic and vibrating-mesh). Conventional liposome formulations composed of phosphatidylcholine and cholesterol were compared to sterically stabilized PEGylated liposomes and cationic polymer coated liposomes.Liposomes of similar size (between 140 and 165 nm in diameter with polydispersity indices atomization process, while polymer coated and especially positively charged liposomes showed enhanced leakage. The release rates for the hydrophilic model drug system were highest for the vibrating-mesh nebulizers regardless of the surface characteristics of the liposomes (increasing from 10% to 20% and 50% for the conventional, PEGylated and positively charged formulations, respectively). In view of surface modified liposomes our data suggest that drug delivery via nebulization necessitates the finding of a compromise between nebulizer efficiency, formulation stability and drug release profile to accomplish the development of tailored formulations suitable for advanced inhalation therapy.

  17. Interaction of spermine with dimyristoyl-L-alpha-phosphatidyl-DL-glycerol multilamellar liposomes. (United States)

    Stevanato, R; Wisniewska, A; Momo, F


    Polycationic spermine interacts with the negative phosphate group of dimyristoylphosphatidylglycerol multilamellar liposomes, forming a positively charged shell around the vesicle surface. An association constant of (2.15+/-0.45) x 10(3) M(-1) between spermine and the phospholipid groups in liposomes has been evaluated by a new and rapid enzymatic method. ESR spectra show that the effects of this polycation on liposomes are substantially different from those of cations like Ca2+ and Mg2+ and confirm the ability of spermine to induce liposome aggregation and not fusion.

  18. Interactions of a Photochromic Spiropyran with Liposome Model Membranes

    KAUST Repository

    Jonsson, Fabian


    The interactions between anionic or zwitterionic liposomes and a water-soluble, DNA-binding photochromic spiropyran are studied using UV/vis absorption and linear dichroism (LD) spectroscopy. The spectral characteristics as well as the kinetics of the thermal isomerization process in the absence and presence of the two different liposome types provide information about the environment and whether or not the spiropyran resides in the liposome membrane. By measuring LD on liposomes deformed and aligned by shear flow, further insight is obtained about interaction and binding geometry of the spiropyran at the lipid membranes. We show that the membrane interactions differ between the two types of liposomes used as well as the isomeric forms of the spiropyran photoswitch. © 2013 American Chemical Society.

  19. Protein antigen adsorption to the DDA/TDB liposomal adjuvant

    DEFF Research Database (Denmark)

    Hamborg, Mette; Jorgensen, Lene; Bojsen, Anders Riber;


    Understanding the nature of adjuvant-antigen interactions is important for the future design of efficient and safe subunit vaccines, but remains an analytical challenge. We studied the interactions between three model protein antigens and the clinically tested cationic liposomal adjuvant composed...

  20. Induction of a Th1 immune response and suppression of IgE via immunotherapy with a recombinant hybrid molecule encapsulated in liposome-protamine-DNA nanoparticles in a model of experimental allergy. (United States)

    Nouri, Hamid Reza; Varasteh, Abdolreza; Jaafari, Mahmoud Reza; Davies, Janet M; Sankian, Mojtaba


    Liposome-protamine-DNA nanoparticles (LPD) are safe, effective, and non-toxic adjuvants that induce Th1-like immune responses. We hypothesized that encapsulation of allergens into liposomes could be an appropriate option for immunotherapy. The present study evaluated the immunotherapeutic potential of a recombinant hybrid molecule (rHM) encapsulated in LPD nanoparticles in a murine model of Chenopodium album allergy. BALB/c mice were sensitized with the allergen in alum, and the immunotherapy procedure was performed by subcutaneous injections of LPD-rHM, rHM, or empty LPD at weekly intervals. Sensitized mice developed a Th2-biased immune response characterized by strong specific IgG1 and IgE production, IL-4, and the transcription factor GATA3 in spleen cell cultures. Treatment with the LPD-rHM resulted in a reduction in IgE and a marked increase in IgG2a. The LPD-rHM induced allergen-specific responses with relatively high interferon-gamma production, as well as expression of the transcription factor T-bet in stimulated splenocytes. In addition, lymphoproliferative responses were higher in the LPD-rHM-treated mice than in the other groups. Removal of the nanoparticles from the rHM resulted in a decrease in the allergen's immunogenicity. These results indicate that the rHM complexed with LPD nanoparticles has a marked suppressive effect on the allergic response and caused a shift toward a Th1 pathway.

  1. Assembly of liposomes controlled by triple helix formation. (United States)

    Jakobsen, Ulla; Vogel, Stefan


    Attachment of DNA to the surface of different solid nanoparticles (e.g., gold and silica nanoparticles) is well established, and a number of DNA-modified solid nanoparticle systems have been applied to thermal denaturation analysis of oligonucleotides. We report herein the noncovalent immobilization of oligonucleotides on the surface of soft nanoparticles (i.e., liposomes) and the subsequent controlled assembly by DNA triple helix formation. The noncovalent approach avoids tedious surface chemistry and necessary purification procedures and can simplify and extend the available methodology for the otherwise difficult thermal denaturation analysis of complex triple helical DNA assemblies. The approach is based on lipid modified triplex forming oligonucleotides (TFOs) which control the assembly of liposomes in solution in the presence of single- or double-stranded DNA targets. The thermal denaturation analysis is monitored by ultraviolet spectroscopy at submicromolar concentrations and compared to regular thermal denaturation assays in the absence of liposomes. We report on triplex forming oligonucleotides (TFOs) based on DNA and locked nucleic acid (LNA)/DNA hybrid building blocks and different target sequences (G or C-rich) to explore the applicability of the method for different triple helical assembly modes. We demonstrate advantages and limitations of the approach and show the reversible and reproducible formation of liposome aggregates during thermal denaturation cycles. Nanoparticle tracking analysis (NTA) and dynamic light scattering (DLS) show independently from ultraviolet spectroscopy experiments the formation of liposome aggregates.

  2. Liposomal paclitaxel formulations. (United States)

    Koudelka, Stěpán; Turánek, Jaroslav


    Over the past three decades, taxanes represent one of the most important new classes of drugs approved in oncology. Paclitaxel (PTX), the prototype of this class, is an anti-cancer drug approved for the treatment of breast and ovarian cancer. However, notwithstanding a suitable premedication, present-day chemotherapy employing a commercial preparation of PTX (Taxol®) is associated with serious side effects and hypersensitivity reactions. Liposomes represent advanced and versatile delivery systems for drugs. Generally, both in vivo mice tumor models and human clinical trials demonstrated that liposomal PTX formulations significantly increase a maximum tolerated dose (MTD) of PTX which outperform that for Taxol®. Liposomal PTX formulations are in various stages of clinical trials. LEP-ETU (NeoPharm) and EndoTAG®-1 (Medigene) have reached the phase II of the clinical trials; Lipusu® (Luye Pharma Group) has already been commercialized. Present achievements in the preparation of various liposomal formulations of PTX, the development of targeted liposomal PTX systems and the progress in clinical testing of liposomal PTX are discussed in this review summarizing about 30 years of liposomal PTX development.

  3. Evaluation of effects of bivalent cations on the formation of purine-rich triple-helix DNA by ESI-FT-MS. (United States)

    Wan, Cuihong; Cui, Meng; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying


    The GGA triplet repeats are widely dispersed throughout eukaryotic genomes. (GGA)n or (GGT)n oligonucleotides can interact with double-stranded DNA containing (GGA:CCT)n to form triple-stranded DNA. The effects of 8 divalent metal ions (3 alkaline-earth metals and 5 transition metals) on formation of these purine-rich triple-helix DNA were investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-MS). In the absence of metal ions, no triplex but single-strand, duplex, and purine homodimer ions were observed in mass spectra. The triple-helix DNA complexes were observed only in the presence of certain divalent ions. The effects of different divalent cations on the formation of purine-rich triplexes were compared. Transition-metal ions, especially Co(2+) and Ni(2+), significantly boost the formation of triple-helix DNA, whereas alkaline-earth metal ions have no positive effects on triplex formation. In addition, Ba(2+) is notably beneficial to the formation of homodimer instead of triplex.

  4. Internal charge transfer based ratiometric interaction of anionic surfactant with calf thymus DNA bound cationic surfactant: Study I (United States)

    Mukherjee, Abhijit; Chaudhuri, Tandrima; Moulik, Satya Priya; Banerjee, Manas


    Cetyl trimethyl ammonium bromide (CTAB) binds calf thymus (ct-) DNA like anionic biopolymers electrostatically and established equilibrium both in the ground as well as in excited state in aqueous medium at pH 7. Anionic sodium dodecyl sulfate (SDS) does not show even hydrophobic interaction with ct-DNA at low concentration. On contrary, SDS can establish well defined equilibrium with DNA bound CTAB in ground state where the same CTAB-DNA isosbestic point reappears. First report of internal charge transfer (ICT) based binding of CTAB with ct-DNA as well as ICT based interaction of anionic SDS with DNA bound CTAB that shows dynamic quenching contribution also. The reappearance of anodic peak and slight increase in cathodic peak current with increasing concentration (at lower range) of anionic SDS, possibly reflect the release of CTAB from DNA bound CTAB by SDS.

  5. Internal charge transfer based ratiometric interaction of anionic surfactant with calf thymus DNA bound cationic surfactant: Study I. (United States)

    Mukherjee, Abhijit; Chaudhuri, Tandrima; Moulik, Satya Priya; Banerjee, Manas


    Cetyl trimethyl ammonium bromide (CTAB) binds calf thymus (ct-) DNA like anionic biopolymers electrostatically and established equilibrium both in the ground as well as in excited state in aqueous medium at pH 7. Anionic sodium dodecyl sulfate (SDS) does not show even hydrophobic interaction with ct-DNA at low concentration. On contrary, SDS can establish well defined equilibrium with DNA bound CTAB in ground state where the same CTAB-DNA isosbestic point reappears. First report of internal charge transfer (ICT) based binding of CTAB with ct-DNA as well as ICT based interaction of anionic SDS with DNA bound CTAB that shows dynamic quenching contribution also. The reappearance of anodic peak and slight increase in cathodic peak current with increasing concentration (at lower range) of anionic SDS, possibly reflect the release of CTAB from DNA bound CTAB by SDS.

  6. Relationship between the adjuvant and cytotoxic effects of the positive charges and polymerization in liposomes. (United States)

    Gasparri, Julieta; Speroni, Lucía; Chiaramoni, Nadia Silvia; del Valle Alonso, Silvia


    Vaccine development today encounters a main obstacle, which is the need for effective adjuvants suitable for clinical trials. Aluminum salts, discovered 70 years ago and, very recently, MF59, are the only types of adjuvants currently used in vaccines licensed by the U.S. Food and Drug Administration. Liposomes represent an alternative approach to vaccine adjuvants. In this article, we describe the inflammatory response and biological effect of polymerization and the addition of positive charges in liposome formulations. Nonpolymerized cationic (NP(+)) liposomes significantly reduce metabolism in Vero cells after 24 hours. Correspondingly, both NP(+) and polymerized cationic (P(+)) liposomes reduce cell viability following a 48-hour incubation. Similar results were obtained with cells from the peritoneal cavities of mice. Paradoxically, those liposomes that presented clearly cytostatic or cytotoxic effects in vitro stimulated metabolism and had a mitogenic effect in vivo. Finally, the adjuvant effect was tested by immunization in BALB/c mice. The major effect was obtained with NP(+) liposomes. Accordingly, we also demonstrated that NP(+) liposomes injected into the dermis produced an outstanding inflammatory reaction, showing the histopathological characteristics of an inoculation granuloma. Thus, positive charge would play an important role in the immunoadjuvant effect of liposomes by conferring them cytotoxic capacity.

  7. 阳离子脂质体介导增强型绿色荧光蛋白质粒转染骨骼肌卫星细胞%Cationic liposome-mediated enhanced green fluorescent protein plasmid transferred into skeletal muscle satellite cells

    Institute of Scientific and Technical Information of China (English)

    许志锋; 李敬来; 韩振; 冯钢; 任明明


    BACKGROUND:Skeletal muscle satel ite cells are totipotential stem cells with multi-directional differentiation potential, locate in skeletal muscle interstitium, have a certain tolerance to ischemia and hypoxia, and are important cells in stem cellengineering. OBJECTIVE:To establish a thrifty, convenient culture procedure and create a simple, efficient method to transfect skeletal muscle satel ite cells, and investigate genetic expression after the transfection for cellular cardiomyoplasty. METHODS:Skeletal muscle satel ite cells were isolated from rabbit thigh and cultured. Their growth curves were determined by CKK-8 method. Grouped by different proportions of the plasmid and liposome, skeletal muscle satel ite cells were transfered by the enhanced green fluorescent protein plasmid based on liposome. After transfection, the efficiency and character of target genetic expression was determined. RESULTS AND CONCLUSION:Satel ite cells were isolated, cultured and transfected successful y. In suitable ratio of plasmid and liposomes, the transfection efficiency reached up to above 35%. The target protein was expressed within 12 hours after transfection, reached maximum in 48-72 hours and decreased gradual y after one week. The expression stil could be observed two weeks latter. The enhanced green fluorescent protein plasmid conducted by cationic liposome could be transfered into skeletal muscle satel ite cells efficiently. The transfection efficiency was correlated closely to the ratio of plasmid and lipofectamine. The change of target gene expression depended on time.%背景:骨骼肌卫星细胞是一种具有多向分化能力的全能干细胞,存在于骨骼肌间质中,对缺血、缺氧有一定的耐受力,是干细胞工程中重要来源细胞。  目的:为联合基因工程细胞心肌成形治疗初步探讨较为简便、经济的骨骼肌卫星细胞体外培养方法,建立一种简单、高效的转染骨骼肌卫星细胞的方法及

  8. Physical and Oxidative Stability of Uncoated and Chitosan-Coated Liposomes Containing Grape Seed Extract

    Directory of Open Access Journals (Sweden)

    Jochen Weiss


    Full Text Available Polyphenol-rich grape seed extract (0.1 w/w% was incorporated in liposomes (1 w/w% soy lecithin by high pressure homogenization (22,500 psi and coated with chitosan (0.1 w/w%. Primary liposomes and chitosan-coated secondary liposomes containing grape seed extract showed good physical stability during 98 days of storage. Most of the polyphenols were incorporated in the shell of the liposomes (85.4%, whereas only 7.6% of the polyphenols of grape seed extract were located in the interior of the liposomes. Coating with chitosan did not change the polyphenol content in the liposomes (86.6%. The uncoated liposomes without grape seed extract were highly prone to lipid oxidation. The cationic chitosan coating, however, improved the oxidative stability to some extent, due to its ability to repel pro-oxidant metals. Encapsulated grape seed extract showed high antioxidant activity in both primary and secondary liposomes, which may be attributed to its polyphenol content. In conclusion, the best chemical stability of liposomes can be achieved using a combination of grape seed extract and chitosan.

  9. Physical and oxidative stability of uncoated and chitosan-coated liposomes containing grape seed extract. (United States)

    Gibis, Monika; Rahn, Nina; Weiss, Jochen


    Polyphenol-rich grape seed extract (0.1 w/w%) was incorporated in liposomes (1 w/w% soy lecithin) by high pressure homogenization (22,500 psi) and coated with chitosan (0.1 w/w%). Primary liposomes and chitosan-coated secondary liposomes containing grape seed extract showed good physical stability during 98 days of storage. Most of the polyphenols were incorporated in the shell of the liposomes (85.4%), whereas only 7.6% of the polyphenols of grape seed extract were located in the interior of the liposomes. Coating with chitosan did not change the polyphenol content in the liposomes (86.6%). The uncoated liposomes without grape seed extract were highly prone to lipid oxidation. The cationic chitosan coating, however, improved the oxidative stability to some extent, due to its ability to repel pro-oxidant metals. Encapsulated grape seed extract showed high antioxidant activity in both primary and secondary liposomes, which may be attributed to its polyphenol content. In conclusion, the best chemical stability of liposomes can be achieved using a combination of grape seed extract and chitosan.


    Directory of Open Access Journals (Sweden)

    Sipai Altaf Bhai. M


    Full Text Available Drug development technologies constituting innovations at the formulation end in the Pharmaceutical industry has received a lot of attention in past two decades. Drug delivery as an opportunity to extend product life cycles has indeed proved its place in the market with significant advantages of therapeutic gains as well as commercial success. Carrier technology offers an intelligent approach for drug delivery by coupling the drug to a carrier particle such as liposomes, microspheres, nanoparticles, etc. which modulates the release and absorption characteristics of the drug. Liposomes are well known to alter the bio distribution of entrapped substances by protecting the enclosed material. They are widely used as vehicles to target the specific molecule to specific organ. During the last few decades liposomes have attracted great interest as ideal models for biological membranes as well as efficient carriers for drugs, diagnostics, vaccines, nutrients and other bioactive agents. Many techniques and methodologies have involved for the manufacture of liposomes, on small and large scales, since their introduction to the scientific community around 40 years ago. This article intends to provide an overview of the advantages and disadvantages of liposome preparation methods,their stability, bio distribution and their uses as drug delivery systems. The conventional method of preparing liposomes is basically for the multilamellar vesicles (MLVs. However, other methods are used to reduce the size of these MLVs to small unilamellar vesicles (SUVs so as to increase their plasma lifetime and consequently increase the possibility of achieving greater tissue localisation. Some of these methods of size reduction are sonication and high pressure extrusion. Each of these methods has its own advantages and disadvantages. Large unilamellar vesicles (LUVs, on the other hand, are prepared mainly by detergent removal method and reverse phase extrusion technique. There

  11. How does the spacer length of cationic gemini lipids influence the lipoplex formation with plasmid DNA? Physicochemical and biochemical characterizations and their relevance in gene therapy. (United States)

    Muñoz-Úbeda, Mónica; Misra, Santosh K; Barrán-Berdón, Ana L; Datta, Sougata; Aicart-Ramos, Clara; Castro-Hartmann, Pablo; Kondaiah, Paturu; Junquera, Elena; Bhattacharya, Santanu; Aicart, Emilio


    Lipoplexes formed by the pEGFP-C3 plasmid DNA (pDNA) and lipid mixtures containing cationic gemini surfactant of the 1,2-bis(hexadecyl dimethyl ammonium) alkanes family referred to as C16CnC16, where n=2, 3, 5, or 12, and the zwitterionic helper lipid, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) have been studied from a wide variety of physical, chemical, and biological standpoints. The study has been carried out using several experimental methods, such as zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), cryo-TEM, gene transfection, cell viability/cytotoxicity, and confocal fluorescence microscopy. As reported recently in a communication (J. Am. Chem. Soc. 2011, 133, 18014), the detailed physicochemical and biological studies confirm that, in the presence of the studied series lipid mixtures, plasmid DNA is compacted with a large number of its associated Na+ counterions. This in turn yields a much lower effective negative charge, qpDNA−, a value that has been experimentally obtained for each mixed lipid mixture. Consequently, the cationic lipid (CL) complexes prepared with pDNA and CL/DOPE mixtures to be used in gene transfection require significantly less amount of CL than the one estimated assuming a value of qDNA−=−2. This drives to a considerably lower cytotoxicity of the gene vector. Depending on the CL molar composition, α, of the lipid mixture, and the effective charge ratio of the lipoplex, ρeff, the reported SAXS data indicate the presence of two or three structures in the same lipoplex, one in the DOPE-rich region, other in the CL-rich region, and another one present at any CL composition. Cryo-TEMand SAXS studies with C16CnC16/DOPE-pDNA lipoplexes indicate that pDNA is localized between the mixed lipid bilayers of lamellar structures within a monolayer of ∼2 nm. This is consistent with a highly compacted supercoiled pDNA conformation compared with that of linear DNA. Transfection studies were carried out

  12. Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition

    DEFF Research Database (Denmark)

    Foged, Camilla; Arigita, Carmen; Sundblad, Anne;


    how the interaction of antigen-containing liposomes with DCs was affected by the bilayer composition. Monocyte-derived human DCs and murine bone marrow-derived DCs were analysed and compared upon in vitro incubation with liposomes by flow cytometry and confocal microscopy. Anionic liposomes...... with a bilayer composition of phosphatidylcholine, cholesterol and phosphatidylglycerol or phosphatidylserine interacted with a limited fraction of the total DC population in case of both DC types. Inclusion of mannosylated phosphatidylethanolamine (Man-PE) for targeting to the mannose receptor (MR) increased...... the interaction of negatively charged liposomes with both human and murine DCs. This increase could be blocked in human DCs by addition of the polysaccharide mannan indicating that uptake might be mediated by the mannose receptor. Cationic liposomes containing trimethyl ammonium propane interacted with a very...

  13. Bioreactor droplets from liposome-stabilized all-aqueous emulsions (United States)

    Dewey, Daniel C.; Strulson, Christopher A.; Cacace, David N.; Bevilacqua, Philip C.; Keating, Christine D.


    Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.

  14. Potential antitumor activity of novel DODAC/PHO-S liposomes (United States)

    Luna, Arthur Cássio de Lima; Saraiva, Greice Kelle Viegas; Filho, Otaviano Mendonça Ribeiro; Chierice, Gilberto Orivaldo; Neto, Salvador Claro; Cuccovia, Iolanda Midea; Maria, Durvanei Augusto


    In recent studies, we showed that synthetic phosphoethanolamine (PHO-S) has a great potential for inducing cell death in several tumor cell lines without damage to normal cells. However, its cytotoxic effect and selectivity against tumor cells could increase with encapsulation in cationic liposomes, such as dioctadecyldimethylammonium chloride (DODAC), due to electrostatic interactions between these liposomes and tumor cell membranes. Our aim was to use cationic liposomes to deliver PHO-S and to furthermore maximize the therapeutic effect of this compound. DODAC liposomes containing PHO-S (DODAC/PHO-S), at concentrations of 0.3–2.0 mM, prepared by ultrasonication, were analyzed by scanning electron microscopy (SEM) and dynamic light scattering. The cytotoxic effect of DODAC/PHO-S on B16F10 cells, Hepa1c1c7 cells, and human umbilical vein endothelial cells (HUVECs) was assessed by MTT assay. Cell cycle phases of B16F10 cells were analyzed by flow cytometry and the morphological changes by SEM, after treatment. The liposomes were spherical and polydisperse in solution. The liposomes were stable, presenting an average of ∼50% of PHO-S encapsulation, with a small reduction after 40 days. DODAC demonstrated efficient PHO-S delivery, with the lowest values of IC50% (concentration that inhibits 50% of the growth of cells) for tumor cells, compared with PHO-S alone, with an IC50% value of 0.8 mM for B16F10 cells and 0.2 mM for Hepa1c1c7 cells, and without significant effects on endothelial cells. The Hepa1c1c7 cells showed greater sensitivity to the DODAC/PHO-S formulation when compared to B16F10 cells and HUVECs. The use of DODAC/PHO-S on B16F10 cells induced G2/M-phase cell cycle arrest, with the proportion significantly greater than that treated with PHO-S alone. The morphological analysis of B16F10 cells by SEM showed changes such as “bleb” formation, cell detachment, cytoplasmic retraction, and apoptotic bodies after DODAC/PHO-S treatment. Cationic liposomal

  15. Data for stable formulation of steroid hormone receptor-targeted liposomes for cancer therapeutics (United States)

    Sharma, Priyanka; Banerjee, Rajkumar; Narayan, Kumar Pranav


    A detailed description of steroid hormone ligand containing liposomes and their stability has been given. Liposomes were complexed with β-gal DNA and used to transfect cancer and non-cancer cells. The stability of the liposomes and lipoplexes were analysed using dynamic light scattering and DNA-binding gel images. The formulations were used to assess the delivery of anticancer gene, p53 in cancer cells. The dataset consists of DNA-binding gel images, transfection, cytotoxicity and reverse transcriptase PCR images. PMID:27006974

  16. Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium

    Directory of Open Access Journals (Sweden)

    Ma YF


    amount of negative charges in fluid liposomes reduces fluid liposomes-bacteria fusion when tested without calcium cations due to electric repulsion, but addition of calcium cations brings the fusion level of fluid liposomes to similar or higher levels. Among the negative phospholipids examined, DMPA gave the highest degree of fusion, DMPS and DMPG had intermediate fusion levels, and PI resulted in the lowest degree of fusion. Furthermore, the fluid liposomal encapsulated tobramycin was prepared, and the bactericidal effect occurred more quickly when bacteria were cultured with liposomal encapsulated tobramycin. Conclusion: The bactericidal potency of fluid liposomes is dramatically enhanced with respect to fusion ability when the fusogenic lipid, DOPE, is included. Regardless of changes in liposome composition, fluid liposomes-bacterium fusion is universally enhanced by calcium ions. The information obtained in this study will increase our understanding of fluid liposomal action mechanisms, and help in optimizing the new generation of fluid liposomal formulations for the treatment of pulmonary bacterial infections. Keywords: liposomes, fusion, bacteria, Pseudomonas aeruginosa, lipid composition

  17. Translational siRNA therapeutics using liposomal carriers: prospects & challenges. (United States)

    Bhavsar, Dhiraj; Subramanian, Krishnakumar; Sethuraman, Swaminathan; Krishnan, Uma Maheswari


    Gene silencing has emerged as a promising strategy for molecular therapy of various malignant, viral, hereditary and inflammatory disorders. However, its translation from lab to clinic is yet to gain momentum due to the numerous problems that plague its development. A multi-functional siRNA delivery system with desired properties such as enhanced immune compatibility, target specificity, high cell uptake and excellent silencing efficiency is required to understand the challenges involved in the selection and modification of small interfering RNA (siRNA), factors influencing the complexation process and the response of the biological system to the formulation. Liposomes have been used as delivery systems due to its versatility in handling different types of drugs, tunable size, charge and surface functionalities that improve its effectiveness in vivo. This review highlights the challenges involved in gene silencing and describes the progression of liposomal systems used in gene silencing. The rationale in introducing chemical modifications in siRNA, synthesizing designer cationic lipids and evolution of hybrid liposomal systems has been elaborated, emphasizing their merits and short-comings. Finally, a description of the current state of clinical trials involving liposomal formulations has been included to provide an unbiased perspective of the future of liposomal systems and gene silencing tools as therapeutic tools.

  18. Temoporfin-loaded liposomes

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Freisleben, Ines; Steiniger, Frank;


    some problems associated with the commercial formulation Foscan where the drug is dissolved in a mixture of water-free ethanol and propylene glycol. The present study focuses on the physicochemical characterization of different liposome formulations with special emphasis on the influence of drug...

  19. Epizone: Interlaboratory Ring Trial to Compare Dna Transfection Efficiencies

    DEFF Research Database (Denmark)

    Dory, Daniel; Albina, Emmanuel; Kwiatek, Olivier

    Chemical-based transfection of DNA into cultured cells is routinely used to study for example viral or cellular gene functions involved in virus replication, to analyse cellular defence mechanisms or develop specific strategies to interfere with virus replication. Other applications include rescue...... of viruses by reverse genetics and/or generation of mutated viruses. A large number of transfection chemicals like calcium phospate, branched organic compounds, liposomes, cationic polymers etc. are available on the market which are used by different laboratories for different cell lines. To obtain...

  20. A Rigorous Theory of Remote Loading of Drugs into Liposomes: Transmembrane Potential and Induced pH-Gradient Loading and Leakage of Liposomes (United States)

    Ceh; Lasic


    Many drugs are successfully loaded into preformed liposomes by using various gradients and transmembrane potential. Several experimental breakthroughs, however, have not been paralleled by theoretical understanding of the processes. Recently, we have developed a rigorous treatment of loading of weak acids and bases into liposomes. The model is based on equilibration of chemical potentials of permeable neutral species. Charged molecules are not allowed to permeate the membrane. Although this assumption is quite reasonable and experimental data fit the theoretical predictions rather well, we have extended the model of liposome loading. In the expanded model, terms which allow leakage of protons, buildup of the transmembrane pH gradient, an antiport exchange of various cations with protons, and leakage of other molecules from or into liposomes are added to the basic model.

  1. Construction of murine model of TAO by immunification with recombinant extracellular domain of human thyrotropin receptor in cationic liposomes%脂质体包裹的促甲状腺激素受体胞外段基因重组质粒免疫法构建小鼠甲状腺相关眼病动物模型的可行性

    Institute of Scientific and Technical Information of China (English)

    杨于力; 罗清礼; 吕红彬


    照组、空质粒注射组和脂质体注射组,差异均有统计学意义(均P<0.05).空白对照组、脂质体注射组、空质粒注射组和重组质粒注射组小鼠血清TT4质量浓度分别为(7.75±1.00)、(7.96±0.76)、(6.76±1.10)和(4.43±2.88) μg/dl,TSH质量浓度分别为(6.36±2.58)、(4.83±3.96)、(6.63±1.71)和(1.60±1.76) ng/ml,总体比较差异均有统计学意义(F=7.150,P<0.001;F=5.521,P<0.01),其中重组质粒注射组小鼠血清中TT4和TSH质量浓度均明显低于空白对照组、脂质体注射组、空质粒注射组,差异均有统计学意义(均P<0.05).组织病理学检查显示,6只重组质粒注射组小鼠甲状腺出现淋巴细胞浸润,15只眼小鼠眼眶组织出现眼眶内脂肪组织增生、淋巴细胞及肥大细胞浸润、透明质酸沉积以及眼外肌肌纤维肿胀、变性和断裂,并伴有炎性细胞浸润.结论 采用脂质体包裹的TSHR胞外段基因重组质粒免疫同系雌性BALB/c小鼠建立TAO动物模型是一种可行、有效的方法,该模型与人TAO的病理组织学特征相似,成模率高.%Background Thyroid-associated ophthalmopathy (TAO) is a kind of clinically common and incurable ocular disease,and its incidence is at top place.The etiology and pathologic mechanism of TAO are still unknown because of shortness of replicative animal models and difficulty to acquire the ocular tissues in the early stage of the disease.To better understand the pathogenesis of TAO and investigate effective treatable measures, an appropriate animal model should be developed.Objective This study was to immunize female BALB/c mice with the recombinant plasmid of human thyroid-stimulating hormone receptor (TSHR) extracellular domain in cationic liposomes for the establishement of TAO models.Methods Thirty-two 6-to 8-week-old female BALB/c mice were randomly assigned to four groups according to computer random allocation.pcDNA3.1 +/hTSHR289 of 100 μg in an adjuvant cationic liposomes was injected via anterior

  2. Effects of Liposomes Charge on Extending Sciatic Nerve Blockade of N-ethyl Bromide of Lidocaine in Rats (United States)

    Yin, Qinqin; Ke, Bowen; Chen, Xiaobing; Guan, Yikai; Feng, Ping; Chen, Guo; Kang, Yi; Zhang, Wensheng; Nie, Yu


    N-methyl bromide of lidocaine (QX-314) is a potential local anaesthetic with compromised penetration through cell membranes due to its obligated positive charge. Liposomes have been widely used for drug delivery with promising efficacy and safety. Therefore we investigated the local anaesthetic effects and tissue reactions of QX-314 in combination with anionic, cationic or neutral liposomes in rat sciatic nerve block model, and explored the effects of these liposomes on cellular entry of QX-314 in human embryonic kidney 293 cells. The results demonstrated that anionic liposomes substantially prolonged the duration of sensory (25.7 ± 8.3 h) and motor (41.4 ± 6.1 h) blocks of QX-314, while cationic and neutral ones had little effects. Tissue reactions from QX-314 with anionic liposomes were similar to those with commonly used local anaesthetic bupivacaine. Consistent with in vivo results, the anionic liposomes produced the greatest promotion of cellular entry of QX-314 in a time-dependent manner. In conclusion, ultra-long lasting nerve blocks were achieved by a mixture of QX-314 and anionic liposomes with a satisfactory safety profile, indicating a potential approach to improve postoperative pain management. The liposome-induced enhancement in cellular uptake of QX-314 may underlie the in vivo effects.

  3. Selective Delivery of an Anticancer Drug with Aptamer-Functionalized Liposomes to Breast Cancer Cells in Vitro and in Vivo. (United States)

    Xing, Hang; Tang, Li; Yang, Xujuan; Hwang, Kevin; Wang, Wendan; Yin, Qian; Wong, Ngo Yin; Dobrucki, Lawrence W; Yasui, Norio; Katzenellenbogen, John A; Helferich, William G; Cheng, Jianjun; Lu, Yi


    Selective targeting of cancer cells is a critical step in cancer diagnosis and therapy. To address this need, DNA aptamers have attracted significant attention as possible targeting ligands. However, while their use in targeting cancer cells in vitro has been reported, their effectiveness has rarely been established in vivo. Here we report the development of a liposomal drug delivery system for targeted anticancer chemotherapy. Liposomes were prepared containing doxorubicin as a payload, and functionalized with AS1411, a DNA aptamer with strong binding affinity for nucleolin. AS1411 aptamer-functionalized liposomes increased cellular internalization and cytotoxicity to MCF-7 breast cancer cells as compared to non-targeting liposomes. Furthermore, targeted liposomal doxorubicin improved antitumor efficacy against xenograft MCF-7 breast tumors in athymic nude mice, attributable to their enhanced tumor tissue penetration. This study suggests that AS1411 aptamer-functionalized liposomes can recognize nucleolin overexpressed on MCF-7 cell surface, and therefore enable drug delivery with high specificity and selectivity.

  4. Boronated liposome development and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M.F. [Univ. of California, Los Angeles, CA (United States)


    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  5. pH and reduction dual-responsive dipeptide cationic lipids with α-tocopherol hydrophobic tail for efficient gene delivery. (United States)

    Liu, Qiang; Su, Rong-Chuan; Yi, Wen-Jing; Zheng, Li-Ting; Lu, Shan-Shan; Zhao, Zhi-Gang


    A series of tocopherol-based cationic lipid 3a-3f bearing a pH-sensitive imidazole moiety in the dipeptide headgroup and a reduction-responsive disulfide linkage were designed and synthesized. Acid-base titration of these lipids showed good buffering capacities. The liposomes formed from 3 and co-lipid 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) could efficiently bind and condense DNA into nanoparticles. Gel binding and HPLC assays confirmed the encapsulated DNA could release from lipoplexes 3 upon addition of 10 mM glutathione (GSH). MTT assays in HEK 293 cells demonstrated that lipoplexes 3 had low cytotoxicity. The in vitro gene transfection studies showed cationic dipeptide headgroups clearly affected the transfection efficiency (TE), and arginine-histidine based dipeptide lipid 3f give the best TE, which was 30.4 times higher than Lipofectamine 3000 in the presence of 10% serum. Cell-uptake assays indicated that basic amino acid containing dipeptide cationic lipids exhibited more efficient cell uptake than serine and aromatic amino acids based dipeptide lipids. Confocal laser scanning microscopy (CLSM) studies corroborated that 3 could efficiently deliver and release DNA into the nuclei of HeLa cells. These results suggest that tocopherol-based dipeptide cationic lipids with pH and reduction dual-sensitive characteristics might be promising non-viral gene delivery vectors.

  6. A Remote Controlled Valve in Liposomes for Triggered Liposomal Release

    NARCIS (Netherlands)

    Koçer, Armağan


    In order to reduce the toxicity and increase the efficacy of drugs, there is a need for smart drug delivery systems. Liposomes are one of the promising tools for this purpose. An ideal liposomal delivery system should be stable, long-circulating, accumulate at the target site and release its drug in

  7. Liposomal nanotransporter for targeted binding based on nucleic acid anchor system. (United States)

    Nejdl, Lukas; Merlos Rodrigo, Miguel Angel; Kudr, Jiri; Ruttkay-Nedecky, Branislav; Konecna, Marie; Kopel, Pavel; Zitka, Ondrej; Hubalek, Jaromir; Kizek, Rene; Adam, Vojtech


    Microfluidic techniques have been developed intensively in recent years due to lower reagent consumption, faster analysis, and possibility of the integration of several analytical detectors into one chip. Electrochemical detectors are preferred in microfluidic systems, whereas liposomes can be used for amplification of the electrochemical signals. The aim of this study was to design a nanodevice for targeted anchoring of liposome as transport device. In this study, liposome with encapsulated Zn(II) was prepared. Further, gold nanoparticles were anchored onto the liposome surface allowing binding of thiol moiety-modified molecules (DNA). For targeted capturing of the transport device, DNA loops were used. DNA loops were represented by paramagnetic microparticles with oligo(DT)25 chain, on which a connecting DNA was bound. Capturing of transport device was subsequently done by hybridization to the loop. The individual steps were analyzed by electrochemistry and UV/Vis spectrometry. For detection of Zn(II) encapsulated in liposome, a microfluidic system was used. The study succeeded in demonstrating that liposome is suitable for the transport of Zn(II) and nucleic acids. Such transporter may be used for targeted binding using DNA anchor system.

  8. LeciPlex, invasomes, and liposomes: A skin penetration study. (United States)

    Shah, Sanket M; Ashtikar, Mukul; Jain, Ankitkumar S; Makhija, Dinesh T; Nikam, Yuvraj; Gude, Rajiv P; Steiniger, Frank; Jagtap, Aarti A; Nagarsenker, Mangal S; Fahr, Alfred


    The present study compares three vesicular systems, cationic LeciPlex, invasomes, and conventional liposomes for their ability to deliver drugs deep into the skin. Skin penetration ability of the three vesicular systems was studied for two drugs namely idebenone (antioxidant/anticancer) and azelaic acid (antiacne). All systems showed sizes in nanometer range with small polydispersity indices. Vesicular systems were characterized by CryoTEM studies to understand the differences in morphology of the vesicular systems. Ex vivo human skin penetration studies suggested a pattern in penetration of drugs in different layers of the skin: LeciPlex showed higher penetration for idebenone whereas invasomes showed higher penetration of azelaic acid. Ex vivo study using a fluorescent dye (DiI) was performed to understand the differences in the penetration behavior of the three vesicular systems on excised human skin. In vitro cytotoxicity studies on B16F10 melanoma cell lines revealed, when loaded with idebenone, LeciPlex formulations had the superior activity followed by invasomes and liposomes. In vitro antimicrobial study of azelaic acid loaded systems on Propionibacterium acne revealed high antimicrobial activity for DDAB leciplex followed by almost equal activity for invasomes and CTAB LeciPlex followed by liposomes. Whereas antiacne efficacy study in rats for azelaic acid loaded systems, invasomes exhibited the best antiacne efficacy followed by liposomes and LeciPlex.

  9. Effect of hydrophobic scaffold on the cellular uptake and gene transfection activities of DNA-encapsulating liposomal nanoparticles via intracerebroventricular administration. (United States)

    Akita, Hidetaka; Nakatani, Taichi; Kuroki, Kimiko; Maenaka, Katsumi; Tange, Kota; Nakai, Yuta; Harashima, Hideyoshi


    Efficient DNA carriers are needed as a gene medication for curing brain disorders. In the present study, the function of a neutral lipid envelope-type nanoparticle (LNP) encapsulating pDNA was evaluated after intracerebroventricular administration. The lipid envelope was composed of a series of SS-cleavable and pH-activated lipid like materials (ssPalm) including myristic acid, vitamin A and vitamin E in the hydrophobic scaffold (LNPssPalmM, LNPssPalmA, LNPssPalmE, respectively). The LNPssPalmA and LNPssPalmE were extensively distributed in the corpus callosum, and then gene expression occurred mainly astrocytes in this region, while not in LNPssPalmM. The recombinant human ApoE3-dependent enhancement of the uptake into an astrocyte-derived cell line (KT-5) was observed in LNPssPalmA and LNPssPalmE. Thus, ApoE in the brain plays a key role in the cellular uptake of these particles by astrocytes, and this uptake is dependent on the structure of the hydrophobic scaffold.

  10. Delivery of recombinant vaccines against bovine herpesvirus type 1 gD and Babesia bovis MSA-2c to mice using liposomes derived from egg yolk lipids. (United States)

    Rodriguez, Anabel E; Zamorano, Patricia; Wilkowsky, Silvina; Torrá, Florencia; Ferreri, Lucas; Dominguez, Mariana; Florin-Christensen, Mónica


    Liposomes prepared from total egg yolk lipid extracts were used to deliver experimental DNA vaccines to mice consisting of pCI-neo plasmids encoding bovine herpesvirus type 1 (BoHV-1) gD or Babesia bovis MSA-2c. A significantly higher proportion of mice in the B. bovis MSA-2c group, but not those in the BoHV-1 gD group, developed detectable immunoglobulin G responses when vaccinated with liposome encapsulated DNA in comparison with mice vaccinated with naked DNA. In both groups, antibody titres were similar between mice vaccinated with liposome encapsulated DNA and naked DNA.

  11. Biological activity of liposomal vanillin. (United States)

    Castan, Leniher; Del Toro, Grisel; Fernández, Adolfo A; González, Manuel; Ortíz, Emilia; Lobo, Daliana


    This article presents a study of vanillin encapsulation inside multilamellar liposomes, with emphasis on the evaluation of antioxidant activity, the hemolytic effect, and the antisickling properties of these products. Egg phosphatidylcholine-cholesterol and egg phosphatidylcholine-cholesterol-1-O-decylglycerol liposomes were prepared by mechanical dispersion, all with vanillin included. Vesicles were characterized by determination of encapsulation efficiency and vanillin retention capacity. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. The hemolytic effect of liposomes was also evaluated by spectrophotometry, as well as the antisickling activity by the Huck test using optical microscopy. Results showed that the lipid composition of liposomes did not significantly affect the encapsulation efficiency. Stable vesicles were obtained with a high retention percentage of vanillin. Liposomes exhibited a high capture of the DPPH radical compared to free vanillin and 1-O-decylglycerol (C10) in solution. Vesicles caused no significant hemolisys in normal erythrocytes, nor in those coming from patients with sickle cell anemia. Vanillin encapsulated in liposomes retained its antisickling activity, with a greater effect for C10-containing vesicles. Our results show that vanillin encapsulation in liposomes is a way to enhance the pharmacologic properties of this molecule using a suitable vehicle.

  12. Assembly of Liposomes Controlled by Triple Helix Formation

    DEFF Research Database (Denmark)

    Vogel, Stefan; Jakobsen, Ulla


    -covalent immobilization of oligonucleotides on the surface of soft nanoparticles (e.g. liposomes) and the subsequent controlled assembly by DNA triple helix formation. The non-covalent approach avoids tedious surface chemistry and necessary purification procedures and can simplify and extend the available methodology......Attachment of DNA to the surface of different solid nanoparticles (e.g. gold- and silica nanoparticles) is well established and a number of DNA-modified solid nanoparticle systems have been applied to thermal denaturation analysis of oligonucleotides. We report herein the non...... sequences (G or C-rich) to explore the applicability of the method for different triple helical assembly modes. We demonstrate advantages and limitations of the approach and proof the reversible and reproducible formation of liposome aggregates during thermal denaturation cycles. Nanoparticle tracking...

  13. 阳离子脂质体介导BFGF/GFP基因对药物性耳蜗损害的防治作用%Protective and rescue effects of cationic liposome - mediated bFGF/GFP on Gentamicin - induced ototoxicity in guinea pig

    Institute of Scientific and Technical Information of China (English)

    尹金淑; 翟所强; 郭维; 胡吟燕; 时利


    目的探讨阳离子脂质体(天然碱性脂SA)携带碱性成纤维细胞生长因子/绿色荧光蛋白(bFGF/GFP)基因在豚鼠耳蜗中的表达,以及对庆大霉素所致耳蜗损害的防治作用.方法将36只豚鼠分为3组,预防组右耳园窗注入SA-bFGF/GFP复合物后次日肌肉注射庆大霉素天,治疗组先用庆大霉素8 d后次日右耳给药,对照组单用庆大霉素8 d.分别于实验前后及处死前行听觉脑干诱发电位(ABR)测试.荧光显微镜下观察耳蜗GFP的表达;用耳蜗琥珀酸脱氢酶染色铺片,扫描电镜观察毛细胞的缺失情况.结果荧光显微镜下见双侧耳蜗均有GFP表达.预防和治疗组处死前的双耳ABR阈值与对照组比较差异有显著意义(P<0.01,P<0.05),耳蜗内外毛细胞缺失数与对照组比较差异有显著意义(P<0.01,P<0.05).结论SA脂质体介导的bFGF/GFP基因单耳给药双侧耳蜗均有高效表达,并对庆大霉素所致的耳蜗损害有防治作用.%Objectiye To observe the expression of cationic liposome (Stearylamine SA) mediated bFGF/GFP gene, and evaluate the efficacy of bFGF against the damage of Gentamicin in guinea pig cochlea. Methods 36 guinea pigs were divided into 3 groups. The guinea pigs in the preventive group were inoculated SA- bFGF/GFP complexes into cochleae via round window of the right ear, and were subsequently injected with Gentamicin 150mg. Kg-1 .d-1 for 8 days. The animals in the remedial group were previously administrated Gentamicin for 8 days and then received infusion of SA- bFGF/GFP complexes from nextday. The animals in the control group were only injected with Gentamicin for 8 days. Auditory brainstem response (ABR) was measured preceding test, after test and before the animals were sacrificed, respectively. ~ expression of GFP in cochlea was observed by a fluorescent microscope. The surface preparation of cochlea was made and stained with NBT for counting the absent outer and inner hair cells

  14. Phospholipid liposomes functionalized by protein (United States)

    Glukhova, O. E.; Savostyanov, G. V.; Grishina, O. A.


    Finding new ways to deliver neurotrophic drugs to the brain in newborns is one of the contemporary problems of medicine and pharmaceutical industry. Modern researches in this field indicate the promising prospects of supramolecular transport systems for targeted drug delivery to the brain which can overcome the blood-brain barrier (BBB). Thus, the solution of this problem is actual not only for medicine, but also for society as a whole because it determines the health of future generations. Phospholipid liposomes due to combination of lipo- and hydrophilic properties are considered as the main future objects in medicine for drug delivery through the BBB as well as increasing their bioavailability and toxicity. Liposomes functionalized by various proteins were used as transport systems for ease of liposomes use. Designing of modification oligosaccharide of liposomes surface is promising in the last decade because it enables the delivery of liposomes to specific receptor of human cells by selecting ligand and it is widely used in pharmacology for the treatment of several diseases. The purpose of this work is creation of a coarse-grained model of bilayer of phospholipid liposomes, functionalized by specific to the structural elements of the BBB proteins, as well as prediction of the most favorable orientation and position of the molecules in the generated complex by methods of molecular docking for the formation of the structure. Investigation of activity of the ligand molecule to protein receptor of human cells by the methods of molecular dynamics was carried out.


