WorldWideScience

Sample records for cation-exchange regeneration brine

  1. Concentrations and environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks and accumulation in sludge, New Jersey Coastal Plain, USA

    International Nuclear Information System (INIS)

    Szabo, Zoltan; Jacobsen, Eric; Kraemer, Thomas F.; Parsa, Bahman

    2008-01-01

    Concentrations of Ra in liquid and solid wastes generated from 15 softeners treating domestic well waters from New Jersey Coastal Plain aquifers (where combined Ra ( 226 Ra plus 228 Ra) concentrations commonly exceed 0.185 Bq L -1 ) were determined. Softeners, when maintained, reduced combined Ra about 10-fold ( -1 ). Combined Ra exceeded 0.185 Bq L -1 at 1 non-maintained system. Combined Ra was enriched in regeneration brine waste (maximum, 81.2 Bq L -1 ), but concentrations in septic-tank effluents receiving brine waste were less than in the untreated ground waters. The maximum combined Ra concentration in aquifer sands (40.7 Bq kg -1 dry weight) was less than that in sludge from the septic tanks (range, 84-363 Bq kg -1 ), indicating Ra accumulation in sludge from effluent. The combined Ra concentration in sludge from the homeowners' septic systems falls within the range reported for sludge samples from publicly owned treatment works within the region

  2. Environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks, New Jersey Coastal Plain, USA: migration to the water table.

    Science.gov (United States)

    Szabo, Zoltan; Jacobsen, Eric; Kraemer, Thomas F; Parsa, Bahman

    2010-01-01

    Fate of radium (Ra) in liquid regeneration brine wastes from water softeners disposed to septic tanks in the New Jersey Coastal Plain was studied. Before treatment, combined Ra ((226)Ra plus (228)Ra) concentrations (maximum, 1.54 Bq L(-1)) exceeded the 0.185 Bq L(-1) Maximum Contaminant Level in 4 of 10 studied domestic-well waters (median pH, 4.90). At the water table downgradient from leachfields, combined Ra concentrations were low (commonly 5.3, indicating sequestration; when pH was synoptic sampling of effluents and ground waters, and large uncertainties associated with analytical methods. The trend of Ra mobilization in acidic environments does match observations from regional water-quality assessments.

  3. Cation Exchange in the Presence of Oil in Porous Media

    NARCIS (Netherlands)

    Farajzadeh, R.; Guo, H.; van Winden, J.L.; Bruining, J.

    2017-01-01

    Cation exchange is an interfacial process during which cations on a clay surface are replaced by other cations. This study investigates the effect of oil type and composition on cation exchange on rock surfaces, relevant for a variety of oil-recovery processes. We perform experiments in which brine

  4. Cation Exchange Water Softeners

    Science.gov (United States)

    WaterSense released a notice of intent to develop a specification for cation exchange water softeners. The program has made the decision not to move forward with a spec at this time, but is making this information available.

  5. Sorption by cation exchange

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1994-04-01

    A procedure for introducing exchange into geochemical/surface complexation codes is described. Beginning with selectivity coefficients, K c , defined in terms of equivalent fractional ion occupancies, a general expression for the molar based exchange code input parameters, K ex , is derived. In natural systems the uptake of nuclides onto complex sorbents often occurs by more than one mechanism. The incorporation of cation exchange and surface complexation into a geochemical code therefore enables sorption by both mechanisms to be calculated simultaneously. The code and model concepts are tested against sets of experimental data from widely different sorption studies. A proposal is made to set up a data base of selectivity coefficients. Such a data base would form part of a more general one consisting of sorption mechanism specific parameters to be used in conjunction with geochemical/sorption codes to model and predict sorption. (author) 6 figs., 6 tabs., 26 refs

  6. Cation Exchange in the Presence of Oil in Porous Media.

    Science.gov (United States)

    Farajzadeh, R; Guo, H; van Winden, J; Bruining, J

    2017-04-20

    Cation exchange is an interfacial process during which cations on a clay surface are replaced by other cations. This study investigates the effect of oil type and composition on cation exchange on rock surfaces, relevant for a variety of oil-recovery processes. We perform experiments in which brine with a different composition than that of the in situ brine is injected into cores with and without remaining oil saturation. The cation-exchange capacity (CEC) of the rocks was calculated using PHREEQC software (coupled to a multipurpose transport simulator) with the ionic composition of the effluent histories as input parameters. We observe that in the presence of crude oil, ion exchange is a kinetically controlled process and its rate depends on residence time of the oil in the pore, the temperature, and kinetic rate of adsorption of the polar groups on the rock surface. The cation-exchange process occurs in two stages during two phase flow in porous media. Initially, the charged sites of the internal surface of the clays establish a new equilibrium by exchanging cations with the aqueous phase. At later stages, the components of the aqueous and oleic phases compete for the charged sites on the external surface or edges of the clays. When there is sufficient time for crude oil to interact with the rock (i.e., when the core is aged with crude oil), a fraction of the charged sites are neutralized by the charged components stemming from crude oil. Moreover, the positively charged calcite and dolomite surfaces (at the prevailing pH environment of our experiments) are covered with the negatively charged components of the crude oil and therefore less mineral dissolution takes place when oil is present in porous media.

  7. Test procedure for cation exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction

  8. Esterification of phenyl acetic acid withp-cresol using metal cation exchanged montmorillonite nanoclay catalysts.

    Science.gov (United States)

    Bhaskar, M; Surekha, M; Suma, N

    2018-02-01

    The liquid phase esterification of phenyl acetic acid with p -cresol over different metal cation exchanged montmorillonite nanoclays yields p -cresyl phenyl acetate. Different metal cation exchanged montmorillonite nanoclays (M n +  = Al 3+ , Zn 2+ , Mn 2+ , Fe 3+ , Cu 2+ ) were prepared and the catalytic activity was studied. The esterification reaction was conducted by varying molar ratio of the reactants, reaction time and catalyst amount on the yield of the