    Directory of Open Access Journals (Sweden)

    Romanova OA


    Full Text Available Introduction. With the transport links development there is rather important issue respiratory viral infections spread, especially influenza. The only method controlling influenza is vaccination. Search and development effective and safe vaccines is important. Material and methods. In base SO "Mechnikov Institute Microbiology and Immunology National Ukrainian Academy Medical Sciences" in the scientific theme "Developing new approaches to creating viral vaccines and study specific activity depending of type and degree component`s modification" was created several experimental influenza vaccine with subsequent component`s modification for selecting the most optimal pattern of safety and immunogenicity. In assessing the influenza vaccine safety is using a few criteria, including, reactivity, as measured by the frequency of local and systemic adverse (negative effects, which due to its introduction, and for lipid content drugs, ability to influence oxidation processes. At present study phase was determined: a systemic reaction and local reaction of delayed-type hypersensitivity (foot pad swelling assay;b lipids and proteins peroxidation processes after administration officinal and experimental vaccines (content protein’s carbonyl groups, lipid’s hydroperoxides, activity of glutathione-peroxidase.Study objects were trivalent seasonal influenza vaccine, "Vaxigrip" (Sanofi Pasteur, S.A., France, "Inflexal V" (Biotech Ltd. Berne, Switzerland and experimental vaccine samples. Highest immunogenicity vaccines had undergone improvements and modifications using adjuvant systems and acylation influenza proteins. Liposomes 2 – the experimental influenza vaccine with a liposome negative charge and antigenic composition like split vaccines "Vaksihryp". Liposomes 2.1 - the adjuvantexperimental influenza vaccine with modifications liposomal components (etoniy and chlorophyllipt molecules embedded in liposomal membrane. Liposomes 2.2 - the adjuvant

  16. Protective Effect of Liposome-Encapsulated Glutathione in a Human Epidermal Model Exposed to a Mustard Gas Analog

    Directory of Open Access Journals (Sweden)

    Victor Paromov


    Full Text Available Sulfur mustard or mustard gas (HD and its monofunctional analog, 2-chloroethyl ethyl sulfide (CEES, or “half-mustard gas,” are alkylating agents that induce DNA damage, oxidative stress, and inflammation. HD/CEES are rapidly absorbed in the skin causing extensive injury. We hypothesize that antioxidant liposomes that deliver both water-soluble and lipid-soluble antioxidants protect skin cells from immediate CEES-induced damage via attenuating oxidative stress. Liposomes containing water-soluble antioxidants and/or lipid-soluble antioxidants were evaluated using in vitro model systems. Initially, we found that liposomes containing encapsulated glutathione (GSH-liposomes increased cell viability and attenuated production of reactive oxygen species (ROS in HaCaT cells exposed to CEES. Next, GSH-liposomes were tested in a human epidermal model, EpiDerm. In the EpiDerm, GSH-liposomes administered simultaneously or 1 hour after CEES exposure (2.5 mM increased cell viability, inhibited CEES-induced loss of ATP and attenuated changes in cellular morphology, but did not reduce caspase-3 activity. These findings paralleled the previously described in vivo protective effect of antioxidant liposomes in the rat lung and established the effectiveness of GSH-liposomes in a human epidermal model. This study provides a rationale for use of antioxidant liposomes against HD toxicity in the skin considering further verification in animal models exposed to HD.

  17. The vesicle size of DDA:TDB liposomal adjuvants plays a role in the cell-mediated immune response but has no significant effect on antibody production. (United States)

    Henriksen-Lacey, Malou; Devitt, Andrew; Perrie, Yvonne


    The use of cationic liposomes as experimental adjuvants for subunit peptide of protein vaccines is well documented. Recently the cationic liposome CAF01, composed of dimethyldioctadecylammonium (DDA) and trehalose dibehenate (TDB), has entered Phase I clinical trials for use in a tuberculosis (TB) vaccine. CAF01 liposomes are a heterogeneous population with a mean vesicle size of 500 nm; a strong retention of antigen at the injection site and a Th1-biassed immune response are noted. The purpose of this study was to investigate whether CAF01 liposomes of significantly different vesicle sizes exhibited altered pharmacokinetics in vivo and cellular uptake with activation in vitro. Furthermore, the immune response against the TB antigen Ag85B-ESAT-6 was followed when various sized CAF01 liposomes were used as vaccine adjuvants. The results showed no differences in vaccine (liposome or antigen) draining from the injection site, however, significant differences in the movement of liposomes to the popliteal lymph node were noted. Liposome uptake by THP-1 vitamin D3 stimulated macrophage-like cells did not show a liposome size-dependent pattern of uptake. Finally, whilst there were no significant differences in the IgG1/2 regardless of the liposome size used as a delivery vehicle for Ag85B-ESAT-6, vesicle size has a size dependent effect on cell proliferation and IL-10 production with larger liposomes (in excess of 2 μm) promoting the highest proliferation and lowest IL-10 responses, yet vesicles of ~500 nm promoting higher IFN-γ cytokine production from splenocytes and higher IL-1β at the site of injection.

  18. Fibronectin inhibits cytokine production induced by CpG DNA in macrophages without direct binding to DNA. (United States)

    Yoshida, Hiroyuki; Nishikawa, Makiya; Yasuda, Sachiyo; Toyota, Hiroyasu; Kiyota, Tsuyoshi; Takahashi, Yuki; Takakura, Yoshinobu


    Fibronectin (FN) is known to have four DNA-binding domains although their physiological significance is unknown. Primary murine peritoneal macrophages have been shown to exhibit markedly lower responsiveness to CpG motif-replete plasmid DNA (pDNA), Toll-like receptor-9 (TLR9) ligand, compared with murine macrophage-like cell lines. The present study was conducted to examine whether FN having DNA-binding domains is involved in this phenomenon. The expression of FN was significantly higher in primary macrophages than in a macrophage-like cell line, RAW264.7, suggesting that abundant FN might suppress the responsiveness in the primary macrophages. However, electrophoretic analysis revealed that FN did not bind to pDNA in the presence of a physiological concentration of divalent cations. Surprisingly, marked tumor necrosis factor - (TNF-)α production from murine macrophages upon CpG DNA stimulation was significantly reduced by exogenously added FN in a concentration-dependent manner but not by BSA, laminin or collagen. FN did not affect apparent pDNA uptake by the cells. Moreover, FN reduced TNF-α production induced by polyI:C (TLR3 ligand), and imiquimod (TLR7 ligand), but not by LPS (TLR4 ligand), or a non-CpG pDNA/cationic liposome complex. The confocal microscopic study showed that pDNA was co-localized with FN in the same intracellular compartment in RAW264.7, suggesting that FN inhibits cytokine signal transduction in the endosomal/lysosomal compartment. Taken together, the results of the present study has revealed, for the first time, a novel effect of FN whereby the glycoprotein modulates cytokine signal transduction via CpG-DNA/TLR9 interaction in macrophages without direct binding to DNA through its putative DNA-binding domains.

  19. Nuclisome: a novel concept for radionuclide therapy using targeting liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Fondell, Amelie; Carlsson, Joergen [Uppsala University, Department of Oncology, Radiology, and Clinical Immunology, Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden); Edwards, Katarina; Ickenstein, Ludger M. [Uppsala University, Department of Physical and Analytical Chemistry, Box 579, Uppsala (Sweden); Sjoeberg, Stefan [Uppsala University, Department of Biochemistry and Organic Chemistry, Box 599, Uppsala (Sweden); Gedda, Lars [Uppsala University, Department of Oncology, Radiology, and Clinical Immunology, Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden); Uppsala University, Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden)


    For the treatment of cancer, the therapeutic potential of short-range, low-energy Auger-electron emitters, such as {sup 125}I, is getting progressively wider recognition. The potency of Auger-electron emitters is strongly dependent on their location in close vicinity to DNA. We have developed a new two-step targeting strategy to transport {sup 125}I into cancer-cell nuclei using PEG-stabilized tumour-cell targeting liposomes named ''Nuclisome-particles''. In the present study, epidermal growth factor (EGF) was used as a tumour-cell-specific agent to target the EGF-receptor (EGFR) and the liposomes were loaded with {sup 125}I-Comp1, a recently synthesized daunorubicin derivative. As analysed with cryo-TEM, the derivative precipitates inside liposomes at a drug-to-lipid molar ratio of 0.05:1. Receptor-specific uptake in cultured U-343MGaCl2:6 tumour cells of EGFR-targeting liposomes increased with time while non-specific and receptor-blocked uptake remained low. Nuclisome-particles were able to target single U-343MGaCl2:6 cells circulating in human blood during 4 h, with low uptake in white blood cells, as demonstrated in an ex vivo system using a Chandler loop. Autoradiography of targeted cells indicates that the grains from the radiolabelled drug are mainly co-localized with the cell nuclei. The successful targeting of the nucleus is shown to provide high-potency cell killing of cultured U-343MGaCl2:6 cells. At the concentration used, Nuclisome-particles were up to five orders of magnitude more effective in cell killing than EGFR-targeting liposomes loaded with doxorubicin. The results thus provide encouraging evidence that our two-step targeting strategy for tumour cell DNA has the potential to become an effective therapy against metastasizing cancer cells in the bloodstream. (orig.)

  20. On the effect of Ca2+ and La3+ on the colloidal stability of liposomes. (United States)

    Sabín, Juan; Prieto, Gerardo; Messina, Paula V; Ruso, Juan M; Hidalgo-Alvarez, Roque; Sarmiento, Félix


    This work deals with the effect of Ca2+ and La3+ on the colloidal stability of phosphatidylcholine (PC) liposomes in aqueous media. As physical techniques, nephelometry, photon correlation spectroscopy, electrophoretic mobility, and surface tension were used. The theoretical predictions of the colloidal stability of liposomes were followed using the Derjaguin-Landau-Verwey-Overbeek theory. Changes in the size of liposomes and high polydispersity values were observed as La3+ concentration increases, suggesting that this cation induces the aggregation of liposomes. However, changes in polydispersity were not observed with Ca2+, suggesting a coalescence mechanism or fusion of liposomes. The stability factor (W), calculated from the nephelometry measurements indicated that aggregation/fusion occurs at a critical concentration (c.c.) of 0.3 and 0.7 M for La3+ and Ca2+, respectively. To gain a better insight into the interaction mechanism between the liposomes and the studied ions, the interaction between PC monolayers and Ca2+ and La3+ was studied. Changes in the surface area per lipid molecule (A0) in the monolayer at the c.c. values were found for both ions, with a more pronounced effect in the case of Ca2+. This corresponds with a larger reduction of the steric repulsive interaction between the headgroups at the phospholipid membrane (pi(head)). The experimental result validates the hypothesis made on the liposome fusion in the presence of Ca2+ and liposome aggregation in the presence of La3+. These aggregation mechanisms have also been confirmed by transmission electron microscopy.

  1. Recognition of Biotin-functionalized Liposomes

    Institute of Scientific and Technical Information of China (English)

    Hai Feng ZHU; Jun Bai LI


    Functionalized liposomes were prepared by mixing the biotin in the lipid vesicle suspensions. The experiments through immersing streptavidin deposited mica into the biotin modified liposome solution testify the specifically biological binding interaction and extend the function of liposomes as a biosensor or drug carrier.

  2. Cardiac safety of liposomal anthracyclines. (United States)

    Ewer, Michael S; Martin, Francis J; Henderson, Craig; Shapiro, Charles L; Benjamin, Robert S; Gabizon, Alberto A


    Conventional anthracyclines are active against many tumor types, but cardiotoxicity related to the cumulative dose may limit their use; this is particularly problematic for patients with risk factors for increased toxicity, for those who have received any anthracycline in the past, or for those who are to receive other cardiotoxic agents. Preclinical studies determined that encapsulating conventional anthracyclines in liposomes reduced the incidence and severity of cumulative dose-related cardiomyopathy while preserving antitumor activity. In controlled clinical trials, the risk of cardiotoxicity was significantly lower when nonpegylated liposomal doxorubicin (Myocet [NPLD]) was substituted for conventional doxorubicin, but the risk was not significantly different when NPLD was used in place of conventional epirubicin. Direct comparisons to conventional doxorubicin therapy showed comparable efficacy but significantly lower risk of cardiotoxicity with pegylated liposomal doxorubicin (Doxil/Caelyx [PLD]) therapy. Retrospective and prospective trials have not identified a maximum "cardiac safe" dose of PLD, despite use of cumulative doses exceeding 2,000 mg/m2 in some patients. Liposomal daunorubicin (DaunoXome [DNX]) may be associated with a lower risk of cardiotoxicity than conventional anthracyclines, but comparative trials are not available. With respect to combination chemotherapy, early results of clinical trials suggest that combining trastuzumab or a taxane with NPLD or PLD instead of a conventional anthracycline significantly reduces cardiotoxicity risk without reducing chemotherapeutic efficacy. Further results are eagerly awaited from ongoing controlled trials of cardiac safety with long-term liposomal anthracycline therapy, either alone or in combination with other potentially cardiotoxic agents.

  3. [Liposomal amphotericin B]. (United States)

    Fukasawa, Masatomo


    Liposomal amphotericin B (AmBisome) is a DDS (drug delivery system) formulation of amphotericin B (AMPH-B), and has been developed in an attempt to reduce the toxicity of AMPH-B while retaining its therapeutic efficacy. AMPH-B has been the "gold standard" of antifungal therapy over the past four decades. It has a broad spectrum of fungicidal activity against a number of clinically important pathogens including Aspergillus and Candida. The mechanism of action of AMPH-B involves binding to ergosterol, the principal sterol in fungal cell membranes. Binding to ergosterol causes an increase in fungal membrane permeability, electrolyte leakage, and cell death. AMPH-B has affinity for cholesterol in mammalian membranes, which leads to severe side-effects including kidney damage. AmBisome is a unilamellar vesicle composed of AMPH-B and phospholipid. Upon administration, AmBisome remains intact in the blood and distributes to the tissues where fungal infection may occur, and is disrupted after attachment to the outside of fungal cells, resulting in fungal cell death. AmBisome and AMPH-B show similar in vitro and in vivo antifungal activity and clinical efficacy. However, AmBisome has less infusion-related toxicity and nephrotoxicity than AMPH-B.

  4. Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies. (United States)

    Gültekin-Özgüven, Mine; Karadağ, Ayşe; Duman, Şeyma; Özkal, Burak; Özçelik, Beraat


    Fine-disperse anionic liposomes containing black mulberry (Morus nigra) extract (BME) were prepared by high pressure homogenization at 25,000 psi. Primary liposomes were coated with cationic chitosan (0.4, w/v%) using the layer-by-layer depositing method and mixed with maltodextrin (MD) (20, w/v%) prior to spray drying. After that, spray dried liposomal powders containing BME were added to chocolates with alkalization degrees (pH 4.5, 6, 7.5) at conching temperatures of 40 °C, 60 °C, and 80 °C. The results showed that, compared to spray dried extract, chitosan coated liposomal powders provided better protection of anthocyanin content in both increased temperature and pH. In addition, encapsulation in liposomes enhanced in vitro bioaccessability of anthocyanins. Chocolate was fortified with encapsulated anthocyanins maximum 76.8% depending on conching temperature and pH.

  5. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes

    Directory of Open Access Journals (Sweden)

    Duangjit S


    Full Text Available Sureewan Duangjit,1,2 Boonnada Pamornpathomkul,1 Praneet Opanasopit,1 Theerasak Rojanarata,1 Yasuko Obata,2 Kozo Takayama,2 Tanasait Ngawhirunpat11Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; 2Department of Pharmaceutics, Hoshi University, Shinagawa-ku, Tokyo, JapanAbstract: The objective of this study was to investigate the influence of surfactant charge, surfactant carbon chain length, and surfactant content on the physicochemical characteristics (ie, vesicle size, zeta potential, elasticity, and entrapment efficiency, morphology, stability, and in vitro skin permeability of meloxicam (MX-loaded liposome. Moreover, the mechanism for the liposome-enhanced skin permeation of MX was determined by Fourier transform infrared spectroscopy and differential scanning calorimetry. The model formulation used in this study was obtained using a response surface method incorporating multivariate spline interpolation (RSM-S. Liposome formulations with varying surfactant charge (anionic, neutral, and cationic, surfactant carbon chain length (C4, C12, and C16, and surfactant content (10%, 20%, and 29% were prepared. The formulation comprising 29% cationic surfactant with a C16 chain length was found to be the optimal liposome for the transdermal delivery of MX. The skin permeation flux of the optimal formulation was 2.69-fold higher than that of a conventional liposome formulation. Our study revealed that surfactants affected the physicochemical characteristics, stability, and skin permeability of MX-loaded liposomes. These findings provide important fundamental information for the development of liposomes as transdermal drug delivery systems.Keywords: optimal liposome, optimization, transdermal drug delivery, surfactant charge, surfactant carbon chain length, surfactant content

  6. Multifunctional liposomes for enhanced anti-cancer therapy (United States)

    Falcao, Claudio Borges


    Macromolecular drugs have great promises for cancer treatment, such as the pro-apoptotic peptide D-(KLAKLAK)2 and the bcl-2 antisense oligodeoxynucleotide G3139. However, these macromolecules require efficient drug carriers, like liposomes, to deliver them inside cells. Also, if these macromolecules can be combined in a single liposome, the cancer cell killing will be greater than using just one. With this possibility in mind, cationic liposomes (CLs) were elaborated to encapsulate both macromolecules and deliver them inside cells. Later, surface modification of CLs was investigated through the addition of polyethylene glycol (PEG) to obtain long-circulating liposomes. CLs were prepared through charge alternation among D-(KLAKLAK)2 , G3139 and DOTAP. These liposomes were characterized with particle size and zeta-potential measurements, antisense entrapment and peptide loading efficiency. The in vitro effects of CL formulations were tested with B16(F10) cells through viability studies, uptake assay and detection of apoptosis. CL formulations were also applied in vivo in B16(F10) tumor-bearing mice through intratumoral injections, and tumor growth inhibition and detection of apoptosis were evaluated. Next, the mechanism of action of the CL formulations was investigated by Western blotting. Later, PEG was incorporated at increasing amounts to the liposomes to determine which concentration can better prevent interactions between PEG-cationic liposomes (PCL) and B16(F10) cells. Next, pH-cleavable PEG was prepared and then added to the liposomes in the same amount that PEG in PCL could decrease interaction with cells. Finally, cell viability studies were performed with CL, PCL and pH-sensitive PCL (pH-PCL) formulations after pre-incubation at pH 7.4 or at pH 5.0. Positively charged CL particles were obtained after encapsulation of negatively charged D-(KLAKLAK)2/G3139 complexes. In vitro , CLs containing D-(KLAKLAK)2/G3139 complexes could reduce B16(F10) cell viability

  7. An evaluation of transmembrane ion gradient-mediated encapsulation of topotecan within liposomes. (United States)

    Abraham, Sheela A; Edwards, Katarina; Karlsson, Göran; Hudon, Norma; Mayer, Lawrence D; Bally, Marcel B


    Topotecan can be encapsulated in liposomes, however little is known about the role encapsulated counter ions play in drug loading efficiency and drug release. Using 1,2-distearoyl-sn-glycero-3 phosphatidylcholine and cholesterol liposomes (55:45 mole ratio), encapsulation was achieved using manganese ion gradients (MnSO(4) or MnCl(2)), with the addition of A23187, a divalent cation/proton exchanger, to maintain a pH gradient. This methodology was compared to procedures where the pH gradient was generated by use of encapsulated (NH(4))(2)SO(4) or citrate (300 mM, pH 3.5). All methods facilitated topotecan encapsulation. Liposomes prepared in the presence of the citrate and MnCl(2) (+A23187) exhibited reduced loading capacities. Liposomes prepared in the presence of (NH(4))(2)SO(4) and MnSO(4) (+A23187) could be used to generate liposomes exhibiting a drug-to-lipid ratio of 0.3 (wt/wt) with an encapsulation efficiency of >90%. In vitro drug release data suggested that the (NH(4))(2)SO(4) and MnSO(4) (+A23187) formulations released drug at a reduced rate. For these formulations, the drug release rates decreased as the drug-to-lipid ratio (wt/wt) increased from 0.1 to 0.2. Cryo-electron micrographs indicated that encapsulated topotecan precipitated as linear particles within liposomes. The stability of topotecan loaded liposomes appeared to be dependent on the presence of both a pH gradient and encapsulated sulfate.

  8. Liposomal bupivacaine and clinical outcomes. (United States)

    Tong, Yi Cai Isaac; Kaye, Alan David; Urman, Richard D


    In the multimodal approach to the management of postoperative pain, local infiltration and regional blocks have been increasingly utilized for pain control. One of the limitations of local anesthetics in the postoperative setting is its relatively short duration of action. Multivesicular liposomes containing bupivacaine have been increasingly utilized for their increased duration of action. Compared with bupivacaine HCl, local infiltration of liposomal bupivacaine has shown to have an increase in duration of action and causes delay in peak plasma concentration. In this article, we attempt to review the clinical literature surrounding liposomal bupivacaine and its evolving role in perioperative analgesia. This new bupivacaine formation may have promising implications in postoperative pain control, resulting in increased patient satisfaction and a decrease in both hospital stay and opioid-induced adverse events (AEs). Although more studies are needed, the preliminary clinical trials suggest that liposomal bupivacaine has predictable pharmacokinetics, a similar side effect profile compared with bupivacaine HCl, and is effective in providing increased postoperative pain control.

  9. Cationic amphiphiles with fatty acyl chain asymmetry of coconut oil deliver genes selectively to mouse lung. (United States)

    Chandrashekhar, Voshavar; Srujan, Marepally; Prabhakar, Rairala; Reddy, Rakesh C; Sreedhar, Bojja; Rentam, Kiran K R; Kanjilal, Sanjit; Chaudhuri, Arabinda


    Recent structure-activity studies have revealed a dramatic influence of hydrophobic chain asymmetry in enhancing gene delivery efficacies of synthetic cationic amphiphiles (Nantz, M. H. et al. Mol. Pharmaceutics2010, 7, 786-794; Koynova, R. et al. Mol. Pharmaceutics2009, 6, 951-958). The present findings demonstrate for the first time that such a transfection enhancing influence of asymmetric hydrocarbon chains observed in pure synthetic cationic amphiphiles also works for cationic amphiphiles designed with natural, asymmetric fatty acyl chains of a food-grade oil. Herein, we demonstrate that cationic amphiphiles designed with the natural fatty acyl chain asymmetry of food-grade coconut oil are less cytotoxic and deliver genes selectively to mouse lung. Despite lauroyl chains being the major fatty acyl chains of coconut oil, both the in vitro and In vivo gene transfer efficiencies of such cationic amphiphiles were found to be remarkably superior (>4-fold) to those of their pure dilauroyl analogue. Mechanistic studies involving the technique of fluorescence resonance energy transfer (FRET) revealed higher biomembrane fusibility of the cationic liposomes of the coconut amphiphiles than that of the symmetric dilauroyl analogue. AFM study revealed pronounced fusogenic nonlamellar structures of the liposomes of coconut amphiphiles. Findings in the FRET and cellular uptake study, taken together, support the notion that the higher cellular uptake resulting from the more fusogenic nature of the liposomes of coconut amphiphiles 1 are likely to play a dominant role in making the coconut amphiphiles transfection competent.

  10. The improvement of liposome-mediated transfection of pEGFP DNA into human prostate cancer cells by combining low-frequency and low-energy ultrasound with microbubbles. (United States)

    Bai, Wen-Kun; Wu, Zuo-Hui; Shen, E; Zhang, Ji-Zhen; Hu, Bing


    The aim of this study was to explore the use of a contrast agent to study the effects of exposure to ultrasound, in combination with microbubbles, on liposome-mediated transfection of genes into human prostate cancer cells. A contrast agent was used to study the effects of ultrasound exposure in combination with microbubbles on liposomes, which transfect genes into human prostate cancer cells. The human prostate cancer cell line PC-3 in suspension was exposed to ultrasound with a 20% duty cycle (i.e., 2 sec 'on' time and 8 sec 'off' time) lasting 5 min, with and without ultrasound contrast agent (SonoVue™) using a digital sonifier at a frequency of 21 kHz and an intensity of 4.6 mW/cm2. Immediately after exposure to ultrasound, cell viability and membrane damage were measured. After exposure to ultrasound, the cell suspensions were put into 12‑well plates and cultured for 24 h. Fluorescence microscopy and flow cytometry were used to detect pEGFP transfection efficiency. Exposure to ultrasound alone and ultrasound combined with microbubbles resulted in minimal cell death and induced negligible cell membrane damage. Ultrasound combined with microbubbles had a greater effect on cell membrane damage in all groups: the average cell membrane damage was 41.87%, and it was approximately 42‑fold greater than in the control group. The average transfection efficiency of PC-3 cells was 20.30% for the liposome (Lipofectamine™)+pEGFP+ultrasound+ultrasound contrast agent (SonoVue) group; this was the highest rate of all groups measured and was approximately 81‑fold greater than that of the control group. The use of low-frequency and low-energy ultrasound, in combination with microbubbles, could be a potent physical method for increasing liposome gene delivery efficiency. This technique is a promising non-viral approach that can be used in prostate cancer gene therapy.

  11. Detection of Progeny Immune Responses after Intravenous Administration of DNA Vaccine to Pregnant Mice

    Directory of Open Access Journals (Sweden)

    Xin Ke-Qin


    Full Text Available A number of factors influence the development of tolerance, including the nature, concentration and mode of antigen presentation to the immune system, as well as the age of the host. The studies were conducted to determine whether immunizing pregnant mice with liposome-encapsulated DNA vaccines had an effect on the immune status of their offspring. Two different plasmids (encoding antigens from HIV-1 and influenza virus were administered intravenously to pregnant mice. At 9.5 days post conception with cationic liposomes, injected plasmid was present in the tissues of the fetus, consistent with trans-placental transfer. When the offspring of vaccinated dams were immunized with DNA vaccine, they mounted stronger antigen-specific immune responses than controls and were protected against challenge by homologous influenza virus after vaccination. Moreover, such immune responses were strong in the offspring of mothers injected with DNA plasmid 9.5 days after coitus. These results suggest that DNA vaccinated mothers confer the antigen-specific immunity to their progeny. Here we describe the methods in detail as they relate to our previously published work.

  12. Transport of nanoparticles and tobramycin-loaded liposomes in Burkholderia cepacia complex biofilms.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Messiaen

    Full Text Available Due to the intrinsic resistance of Burkholderia cepacia complex (Bcc to many antibiotics and the production of a broad range of virulence factors, lung infections by these bacteria, primarily occurring in cystic fibrosis (CF patients, are very difficult to treat. In addition, the ability of Bcc organisms to form biofilms contributes to their persistence in the CF lung. As Bcc infections are associated with poor clinical outcome, there is an urgent need for new effective therapies to treat these infections. In the present study, we investigated whether liposomal tobramycin displayed an increased anti-biofilm effect against Bcc bacteria compared to free tobramycin. Single particle tracking (SPT was used to study the transport of positively and negatively charged nanospheres in Bcc biofilms as a model for the transport of liposomes. Negatively charged nanospheres became immobilized in close proximity of biofilm cell clusters, while positively charged nanospheres interacted with fiber-like structures, probably eDNA. Based on these data, encapsulation of tobramycin in negatively charged liposomes appeared promising for targeted drug delivery. However, the anti-biofilm effect of tobramycin encapsulated into neutral or anionic liposomes did not increase compared to that of free tobramycin. Probably, the fusion of the anionic liposomes with the negatively charged bacterial surface of Bcc bacteria was limited by electrostatic repulsive forces. The lack of a substantial anti-biofilm effect of tobramycin encapsulated in neutral liposomes could be further investigated by increasing the liposomal tobramycin concentration. However, this was hampered by the low encapsulation efficiency of tobramycin in these liposomes.

  13. Fluorescence response of hypocrellin B to the environmental changes in a mimic biological membrane--liposome

    Institute of Scientific and Technical Information of China (English)

    JIN; Xuanye; ZHAO; Yuewei; XIE; Jie; ZHAO; Jingquan


    [1]Diwu, Z. J., Novel therapeutic and diagnostic application of hypocrellins and hypericins Photochem, Photobiol., 1995, 61(6):529-539.[2]Zhang, Z. Y., Wang, N. H., EPR studies of singlet oxygen and free radicals generated during photosensitization of hypocrellin B,Free Radical Biol. Med., 1993 14: 1-9.[3]Chowdhury, P. K., Das, K., Datta, A. et al., A comparison of the excited-state processes of nearly symmetrical perylene quinones:hypocrellin A and hypomycin B, J. Photochem. Photobiol. A:Chem., 2002, 154: 107-116.[4]Hudson, J. B., Zhou, J., Chen, J. et al., Hypocrellin, from Hypocrella bambusae, is phototoxic to human immunodeficiency virus, Photochem. Photobiol., 1994, 60: 253-255.[5]Xu, S. J., Chen, S., Zhang, M. H. et al., First synthesis of methylated Hypocrellin and its fluorescent excited state: A cautionary tale, J. Org. Chem., 2003, 68: 2048-2050.[6]Zhang, K. H., Zhang, Z. Y., Molecular thermodynamics of the configuration of perylenequinonoid pigments, Sci. Sin. (B), 1997,27: 357-360.[7]Kawakami, M., Koya, K., Ukai, T. et al., Structure-activity of novel rhodacyanine dyes as antitumor agents, J. Med. Chem.,1998, 41(1): 130-142.[8]Vaupel, P., Kallinowski, F., Okunieff, P., Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review, Cancer Res., 1989, 49: 6449-6465.[9]Patel, A. A., Gawlinski, E. T., Lemieux, S. K. et al., A cellular automaton model of early tumor growth and invasion, J. Theor.Biol., 2001, 213(3): 315-331.[10]Vorpai, E. S., Samtso, M. P., Chalov, V. N. et al., Fluorescence of the polymethine dyes, TIKS and diagnostics of cancer, J. Appl.Spectrosc., 2001, 68(3): 468-472.[11]Zadnia, A., Campbell, R., Sharma, M., The scope of dansyl vs.fluorescein label in fluorescence postlabeling assay for DNA damage, Anal. Biochem., 1994, 218: 444-448.[12]Yu, C. L., Chen, S., Zhang, M. H. et al., Spectroscopic studies and photodynamic actions of hypocrellin B in liposome

  14. Liposomal Indocyanine Green for Enhanced Photothermal Therapy. (United States)

    Yoon, Hwan-Jun; Lee, Hye-Seong; Lim, Ji-Young; Park, Ji-Ho


    In this study, we engineered liposomal indocyanine green (ICG) to maximize its photothermal effects while maintaining the fluorescence intensity. Various liposomal formulations of ICG were prepared by varying the lipid composition and the molar ratio between total lipid and ICG, and their photothermal characteristics were evaluated under near-infrared irradiation. We showed that the ICG dispersity in the liposomal membrane and its physical interaction with phospholipids were the main factors determining the photothermal conversion efficiency. In phototherapeutic studies, the optimized formulation of liposomal ICG showed greater anticancer effects in a mouse tumor model compared with other liposomal formulations and the free form of ICG. Furthermore, we utilized liposomal ICG to visualize the metastatic lymph node around the primary tumor under fluorescence imaging guidance and ablate the lymph node with the enhanced photothermal effect, indicating the potential for selective treatment of metastatic lymph node.

  15. Anionic liposome template synthesis of raspberry-like hollow silica particle under ambient conditions with basic catalyst. (United States)

    Ishii, Haruyuki; Sato, Kumi; Nagao, Daisuke; Konno, Mikio


    Hollow silica particle was obtained with a vesicle template synthesis in water under ambient conditions in the presence of ammonia. Biomimetic vesicles, liposomes were used, which consisted of a zwitterionic phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and a tiny amount of charged amphiphiles, hexadecylamine (HDA) or dicetylphosphate (DCP). Aggregation of silica occurred for DPPC or cationic DPPC/HDA liposome, whereas well-dispersed hollow silica particle could be obtained for anionic DPPC/DCP liposome. The hollow particle synthesized with the anionic liposome had single-layered and raspberry-like structures. Electrostatic repulsion between anionic vesicles maintained stable dispersion of the as-synthesized particles during the reaction. Formation of the raspberry-like morphology is explained by silica particle precipitation selectively induced around the liposomes under basic conditions due to affinity of silica precursors for the liposomes. Synthesis of well-dispersed hollow silica particle with a raspberry-like morphology is the first report in vesicle template syntheses.

  16. Evaluation of Extrusion Technique for Nanosizing Liposomes

    Directory of Open Access Journals (Sweden)

    Sandy Gim Ming Ong


    Full Text Available The aim of the present study was to study the efficiency of different techniques used for nanosizing liposomes. Further, the aim was also to evaluate the effect of process parameters of extrusion techniques used for nanosizing liposomes on the size and size distribution of the resultant liposomes. To compare the efficiency of different nanosizing techniques, the following techniques were used to nanosize the liposomes: extrusion, ultrasonication, freeze-thaw sonication (FTS, sonication and homogenization. The extrusion technique was found to be the most efficient, followed by FTS, ultrasonication, sonication and homogenization. The extruder used in the present study was fabricated using readily available and relatively inexpensive apparatus. Process parameters were varied in extrusion technique to study their effect on the size and size distribution of extruded liposomes. The results obtained indicated that increase in the flow rate of the extrusion process decreased the size of extruded liposomes however the size homogeneity was negatively impacted. Furthermore, the liposome size and distribution was found to decline with decreasing membrane pore size. It was found that by extruding through a filter with a pore size of 0.2 µm and above, the liposomes produced were smaller than the pore size, whereas, when they were extruded through a filter with a pore size of less than 0.2 µm the resultant liposomes were slightly bigger than the nominal pore size. Besides that, increment of extrusion temperature above transition temperature of the pro-liposome had no effect on the size and size distribution of the extruded liposomes. In conclusion, the extrusion technique was reproducible and effective among all the methods evaluated. Furthermore, processing parameters used in extrusion technique would affect the size and size distribution of liposomes. Therefore, the process parameters need to be optimized to obtain a desirable size range and homogeneity

  17. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors (United States)

    Torchilin, Vladimir P.; Rammohan, Ram; Weissig, Volkmar; Levchenko, Tatyana S.


    To achieve an efficient intracellular drug and DNA delivery, attempts were made to target microparticulate drug carriers into cytoplasm bypassing the endocytotic pathway. TAT peptides derived from the HIV-1 TAT protein facilitate intracellular delivery of proteins and small colloidal particles. We demonstrated that relatively large drug carriers, such as 200-nm liposomes, can also be delivered into cells by TAT peptide attached to the liposome surface. Liposomes were fluorescently labeled with membranotropic rhodamine-phosphatidylethanolamine or by entrapping FITC-dextran. Incubation of fluorescent TAT liposomes with mouse Lewis lung carcinoma cells, human breast tumor BT20 cells, and rat cardiac myocyte H9C2 results in intracellular localization of certain liposomes. Steric hindrances for TAT peptide·cell interaction (attachment of TAT directly to the liposome surface without spacer or the presence of a high MW polyethylene glycol on the liposome surface) abolish liposome internalization, evidencing the importance of direct contact of TAT peptide with the cell surface. Low temperature or metabolic inhibitors, sodium azide or iodoacetamide, have little influence on the translocation of TAT liposomes into cells, confirming the energy-independent character of this process. The approach may have important implications for drug delivery directly into cell cytoplasm.

  18. Targeted and ultrasound-triggered drug delivery using liposomes co-modified with cancer cell-targeting aptamers and a thermosensitive polymer. (United States)

    Ninomiya, Kazuaki; Yamashita, Takahiro; Kawabata, Shinya; Shimizu, Nobuaki


    In this study, we demonstrated the feasibility of targeted and ultrasound-triggered drug delivery using liposomes co-modified with single stranded DNA aptamers that recognized platelet-derived growth factor receptors (PDGFRs) as targeting ligands for breast cancer cells and poly(NIPMAM-co-NIPAM) as the thermosensitive polymer (TSP) to sensitize these liposomes to high temperature. TSP-modified liposomes (TSP liposomes) released encapsulated calcein under 1 MHz ultrasound irradiation for 30 s at 0.5 W/cm(2) as well as the case under incubation for 5 min at 42 °C. Ultrasound-triggered calcein release from TSP liposomes was due to an increased local temperature, resulting from cavitation bubble collapse induced by ultrasound, and not due to an increase in the bulk medium temperature. Liposomes modified with PDGFR aptamers (APT liposomes) bound to MDA-MB-231 human breast cancer cells through PDGFR aptamers; however, they did not bind to primary human mammary epithelial cells (HMECs). The binding of APT liposomes was greatest for MDA-MB-231 cells, followed by MCF-7, WiDr, and HepG2 cancer cells. In a cell injury assay using doxorubicin (DOX)-loaded APT/TSP liposomes and ultrasound irradiation, cell viability of MDA-MB-231 at 24h after ultrasound irradiation (1 MHz for 30 s at 0.5 W/cm(2)) with DOX-loaded APT/TSP liposomes was 60%, which was lower than that with ultrasound irradiation and DOX-loaded TSP liposomes or with DOX-loaded APT/TSP liposomes alone.

  19. Interactions of liposomes with dental restorative materials. (United States)

    Nguyen, Sanko; Adamczak, Malgorzata; Hiorth, Marianne; Smistad, Gro; Kopperud, Hilde Molvig


    The in vitro adsorption and retention of liposomes onto four common types of dental restorative materials (conventional and silorane-based resin composites as well as conventional and resin-modified glass ionomer cements (GIC)) have been investigated due to their potential use in the oral cavity. Uncoated liposomes (positively and negatively charged) and pectin (low- and high-methoxylated) coated liposomes were prepared and characterized in terms of particle size and zeta potential. The adsorption of liposomes was performed by immersion, quantified by fluorescence detection, and visualized by fluorescence imaging and atomic force microscopy. Positive liposomes demonstrated the highest adsorption on all four types of materials likely due to their attractive surface charge. They also retained well (minimum 40% after 60 min) on both conventional resin composite and GIC even when exposed to simulated salivary flow. Although an intermediate initial level of adsorption was found for the pectin coated liposomes, at least 70% high methoxylated-pectin coated liposomes still remained on the conventional resin composite after 60 min flow exposure. This indicates significant contribution of hydrophobic interactions in the prolonged binding of liposomes to resin composites. Based on these results, the present paper suggests two new possible applications of liposomes in the preservation of dental restorations.

  20. Liposomal drug delivery systems--clinical applications. (United States)

    Goyal, Parveen; Goyal, Kumud; Vijaya Kumar, Sengodan Gurusamy; Singh, Ajit; Katare, Om Prakash; Mishra, Dina Nath


    Liposomes have been widely investigated since 1970 as drug carriers for improving the delivery of therapeutic agents to specific sites in the body. As a result, numerous improvements have been made, thus making this technology potentially useful for the treatment of certain diseases in the clinics. The success of liposomes as drug carriers has been reflected in a number of liposome-based formulations, which are commercially available or are currently undergoing clinical trials. The current pharmaceutical preparations of liposome-based therapeutic systems mainly result from our understanding of lipid-drug interactions and liposome disposition mechanisms. The insight gained from clinical use of liposome drug delivery systems can now be integrated to design liposomes that can be targeted on tissues, cells or intracellular compartments with or without expression of target recognition molecules on liposome membranes. This review is mainly focused on the diseases that have attracted most attention with respect to liposomal drug delivery and have therefore yielded most progress, namely cancer, antibacterial and antifungal disorders. In addition, increased gene transfer efficiencies could be obtained by appropriate selection of the gene transfer vector and mode of delivery.

  1. Lysolipid containing liposomes for transendothelial drug delivery

    Directory of Open Access Journals (Sweden)

    Koklic Tilen


    Full Text Available Abstract Background Designing efficient 'vectors', to deliver therapeutics across endothelial barriers, in a controlled manner, remains one of the key goals of drug development. Recently, transcytosis of liposome encapsulated fluorescence marker calcein across a tight cell barrier was studied. The most efficient liposomes were found to be liposomes containing sufficient amount of alkyl phospholipid (APL perifosine. APLs have similar structure as lysophosphatidyl choline (LPC, since APLs were synthesized as metabolically stable analogues of LPC, which increases endothelial permeability directly by inducing endothelial cell contraction, resulting in formation of gaps between endothelial cells. Since one of the unique properties of lysolipid, containing liposomal formulations is dynamic equilibrium of lysolipids, which are distributed among liposomes, micelles, and free form, such liposomes represent a reservoir of free lysolipids. On the other hand lysolipid containing liposomes also represent a reservoir of an encapsulated hydrophilic drug. Presentation of the hypothesis We hypothesize that free lysolipids, with highest concentration in vicinity of drug carrying liposomes, compromise endothelial integrity, primarily where concentrations of liposomes is the highest, in a similar manner as LPC, by formation of gaps between endothelial cells. Liposome encapsulated drug, which leaks from liposomes, due to liposome destabilization, caused by lysolipid depletion, can therefore be efficiently transported across the locally compromised endothelial barrier. Testing the hypothesis This hypothesis could be verified: by measuring binding of perifosine and other lysolipids to albumin and to lysophospholipid receptor (LPL-R group; formation of stress fibers and subsequent cell contraction; activation of RhoA, and endothelial barrier dysfunction; by a synthesis of other LPC analogues with high critical micellar concentration and measuring their effect on

  2. Liposomal cancer therapy: exploiting tumor characteristics

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Andresen, Thomas Lars


    of cancer treatments. In the search for more effective cancer treatments, nanoparticle- based drug delivery systems, such as liposomes, that are capable of delivering their drug payload selectively to cancer cells are among the most promising approaches. Areas covered in this review: This review provides...... of new liposomal drug delivery systems that better exploit tumor characteristic features is likely to result in more efficacious cancer treatments....... an overview of current strategies for improving the different stages of liposomal cancer therapy, which involve transporting drug-loaded liposomes through the bloodstream, increasing tumor accumulation, and improving drug release and cancer cell uptake after accumulation at the tumor target site. What...

  3. Incorporation of an aggregation-induced-emissive tetraphenylethene derivative into cationic gene delivery vehicles manifested the nuclear translocation of uncomplexed DNA. (United States)

    Han, Xiongqi; Chen, Qixian; Lu, Hongguang; Guo, Pan; Li, Wei; Wu, Guolin; Ma, Jianbiao; Gao, Hui


    A fluorophore displaying aggregation-induced emission was introduced at the terminus of branched polyethylenimine (PEI). The formulated polyplex not only demonstrated an improved safety profile and preserved transfection activity but also importantly indicated that the uncomplexed naked DNA rather than the polyplexes translocated into the nucleus.

  4. Liposomal formulations of cytotoxic drugs. (United States)

    Janknegt, R


    Liposomes are microscopic particles of lipid bilayer membrane that enclose aqueous internal compartments. These drug-delivery systems offer a very interesting opportunity for delivering cytotoxic drugs with equal or improved clinical efficacy and reduced toxicity. The most important clinical application of liposomes until now has been the inclusion of amphotericin B. At the same dose level, liposomal amphotericin B is as effective or slightly less effective than the conventional formulation, but much higher dosages, up to 5-7 mg kg-1day-1, can be given with acceptable toxicity. There are three preparations of cytotoxic drugs in an advanced stage of commercial development. Two of these (Doxil and TLD D99) contain doxorubicin and the other (DaunoXome) contains daunorubicin. The cardiac toxicity of the three preparations under clinical evaluation appears to be low in comparison with conventional doxorubicin or daunorubicin. No direct comparisons between the new formulations are available, so it is not yet possible to make any statements concerning their relative efficacy and toxicity. DaunoXome is the only drug that is approved in any country, and is also the best documented. It is too early to make recommendations concerning the place of these drugs in therapy. The marked increase in concentrations at the site of the tumour has yet to lead to increased therapeutic efficacy. These findings need further investigation. The efficacy of liposomal preparations in Kaposi's sarcoma appears to be similar to that of standard therapy and the clinical tolerance is good. Perhaps combination therapy with other cytotoxic agents could result in improved clinical efficacy. Their cost will probably be high in comparison with standard therapies.

  5. Cyclen-based cationic lipids for highly efficient gene delivery towards tumor cells.

    Directory of Open Access Journals (Sweden)

    Qing-Dong Huang

    Full Text Available BACKGROUND: Gene therapy has tremendous potential for both inherited and acquired diseases. However, delivery problems limited their clinical application, and new gene delivery vehicles with low cytotoxicity and high transfection efficiency are greatly required. METHODS: In this report, we designed and synthesized three amphiphilic molecules (L1-L3 with the structures involving 1, 4, 7, 10-tetraazacyclododecane (cyclen, imidazolium and a hydrophobic dodecyl chain. Their interactions with plasmid DNA were studied via electrophoretic gel retardation assays, fluorescent quenching experiments, dynamic light scattering and transmission electron microscopy. The in vitro gene transfection assay and cytotoxicity assay were conducted in four cell lines. RESULTS: Results indicated that L1 and L3-formed liposomes could effectively bind to DNA to form well-shaped nanoparticles. Combining with neutral lipid DOPE, L3 was found with high efficiency in gene transfer in three tumor cell lines including A549, HepG2 and H460. The optimized gene transfection efficacy of L3 was nearly 5.5 times more efficient than that of the popular commercially available gene delivery agent Lipofectamine 2000™ in human lung carcinoma cells A549. In addition, since L1 and L3 had nearly no gene transfection performance in normal cells HEK293, these cationic lipids showed tumor cell-targeting property to a certain extent. No significant cytotoxicity was found for the lipoplexes formed by L1-L3, and their cytotoxicities were similar to or slightly lower than the lipoplexes prepared from Lipofectamine 2000™. CONCLUSION: Novel cyclen-based cationic lipids for effective in vitro gene transfection were founded, and these studies here may extend the application areas of macrocyclic polyamines, especially for cyclen.

  6. Biodistribution of rhodamine B fluorescence-labeled cationic nanoparticles in rats

    DEFF Research Database (Denmark)

    Knudsen, K. B.; Northeved, H.; Gjetting, Torben;


    were used. The animals were randomly allocated to five groups receiving either cationic micelles or cationic liposomes by single intravenous (IV) administration at a dose of 100 mg/kg bodyweight by single intracerebroventricular (ICV) injection at a dose of 50 μg or no treatment. ICV administration......We investigated the biodistribution following the administration of nanosized (about 50 and 90 nm) cationic (ζ: +30 and +50 mV) micelles and liposomes intended for drug delivery. The particles were stable and well characterized with respect to size and ζ potential. Ten 5- to 6-week-old male rats...... was used to study local distribution in the brain and IV administration to study the systemic distribution of the particles. For both types of particles, ICV administration showed distribution in all ventricles in the brain while IV delivery displayed distribution to the major organs liver, spleen, kidney...

  7. Interaction of DNA with Cationic Gemini Surfactant Trimethylene-1, 3-bis (dodecyldimethyl-ammonium bromide) and Anionic surfactant SDS mixed system%DNA与阳离子gemini表面活性剂和阴离子表面活性剂SDS混合系统的相互作用

    Institute of Scientific and Technical Information of China (English)

    赵小芳; 尚亚卓; 刘洪来; 胡英; 姜建文


    The interaction of DNA with cationic gemini surfactant trimethylene-1,3-bis (dodecyl dimethyl-ammonium bromide) (12-3-12) and anionic surfactant sodium dodecyl sulfate (SDS) mixed system has been investigated by measuring the fluorescence, zeta potential, UV-Vis spectrum, and circular dichroism. In the absence of SDS, owing to the electrostatic and hydrophobic interactions, 12-3-12 forms micelle-like structure on the DNA chain before the micellization in bulk phase. For the mixed system of 12-3-12 and SDS, the negative charges on SDS can compete against DNA to bind with cationic 12-3-12 because of the stronger interaction between oppositely charged surfactants, and thus, the catanionic mixed micelles are formed before the formation of DNA/12-3-12 complexes. Thereafter, the positive charges on the mixed micelles bind with DNA, and thus, the change of the zeta potential from negative to positive is distinctly different from the system without SDS. Meanwhile, the existence of SDS postpones the exclusion of ethidium bromide (EB) from DNA/EB complexes. The conformation of DNA undergoes a change from native B-form to chiral Ψ-phase as binding with 12-3-12 process. Upon adding SDS to the DNA/12-3-12 complex solution, however, DNA is released to the bulk and the Ψ-phase returns to B-form again.

  8. Radioprotective effect of transferrin targeted citicoline liposomes. (United States)

    Suresh Reddy, Jannapally; Venkateswarlu, Vobalaboina; Koning, Gerben A


    The high level of expression of transferrin receptors (Tf-R) on the surface of endothelial cells of the blood-brain-barrier (BBB) had been widely utilized to deliver drugs to the brain. The primary aim of this study was to use transferrin receptor mediated endocytosis as a pathway for the rational development of holo-transferrin coupled liposomes for drug targeting to the brain. Citicoline is a neuroprotective agent used clinically to treat for instance Parkinson disease, stroke, Alzheimer's disease and brain ischemia. Citicoline does not readily cross the BBB because of its strong polar nature. Hence, citicoline was used as a model drug. (Citicoline liposomes have been prepared using dipalmitoylphosphatidylcholine (DPPC) or distearoylphosphatidylcholine (DSPC) by dry lipid film hydration-extrusion method). The effect of the use of liposomes composed of DPPC or DSPC on their citicoline encapsulation efficiency and their stability in vitro were studied. Transferrin was coupled to liposomes by a technique which involves the prevention of scavenging diferric iron atoms of transferrin. The coupling efficiency of transferrin to the liposomes was studied. In vitro evaluation of transferrin-coupled liposomes was performed for their radioprotective effect in radiation treated cell cultures. In this study, OVCAR-3 cells were used as a model cell type over-expressing the Tf-R and human umbilical vein endothelial cells (HUVEC) as BBB endothelial cell model. The average diameter of DPPC and DSPC liposomes were 138 +/- 6.3 and 79.0 +/- 3.2 nm, respectively. The citicoline encapsulation capacity of DPPC and DSPC liposomes was 81.8 +/- 12.8 and 54.9 +/- 0.04 microg/micromol of phospholipid, respectively. Liposomes prepared from DSPC showed relatively better stability than DPPC liposomes at 37 degrees C and in the presence of serum. Hence, DSPC liposomes were used for transferrin coupling and an average of 46-55 molecules of transferrin were present per liposome. Free citicoline

  9. Nanoparticle Stabilized Liposomes for Acne Therapy (United States)

    Fu, Victoria

    Acne vulgaris is a common skin disease that affects over 40 million people in the United States alone. The main cause of acne vulgaris is Propionibacterium acnes (P. acnes), resides deep in the pores and follicles of the skin in order to feed on oil produced by the sebaceous glands. The liposome is a lipid based nanoparticle with numerous advantages over free drug molecules as an acne treatment alternative. Bare liposomes loaded with lauric acid (LipoLA) were found to show strong antimicrobial activity against P. acnes while generating minimal toxicity. However, the platform is limited by the spontaneous tendency of liposomes to fuse with each other. Attaching nanoparticles to the surface of liposomes can overcome this challenge by providing steric repulsion and reduce surface tension. Thus, carboxyl-functionalized gold nanoparticles (AuC) were attached to the surface of liposomes (AuC-liposomes) loaded with doxycycline, a general tetracycline antibiotic. These particles were found to have a diameter of 120 nm and a zeta potential of 20.0 mV. Both fluorescent and antimicrobial studies demonstrated that based on electrostatic interaction, negatively charged AuC attached to the liposome's positively charged surface and stabilized liposomes in a neutral pH environment (pH = 7.4). Upon entering the skin's acidic environment (pH = 4), AuC detached from the liposome's surface and liposomes could fuse with P. acnes residing in the pores. Furthermore, toxicity studies showed that AuC-liposomes did not induce any significant toxicity, while two of the leading over-the-counter therapies, benzoyl peroxide and salicylic acid, generated substantial skin irritation.

  10. Using liposomes as carriers for polyphenolic compounds: the case of trans-resveratrol.

    Directory of Open Access Journals (Sweden)

    Claudia Bonechi

    Full Text Available Resveratrol (3,5,4'-trihydroxy-trans-stilbene is a polyphenol found in various plants, especially in the skin of red grapes. The effect of resveratrol on human health is the topic of numerous studies. In fact this molecule has shown anti-cancer, anti-inflammatory, blood-sugar-lowering ability and beneficial cardiovascular effects. However, for many polyphenol compounds of natural origin bioavailability is limited by low solubility in biological fluids, as well as by rapid metabolization in vivo. Therefore, appropriate carriers are required to obtain efficient therapeutics along with low administration doses.Liposomes are excellent candidates for drug delivery purposes, due to their biocompatibility, wide choice of physico-chemical properties and easy preparation.In this paper liposome formulations made by a saturated phosphatidyl-choline (DPPC and cholesterol (or its positively charged derivative DC-CHOL were chosen to optimize the loading of a rigid hydrophobic molecule such as resveratrol.Plain and resveratrol loaded liposomes were characterized for size, surface charge and structural details by complementary techniques, i.e. Dynamic Light Scattering (DLS, Zeta potential and Small Angle X-ray Scattering (SAXS. Nuclear and Electron Spin magnetic resonances (NMR and ESR, respectively were also used to gain information at the molecular scale.The obtained results allowed to give an account of loaded liposomes in which resveratrol interacted with the bilayer, being more deeply inserted in cationic liposomes than in zwitterionic liposomes. Relevant properties such as the mean size and the presence of oligolamellar structures were influenced by the loading of RESV guest molecules.The toxicity of all these systems was tested on stabilized cell lines (mouse fibroblast NIH-3T3 and human astrocytes U373-MG, showing that cell viability was not affected by the administration of liposomial resveratrol.

  11. Cationic lipid-formulated DNA vaccine against hepatitis B virus: immunogenicity of MIDGE-Th1 vectors encoding small and large surface antigen in comparison to a licensed protein vaccine.

    Directory of Open Access Journals (Sweden)

    Anne Endmann

    Full Text Available Currently marketed vaccines against hepatitis B virus (HBV based on the small (S hepatitis B surface antigen (HBsAg fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible strategies to improve the efficacy of HBV vaccines. Here, we evaluated the immunogenicity of SAINT-18-formulated MIDGE-Th1 vectors encoding the S or the large (L protein of HBsAg in mice and pigs. In both animal models, vectors encoding the secretion-competent S protein induced stronger humoral responses than vectors encoding the L protein, which was shown to be retained mainly intracellularly despite the presence of a heterologous secretion signal. In pigs, SAINT-18-formulated MIDGE-Th1 vectors encoding the S protein elicited an immune response of the same magnitude as the licensed protein vaccine Engerix-B, with S protein-specific antibody levels significantly higher than those considered protective in humans, and lasting for at least six months after the third immunization. Thus, our results provide not only the proof of concept for the SAINT-18-formulated MIDGE-Th1 vector approach but also confirm that with a cationic-lipid formulation, a DNA vaccine at a relatively low dose can elicit an immune response similar to a human dose of an aluminum hydroxide-adjuvanted protein vaccine in large animals.

  12. Density-fitted open-shell symmetry-adapted perturbation theory and application to π-stacking in benzene dimer cation and ionized DNA base pair steps (United States)

    Gonthier, Jérôme F.; Sherrill, C. David


    Symmetry-Adapted Perturbation Theory (SAPT) is one of the most popular approaches to energy component analysis of non-covalent interactions between closed-shell systems, yielding both accurate interaction energies and meaningful interaction energy components. In recent years, the full open-shell equations for SAPT up to second-order in the intermolecular interaction and zeroth-order in the intramolecular correlation (SAPT0) were published [P. S. Zuchowski et al., J. Chem. Phys. 129, 084101 (2008); M. Hapka et al., ibid. 137, 164104 (2012)]. Here, we utilize density-fitted electron repulsion integrals to produce an efficient computational implementation. This approach is used to examine the effect of ionization on π-π interactions. For the benzene dimer radical cation, comparison against reference values indicates a good performance for open-shell SAPT0, except in cases with substantial charge transfer. For π stacking between hydrogen-bonded pairs of nucleobases, dispersion interactions still dominate binding, in spite of the creation of a positive charge.

  13. Optimization of formulation variables of benzocaine liposomes using experimental design. (United States)

    Mura, Paola; Capasso, Gaetano; Maestrelli, Francesca; Furlanetto, Sandra


    This study aimed to optimize, by means of an experimental design multivariate strategy, a liposomal formulation for topical delivery of the local anaesthetic agent benzocaine. The formulation variables for the vesicle lipid phase uses potassium glycyrrhizinate (KG) as an alternative to cholesterol and the addition of a cationic (stearylamine) or anionic (dicethylphosphate) surfactant (qualitative factors); the percents of ethanol and the total volume of the hydration phase (quantitative factors) were the variables for the hydrophilic phase. The combined influence of these factors on the considered responses (encapsulation efficiency (EE%) and percent drug permeated at 180 min (P%)) was evaluated by means of a D-optimal design strategy. Graphic analysis of the effects indicated that maximization of the selected responses requested opposite levels of the considered factors: For example, KG and stearylamine were better for increasing EE%, and cholesterol and dicethylphosphate for increasing P%. In the second step, the Doehlert design, applied for the response-surface study of the quantitative factors, pointed out a negative interaction between percent ethanol and volume of the hydration phase and allowed prediction of the best formulation for maximizing drug permeation rate. Experimental P% data of the optimized formulation were inside the confidence interval (P < 0.05) calculated around the predicted value of the response. This proved the suitability of the proposed approach for optimizing the composition of liposomal formulations and predicting the effects of formulation variables on the considered experimental response. Moreover, the optimized formulation enabled a significant improvement (P < 0.05) of the drug anaesthetic effect with respect to the starting reference liposomal formulation, thus demonstrating its actually better therapeutic effectiveness.

  14. The surface charge of liposomal adjuvants is decisive for their interactions with the Calu-3 and A549 airway epithelial cell culture models

    DEFF Research Database (Denmark)

    Ingvarsson, Pall Thor; Rasmussen, Ida Svahn; Viaene, Michelle


    potential for mucosal vaccination via the airways. The purpose of this study was to investigate the importance of the liposomal surface charge on the interaction with lung epithelial cells. Thus, the cationic DDA in the liposomes was subjected to a step-wise replacement with the zwitterionic...... distearoylphosphatidylcholine (DSPC). The liposomes were tested with the model protein antigen ovalbumin for the mucosal deposition, the effect on cellular viability and the epithelial integrity by using the two cell lines A549 and Calu-3, representing cells from the alveolar and the bronchiolar epithelium, respectively...... and viability of the mucus-covered Calu-3 cells. Our in vitro results thus indicate that DDA/TDB liposomes might be efficiently and safely used as an adjuvant system for vaccines targeting the mucus-covered epithelium of the upper respiratory tract and the conducting airways....

  15. Remote Loading of 64Cu2+ into Liposomes without the Use of Ion Transport Enhancers

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Petersen, Anncatrine Luisa; Hansen, Anders Elias;


    method for loading the positron emitter 64Cu2+ into liposomes, which is important for in vivo positron emission tomography (PET) imaging. By this approach, copper is added to liposomes entrapping a chelator, which causes spontaneous diffusion of copper across the lipid bilayer where it is trapped. Using...... depleted, cationic, anionic, and zwitterionic lipid compositions. We demonstrate high in vivo stability of 64Cu-liposomes in a large canine model observing a blood circulation half-life of 24 h and show a tumor accumulation of 6% ID/g in FaDu xenograft mice using PET imaging. With this work......, it is demonstrated that copper ions are capable of crossing a lipid membrane unassisted. This method is highly valuable for characterizing the in vivo performance of liposome-based nanomedicine with great potential in diagnostic imaging applications....

  16. Methods for using redox liposome biosensors (United States)

    Cheng, Quan; Stevens, Raymond C.


    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  17. Liposome-Encapsulated Hemoglobin for Emergency Resuscitation. (United States)


    have infused liposome -encapsulated amphotericin B to treat patients with systemic fungal infections. Their formulation includes 30% dimyristoyl...procedure, including exploring new industrial-scale methodologies for liposome manufacture. In addition we have focused on basic problems of biophysics...circulation persistance of this new formulation , as produced by the Microfluidizer, is obviously necessary. The influence of negatively-charged lipids on

  18. The protein corona of circulating PEGylated liposomes. (United States)

    Palchetti, Sara; Colapicchioni, Valentina; Digiacomo, Luca; Caracciolo, Giulio; Pozzi, Daniela; Capriotti, Anna Laura; La Barbera, Giorgia; Laganà, Aldo


    Following systemic administration, liposomes are covered by a 'corona' of proteins, and preserving the surface functionality is challenging. Coating the liposome surface with polyethylene glycol (PEG) is the most widely used anti-opsonization strategy, but it cannot fully preclude protein adsorption. To date, protein binding has been studied following in vitro incubation to predict the fate of liposomes in vivo, while dynamic incubation mimicking in vivo conditions remains largely unexplored. The main aim of this investigation was to determine whether shear stress, produced by physiologically relevant dynamic flow, could influence the liposome-protein corona. The corona of circulating PEGylated liposome was thoroughly compared with that formed by incubation in vitro. Systematic comparison in terms of size, surface charge and quantitative composition was made by dynamic light scattering, microelectrophoresis and nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). Size of coronas formed under static vs. dynamic incubation did not appreciably differ from each other. On the other side, the corona of circulating liposomes was more negatively charged than its static counterpart. Of note, the variety of protein species in the corona formed in a dynamic flow was significantly wider. Collectively, these results demonstrated that the corona of circulating PEGylated liposomes can be considerably different from that formed in a static fluid. This seems to be a key factor to predict the biological activity of a liposomal formulation in a physiological environment.

  19. Liposomal nanocapsules in food science and agriculture. (United States)

    Taylor, T Matthew; Davidson, P Michael; Bruce, Barry D; Weiss, Jochen


    Liposomes, spherical bilayer vesicles from dispersion of polar lipids in aqueous solvents, have been widely studied for their ability to act as drug delivery vehicles by shielding reactive or sensitive compounds prior to release. Liposome entrapment has been shown to stabilize encapsulated, bioactive materials against a range of environmental and chemical changes, including enzymatic and chemical modification, as well as buffering against extreme pH, temperature, and ionic strength changes. Liposomes have been especially useful to researchers in studies of various physiological processes as models of biological membranes in both eukaryotes and prokaryotes. Industrial applications include encapsulation of pharmaceuticals and therapeutics, cosmetics, anti-cancer and gene therapy drugs. In the food industry, liposomes have been used to deliver food flavors and nutrients and more recently have been investigated for their ability to incorporate food antimicrobials that could aid in the protection of food products against growth of spoilage and pathogenic microorganisms. In this review we briefly introduce key physicochemical properties of liposomes and review competing methods for liposome production. A survey of non-agricultural and food applications of liposomes are given. Finally, a detailed up-to-date summary of the emerging usage of liposomes in the food industry as delivery vehicles of nutrients, nutraceuticals, food additives, and food antimicrobials is provided.

  20. Transfer mechanism of temoporfin between liposomal membranes. (United States)

    Hefesha, Hossam; Loew, Stephan; Liu, Xiangli; May, Sylvio; Fahr, Alfred


    The transfer kinetics of temoporfin, a classic photosensitizer, was analyzed by investigating the influence of total lipid content, temperature, as well as charge, acyl chain length, and saturation of the lipids in donor vesicles using a mini ion exchange column technique. The obtained results are consistent with an apparent first order kinetics in which the transfer proceeds through both liposome collisions and through the aqueous phase. We present a corresponding theoretical model that accounts for the detailed distribution of drug molecules in donor and acceptor liposomes and predicts the transfer rates as a function of drug concentration and number of donor and acceptor liposomes. The experimentally observed transfer rates depended strongly on the temperature and comply with the Arrhenius equation. Thermodynamic calculations indicate the transfer process to be entropically controlled. In terms of the charge of donor liposomes, positively charged liposomes showed transfer rates faster than negatively charged liposomes whereas the maximum amount transferred was almost the same. A more rigid structure of the donor liposomes increases the transfer rate of temoporfin, which is caused by expelling the drug from the membrane interior, as proposed in former work. In summary, our combined theoretical/experimental approach offers a systematic way to study the mechanism of drug release from liposome-based delivery systems.

  1. Anomalous freezing behavior of nanoscale liposomes

    DEFF Research Database (Denmark)

    Spangler, E. J.; Kumar, P. B. S.; Laradji, M.


    The effect of the finite size of one-component liposomes on their phase behavior is investigated via simulations of an implicit-solvent model of self-assembled lipid bilayers. We found that the high curvature of nanoscale liposomes has a significant effect on their freezing behavior. While...

  2. Effect of Gd3+ on the colloidal stability of liposomes. (United States)

    Sabín, Juan; Prieto, Gerardo; Sennato, Simona; Ruso, Juan M; Angelini, Roberta; Bordi, Federico; Sarmiento, Félix


    Lanthanide ions such as La3+ and Gd3+ are well known to have large effects on the structure of phospholipid membranes. Unilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC) were prepared by sonication method and confirmed by transmission electron microscopy. The effects of concentration of gadolinium ions Gd3+ on DPPC unilamellar vesicles in aqueous media were studied by different techniques. As physical techniques, photon correlation spectroscopy, electrophoretic mobility, and differential scanning calorimetry were used. The theoretical predictions of the colloidal stability of liposomes were followed using the Derjaguin-Landau-Verwey-Overbeek theory. Changes in the size of liposomes and high polydispersities values were observed as Gd3+ concentration increases, suggesting that this cation induces the aggregation of vesicles. Electrophoretic mobility measurements on unilamellar vesicles as a function of Gd3+ ion concentration show that the vesicles adsorb Gd3+ ions. Above Gd3+ concentrations of 0.1 mol dm-3, the zeta potential and light scattering measurements indicate the beginning of aggregation process. For comparison with similar phospholipids, the zeta potential of phosphatidylcholine interacting with Gd3+ was measured, showing an analogous behavior. Differential scanning calorimetry has been used to determine the effect of Gd3+ on the transition temperature (Tc) and on the enthalpy (DeltaHc) associated with the process.

  3. Do plasma proteins distinguish between liposomes of varying charge density?

    KAUST Repository

    Capriotti, Anna Laura


    Cationic liposomes (CLs) are one of the most employed nonviral nanovector systems in gene therapy. However, their transfection efficiency is strongly affected by interactions with plasma components, that lead to the formation of a "protein corona" onto CL surface. The interactions between nanoparticles entering the body and biomolecules have an essential role for their biodistribution. Because the knowledge of proteins adsorbed onto vector surface could be useful in the screening of new, more efficient and more biocompatible liposomal formulations, the behavior of three CLs with different membrane charge densities was investigated. The proteins of the three coronas were identified by nano-liquid chromatography-tandem mass spectrometry, and quantified with label-free spectral counting strategy. Fibrinogen displayed higher association with CLs with high membrane charge density, while apolipoproteins and C4b-binding protein with CLs with low membrane charge density. These results are discussed in terms of the different lipid compositions of CLs and may have a deep biological impact for in vivo applications. Surface charge of nanoparticles is emerging as a relevant factor determining the corona composition after interaction with plasma proteins. Remarkably, it is also shown that the charge of the protein corona formed around CLs is strongly related to their membrane charge density. © 2012 Elsevier B.V.

  4. Human endostatin gene transfer,either naked or with liposome,has the same inhibitory effect on growth of mouse liver tumor cells in vivo

    Institute of Scientific and Technical Information of China (English)

    Chun-Hong Ma; Wen-Sheng Sun; Yan Zhang; Xiao-Yan Wang; Li-Fen Gao; Hua Liu; Chun Guo; Su-Xia Liu; Ying-Lin Cao; Li-Ning Zhang


    AIM: To explore a safe and efficient strategy of tumor therapy using anti-angiogenetic agents.METHODS: Endostatin gene with a signal sequence of human IgG γ chain was amplified by PCR and cloned into pVAX1 plasmid which was the only vector authorized by FDA in clinical trial to construct a recombinant plasmid named as pVAX-sEN. The recombinant plasmid was detected with EcoRI/KpnI and DNA sequencing. BALB/c mice bearing hepatocarcinoma cell line H22 were treated with naked pVAX-sEN or liposome-DNA complex in which the dose of DNA and the ratio of DNA and liposome were different from each other. To compare the efficiency of gene transfection, expression of endostatin at the treated tumor site was assayed with ELISA. To investigate the effect of pVAX1-sEN on hepatocellular carcinoma, pVAX-sEN either naked or in liposome-DNA complex was injected into BALB/c mice bearing H22, then the diameter of tumors was measured, microvessel density was detected by immunohistochemistry, endostatin expression in vivo was assayed at different time points.RESULTS: DNA sequencing showed the endostatin gene with the signal peptide was correctly cloned. In situ gene expression assay indicated that both the ratio of DNA and liposome and the dose of DNA could affect the gene transfection efficiency. Interestingly, naked pVAX-sEN had a similar in situ endostatin expression to pVAX-sEN with liposome. Animal experiments showed that pVAX-sEN together with pVAX-sEN-liposome complex could efficiently suppress the growth of mouse hepatoma cells.CONCLUSION: Naked endostatin plasmid intratumoral injection can get a similar gene transfection efficiency to liposome-DNA complex when used in situ.

  5. "Smart" liposomal nanocontainers in biology and medicine. (United States)

    Tarahovsky, Y S


    The perspectives of using liposomes for delivery of drugs to desired parts of the human body have been intensively investigated for more than 30 years. During this time many inventions have been suggested and different kinds of liposomal devices developed, and a number of them have reached the stages of preclinical or clinical trials. The latest techniques can be used to develop biocompatible nano-sized liposomal containers having some abilities of artificial intellect, such as the presence of sensory and responsive units. However, only a few have been clinically approved. Further improvements in this area depend on our knowledge of the interactions of drugs with the lipid bilayer of liposomes. Further studies on liposomal transport through the human body, their targeting of cells requiring therapeutic treatment, and finally, the development of techniques for controlled drug delivery to desired acceptors on cell surfaces or in cytoplasm are still required.

  6. Pharmacokinetics of temoporfin-loaded liposome formulations: correlation of liposome and temoporfin blood concentration. (United States)

    Decker, Christiane; Schubert, Harald; May, Sylvio; Fahr, Alfred


    Liposomal formulations of the highly hydrophobic photosensitizer temoporfin were developed in order to overcome solubility-related problems associated with the current therapy scheme. We have incorporated temoporfin into liposomes of varying membrane composition, cholesterol content, and vesicle size. Specifically, two phosphatidyl oligoglycerols were compared to PEG2000-DSPE with respect to the ability to prolong circulation half life of the liposomal carrier. We measured the resulting pharmacokinetic profile of the liposomal carrier and the incorporated temoporfin in a rat model employing a radioactive lipid label and (14)C-temoporfin. The data for the removal of liposomes and temoporfin were analyzed in terms of classical pharmacokinetic theory assuming a two-compartment model. This model, however, does not allow in a straightforward manner to distinguish between temoporfin eliminated together with the liposomal carrier and temoporfin that is first transferred to other blood components (e. g. plasma proteins) before being eliminated from the blood. We therefore additionally analyzed the data based on two separate one-compartment models for the liposomes and temoporfin. The model yields the ratio of the rate constant of temoporfin elimination together with the liposomal carrier and the rate constant of temoporfin elimination following the transfer to e. g. plasma proteins. Our analysis using this model demonstrates that a fraction of temoporfin is released from the liposomes prior to being eliminated from the blood. In case of unmodified liposomes this temoporfin release was observed to increase with decreasing bilayer fluidity, indicating an accelerated temoporfin transfer from gel-phase liposomes to e. g. plasma proteins. Interestingly, liposomes carrying either one of the three investigated surface-modifying agents did not adhere to the tendencies observed for unmodified liposomes. Although surface-modified liposomes exhibited improved pharmacokinetic

  7. Rheological properties of aqueous Pluronic-alginate systems containing liposomes. (United States)

    Grassi, G; Crevatin, A; Farra, R; Guarnieri, G; Pascotto, A; Rehimers, B; Lapasin, R; Grassi, M


    Rheological and erosion studies regarding a liposome-containing polymeric blend that is propaedeutic to its use in paving techniques in tubular organs, such as blood vessels, are reported. Attention is focused on an aqueous polymeric blend composed of Pluronic (PF127) and alginate (Protanal LF 10/60) because both polymers, when dissolved in water at a sufficiently high concentration, are subjected to different structural mechanisms, which are driven by temperature increase and addition of bivalent cations, respectively, and both result in marked viscoelastic and plastic properties. After proving the compatibility between PF127 and alginate, we show that the structural transition temperature of the blend, T(ST), can be properly modulated. In particular, we found that T(ST) for an aqueous solution of pure Pluronic 20% w/w is about 21 degrees C and that even slight reductions in polymer concentration result in considerable T(ST) decrease. The addition of salts or alginate (provided as Na-alginate) provokes a substantial decrease of T(ST) and thus the alginate concentration in the blend should not exceed 1% w/w. In addition, liposomes slow down the structural transition but do not substantially affect the rheological properties of the system in the final state at higher temperatures, thus showing that they can be added to the polymeric blend without significant effects. Finally, erosion tests show that after contact with a source of bivalent cations, the polymeric blend containing PF127 and alginate shows an erosion resistance neatly improved with respect to the simple structured Pluronic system having the same polymer concentration. As a whole, all these results constitute the basis for future potential applications of the considered polymeric blend in tubular organs such as blood vessels.

  8. Exploring the strength, mode, dynamics, and kinetics of binding interaction of a cationic biological photosensitizer with DNA: implication on dissociation of the drug-DNA complex via detergent sequestration. (United States)

    Paul, Bijan Kumar; Guchhait, Nikhil


    The present study aims at exploring a detailed characterization of the binding interaction of a promising cancer cell photosensitizer, harmane (HM), with DNA extracted from herring sperm. The polarity-sensitive prototropic transformation of HM, a naturally occurring, fluorescent, drug-binding alkaloid, β-carboline, is remarkably modified upon interaction with DNA and is manifested through significant modulations on the absorption and emission profiles of HM. From the series of studies undertaken in the present program, for example, absorption; steady-state emission; the effect of chaotrope (urea); iodide ion-induced steady-state fluorescence quenching; circular dichroism (CD); and helix melting from absorption spectroscopy; the mode of binding of HM into the DNA helix has been substantiated to be principally intercalative. Concomitantly, a discernible dependence of the photophysics of the DNA-bound drug on the medium ionic strength indicates that electrostatic attraction should not be ignored in the interaction. Efforts have also been delivered to delineate the dynamical aspects of the interaction, such as modulation in time-resolved fluorescence decay and rotational relaxation dynamics of the drug within the DNA environment. In view of the prospective biological applications of HM, the issue of facile dissociation of intercalated HM from the DNA helix also comprises a crucial prerequisite for the functioning as an effective therapeutic agent. In this context, our results imply that the concept of detergent-sequestered dissociation of the drug from the drug-DNA complex can be a prospective strategy through an appropriate choice of the detergent molecule. The utility of the present work resides in exploring the potential applicability of the fluorescence property of HM for studying its interactions with a relevant biological target, for example, DNA. In addition, the methods and techniques used in the present work can also be exploited to study the interaction of

  9. Incorporation of a synthetic mycobacterial monomycoloyl glycerol analogue stabilizes dimethyldioctadecylammonium liposomes and potentiates their adjuvant effect in vivo. (United States)

    Nordly, Pernille; Korsholm, Karen Smith; Pedersen, Esra Alici; Khilji, Tayba Sajid; Franzyk, Henrik; Jorgensen, Lene; Nielsen, Hanne Mørck; Agger, Else Marie; Foged, Camilla


    The combination of delivery systems such as cationic liposomes and immunopotentiating molecules is a promising approach for the rational design of vaccine adjuvants. In this study, a synthetic analogue of the mycobacterial lipid monomycoloyl glycerol (MMG), referred to as MMG-1, was synthesized and combined with the cationic surfactant dimethyldioctadecylammonium (DDA). The purpose of the study was to provide a thorough pharmaceutical characterization of the resulting DDA/MMG-1 binary system and to evaluate how incorporation of MMG-1 affected the adjuvant activity of DDA liposomes. Thermal analyses demonstrated that MMG-1 was incorporated into the DDA lipid bilayers, and cryo-transmission electron microscopy (TEM) confirmed that liposomes were formed. The particles had a polydisperse size distribution and an average diameter of approximately 400 nm. Evaluation of the colloidal stability indicated that at least 18 mol% MMG-1 was required to stabilize the DDA liposomes as the average particle size remained constant during storage for 6 months. The improved colloidal stability is most likely caused by increased hydration of the lipid bilayer. This was demonstrated by studying Langmuir-Blodgett monolayers of DDA and MMG-1 which revealed an increased surface pressure in the presence of high concentrations of MMG-1 when the DDA/MMG-1 monolayers were fully compressed, indicating an increased interaction with water due to enhanced hydration of the lipid head groups. Finally, immunization of mice with the tuberculosis fusion antigen Ag85B-ESAT-6 and DDA/MMG-1 liposomes induced a strong cell-mediated immune response characterized by a mixed Th1/Th17 profile and secretion of IgG1 and IgG2c antibodies. The Th1/Th17-biased immunostimulatory effect was increased in an MMG-1 concentration-dependent manner with maximal observed effect at 31 mol% MMG-1. Thus, incorporation of 31 mol% MMG-1 into DDA liposomes results in an adjuvant system with favorable physical as well as

  10. Biodistribution of rhodamine B fluorescence-labeled cationic nanoparticles in rats (United States)

    Knudsen, Kristina Bram; Northeved, Helle; Gjetting, Torben; Permin, Anders; Andresen, Thomas L.; Wegener, Karen Malene; Lam, Henrik Rye; Lykkesfeldt, Jens


    We investigated the biodistribution following the administration of nanosized (about 50 and 90 nm) cationic ( ζ: +30 and +50 mV) micelles and liposomes intended for drug delivery. The particles were stable and well characterized with respect to size and ζ potential. Ten 5- to 6-week-old male rats were used. The animals were randomly allocated to five groups receiving either cationic micelles or cationic liposomes by single intravenous (IV) administration at a dose of 100 mg/kg bodyweight by single intracerebroventricular (ICV) injection at a dose of 50 μg or no treatment. ICV administration was used to study local distribution in the brain and IV administration to study the systemic distribution of the particles. For both types of particles, ICV administration showed distribution in all ventricles in the brain while IV delivery displayed distribution to the major organs liver, spleen, kidney and lung, but not to the brain. Our data suggest that cationic micelles and liposomes are widely distributed in the body, indicating that these could potentially be used as drug delivery carriers to the major organs, but they do not cross the blood-brain barrier to a significant extent, without a targeting ligand attached. However, they are able to persist in the ventricles of the brain up to 24 h after ICV administration, demonstrating a new ability.

  11. Reversal of the multidrug resistance by drug combination using multifunctional liposomes (United States)

    Patel, Niravkumar R.

    One of the major obstacles to the success of cancer chemotherapy is the multi-drug resistance (MDR) that results due mainly to the over-expression of drug efflux transporter pumps such as P-glycoprotein (P-gp). Highly efficacious third generation P-gp inhibitors, like tariquidar, have shown promising results against MDR. However, P-gp is also expressed in normal tissues like the blood-brain barrier, gastrointestinal tract, liver and kidney. It is therefore important to limit the exposure of P-gp inhibitors to normal tissues and increase their co-localization with anticancer agents in tumor tissues to maximize the efficacy of a P-gp inhibitor. To minimize non-specific binding and increase its delivery to tumor tissues, liposomes, self-assembling phospholipid vesicles, were chosen as a drug delivery vehicle. The liposome has been identified as a system capable of carrying molecules with diverse physicochemical properties. It can also alter the pharmacokinetic profile of loaded molecules which is a concern with both tariquidar and paclitaxel. Liposomes can easily be surface-modified rendering them cell-specific as well as organelle-specific. The main objective of present study was to develop an efficient liposomal delivery system which would deliver therapeutic molecules of interest to tumor tissues and avoid interaction with normal tissues. In this study, the co-delivery of tariquidar and paclitaxel into tumor cells to reverse the MDR using long-circulating cationic liposomes was investigated. SKOV-3TR, the resistant variant of SKOV-3 and MCF-7/ADR, the resistant variant of MCF-7 were used as model cell lines. Uniform liposomal formulations were generated with high incorporation efficiency and no apparent decrease in tariquidar potency towards P-gp. Tariquidar- and paclitaxel- co-loaded long-circulating liposomes showed significant re-sensitization of SKOV-3TR and MCF-7/ADR for paclitaxel in vitro. Further modification of these liposomes with antitumor 2C5 resulted


    Directory of Open Access Journals (Sweden)



    Full Text Available The aim of study was to prepare small unilamellar vesicles (SUVs incorporating BDMCA that can injected by intravenousroute and further, evaluate hepatoprotective activity of the formulation. SUV liposomes were prepared using thin filmhydration followed by sonication method. Soya lecithin was used as lipid and stearyl amine was used as cationic chargeinducer. In the preparation of liposomes, process and formulation parameters were standardized. After preparation SUVswere characterized for physicochemical properties, particle size, zetapotential, percent drug entrapment, in vitro drugrelease and the drug-polymer interaction. The sustenance of drug release into the plasma after intravenous BDMCA SUVadministration was determined. Hepatoprotective activity was evaluated in CCl4 treated rats. The liposomal formulationswere successfully prepared using thin film hydration followed by sonication method. The desired encapsulation wasachieved by increase in the area of the lipid film formed. The size of SUVs obtained was 327 nm. FTIR results indicate therewas no interaction between lipid and drug. In vitro release data showed that the release was sustained for 10 days in vitroand could be described as diffusion-controlled. The liposomal formulations were able to sustain the release of drug in vivoalso. Liposomal formulations showed better hepatoprotective activity to the drug compared to its solution form.

  13. Liposome imaging agents in personalized medicine

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa; Hansen, Anders Elias; Gabizon, Alberto;


    that selectively localize in tumor tissue can transport both drugs and imaging agents, which allows for a theranostic approach with great potential in personalized medicine. Radiolabeling of liposomes have for many years been used in preclinical studies for evaluating liposome in vivo performance and has been...... start to consider how to use imaging for patient selection and treatment monitoring in connection to nanocarrier based medicines. Nanocarrier imaging agents could furthermore have interesting properties for disease diagnostics and staging. Here, we review the major advances in the development...... of radiolabeled liposomes for imaging as a tool in personalized medicine....

  14. Liposome-based delivery systems for ginsenoside Rh2: in vitro and in vivo comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Linqiang [China Pharmaceutical University, Department of Pharmaceutics, State Key Laboratory of Natural Medicines (China); Yu, Hua [University of Macao, Institute of Chinese Medical Sciences (China); Yin, Shaoping; Zhang, Ruixia; Zhou, Yudan; Li, Juan, E-mail: [China Pharmaceutical University, Department of Pharmaceutics, State Key Laboratory of Natural Medicines (China)


    The Ginsenoside Rh2 (Rh2) has been shown to possess anti-cancer properties both in vitro and in vivo. However, the poor bioavailability and fast plasma elimination limit the further clinical applications of Rh2 for cancer treatments. In the present study, three types of Rh2-loaded liposomes including Rh2-loaded normal liposome (Rh2-LP), Rh2-loaded cationic liposome (Rh2-CLP), and Rh2-loaded Methoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) liposome (Rh2-PLP) have been optimized and prepared with mean particle size of 80–125 nm. Compared to Rh2-LP, surface modifications with mPEG or octadecylamine significantly improve the physicochemical and biological properties both in vitro and in vivo. Moreover, PLP presented better tumor accumulation of the fluorescent cyanine dye, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide (DiR) in HepG2-xenografted nude mice than CLP (1.3-fold) or LP (1.6-fold) and prolong the resident time of DiR in tumor and organs (more than 24 h). The in vivo anti-cancer efficacy assessments indicate that Rh2-PLP presents the most activity on suppressing tumor growth in HepG2-xenografted mice than Rh2-LP and Rh2-CLP and without any significant toxicity. Our results indicate that mPEG-PLA modified liposome should be a potential and promising strategy to enhance the therapeutic index for anti-cancer agents.

  15. Liposome-based delivery systems for ginsenoside Rh2: in vitro and in vivo comparisons (United States)

    Xu, Linqiang; Yu, Hua; Yin, Shaoping; Zhang, Ruixia; Zhou, Yudan; Li, Juan


    The Ginsenoside Rh2 (Rh2) has been shown to possess anti-cancer properties both in vitro and in vivo. However, the poor bioavailability and fast plasma elimination limit the further clinical applications of Rh2 for cancer treatments. In the present study, three types of Rh2-loaded liposomes including Rh2-loaded normal liposome (Rh2-LP), Rh2-loaded cationic liposome (Rh2-CLP), and Rh2-loaded Methoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) liposome (Rh2-PLP) have been optimized and prepared with mean particle size of 80-125 nm. Compared to Rh2-LP, surface modifications with mPEG or octadecylamine significantly improve the physicochemical and biological properties both in vitro and in vivo. Moreover, PLP presented better tumor accumulation of the fluorescent cyanine dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) in HepG2-xenografted nude mice than CLP (1.3-fold) or LP (1.6-fold) and prolong the resident time of DiR in tumor and organs (more than 24 h). The in vivo anti-cancer efficacy assessments indicate that Rh2-PLP presents the most activity on suppressing tumor growth in HepG2-xenografted mice than Rh2-LP and Rh2-CLP and without any significant toxicity. Our results indicate that mPEG-PLA modified liposome should be a potential and promising strategy to enhance the therapeutic index for anti-cancer agents.


    Directory of Open Access Journals (Sweden)

    Dash Tapaswi Rani


    Full Text Available Liposomes are microscopic phospholipid vescicles made of lipid bilayer which are the drug carrier for improving the delivery of therapeutic agents. Research on liposome technology has progressed from conventional vesicles (“first-generation liposomes” to “second-generation liposomes”, in which long-circulating liposomes are obtained by modulating the lipid composition, size, and charge of the vesicle. Liposomes with modified surfaces have also been developed using several molecules, such as glycolipids or sialic acid. A significant step in the development of long-circulating liposomes came with inclusion of the synthetic polymer poly-(ethylene glycol (PEG in liposome composition. Due to advancement in liposomal technology a number of liposomal formulations are available in market for clinical use, with gene delivery and cancer therapy and some formulations are under clinical trial. Reformulation of drugs in liposomes has provided an opportunity to enhance the therapeutic indices of various agents mainly through alteration in their biodistribution. This review discusses the basic principles of liposome structures and preparations, evaluation parameters of liposomal formulation, pharmacokinetics of liposomes and liposome-encapsulated drugs, the potential applications of liposomes in drug delivery with examples of formulations approved for clinical use, and the problems associated with further exploitation of this drug delivery system.

  17. Progress involving new techniques for liposome preparation

    Directory of Open Access Journals (Sweden)

    Zhenjun Huang


    Full Text Available The article presents a review of new techniques being used for the preparation of liposomes. A total of 28 publications were examined. In addition to the theories, characteristics and problems associated with traditional methods, the advantages and drawbacks of the latest techniques were reviewed. In the light of developments in many relevant areas, a variety of new techniques are being used for liposome preparation and each of these new technique has particular advantages over conventional preparation methods. However, there are still some problems associated with these new techniques that could hinder their applications and further improvements are needed. Generally speaking, due to the introduction of these latest techniques, liposome preparation is now an improved procedure. These applications promote not only advances in liposome research but also the methods for their production on an industrial scale.

  18. Liposomal anticancer therapy: pharmacokinetic and clinical aspects. (United States)

    Di Paolo, A


    Liposomes, which are vesicles composed of a phospholipid bilayer surrounding an aqueous milieu, represent a new strategy for anticancer drug delivery. Extravasation and accumulation of liposomal drugs within neoplastic tissues are possible because of the leaky vasculature and scarce lymphatic vessels of tumours (the enhanced permeability and retention effect). Furthermore, liposomal chemotherapeutic agents display distinctive pharmacokinetic characteristics, because they possess longer elimination half-lives, reduced clearance and smaller volume of distribution with respect to corresponding free drugs. Taken together, these features lead to highest levels of cytotoxic agents in tumours, as demonstrated in preclinical models and clinical trials, whereas healthy tissues are spared from toxicity. In fact, liposomal drugs (i.e., doxorubicin), alone or in combination with other cytotoxic agents, lead to improved clinical effectiveness and ameliorated toxicity profile with respect to corresponding free drugs when they are used for the treatment of metastatic breast and ovarian cancers, and Kaposi's sarcoma.

  19. Active loading of gemcitabine into liposomes


    Møkleby, Tormund Aasjord


    Gemcitabine is a well established anticancer compound, and is in use today against several types of cancers. Gemcitabine has a short half life. Formulations of gemcitabine containing liposomes could extend it's half life, thereby maybe improving its effectiveness. Also, liposomes in the smaller size range have an advantage when it comes to treating cancer. They accumulate at the site of the tumor, and stay there for a longer time than it would have done in normal tissue(Massing and Fuxius 2...

  20. Scale-Up of Liposome Manufacturing


    Wiggenhorn, Michael


    The study provides a comprehensive overview on different stabilization techniques for liposomal formulations. The selection of the appropriate technology for a particular formulation can thereby be based on several considerations. If free flowable particulate bulk material is desired the spraying-technologies are preferred over lyophilization. Another advantage of spraying-based technologies is the possibility to combine the liposome formation step and the drying step within the same process....

  1. Physico-chemical characterization of liposomes and drug substance-liposome interactions in pharmaceutics using capillary electrophoresis and electrokinetic chromatography

    DEFF Research Database (Denmark)

    Franzen, Ulrik; Østergaard, Jesper


    Liposomes are self-assembled phospholipid vesicles and have numerous research and therapeutic applications. In the pharmaceutical and biomedical sciences liposomes find use as models of biological membranes, partitioning medium and as drug carriers. The present review addresses the use of capillary...... electrophoresis and liposome electrokinetic chromatography for the characterization of liposomes in a pharmaceutical context. Capillary electrophoretic techniques have been used for the measurement of electrophoretic mobility, which provides information on liposome surface charge, size and membrane permeability...... of liposomes. The use of liposome electrokinetic chromatography and capillary electrophoresis for determination of liposome/water partitioning and characterization of drug-liposome interactions is reviewed. A number of studies indicate that capillary electrophoresis may have a role in the characterization...

  2. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. (United States)

    Torchilin, V P; Omelyanenko, V G; Papisov, M I; Bogdanov, A A; Trubetskoy, V S; Herron, J N; Gentry, C A


    The hypothetical model is built explaining the molecular mechanism of protective action of poly(ethylene glycol) on liposomes in vivo. The protective layer of the polymer on the liposome surface is considered as a statistical 'cloud' of polymer possible conformations in solution. Computer simulation was used to demonstrate that relatively a small number of liposome-grafted molecules of hydrophilic and flexible polymer can create a dense protective conformational cloud over the liposome surface preventing opsonizing protein molecules from contacting liposome. A more rigid polymer fails to form this dense protective cloud, even when hydrophilic. Computer simulation was also used to reveal possible heterogeneity of reactive sites on a polymer-coated liposome surface, and to estimate the optimal polymer-to-lipid ratio for efficient liposome protection. Experiments have been performed with the quenching of liposome-associated fluorescent label (nitrobenzoxadiazole or fluorescein) with protein (rhodamine-ovalbumin or anti-fluorescein antibody) from solution. It was shown that poly(ethylene glycol) grafting to liposomes hinders protein interaction with the liposome surface, whereas liposome-grafted dextran (more rigid polymer) in similar quantities does not affect protein-liposome interaction. Highly-reactive and low-reactive populations of chemically identical reactive sites have been found on polymer-coated liposomes. Experimental data satisfactory confirm the suggested mechanism for the longevity of polymer-modified liposome.

  3. Pegylated liposomal doxorubicin in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Robert Strother


    Full Text Available Robert Strother1,2, Daniela Matei1–51Department of Medicine, 2Indiana University Melvin and Bren Simon Cancer Center, 3Department of Obstetrics and Gynecology, 4Department of Biochemistry and Molecular Biology, 5VA Roudebush Hospital Indiana University School of Medicine, 535 Barnhill Drive, Indianapolis, IN, 46202Abstract: The encapsulation of doxorubicin in a pegylated liposomal matrix led to a reformulated agent with a different toxicity profile and improved clinical utility. Liposomal doxorubicin is devoid of the cardiac toxicity associated with doxorubicin, but is associated with predictable muco-cutaneous toxicity. The liposomal formulation leads to improved delivery to the target tumor tissue, allowing enhanced uptake by cancer cells. These properties translate into clinical utility in recurrent ovarian cancer as demonstrated by phase II and III trials, this proven clinical efficacy leading to FDA approval in second-line therapy for ovarian cancer. New combinations with cytotoxics, in particular with carboplatin, have demonstrated an acceptable toxicity profile and clinical utility in platinum-sensitive ovarian cancer. A favorable toxicity profile renders liposomal doxorubicin an ideal partner for combination regimens with other cytotoxics, and more recently with biological agents. Such combinations are the subject of ongoing clinical trials.Keywords: ovarian cancer, doxorubicin, liposomes, pegylated liposomal doxorubicin

  4. Liposomal amphotericin B: clinical experience and perspectives. (United States)

    Gibbs, Winter J; Drew, Richard H; Perfect, John R


    While amphotericin B deoxycholate (Fungizone, Apothecon Pharmaceuticals) has been considered by many to be the gold standard for the treatment for numerous invasive fungal infections for over 45 years, toxicities associated with its use often necessitate treatment modification or discontinuation. Lipid-based formulations, including liposomal amphotericin B (AmBisome, Fujisawa Healthcare, Inc.), were developed to decrease many of these toxicities while retaining broad antifungal spectrum and potency of amphotericin B. In clinical trials, liposomal amphotericin B has demonstrated efficacy comparable to that of amphotericin B deoxycholate while reducing the incidence of treatment-related nephrotoxicity, electrolyte-wasting, and infusion-related reactions. In addition, recent clinical trials have also compared liposomal amphotericin B with other antifungal classes. Acquisition costs of liposomal amphotericin B are substantially higher than those of amphotericin B deoxycholate and other antifungals. While pharmacoeconomic analyses consider outcomes and other treatment-related costs, they have yet to clearly demonstrate the cost-effectiveness of liposomal amphotericin B when compared with amphotericin B deoxycholate or other antifungal agents. This review will focus primarily on recent liposomal amphotericin B experience and attempt to put its use into perspective considering other available antifungal agents.

  5. Plasmon resonant liposomes for controlled drug delivery (United States)

    Knights-Mitchell, Shellie S.; Romanowski, Marek


    Nanotechnology use in drug delivery promotes a reduction in systemic toxicity, improved pharmacokinetics, and better drug bioavailability. Liposomes continue to be extensively researched as drug delivery systems (DDS) with formulations such as Doxil® and Ambisome® approved by FDA and successfully marketed in the United States. However, the limited ability to precisely control release of active ingredients from these vesicles continues to challenge the broad implementation of this technology. Moreover, the full potential of the carrier to sequester drugs until it can reach its intended target has yet to be realized. Here, we describe a liposomal DDS that releases therapeutic doses of an anticancer drug in response to external stimulus. Earlier, we introduced degradable plasmon resonant liposomes. These constructs, obtained by reducing gold on the liposome surface, facilitate spatial and temporal release of drugs upon laser light illumination that ultimately induces an increase in temperature. In this work, plasmon resonant liposomes have been developed to stably encapsulate and retain doxorubicin at physiological conditions represented by isotonic saline at 37o C and pH 7.4. Subsequently, they are stimulated to release contents either by a 5o C increase in temperature or by laser illumination (760 nm and 88 mW/cm2 power density). Successful development of degradable plasmon resonant liposomes responsive to near-infrared light or moderate hyperthermia can provide a new delivery method for multiple lipophilic and hydrophilic drugs with pharmacokinetic profiles that limit clinical utility.

  6. Liposomal co-entrapment of CD40mAb induces enhanced IgG responses against bacterial polysaccharide and protein.

    Directory of Open Access Journals (Sweden)

    Caterina Hatzifoti

    Full Text Available BACKGROUND: Antibody against CD40 is effective in enhancing immune responses to vaccines when chemically conjugated to the vaccine antigen. Unfortunately the requirement for chemical conjugation presents some difficulties in vaccine production and quality control which are compounded when multivalent vaccines are required. We explore here an alternative to chemical conjugation, involving the co-encapsulation of CD40 antibody and antigens in liposomal vehicles. METHODOLOGY/PRINCIPAL FINDINGS: Anti-mouse CD40 mAb or isotype control mAb were co-entrapped individually in cationic liposomal vehicles with pneumococcal polysaccharides or diphtheria and tetanus toxoids. Retention of CD40 binding activity upon liposomal entrapment was assessed by ELISA and flow cytometry. After subcutaneous immunization of BALB/c female mice, anti-polysaccharide and DT/TT responses were measured by ELISA. Simple co-encapsulation of CD40 antibody allowed for the retention of CD40 binding on the liposome surface, and also produced vaccines with enhanced imunogenicity. Antibody responses against both co-entrapped protein in the form of tetanus toxoid, and Streptococcus pneumoniae capsular polysaccharide, were enhanced by co-encapsulation with CD40 antibody. Surprisingly, liposomal encapsulation also appeared to decrease the toxicity of high doses of CD40 antibody as assessed by the degree of splenomegaly induced. CONCLUSIONS/SIGNIFICANCE: Liposomal co-encapsulation with CD40 antibody may represent a practical means of producing more immunogenic multivalent vaccines and inducing IgG responses against polysaccharides without the need for conjugation.

  7. New drug candidates for liposomal delivery identified by computer modeling of liposomes' remote loading and leakage. (United States)

    Cern, Ahuva; Marcus, David; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram


    Remote drug loading into nano-liposomes is in most cases the best method for achieving high concentrations of active pharmaceutical ingredients (API) per nano-liposome that enable therapeutically viable API-loaded nano-liposomes, referred to as nano-drugs. This approach also enables controlled drug release. Recently, we constructed computational models to identify APIs that can achieve the desired high concentrations in nano-liposomes by remote loading. While those previous models included a broad spectrum of experimental conditions and dealt only with loading, here we reduced the scope to the molecular characteristics alone. We model and predict API suitability for nano-liposomal delivery by fixing the main experimental conditions: liposome lipid composition and size to be similar to those of Doxil® liposomes. On that basis, we add a prediction of drug leakage from the nano-liposomes during storage. The latter is critical for having pharmaceutically viable nano-drugs. The "load and leak" models were used to screen two large molecular databases in search of candidate APIs for delivery by nano-liposomes. The distribution of positive instances in both loading and leakage models was similar in the two databases screened. The screening process identified 667 molecules that were positives by both loading and leakage models (i.e., both high-loading and stable). Among them, 318 molecules received a high score in both properties and of these, 67 are FDA-approved drugs. This group of molecules, having diverse pharmacological activities, may be the basis for future liposomal drug development.

  8. A Review on Composite Liposomal Technologies for Specialized Drug Delivery

    Directory of Open Access Journals (Sweden)

    Maluta S. Mufamadi


    Full Text Available The combination of liposomes with polymeric scaffolds could revolutionize the current state of drug delivery technology. Although liposomes have been extensively studied as a promising drug delivery model for bioactive compounds, there still remain major drawbacks for widespread pharmaceutical application. Two approaches for overcoming the factors related to the suboptimal efficacy of liposomes in drug delivery have been suggested. The first entails modifying the liposome surface with functional moieties, while the second involves integration of pre-encapsulated drug-loaded liposomes within depot polymeric scaffolds. This attempts to provide ingenious solutions to the limitations of conventional liposomes such as short plasma half-lives, toxicity, stability, and poor control of drug release over prolonged periods. This review delineates the key advances in composite technologies that merge the concepts of depot polymeric scaffolds with liposome technology to overcome the limitations of conventional liposomes for pharmaceutical applications.

  9. Preparation of liposome-coated oligonucleotide labeled with 99mTc and its uptake in vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)


    To explore the preparation method of liposome-coated 99mTc-labeled antisense oligonucleotide (ASON),targeteing the proliferating cell nuclear antigen (PCNA), and to explore the biological characteristics and the uptake kinetics of a radiolabeled probe in vascular smooth muscle cells, an 18-base single-stranded antisense oligonucleotide targeting PCNA mRNA and the complementary strand (sense oligonucleotide, SON) were synthesized. The ASON (SON) was labeled with 99mTc, by conjugating the bifunctional chelator (hydrazino nicotinamide, HYNIC), and purified through a gel filtration column of Sephadex G-25. The product was then encapsulated in cationic liposome (oligofectamineTM). The radiolabeling efficiency, radiochemical purity, stability of the liposome-coated 99mTc-HYNIC-ASON in a phosphate buffered solution (PBS), and fresh human serum and its uptake rate were studied. There was no significant difference between the 99mTc radiolabeling efficiencies of HYNIC-ASON and HYNIC-SON, which were 60.04% ± 1.92% and 59.60% ± 2.53%, respectively (P > 0.05, n = 5). The radiochemical purity of the liposome-coated 99mTc-HYNIC-ASON was 94.70% ± 1.90% (n = 5). And after incubation with PBS and fresh human seAt 90 min after transfection, the uptake rate of the liposome-coated 99mTc-HYNIC-ASON reached its peak of 83.8% ±5.92% in vascular smooth muscle cells (VSMCs) and was much higher than that of the nonliposome-coated 99mTc-HYNIC-ASON, which was 11.16% ± 0.54% (P < 0.01, n = 4). The labeling method of PCNA ASON (SON) conjugated by HYNIC has been proved successful. The liposome was able to enhance the ASON (SON) uptake in VSMCs,and could be widely used as a safe, convenient, effective gene transfer carrier.

  10. Use of liposomes as injectable-drug delivery systems. (United States)

    Ostro, M J; Cullis, P R


    The formation of liposomes and their application as delivery systems for injectable drugs are described. Liposomes are microscopic vesicles composed of one or more lipid membranes surrounding discrete aqueous compartments. These vesicles can encapsulate water-soluble drugs in their aqueous spaces and lipid-soluble drugs within the membrane itself. Liposomes release their contents by interacting with cells in one of four ways: adsorption, endocytosis, lipid exchange, or fusion. Liposome-entrapped drugs are distributed within the body much differently than free drugs; when administered intravenously to healthy animals and humans, most of the injected vesicles accumulate in the liver, spleen, lungs, bone marrow, and lymph nodes. Liposomes also accumulate preferentially at the sites of inflammation and infection and in some solid tumors; however, the reason for this accumulation is not clear. Four major factors influence liposomes' in vivo behavior and biodistribution: (1) liposomes tend to leak if cholesterol is not included in the vesicle membrane, (2) small liposomes are cleared more slowly than large liposomes, (3) the half-life of a liposome increases as the lipid dose increases, and (4) charged liposomal systems are cleared more rapidly than uncharged systems. The most advanced application of liposome-based therapy is in the treatment of systemic fungal infections, especially with amphotericin B. Liposomes are also under investigation for treatment of neoplastic disorders. Liposomes' uses in cancer therapy include encapsulation of known antineoplastic agents such as doxorubicin and methotrexate, delivery of immune modulators such as N-acetylmuramyl-L-alanine-D-isoglutamine, and encapsulation of new chemical entities that are synthesized with lipophilic segments tailored for insertion into lipid bilayers. Liposomal formulations of injectable antimicrobial agents and antineoplastic agents already are undergoing clinical testing, and most probably will receive

  11. Liposomal amphotericin B for the treatment of visceral leishmaniasis


    Bern, C.; Adler-Moore, J.; Berenguer, J.; Boelaert, M; van den Boer, M.; Davidson, R N; Figueras, C; Gradoni, L.; Kafetzis, D. A.; Ritmeijer, E.; Rosenthal, E.; Royce, C; Russo, R; Sundar, S; Alvar, J.


    During the past decade, liposomal amphotericin B has been used with increasing frequency to treat visceral leishmaniasis (VL). The World Health Organization convened a workshop to review current knowledge and to develop guidelines for liposomal amphotericin B use for VL. In Europe, liposomal amphotericin B is widely used to treat VL. In Africa and Asia, the VL disease burden is high and drug access is poor; liposomal amphotericin B is available only through preferential pricing for nonprofit ...

  12. Liposomal dry powders as aerosols for pulmonary delivery of proteins


    Lu, Dongmei; Hickey, Anthony J.


    The purpose of this research was to develop liposomal dry powder aerosols for protein delivery. The delivery of stable protein formulations is essential for protein subunit vaccine delivery, which requires local delivery to macrophages in the lungs. β-Glucuronidase (GUS) was used as a model protein to evaluate dry powder liposomes as inhaled delivery vehicles. Dimyristoyl phosphatylcholine:cholesterol (7∶3) was selected as the liposome composition. The lyophilization of liposomes, micronizati...

  13. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. (United States)

    Torchilin, V P; Shtilman, M I; Trubetskoy, V S; Whiteman, K; Milstein, A M


    Newly synthesized amphiphilic polyacrylamide and poly(vinyl pyrrolidone), single terminus-modified with long-chain fatty acyl groups, are able to incorporate into the liposomal membrane, and similar to poly(ethylene glycol) prolong liposome circulation in vivo and decrease liposome accumulation in the liver. Protective efficacy of modified polymers increases with the increase in the length of acyl moiety and decreases for higher molecular weight polymers. The data on amphiphilic polymer-modified liposome biodistribution are presented.

  14. Local Gene Delivery System by Bubble Liposomes and Ultrasound Exposure into Joint Synovium

    Directory of Open Access Journals (Sweden)

    Yoichi Negishi


    Full Text Available Recently, we have developed novel polyethylene glycol modified liposomes (bubble liposomes; BL entrapping an ultrasound (US imaging gas, which can work as a gene delivery tool with US exposure. In this study, we investigated the usefulness of US-mediated gene transfer systems with BL into synoviocytes in vitro and joint synovium in vivo. Highly efficient gene transfer could be achieved in the cultured primary synoviocytes transfected with the combination of BL and US exposure, compared to treatment with plasmid DNA (pDNA alone, pDNA plus BL, or pDNA plus US. When BL was injected into the knee joints of mice, and US exposure was applied transcutaneously to the injection site, highly efficient gene expression could be observed in the knee joint transfected with the combination of BL and US exposure, compared to treatment with pDNA alone, pDNA plus BL, or pDNA plus US. The localized and prolonged gene expression was also shown by an in vivo luciferase imaging system. Thus, this local gene delivery system into joint synovium using the combination of BL and US exposure may be an effective means for gene therapy in joint disorders.

  15. MRI shows clodronate-liposomes attenuating liverinjuryinratswithsevereacutepancreatitis

    Institute of Scientific and Technical Information of China (English)

    Jian-Xin Zhang; Sheng-Chun Dang; Yong Zhang; Xin Sha; Li-Rong Zhang; Chuan-She Wei; Min Chen; De-Li Jiang


    BACKGROUND: Studies have revealed that macrophages play an important role in the development of severe acute pancreatitis (SAP). Activated macrophages can lead to a systemic inlfammatory response, induce lipid peroxidation, impair membrane structure, result in injury to the liver and the other extrahepatic organs, and eventually result in multiple organ dysfunction syndrome by promoting excessive secretion of cytokines. Liver injury can further aggravate the systemic inlfammatory response and increase mortality by affecting the metabolism of toxins and the release of excessive inlfammatory mediators. Clodronate is a synthetic bisphosphonate, which is often used for treating bone changes caused by osteoporosis and other factors. In the current study, we created liposomes containing superparamagnetic iron oxide particles (SPIOs) for macrophage labeling and magnetic resonance imaging, using a novel method that can bind the clodronate to induce apoptosis and deplete macrophages. METHODS: Superparamagnetic Fe3O4 nanoparticles were prepared by chemical coprecipitation. SPIO-containing liposomes and SPIO-clodronate-containing liposomes were prepared by the thin iflm method. SAP models were prepared by injection of sodium taurocholate (2 ml/kg body weight) into the subcapsular space of the pancreas. Sprague-Dawley rats were randomly divided into a control group, a SAP plus SPIO-liposome group, and a SAP plus SPIO-clodronate-containing group. Two and six hours after SAP models were available, T2-weighted MRI scans (in the same plane) of the livers of rats in each group were performed. At the end of the scans, 2 ml of blood was taken from the superior mesenteric vein to measure the levels of serum amylase, ALT, AST, TNF-α, and IL-6. Pathological changes in the liver and pancreas were assessed. RESULTS: Transmission electron microscopy showed that the liposomes had a uniform size. No pathological changes in the pancreata of rats in the control group were noted. The

  16. Liposome-hepatocyte interactions : The role of plasma proteins

    NARCIS (Netherlands)

    Yan, Xuedong


    Liposomes have proved to be a useful drug delivery system as evidenced by several liposomal products that have reached the market in recent years [1]. However, many obstacles, such as low efficiency and specificity in delivering macromolecules to target sites, need to be overcome before liposomal dr

  17. Acoustical Properties of Individual Liposome-Loaded Microbubbles

    NARCIS (Netherlands)

    Luan, Y.; Faez, T.; Gelderblom, E.C.; Skachkov, I.; Geers, B.; Lentacker, I.; Steen, van der T.; Versluis, M.; Jong, de N.


    A comparison between phospholipid-coated microbubbles with and without liposomes attached to the microbubble surface was performed using the ultra-high-speed imaging camera (Brandaris 128). We investigated 73 liposome-loaded microbubbles (loaded microbubbles) and 41 microbubbles without liposome loa

  18. A novel liposomal formulation of flavopiridol. (United States)

    Yang, Xiaojuan; Zhao, Xiaobin; Phelps, Mitch A; Piao, Longzhu; Rozewski, Darlene M; Liu, Qing; Lee, L James; Marcucci, Guido; Grever, Michael R; Byrd, John C; Dalton, James T; Lee, Robert J


    Flavopiridol has shown promising activities in hematologic and solid tumor models, as well as in clinical trials in chronic lymphocytic leukemia patients. Flavopiridol has relatively low solubility and high plasma protein-binding. To address these issues and to provide an alternative strategy to achieve clinical efficacy, we encapsulated flavopiridol into a liposomal carrier and characterized its physicochemical and pharmacokinetic properties. The liposomes, comprising hydrogenated soy phosphatidylcholine (HSPC), cholesterol and poly (ethylene glycol) 2000-distearoyl phosphatidylethanolamine (PEG-DSPE), were prepared by polycarbonate membrane extrusion and then loaded with flavopiridol by a pH-gradient driven remote loading procedure. The liposomes had a mean diameter of 120.7 nm and a flavopiridol entrapment efficiency of 70.4%. Pharmacokinetic study in mice after i.v. bolus injection showed that the liposomal flavopiridol had an increased elimination phase half-life (T((1/2)beta), 339.7 min vs. 57.0 min), decreased clearance (CL, 0.012 L/min vs. 0.036 L/min), and increased area under the plasma concentration-time curve (AUC, 10.8 min micromol/L vs. 3.4 min micromol/L) compared to the free drug. This indicates a significant and potentially beneficial change in flavopiridol pharmacokinetics for the liposomal formulation. Further preclinical studies are warranted to define the toxicity and therapeutic efficacy of this novel formulation.

  19. Lactosamination of liposomes and hepatotropic targeting research

    Institute of Scientific and Technical Information of China (English)

    Yong Peng Chen; Lian Zhang; Qiao Sheng Lu; Xiao Rong Feng; Kang Xian Luo


    Site-specific delivery of therapeutic drugs to their target cells is a major scientific challenge for the pharmaceutical sciences. It offers a number of advantages over conventional drug administration. With drug targeting, high local concentrations of the drug can be achieved, thus circumventing many unwanted side effects. Various carriers have been suggested for the delivery of drugs, including liposomes[1 - 5] and (neo ) glycoproteins[6-8]. The asialoglycoprotein receptor (ASGP-R) has frequently been utilized for targeting drugs to the parenchymal liver cell[6- 12]. Liposomes have several advantageous characteristics as drug carrier, and particularly, ligandtacked liposomes achieve a highly effective targeting[13]. Hara et al reported that asialofetuin (AF)-tacked liposomes distributed to rat hepatocytes selectively in vivo[14], and ASGP-R mediated the uptake of AF-liposomes encapsulating IFN-γ by isolated rat hepatocytes in vitro[15]. Lactosaminated human serum albumin (L-HSA) is a neoglycoprotein taking number of galactose residue as terminal sugar[6].

  20. Treatment of Digital Ischemia with Liposomal Bupivacaine

    Directory of Open Access Journals (Sweden)

    José Raul Soberón


    Full Text Available Objective. This report describes a case in which the off-label use of liposomal bupivacaine (Exparel in a peripheral nerve block resulted in marked improvement of a patient’s vasoocclusive symptoms. The vasodilating and analgesic properties of liposomal bupivacaine in patients with ischemic symptoms are unknown, but our clinical experience suggests a role in the management of patients suffering from vasoocclusive disease. Case Report. A 45-year-old African American female was admitted to the hospital with severe digital ischemic pain. She was not a candidate for any vascular surgical or procedural interventions. Two continuous supraclavicular nerve blocks were placed with modest clinical improvement. These effects were also short-lived, with the benefits resolving after the discontinuation of the peripheral nerve blocks. She continued to report severe pain and was on multiple anticoagulant medications, so a decision was made to perform an axillary nerve block using liposomal bupivacaine (Exparel given the compressibility of the site as well as the superficial nature of the target structures. Conclusions. This case report describes the successful off-label usage of liposomal bupivacaine (Exparel in a patient with digital ischemia. Liposomal bupivacaine (Exparel is currently FDA approved only for wound infiltration use at this time.

  1. A simple liposome assay for the screening of zinc ionophore activity of polyphenols. (United States)

    Clergeaud, Gael; Dabbagh-Bazarbachi, Husam; Ortiz, Mayreli; Fernández-Larrea, Juan B; O'Sullivan, Ciara K


    An efficient liposomal system for screening the zinc ionophore activity of a selected library consisting of the most relevant dietary polyphenols is presented. The zinc ionophore activity was demonstrated by exploring the use of zinc-specific fluorophore FluoZin-3 loaded liposomes as simple membrane tools that mimic the cell membrane. The zinc ionophore activity was demonstrated as the capacity of polyphenols to transport zinc cations across the liposome membrane and increase the zinc-specific fluorescence of the encapsulated fluorophore FluoZin-3. In addition, the zinc chelation strength of the polyphenols was also tested in a competition assay based on the fluorescence quenching of zinc-dependent fluorescence emitted by zinc-FluoZin-3 complex. Finally, the correlation between the chelation capacity and ionophore activity is demonstrated, thus underlining the sequestering or ionophoric activity that the phenolic compounds can display, thus, providing better knowledge of the importance of the structural conformation versus their biological activity. Furthermore, the assays developed can be used as tools for rapid, high-throughput screening of families of polyphenols towards different biometals.

  2. Magnetic nanoparticles for "smart liposomes". (United States)

    Nakayama, Yoshitaka; Mustapić, Mislav; Ebrahimian, Haleh; Wagner, Pawel; Kim, Jung Ho; Hossain, Md Shahriar Al; Horvat, Joseph; Martinac, Boris


    Liposomal drug delivery systems (LDDSs) are promising tools used for the treatment of diseases where highly toxic pharmacological agents are administered. Currently, destabilising LDDSs by a specific stimulus at a target site remains a major challenge. The bacterial mechanosensitive channel of large conductance (MscL) presents an excellent candidate biomolecule that could be employed as a remotely controlled pore-forming nanovalve for triggered drug release from LDDSs. In this study, we developed superparamagnetic nanoparticles for activation of the MscL nanovalves by magnetic field. Synthesised CoFe2O4 nanoparticles with the radius less than 10 nm were labelled by SH groups for attachment to MscL. Activation of MscL by magnetic field with the nanoparticles attached was examined by the patch clamp technique showing that the number of activated channels under ramp pressure increased upon application of the magnetic field. In addition, we have not observed any cytotoxicity of the nanoparticles in human cultured cells. Our study suggests the possibility of using magnetic nanoparticles as a specific trigger for activation of MscL nanovalves for drug release in LDDSs.

  3. Liposome-Loaded Cell Backpacks. (United States)

    Polak, Roberta; Lim, Rosanna M; Beppu, Marisa M; Pitombo, Ronaldo N M; Cohen, Robert E; Rubner, Michael F


    Cell backpacks, or micron-scale patches of a few hundred nanometers in thickness fabricated by layer-by-layer (LbL) assembly, are potentially useful vehicles for targeted drug delivery on the cellular level. In this work, echogenic liposomes (ELIPs) containing the anticancer drug doxorubicin (DOX) are embedded into backpacks through electrostatic interactions and LbL assembly. Poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA)n , and poly(diallyldimethylammonium chloride)/poly(styrene sulfonate) (PDAC/SPS)n film systems show the greatest ELIP incorporation of the films studied while maintaining the structural integrity of the vesicles. The use of ELIPs for drug encapsulation into backpacks facilitates up to three times greater DOX loading compared to backpacks without ELIPs. Cytotoxicity studies reveal that monocyte backpack conjugates remain viable even after 72 h, demonstrating promise as drug delivery vehicles. Because artificial vesicles can load many different types of drugs, ELIP containing backpacks offer a unique versatility for broadening the range of possible applications for cell backpacks.

  4. In vitro characteristics of liposomes and double liposomes prepared using a novel glass beads method. (United States)

    Yamabe, Kenji; Kato, Yoshinori; Onishi, Hiraku; Machida, Yoshiharu


    A novel preparative method for liposomes and double liposomes (DL) using glass beads was superior to a glass-filter method developed previously. Lipid dissolved in chloroform was poured into a kjeldahl flask with glass beads (BZ-04, 0.350-0.500 mm phi; BZ-3, 2.794-3.962 mm phi; or BZ-6, 5.613-6.680 mm phi), and the organic solvent was evaporated. The lipid layer that formed on the glass beads was hydrated with 1.5 ml of the suspension of inner liposomes at a temperature above the phase transition temperature of the lipids employed, and was agitated vigorously. Erythrosine (ER) was used as a model drug. The size of liposomes prepared by the glass beads method depended on the size of the glass beads. The size of the liposomes became smaller as glass beads with a smaller size were used. A high encapsulation efficiency was observed when glass bead blends consisting of two different sizes were used. Large sizes (BZ-3/BZ-6) had a tendency to show high encapsulation efficiency and size also played an important role in the formation of liposomes. DL formation inhibited the release of ER and DL formative efficiency was markedly improved by means of the glass beads method. These findings suggested that the glass beads method developed in this study conferred a high drug loading and a high DL formation on liposomes compared with ordinary methods.

  5. Incorporation of the purified epstein barr virus/C3d receptor (CR2) into liposomes and demonstration of its dual ligand binding functions

    Energy Technology Data Exchange (ETDEWEB)

    Mold, C.; Cooper, N.R.; Nemerow, G.R.


    The 145-kDA molecule that has been identified as the C3d receptor CR2 was isolated from lysates of Raji cells by affinity chromatography by using the monoclonal antibody (MoAb)HB-5. The purified protein was incorporated into /sup 14/C-phosphatidylcholine liposomes by deoxycholate dialysis followed by flotation on discontinuous sucrose gradients. Incorporation of the receptor was verified by testing the gradient fractions for CR2 by an enzyme-linked immunosorbent assay. Liposomes were shown to be unilamellar vesicles ranging in diameter from 25 to 100 nm by electron microscopy. The external orientation of CR2 in the membranes was demonstrated by immunoelectron microscopy. The functional activities of liposomes containing CR2 and liposomes without protein were compared. CR2 liposomes bound to EC3d, but not to E, and this binding was inhibited by the anti-CR2 MoAb OKB7 and by a MoAb specific for C3d. Control liposomes failed to bind to either E or EC3D. The ability of CR2 to function as a receptor for Epstein Barr virus (EBV) was tested in two ways. First, CR2 liposomes bound to B95-8, a cell line expressing EBV membrane antigens, but not to B95-8 cells treated with the viral DNA polymerase inhibitor phosphonoformic acid. Second, liposomes containing CR2 were shown by ultracentrifugal analyses to bind directly to purified EBV, and this binding was also inhibited by OKB7. Control liposomes did not bind to B95-8 cells or to EBV. These findings show that CR2 purified from detergent extracts of Raji cells can be reconstituted into lipid membranes with maintenance of its dual functions as a receptor for C3d and EBV.

  6. Imaging-based analysis of liposome internalization to macrophage cells: Effects of liposome size and surface modification with PEG moiety. (United States)

    Lee, Jae Sun; Hwang, Sang Youn; Lee, E K


    Liposome is one of the frequently used carriers for active targeting systems in vivo. Such parameters as its size, surface charge, and surface modifiers are known to influence the liposome uptake by macrophage cells. In this study, we investigated the effects of liposome size and polyethylene glycol (PEG) surface modifier on the liposomal internalization to murine macrophage (RAW-264.7), by using an imaging analysis technique. Three different sized liposomes (100, 200, and 400 nm in nominal diameter) labeled with rhodamine fluorescence were used. Liposome internalization appeared to reach a pseudo-steady plateau in about 5h incubation, and most of the internalized liposomes were seen to accumulate in the cytosol including cellular extensions. The maximum fluorescent density from the internalized liposomes was similar between 100 nm and 200 nm liposomes. However, that of the larger 400 nm liposome was approximately 1.7 times higher than the others, confirming the previous report that the larger the liposomes are the higher the degree of internalization is. When the outside of the 200 nm liposomes was modified with biocompatible anchor molecule (BAM) consisting of PEG (ca. 2kD molecular weight) moiety, the endocytosis was indeed reduced by about 2.1-fold, despite the increase of the hydrodynamic size due to BAM conjugation. This fluorescence-based cellular imaging analysis can be used to quantitatively monitor and optimize cellular internalization systems.

  7. Microfluidic-enabled liposomes elucidate size-dependent transdermal transport.

    Directory of Open Access Journals (Sweden)

    Renee R Hood

    Full Text Available Microfluidic synthesis of small and nearly-monodisperse liposomes is used to investigate the size-dependent passive transdermal transport of nanoscale lipid vesicles. While large liposomes with diameters above 105 nm are found to be excluded from deeper skin layers past the stratum corneum, the primary barrier to nanoparticle transport, liposomes with mean diameters between 31-41 nm exhibit significantly enhanced penetration. Furthermore, multicolor fluorescence imaging reveals that the smaller liposomes pass rapidly through the stratum corneum without vesicle rupture. These findings reveal that nanoscale liposomes with well-controlled size and minimal size variance are excellent vehicles for transdermal delivery of functional nanoparticle drugs.

  8. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu


    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  9. Therapeutic gas delivery via microbubbles and liposomes. (United States)

    Fix, Samantha M; Borden, Mark A; Dayton, Paul A


    Gaseous molecules including nitric oxide, hydrogen sulfide, carbon monoxide and oxygen mediate numerous cell signaling pathways and have important physiological roles. Several noble gasses have been shown to elicit biological responses. These bioactive gasses hold great therapeutic potential, however, their controlled delivery remains a significant challenge. Recently, researchers have begun using microbubbles and liposomes to encapsulate such gasses for parenteral delivery. The resultant particles are acoustically active, and ultrasound can be used to stimulate and/or image gas release in a targeted region. This review provides a summary of recent advances in therapeutic gas delivery using microbubbles and liposomes.

  10. Immunogenicity and safety of liposome-vaccine encapsulating hepatitis B surface antigen and phosphodiester CpG oligodeoxynucleotides

    Institute of Scientific and Technical Information of China (English)



    CpG oligodeoxynucleotides (CpG ODN) as adjuvant have been extensively studied in recent years. Phosphodiester CpG ODN (PO CpG ODN) can perfectly mimic bacterial DNA in enhancing immune response but are vulnerable to nucleases in vivo. This study aimed to evaluate the immunostimu latory potential and safety of phosphodiester CpG ODN encapsulated in nonphospholipid liposomes.BALB/c mice were immunized intramuscularly with different formulations of liposomes, CpG ODN and hepatitis B surface antigen (HBsAg). The results demonstrated that the encapsulated PO CpG ODN were protected against rapid degradation in vivo and retained their adjuvant activity. PO CpG ODN encapsulated with HBsAg in liposomes induced strong Th1-biased or Th1/Th2 mixed humoral immune response in mice with the magnitude similar to their phosphothioate equivalent in the same formulation.High IFN-gamma production induced by this formulation confirmed the generation of strong cellular immune response. Additionally, co-delivery of HBsAg and PO CpG ODN improved the immune response over that obtained with separate delivery. Safety experiment showed that liposome-encapsulaed PO CpG ODN and HBsAg caused mild systemic and moderate local adverse reaction. In conclusion, our data shows that PO CpG ODN encapsulated in liposomes fully exhibit their Th1-type adjuvant activity and act as a potential adjuvant for vaccines.

  11. Shotgun proteomic analytical approach for studying proteins adsorbed onto liposome surface

    KAUST Repository

    Capriotti, Anna Laura


    The knowledge about the interaction between plasma proteins and nanocarriers employed for in vivo delivery is fundamental to understand their biodistribution. Protein adsorption onto nanoparticle surface (protein corona) is strongly affected by vector surface characteristics. In general, the primary interaction is thought to be electrostatic, thus surface charge of carrier is supposed to play a central role in protein adsorption. Because protein corona composition can be critical in modifying the interactive surface that is recognized by cells, characterizing its formation onto lipid particles may serve as a fundamental predictive model for the in vivo efficiency of a lipidic vector. In the present work, protein coronas adsorbed onto three differently charged cationic liposome formulations were compared by a shotgun proteomic approach based on nano-liquid chromatography-high-resolution mass spectrometry. About 130 proteins were identified in each corona, with only small differences between the different cationic liposome formulations. However, this study could be useful for the future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins into body fluids. © 2011 Springer-Verlag.

  12. Liposomes as signal amplification reagents for bioassays in microfluidic channels. (United States)

    Locascio, Laurie E; Hong, Jennifer S; Gaitan, Michael


    Liposomes with encapsulated carboxyfluorescein were used in an affinity-based assay to provide signal amplification for small-volume fluorescence measurements. Microfluidic channels were fabricated by imprinting in a plastic substrate material, poly(ethylene terephthalate glycol) (PETG), using a silicon template imprinting tool. Streptavidin was linked to the surface through biotinylated-protein for effective immobilization with minimal nonspecific adsorption of the liposome reagent. Lipids derivatized with biotin were incorporated into the liposome membrane to make the liposomes reactive for affinity assays. Specific binding of the liposomes to microchannel walls, dependence of binding on incubation time, and nonspecific adsorption of the liposome reagent were evaluated. The results of a competitive assay employing liposomes in the microchannels are presented.

  13. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary insulin delivery. (United States)

    Chono, Sumio; Fukuchi, Rie; Seki, Toshinobu; Morimoto, Kazuhiro


    The pulmonary insulin delivery characteristics of liposomes were examined. Aerosolized liposomes containing insulin were administered into rat lungs and the enhancing effect on insulin delivery was evaluated by changes of plasma glucose levels. Liposomes with dipalmitoyl phosphatidylcholine (DPPC) enhanced pulmonary insulin delivery in rats, however, liposomes with dilauroyl, dimyristoyl, distearoyl or dioleoyl phosphatidylcholine did not. Liposomes with DPPC also enhanced the in vitro permeation of FITC dextran (Mw 4400, FD-4) through the calu-3 cell monolayer by reducing the transepithelial electrical resistance and did not harm lung tissues in rats. These findings suggest that liposomes with DPPC enhance pulmonary insulin delivery by opening the epithelial cell space in the pulmonary mucosa not mucosal cell damage. Liposomes with DPPC could be useful as a pulmonary delivery system for peptide and protein drugs.

  14. Potential Effect of Liposomes and Liposome-Encapsulated Botulinum Toxin and Tacrolimus in the Treatment of Bladder Dysfunction. (United States)

    Janicki, Joseph J; Chancellor, Michael B; Kaufman, Jonathan; Gruber, Michele A; Chancellor, David D


    Bladder drug delivery via catheter instillation is a widely used treatment for recurrence of superficial bladder cancer. Intravesical instillation of liposomal botulinum toxin has recently shown promise in the treatment of overactive bladder and interstitial cystitis/bladder pain syndrome, and studies of liposomal tacrolimus instillations show promise in the treatment of hemorrhagic cystitis. Liposomes are lipid vesicles composed of phospholipid bilayers surrounding an aqueous core that can encapsulate hydrophilic and hydrophobic drug molecules to be delivered to cells via endocytosis. This review will present new developments on instillations of liposomes and liposome-encapsulated drugs into the urinary bladder for treating lower urinary tract dysfunction.

  15. Study on Leakage of Sesame (Sesamum indicum L. and Coconut (Cocos nucifera L. Liposomes

    Directory of Open Access Journals (Sweden)

    Dwi Hudiyanti


    Full Text Available Leakage phenomena on sesame (Sesamum indicum L. and coconut (Cocos nucifera L. liposomes has been studied to evaluate their ability as drug delivery materials. Permeation of carboxyfluorescein through the liposomes with and without added cholesterol was examined. Sesame liposomes release carboxyfluorescein less than coconut liposomes in all circumstances. Sesame liposomes save about 50% of payload after 17 hours of storage while coconut liposomes only 10%. Addition of cholesterol has increase storage capability of all liposomes. The sesame-cholesterol and coconut-cholesterol liposomes save greater amount of payload compare to the original. Sesame liposomes have better potency as drug delivery systems.

  16. DNA Bar-Coding for Phytoplasma Identification

    DEFF Research Database (Denmark)

    Makarova, Olga; Contaldo, Nicoletta; Paltrinieri, Samanta;


    Phytoplasma identi fi cation has proved dif fi cult due to their inability to be maintained in vitro. DNA barcoding is an identi fi cation method based on comparison of a short DNA sequence with known sequences from a database. A DNA barcoding tool has been developed for phytoplasma identi fi cat...

  17. Prospects of liposomes using for creating of new forms of the medicinal and preventive preparations

    Directory of Open Access Journals (Sweden)

    M. A. Kisjakova


    Full Text Available Information on the structure, physical and chemical characteristics of the phospholipid vesicles (liposomes – the effective natural drug delivery system is presented. Types of liposomes, procedures of its productions, penetration mechanisms into cells and functional features of liposomal drugs are described. Data on production of liposomes with lactobacilli acellular homogenates and the methods of the liposomes structure control asre demonstrated.

  18. Vaccination with liposomal leishmanial antigens adjuvanted with monophosphoryl lipid-trehalose dicorynomycolate (MPL-TDM) confers long-term protection against visceral leishmaniasis through a human administrable route. (United States)

    Ravindran, Rajesh; Maji, Mithun; Ali, Nahid


    The development of a long-term protective subunit vaccine against visceral leishmaniasis depends on antigens and adjuvants that can induce an appropriate immune response. The immunization of leishmanial antigens alone shows limited efficacy in the absence of an appropriate adjuvant. Earlier we demonstrated sustained protection against Leishmania donovani with leishmanial antigens entrapped in cationic liposomes through an intraperitoneal route. However, this route is not applicable for human administration. Herein, we therefore evaluated the immune response and protection induced by liposomal soluble leishmanial antigen (SLA) formulated with monophosphoryl lipid-trehalose dicorynomycolate (MPL-TDM) through a subcutaneous route. Subcutaneous immunization of BALB/c mice with SLA entrapped in liposomes or with MPL-TDM elicited partial protection against experimental visceral leishmaniasis. In contrast, liposomal SLA adjuvanted with MPL-TDM induced significantly higher levels of protection in liver and spleen in BALB/c mice challenged 10 days post-vaccination. Protection conferred by this formulation was sustained up to 12 weeks of immunization, and infection was controlled for at least 4 months of the challenge, similar to liposomal SLA immunization administered intraperitoneally. An analysis of cellular immune responses of liposomal SLA + MPL-TDM immunized mice demonstrated the induction of IFN-γ and IgG2a antibody production not only 10 days or 12 weeks post-vaccination but also 4 months after the challenge infection and a down regulation of IL-4 production after infection. Moreover, long-term immunity elicited by this formulation was associated with IFN-γ production also by CD8⁺ T cells. Taken together, our results suggest that liposomal SLA + MPL-TDM represent a good vaccine formulation for the induction of durable protection against L. donovani through a human administrable route.

  19. Predicting the influence of liposomal lipid composition on liposome size, zeta potential and liposome-induced dendritic cell maturation using a design of experiments approach. (United States)

    Soema, Peter C; Willems, Geert-Jan; Jiskoot, Wim; Amorij, Jean-Pierre; Kersten, Gideon F


    In this study, the effect of liposomal lipid composition on the physicochemical characteristics and adjuvanticity of liposomes was investigated. Using a design of experiments (DoE) approach, peptide-containing liposomes containing various lipids (EPC, DOPE, DOTAP and DC-Chol) and peptide concentrations were formulated. Liposome size and zeta potential were determined for each formulation. Moreover, the adjuvanticity of the liposomes was assessed in an in vitro dendritic cell (DC) model, by quantifying the expression of DC maturation markers CD40, CD80, CD83 and CD86. The acquired data of these liposome characteristics were successfully fitted with regression models, and response contour plots were generated for each response factor. These models were applied to predict a lipid composition that resulted in a liposome with a target zeta potential. Subsequently, the expression of the DC maturation factors for this lipid composition was predicted and tested in vitro; the acquired maturation responses corresponded well with the predicted ones. These results show that a DoE approach can be used to screen various lipids and lipid compositions, and to predict their impact on liposome size, charge and adjuvanticity. Using such an approach may accelerate the formulation development of liposomal vaccine adjuvants.

  20. Dynamic Observation of the Three-Dimensional Distribution of Labeled Liposomes Using the Novel High-Resolution Single-Photon Emission Computed Tomography

    Directory of Open Access Journals (Sweden)

    Andreas Wirrwar


    Full Text Available The aim of this study was to show that the multipinhole technique (high-resolution single-photon emission computed tomography [HiSPECT] is suitable for dynamic imaging of both biodistribution and temporal uptake behavior of radiolabeled cationic liposomes in Balb/c-mice. HiSPECT uses multipinhole collimators adapted to a clinical SPECT scanner, together with a dedicated iterative reconstruction program. This technique provides both high spatial resolution and an improvement in sensitivity. Six male Balb/c mice received 9.8 ± 4.0 MBq of the In 111-labeled liposomes. The measurements started directly after the injection and tomographic data were acquired in steps of 5 minutes. The regional evaluation displayed a high initial uptake of liposomes in the lungs (45.4%, which decreased to 25.1% after 30 minutes and to below 2% after 48 hours. In contrast, liver uptake increased in the first 30 minutes from 13.1 to 21.2% and remained relatively stable at 24.4% (24 hours and 18.8% (48 hours. The data are interpreted as a slow shift of liposomes from the lungs into the liver and later to other organs such as the spleen and bladder. This study shows that the HiSPECT technique is capable of dynamically visualizing the uptake behavior of radioactively labeled liposomes in vivo with high temporal and spatial resolution.

  1. Influence of the Encapsulation Efficiency and Size of Liposome on the Oral Bioavailability of Griseofulvin-Loaded Liposomes (United States)

    Ong, Sandy Gim Ming; Ming, Long Chiau; Lee, Kah Seng; Yuen, Kah Hay


    The objective of the present study was to investigate the influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Griseofulvin-loaded liposomes with desired characteristics were prepared from pro-liposome using various techniques. To study the effect of encapsulation efficiency, three preparations of griseofulvin, namely, griseofulvin aqueous suspension and two griseofulvin-loaded liposomes with different amounts of griseofulvin encapsulated [i.e., F1 (32%) and F2(98%)], were administered to rats. On the other hand, to study the effect of liposome size, the rats were given three different griseofulvin-loaded liposomes of various sizes, generated via different mechanical dispersion techniques [i.e., FTS (142 nm), MS (357 nm) and NS (813 nm)], but with essentially similar encapsulation efficiencies (about 93%). Results indicated that the extent of bioavailability of griseofulvin was improved 1.7–2.0 times when given in the form of liposomes (F1) compared to griseofulvin suspension. Besides that, there was an approximately two-fold enhancement of the extent of bioavailability following administration of griseofulvin-loaded liposomes with higher encapsulation efficiency (F2), compared to those of F1. Also, the results showed that the extent of bioavailability of liposomal formulations with smaller sizes were higher by approximately three times compared to liposomal formulation of a larger size. Nevertheless, a further size reduction of griseofulvin-loaded liposome (≤400 nm) did not promote the uptake or bioavailability of griseofulvin. In conclusion, high drug encapsulation efficiency and small liposome size could enhance the oral bioavailability of griseofulvin-loaded liposomes and therefore these two parameters deserve careful consideration during formulation. PMID:27571096

  2. Influence of the Encapsulation Efficiency and Size of Liposome on the Oral Bioavailability of Griseofulvin-Loaded Liposomes

    Directory of Open Access Journals (Sweden)

    Sandy Gim Ming Ong


    Full Text Available The objective of the present study was to investigate the influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Griseofulvin-loaded liposomes with desired characteristics were prepared from pro-liposome using various techniques. To study the effect of encapsulation efficiency, three preparations of griseofulvin, namely, griseofulvin aqueous suspension and two griseofulvin-loaded liposomes with different amounts of griseofulvin encapsulated [i.e., F1 (32% and F2(98%], were administered to rats. On the other hand, to study the effect of liposome size, the rats were given three different griseofulvin-loaded liposomes of various sizes, generated via different mechanical dispersion techniques [i.e., FTS (142 nm, MS (357 nm and NS (813 nm], but with essentially similar encapsulation efficiencies (about 93%. Results indicated that the extent of bioavailability of griseofulvin was improved 1.7–2.0 times when given in the form of liposomes (F1 compared to griseofulvin suspension. Besides that, there was an approximately two-fold enhancement of the extent of bioavailability following administration of griseofulvin-loaded liposomes with higher encapsulation efficiency (F2, compared to those of F1. Also, the results showed that the extent of bioavailability of liposomal formulations with smaller sizes were higher by approximately three times compared to liposomal formulation of a larger size. Nevertheless, a further size reduction of griseofulvin-loaded liposome (≤400 nm did not promote the uptake or bioavailability of griseofulvin. In conclusion, high drug encapsulation efficiency and small liposome size could enhance the oral bioavailability of griseofulvin-loaded liposomes and therefore these two parameters deserve careful consideration during formulation.

  3. Targeting immune response induction with cochleate and liposome-based vaccines. (United States)

    Mannino; Canki; Feketeova; Scolpino; Wang; Zhang; Kheiri; Gould-Fogerite


    The immune response generated by infection with a pathogenic organism, or by vaccination with a live attenuated or whole killed pathogen, often does not stimulate optimal protection against that organism. Lipid matrix-based subunit vaccines can be used to produce custom-designed vaccines, that elicit desired immune responses targeted to specific parts of the pathogen that are relevant to protection. Harmful or competitive responses can be minimized or avoided. Earlier work with liposomes has allowed the development of a new class of subunit vaccines called cochleate delivery vehicles, whose structure and properties are very different from liposomes. Protein and DNA cochleates are highly effective vaccines when given via mucosal or parenteral routes, including oral, intranasal, intramuscular, or subcutaneous. Strong, long-lasting, mucosal and circulating, antibody and cell-mediated responses are generated. Protection from challenge with live viruses following oral or intramuscular administration has been achieved.

  4. Liposomal Encapsulated Rhodomyrtone: A Novel Antiacne Drug

    Directory of Open Access Journals (Sweden)

    Julalak Chorachoo


    Full Text Available Rhodomyrtone isolated from the leaves of Rhodomyrtus tomentosa possesses antibacterial, anti-inflammatory, and anti-oxidant activities. Since rhodomyrtone is insoluble in water, it is rather difficult to get to the target sites in human body. Liposome exhibited ability to entrap both hydrophilic and hydrophobic compounds and easily penetrate to the target site. The present study aimed to develop a novel liposomal encapsulated rhodomyrtone formulations. In addition, characterization of liposome, stability profiles, and their antiacne activity were performed. Three different formulations of total lipid concentrations 60, 80, and 100 μmol/mL were used. Formulation with 60 μmol/mL total lipid (phosphatidylcholine from soybean and cholesterol from lanolin in 4 : 1, w/w exhibited the highest rhodomyrtone encapsulation efficacy (65.47 ± 1.7%, average particle size (209.56 ± 4.8 nm, and ζ-potential (–41.19 ± 1.3 mV. All formulations demonstrated good stability when stored for 2 months in dark at 4°C as well as room temperature. Minimal inhibitory concentration and minimal bactericidal concentration values of liposomal formulation against 11 clinical bacterial isolates and reference strains ranged from 1 to 4 and from 4 to 64 μg/mL, respectively, while those of rhodomyrtone were 0.25–1 and 0.5–2 μg/mL, respectively. The MIC and MBC values of liposome formulation were more effective than topical drugs against Staphylococcus aureus and Staphylococcus epidermidis.

  5. Stimuli-Responsive Liposomes for Controlled Drug Delivery

    KAUST Repository

    Li, Wengang


    Liposomes are promising drug delivery vesicles due to their biodegradibility, large volume and biocompatibility towards both hydrophilic and hydrophobic drugs. They suffer, however, from poor stability which limits their use in controlled delivery applications. Herein, a novel method was devised for modification of liposomes with small molecules, polymers or nanoparticles to afford stimuli responsive systems that release on demand and stay relatively stable in the absence of the trigger.. This dissertation discusses thermosensitive, pH sensitive, light sensitive and magnetically triggered liposomes that have been prepared for controlled drug delivery application. RAFT polymerization was utilized for the preparation of thermosensitive liposomes (Cholesterol-PNIPAm) and acid-labile liposomes (DOPE-PAA). With low Mw Cholesterol-PNIPAm, the thermosensitive liposomes proved to be effective for controlled release and decreased the cytotoxicity of PNIPAm by eliciting the polymer doses. By crosslinking the DOPE-PAA on liposome surface with acid-labile diamine linkers, DOPE-PAA liposomes were verified to be sensitive at low pH. The effects of polymer structures (linear or hyperbranched) have also been studied for the stability and release properties of liposomes. Finally, a dual-responsive Au@SPIO embedded liposome hybrid (ALHs) was prepared with light-induced “on-and-off” function by photo-thermal process (visible light) and instant release properties triggered by alternating magnetic field, respectively. The ALH system would be further applied into the cellular imaging field as MRI contrast agent.

  6. Bladder uptake of liposomes after intravesical administration occurs by endocytosis.

    Directory of Open Access Journals (Sweden)

    Bharathi Raja Rajaganapathy

    Full Text Available Liposomes have been used therapeutically and as a local drug delivery system in the bladder. However, the exact mechanism for the uptake of liposomes by bladder cells is unclear. In the present study, we investigated the role of endocytosis in the uptake of liposomes by cultured human UROtsa cells of urothelium and rat bladder. UROtsa cells were incubated in serum-free media with liposomes containing colloidal gold particles for 2 h either at 37°C or at 4°C. Transmission Electron Microscopy (TEM images of cells incubated at 37°C found endocytic vesicles containing gold inside the cells. In contrast, only extracellular binding was noticed in cells incubated with liposomes at 4°C. Absence of liposome internalization at 4°C indicates the need of energy dependent endocytosis as the primary mechanism of entry of liposomes into the urothelium. Flow cytometry analysis revealed that the uptake of liposomes at 37°C occurs via clathrin mediated endocytosis. Based on these observations, we propose that clathrin mediated endocytosis is the main route of entry for liposomes into the urothelial layer of the bladder and the findings here support the usefulness of liposomes in intravesical drug delivery.

  7. Effect of chitosan coating on the characteristics of DPPC liposomes

    Directory of Open Access Journals (Sweden)

    Mohsen M. Mady


    Full Text Available Because it is both biocompatible and biodegradable, chitosan has been used to provide a protective capsule in new drug formulations. The present work reports on investigations into some of the physicochemical properties of chitosan-coated liposomes, including drug release rate, transmission electron microscopy (TEM, zeta potential and turbidity measurement. It was found that chitosan increases liposome stability during drug release. The coating of DPPC liposomes with a chitosan layer was confirmed by electron microscopy and the zeta potential of liposomes. The coating of liposomes by chitosan resulted in a marginal increase in the size of the liposomes, adding a layer of (92 ± 27.1 nm. The liposomal zeta potential was found to be increasingly positive as chitosan concentration increased from 0.1% to 0.3% (w/v, before stabilising at a relatively constant value. Turbidity studies revealed that the coating of DPPC liposomes with chitosan did not significantly modify the main phase transition temperature of DPPC at examined chitosan concentrations. The appropriate combination of liposomal and chitosan characteristics may produce liposomes with specific, prolonged and controlled release.

  8. Drug loading to lipid-based cationic nanoparticles (United States)

    Cavalcanti, Leide P.; Konovalov, Oleg; Torriani, Iris L.; Haas, Heinrich


    Lipid-based cationic nanoparticles are a new promising option for tumor therapy, because they display enhanced binding and uptake at the neo-angiogenic endothelial cells, which a tumor needs for its nutrition and growth. By loading suitable cytotoxic compounds to the cationic carrier, the tumor endothelial and consequently also the tumor itself can be destroyed. For the development of such novel anti-tumor agents, the control of drug loading and drug release from the carrier matrix is essential. We have studied the incorporation of the hydrophobic anti-cancer agent Paclitaxel (PXL) into a variety of lipid matrices by X-Ray reflectivity measurements. Liposome suspensions from cationic and zwitterionic lipids, comprising different molar fractions of Paclitaxel, were deposited on planar glass substrates. After drying at controlled humidity, well ordered, oriented multilayer stacks were obtained, as proven by the presence of bilayer Bragg peaks to several orders in the reflectivity curves. The presence of the drug induced a decrease of the lipid bilayer spacing, and with an excess of drug, also Bragg peaks of drug crystals could be observed. From the results, insight into the solubility of Paclitaxel in the model membranes was obtained and a structural model of the organization of the drug in the membrane was derived. Results from subsequent pressure/area-isotherm and grazing incidence diffraction (GID) measurements performed with drug/lipid Langmuir monolayers were in accordance with these conjectures.

  9. Preparation and evaluation of liposomal formulations of tropicamide for ocular delivery. (United States)

    Nagarsenker, M S; Londhe, V Y; Nadkarni, G D


    Tropicamide, a mydriatic, cycloplegic drug was entrapped in liposomes. Liposomes were investigated by laser counting studies, transmission electron microscopy and differential scanning calorimetry for characterization. The precorneal clearance of liposomes was compared with solution by gamma-scintigraphy in the rabbit. The neutral liposomes failed to demonstrate significant enhancement in precorneal retention in comparison with aqueous solution. The potential of liposomes as an ophthalmic drug delivery system was investigated by comparing pupil dilatory effect of tropicamide by topical instillation, in the rabbit eye, of the solution and various drug-loaded liposomal forms, i.e. neutral liposomes, positively charged liposomes and neutral liposomes dispersed in 0.25% (w/v) polycarbophil gel. The positively charged liposomal formulation and liposomes dispersed in polycarbophil gel were found to be more effective than neutral liposomal dispersion when data were statistically treated at the 5% level of significance.

  10. Novel cationic SLN containing a synthesized single-tailed lipid as a modifier for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yu Wangyang; Liu Chunxi; Ye Jiesheng; Zou Weiwei; Zhang Na; Xu Wenfang [School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Ji' nan (China)], E-mail:


    Cationic solid lipid nanoparticles (SLN) can bind DNA directly via ionic interaction and mediate in vitro gene transfection. However, toxicity is still an obstacle, which is strongly dependent on the cationic lipid used. In the present study, a novel single-tailed cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was synthesized and used as a modifier to prepare stable SLN-DNA complexes by a nanoprecipitation method. The commonly used cationic lipid cetyltrimethylammonium bromide (CTAB) modified SLN-DNA formulation served as a contrast. These two formulations were characterized and compared in terms of morphology, particle size, surface charge, DNA binding capacity, release profile, cytotoxicity, and transfection efficiency. The LHLN SLN-DNA complexes had a similar spherical morphology, a relatively narrow particle size distribution and a more remarkable DNA loading capability compared to the CTAB ones. Most importantly, LHLN modified SLN had a higher gene transfection efficiency than the naked DNA and CTAB ones, which was approximately equal to that of Lipofectamine-DNA complexes, and a lower cytotoxicity compared with CTAB-SLN and Lipofectamine 2000. Thus, the novel cationic SLN can achieve efficient transfection of plasmid DNA, and to some extent reduce the cytotoxicity, which might overcome some drawbacks of the conventional cationic nanocarriers in vivo and may become a promising non-viral gene therapy vector.

  11. Novel cationic SLN containing a synthesized single-tailed lipid as a modifier for gene delivery (United States)

    Yu, Wangyang; Liu, Chunxi; Ye, Jiesheng; Zou, Weiwei; Zhang, Na; Xu, Wenfang


    Cationic solid lipid nanoparticles (SLN) can bind DNA directly via ionic interaction and mediate in vitro gene transfection. However, toxicity is still an obstacle, which is strongly dependent on the cationic lipid used. In the present study, a novel single-tailed cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was synthesized and used as a modifier to prepare stable SLN-DNA complexes by a nanoprecipitation method. The commonly used cationic lipid cetyltrimethylammonium bromide (CTAB) modified SLN-DNA formulation served as a contrast. These two formulations were characterized and compared in terms of morphology, particle size, surface charge, DNA binding capacity, release profile, cytotoxicity, and transfection efficiency. The LHLN SLN-DNA complexes had a similar spherical morphology, a relatively narrow particle size distribution and a more remarkable DNA loading capability compared to the CTAB ones. Most importantly, LHLN modified SLN had a higher gene transfection efficiency than the naked DNA and CTAB ones, which was approximately equal to that of Lipofectamine-DNA complexes, and a lower cytotoxicity compared with CTAB-SLN and Lipofectamine 2000. Thus, the novel cationic SLN can achieve efficient transfection of plasmid DNA, and to some extent reduce the cytotoxicity, which might overcome some drawbacks of the conventional cationic nanocarriers in vivo and may become a promising non-viral gene therapy vector.

  12. Liposomal delivery of radionuclides for cancer diagnostics and radiotherapy

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa

    , as the use of positron emission tomography (PET) scanners for molecular and diagnostic imaging has become more attractive. Furthermore, the importance of molecular and diagnostic imaging in nanotechnology has also been recognized, and significant research has been conducted on radiolabeled liposomes...... for scintigraphy and single photon emission computed tomography (SPECT) imaging. Preclinical as well as clinical SPECT studies on radiolabeled liposomes have contributed with valuable information on the pharmacokinetics of liposomes during several liposomal drug developments. SPECT has lower detection sensitivity......, an in vivo study is presented, where passive tumor accumulation of 64Cu loaded liposomes (64Cu-liposomes) in tumor-bearing mice was quantified directly by PET and computed tomography (CT) imaging. Furthermore, Article I present an evaluation and quantitative measurement of the biodistribution of 64Cu...

  13. Liposomal amphotericin B for the treatment of visceral leishmaniasis. (United States)

    Bern, Caryn; Adler-Moore, Jill; Berenguer, Juan; Boelaert, Marleen; den Boer, Margriet; Davidson, Robert N; Figueras, Concepcion; Gradoni, Luigi; Kafetzis, Dimitris A; Ritmeijer, Koert; Rosenthal, Eric; Royce, Catherine; Russo, Rosario; Sundar, Shyam; Alvar, Jorge


    During the past decade, liposomal amphotericin B has been used with increasing frequency to treat visceral leishmaniasis (VL). The World Health Organization convened a workshop to review current knowledge and to develop guidelines for liposomal amphotericin B use for VL. In Europe, liposomal amphotericin B is widely used to treat VL. In Africa and Asia, the VL disease burden is high and drug access is poor; liposomal amphotericin B is available only through preferential pricing for nonprofit groups in East Africa. Clinical trials and experience demonstrate high efficacy and low toxicity for liposomal amphotericin B (total dose, 20 mg/kg) in immunocompetent patients with VL. Combination trials in areas with antileishmanial drug resistance, and treatment and secondary prophylaxis trials in VL-human immunodeficiency virus-coinfected patients, are important to safeguard the current armamentarium and to optimize regimens. The public health community should work to broaden access to preferential liposomal amphotericin B pricing by public sector VL treatment programs.

  14. Advances and Challenges of Liposome Assisted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Lisa eSercombe


    Full Text Available The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented.

  15. Liposome clusters with shear stress-induced membrane permeability. (United States)

    Yoshimoto, Makoto; Tamura, Ryota; Natsume, Tomotaka


    Clusters of negatively charged liposomes were prepared by the addition of Ca(2+) and characterized in their structure and membrane permeability under shear stress. The liposomes mainly used were composed of zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 20 mol% negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and 30 mol% cholesterol. The liposomes with mean diameter of 193 nm were aggregated into the clusters with a distribution peak at about 1.5 μm in the 50mM Tris buffer solution of pH 8.5 at the lipid and Ca(2+) concentrations of 1.0mM and 40 mM, respectively. More than 90% of liposomes were redispersed at the Ca(2+) concentration of 80 mM. POPG-rich liposomes (POPC/POPG/cholesterol=5:65:30 [lipid]=1.0mM) were irreversibly aggregated at [Ca(2+)]≥ 10 mM, indicating the significant contribution of POPC to the reversible clustering of liposomes. The membranes of liposome clusters were impermeable to 5(6)-carboxyfluorescein (CF) in the static liquid system at 25°C due to the decrease in specific surface area of the liposomal system. In the shear flow, in clear contrast, continuous membrane permeation of CF was observed at the shear rate of 1.5 × 10(3)s(-1), exhibiting comparable membrane permeability to the non-clustered liposomes. The theoretical analysis of modified DLVO potential indicated that liposome membranes were not in contact with each other within the clusters. Therefore, the liposome clusters are structurally flexible under the applied shear stress, providing sufficient lipid membrane-water interfacial area for the permeation of CF. The results obtained would be important to control the formation of liposome clusters and their permeabilization for biochemical and biomedical applications.

  16. A study on zeta potential and dielectric constant of liposomes. (United States)

    Labhasetwar, V; Mohan, M S; Dorle, A K


    Zeta potential and dielectric constant of the liposomes were measured to study the effect of some of the formulation factors and in vitro ageing. Sonication affects zeta potential and dielectric constant of the liposomes. The ageing study showed an increase in the dielectric constant and zeta potential of liposomes at different storage temperatures. These two electrical parameters could be useful in studying structural alterations in liposomal vesicles and system as a function of different conditions. Particle size distribution and optical density were also measured, for comparison.

  17. Application of long-circulating liposomes to cancer photodynamic therapy. (United States)

    Oku, N; Saito, N; Namba, Y; Tsukada, H; Dolphin, D; Okada, S


    Photodynamic therapy (PDT) as a cancer treatment is notable for its quite low side effects in comparison with those of chemotherapy and radiotherapy. However, the accumulation of porphyrin derivatives used in PDT into tumor tissues is rather low. Since long-circulating liposomes are known to accumulate passively into tumor tissues, we liposomalized a porphyrin derivative, benzoporphyrin derivative monoacid ring A (BPD-MA), and used these liposomes to investigate the usefulness of PDT for tumor-bearing mice. BPD-MA was liposomalized into glucuronate-modified liposomes, which are known to be long-circulating. These liposomes were injected i.v. into Balb/c mice bearing Meth A sarcoma, and tumor regression and survival time were monitored after irradiation with laser light. Tumor regression and complete curing of tumor (80% cure rate by the treatment with 6 mg/kg BPD-MA) were observed when long circulating liposomalized BPD-MA was injected and laser-irradiated. In contrast, only a 20% cure rate was obtained when the animals were treated with BPD-MA solution or BPD-MA entrapped in conventional liposomes. These results suggest that a long-circulating liposomal formulation of photo-sensitive agents is useful for PDT.

  18. Characterization of sterically stabilized cisplatin liposomes by nuclear magnetic resonance. (United States)

    Peleg-Shulman, T; Gibson, D; Cohen, R; Abra, R; Barenholz, Y


    Extensive scientific efforts are directed towards finding new and improved platinum anticancer agents. A promising approach is the encapsulation of cisplatin in sterically stabilized, long circulating, PEGylated 100 nm liposomes. This liposomal cisplatin (STEALTH cisplatin, formerly known as SPI-77) shows excellent stability in plasma and has a longer circulation time, greater efficacy and lower toxicity than much free cisplatin. However, so far, the physicochemical characterization of STEALTH cisplatin has been limited to size distribution, drug-to-lipid ratio and stability. Information on the physical state of the drug in the liposome aqueous phases and the drug's interaction with the liposome membrane has been lacking. This study was aimed at filling this gap. We report a multinuclear NMR study in which several techniques have been used to assess the physical nature of cisplatin in liposomal formulations and if and to what extent the drug affects the liposome phospholipids. Since NMR detects only the soluble cisplatin in the liposomes and not the insoluble drug, combining NMR and atomic absorption data enables one to determine how much of the encapsulated drug is soluble in the intraliposomal aqueous phase. Our results indicate that almost all of the cisplatin remains intact during the loading process, and that the entire liposomal drug is present in a soluble form in the internal aqueous phase of the liposomes.

  19. Paramagnetic Liposome Nanoparticles for Cellular and Tumour Imaging

    Directory of Open Access Journals (Sweden)

    Nazila Kamaly


    Full Text Available In this review we discuss the development of paramagnetic liposomes incorporating MRI contrast agents and show how these are utilized in cellular imaging in vitro. Bi-functional, bi-modal imaging paramagnetic liposome systems are also described. Next we discuss the upgrading of paramagnetic liposomes into bi-modal imaging neutral nanoparticles for in vivo imaging applications. We discuss the development of such systems and show how paramagnetic liposomes and imaging nanoparticles could be developed as platforms for future multi-functional, multi-modal imaging theranostic nanodevices tailor-made for the combined imaging of early stage disease pathology and functional drug delivery.

  20. Liposomes and MTT cell viability assay: an incompatible affair. (United States)

    Angius, Fabrizio; Floris, Alice


    The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay is commonly used to evaluate the cytotoxicity potential of drugs vehicled by liposomes. However, liposome delivering drugs could produce inconsistent values of MTT absorbance. On the basis of previous experiments demonstrating the MTT affinity for lipid droplets, this paper aims to show that empty-liposomes interfere, per se, on MTT assay due to its lipidic nature. This brings into question the use of MTT testing cytotoxicity when liposomes are involved in delivering drugs.

  1. Photodynamic action of hypocrellin A in liposomes

    Institute of Scientific and Technical Information of China (English)

    邹伟; 安静仪; 李滨; 蒋丽金


    Hypocrellin A (HA), a perylenequinone derivative, is an efficient phototherapeutic agent. When HA is incorporated into small unilamellar liposomes of egg phosphatidylcholine, it generates 1O2 as demonstrated by 9,10-diphenylanthracene (9,10-DPA) photobleaching and detection of nitroxide radicals with ESR. The 1O2 quantum yield measured is 0.80±0.02. On irradiation of oxygen-saturated solution of HA-liposomes, hydroxyl radical OH is detected using DMPO as the ESR spin trapping agent. Hydroxyl radical is derived from superoxide radical anion O2-. The electron transfer reaction is also studied in deaerated solution. The results suggest that the photodynamic action of HA in lipid membranes proceeds via both Type I and Type II reactions.

  2. Phase structure of liposome in lipid mixtures. (United States)

    Zhang, Tianxi; Li, Yuzhuo; Mueller, Anja


    Gas microbubbles present in ultrasound imaging contrast agents are stabilized by lipid aggregates that typically contain a mixture of lipids. In this study, the phase structure of the lipid mixtures that contained two or three lipids was investigated using three different methods: dynamic light scattering, (1)H NMR, and microfluidity measurements with fluorescence probes. Three lipids that are commonly present in imaging agents (DPPC, DPPE-PEG, and DPPA) were used. Two types of systems, two-lipid model systems and simulated imaging systems were investigated. The results show that liposomes were the dominant aggregates in all the samples studied. The polar PEG side chains from the PEGylated lipid lead to the formation of micelles and micellar aggregates in small sizes. In the ternary lipid systems, almost all the lipids were present in bilayers with micelles absent and free lipids at very low concentration. These results suggest that liposomes, not micelles, contribute to the stabilization of microbubbles in an ultrasound imaging contrast agent.

  3. Pegylated liposomal doxorubicin in ovarian cancer


    Matei, Daniela


    Robert Strother1,2, Daniela Matei1–51Department of Medicine, 2Indiana University Melvin and Bren Simon Cancer Center, 3Department of Obstetrics and Gynecology, 4Department of Biochemistry and Molecular Biology, 5VA Roudebush Hospital Indiana University School of Medicine, 535 Barnhill Drive, Indianapolis, IN, 46202Abstract: The encapsulation of doxorubicin in a pegylated liposomal matrix led to a reformulated agent with a different toxicity profile and improved clinical utility. Lip...

  4. Liposomes as lubricants: beyond drug delivery. (United States)

    Goldberg, Ronit; Klein, Jacob


    In this paper we review recent work (Goldberg et al., 2011a,b) on a new use for phosphatidylcholine liposomes: as ultra-efficient boundary lubricants at up to the highest physiological pressures. Using a surface force balance, we have measured the normal and shear interactions as a function of surface separation between layers of hydrogenated soy phophatidylcholine (HSPC) small unilamellar vesicles (SUVs) adsorbed from dispersion, at both pure water and physiologically high salt concentrations of 0.15 M NaNO(3). Cryo-Scanning Electron Microscopy shows each surface to be coated by a close-packed HSPC-SUV layer with an over-layer of liposomes on top. The shear forces reveal strikingly low friction coefficients down to 2×10(-5) in pure water system or 6×10(-4) in the 150 mM salt system, up to contact pressures of at least 12 MPa (pure water) or 6 MPa (high salt), comparable with those in the major joints. This low friction is attributed to the hydration lubrication mechanism arising from rubbing of the highly hydrated phosphocholine-headgroup layers exposed at the outer surface of each liposome, and provides support for the conjecture that phospholipids may play a significant role in biological lubrication.

  5. Liposomal nanoparticles as a drug delivery vehicle against osteosarcoma (United States)

    Dhule, Santosh Subhashrao

    The delivery of curcumin, a broad-spectrum anticancer drug, has been explored in the form of liposomal nanoparticles to treat osteosarcoma (OS). Curcumin is water insoluble and an effective delivery route is through encapsulation in cyclodextrins followed by a second encapsulation in liposomes. Liposomal curcumin's potential was evaluated against cancer models of mesenchymal (OS) and epithelial origin (breast cancer). The resulting 2-Hydroxypropyl-gamma-cyclodextrin/curcumin - liposome complex shows promising anticancer potential both in vitro and in vivo against KHOS OS cell line and MCF-7 breast cancer cell line. An interesting aspect is that liposomal curcumin initiates the caspase cascade that leads to apoptotic cell death in vitro in comparison with DMSO-curcumin induced autophagic cell death. In addition, the efficiency of the liposomal curcumin formulation was confirmed in vivo using a xenograft OS model. Curcumin-loaded gamma-cyclodextrin liposomes indicate significant potential as delivery vehicles for the treatment of cancers of different tissue origin. The second part of this study examines the anti-tumor potential of curcumin and C6 ceramide (C6) against osteosarcoma cell lines when both are encapsulated in the bilayer of liposomal nanoparticles. Curcumin in combination with C6 showed 1.5 times enhanced cytotoxic effect in the case of MG-63 and KHOS OS cell lines, in comparison with systems with curcumin alone. Interestingly, C6-curcumin liposomes were found to be less toxic on untransformed human cells in comparison to OS cell lines. In addition, cell cycle assays on a KHOS cell line after treatment revealed that curcumin only liposomes induced G 2/M arrest by upregulation of cyclin B1, while C6 only liposomes induced G1 arrest by downregulation of cyclin D1. C6-curcumin liposomes induced G2/M arrest and showed a combined effect in the expression levels of cyclin D1 and cyclin B1. Using pegylated liposomes to increase the plasma half-life and tagging

  6. Preliminary Studies on X-Ray-sensitive Liposome

    Institute of Scientific and Technical Information of China (English)

    MENG Fan-xu; XU Hua-ping; QI Yan-fei; XU Kun; SONG Xiu-ling; NIU Shu; LI Juan


    The synthesis of a new type of X-ray-sensitive compound “di-(1-hydroxylundecyl)diselenide” and its application in the preparation of a new type of liposome with X-ray sensitivity was reported.This new liposome was synthesized to encapsulate doxorubicin hydrochloride(Dox),with its physical and chemical properties,stability,and radiation sensitivity determined.Based on the pH-gradient method,liposomal Dox was prepared via ultrasonic emulsification and then purified on a Sephadex G50 mini-column.UV spectrophotometry and liquid chromatography were used to detect the encapsulation efficiency and radiation sensitivity of the Dox-loaded liposome.The results show that through changes in release rate,this liposome shows a relative radiosensitivity.In terms of radiation sensitivity,the drug leak rate of the X-ray-sensitive Dox-loaded liposome increased gradually and peaked at 65.4% under the X-ray radiation of a dose of 10 Gy or more than 10 Gy,which is significantly different from that of ordinary liposomes.Meanwhile,X-ray-sensitive Dox-loaded liposome has a good dispersion stability,with an average particle size of approximate 120 nm.The efficiency of this liposome encapsulating Dox was 75.84%,slightly lower than that of ordinary liposomes.The X-ray-sensitive Dox-loaded liposome exhibited suspension stability within 30 d of storage at 4 ℃,without visible precipitation.Di-(1-hydroxylundecyl)diselenide is safe and noncytotoxic and compared with those of synthetic phospholipids its synthesis is low cost and does not require complex conditions.

  7. Dynamic constitutional frameworks for DNA biomimetic recognition. (United States)

    Catana, Romina; Barboiu, Mihail; Moleavin, Ioana; Clima, Lilia; Rotaru, Alexandru; Ursu, Elena-Laura; Pinteala, Mariana


    Linear and cross-linked dynamic constitutional frameworks generated from reversibly interacting linear PEG/core constituents and cationic sites shed light on the dominant coiling versus linear DNA binding behaviours, closer to the histone DNA binding wrapping mechanism.

  8. Monocyte targeting and activation by cationic liposomes formulated with a TLR7 agonist

    DEFF Research Database (Denmark)

    Johansen, Pia Thermann; Zucker, Daniel; Parhamifar, Ladan;


    Objectives: Monocytes are one of the major phagocytic cells that patrol for invading pathogens, and upon activation, differentiate into macrophages or antigen-presenting dendritic cells (DCs) capable of migrating to lymph nodes eliciting an adaptive immune response. The key role in regulating ada...... cytokines. We envision this technology as a promising tool in future cancer immunotherapy....

  9. In vivo characteristics of cationic liposomes as delivery vectors for gene therapy

    NARCIS (Netherlands)

    Audouy, SAL; de Leij, LFMH; Hoekstra, D; Molema, G


    After a decade of clinical trials, gene therapy seems to have found its place between excessive ambitions and feasible aims, with encouraging results obtained in recent years. Intracellular delivery of genetic material is the key step in gene therapy. Optimization of delivery vectors is of major imp

  10. CD9 monoclonal antibody-conjugated PEGylated liposomes for targeted delivery of rapamycin in the treatment of cellular senescence (United States)

    Thuy Nguyen, Hanh; Thapa, Raj Kumar; Shin, Beom Soo; Jeong, Jee-Heon; Kim, Jae-Ryong; Yong, Chul Soon; Kim, Jong Oh


    Premature cellular senescence refers to the state of irreversible cell cycle arrest due to DNA damage or other stresses. In this study, CD9 monoclonal antibody (CD9mAb) was successfully conjugated to the surface of PEGylated liposomes for targeted delivery of rapamycin (LR-CD9mAb) to overcome senescence of CD9 receptor-overexpressing cells. LR-CD9mAb has a small particle size (143.3 ± 2.4 nm), narrow size distribution (polydispersity index: 0.220 ± 0.036), and negative zeta potential (‑14.6 ± 1.2 mV). The uptake of CD9-targeted liposomes by premature senescent human dermal fibroblasts (HDFs) was higher than that by young HDFs, as displayed by confocal microscopic images. The senescence might not be reversed by treatment with rapamycin; however, the drug promoted cell proliferation and reduced the number of cells that expressed the senescence-associated-β-galactosidase (SA-β-gal). These effects were further confirmed by cell viability, cell cycle, and Western blotting analyses. Moreover, CD9-targeted liposomes showed better anti-senescence activity, in comparison with free rapamycin or the conventional liposomal formulation, suggesting the potential application of this system in further in vivo studies.

  11. Reversal of multidrug resistance in human lung cancer cells by delivery of 3-octadecylcarbamoylacrylic acid–cisplatin-based liposomes (United States)

    Song, Juan; Ren, Weifang; Xu, Tingting; Zhang, Yi; Guo, Hongyu; Zhu, Shanshan; Yang, Li


    Liposome-based drug delivery system would be an innovative and promising candidate to circumvent multidrug resistance (MDR) of cisplatin (CDDP). However, the reversal efficacy of liposomal CDDP was severely impaired by weak cellular uptake and insufficient intracellular drug release. In this study, 3-octadecylcarbamoylacrylic acid–CDDP nanocomplex (OMI–CDDP–N)-based liposomes (OCP-L) with high cellular uptake and sufficient intracellular drug release were designed to circumvent MDR of lung cancer. OMI–CDDP–N was synthesized through a pH-sensitive monocarboxylato and an O→Pt coordinate bond, which is more efficient than CDDP. Also, OCP-L incorporated with OMI–CDDP–N could induce effective cellular uptake, enhanced nuclear distribution, and optimal cellular uptake kinetics. In particular, OCP-L presented superior effects on enhancing cell apoptosis and in vitro cytotoxicity in CDDP-resistant human lung cancer (A549/CDDP) cells. The mechanisms of MDR reversal in A549/CDDP cells by OCP-L could attribute to organic cation transporter 2 restoration, ATPase copper-transporting beta polypeptide suppression, hypoxia-inducible factor 1 α-subunit depletion, and phosphatidylinositol 3-kinase/Akt pathway inhibition. These results demonstrated that OCP-L may provide an effective delivery of CDDP to resistant cells to circumvent MDR and enhance the therapeutic index of the chemotherapy. PMID:28255230

  12. Liposomal nanocontainers as models for viral infection: monitoring viral genomic RNA transfer through lipid membranes. (United States)

    Bilek, Gerhard; Matscheko, Nena M; Pickl-Herk, Angela; Weiss, Victor U; Subirats, Xavier; Kenndler, Ernst; Blaas, Dieter


    After uptake into target cells, many nonenveloped viruses undergo conformational changes in the low-pH environment of the endocytic compartment. This results in exposure of amphipathic viral peptides and/or hydrophobic protein domains that are inserted into and either disrupt or perforate the vesicular membranes. The viral nucleic acids thereby gain access to the cytosol and initiate replication. We here demonstrate the in vitro transfer of the single-stranded positive-sense RNA genome of human rhinovirus 2 into liposomes decorated with recombinant very-low-density lipoprotein receptor fragments. Membrane-attached virions were exposed to pH 5.4, mimicking the in vivo pH environment of late endosomes. This triggered the release of the RNA whose arrival in the liposomal lumen was detected via in situ cDNA synthesis by encapsulated reverse transcriptase. Subsequently, cDNA was PCR amplified. At a low ratio between virions and lipids, RNA transfer was positively correlated with virus concentration. However, membranes became leaky at higher virus concentrations, which resulted in decreased cDNA synthesis. In accordance with earlier in vivo data, the RNA passes through the lipid membrane without causing gross damage to vesicles at physiologically relevant virus concentrations.

  13. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel

    DEFF Research Database (Denmark)

    Jain, Sanyog; Kumar, Dinesh; Swarnakar, Nitin K;


    Paclitaxel (PTX) loaded layersome formulations were prepared using layer-by-layer assembly of the polyelectrolytes over liposomes. Stearyl amine was utilized to provide positive charge to the liposomes, which were subsequently coated with anionic polymer polyacrylic acid (PAA) followed by coating...

  14. Immunological Effect of Subunit Influenza Vaccine Entrapped by Liposomes

    Institute of Scientific and Technical Information of China (English)



    Objective To elevate the immunological effect of subunit influenza vaccine in infants and aged people (over 60) using liposomal adjuvant in the context of its relatively low immunity and to investigate the relation between vaccine antigens and liposomal characteristics. Methods Several formulations of liposomal subunit influenza vaccine were prepared. Their relevant characteristics were investigated to optimize the preparation method. Antisera obtained from immunizinged mice were used to evaluate the antibody titers of various samples by HI and ELISA. Results Liposomal trivalent influenza vaccine prepared by film evaporation in combinedation with freeze-drying significantly increased its immunological effect in SPF Balb/c mice. Liposomal vaccine stimulated the antibody titer of H3N2, H1N1, and B much stronger than conventional influenza vaccine. As a result, liposomal vaccine (mean size: 4.5-5.5 μm, entrapment efficiency: 30%-40%) significantly increased the immunological effect of subunit influenza vaccine. Conclusion The immune effect of liposomal vaccine depends on different antigens, and enhanced immunity is not positively correlated with the mean size of liposome or its entrapped efficiency.

  15. Biophysical characterization of gold nanoparticles-loaded liposomes. (United States)

    Mady, Mohsen Mahmoud; Fathy, Mohamed Mahmoud; Youssef, Tareq; Khalil, Wafaa Mohamed


    Gold nanoparticles were prepared and loaded into the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Biophysical characterization of gold-loaded liposomes was studied by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy as well as turbidity and rheological measurements. FTIR measurements showed that gold nanoparticles made significant changes in the frequency of the CH(2) stretching bands, revealing that gold nanoparticles increased the number of gauche conformers and create a conformational change within the acyl chains of phospholipids. The transmission electron micrographs (TEM) revealed that gold nanoparticles were loaded in the liposomal bilayer. The zeta potential of DPPC liposomes had a more negative value after incorporating of Au NPs into liposomal membranes. Turbidity studies revealed that the loading of gold nanoparticles into DPPC liposomes results in shifting the temperature of the main phase transition to a lower value. The membrane fluidity of DPPC bilayer was increased by loading the gold nanoparticles as shown from rheological measurements. Knowledge gained in this study may open the door to pursuing liposomes as a viable strategy for Au NPs delivery in many diagnostic and therapeutic applications.

  16. Liposomal drug delivery systems: from concept to clinical applications. (United States)

    Allen, Theresa M; Cullis, Pieter R


    The first closed bilayer phospholipid systems, called liposomes, were described in 1965 and soon were proposed as drug delivery systems. The pioneering work of countless liposome researchers over almost 5 decades led to the development of important technical advances such as remote drug loading, extrusion for homogeneous size, long-circulating (PEGylated) liposomes, triggered release liposomes, liposomes containing nucleic acid polymers, ligand-targeted liposomes and liposomes containing combinations of drugs. These advances have led to numerous clinical trials in such diverse areas as the delivery of anti-cancer, anti-fungal and antibiotic drugs, the delivery of gene medicines, and the delivery of anesthetics and anti-inflammatory drugs. A number of liposomes (lipidic nanoparticles) are on the market, and many more are in the pipeline. Lipidic nanoparticles are the first nanomedicine delivery system to make the transition from concept to clinical application, and they are now an established technology platform with considerable clinical acceptance. We can look forward to many more clinical products in the future.

  17. Biodistribution of liposome-entrapped human gamma-globulin. (United States)

    García-Santana, María A; Duconge, Jorge; Sarmiento, María E; Lanio-Ruíz, María E; Becquer, María A; Izquierdo, Luís; Acosta-Domínguez, Armando


    The present study was aimed at the preparation and performance evaluation of Intacglobin-loaded liposomes for selective drug presentation to the lungs. Egg phosphatidylcholine- and cholesterol-based liposomes (1:1 and 1:0.25 mol/mol) were prepared by a dehydration-rehydration procedure. A tissue distribution study after single intranasal administration of 0.5 microCi 125I-Intacglobin-loaded liposomes was conducted in Balb/c mice. The efficiencies of drug entrapment (30%) and the average diameters did not differ significantly between the two liposome formulations. However, liposomes composed of an increased cholesterol amount showed a lower in vitro drug release rate. The airway penetration efficiency of the liposomal formulation was determined by the cumulative percentage of the dose reaching the lungs (AUC) and its sojourn time therein, and were 1.7- and 2.2-times higher compared with the plain 125I- Intacglobin solution-based formulation, respectively. A significantly greater (p<0.001) drug localization index after 24 h was found at the lungs in comparison with the other tissues (p<0.01), although similar values were detected between groups following administration of either liposomes or control solutions, despite the formulations attributes. In conclusion, it is suggested that longer Intacglobin exposure at the pulmonary region is observed after administration of the liposomal formulation. The results open future perspectives in assessing local passive immunization for the treatment of respiratory infectious diseases.

  18. Application of liposome-encapsulated ceramic phoshpors for cancer cell imaging under near infrared excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Hirotada; Otsuka, Hiroko; Tashiro, Fumio [Department of Biological Science and Technology, Tokyo University of Science (Japan); Tokuzen, Kimikazu; Soga, Kohei, E-mail: [Polyscale Technology Research Center, Tokyo University of Science (Japan)


    Bioimaging with fluorescent probes is used as an invaluable tool in a biomedical field both in vivo and in vitro. However, organic dyes have some problems such as photo-breaching and cytotoxicity due to short wavelength with high quantum energy. Recently, a new approach using rare-earth-doped ceramic nanophosphors (RED-CNP) shows that fluorescence from RED-CNP in both visible (upconversion) and near infrared (NIR) wavelength region under NIR excitation is available for bioimaging. In order to efficiently introduce the RED-CNP into cancer cells, in this study we have developed a lipid nano-particles of liposome-encapsulated erbium (Er) ion-doped Y{sub 2}O{sub 3} (lipo-Y{sub 2}O{sub 3}). Cationic lipo-Y{sub 2}O{sub 3} could clearly visualize the intracellular region of human hepatocellular carcinoma Huh-7 cells by a fluorescence microscope measurements equipped with near-infrared excitation source scanning. The results imply that the lipo-Y{sub 2}O{sub 3} would potentially be useful material for imaging of cancer cells. The embedded Y{sub 2}O{sub 3} in the liposome having cancer-specific ligands and/or antibodies on its surface should have a great potential for cancer cell imaging in general in living subjects.

  19. Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging (United States)

    Kuijten, Maayke M. P.; Hannah Degeling, M.; Chen, John W.; Wojtkiewicz, Gregory; Waterman, Peter; Weissleder, Ralph; Azzi, Jamil; Nicolay, Klaas; Tannous, Bakhos A.


    Liposomes are spherical, self-closed structures formed by lipid bilayers that can encapsulate drugs and/or imaging agents in their hydrophilic core or within their membrane moiety, making them suitable delivery vehicles. We have synthesized a new liposome containing gadolinium-DOTA lipid bilayer, as a targeting multimodal molecular imaging agent for magnetic resonance and optical imaging. We showed that this liposome has a much higher molar relaxivities r1 and r2 compared to a more conventional liposome containing gadolinium-DTPA-BSA lipid. By incorporating both gadolinium and rhodamine in the lipid bilayer as well as biotin on its surface, we used this agent for multimodal imaging and targeting of tumors through the strong biotin-streptavidin interaction. Since this new liposome is thermosensitive, it can be used for ultrasound-mediated drug delivery at specific sites, such as tumors, and can be guided by magnetic resonance imaging.

  20. Characteristics of photosensitization of Pheophorbide a in liposomal media

    Institute of Scientific and Technical Information of China (English)

    杨红英; 李美芬; 张文庚; 赵红霞; 张志义


    Pheophorbide a (PPa), a decomposition product of chlorophyll a, is a photosensitizer. The photosensitization mechanisms (Type Ⅰ and Type Ⅱ) of PPa in simple buffer solutions and in buffer solutions containing double-layered DPPC liposomes have been studied using techniques of ESR, spin-trapping, spin-counteraction and laser flash photolysis. The results showed that adding DPPC liposomes to the buffer solution caused an increase of efficiency of generating 1O2 and PPa- by photoactivating PPa. The increase could be ascribed to the disaggregation of hydrophobic PPa caused by the addition of liposomes and the protective effect of liposomal media on the triplet state of PPa. It is concluded that the photosensitization of PPa in liposomal systems is different from that in simple aqueous solutions, and shows higher efficacy. The results will be useful to elucidating the mechanisms of photodynamic therapy of cancer.

  1. Calcipotriol delivery into the skin with PEGylated liposomes

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Rønholt, Stine; Salte, Ragnhild Djønne


    The d-vitamin analogue calcipotriol is commonly used for topical treatment of psoriasis, but skin penetration is required for calcipotriol to reach its pharmacological target: the keratinocytes in the lower epidermis. Liposomes can enhance the delivery of drugs into the skin, but a major challenge...... for the development of dosage forms containing liposomes is to maintain the colloidal stability in the formulation. The purpose of this study was to investigate the effect of stabilising liposomes with the lipopolymer poly(ethylene glycol)-distearoylphosphoethanolamine (PEG-DSPE) on the physicochemical properties...... of the liposomes and the ability to deliver membrane-intercalated calcipotriol into the skin. Inclusion of 0.5, l and 5mol% PEG-DSPE in the membrane enhanced the colloidal stability of the liposomes without compromising the delivery of calcipotriol from the vehicle into excised pig skin. Calcipotriol...

  2. The Treatment of Breast Cancer Using Liposome Technology

    Directory of Open Access Journals (Sweden)

    Sarah Brown


    Full Text Available Liposome-based chemotherapeutics used in the treatment of breast cancer can in principle enhance the therapeutic index of otherwise unencapsulated anticancer drugs. This is partially attributed to the fact that encapsulation of cytotoxic agents within liposomes allows for increased concentrations of the drug to be delivered to the tumor site. In addition, the presence of the phospholipid bilayer prevents the encapsulated active form of the drug from being broken down in the body prior to reaching tumor tissue and also serves to minimize exposure of the drug to healthy sensitive tissue. While clinically approved liposome-based chemotherapeutics such as Doxil have proven to be quite effective in the treatment of breast cancer, significant challenges remain involving poor drug transfer between the liposome and cancerous cells. In this review, we discuss the recent advancements made in the development of liposome-based chemotherapeutics with respect to improved drug transfer for use in breast cancer therapy.

  3. Enhanced antitumor effect of novel dual-targeted paclitaxel liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Meng Shuyan; Su Bo; Li Wei; Ding Yongmei; Tang Liang; Zhou Wei; Song Yin; Li Heyan; Zhou Caicun, E-mail: [Cancer Institute of Tongji University School of Medicine, Shanghai Pulmonary Hospital, 507 Zhengmin Road, Shanghai (China)


    A novel dual-targeted peptide containing an alpha V integrins specific ligand and a neuropilin-1 specific motif was developed which showed an increased specific targeting affinity to tumors. Active dual-targeted liposomes were then produced with this peptide and exhibited greater binding activity than single-targeted liposomes in vitro. Paclitaxel entrapped in this formulation greatly increased the uptake of paclitaxel in the targeting cells and significantly suppressed the growth of HUVEC and A549 cells compared with general paclitaxel injections (Taxol) and single-targeted paclitaxel liposomes. The treatment of tumor xenograft models with dual-targeted paclitaxel liposomes also resulted in better tumor growth inhibition than any other treatment groups. Therefore, the dual-targeted paclitaxel liposomes prepared in the present study might be a more promising drug for cancer treatment. Furthermore, the dual-targeting approach may produce synergistic effects that can be applied in the development of new targeted drug delivery systems.

  4. Ultrasound triggered drug delivery with liposomal nested microbubbles. (United States)

    Wallace, N; Wrenn, S P


    When ultrasound contrast agent microbubbles are nested within a liposome, damage to the liposome membrane caused by both stable and inertial cavitation of the microbubble allows for release of the aqueous core of the liposome. Triggered release was not accomplished unless microbubbles were present within the liposome. Leakage was tested using fluorescence assays developed specifically for this drug delivery vehicle and qualitative measurements using an optical microscope. These studies were done using a 1 MHz focused ultrasound transducer while varying parameters including peak negative ultrasound pressure, average liposome diameter, and microbubble concentration. Two regimes exist for membrane disruption caused by cavitating microbubbles. A faster release rate, as well as permanent membrane damage are seen for samples exposed to high pressure (2.1-3.7 MPa). A slower release rate and dilation/temporary poration are characteristic of stable cavitation for low pressure studies (0.54-1.7 MPa).

  5. Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. (United States)

    Li, Liyu; Hou, Jianjun; Liu, Xinjie; Guo, Yujia; Wu, Yun; Zhang, Lihe; Yang, Zhenjun


    BRAF gene mutation is found in more than 60% of malignant melanomas, which are difficult to treat. In this study, a new tumor-targeting liposome was developed to deliver anti-BRAF siRNA (siBraf) for the treatment of melanomas. Nucleolin is overexpressed on the surface of cancer cells. AS1411, an aptamer showing specific binding to nucleolin, was conjugated to PEGylated cationic liposome as the targeting probe ASLP (AS1411-PEG-liposome). The ASLP/siRNA complex was formed through electrostatic interaction between ASLP and siRNA. The binding of AS1411 to the surface of PEGylated liposomes was confirmed by gel electrophoresis and capillary electrophoresis. Real-time PCR and Western blot analysis showed that ASLP/siBraf exhibited strong silencing activity of BRAF gene. The much higher accumulation of the siRNA in tumor cells comparing with normal cells indicated that ASLP displayed excellent tumor-targeting capability. Notably, ASLP/siBraf showed significant silencing activity in A375 tumor xenograft mice and inhibited the melanoma growth. These results suggested that the new nucleolin-targeted siRNA delivery system by AS1411 may have the potential for the treatment of melanoma.

  6. Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success. (United States)

    Muthu, Madaswamy S; Feng, Si-Shen


    Liposomes are one of the effective drug delivery systems that are developed based on the nanotechnology concept. Liposomal formulation is the first nanomedicine approved by the US FDA for clinical application. Recently, the marketed liposomes and stealth liposomes have made impact for cancer therapy. In addition, a few receptor-targeted liposome products have been in different phases of clinical trials, which are yet to be marketed. In the present editorial, the advantages of vitamin E TPGS-coated liposomes over the currently available PEG-coated liposomes will be described and their great potentials for nanotheranostics for cancer imaging and therapy will be covered.

  7. Delivery of aerosolized drugs encapsulated in liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yung-Sung; Lyons, C.R. [Univ. of New Mexico, Albuquerque, NM (United States); Schmid, M.H.


    Mycobacterium tuberculosis (Mtb) is an infectious disease that resides in the human lung. Due to the difficulty in completely killing off the disease in infected individuals, Mtb has developed drug-resistant forms and is on the rise in the human population. Therefore, ITRI and the University of New Mexico are collaborating to explore the treatment of Mtb by an aerosolized drug delivered directly to the lungs. In conclusion, it is feasible to obtain an appropriate size and concentration of the liposomes before and after aerosolization.

  8. Analysis of individual lipoproteins and liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, D.L.; Keller, R.A.; Nolan, J.P. [and others


    We describe the application of single molecule detection (SMD) technologies for the analysis of natural (serum lipoproteins) and synthetic (liposomes) transport systems. The need for advanced analytical procedures of these complex and important systems is presented with the specific enhancements afforded by SMD with flowing sample streams. In contrast to bulk measurements which yield only average values, measurement of individual species allows creation of population histograms from heterogeneous samples. The data are acquired in minutes and the analysis requires relatively small sample quantities. Preliminary data are presented from the analysis of low density lipoprotein, and multilamellar and unilamellar vesicles.

  9. Silica-Coated Liposomes for Insulin Delivery

    Directory of Open Access Journals (Sweden)

    Neelam Dwivedi


    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  10. Photoprotection by topical DNA repair enzymes: molecular correlates of clinical studies. (United States)

    Yarosh, D B; O'Connor, A; Alas, L; Potten, C; Wolf, P


    A new approach to photoprotection is to repair DNA damage after UV exposure. This can be accomplished by delivery of a DNA repair enzyme with specificity to UV-induced cyclobutane pyrimidine dimers into skin by means of specially engineered liposomes. Treatment of DNA-repair-deficient xeroderma pigmentosum patients or skin cancer patients with T4N5 liposome lotion containing such DNA repair liposomes increases the removal of DNA damage in the first few hours after treatment. In these studies, a DNA repair effect was observed in some patients treated with heat-inactivated enzyme. Unexpectedly, it was discovered that the heat-inactivated T4 endonuclease V enzyme refolds and recovers enzymatic activity. These studies demonstrate that measurements of molecular changes induced by biological drugs are useful adjuvants to clinical studies.

  11. Effect of Lipid Composition on In Vitro Release and Skin Deposition of Curcumin Encapsulated Liposomes

    Directory of Open Access Journals (Sweden)

    Geethi Pamunuwa


    Full Text Available Liposomal encapsulation improves numerous physiochemical and biological properties of curcumin. The aim of this work was to impart slow release and skin delivery of curcumin via liposomal encapsulation. Liposomes were made using egg yolk phosphatidylcholine as the staple lipid while incorporating polysorbate 80 and stearylamine to prepare hybrid liposomes and positively charged liposomes, respectively. Negatively charged liposomes exhibited the highest encapsulation efficiencies (87.8±4.3% and loading capacities (3.4±0.2%. The sizes of all formulations were about 250 nm, while stearylamine increased the polydispersity index. Positively charged liposomes showed lower degradation temperatures than negatively charged liposomes by 10–15°C, attributable to the presence of stearylamine. The melting temperatures of positively charged liposomes (40–50°C were much higher than those of negatively charged liposomes (14-15°C, which may have affected release and skin deposition behavior of liposomes. The positively charged liposomes exhibited the slowest release of curcumin in phosphate buffered saline (pH 6.8 and the release profiles of all liposomal formulations conformed to the Gompertz model. The negatively charged liposomes facilitated the highest skin deposition of curcumin as revealed by studies conducted using excised pig ear skin. Concisely, positively and negatively charged liposomes were optimal for slow release and skin deposition of curcumin, respectively.

  12. Liposomal cytarabine for leukemic and lymphomatous meningitis: recent developments. (United States)

    Benesch, Martin; Urban, Christian


    Liposomal cytarabine (Depocyte) is a sustained-release formulation of cytarabine developed for intrathecal administration, ensuring prolonged cytotoxic drug concentrations of cytarabine in cerebrospinal fluid. Although liposomal cytarabine is increasingly used for the treatment (and prophylaxis) of CNS involvement in patients with leukemia/lymphoma, many of the recently presented clinical trials on liposomal cytarabine were retrospective in nature or used this drug on a compassionate basis. So far, one randomized Phase III study has shown significantly better response rates in patients with lymphomatous meningitis who received liposomal cytarabine compared with free cytarabine. Considerable concerns about the safety of this drug arose from recent observations that liposomal cytarabine might contribute to neurologic side effects when given too closely to high-dose systemic chemotherapy known to penetrate the brain-blood barrier. Superior efficacy of liposomal cytarabine compared with standard intrathecal therapy should be confirmed in prospective clinical trials. Careful adherence with preventive measures might help physicians to minimize side effects possibly related to the administration of liposomal cytarabine.

  13. Multimodality imaging demonstrates trafficking of liposomes preferentially to ischemic myocardium

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, Michael J., E-mail: [MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC (United States); Albelda, M. Teresa [GIBI2" 3" 0, Grupo de Investigación Biomédica en Imagen, IIS La Fe, Valencia (Spain); Frias, Juan C. [Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Valencia (Spain); Anderson, Stasia A. [Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (United States); Luger, Dror; Westman, Peter C.; Escarcega, Ricardo O.; Hellinga, David G.; Waksman, Ron [MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC (United States); Arai, Andrew E. [Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (United States); Epstein, Stephen E. [MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC (United States)


    Introduction: Nanoparticles may serve as a promising means to deliver novel therapeutics to the myocardium following myocardial infarction. We sought to determine whether lipid-based liposomal nanoparticles can be shown through different imaging modalities to specifically target injured myocardium following intravenous injection in an ischemia–reperfusion murine myocardial infarction model. Methods: Mice underwent ischemia–reperfusion surgery and then either received tail-vein injection with gadolinium- and fluorescent-labeled liposomes or no injection (control). The hearts were harvested 24 h later and underwent T1 and T2-weighted ex vivo imaging using a 7 Tesla Bruker magnet. The hearts were then sectioned for immunohistochemistry and optical fluorescent imaging. Results: The mean size of the liposomes was 100 nm. T1-weighted signal intensity was significantly increased in the ischemic vs. the non-ischemic myocardium for mice that received liposomes compared with control. Optical imaging demonstrated significant fluorescence within the infarct area for the liposome group compared with control (163 ± 31% vs. 13 ± 14%, p = 0.001) and fluorescent microscopy confirmed the presence of liposomes within the ischemic myocardium. Conclusions: Liposomes traffic to the heart and preferentially home to regions of myocardial injury, enabling improved diagnosis of myocardial injury and could serve as a vehicle for drug delivery.

  14. Development of liposomal salbutamol sulfate dry powder inhaler formulation. (United States)

    Huang, Wen-Hua; Yang, Zhi-Jun; Wu, Heng; Wong, Yuen-Fan; Zhao, Zhong-Zhen; Liu, Liang


    The purpose of our study was to develop a formulation of liposomal salbutamol sulfate (SBS) dry powder inhaler (DPI) for the treatment of asthma. Liposomes of high encapsulation efficiency (more than 80%) were prepared by a vesicular phospholipid gel (VPG) technique. SBS VPG liposomes were subjected to lyophilization using different kinds of cryoprotectants in various mass ratios. Coarse lactose (63-106 microm) in different mass ratios was used as a carrier. Magnesium stearate (0.5%) was added as a lubricator. The dry liposomal powders were then crushed by ball milling and sieved through a 400-mesh sieve to control the mean particle size at about 10 microm. The effects of different kinds of cryoprotectants and the amount of lactose carrier on the fine particle fraction (FPF) of SBS were investigated. The results showed that the developed formulation of liposomal dry powder inhaler was obtained using lactose as a cryoprotectant with a mass ratio of lyophilized powder to carrier lactose at 1 : 5; 0.5% magnesium stearate was used as a lubricator. The value of FPF for SBS was 41.51+/-2.22% for this formulation. Sustained release of SBS from the VPG liposomes was found in the in vitro release study. The study results offer the promising possibility of localized pulmonary liposomal SBS delivery in the anhydrous state.

  15. Liposome micropatterning based on laser-induced forward transfer (United States)

    Palla-Papavlu, Alexandra; Paraico, Iurie; Shaw-Stewart, James; Dinca, Valentina; Savopol, Tudor; Kovacs, Eugenia; Lippert, Thomas; Wokaun, Alexander; Dinescu, Maria


    The numerous properties of liposomes, i.e., nontoxicity, biodegradability, and their ability to encapsulate different biological active substances in aqueous and lipid phase, make them perfect models of biomembranes. Liposomes made up of phospholipids may be used to study new applications such as cell targeting or, under specific experimental conditions, may be applied in micro and nano-sized biosensors. This study demonstrates the capability of direct laser printing of liposomes in micron-scale patterns for the realization of biosensors or drug delivery systems. The transfer experiments were carried out onto ordinary glass substrates, and optical microscopy images reveal that well-defined patterns without splashes can be obtained for a narrow range of laser transfer fluences using 193 nm irradiation and an intermediate triazene polymer. The triazene polymer with different thicknesses was used as sacrificial layer with the purpose of protecting the liposome solution from direct laser irradiation. It was found that the thickness of the sacrificial layer should exceed 150 nm to obtain clean, debris-free patterns. Moreover, the integrity of the liposomes after laser transfer was maintained as demonstrated through fluorescence microscopy. Raman spectroscopy data suggest that the chemical composition of the liposomes does not change for transfer fluences in the range of 40 to 60 mJ/cm2. Following these results, one can envision that liposome patterns obtained by LIFT can be ultimately applied for in vitro and in vivo studies.

  16. Modulation of the carotenoid bioaccessibility through liposomal encapsulation. (United States)

    Tan, Chen; Zhang, Yating; Abbas, Shabbar; Feng, Biao; Zhang, Xiaoming; Xia, Shuqin


    The low bioaccessibility of carotenoids is currently a challenge to their incorporation in pharmaceutics, nutraceuticals and functional foods. The aim of this study was to evaluate the modulating effects of liposome encapsulation on the bioaccessibility, and its relationship with carotenoid structure and incorporated concentration. The physical stability of liposomes, lipid digestibility, carotenoids release and bioaccessibility were investigated during incubation in a simulated gastrointestinal tract. Analysis on the liposome size and morphology showed that after digestion, the majority of particles maintained spherical shape with only an increase of size in liposomes loading β-carotene or lutein. However, a large proportion of heterogeneous particles were visible in the micelle phase of liposomes loading lycopene or canthaxanthin. It was also found that the release of lutein and β-carotene from liposomes was inhibited in a simulated gastric fluid, while was slow and sustained in a simulated intestinal fluid. By contrast, lycopene and canthaxanthin exhibited fast and considerable release in the gastrointestinal media. Both carotenoid bioaccessibility and micellization content decreased with the increase of incorporated concentration. Anyway, the bioaccessibility of carotenoids after encapsulated in liposomes was in the following order: lutein>β-carotene>lycopene>canthaxanthin. Bivariate correlation analysis revealed that carotenoid bioaccessibility depended strongly on the incorporating ability of carotenoids into a lipid bilayer, loading content, and nature of the system.

  17. Nanoencapsulation of quercetin and resveratrol into elastic liposomes. (United States)

    Cadena, Pabyton G; Pereira, Marcela A; Cordeiro, Rafaela B S; Cavalcanti, Isabella M F; Barros Neto, Benício; Pimentel, Maria do Carmo C B; Lima Filho, José Luiz; Silva, Valdinete L; Santos-Magalhães, Nereide S


    Based on the fact that quercetin (QUE) and resveratrol (RES) induce a synergic inhibition of the adipogenesis and increase apoptosis in adipocytes, and that sodium deoxycholate (SDC) has necrotic effects, the nanoencapsulation of QUE and RES into SDC-elastic liposomes is proposed as a new approach for dissolving the subcutaneous fat. The concentration of constituents and the effect of the drug incorporation into cyclodextrin inclusion complexes on the stability of QUE/RES-loaded liposomes were studied. The best liposomal formulation reduced the use of phosphatidylcholine and cholesterol in 17.7% and 68.4%, respectively. Liposomes presented a mean diameter of 149nm with a polydispersion index of 0.3. The zeta potential of liposomes was slightly negative (-13.3mV) due to the presence of SDC in the phospholipid bilayer. Encapsulation efficiency of QUE and RES into liposomes was almost 97%. To summarize, QUE/RES-loaded elastic liposomes are stable and suitable for subcutaneous injection, thereby providing a new strategy for reducing subcutaneous fat.


    Directory of Open Access Journals (Sweden)

    Vardhan Harsh


    Full Text Available Transdermal drug delivery is hardly an old technology, since 1800’s and the technology is no longer just adhesive patches. Due to recent advances in technology and the ability to apply the drug to the site of action without rupturing the skin membrane, transdermal route is becoming a widely accepted route of drug administration. Recently, various strategies have been used to augment the transdermal delivery of bioactives. Mainly, they include iontophoresis, electrophoresis, sonophoresis, chemical permeation enhancers, micro needles, and vesicular system. Among these strategies elastic liposomes appear promising. Elastic liposomes possess an infrastructure consisting of hydrophobic and hydrophilic moieties together and as a result can accommodate drug molecules with wide range of solubility. It is an ultra deformable vesicle, elastic in nature which can squeeze itself through a pore which is many times smaller than its size owing to its elasticity. They can deform and pass through narrow constriction (from 5 to 10 times less than their own diameter without measurable loss. This high deformability gives better penetration of intact vesicles. This system is much more efficient at delivering a low and high molecular weight drug to the skin in terms of quantity and depth. The article speaks specifically on various phenomenon associated with the properties of these vesicles and their transport mechanisms. It also throws light on the effectiveness of conventional and deformable vesicles as drug delivery systems as well as their possible mode of action as transdermal drug carriers.

  19. The Flocculating Cationic Polypetide from Moringa oleifera Seeds Damages Bacterial Cell Membranes by Causing Membrane Fusion. (United States)

    Shebek, Kevin; Schantz, Allen B; Sines, Ian; Lauser, Kathleen; Velegol, Stephanie; Kumar, Manish


    A cationic protein isolated from the seeds of the Moringa oleifera tree has been extensively studied for use in water treatment in developing countries and has been proposed for use in antimicrobial and therapeutic applications. However, the molecular basis for the antimicrobial action of this peptide, Moringa oleifera cationic protein (MOCP), has not been previously elucidated. We demonstrate here that a dominant mechanism of MOCP antimicrobial activity is membrane fusion. We used a combination of cryogenic electron microscopy (cryo-EM) and fluorescence assays to observe and study the kinetics of fusion of membranes in liposomes representing model microbial cells. We also conducted cryo-EM experiments on E. coli cells where MOCP was seen to fuse the inner and outer membranes. Coarse-grained molecular dynamics simulations of membrane vesicles with MOCP molecules were used to elucidate steps in peptide adsorption, stalk formation, and fusion between membranes.

  20. Synthetic cation-selective nanotube: Permeant cations chaperoned by anions (United States)

    Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho


    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  1. Liposomes to target peripheral neurons and Schwann cells.

    Directory of Open Access Journals (Sweden)

    Sooyeon Lee

    Full Text Available While a wealth of literature for tissue-specific liposomes is emerging, optimal formulations to target the cells of the peripheral nervous system (PNS are lacking. In this study, we asked whether a novel formulation of phospholipid-based liposomes could be optimized for preferential uptake by microvascular endothelia, peripheral neurons and Schwann cells. Here, we report a unique formulation consisting of a phospholipid, a polymer surfactant and cholesterol that result in enhanced uptake by targeted cells. Using fluorescently labeled liposomes, we followed particle internalization and trafficking through a distinct route from dextran and escape from degradative compartments, such as lysosomes. In cultures of non-myelinating Schwann cells, liposomes associate with the lipid raft marker Cholera toxin, and their internalization is inhibited by disruption of lipid rafts or actin polymerization. In contrast, pharmacological inhibition of clathrin-mediated endocytosis does not significantly impact liposome entry. To evaluate the efficacy of liposome targeting in tissues, we utilized myelinating explant cultures of dorsal root ganglia and isolated diaphragm preparations, both of which contain peripheral neurons and myelinating Schwann cells. In these models, we detected preferential liposome uptake into neurons and glial cells in comparison to surrounding muscle tissue. Furthermore, in vivo liposome administration by intramuscular or intravenous injection confirmed that the particles were delivered to myelinated peripheral nerves. Within the CNS, we detected the liposomes in choroid epithelium, but not in myelinated white matter regions or in brain parenchyma. The described nanoparticles represent a novel neurophilic delivery vehicle for targeting small therapeutic compounds, biological molecules, or imaging reagents into peripheral neurons and Schwann cells, and provide a major advancement toward developing effective therapies for peripheral

  2. Liposome/water lipophilicity: methods, information content, and pharmaceutical applications. (United States)

    van Balen, Georgette Plemper; Martinet, Catherine a Marca; Caron, Giulia; Bouchard, Géraldine; Reist, Marianne; Carrupt, Pierre-Alain; Fruttero, Roberta; Gasco, Alberto; Testa, Bernard


    This review discusses liposome/water lipophilicity in terms of the structure of liposomes, experimental methods, and information content. In a first part, the structural properties of the hydrophobic core and polar surface of liposomes are examined in the light of potential interactions with solute molecules. Particular emphasis is placed on the physicochemical properties of polar headgroups of lipids in liposomes. A second part is dedicated to three useful methods to study liposome/water partitioning, namely potentiometry, equilibrium dialysis, and (1)H-NMR relaxation rates. In each case, the principle and limitations of the method are discussed. The next part presents the structural information encoded in liposome/water lipophilicity, in other words the solutes' structural and physicochemical properties that determine their behavior and hence their partitioning in such systems. This presentation is based on a comparison between isotropic (i.e., solvent/water) and anisotropic (e.g., liposome/water) systems. An important factor to be considered is whether the anisotropic lipid phase is ionized or not. Three examples taken from the authors' laboratories are discussed to illustrate the factors or combinations thereof that govern liposome/water lipophilicity, namely (a) hydrophobic interactions alone, (b) hydrophobic and polar interactions, and (c) conformational effects plus hydrophobic and ionic interactions. The next part presents two studies taken from the field of QSAR to exemplify the use of liposome/water lipophilicity in structure-disposition and structure-activity relationships. In the conclusion, we summarize the interests and limitations of this technology and point to promising developments.

  3. Toxicity and immunogenicity of Neisseria meningitidis lipopolysaccharide incorporated into liposomes. (United States)

    Petrov, A B; Semenov, B F; Vartanyan, Y P; Zakirov, M M; Torchilin, V P; Trubetskoy, V S; Koshkina, N V; L'Vov, V L; Verner, I K; Lopyrev, I V


    To obtain nontoxic and highly immunogenic lipopolysaccharide (LPS) for immunization, we incorporated Neisseria meningitidis LPS into liposomes. Native LPS and its salts were incorporated by the method of dehydration-rehydration of vesicles or prolonged cosonication. The most complete incorporation of LPS into liposomes and a decrease in toxicity were achieved by the method of dehydration-rehydration of vesicles. Three forms of LPS (H+ form, Mg2+ salt, and triethanolamine salt) showed different solubilities in water, the acidic form of LPS, with the most pronounced hydrophobic properties, being capable of practically complete association with liposomal membranes. An evaluation of the activity of liposomal LPS in vitro (by the Limulus amoebocyte test) and in vivo (by monitoring the pyrogenic reaction in rabbits) revealed a decrease in endotoxin activity of up to 1,000-fold. In addition, the pyrogenic activity of liposomal LPS was comparable to that of a meningococcal polysaccharide vaccine. Liposomes had a pronounced adjuvant effect on the immune response to LPS. Thus, the level of anti-LPS plaque-forming cells in the spleens of mice immunized with liposomal LPS was 1 order of magnitude higher and could be observed for a longer time (until day 21, i.e., the term of observation) than in mice immunized with free LPS. The same regularity was revealed in a study done with an enzyme-linked immunosorbent assay. This study also established that antibodies induced by immunization belonged to the immunoglobulin M and G classes, which are capable of prolonged circulation. Moreover, liposomal LPS induced a pronounced immune response in CBA/N mice (defective in B lymphocytes of the LyB-5+ subpopulation). The latter results indicate that the immunogenic action of liposomal LPS occurs at an early age.

  4. Cationic Lipid-Formulated DNA Vaccine against Hepatitis B Virus : Immunogenicity of MIDGE-Th1 Vectors Encoding Small and Large Surface Antigen in Comparison to a Licensed Protein Vaccine

    NARCIS (Netherlands)

    Endmann, Anne; Klunder, Katharina; Kapp, Kerstin; Riede, Oliver; Oswald, Detlef; Talman, Eduard G.; Schroff, Matthias; Kleuss, Christiane; Ruiters, Marcel H. J.; Juhls, Christiane


    Currently marketed vaccines against hepatitis B virus (HBV) based on the small (S) hepatitis B surface antigen (HBsAg) fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible

  5. Flexible polyelectrolyte conformation in the presence of cationic and anionic surfactants (United States)

    Passos, C. B.; Kuhn, P. S.; Diehl, A.


    In this work we have studied the conformation of flexible polyelectrolyte chains in the presence of cationic and anionic surfactant molecules. We developed a simple theoretical model for the formation of the polyelectrolyte-cationic surfactant complexes and mixed micelles formed by cationic and anionic surfactant molecules, in the framework of the Debye-Hückel-Bjerrum-Manning and Flory theories, with the hydrophobic interaction included explicitly as an effective short-ranged attraction between the surfactant hydrocarbon tails. This simple model allows us to calculate the extension of the polyelectrolyte-cationic surfactant complexes as a function of the anionic surfactant concentration, for different types of cationic and anionic surfactant molecules. A discrete conformational transition from a collapsed state to an elongated coil was found, for all surfactant chain lengths we have considered, in agreement with the experimental observations for the unfolding of ​DNA-cationic surfactant complexes.

  6. Targeting cancer with bugs and liposomes: ready, aim, fire. (United States)

    Cheong, Ian; Huang, Xin; Thornton, Katherine; Diaz, Luis A; Zhou, Shibin


    One of the major challenges facing cancer therapy today is achieving specificity. Current efforts to meet this challenge are focused on developing targeted therapeutics specific to the cancer cell. An alternative approach is to selectively deliver cytotoxic agents to the tumor site. With this end in mind, liposomes optimized for physical robustness have been developed and used clinically as drug delivery vehicles. Paradoxically, the effectiveness of these liposomes is hampered by the suboptimal release of bioavailable drug. This article will highlight the recent advance in using a novel lipase secreted by the tumor-colonizing anaerobic bacterium Clostridium novyi-NT to induce the targeted release of liposomal payloads within tumors.

  7. Liposomal Drug Products: A Quality by Design Approach (United States)

    Xu, Xiaoming

    Quality by Design (QbD) principles has been applied to the development of two liposomal formulations, containing a hydrophilic small molecule therapeutic (Tenofovir) and a protein therapeutic (superoxide dismutase). The goal of the research is to provide critical information on 1) how to reduce the preparation variability in liposome formulations, and 2) how to increase drug encapsulation inside liposomes to reduce manufacturing cost. Most notably, an improved liposome preparation method was developed which increased the encapsulation efficiency of hydrophilic molecules. In particular, this method allows for very high encapsulation efficiency. For example, encapsulation efficiencies of up to 50% have been achieved, whereas previously only 20% or less have been reported. Another significant outcome from this research is a first principle mathematical model to predict the encapsulation efficiency of hydrophilic drugs in unilamellar liposomes. This mathematical model will be useful in: formulation development to rapidly achieve optimized formulations; comparison of drug encapsulation efficiencies of liposomes prepared using different methods; and assisting in the development of suitable process analytical technologies to achieve real-time monitoring and control of drug encapsulation during manufacturing. A novel two-stage reverse dialysis in vitro release testing method has also been developed for passively targeted liposomes, which uses the first stage to mimic the circulation of liposomes in the body and the second stage to imitate the drug release process at the target. The developed in vitro release testing method can be used to distinguish formulations with varied compositions for quality control testing purposes. This developed method may pave the way to the development of more biorelevant quality control testing methods for liposomal drug products in the future. The QbD case studies performed in this research are examples of how this approach can be used to

  8. pH-Sensitive Liposomes: Possible Clinical Implications (United States)

    Yatvin, M. B.; Kreutz, W.; Horwitz, B. A.; Shinitzky, M.


    When pH-sensitive molecules are incorporated into liposomes, drugs can be specifically released from these vesicles by a change of pH in the ambient serum. Liposomes containing the pH-sensitive lipid palmitoyl homocysteine (PHC) were constructed so that the greatest pH differential (6.0 to 7.4) of drug release was obtained near physiological temperature. Such liposomes could be useful clinically if they enable drugs to be targeted to areas of the body in which pH is less than physiological, such as primary tumors and metastases or sites of inflammation and infection.

  9. In vivo and in vitro evaluation of octyl methoxycinnamate liposomes (United States)

    Varjão Mota, Aline de Carvalho; Faria de Freitas, Zaida Maria; Júnior, Eduardo Ricci; Dellamora-Ortiz, Gisela Maria; Santos-Oliveira, Ralph; Ozzetti, Rafael Antonio; Vergnanini, André Luiz; Ribeiro, Vanessa Lira; Silva, Ronald Santos; dos Santos, Elisabete Pereira


    Solar radiation causes damage to human skin, and photoprotection is the main way to prevent these harmful effects. The development of sunscreen formulations containing nanosystems is of great interest in the pharmaceutical and cosmetic industries because of the many potential benefits. This study aimed to develop and evaluate an octyl methoxycinnamate (OMC) liposomal nanosystem (liposome/OMC) to obtain a sunscreen formulation with improved safety and efficacy by retaining OMC for longer on the stratum corneum. Methods The liposome/OMC nanostructure obtained was tested for enzymatic hydrolysis with lipase from Rhizomucor miehei and biodistribution with liposomes labeled with technetium-99m. The liposome/OMC formulation was then incorporated in a gel formulation and tested for ocular irritation using the hen’s egg test-chorio-allantoic membrane (HET-CAM) assay, in vitro and in vivo sun protection factor, in vitro release profile, skin biometrics, and in vivo tape stripping. Results The liposome/OMC nanosystem was not hydrolyzed from R. miehei by lipase. In the biodistribution assay, the liposome/OMC formulation labeled with technetium-99m had mainly deposited in the skin, while for OMC the main organ was the liver, showing that the liposome had higher affinity for the skin than OMC. The liposome/OMC formulation was classified as nonirritating in the HET-CAM test, indicating good histocompatibility. The formulation containing liposome/OMC had a higher in vivo solar photoprotection factor, but did not show increased water resistance. Inclusion in liposomes was able to slow down the release of OMC from the formulation, with a lower steady-state flux (3.9 ± 0.33 μg/cm2/hour) compared with the conventional formulation (6.3 ± 1.21 μg/cm2/hour). The stripping method showed increased uptake of OMC in the stratum corneum, giving an amount of 22.64 ± 7.55 μg/cm2 of OMC, which was higher than the amount found for the conventional formulation (14.57 ± 2.30 μg/cm2

  10. Meta-analysis of inter-patient pharmacokinetic variability of liposomal and non-liposomal anticancer agents (United States)

    Schell, Ryan F.; Sidone, Brian J.; Caron, Whitney P.; Walsh, Mark D.; Zamboni, Beth A.; Ramanathan, Ramesh K.; Zamboni, William C.


    Purpose A meta-analysis was conducted to evaluate the inter-patient pharmacokinetic (PK) variability of liposomal and small molecule (SM) anticancer agents. Methods Inter-patient PK variability of 9 liposomal and SM formulations of the same drug were evaluated. PK variability was measured as coefficient of variance (CV%) of area under the plasma concentration versus time curve (AUC) and the fold-difference between AUCmax and AUCmin (AUC range). Results CV% of AUC and AUC ranges were 2.7-fold (P<0.001) and 16.7-fold (P=0.13) greater, respectively, for liposomal compared with SM drugs. There was an inverse linear relationship between the clearance (CL) of liposomal agents and PK variability with a lower CL associated with greater PK variability (R2 = 0.39). PK variability of liposomal agents was greater when evaluated from 0–336 h compared with 0–24 h. Conclusion PK variability of liposomes is significantly greater than SM. The factors associated with the PK variability of liposomal agents needs to be evaluated. PMID:23891988

  11. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong


    and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...

  12. Characterization and performance of short cationic antimicrobial peptide isomers. (United States)

    Juba, Melanie; Porter, Devin; Dean, Scott; Gillmor, Susan; Bishop, Barney


    Cationic antimicrobial peptides (CAMPs) represent an ancient defense mechanism against invading bacteria, with peptides such as the cathelicidins being essential elements of vertebrate innate immunity. CAMPs are typically associated with broad-spectrum antimicrobial potency and limited bacterial resistance. The cathelicidin identified from the elapid snake Naja atra (NA-CATH) contains a semi-conserved repeated 11-residue motif (ATRA motif) with a sequence pattern consistent with formation of an amphipathic helical conformation. Short peptide amides (ATRA-1, -1A, -1P, and -2) generated based on the pair of ATRA motifs in NA-CATH exhibited varied antimicrobial potencies. The small size of the ATRA peptides, coupled with their varied antimicrobial performances, make them interesting models to study the impact various physico-chemical properties have on antimicrobial performance in helical CAMPs. Accordingly, the D- and L-enantiomers of the peptide ATRA-1A, which in earlier studies had shown both good antimicrobial performance and strong helical character, were investigated in order to assess the impact peptide stereochemistry has on antimicrobial performance and interaction with chiral membranes. The ATRA-1A isomers exhibit varied potencies against four bacterial strains, and their conformational properties in the presence of mixed zwitterionic/anionic liposomes are influenced by anionic lipid content. These studies reveal subtle differences in the properties of the peptide isomers. Differences are also seen in the abilities of the ATRA-1A isomers to induce liposome fusion/aggregation, bilayer rearrangement and lysing through turbidity studies and fluorescence microscopy. The similarities and differences in the properties of the ATRA-1A isomers could aid in efforts to develop D-peptide-based therapeutics using high-performing L-peptides as templates.

  13. Novel amphiphilic probes for [18F]-radiolabeling preformed liposomes and determination of liposomal trafficking by positron emission tomography. (United States)

    Urakami, Takeo; Akai, Shuji; Katayama, Yurie; Harada, Norihiro; Tsukada, Hideo; Oku, Naoto


    Positron-emission tomography (PET) is a noninvasive real-time functional imaging system and is expected to be useful for the development of new drug candidates in clinical trials. For its application with preformulated liposomes, we devised an optimized [18F]-compound and developed a direct liposome modification method that we termed the "solid-phase transition method". We were successful in using 1-[18F]fluoro-3,6-dioxatetracosane ([18F]7a) for in vivo trafficking of liposomes. This method might be a useful tool in preclinical and clinical studies of lipidic particle-related drugs.

  14. Liposomal SLA co-incorporated with PO CpG ODNs or PS CpG ODNs induce the same protection against the murine model of leishmaniasis. (United States)

    Shargh, Vahid Heravi; Jaafari, Mahmoud Reza; Khamesipour, Ali; Jaafari, Iman; Jalali, Seyed Amir; Abbasi, Azam; Badiee, Ali


    First generation Leishmania vaccines consisting of whole killed parasites with or without adjuvants have reached phase 3 trial and failed to show enough efficacy mainly due to the lack of an appropriate adjuvant. In this study, the nuclease-resistant phosphorothioate CpG oligodeoxynucleotides (PS CpG) or nuclease-sensitive phosphodiester CpG ODNs (PO CpG) were used as adjuvants to enhance immunogenicity and rate of protection against leishmaniasis. Due to the susceptibility of PO CpG to nuclease degradation, an efficient liposomal delivery system was developed to protect them from degradation. 1, 2-dioleoyl-3-trimethylammonium-propane (DOTAP) as a cationic lipid was used because of its unique adjuvanticity and electrostatic interaction with negatively charged CpG ODNs. To evaluate the role of liposomal formulation in protection rate and enhanced immune response, BALB/c mice were immunized subcutaneously with liposomal soluble Leishmania antigens (SLA) co-incorporated with PO CpG (Lip-SLA-PO CpG), Lip-SLA-PS CpG, SLA+PO CpG, SLA+PS CpG, SLA or buffer. As criteria for protection, footpad swelling at the site of challenge, parasite loads, the levels of IFN-γ and IL-4, and the IgG subtypes were evaluated. The groups of mice receiving Lip-SLA-PO CpG or Lip-SLA-PS CpG showed a high protection rate compared with the control groups. In addition, there was no significant difference in immune response generation between mice immunized with PS CpG and the group receiving PO CpG when incorporated into the liposomes. The results suggested that liposomal form of PO CpG might be used instead of PS CpG in future vaccine formulations as an efficient adjuvant.

  15. Ultrasound enhances the transfection of plasmid DNA by non-viral vectors. (United States)

    Hosseinkhani, Hossein; Aoyama, Teruyoshi; Ogawa, Osamu; Tabata, Yasuhiko


    Increasing attention has been paid to technology used for the delivery of genetic materials into cells for gene therapy and the generation of genetically engineered cells. So far, viral vectors have been mainly used because of their inherently high transfection efficiency of gene. However, there are some problems to be resolved for the clinical applications, such as the pathogenicity and immunogenicity of viral vectors themselves. Therefore, many research trials with non-viral vectors have been performed to enhance their efficiency to a level comparable to the viral vector. Two directions of these trials exist: material improvement of non-viral vectors and their combination with various external physical stimuli. This paper reviews the latter research trials, with special attention paid to the enhancement of gene expression by ultrasound (US). The expression level of plasmid DNA by various cationized polymers and liposomes is promoted by US irradiation in vitro as well as in vivo. This US-enhanced expression of plasmid DNA will be discussed to emphasize the technical feasibility of US in gene therapy and biotechnology.

  16. Liposomes for targeting hepatocellular carcinoma: use of conjugated arabinogalactan as targeting ligand. (United States)

    Shah, Sanket M; Goel, Peeyush N; Jain, Ankitkumar S; Pathak, Pankaj O; Padhye, Sameer G; Govindarajan, Srinath; Ghosh, Sandipto S; Chaudhari, Pradip R; Gude, Rajiv P; Gopal, Vijaya; Nagarsenker, Mangal S


    Present study investigates the potential of chemically modified (Shah et al., 2013) palmitoylated arabinogalactan (PAG) in guiding liposomal delivery system and targeting asialoglycoprotein receptors (ASGPR) which are expressed in hepatocellular carcinoma (HCC). PAG was incorporated in liposomes during preparation and doxorubicin hydrochloride was actively loaded in preformed liposomes with and without PAG. The liposomal systems with or without PAG were evaluated for in vitro release, in vitro cytotoxicity, in vitro cell uptake on ASGPR(+) cells, in vivo pharmacokinetic study, in vivo biodistribution study, and in vivo efficacy study in immunocompromised mice. The particle size for all the liposomal systems was below 200 nm with a negative zeta potential. Doxorubicin loaded PAG liposomes released significantly higher amount of doxorubicin at pH 5.5 as compared to pH 7.4, providing advantage for targeted tumor therapy. Doxorubicin in PAG liposomes showed superior cytotoxicity on ASGPR(+) HepG2 cells as compared to ASGPR(-), MCF7, A549, and HT29 cells. Superior uptake of doxorubicin loaded PAG liposomes as compared to doxorubicin loaded conventional liposomes was evident in confocal microscopy studies. Higher AUC in pharmacokinetic study and higher deposition in liver was observed for PAG liposomes compared to conventional liposomes. Significantly higher tumor suppression was noted in immunocompromised mice for mice treated with PAG liposomes as compared to the conventional liposomes. Targeting ability and superior activity of PAG liposomes is established pre-clinically suggesting potential of targeted delivery system for improved treatment of HCC.

  17. Sustained distribution of aerosolized PEGylated liposomes in epithelial lining fluids on alveolar surfaces. (United States)

    Kaneko, Keita; Togami, Kohei; Yamamoto, Eri; Wang, Shujun; Morimoto, Kazuhiro; Itagaki, Shirou; Chono, Sumio


    The distribution characteristics of aerosolized PEGylated liposomes in alveolar epithelial lining fluid (ELF) were examined in rats, and the ensuing mechanisms were investigated in the in vitro uptake and protein adsorption experiments. Nonmodified or PEGylated liposomes (particle size 100 nm) were aerosolized into rat lungs. PEGylated liposomes were distributed more sustainably in ELFs than nonmodified liposomes. Furthermore, the uptake of PEGylated liposomes by alveolar macrophages (AMs) was less than that of nonmodified liposomes. In further in vitro uptake experiments, nonmodified and PEGylated liposomes were opsonized with rat ELF components and then added to NR8383 cells as cultured rat AMs. The uptake of opsonized PEGylated liposomes by NR8383 cells was lower than that of opsonized nonmodified liposomes. Moreover, the protein absorption levels in opsonized PEGylated liposomes were lower than those in opsonized nonmodified liposomes. These findings suggest that sustained distributions of aerosolized PEGylated liposomes in ELFs reflect evasion of liposomal opsonization with surfactant proteins and consequent reductions in uptake by AMs. These data indicate the potential of PEGylated liposomes as aerosol-based drug delivery system that target ELF for the treatment of respiratory diseases.

  18. Atmospheric-pressure guided streamers for liposomal membrane disruption (United States)

    Svarnas, P.; Matrali, S. H.; Gazeli, K.; Aleiferis, Sp.; Clément, F.; Antimisiaris, S. G.


    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  19. Light activated liposomes: Functionality and prospects in ocular drug delivery. (United States)

    Lajunen, Tatu; Nurmi, Riikka; Kontturi, Leena; Viitala, Lauri; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto


    Ocular drug delivery, especially to the retina and choroid, is a major challenge in drug development. Liposome technology may be useful in ophthalmology in enabling new routes of delivery, prolongation of drug action and intracellular drug delivery, but drug release from the liposomes should be controlled. For that purpose, light activation may be an approach to release drug at specified time and site in the eye. Technical advances have been made in the field of light activated drug release, particularly indocyanine green loaded liposomes are a promising approach with safe materials and effective light triggered release of small and large molecules. This review discusses the liposomal drug delivery with light activated systems in the context of ophthalmic drug delivery challenges.

  20. Liposome surface charge influence on skin penetration behaviour. (United States)

    Gillet, A; Compère, P; Lecomte, F; Hubert, P; Ducat, E; Evrard, B; Piel, G


    Vesicular systems have shown their ability to increase dermal and transdermal drug delivery. Their mechanism of drug transport into and through the skin has been investigated but remains a much debated question. Several researchers have outlined that drug penetration can be influenced by modifying the surface charge of liposomes. In the present work we study the influence of particle surface charge on skin penetration. The final purpose is the development of a carrier system which is able to enhance the skin delivery of two model drugs, betamethasone and betamethasone dipropionate. Liposomes were characterised by their size, morphology, zeta potential, encapsulation efficiency and stability. Ex vivo diffusion studies using Franz diffusion cells were performed. Confocal microscopy was performed to visualise the penetration of fluorescently labelled liposomes into the skin. This study showed the potential of negatively charged liposomes to enhance the skin penetration of betamethasone and betamethasone dipropionate.

  1. Acoustical properties of individual liposome-loaded microbubbles. (United States)

    Luan, Ying; Faez, Telli; Gelderblom, Erik; Skachkov, Ilya; Geers, Bart; Lentacker, Ine; van der Steen, Ton; Versluis, Michel; de Jong, Nico


    A comparison between phospholipid-coated microbubbles with and without liposomes attached to the microbubble surface was performed using the ultra-high-speed imaging camera (Brandaris 128). We investigated 73 liposome-loaded microbubbles (loaded microbubbles) and 41 microbubbles without liposome loading (unloaded microbubbles) with a diameter ranging from 3-10 μm at frequencies ranging from 0.6-3.8 MHz and acoustic pressures ranging from 5-100 kPa. The experimental data showed nearly the same shell elasticity for the loaded and unloaded bubbles, but the shell viscosity was higher for loaded bubbles compared with unloaded bubbles. For loaded bubbles, a higher pressure threshold for the bubble vibrations was noticed. In addition, an "expansion-only" behavior was observed for up to 69% of the investigated loaded bubbles, which mostly occurred at low acoustic pressures (≤30 kPa). Finally, fluorescence imaging showed heterogeneity of liposome distributions of the loaded bubbles.

  2. Remote loading of preencapsulated drugs into stealth liposomes. (United States)

    Sur, Surojit; Fries, Anja C; Kinzler, Kenneth W; Zhou, Shibin; Vogelstein, Bert


    Loading drugs into carriers such as liposomes can increase the therapeutic ratio by reducing drug concentrations in normal tissues and raising their concentrations in tumors. Although this strategy has proven advantageous in certain circumstances, many drugs are highly hydrophobic and nonionizable and cannot be loaded into liposomes through conventional means. We hypothesized that such drugs could be actively loaded into liposomes by encapsulating them into specially designed cyclodextrins. To test this hypothesis, two hydrophobic drugs that had failed phase II clinical trials because of excess toxicity at deliverable doses were evaluated. In both cases, the drugs could be remotely loaded into liposomes after their encapsulation (preloading) into cyclodextrins and administered to mice at higher doses and with greater efficacy than possible with the free drugs.

  3. Atmospheric-pressure guided streamers for liposomal membrane disruption

    Energy Technology Data Exchange (ETDEWEB)

    Svarnas, P.; Aleiferis, Sp. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); Matrali, S. H. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Gazeli, K. [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26504 (Greece); IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Clement, F. [IPREM-LCABIE, Plasmas et Applications, UPPA, 64000 Pau (France); Antimisiaris, S. G. [Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion 26504 (Greece); Institute of Chemical Engineering Sciences (ICES)-FORTH, Rion 26504 (Greece)


    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  4. Potential utility of liposome bupivacaine in orthopedic surgery. (United States)

    Lonner, Jess H; Scuderi, Giles R; Lieberman, Jay R


    Management of postsurgical analgesia is an important consideration in orthopedic procedures, including joint arthroplasty. Inadequate postsurgical analgesia is associated with increased hospital length of stay, delayed ambulation, and reduced exercise capacity. In this article, we review the potential contribution of a prolonged-release liposomal formulation of bupivacaine as part of a multimodal analgesic regimen after orthopedic surgery. Controlled studies across multiple surgical settings have demonstrated that, compared with placebo and bupivacaine HCl, liposome bupivacaine in a single administration provides postsurgical analgesia for up to 72 hours, delays use of rescue medication, and reduces postsurgical opioid consumption. Liposome bupivacaine has been well tolerated in clinical studies and has had a low rate of treatment-related adverse events. To date, there has been no signal of cardiac toxicity, chondrolysis, or delayed wound healing associated with liposome bupivacaine.

  5. Divalent counterion-induced condensation of triple-strand DNA. (United States)

    Qiu, Xiangyun; Parsegian, V Adrian; Rau, Donald C


    Understanding and manipulation of the forces assembling DNA/RNA helices have broad implications for biology, medicine, and physics. One subject of significance is the attractive force between dsDNA mediated by polycations of valence ≥ 3. Despite extensive studies, the physical origin of the "like-charge attraction" remains unsettled among competing theories. Here we show that triple-strand DNA (tsDNA), a more highly charged helix than dsDNA, is precipitated by alkaline-earth divalent cations that are unable to condense dsDNA. We further show that our observation is general by examining several cations (Mg(2+), Ba(2+), and Ca(2+)) and two distinct tsDNA constructs. Cation-condensed tsDNA forms ordered hexagonal arrays that redissolve upon adding monovalent salts. Forces between tsDNA helices, measured by osmotic stress, follow the form of hydration forces observed with condensed dsDNA. Probing a well-defined system of point-like cations and tsDNAs with more evenly spaced helical charges, the counterintuitive observation that the more highly charged tsDNA (vs. dsDNA) is condensed by cations of lower valence provides new insights into theories of polyelectrolytes and the biological and pathological roles of tsDNA. Cations and tsDNAs also hold promise as a model system for future studies of DNA-DNA interactions and electrostatic interactions in general.

  6. Liposomal Drug Delivery of Anticancer Agents

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob

    In the first part of the thesis the work towards a new generation of liposomal drug delivery systems for anticancer agents is described. The drug delivery system takes advantage of the elevated level of secretory phospholipase A2 (sPLA2) IIA in many tumors and the enhanced permeability......-trans retinoic acid, α-tocopheryl succinate and calcitriol were examined for their ability to be incorporated into the investigated drug delivery system and syntheses of the phospholipid prodrugs are described. The majority of the phospholipid prodrugs were able to form particles with diameters close to 100 nm...... that upon sPLA2 triggering the formulated phospholipid prodrugs displayed IC50 values in range from 3–36 μM and complete cell death was observed when higher drug concentrations were applied. Promising for the drug delivery system the majority of the phospholipid prodrugs remain non-toxic in the absence...

  7. Interaction of isopropylthioxanthone with phospholipid liposomes. (United States)

    Momo, Federico; Fabris, Sabrina; Stevanato, Roberto


    Isopropylthioxanthone (ITX) is a highly lipophilic molecule which can be released in foods and beverages from the packages, where it is present as photoinitiator of inks in printing processes. Recently it was found in babies milk, and its toxicity cannot be excluded. The structure of the molecule suggests a possible strong interaction with the lipid moiety of biological membranes, and this is the first study of its effects on phospholipid organization, using differential scanning calorimetry (DSC) and spin labelling techniques. The data obtained with multilamellar liposomes of saturated phospholipids of different length, with and without cholesterol, point out that the molecule changes the lipid structure; in particular, in the gel state, behaving like a disordering agent it increases the mobility of the bilayer, while, in the fluid state, tends to rigidify the membrane, in a cholesterol like way. This behavior supports the hypothesis that ITX experiences a relocation process when the lipid matrix passes from the gel to the fluid state.

  8. Advanced strategies in liposomal cancer therapy

    DEFF Research Database (Denmark)

    Andresen, Thomas Lars; Jensen, Simon Skøde; Jørgensen, Kent


    , none of them have yet led to marketed drugs and are still far from achieving this goal. The most advanced and prospective technologies are probably the prodrug strategies where nontoxic drugs are carried and activated specifically in the malignant tissue by overexpressed enzymes. In the second part......Tumor specific drug delivery has become increasingly interesting in cancer therapy, as the use of chemotherapeutics is often limited due to severe side effects. Conventional drug delivery systems have shown low efficiency and a continuous search for more advanced drug delivery principles...... is therefore of great importance. In the first part of this review, we present current strategies in the drug delivery field, focusing on site-specific triggered drug release from liposomes in cancerous tissue. Currently marketed drug delivery systems lack the ability to actively release the carried drug...

  9. Interaction of curcumin with lipid monolayers and liposomal bilayers. (United States)

    Karewicz, Anna; Bielska, Dorota; Gzyl-Malcher, Barbara; Kepczynski, Mariusz; Lach, Radosław; Nowakowska, Maria


    Curcumin shows huge potential as an anticancer and anti-inflammatory agent. However, to achieve a satisfactory bioavailability and stability of this compound, its liposomal form is preferable. Our detailed studies on the curcumin interaction with lipid membranes are aimed to obtain better understanding of the mechanism and eventually to improve the efficiency of curcumin delivery to cells. Egg yolk phosphatidylcholine (EYPC) one-component monolayers and bilayers, as well as mixed systems containing additionally dihexadecyl phosphate (DHP) and cholesterol, were studied. Curcumin binding constant to EYPC liposomes was determined based on two different methods: UV/Vis absorption and fluorescence measurements to be 4.26×10(4)M(-1) and 3.79×10(4)M(-1), respectively. The fluorescence quenching experiment revealed that curcumin locates in the hydrophobic region of EYPC liposomal bilayer. It was shown that curcumin impacts the size and stability of the liposomal carriers significantly. Loaded into the EYPC/DPH/cholesterol liposomal bilayer curcumin stabilizes the system proportionally to its content, while the EYPC/DPH system is destabilized upon drug loading. The three-component lipid composition of the liposome seems to be the most promising system for curcumin delivery. An interaction of free and liposomal curcumin with EYPC and mixed monolayers was also studied using Langmuir balance measurements. Monolayer systems were treated as a simple model of cell membrane. Condensing effect of curcumin on EYPC and EYPC/DHP monolayers and loosening influence on EYPC/DHP/chol ones were observed. It was also demonstrated that curcumin-loaded EYPC liposomes are more stable upon interaction with the model lipid membrane than the unloaded ones.


    Directory of Open Access Journals (Sweden)



    Full Text Available Purpose: Liposomal formulations have been successfully used in the treatment of a number of dermatological diseases. Various synthetic as well as herbal drugs are incorporated into liposome to improve its efficacy. Incorporation of herbal extract into liposome reduces side effects which are associated with the synthetic ones. Azadirachta indica leaves possesse good anti bacterial activity, confirming the great potential of bioactive compounds of neem. Among aqueous extract and alcoholic extract, alcoholic leaf extracts of A. indica were found to be more active towards the bacterial species. Hence, this extract was incorporated into liposomes to enhance its activity in skin delivery. The objective of the present research work is to convert this age old miraculous herb into nanotechnology based formulations i.e. liposomes. An attempt has been made to prepare liposomal Neem gel for topical use for anti-microbial activity. Methods: Methanolic Neem Extract (MeNE was incorporated into liposomes by thin film hydration method. The batch having lipid ratio i.e. Soya lecithin: Cholesterol (4:1; MeNE concentration 80 mg with entrapment efficiency 69.52 ±1.9% was finalized. Results and Conclusions: The vesicle size was found to be 3.2μm ± 0.67. In vitro drug diffusion and skin retention from liposomal gel was found to be 62.178% ± 0.91 and 20.03% ± 0.63 respectively. Stability studies indicated that formulation was stable over a period of 3 months when stored at 2-8°C.

  11. Development of a liposomal nanodelivery system for nevirapine

    Directory of Open Access Journals (Sweden)

    Krishnan Uma M


    Full Text Available Abstract Background The treatment of AIDS remains a serious challenge owing to high genetic variation of Human Immunodeficiency Virus type 1 (HIV-1. The use of different antiretroviral drugs (ARV is significantly limited by severe side-effects that further compromise the quality of life of the AIDS patient. In the present study, we have evaluated a liposome system for the delivery of nevirapine, a hydrophobic non-nucleoside reverse transcriptase inhibitor. Liposomes were prepared from egg phospholipids using thin film hydration. The parameters of the process were optimized to obtain spherical liposomes below 200 nm with a narrow polydispersity. The encapsulation efficiency of the liposomes was optimized at different ratios of egg phospholipid to cholesterol as well as drug to total lipid. The data demonstrate that encapsulation efficiency of 78.14% and 76.25% were obtained at egg phospholipid to cholesterol ratio of 9:1 and drug to lipid ratio of 1:5, respectively. We further observed that the size of the liposomes and the encapsulation efficiency of the drug increased concomitantly with the increasing ratio of drug and lipid and that maximum stability was observed at the physiological pH. Thermal analysis of the drug encapsulated liposomes indicated the formation of a homogenous drug-lipid system. The magnitude of drug release from the liposomes was examined under different experimental conditions including in phosphate buffered saline (PBS, Dulbecco's Modified Eagle's Medium (DMEM supplemented with 10% fetal bovine serum or in the presence of an external stimulus such as low frequency ultrasound. Within the first 20 minutes 40, 60 and 100% of the drug was released when placed in PBS, DMEM or when ultrasound was applied, respectively. We propose that nevirapine-loaded liposomal formulations reported here could improve targeted delivery of the anti-retroviral drugs to select compartments and cells and alleviate systemic toxic side effects as a

  12. Liposomal Amphotericin B and Leishmaniasis: Dose and Response


    Shyam Sundar; Jaya Chakravarty


    Liposomal amphotericin B has been used with increasing frequency to treat visceral leishmaniasis (VL). It is the treatment of choice for immunocompetent patients in the Mediterranean region and the preferred drug for HIV/VL co-infection. Although there is a regional variation in the susceptibility of the parasite a total dose of 20 mg/kg is effective in immunocompetent patients. Randomized clinical trials of liposomal amphotericin B in the treatment and secondary prophylaxis of HIV-VL coinfec...

  13. Recent advances in liposomal dry powder formulations: preparation and evaluation. (United States)

    Misra, Ambikanandan; Jinturkar, Kaustubh; Patel, Deepa; Lalani, Jigar; Chougule, Mahavir


    Liposomal drug dry powder formulations have shown many promising features for pulmonary drug administration, such as selective localization of drug within the lung, controlled drug release, reduced local and systemic toxicities, propellant-free nature, patient compliance, high dose carrying capacity, stability and patent protection. Critical review of the recent developments will provide a balanced view on benefits of liposomal encapsulation while developing dry powder formulations and will help researchers to update themselves and focus their research in more relevant areas. In liposomal dry powder formulations (LDPF), drug encapsulated liposomes are homogenized, dispersed into the carrier and converted into dry powder form by using freeze drying, spray drying and spray freeze drying. Alternatively, LDPF can also be formulated by supercritical fluid technologies. On inhalation with a suitable inhalation device, drug encapsulated liposomes get rehydrated in the lung and release the drug over a period of time. The prepared LDPF are evaluated in vitro and in vivo for lung deposition behavior and drug disposition in the lung using a suitable inhaler device. The most commonly used liposomes are composed of lung surfactants and synthetic lipids. Delivery of anticancer agents for lung cancer, corticosteroids for asthma, immunosuppressants for avoiding lung transplantation rejection, antifungal drugs for lung fungal infections, antibiotics for local pulmonary infections and cystic fibrosis and opioid analgesics for pain management using liposome technology are a few examples. Many liposomal formulations have reached the stage of clinical trials for the treatment of pulmonary distress, cystic fibrosis, lung fungal infection and lung cancer. These formulations have given very promising results in both in vitro and in vivo studies. However, modifications to new therapies for respiratory diseases and systemic delivery will provide new challenges in conducting well

  14. Phosphatidylserine liposomes can be tethered by caldesmon to actin filaments.


    Makuch, R.; Zasada, A; K. Mabuchi; Krauze, K; C. L. Wang; Dabrowska, R


    Rotary shadowing electron microscopy revealed that attachment of caldesmon to phosphatidylserine (PS) liposomes was mainly through its C-terminal end. To determine the PS-binding sites of caldesmon, we have made use of synthetic peptides covering the two C-terminal calmodulin binding sites and a recombinant fragment corresponding to the N-terminal end of the C-terminal domain that contains an amphipathic helix. Interactions of these peptides with the PS liposomes were studied by nondenaturing...

  15. Interaction of fluoxetine with phosphatidylcholine liposomes. (United States)

    Momo, Federico; Fabris, Sabrina; Stevanato, Roberto


    Fluoxetine (Prozac) is one of the latest of a new generation of antidepressants, approved by FDA in 2002. The interactions of fluoxetine with multilamellar liposomes of pure phosphatidylcholine (PC) or containing cholesterol 10% molar were studied as a function of the lipid chain lengths, using differential scanning calorimetry and spin labelling EPR techniques. The DSC profiles of the gel-to-fluid state transition of liposomes of DMPC (C14:0) are broadened and shifted towards lower temperatures at increasing dopant concentrations and, with less than 10% fluoxetine, any detectable transition is destroyed. The broadened profiles and the lowered transition temperatures demonstrate that both the size and the packing of the cooperative units undergoing the transition are modified by fluoxetine, leading to a looser and more flexible bilayer. No phase separation was observed. The effects of fluoxetine on the thermotropic phase behaviour of DPPC (C16:0) and, even more, of DSPC (C18:0) are different from that of DMPC. In fact, in the former cases, two peaks appeared at increasing dopant concentrations, suggesting the occurrence of a phase separation phenomenon, which is a sign of a binding of fluoxetine in the phosphate region. In cholesterol containing membranes, fluoxetine, even at low concentrations, leads to a general corruption of the membrane, both in terms of packing and cooperativity, and the formation of any new phase is no longer observable. EPR spectra reflect the disordered motion of acyl chains in the bilayer. It was found that fluoxetine lowers the order of the lipid chains mainly in correspondence of the fifth carbon position of SASL, indicating a possible accumulation near the interfacial region.

  16. Liposomal cisplatin: a new cisplatin formulation. (United States)

    Stathopoulos, George P


    Over the last three decades, cisplatin has been one of the most effective cytotoxic agents, but its administration has been hindered by its nephrotoxicity, neurotoxicity and myelo toxicity. Recently, liposomal cisplatin, lipoplatin, has been formulated and tested thoroughly in preclinical (in vitro) and phase I, II and III trials, as documented in the literature. Experiments in animals showed that lipoplatin is less toxic than cisplatin and that it produces tumour reduction. The histological examination of treated tumours from mouse xenografts was consistent with apoptosis in the tumour cells in a mechanism similar to that of cisplatin. Lipoplatin infusion in patients and measurements of platinum levels in tumour specimens showed 10-50 times higher levels in tumours and metastases than in the adjacent normal specimens. A phase I-II study using a combination of lipoplatin and gemcitabine in pretreated patients (with disease progression or stable disease) with advanced pancreatic cancer was conducted. No nephrotoxicity was observed. With lipoplatin monotherapy the dose-limiting toxicity was determined to be 350 mg/m and the maximum tolerated dose 300 mg/m; when used in combination with paclitaxel the dose-limiting toxicity for lipoplatin was 250 mg/m and for paclitaxel 175 mg/m, and the maximum tolerated dose was 200 and 175 mg/m, respectively. In two phase II randomized studies comparing the lipoplatin combination versus the cisplatin combination, it was found that the former was statistically significantly less toxic than the latter, whereas the response rate and survival were similar. Up to now, the data on lipoplatin treatment in malignant tumours are quite impressive, because of the negligible toxicity and because it is equal if not superior to cisplatin with regard to response rate. This review aims to chronologically document publications relevant to liposomal cisplatin to date.

  17. Folate receptor targeted liposomes encapsulating anti-cancer drugs. (United States)

    Chaudhury, Anumita; Das, Surajit


    Among all available lipid based nanoparticulate systems, the success of liposomal drug delivery system is evident by the number of liposomal products available in the market or under advanced stages of preclinical and clinical trials. Liposome has the ability to deliver chemotherapeutic agents to the targeted tissues or even inside the cancerous cells by enhanced intracellular penetration or improved tumour targeting. In the last decade, folate receptor mediated tumour targeting has emerged as an attractive alternative method of active targeting of cancer cells through liposomes due to its numerous advantages over other targeting methods. Folate receptors, also known as folate binding proteins, allow the binding and internalization of folate or folic acid into the cells by a method called folate receptor mediated endocytosis. They have restricted presence in normal cells and are mostly expressed during malignant transformation. In this review article, folate receptor targeting capability of liposomes has been described. This review article has focussed on the different cancer drugs which have been encapsulated in folate receptor targeted liposomes and their in vitro as well as in vivo efficacies in several tumour models.

  18. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. (United States)

    Yang, Darren; Pornpattananangkul, Dissaya; Nakatsuji, Teruaki; Chan, Michael; Carson, Dennis; Huang, Chun-Ming; Zhang, Liangfang


    This study evaluated the antimicrobial activity of lauric acid (LA) and its liposomal derivatives against Propionibacterium acnes (P. acnes), the bacterium that promotes inflammatory acne. First, the antimicrobial study of three free fatty acids (lauric acid, palmitic acid and oleic acid) demonstrated that LA gives the strongest bactericidal activity against P. acnes. However, a setback of using LA as a potential treatment for inflammatory acne is its poor water solubility. Then the LA was incorporated into a liposome formulation to aid its delivery to P. acnes. It was demonstrated that the antimicrobial activity of LA was not only well maintained in its liposomal derivatives but also enhanced at low LA concentration. In addition, the antimicrobial activity of LA-loaded liposomes (LipoLA) mainly depended on the LA loading concentration per single liposomes. Further study found that the LipoLA could fuse with the membranes of P. acnes and release the carried LA directly into the bacterial membranes, thereby killing the bacteria effectively. Since LA is a natural compound that is the main acid in coconut oil and also resides in human breast milk and liposomes have been successfully and widely applied as a drug delivery vehicle in the clinic, the LipoLA developed in this work holds great potential of becoming an innate, safe and effective therapeutic medication for acne vulgaris and other P. acnes associated diseases.

  19. The Role of Liposomal Bupivacaine in Value-Based Care. (United States)

    Iorio, Richard

    Multimodal pain control strategies are crucial in reducing opioid use and delivering effective pain management to facilitate improved surgical outcomes. The utility of liposomal bupivacaine in enabling effective pain control in multimodal strategies has been demonstrated in several studies, but others have found the value of liposomal bupivacaine in such approaches to be insignificant. At New York University Langone Medical Center, liposomal bupivacaine injection and femoral nerve block were compared in their delivery of efficacious and cost-effective multimodal analgesia among patients undergoing total joint arthroplasty (TJA). Retrospective analysis revealed that including liposomal bupivacaine in a multimodal pain control protocol for TJA resulted in improved quality and efficiency metrics, decreased narcotic use, and faster mobilization, all relative to femoral nerve block, and without a significant increase in admission costs. In addition, liposomal bupivacaine use was associated with elimination of the need for patient-controlled analgesia in TJA. Thus, at Langone Medical Center, the introduction of liposomal bupivacaine to TJA has been instrumental in achieving adequate pain control, delivering high-level quality of care, and controlling costs.

  20. Interaction of dipalmitoyl phosphatidylcholine (DPPC) liposomes and insulin (United States)

    Mady, Mohsen M.; Elshemey, Wael M.


    Insulin, a peptide that has been used for decades in the treatment of diabetes, has well-defined properties and delivery requirements. Liposomes, which are lipid bilayer vesicles, have gained increasing attention as drug carriers which reduce the toxicity and increase the pharmacological activity of various drugs. The molecular interaction between (uncharged lipid) dipalmitoyl phosphatidylcholine (DPPC) liposomes and insulin has been characterized by using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The characteristic protein absorption band peaks, Amide I (at about 1660 cm-1) and Amide II band (at about 1546 cm-1) are potentially reduced in the liposome insulin complex. Wide-angle x-ray scattering measurements showed that the association of insulin with DPPC lipid of liposomes still maintains the characteristic DPPC diffraction peaks with almost no change in relative intensities or change in peak positions. The absence of any shift in protein peak positions after insulin being associated with DPPC liposomes indicates that insulin is successfully forming complex with DPPC liposomes with possibly no pronounced alterations in the structure of insulin molecule.

  1. DNA repair, immunosuppression, and skin cancer. (United States)

    Yarosh, Daniel B


    UV radiation (UVR) produces erythema within the first 24 hours of exposure, suppression of the immune system within the first 10 days, and, for many people, over the course of decades, skin cancer. Although UVR damages many skin targets, DNA damage in the form of cyclobutane pyrimidine dimers (CPDs) is an important mediator of these sequelae. The action spectrum for erythema parallels the action spectrum for CPD formation in skin, and in the absence of repair, as in the genetic disease xeroderma pigmentosum (XP), skin cancer rates are dramatically increased. DNA repair in skin can be enhanced by the delivery of DNA repair enzymes encapsulated in liposomes. Used in this way, photoreactivation of CPDs greatly diminishes erythema and the suppression of contact hypersensitivity (CHS). UV endonucleases delivered by liposomes also prevent UV-induced suppression of delayed-type hypersensitivity. In a clinical study of patients with XP, T4 endonuclease V (T4N5) liposome lotion applied for one year reduced the rates of actinic keratosis (AK) and skin cancer compared with placebo. These results showed that strategies to increase sun protection should include measures to reduce DNA damage and increase the rate of DNA repair.

  2. Tablets of pre-liposomes govern in situ formation of liposomes: concept and potential of the novel drug delivery system. (United States)

    Vanić, Željka; Planinšek, Odon; Škalko-Basnet, Nataša; Tho, Ingunn


    The purpose of this study was to develop a novel drug delivery system for challenging drugs with potential for scale-up manufacturing and controlled release of incorporated drug. Pre-liposomes powder containing metronidazole, lecithin and mannitol, prepared by spray-drying, was mixed with different tableting excipients (microcrystalline cellulose, lactose monohydrate, mannitol, dibasic calcium phosphate, pregelatinized starch, pectin or chitosan) and compressed into tablets. The delivery system was characterized with respect to (i) dry powder characteristics, (ii) mechanical tablet properties and drug release, and (iii) liposomal characteristics. The pre-liposomes powder was free-flowing, and tablets of similarly high qualities as tablets made of physical mixtures were prepared with all excipients. Liposomes were formed in situ upon tablet disintegration, dissolution or erosion depending on the type of tablet excipient used. The liposomal characteristics and drug release were found to depend on the tablet excipient. The new delivery system offers a unique synergy between the ability of liposomes to encapsulate and protect drugs and increased stability provided by compressed formulations. It can be adjusted for drug administration via various routes, e.g. oral, buccal and vaginal.

  3. The combined effect of encapsulating curcumin and C6 ceramide in liposomal nanoparticles against osteosarcoma. (United States)

    Dhule, Santosh S; Penfornis, Patrice; He, Jibao; Harris, Michael R; Terry, Treniece; John, Vijay; Pochampally, Radhika


    This study examines the antitumor potential of curcumin and C6 ceramide (C6) against osteosarcoma (OS) cell lines when both are encapsulated in the bilayer of liposomal nanoparticles. Three liposomal formulations were prepared: curcumin liposomes, C6 liposomes and C6-curcumin liposomes. Curcumin in combination with C6 showed 1.5 times enhanced cytotoxic effect in the case of MG-63 and KHOS OS cell lines, in comparison with curcumin liposomes alone. Importantly, C6-curcumin liposomes were found to be less toxic on untransformed primary human cells (human mesenchymal stem cells) in comparison to OS cell lines. In addition, cell cycle assays on a KHOS cell line after treatment revealed that curcumin only liposomes induced G2/M arrest by upregulation of cyclin B1, while C6 only liposomes induced G1 arrest by downregulation of cyclin D1. C6-curcumin liposomes induced G2/M arrest and showed a combined effect in the expression levels of cyclin D1 and cyclin B1. The efficiency of the preparations was tested in vivo using a human osteosarcoma xenograft assay. Using pegylated liposomes to increase the plasma half-life and tagging with folate (FA) for targeted delivery in vivo, a significant reduction in tumor size was observed with C6-curcumin-FA liposomes. The encapsulation of two water insoluble drugs, curcumin and C6, in the lipid bilayer of liposomes enhances the cytotoxic effect and validates the potential of combined drug therapy.

  4. Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications. (United States)

    Rudokas, Mindaugas; Najlah, Mohammad; Alhnan, Mohamed Albed; Elhissi, Abdelbary


    This is a critical review on research conducted in the field of pulmonary delivery of liposomes. Issues relating to the mechanism of nebulisation and liposome composition were appraised and correlated with literature reports of liposome formulations used in clinical trials to understand the role of liposome size and composition on therapeutic outcome. A major highlight was liposome inhalation for the treatment of lung cancers. Many in vivo studies that explored the potential of liposomes as anticancer carrier systems were evaluated, including animal studies and clinical trials. Liposomes can entrap anticancer drugs and localise their action in the lung following pulmonary delivery. The safety of inhaled liposomes incorporating anticancer drugs depends on the anticancer agent used and the amount of drug delivered to the target cancer in the lung. The difficulty of efficient targeting of liposomal anticancer aerosols to the cancerous tissues within the lung may result in low doses reaching the target site. Overall, following the success of liposomes as inhalable carriers in the treatment of lung infections, it is expected that more focus from research and development will be given to designing inhalable liposome carriers for the treatment of other lung diseases, including pulmonary cancers. The successful development of anticancer liposomes for inhalation may depend on the future development of effective aerosolisation devices and better targeted liposomes to maximise the benefit of therapy and reduce the potential for local and systemic adverse effects.

  5. The application of polymer-mediated plasmid DNA transit systems in bone tissue engineering%聚合物介导质粒DNA转运系统在骨组织工程中的应用

    Institute of Scientific and Technical Information of China (English)

    夏伦果; 蒋欣泉; 张志愿


    Gene therapy can further promote osteogenesis in bone tissue engineering. By protecting DNA from degradation and maintaining the concentration of DNA effectively, polymer-mediated plasmid DNA transit systems could extend its endocytosis opportunities and enhance the efficiency of gene transfer. At present, polymer-mediated plasmid DNA transit systems used for bone tissue engineering mainly include plasmid DNA and collagen protein composite transit system, plasmid DNA and polyethylene glycol hyaluronic acid hydroge composite transit system, plasmid DNA and liposome composite transit system, plasmid DNA and cationic polymer composite transit systems. This review focuses on the present status of application of polymer-mediated plasmid DNA transit systems.%基因治疗技术应用于骨组织工程,可以进一步促进成骨.聚合物介导的质粒DNA转运系统通过保护DNA免受降解并维持DNA在效应浓度,延长其内吞的机会,从而提高基因转染效率.目前用于骨组织工程研究的聚合物介导的质粒DNA转运系统主要有质粒DNA与胶原蛋白复合转运系统、质粒DNA与聚乙二醇-透明质酸水凝胶复合转运系统、质粒DNA与脂质体复合转运系统、质粒DNA与阳离子聚合物复合转运系统等.本文对近年来聚合物介导的质粒DNA复合转运系统在骨组织工程中的应用进展做一综述.

  6. Preparation of Trojan horse liposomes (THLs) for gene transfer across the blood-brain barrier. (United States)

    Pardridge, William M


    Nonviral plasmid DNA is delivered to the brain via a transvascular route across the blood-brain barrier (BBB) following intravenous administration of DNA encapsulated within Trojan horse liposomes (THLs), also called PEGylated immunoliposomes (PILs). The liposome surface is covered with several thousand strands of polymer (e.g., polyethylene glycol [PEG]), and the tips of 1%-2% of the polymer strands are conjugated with a targeting monoclonal antibody that acts as a molecular Trojan horse (MTH). The MTH binds to a receptor (e.g., for transferrin or insulin) on the BBB and brain cell membrane, triggering receptor-mediated transcytosis of the THL across the BBB in vivo, and receptor-mediated endocytosis into brain cells beyond the BBB. The persistence of transgene expression in the brain is inversely related to the rate of degradation of the episomal plasmid DNA. THL technology enables an exogenous gene to be widely expressed in the majority of cells in adult brain (or other organs) within 1 d of a single intravenous administration. Applications of the THLs include tissue-specific gene expression with tissue-specific promoters, complete normalization of striatal tyrosine hydroxylase in experimental Parkinson's disease following intravenous tyrosine hydroxylase gene therapy, a 100% increase in survival time of mice with brain tumors following weekly intravenous antisense gene therapy using THLs, and a 90% increase in survival time with weekly intravenous RNA interference (RNAi) gene therapy in mice with intracranial brain tumors. This protocol describes the preparation of THLs for use in gene transfer in vitro or in vivo.

  7. Tissue distribution of radiolabeled phosphatidylserine-containing liposome in mice

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta E.T.; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Biotecnologia], e-mail:, e-mail:; Andrade Junior, Heitor F. de [Instituto de Medicina Tropical de Sao Paulo (IMTSP), Sao Paulo, SP (Brazil)], e-mail:; Osso Junior, Joao A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Radiofarmacia], e-mail:


    Liposomes are used as drug delivery systems to modify pharmacokinetic of drugs and also to improve their action in target cells. Liposomes containing phosphatidylserine are efficiently eliminated from the blood by cells of the mononuclear phagocytic system (MPS), predominantly Kupffer cells in the liver. In this way, this is a valuable approach to treat infectious diseases involving MPS, especially leishmaniasis. Leishmaniasis is a severe parasitic disease, caused by intramacrophage protozoa Leishmania sp., and is fatal if left untreated. Leishmania resides mainly in the liver and the spleen. Antileishmanial agents containing-liposomes showed more effective therapies with reduction of toxicity and adverse side effects. The purpose of this study was to investigate the tissue distribution of radioactive meglumine antimoniate encapsulated in phosphatidylserine-containing liposome. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor to produce antimony radiotracers, {sup 122}Sb and {sup 124}Sb, and encapsulated in liposome. Healthy mice received a single intraperitoneal dose of the radiolabeled drug. Analysis of the mean radioactive tissue concentration-time data curves showed that liver and spleen had the highest levels of radioactivity. In addition these levels of drug remained for more than 48 hours. The dominant route of elimination was via biliary excretion with slow rate. Small fraction of the drug was found in the kidneys with very fast elimination. In conclusion, the phosphatidylserine-containing liposome showed to be a very useful tool to target antileishmanial agents to MPS and to sustain the drug levels for longer times. Besides, radiolabeled liposome is the easiest approach to perform biodistribution evaluation. (author)

  8. Use of liposomal amphotericin B in bone marrow transplant.

    Directory of Open Access Journals (Sweden)

    Sastry P. S


    Full Text Available Increasing number of transplants worldwide has resulted in an increase in the incidence of fungal infections. Prolonged neutropenia, immunosuppression and graft vs. host disease all result in high predisposition to fungal infections. The likelihood of developing a fungal infection increases with the severity and duration of neutropenia, which, in the case of cancer or chemotherapy for the treatment of hematological malignancies, can range from a few days to several weeks. Invasive fungal infections are difficult to diagnose and neutropenic patients with fever often receive empirical antifungal therapy. This provides a rationale for the prophylactic use of antifungal agents. The empirical use of liposomal amphotericin B has overcome some of the difficulties usually found in this setting. The majority of clinical efficacy data related to liposomal amphotericin B are derived from compassionate use studies and case series. The major advantage of these liposomal formulations of amphotericin B is a reduction in amphotercin toxicity. Use of liposomal amphotericin has been shown to be a cost-effective approach abroad and the same has been our experience also. Commercially ambisome and Fungisome are the only products that contain true liposomes. Unlike ambisome, which needs to be used in dose of 3 mg/kg/day FungisomeTM is effective in the dose of 1-3 mg/kg bodyweight. The Indian liposomal preparation has shown to be safe and effective used in over 150 transplant patients in our experience. We conclude that the liposomal amphotericin is better-tolerated and also gives better responses in documented fungal infections.

  9. Liposomal formulations of amphotericin B: differences according to the scientific evidence. (United States)

    Azanza, José Ramón; Sádada, Belén; Reis, Joana


    This article presents an overview of the characteristics of liposomes as drug carriers, particularly in relation to liposomal formulations of amphotericin B. General features regarding structure, liposome-cell interactions, stability, encapsulation of active substances and elimination of liposomes are described. Up to the present time extensive efforts to produce similar or bioequivalent products of amphotericin B formulations, in particular in the case of liposomal amphotericin B, have been unsuccessful in spite of having a very similar composition and even an apparently identical manufacturing process. Guidelines for the development of generic liposomal formulations developed by the FDA and EMA are also summarized. Based on the available evidence of the composition of liposomes, any differences in the manufacturing process even if the same lipid composition is used may result in different final products. Therefore, it seems unreasonable to infer that all amphotericin B liposomal formulations are equal in efficacy and safety.

  10. Enhanced combination therapy effect on paclitaxel-resistant carcinoma by chloroquine co-delivery via liposomes. (United States)

    Gao, Menghua; Xu, Yuzhen; Qiu, Liyan


    A novel composite liposomal system co-encapsulating paclitaxel (PTX) with chloroquine phosphate (CQ) was designed for treating PTX-resistant carcinoma. It was confirmed that liposomal CQ can sensitize PTX by means of autophagy inhibition and competitively binding with multidrug-resistance transporters. Furthermore, according to the in vitro cytotoxicity and apoptosis assay, real-time observation of cellular uptake, and in vivo tissue distribution study, co-encapsulation of PTX and CQ in liposomes was validated as superior to the mixture of PTX liposome plus CQ liposome due to the simultaneous delivery and synergetic effect of the two drugs. Consequently, this composite liposome achieved significantly stronger anticancer efficacy in vivo than the PTX liposome plus CQ liposome mixture. This study helps to guide and enlighten ongoing and future clinical trials about the optimal administration modes for drug combination therapy.

  11. Liposome-encapsulated aminoglycosides in pre-clinical and clinical studies

    NARCIS (Netherlands)

    R.M. Schiffelers (Raymond); G. Storm (Gert); I.A.J.M. Bakker-Woudenberg (Irma)


    textabstractLiposome-encapsulated amikacin has recently entered clinical trials. The rationale for liposome encapsulation of aminoglycosides is the possibility to increase the therapeutic index of this class of antibiotics by increasing aminoglycoside concentrations at the site of

  12. Preparation and evaluation of cyclodextrin polypseudorotaxane with PEGylated liposome as a sustained release drug carrier

    Directory of Open Access Journals (Sweden)

    Kayoko Hayashida


    Full Text Available Cyclodextrins (CDs can form polypseudorotaxanes (PPRXs with drugs or drug carriers possessing linear polymers such as polyethylene glycol (PEG. On the other hand, PEGylated liposomes have been utilized as a representative anticancer drug carrier. However, little is known about the formation of CD PPRX with PEGylated liposome. In the present study, we first report the formation of CD PPRX with PEGylated liposome and evaluate it as a sustained release drug carrier. PEGylated liposome encapsulating doxorubicin was disrupted by the addition of α-CD. Meanwhile, γ-CD included two PEG chains and/or one bending PEG chain of PEGylated liposome and formed PPRX without the disruption of the membrane integrity of the PEGylated liposome. Moreover, the release of doxorubicin and/or PEGylated liposome encapsulating doxorubicin from the PPRX was prolonged in accordance with the matrix type release mechanism. These findings suggest the potential of γ-CD PPRX as sustained release carriers for PEGylated liposome products.

  13. Exploring the fate of liposomes in the intestine by dynamic in vitro lipolysis

    DEFF Research Database (Denmark)

    Parmentier, Johannes; Thomas, Nicky; Müllertz, Anette


    , a dynamic in vitro lipolysis model, which so far has only been used for the in vitro characterisation of other lipid-based drug delivery systems, was applied to different liposomal formulations. Liposome size and phospholipid (PL) digestion were determined as two markers for liposome stability. In addition......Liposomes are generally well tolerated drug delivery systems with a potential use for the oral route. However, little is known about the fate of liposomes during exposure to the conditions in the gastro-intestinal tract (GIT). To gain a better understanding of liposome stability in the intestine...... of aggregates of around 1µm in diameter was observed over time. After 60min lipolysis more than 80% of PLs of the SPC-liposomes were digested, but dependent on the liposome concentration only a slight change in size and size distribution could be observed. Although EPC-3 formulations did form aggregates during...

  14. New synthetic amphiphilic polymers for steric protection of liposomes in vivo. (United States)

    Torchilin, V P; Trubetskoy, V S; Whiteman, K R; Caliceti, P; Ferruti, P; Veronese, F M


    Carboxy group-terminated synthetic polymers--branched poly(ethylene glycol), poly(acryloylmorpholine), and poly(vinylpyrrolidone)--were made amphiphilic by derivatization with phosphatidyl ethanolamine via the terminal carboxy group and then incorporated into lecithin-cholesterol liposomes prepared by the detergent dialysis method. Following the biodistribution of liposomes in mice, all three polymers were shown to be effective steric protectors for liposomes and were able to sharply increase liposome circulation times in a concentration-dependent manner. The accumulation of liposomes in the liver decreases. The effects observed are similar to those found for liposomes modified with linear poly(ethylene glycol). At low polymer concentration, amphiphilic branched poly(ethylene glycol) seems to be the most effective liposome protector, most probably, because at the same molar content of anchoring groups, each attachment point carries two polymeric chains and doubles the quantity of liposome-grafted polymer comparing to linear poly(ethylene glycol).

  15. 涂覆承载质粒DNA水凝胶的覆膜血管内支架置入主动脉局部基因转染的实验研究%Gene delivery of plasmid DNA to rabbit aorta by genetic engineering of cationized gelatin hydrogel coated partially covered endovascular stent graft

    Institute of Scientific and Technical Information of China (English)

    钟红珊; 徐克; 刘屹; 松井 修


    Objective To genetically engineer endovascular stent grafts that facilitate plasmid DNA delivery and offer the promise ofcular delivery system of therapeutic materials. Methods Partially covered polyester stent-grafts coated with cationized gelatin hydrogels (CGH) containing pCAGGS-LacZ or pEGFP were implanted in the descending aorta of 8 rabbits, which had neointima due to balloon injury four weeks ago. The aorta with stent-graft containing pCAGGS-LacZ and the one containing pEGFP was taken as negative control for each other. Expression of the plasmid-encoded marker genes, (3-galactosidase and enhanced green fluorescence protein (EGFP) were evaluated at 3 days after implantations by X-Gal staining and RT-PCR or fluorescence microscopy. Results Local plasmid DNA transfer was confined to the vessel wall at the site of stent-graft implantation, especially where the graft was compressed firmly to the vessel by metal struts. Plasmid DNA was not detected in vessel segments immediately proximal or distal to the stent graft and dissemination of plasmid DNA to brain, heart, lung, liver or kidney was not observed. The (3-galactosidase-expressed cells were identified as endothelial cells, and smooth muscle cells by pathological analysis. Fluorescence microscopy identified the EGFP expression which demonstrated the transgene delivery of plasmid DNA and it was not related to the plasmid-encoded marker genes. No signal was detected in the aorta of the rabbits that received cationized gelatin hydrogels coated stent-grafts without plasmid DNA. Conclusions Cationized gelatin hydrogels coated partially covered stent grafts provide a new access for transgene delivery to the cells of aortic wall.%目的 用部分覆膜血管内支架涂覆阳离子胶原水凝胶(CGH)承载质粒DNA实现主动脉局部的基因转染,为核酸等大分子治疗物质经血管导入提供理论依据.方法 将CGH涂覆于部分覆膜血管内支架的覆膜织物上,以CGH涂层分别承载2种质

  16. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)


    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.

  17. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    CHENG JiaGao; LUO XiaoMin; YAN XiuHua; LI Zhong; TANG Yun; JIANG HuaLiang; ZHU WeiLiang


    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system, which has been viewed as a new kind of binding force, as being compared with the classical interac-tions (e.g. hydrogen bonding, electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper, we present an overview of the typi-cal cation-π interactions in biological systems, the experimental and theoretical investigations on cation-π interactions, as well as the research results on cation-π interactions in our group.


    Institute of Scientific and Technical Information of China (English)

    Sun Yanping; Cao Xuetao; Wang Quanxing; Wang Yuanhe; Shi Jinghua


    In order to investigate the antitumor effects of the in vivo G-CSF gene therapy mediated by liposome and its mechanisms, human G-CSF gene was encapsulated into liposome and was directly injected into tumor mass of C26 colon adenocarcinoma-bearing mice. After direct intratumoral injection of liposome encapsulated G-CSF DNA, the subcutaneous tumor growth was dramatically inhibited and the survival time was prolonged significantly. Tumor regression could be observed in about 30%of C-26-bearing mice. By the analysis of the antitumor mechanisms, we found that anti-G41s (600ug/ml) clone could be selected from the tumor cells freshly separated from the treated C-26 tumor mass, and secretion of GCSF in the supernatant could be detected. Northern-blot also confirmed the expression of hG-CSF by the tumor cells. Higher expressions of MHC class I(H-2kd) molecule and ICAM-1 on the tumor cells could be observed. The results demonstrated that liposome can effectively transfect G-CSF gene into tumor cellsin situ, and then increase the immunogenicity of the tumor cells which may contribute to the activation of the local antitumor immune responses effectively.

  19. In vivo and in vitro evaluation of octyl methoxycinnamate liposomes

    Directory of Open Access Journals (Sweden)

    de Carvalho Varjão Mota A


    Full Text Available Aline de Carvalho Varjão Mota,1 Zaida Maria Faria de Freitas,1 Eduardo Ricci Júnior,1 Gisela Maria Dellamora-Ortiz,1 Ralph Santos-Oliveira,2 Rafael Antonio Ozzetti,3 André Luiz Vergnanini,3 Vanessa Lira Ribeiro,4 Ronald Santos Silva,4 Elisabete Pereira dos Santos11Faculty of Pharmacy, Federal University of Rio de Janeiro, 2Nuclear Engineering Institute, National Nuclear Energy Commission, 3Allergisa Dermatocosmetic Research, University of Campinas, São Paulo, 4Pharmacology and Toxicology Department, National Insitute of Quality Control in Health, Oswaldo Cruz Foundation, Rio de Janeiro, BrazilAbstract: Solar radiation causes damage to human skin, and photoprotection is the main way to prevent these harmful effects. The development of sunscreen formulations containing nanosystems is of great interest in the pharmaceutical and cosmetic industries because of the many potential benefits. This study aimed to develop and evaluate an octyl methoxycinnamate (OMC liposomal nanosystem (liposome/OMC to obtain a sunscreen formulation with improved safety and efficacy by retaining OMC for longer on the stratum corneum.Methods: The liposome/OMC nanostructure obtained was tested for enzymatic hydrolysis with lipase from Rhizomucor miehei and biodistribution with liposomes labeled with technetium-99m. The liposome/OMC formulation was then incorporated in a gel formulation and tested for ocular irritation using the hen’s egg test-chorio-allantoic membrane (HET-CAM assay, in vitro and in vivo sun protection factor, in vitro release profile, skin biometrics, and in vivo tape stripping.Results: The liposome/OMC nanosystem was not hydrolyzed from R. miehei by lipase. In the biodistribution assay, the liposome/OMC formulation labeled with technetium-99m had mainly deposited in the skin, while for OMC the main organ was the liver, showing that the liposome had higher affinity for the skin than OMC. The liposome/OMC formulation was classified as nonirritating in

  20. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin. (United States)

    Jin, Hong-Hao; Lu, Qun; Jiang, Jian-Guo


    Using thin film ultrasonic dispersion method, the curcumin liposomes were prepared with milk fat globule membrane (MFGM) phospholipids and soybean lecithins, respectively, to compare the characteristics and stability of the 2 curcumin liposomes. The processing parameters of curcumin liposomes were investigated to evaluate their effects on the encapsulation efficiency. Curcumin liposomes were characterized in terms of size distribution, ζ-potential, and in vitro release behavior, and then their storage stability under various conditions was evaluated. The curcumin liposomes prepared with MFGM phospholipids had an encapsulation efficiency of about 74%, an average particle size of 212.3 nm, and a ζ-potential of -48.60 mV. The MFGM liposomes showed higher encapsulation efficiency, smaller particle size, higher absolute value of ζ-potential, and slower in vitro release than soybean liposomes. The retention rate of liposomal curcumin was significantly higher than that of free curcumin. The stability of the 2 liposomes under different pH was almost the same, but MFGM liposomes displayed a slightly higher stability than soybean liposomes under the conditions of Fe(3+), light, temperature, oxygen, and relative humidity. In conclusion, MFGM phospholipids have potential advantages in the manufacture of curcumin liposomes used in food systems.

  1. Enhanced oral absorption of insulin-loaded liposomes containing bile salts: a mechanistic study. (United States)

    Niu, Mengmeng; Tan, Ya'nan; Guan, Peipei; Hovgaard, Lars; Lu, Yi; Qi, Jianping; Lian, Ruyue; Li, Xiaoyang; Wu, Wei


    Liposomes containing bile salts (BS-liposomes) significantly enhanced the oral bioavailability of insulin (rhINS). However, the underlying absorption mechanisms have not been well understood yet. In this study, the transiting fate of the liposomes was first investigated using fluorescent imaging tools to confirm the effect of enhanced gastrointestinal stability. In order to obtain evidence of enhanced transcellular permeation, the interaction between BS-liposomes and the biomembrane was investigated in Caco-2 cell lines. BS-liposomes were found to be more stable in the gastrointestinal tract by showing prolonged residence time in comparison with conventional liposomes. BS-liposomes were significantly more effective for cellular uptake and transport of rhINS; and this effect was found to be size- and concentration-dependent. A good linear correlation was observed between the concentration of the liposomes and uptake/transport of rhINS. Confocal laser scanning microscopy visualization further validated the transcellular transit of BS-liposomes. The BS-liposomes showed little effect on cytotoxicity and did not induce apoptosis within 24h investigation. It was concluded that BS-liposomes showed improved in vivo residence time and enhanced permeation across the biomemebranes. Mechanisms of trans-enterocytic internalization could be proposed as an interpretation for enhanced absorption of insulin-loaded liposomes.

  2. Interaction of targeted liposomes with primary cultured hepatic stellate cells : Involvement of multiple receptor systems

    NARCIS (Netherlands)

    Adrian, Joanna Ewa; Poelstra, Klaas; Scherphof, Gerrit; Molema, Ingrid; Meijer, D.K F; Reker-Smit, Catharina; Morselt, Henriette; Kamps, Jan


    Background/Aims: In designing a versatile liposomal drug carrier to hepatic stellate cells (HSC), the interaction of mannose 6-phosphate human serum albumin (M6P-HSA) liposomes with cultured cells was studied. Methods: M6P-HSA was covalently coupled to the liposomal surface and the uptake and bindin

  3. Liposomes : Vehicles for the targeted and controlled delivery of peptides and proteins

    NARCIS (Netherlands)

    Crommelin, DJA; Daemen, T; Scherphof, GL; Vingerhoeds, MH; Heeremans, JLM; Kluft, C; Storm, G


    Several approaches are presented that have been developed for the liposomal delivery of peptides and proteins. For a rational design of targeted liposomes, the anatomical and physiological constraints with respect to the distribution of liposomes in the body have to be taken into account. Target sit

  4. Poly(amino acid)s: next-generation coatings for long-circulating liposomes

    NARCIS (Netherlands)

    Romberg, B.


    Incorporation of a lipid conjugate of a water-soluble polymer into liposomes can reduce the adhesion of plasma proteins that would otherwise cause rapid recognition and removal of the liposomes by phagocytes. Such polymer-coated liposomes show prolonged circulation property and passive targeting to

  5. Liposomal phosphatidylserine inhibits tumor cytotoxicity of liver macrophages induced by muramyl dipeptide and lipopolysaccharide

    NARCIS (Netherlands)

    Daemen, T; Regts, J; Scherphof, GL


    Liposomes can very efficiently deliver immunomodulators to macrophages so as to induce tumor cytotoxicity. Liposomes most widely used for that purpose contain negatively charged lipids, in particular phosphatidylserine (PS), to enhance liposome uptake by the macrophages. We investigated the effect o

  6. A stimuli responsive liposome loaded hydrogel provides flexible on-demand release of therapeutic agents

    NARCIS (Netherlands)

    O'Neill, Hugh S.; Herron, Caroline C.; Hastings, Conn L.; Deckers, Roel; Lopez Noriega, Adolfo; Kelly, Helena M.; Hennink, Wim E.; McDonnell, Ciarán O.; O'Brien, Fergal J.; Ruiz-Hernández, Eduardo; Duffy, Garry P.


    Lysolipid-based thermosensitive liposomes (LTSL) embedded in a chitosan-based thermoresponsive hydrogel matrix (denoted Lipogel) represents a novel approach for the spatiotemporal release of therapeutic agents. The entrapment of drug-loaded liposomes in an injectable hydrogel permits local liposome

  7. Liposomal Drug Product Development and Quality: Current US Experience and Perspective. (United States)

    Kapoor, Mamta; Lee, Sau L; Tyner, Katherine M


    Research in the area of liposomes has grown substantially in the past few decades. Liposomes are lipid bilayer structures that can incorporate drug substances to modify the drug's pharmacokinetic profile thereby improving drug delivery. The agency has received over 400 liposomal drug product submissions (excluding combination therapies), and there are currently eight approved liposomal drug products on the US market. In order to identify the pain points in development and manufacturing of liposomal drug products, a retrospective analysis was performed from a quality perspective on submissions for new and generic liposomal drug products. General analysis on liposomal drug product submissions was also performed. Results indicated that 96% of the submissions were Investigational New Drug (IND) applications, 3% were New Drug Applications (NDAs), and the remaining 1% was Abbreviated New Drug Applications (ANDAs). Doxorubicin hydrochloride was the most commonly used drug substance incorporated into the liposomes (31%). The majority of the liposomal products were administered via intravenous route (84%) with cancer (various types) being the most common indication (63%). From a quality perspective, major challenges during the development of liposomal drug products included identification and (appropriate) characterization of critical quality attributes of liposomal drug products and suitable control strategies during product development. By focusing on these areas, a faster and more efficient development of liposomal drug products may be achieved. Additionally, in this way, the drug review process for such products can be streamlined.

  8. Liposomes as drug deposits in multilayered polymer films. (United States)

    Lynge, Martin E; Laursen, Marie Baekgaard; Hosta-Rigau, Leticia; Jensen, Bettina E B; Ogaki, Ryosuke; Smith, Anton A A; Zelikin, Alexander N; Städler, Brigitte


    The ex vivo growth of implantable hepatic or cardiac tissue remains a challenge and novel approaches are highly sought after. We report an approach to use liposomes embedded within multilayered films as drug deposits to deliver active cargo to adherent cells. We verify and characterize the assembly of poly(l-lysine) (PLL)/alginate, PLL/poly(l-glutamic acid), PLL/poly(methacrylic acid) (PMA), and PLL/cholesterol-modified PMA (PMAc) films, and assess the myoblast and hepatocyte adhesion to these coatings using different numbers of polyelectrolyte layers. The assembly of liposome-containing multilayered coatings is monitored by QCM-D, and the films are visualized using microscopy. The myoblast and hepatocyte adhesion to these films using PLL/PMAc or poly(styrenesulfonate) (PSS)/poly(allyl amine hydrochloride) (PAH) as capping layers is evaluated. Finally, the uptake of fluorescent lipids from the surface by these cells is demonstrated and compared. The activity of this liposome-containing coating is confirmed for both cell lines by trapping the small cytotoxic compound thiocoraline within the liposomes. It is shown that the biological response depends on the number of capping layers, and is different for the two cell lines when the compound is delivered from the surface, while it is similar when administered from solution. Taken together, we demonstrate the potential of liposomes as drug deposits in multilayered films for surface-mediated drug delivery.

  9. Development and Characterization of Liposomal Doxorubicin Hydrochloride with Palm Oil

    Directory of Open Access Journals (Sweden)

    Bahareh Sabeti


    Full Text Available The usage of natural products in pharmaceuticals has steadily seen improvements over the last decade, and this study focuses on the utilization of palm oil in formulating liposomal doxorubicin (Dox. The liposomal form of Dox generally minimizes toxicity and enhances target delivery actions. Taking into account the antiproliferative and antioxidant properties of palm oil, the aim of this study is to design and characterize a new liposomal Dox by replacing phosphatidylcholine with 5% and 10% palm oil content. Liposomes were formed using the freeze_thaw method, and Dox was loaded through pH gradient technique and characterized through in vitro and ex vivo terms. Based on TEM images, large lamellar vesicles (LUV were formed, with sizes of 438 and 453 nm, having polydispersity index of 0.21 ± 0.8 and 0.22 ± 1.3 and zeta potentials of about −31 and −32 mV, respectively. In both formulations, the entrapment efficiency was about 99%, and whole Dox was released through 96 hours in PBS (pH = 7.4 at 37°C. Comparing cytotoxicity and cellular uptake of LUV with CaelyxR on MCF7 and MDA-MBA 231 breast cancer cell lines indicated suitable uptake and lower IC50 of the prepared liposomes.

  10. Development and characterization of liposomal doxorubicin hydrochloride with palm oil. (United States)

    Sabeti, Bahareh; Noordin, Mohamed Ibrahim; Mohd, Shaharuddin; Hashim, Rosnani; Dahlan, Afendi; Javar, Hamid Akbari


    The usage of natural products in pharmaceuticals has steadily seen improvements over the last decade, and this study focuses on the utilization of palm oil in formulating liposomal doxorubicin (Dox). The liposomal form of Dox generally minimizes toxicity and enhances target delivery actions. Taking into account the antiproliferative and antioxidant properties of palm oil, the aim of this study is to design and characterize a new liposomal Dox by replacing phosphatidylcholine with 5% and 10% palm oil content. Liposomes were formed using the freeze_thaw method, and Dox was loaded through pH gradient technique and characterized through in vitro and ex vivo terms. Based on TEM images, large lamellar vesicles (LUV) were formed, with sizes of 438 and 453 nm, having polydispersity index of 0.21 ± 0.8 and 0.22 ± 1.3 and zeta potentials of about -31 and -32 mV, respectively. In both formulations, the entrapment efficiency was about 99%, and whole Dox was released through 96 hours in PBS (pH = 7.4) at 37°C. Comparing cytotoxicity and cellular uptake of LUV with Caelyx(R) on MCF7 and MDA-MBA 231 breast cancer cell lines indicated suitable uptake and lower IC50 of the prepared liposomes.

  11. Composition Influence on Pulmonary Delivery of Rifampicin Liposomes

    Directory of Open Access Journals (Sweden)

    Maria Letizia Manca


    Full Text Available The effects of lipid concentration and composition on the physicochemical properties, aerosol performance and in vitro toxicity activity of several rifampicin-loaded liposomes were investigated. To this purpose, six liposome formulations containing different amounts of soy phosphatidylcholine and hydrogenated soy phosphatidylcholine, with and without cholesterol and oleic acid, were prepared and fully characterized. Uni- or oligo-lamellar, small (~100 nm, negatively charged (~60 mV vesicles were obtained. Lipid composition affected aerosol delivery features of liposomal rifampicin; in particular, the highest phospholipid concentration led to a better packing of the vesicular bilayers with a consequent higher nebulization stability. The retention of drug in nebulized vesicles (NER% was higher for oleic acid containing vesicles (55% ± 1.4% than for the other samples (~47%. A549 cells were used to evaluate intracellular drug uptake and in vitro toxicity activity of rifampicin-loaded liposomes in comparison with the free drug. Cell toxicity was more evident when oleic acid containing liposomes were used.

  12. Vincristine sulfate liposomal injection for acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Soosay Raj TA


    Full Text Available Trisha A Soosay Raj,1 Amanda M Smith,2 Andrew S Moore,1,21Royal Children's Hospital, Children's Health Queensland Hospital and Health Service, Brisbane, Queensland, Australia; 2Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, QLD, AustraliaAbstract: Vincristine (VCR is one of the most extensively used cytotoxic compounds in hemato-oncology. VCR is particularly important for the treatment of acute lymphoblastic leukemia (ALL, a disease that accounts for approximately one-third of all childhood cancer diagnoses. VCR's full therapeutic potential has been limited by dose-limiting neurotoxicity, classically resulting in autonomic and peripheral sensory–motor neuropathy. In the last decade, however, the discovery that liposomal encapsulation of chemotherapeutics can modulate the pharmacokinetic characteristics of a compound has stimulated much interest in liposomal VCR (vincristine sulfate liposomal injection [VSLI] formulations for the treatment of ALL and other hematological malignancies. Promising data from recent clinical trials investigating VSLI in adults with ALL resulted in US Food and Drug Administration approval for use in patients with Philadelphia chromosome (t[9;22]/BCR–ABL1 (Ph-negative (Ph- disease. Additional clinical trials of VSLI in adults and children with both Ph-positive (Ph+ and Ph- ALL are ongoing. Here we review the preclinical and clinical experience to date with VSLI for ALL.Keywords: vincristine sulfate liposomal injection, liposomes, sphingosomal vincristine, acute lymphoblastic leukemia, chemotherapy

  13. Application of Liposomes in Treatment of Rheumatoid Arthritis: Quo Vadis

    Directory of Open Access Journals (Sweden)

    Bhupinder Kapoor


    Full Text Available The most common treatments for rheumatoid arthritis include nonsteroidal anti-inflammatory drugs (NSAIDs, corticosteroids, disease modifying antirheumatic drugs (DMARDs, and some biological agents. However, none of the treatments available is able to achieve the ultimate goal of treatment, that is, drug-free remission. This limitation has shifted the focus of treatment to delivery strategies with an ability to deliver the drugs into the synovial cavity in the proper dosage while mitigating side effects to other tissues. A number of approaches like microemulsions, microspheres, liposomes, microballoons, cocrystals, nanoemulsions, dendrimers, microsponges, and so forth, have been used for intrasynovial delivery of these drugs. Amongst these, liposomes have proven to be very effective for retaining the drug in the synovial cavity by virtue of their size and chemical composition. The fast clearance of intra-synovially administered drugs can be overcome by use of liposomes leading to increased uptake of drugs by the target synovial cells, which in turn reduces the exposure of nontarget sites and eliminates most of the undesirable effects associated with therapy. This review focuses on the use of liposomes in treatment of rheumatoid arthritis and summarizes data relating to the liposome formulations of various drugs. It also discusses emerging trends of this promising technology.


    Directory of Open Access Journals (Sweden)

    M. Yasmin Begum


    Full Text Available CLX (celecoxib is a highly hydrophobic non-steroidal anti-inflammatory drug with high plasma protein binding. We describe here the encapsulation of CLX in MLVs composed of SPC and variable amounts of cholesterol. The influence of drug – lipid ratio was studied and amount of the drug could be encapsulated was optimized. The effect of cholesterol and other process parameters were studied to obtain the liposomal vesicles with desired quality. All the prepared formulations were characterized for their physico chemical properties such as appearance, vesicle size, vesicle size distribution and percentage drug entrapment. Stability of the liposomes in terms of their drug leakage and drug retention behaviour was studied by storing the liposomal formulations under different conditions for the period of 30 days. The optimized formulation parameters and process parameters resulted the liposomes with mean vesicle diameter of 4.81μ. The maximum percentage drug entrapment was achieved with the formulation CL3 which contains the drug – lipid ratio of 1:10%W/W and the percentage drug entrapment is equal to 72.33±0.64 (%. In vitro release data showed that release profile follows zero order kinetics. Celecoxib liposomes with good stability and appreciable controlled drug release with good retention of the drug even after 24 hours were prepared successfully.

  15. Carriers for skin delivery of trihexyphenidyl HCl: ethosomes vs. liposomes. (United States)

    Dayan, N; Touitou, E


    The purpose of this work was to characterize a novel ethosomal carrier containing trihexyphenidyl HCl (THP) and to investigate the delivery of THP from ethosomes versus classic liposomes. THP-ethosomal systems were shown by electron microscopy to contain small, phospholipid vesicles. As the THP concentration was increased from 0 to 3%, the size of the vesicles decreased from 154 to 90 nm. This is most likely due to the surface activity of THP (critical micelle concentration of 5.9 mg/ml), as measured in this work. In addition, the ethosome zeta potential value increased as a function of THP concentration, from -4.5 to +10.4 when the THP concentration was increased from 0 to 3%. In contrast, THP liposomes were much larger and their charge was not affected by THP. When compared with standard liposomes, ethosomes had a higher entrapment capacity and a greater ability to deliver entrapped fluorescent probe to the deeper layers of skin. The flux of THP through nude mouse skin from THP ethosomes (0.21 mg/cm2 h) was 87, 51 and 4.5 times higher than from liposomes, phosphate buffer and hydroethanolic solution, respectively (p ethosomal system than from liposomes or a control hydroethanolic solution. Our results indicate that the ethosomal THP system may be a promising candidate for transdermal delivery of THP.

  16. Liposomes- and ethosomes-associated distamycins: a comparative study. (United States)

    Cortesi, Rita; Romagnoli, Romeo; Drechsler, Markus; Menegatti, Enea; Zaid, Abdel N; Ravani, Laura; Esposito, Elisabetta


    The present article describes a comparative study of the performances of liposomes and ethosomes as specialized delivery systems for distamycin A (DA) and two of its derivatives. Liposomes and ethosomes were prepared by classical methods, extruded through polycarbonate filters, and characterized in terms of dimensions, morphology, and encapsulation efficiency. It was found that DA was associated with vesicles (either liposomes or ethosomes) by around 16.0%, while both derivatives of DA showed a percentage of association around 80% in the case of liposomes and around 50% in the case of ethosomes. In vitro antiproliferative activity experiments performed on cultured human and mouse leukemic cells demonstrated that vesicles were able to increase the activity of both derivatives of DA. In addition, it was demonstrated that the aging of both liposomes- and ethosomes-associated distamycin suspensions did not heavily influence the vesicle size, while all samples showed a relevant drug leakage with time. Moreover, according to the different physicochemical characteristics of DA and its derivatives (i.e., log P), vesicle-associated DA showed the highest loss of drug with respect to both its derivatives. In conclusion, the enhancement of drug activity expressed by these specialized delivery systems-associated DD could be interesting to obtain an efficient therapeutic effect aimed at reducing or minimizing toxic effects occurring with distamycins administration.

  17. Phase II study of SPI-77 (sterically stabilised liposomal cisplatin) in advanced non-small-cell lung cancer


    White, S. C.; Lorigan, P; MARGISON, G. P.; Margison, J M; Martin, F.; Thatcher, N.; Anderson, H; Ranson, M.


    To determine the efficacy and tolerability of SPI-77 (sterically stabilised liposomal cisplatin) at three dose levels in patients with advanced non-small-cell lung cancer (NSCLC). Patients had Stage IIIB or IV NSCLC and were chemo-naïve, and Eastern Oncology Cooperative Group 0–2. The first cohort received SPI-77 at 100 mg m−2, the second 200 mg m−2 and the final cohort 260 mg m−2. Patients had also pharmacokinetics and analysis of leucocyte platinum (Pt)-DNA adducts performed. Twenty-six pat...

  18. Propylene glycol liposomes as a topical delivery system for miconazole nitrate: comparison with conventional liposomes. (United States)

    Elmoslemany, Riham M; Abdallah, Ossama Y; El-Khordagui, Labiba K; Khalafallah, Nawal M


    Propylene glycol (PG)-phospholipid vesicles have been advocated as flexible lipid vesicles for enhanced skin delivery of drugs. To further characterize the performance of these vesicles and to address some relevant pharmaceutical issues, miconazole nitrate(MN)-loaded PG nanoliposomes were prepared and characterized for vesicle size, entrapment efficiency, in vitro release, and vesicle stability. An issue of pharmaceutical importance is the time-dependent, dilution-driven diffusion of propylene glycol out of the vesicles. This was addressed by assessing propylene glycol using gas chromatography in the separated vesicles and monitoring its buildup in the medium after repeated dispersion of separated vesicles in fresh medium. Further, the antifungal activity of liposomal formulations under study was assessed using Candida albicans, and their in vitro skin permeation and retention were studied using human skin. At all instances, blank and drug-loaded conventional liposomes were included for comparison. The results provided evidence of controlled MN delivery, constant percent PG uptake in the vesicles (≈45.5%) in the PG concentration range 2.5 to 10%, improved vesicle stability, and enhanced skin deposition of MN with minimum skin permeation. These are key issues for different formulation and performance aspects of propylene glycol-phospholipid vesicles.

  19. Multi-parametric surface plasmon resonance platform for studying liposome-serum interactions and protein corona formation. (United States)

    Kari, Otto K; Rojalin, Tatu; Salmaso, Stefano; Barattin, Michela; Jarva, Hanna; Meri, Seppo; Yliperttula, Marjo; Viitala, Tapani; Urtti, Arto


    When nanocarriers are administered into the blood circulation, a complex biomolecular layer known as the "protein corona" associates with their surface. Although the drivers of corona formation are not known, it is widely accepted that this layer mediates biological interactions of the nanocarrier with its surroundings. Label-free optical methods can be used to study protein corona formation without interfering with its dynamics. We demonstrate the proof-of-concept for a multi-parametric surface plasmon resonance (MP-SPR) technique in monitoring the formation of a protein corona on surface-immobilized liposomes subjected to flowing 100 % human serum. We observed the formation of formulation-dependent "hard" and "soft" coronas with distinct refractive indices, layer thicknesses, and surface mass densities. MP-SPR was also employed to determine the affinity (K D ) of a complement system molecule (C3b) with cationic liposomes with and without polyethylene glycol. Tendency to create a thick corona correlated with a higher affinity of opsonin C3b for the surface. The label-free platform provides a fast and robust preclinical tool for tuning nanocarrier surface architecture and composition to control protein corona formation.

  20. Heavy metal cations permeate the TRPV6 epithelial cation channel. (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A


    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  1. Tripodal Receptors for Cation and Anion Sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman,; Verboom, Willem; Reinhoudt, David N.


    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  2. Studies on molecular interactions between puerarin and PC liposomes

    Institute of Scientific and Technical Information of China (English)


    Fluorescence emission spectra, FTIR spectra, zeta potential measurements, and ab initio quantum calculation are used to study the interaction between puerarin and membranes composed of egg phosphatidylcholine (PC) liposome. The hydrophobic interactions cause the puerarin molecule to partition into lipid bilayers with its B-ring, and favor the displacement of acid-base equilibrium of puerarin towards the base form. Due to the hydrogen bond formation between the puerarin hydroxyl groups and polar groups of PC molecules on the water/membrane interface, puerarin can easily intercalate into the organized structure of phospholipids and modulate the membrane function. Our results reveal that the liposome membrane integrity is significantly higher compared with that of empty liposome.

  3. Lipophilic drug transfer between liposomal and biological membranes

    DEFF Research Database (Denmark)

    Fahr, Alfred; van Hoogevest, Peter; Kuntsche, Judith;


    is described as solubility of a drug in phospholipid membranes and the kinetics of transfer of a lipophilic drug between membranes. Finally, the consequences of these two factors on the design of lipid-based carriers for oral, as well as parenteral use, for lipophilic drugs and lead selection of oral...... lipophilic drugs is described. Since liposomes serve as model-membranes for natural membranes, the assessment of lipid solubility and transfer kinetics of lipophilic drug using liposome formulations may additionally have predictive value for bioavailability and biodistribution and the pharmacokinetics......This review presents the current knowledge on the interaction of lipophilic, poorly water soluble drugs with liposomal and biological membranes. The center of attention will be on drugs having the potential to dissolve in a lipid membrane without perturbing them too much. The degree of interaction...

  4. Liposomal amphotericin B and leishmaniasis: Dose and response

    Directory of Open Access Journals (Sweden)

    Shyam Sundar


    Full Text Available Liposomal amphotericin B has been used with increasing frequency to treat visceral leishmaniasis (VL. It is the treatment of choice for immunocompetent patients in the Mediterranean region and the preferred drug for HIV/VL co-infection. Although there is a regional variation in the susceptibility of the parasite a total dose of 20 mg/kg is effective in immunocompetent patients. Randomized clinical trials of liposomal amphotericin B in the treatment and secondary prophylaxis of HIV-VL coinfected patients is urgently needed to optimize treatment in this subset. With the availability of Liposomal amphotericin B at a preferential pricing in the endemic areas, short course combination therapy can become a viable alternative.

  5. Novel methods for the encapsulation of meglumine antimoniate into liposomes

    Directory of Open Access Journals (Sweden)

    F. Frézard


    Full Text Available The antimonial drug, meglumine antimoniate, was successfully encapsulated in dehydration-rehydration vesicles and in freeze-dried empty liposomes (FDELs. High encapsulation efficiencies (from 28 to 58% and low weight ratios of lipids to encapsulated antimony (from 1:0.15 to 1:0.3 were achieved. These formulations, contrary to those obtained by conventional methods, can be stored as intermediate lyophilized forms and reconstituted just before use. The efficacy of FDEL-encapsulated meglumine antimoniate was evaluated in hamsters experimentally infected with Leishmania chagasi. A significant reduction of liver parasite burdens was observed in animals treated with this preparation, when compared to control animals treated with empty liposomes. In contrast, free meglumine antimoniate was found to be inefficient when administered at a comparable dose of antimony. This novel liposome-based meglumine antimoniate formulation appears to be promising as a pharmaceutical product for the treatment of visceral leishmaniasis.

  6. Recent Trends in Multifunctional Liposomal Nanocarriers for Enhanced Tumor Targeting

    Directory of Open Access Journals (Sweden)

    Federico Perche


    Full Text Available Liposomes are delivery systems that have been used to formulate a vast variety of therapeutic and imaging agents for the past several decades. They have significant advantages over their free forms in terms of pharmacokinetics, sensitivity for cancer diagnosis and therapeutic efficacy. The multifactorial nature of cancer and the complex physiology of the tumor microenvironment require the development of multifunctional nanocarriers. Multifunctional liposomal nanocarriers should combine long blood circulation to improve pharmacokinetics of the loaded agent and selective distribution to the tumor lesion relative to healthy tissues, remote-controlled or tumor stimuli-sensitive extravasation from blood at the tumor’s vicinity, internalization motifs to move from tumor bounds and/or tumor intercellular space to the cytoplasm of cancer cells for effective tumor cell killing. This review will focus on current strategies used for cancer detection and therapy using liposomes with special attention to combination therapies.

  7. Antiviral effect of cationic compounds on bacteriophages

    Directory of Open Access Journals (Sweden)

    Mai Huong eChatain-Ly


    Full Text Available The antiviral activity of several cationic compounds - cetytrimethylammonium (CTAB, chitosan, nisin and lysozyme - was investigated on the bacteriophage c2 (DNA head and non-contractile tail infecting Lactococcus strains and the bacteriophage MS2 (F-specific RNA infecting E.coli. Firstly, these activities were evaluated in a phosphate buffer pH 7- 10 mM. The CTAB had a virucidal effect on the Lactococcus bacteriophages, but not on the MS2. After 1 min of contact with 0.125 mM CTAB, the c2 population was reduced from 6 log(pfu/mL to 1,5 log(pfu/mL and completely deactivated at 1 mM. On the contrary, chitosan inhibited the MS2 more than it did the bacteriophages c2. No antiviral effect was observed for the nisin or the lysozyme on bacteriophages after 1 min of treatment. A 1 and 2.5 log reduction was respectively observed for nisin and lysozyme when the treatment time increased (5 or 10 min. These results showed that the antiviral effect depended both on the virus and structure of the antimicrobial compounds. The antiviral activity of these compounds was also evaluated in different physico-chemical conditions and in complex matrices. The antiviral activity of CTAB was impaired in acid pH and with an increase of the ionic strength. These results might be explained by the electrostatic interactions between cationic compounds and negatively charged particles such as bacteriophages or other compounds in a matrix. Milk proved to be protective suggesting the components of food could interfere with antimicrobial compounds.

  8. Preparation of Cationic Lipid Emulsion-encapsulated Anti-caries Vaccines and its Effect of Enhancing the Mucosal Immune%阳离子脂质体乳剂增强防龋疫苗黏膜免疫效果的研究

    Institute of Scientific and Technical Information of China (English)

    杨亚萍; 刘明谆; 闵智鹏; 樊明文; 李宇红


    Objective: To observe the enhancement of specific IgG in serum and salivary IgA in mice after immunization by anti-caries vaccine in cationic liposome emulsion. Methods: The anti-caries gene vaccines (pGJA-P/ VAX and rPAc) were coated with the cationic liposomes emulsion, forming CLE/DNA and CLE/rPAc. The strategy of DNA prime-rPAc boost was intranasal immunized 6 - 8 weeks old BALB/c mice. At Ow, 2w, 4w, 6w, 8w. 10w, 12w and 16w after the initial immunization, we collected the serum and saliva of mice, and observed the levels of specific antibodies in serum and saliva by enzyme-linked immunosorbent assay (ELISA). Results: Cationic liposome emulsion (CLE) was coated with DNA and rPAc protein. We obtained the complexes: CLE/DNA and CLE / rPAc. The mean particle size of the complexes were 134. 6nm and 23Onm. ZETA potential were 36MV and 18. 5MV. Both the experimental group (CLE/DNA prime + CLE / rPAc boost) and the control group (DNA prime + rPAc boost) after the initial immunization could be induced the specific IgG production in the mouse serum and specific IgA in saliva. The experimental group had more lasting mucosal immune response than the control group, and the experimental group was significantly different from the control group (P less than 0. 05). Conclusion: The cationic liposome emulsion is an effective mucosal vector, and co - immunized mice with the anti-caries vaccines (DNA and rPAc protein) can induce the production of specific IgG and IgA antibody in mice, and can induce more durable mucosal immunity reaction than the control group.%目的:观察阳离子脂质体增强防龋疫苗诱导的小鼠特异性IgG和唾液IgA抗体水平.方法:以阳离子脂质体乳剂分别包被防龋DNA疫苗(pGJA-P/VAX)和基因重组rPAc蛋白疫苗,用DNA初免,2周后蛋白加强免疫的策略滴鼻免疫6~8周龄的BALB/c小鼠,分别收集初免后0、2、4、6、8、10、12、16周的血清和唾液,用酶联免疫吸附实验(ELISA)检测血清和唾液

  9. Metal Cations in G-Quadruplex Folding and Stability (United States)

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra


    This review is focused on the structural and physico-chemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-Quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.

  10. Metal Cations in G-Quadruplex Folding and Stability (United States)

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra


    This review is focused on the structural and physicochemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location, and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy, and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in the presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm. PMID:27668212

  11. Cation ordering and superstructures in natural layered double hydroxides. (United States)

    Krivovichev, Sergey V; Yakovenchuk, Victor N; Zolotarev, Andrey A; Ivanyuk, Gregory N; Pakhomovsky, Yakov A


    Layered double hydroxides (LDHs) constitute an important group of materials with many applications ranging from catalysis and absorption to carriers for drug delivery, DNA intercalation and carbon dioxide sequestration. The structures of LDHs are based upon double brucite-like hydroxide layers [M(2+)(n)M(3+)(m)(OH)(2(m+n)](m+), where M(2+) = Mg(2+), Fe(2+), Mn(2+), Zn(2+), etc.; M(3+) = Al(3+), Fe(3+), Cr(3+), Mn(3+), etc. Structural features of LDHs such as cation ordering, charge distribution and polytypism have an immediate influence upon their properties. However, all the structural studies on synthetic LDHs deal with powder samples that prevent elucidation of such fine details of structure architecture as formation of superstructures due to cation ordering. In contrast to synthetic materials, natural LDHs are known to form single crystals accessible to single-crystal X-ray diffraction analysis, which provides a unique possibility to investigate 3D cation ordering in LDHs that results in formation of complex superstructures, where 2D cation order is combined with a specific order of layer stacking (polytypism). Therefore LDH minerals provide an indispensable source of structural information for modeling of structures and processes happening in LDHs at the molecular and nanoscale levels.

  12. Liposome functionalization with copper-free "click chemistry". (United States)

    Oude Blenke, Erik; Klaasse, Gruson; Merten, Hannes; Plückthun, Andreas; Mastrobattista, Enrico; Martin, Nathaniel I


    The modification of liposomal surfaces is of interest for many different applications and a variety of chemistries are available that makes this possible. A major disadvantage of commonly used coupling chemistries (e.g. maleimide-thiol coupling) is the limited control over the site of conjugation in cases where multiple reactive functionalities are present, leading to heterogeneous products and in some cases dysfunctional conjugates. Bioorthogonal coupling approaches such as the well-established copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reaction are attractive alternatives as the reaction kinetics are favorable and azide-containing reagents are widely available. In the work described here, we prepared lipids containing a reactive cyclooctyne group and, after incorporation into liposomes, demonstrated successful conjugation of both a small molecule dye (5'-TAMRA-azide) as well as a larger azide-containing model protein based upon a designed ankyrin repeat protein (azido-DARPin). By applying the strain-promoted azido-alkyne cycloaddition (SPAAC) the use of Cu(I) as a catalyst is avoided, an important advantage considering the known deleterious effects associated with copper in cell and protein studies. We demonstrate complete control over the number of ligands coupled per liposome when using a small molecule azide with conjugation occurring at a reasonable reaction rate. By comparison, the conjugation of a larger azide-modified protein occurs more slowly, however the number of protein ligands coupled was found to be sufficient for liposome targeting to cells. Importantly, these results provide a strong proof of concept for the site-specific conjugation of protein ligands to liposomal surfaces via SPAAC. Unlike conventional approaches, this strategy provides for the homogeneous coupling of proteins bearing a single site-specific azide modification and eliminates the chance of forming dysfunctional ligands on the liposome. Furthermore, the absence of

  13. Thermosensitive liposomal drug delivery systems: state of the art review

    Directory of Open Access Journals (Sweden)

    Kneidl B


    Full Text Available Barbara Kneidl,1,2 Michael Peller,3 Gerhard Winter,2 Lars H Lindner,1 Martin Hossann11Department of Internal Medicine III, University Hospital Munich, 2Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, 3Institute for Clinical Radiology, University Hospital Munich, Ludwig-Maximilians University, Munich, GermanyAbstract: Thermosensitive liposomes are a promising tool for external targeting of drugs to solid tumors when used in combination with local hyperthermia or high intensity focused ultrasound. In vivo results have demonstrated strong evidence that external targeting is superior over passive targeting achieved by highly stable long-circulating drug formulations like PEGylated liposomal doxorubicin. Up to March 2014, the Web of Science listed 371 original papers in this field, with 45 in 2013 alone. Several formulations have been developed since 1978, with lysolipid-containing, low temperature-sensitive liposomes currently under clinical investigation. This review summarizes the historical development and effects of particular phospholipids and surfactants on the biophysical properties and in vivo efficacy of thermosensitive liposome formulations. Further, treatment strategies for solid tumors are discussed. Here we focus on temperature-triggered intravascular and interstitial drug release. Drug delivery guided by magnetic resonance imaging further adds the possibility of performing online monitoring of a heating focus to calculate locally released drug concentrations and to externally control drug release by steering the heating volume and power. The combination of external targeting with thermosensitive liposomes and magnetic resonance-guided drug delivery will be the unique characteristic of this nanotechnology approach in medicine.Keywords: thermosensitive liposomes, phosphatidyloligoglycerol, hyperthermia, high intensity focused ultrasound, drug delivery, drug targeting

  14. PEG minocycline-liposomes ameliorate CNS autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available BACKGROUND: Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS. Minocycline, a potent inhibitor of matrix metalloproteinase (MMP-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG minocycline liposomes are effective in treating EAE. FINDINGS: Performing in vitro time kinetic studies of PEG minocycline-liposomes in human peripheral blood mononuclear cells (PBMCs, we determined that PEG minocycline-liposome preparations stabilized with CaCl(2 are effective in diminishing MMP-9 activity. Intravenous injections of PEG minocycline-liposomes every five days were as effective in ameliorating clinical EAE as daily intraperitoneal injections of minocycline. Treatment of animals with PEG minocycline-liposomes significantly reduced the number of CNS-infiltrating leukocytes, and the overall expression of MMP-9 in the CNS. There was also a significant suppression of MMP-9 expression and proteolytic activity in splenocytes of treated animals, but not in CNS-infiltrating leukocytes. Thus, leukocytes gaining access to the brain and spinal cord require the same absolute amount of MMP-9 in all treatment groups, but minocycline decreases the absolute cell number. CONCLUSIONS: Our data indicate that less frequent injections of PEG minocycline-liposomes are an effective alternative pharmacotherapy to daily minocycline injections for the treatment of CNS autoimmune diseases. Also, inhibition of MMP-9 remains a promising treatment target in EAE and patients with MS.

  15. Superresolution and Fluorescence Dynamics Evidence Reveal That Intact Liposomes Do Not Cross the Human Skin Barrier

    DEFF Research Database (Denmark)

    Dreier, Jes; Sørensen, Jens A; Brewer, Jonathan R


    In this study we use the combination of super resolution optical microscopy and raster image correlation spectroscopy (RICS) to study the mechanism of action of liposomes as transdermal drug delivery systems in human skin. Two different compositions of liposomes were applied to newly excised human...... skin, a POPC liposome and a more flexible liposome containing the surfactant sodium cholate. Stimulated emission depletion microscopy (STED) images of intact skin and cryo-sections of skin treated with labeled liposomes were recorded displaying an optical resolution low enough to resolve the 100 nm...

  16. Size and stability of liposomes: a possible role of hydration and osmotic forces. (United States)

    Sabín, J; Prieto, G; Ruso, J M; Hidalgo-Alvarez, R; Sarmiento, F


    Dynamic light scattering and electrophoretic mobility measurements have been used to characterize the size, size distribution and zeta potentials (zeta-potentials) of egg yolk phosphatidylcholine (EYPC) liposomes in the presence of monovalent ions ( Na(+) and K(+)). To study the stability of liposomes the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory has been extended by introducing the hydrated radius of the adsorbed ions onto the liposome surfaces. The decrease of liposome size is explained on the basis of the membrane impermeability to some ions which generate osmotic forces, which leads to evacuate water from liposome inside.

  17. Antibodies to Phospholipids and Liposomes: Binding of Antibodies to Cells (United States)


    LIPOSOMES: BINDING OF ANTIBODIES TO CELLS 12. PERSONAL AUTHOR(S) W.E. FOGLER , G. M. SWARTZ, AND C.R. ALVING 13a TYPE OF REPORT 13b. TIME COVERED 14. DATE...Elsevier BBA 73693 Antibodies to phospholipids and liposomes: binding of antibodies to cells William E. Fogler *, Glenn M. Swartz, Jr. and Carl R. Alving...Immunol. 21. Research Associateship from the U.S. National 12863-86812Hall. T. and Esser, K. (1984) 3. Immunol. 132. 2059-2063 Research Council. 13 Fogler

  18. Preparation of human hepatocellular carcinoma-targeted liposome microbubbles and their immunological properties

    Institute of Scientific and Technical Information of China (English)

    Ai-Na Bian; Yun-Hua Gao; Kai-Bin Tan; Ping Liu; Gong-Jun Zeng; Xin Zhang; Zheng Liu


    AIM: To prepare the human hepatocellular carcinoma.(HCC)-targeted liposome microbubbles and to investigate their immunological properties.METHODS: Human hepatocarcinoma specific monoclonal antibody HAb18 was attached to the surface of home-made liposome microbubbles by static attraction to prepare the targeted liposome microbubbles. The combination of HAb18 with liposome microbubbles was confirmed by the slide agglutination test and immunofluorescent assay. Their immunological activity was measured by ELISA. Rosette formation test, rosette formation blocking test and immunofluorescent assay were used to identify the specific binding of targeted liposome microbubbles to SMMC-7721 hepatoma cells, and cytotoxicity assay was used to detect their effect on human hepatocytes.RESULTS: The targeted liposome microbubbles were positive in the slide agglutination test and immunofluorescent assay. ELISA indicated that the immunological activity of HAb18 on the liposome microbubbles was similar to that of free HAb18. SMMC-7721 cells were surrounded by the targeting liposome microbubbles to form rosettes, while the control SGC-7901 gastric cancer cells were not. Proliferation of SMMC-7721 cells and normal human hepatocytes was not influenced by the targeted liposome microbubbles.CONCLUSION: The targeted liposome microbubbles with a high specific biological activity have been successfully prepared, which specifically bind to human hepatocarcinoma cells, and are non-cytotoxic to hepatocytes. These results indicate that the liposome microbubbles can be used as a HCC-targeted ultrasound contrast agent that may enhance ultrasound images and thus improve the diagnosis of HCC,especially at the early stage.

  19. Factorial design studies of antiretroviral drug-loaded stealth liposomal injectable: PEGylation, lyophilization and pharmacokinetic studies (United States)

    Sudhakar, Beeravelli; Krishna, Mylangam Chaitanya; Murthy, Kolapalli Venkata Ramana


    The aim of the present study was to formulate and evaluate the ritonavir-loaded stealth liposomes by using 32 factorial design and intended to delivered by parenteral delivery. Liposomes were prepared by ethanol injection method using 32 factorial designs and characterized for various physicochemical parameters such as drug content, size, zeta potential, entrapment efficiency and in vitro drug release. The optimization process was carried out using desirability and overlay plots. The selected formulation was subjected to PEGylation using 10 % PEG-10000 solution. Stealth liposomes were characterized for the above-mentioned parameters along with surface morphology, Fourier transform infrared spectrophotometer, differential scanning calorimeter, stability and in vivo pharmacokinetic studies in rats. Stealth liposomes showed better result compared to conventional liposomes due to effect of PEG-10000. The in vivo studies revealed that stealth liposomes showed better residence time compared to conventional liposomes and pure drug solution. The conventional liposomes and pure drug showed dose-dependent pharmacokinetics, whereas stealth liposomes showed long circulation half-life compared to conventional liposomes and pure ritonavir solution. The results of statistical analysis showed significance difference as the p value is (<0.05) by one-way ANOVA. The result of the present study revealed that stealth liposomes are promising tool in antiretroviral therapy.

  20. The cellular internalization of liposome encapsulated protoporphyrin IX by HeLa cells. (United States)

    Przybylo, Magdalena; Glogocka, Daria; Dobrucki, Jerzy W; Fraczkowska, Kaja; Podbielska, Halina; Kopaczynska, Marta; Borowik, Tomasz; Langner, Marek


    The proper lipid composition of liposomes designed to carry drugs determines their surface properties ensuring their accumulation within selected tissue. The electrostatic potential and surface topology of liposomes affect the internalization by single cells. The high-resolution imaging of cancer cells and the distribution of protoporphyrin-loaded liposomes within the cytoplasm and its dependence on the liposome surface properties are presented. In the paper, HeLa cells were used to investigate the uptake of porphyrin-loaded liposomes and liposomes alone by means of confocal and differential interference contrast microscopies. The effect of liposomes surface electrostatic potential and surface topology on their intracellular distribution was evaluated. The time evolution of the intracellular distribution of liposomes labelled with Rhodamine-PE was examined on HeLa cells. These studies allow for the identification of the liposome lipid composition so the efficient delivery of the active substance to cancer cells will be achieved. The obtained results showed that neutral PC-liposomes are the most efficiently internalized by HeLa cells. Moreover, results showed that properties of liposomes affect not only the internalization efficiency of the photosensitizer but also its distribution within the cells, as revealed by colocalization measurements.

  1. Cooperative antioxidative effects of zein hydrolysates with sage (Salvia officinalis) extract in a liposome system. (United States)

    Li, Yuanyuan; Liu, Haotian; Han, Qi; Kong, Baohua; Liu, Qian


    This study investigated the cooperative antioxidative effects of sage extract (SE) and zein hydrolysates (ZH). The combination of 3mg/ml ZH and 10μg/ml SE exhibited a significant synergism in inhibition of the formation of thiobarbituric acid-reactive substances and provided superior protection of liposomes against oxidation. Zeta-potential results revealed that the interactions between liposomes and ZH were electrostatic interactions. Particle size determination further proved that ZH and SE added to oxidized liposomes significantly decreased the mean particle size. Confocal laser scanning microscopy revealed that when ZH was present in the liposome oxidizing system, the droplet sizes were obviously decreased compared to oxidized samples. ZH dispersed more uniformly and the interfacial membrane was more compact in the ZH-SE liposome. Transmission electron microscopy conveyed that the ZH-SE complex around the liposome particles could form a denser network structure, preventing radicals and oxidants from the approach of the liposomes.

  2. Exploring Cellular Interactions of Liposomes Using Protein Corona Fingerprints and Physicochemical Properties. (United States)

    Bigdeli, Arafeh; Palchetti, Sara; Pozzi, Daniela; Hormozi-Nezhad, Mohammad Reza; Baldelli Bombelli, Francesca; Caracciolo, Giulio; Mahmoudi, Morteza


    To control liposomes fate and transport upon contact with biofluids, it is essential to consider several parameters affecting the synthetic and biological identity of liposomes, as well as liposome-protein corona (PC) aspects. As a powerful tool in this data mining adventure, quantitative structure-activity relationship (QSAR) approach is used to correlate physicochemical properties of liposomes and their PC fingerprints to multiple quantified biological responses. In the present study, the relationship between cellular interactions of a set of structurally diverse liposomal formulations and their physicochemical and PC properties has been investigated via linear and nonlinear QSAR models. Significant parameters affecting cellular uptake and cell viability of liposomes in two important cancer cell lines (PC3 and HeLa) have been identified. The developed QSARs have the capacity to be implemented in advanced targeted delivery of liposomal drugs.

  3. Length of hydrocarbon chain influences location of curcumin in liposomes: Curcumin as a molecular probe to study ethanol induced interdigitation of liposomes. (United States)

    El Khoury, Elsy; Patra, Digambara


    Using fluorescence quenching of curcumin in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes by brominated derivatives of fatty acids, the location of curcumin has been studied, which indicates length of hydrocarbon chain has an effect on the location of curcumin in liposomes. Change of fluorescence intensity of curcumin with temperature in the presence of liposomes helps to estimate the phase transition temperature of these liposomes, thus, influence of cholesterol on liposome properties has been studied using curcumin as a molecule probe. The cooperativity due to the interactions between the hydrocarbon chains during melting accelerates the phase transition of DPPC liposomes in the presence of high percentage of cholesterol whereas high percentage of cholesterol generates a rather rigid DMPC liposome over a wide range of temperatures. We used ethanol to induce interdigitation between the hydrophobic chains of the lipids and studied this effect using curcumin as fluorescence probe. As a result of interdigitation, curcumin fluorescence is quenched in liposomes. The compact arrangement of the acyl chains prevents curcumin from penetrating deep near the midplane. In the liquid crystalline phase ethanol introduces a kind of order to the more fluid liposome, and does not leave space for curcumin to be inserted away from water.

  4. DNA Nanocarriers for Systemic Administration: Characterization and In Vivo Bioimaging in Healthy Mice


    David, Stéphanie; Passirani,Catherine; Carmoy, Nathalie; Morille, Marie; Mevel, Mathieu; Chatin, Benoit; Benoit, Jean-Pierre; Montier, Tristan; Pitard, Bruno


    International audience; We hereby present different DNA nanocarriers consisting of new multimodular systems (MMS), containing the cationic lipid dioleylaminesuccinylparomomycin (DNA MMS DOSP), or bis (guanidinium)-tren-cholesterol (DNA MMS BGTC), and DNA lipid nanocapsules (DNA LNCs). Active targeting of the asialoglycoprotein receptor (ASGP-R) using galactose as a ligand for DNA MMS (GAL DNA MMS) and passive targeting using a polyethylene glycol coating for DNA LNCs (PEG DNA LNCs) should imp...

  5. 64Cu loaded liposomes as positron emission tomography imaging agents

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa; Binderup, Tina; Rasmussen, Palle;


    We have developed a highly efficient method for utilizing liposomes as imaging agents for positron emission tomography (PET) giving high resolution images and allowing direct quantification of tissue distribution and blood clearance. Our approach is based on remote loading of a copper-radionuclid...

  6. A new method for liposome preparation using a membrane contactor. (United States)

    Jaafar-Maalej, Chiraz; Charcosset, Catherine; Fessi, Hatem


    In this article, we present a novel, scalable liposomal preparation technique suitable for the entrapment of pharmaceutical agents into liposomes. This new method is based on the ethanol-injection technique and uses a membrane contactor module, specifically designed for colloidal system preparation. In order to investigate the process, the influence of key parameters on liposome characteristics was studied. It has been established that vesicle-size distribution decreased with a decrease of the organic-phase pressure, an increase of the aqueous-phase flow rate, and a decrease of the phospholipid concentration. Additionally, special attention was paid on reproducibility and long-term stability of lipid vesicles, confirming the robustness of the membrane contactor-based technique. On the other hand, drug-loaded liposomes were prepared and filled with two hydrophobic drug models. High entrapment-efficiency values were successfully achieved for indomethacin (63%) and beclomethasone dipropionate (98%). Transmission electron microscopy images revealed nanometric quasispherical-shaped multilamellar vesicles (size ranging from 50 to 160 nm).

  7. Coupling of Ligands to the Liposome Surface by Click Chemistry. (United States)

    Spanedda, Maria Vittoria; De Giorgi, Marcella; Hassane, Fatouma Saïd; Schuber, Francis; Bourel-Bonnet, Line; Frisch, Benoît


    Click chemistry represents a new bioconjugation strategy that can be used to conveniently attach various ligands to the surface of preformed liposomes. This efficient and chemoselective reaction involves a Cu(I)-catalyzed azide-alkyne cycloaddition which can be performed under mild experimental conditions in aqueous media. Here we describe the application of a model click reaction to the conjugation, in a single step, of unprotected α-1-thiomannosyl ligands, functionalized with an azide group, to liposomes containing a terminal alkyne-functionalized lipid anchor. Excellent coupling yields have been obtained in the presence of bathophenanthroline disulfonate, a water soluble copper-ion chelator, acting as a catalyst. No vesicle leakage is triggered by this conjugation reaction and the coupled mannose ligands are exposed at the surface of the liposomes. The major limitation of Cu(I)-catalyzed click reactions is that this conjugation is restricted to liposomes made of saturated (phospho)lipids. To circumvent that constraint, an example of alternative copper-free azide-alkyne click reaction has been developed. Molecular tools and results are presented here.

  8. Single cell targeting using plasmon resonant gold-coated liposomes (United States)

    Leung, Sarah J.; Romanowski, Marek


    We have developed an experimental system with the potential for the delivery and localized release of an encapsulated agent with high spatial and temporal resolution. We previously introduced liposome-supported plasmon resonant gold nanoshells; in this composite structure, the liposome allows for the encapsulation of substances, such as therapeutic agents, neurotransmitters, or growth factors, and the plasmon resonant structure facilitates the rapid release of encapsulated contents upon laser light illumination. More recently, we demonstrated that these gold-coated liposomes are capable of releasing their contents in a spectrally-controlled manner, where plasmon resonant nanoparticles only release content upon illumination with a wavelength of light matching their plasmon resonance band. We now show that this release mechanism can be used in a biological setting to deliver a peptide derivative of cholecystokinin to HEK293 cells overexpressing the CCK2 receptor. Using directed laser light, we may enable localized release from gold-coated liposomes to enable accurate perturbation of cellular functions in response to released compounds; this system may have possible applications in signaling pathways and drug discovery.

  9. Toxicity of doxorubicin entrapped within long-circulating liposomes

    NARCIS (Netherlands)

    Daemen, T; Regts, J; Meesters, M; TenKate, MT; BakkerWoudenberg, IAJM; Scherphof, GL


    We studied the effect of doxorubicin entrapped within long-circulating liposomes (Dox-LCL) on the phagocytic capacity and bacterial blood clearance capacity of rat liver macrophages. Dox-LCL (125 nm in diameter) were composed of egg phosphatidylcholine (PC), cholesterol (CH) and poly(ethyleneglycol)

  10. Liposomal photosensitizers: potential platforms for anticancer photodynamic therapy

    Directory of Open Access Journals (Sweden)

    L.A. Muehlmann


    Full Text Available Photodynamic therapy is a well-established and clinically approved treatment for several types of cancer. Antineoplastic photodynamic therapy is based on photosensitizers, i.e., drugs that absorb photons translating light energy into a chemical potential that damages tumor tissues. Despite the encouraging clinical results with the approved photosensitizers available today, the prolonged skin phototoxicity, poor selectivity for diseased tissues, hydrophobic nature, and extended retention in the host organism shown by these drugs have stimulated researchers to develop new formulations for photodynamic therapy. In this context, due to their amphiphilic characteristic (compatibility with both hydrophobic and hydrophilic substances, liposomes have proven to be suitable carriers for photosensitizers, improving the photophysical properties of the photosensitizers. Moreover, as nanostructured drug delivery systems, liposomes improve the efficiency and safety of antineoplastic photodynamic therapy, mainly by the classical phenomenon of extended permeation and retention. Therefore, the association of photosensitizers with liposomes has been extensively studied. In this review, both current knowledge and future perspectives on liposomal carriers for antineoplastic photodynamic therapy are critically discussed.

  11. Drug delivery by phospholipase A(2) degradable liposomes

    DEFF Research Database (Denmark)

    Davidsen, Jesper; Vermehren, C.; Frøkjær, S.


    The effect of poly(ethylene glycol)-phospholipid (PE-PEG) lipopolymers on phospholipase A(2) (PLA(2)) hydrolysis of liposomes composed of stearoyl-oleoylphosphatidylcholine (SOPC) was investigated. The PLA(2) lag-time, which is inversely related to the enzymatic activity, was determined by fluore...

  12. Incorporation of Amphiphilic Cyclodextrins into Liposomes as Artificial Receptor Units

    NARCIS (Netherlands)

    Kauscher, Ulrike; Stuart, Marc C. A.; Druecker, Patrick; Galla, Hans-Joachim; Ravoo, Bart Jan


    In this article, we describe the introduction of amphiphilic beta-cyclodextrins into liposomes to act as artificial receptor units. Using dynamic light scattering, dye encapsulation, and cryogenic transmission electron microscopy, we show that amphiphilic beta-cyclodextrins can be mixed in any propo

  13. Gemcitabine-loaded liposomes: rationale, potentialities and future perspectives

    Directory of Open Access Journals (Sweden)

    Federico C


    Full Text Available Cinzia Federico, Valeria M Morittu, Domenico Britti, Elena Trapasso, Donato CoscoDepartment of Health Sciences, Building of BioSciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, Germaneto, ItalyAbstract: This review describes the strategies used in recent years to improve the biopharmaceutical properties of gemcitabine, a nucleoside analog deoxycytidine antimetabolite characterized by activity against many kinds of tumors, by means of liposomal devices. The main limitation of using this active compound is the rapid inactivation of deoxycytidine deaminase following administration in vivo. Consequently, different strategies based on its encapsulation/complexation in innovative vesicular colloidal carriers have been investigated, with interesting results in terms of increased pharmacological activity, plasma half-life, and tumor localization, in addition to decreased side effects. This review focuses on the specific approaches used, based on the encapsulation of gemcitabine in liposomes, with particular attention to the results obtained during the last 5 years. These approaches represent a valid starting point in the attempt to obtain a novel, commercializable drug formulation as already achieved for liposomal doxorubicin (Doxil®, Caelyx®.Keywords: gemcitabine, liposomes, multidrug, poly(ethylene glycol, tumors

  14. Some factors affecting the valinomycin-induced leak from liposomes

    NARCIS (Netherlands)

    Blok, M.C.; Gier, J. de; Deenen, L.L.M. van


    Experiments dealing with the valinomycin-induced K+ leak from egg lecithin liposomes have demonstrated the importance of the enclosed anion. Except when lipophilic anions are enclosed, the addition of both valinomycin and a uncoupler, e.g. carbonylcyanide p-trifluoromethoxyphenylhydrazone, is necess

  15. Enhancing Methotrexate Tolerance with Folate Tagged Liposomes in Arthritic Mice. (United States)

    Nogueira, Eugénia; Lager, Franck; Le Roux, Delphine; Nogueira, Patrícia; Freitas, Jaime; Charvet, Celine; Renault, Gilles; Loureiro, Ana; Almeida, Catarina R; Ohradanova-Repic, Anna; Machacek, Christian; Bernardes, Gonçalo J L; Moreira, Alexandra; Stockinger, Hannes; Burnet, Michael; Carmo, Alexandre M; Gomes, Andreia C; Preto, Ana; Bismuth, Georges; Cavaco-Paulo, Artur


    Methotrexate is the first line of treatment of rheumatoid arthritis. Since many patients become unresponsive to methotrexate treatment, only very expensive biological therapies are effective and increased methotrexate tolerance strategies need to be identified. Here we propose the encapsulation of methotrexate in a new liposomal formulation using a hydrophobic fragment of surfactant protein conjugated to a linker and folate to enhance their tolerance and efficacy. In this study we aim to evaluate the efficiency of this system to treat rheumatoid arthritis, by targeting folate receptor β present at the surface of activated macrophages, key effector cells in this pathology. The specificity of our liposomal formulation to target folate receptor β was investigated both in vitro as in vivo using a mouse model of arthritis (collagen-induced arthritis in DBA/1J mice strain). In both systems, the liposomal constructs were shown to be highly specific and efficient in targeting folate receptor β. These liposomal formulatio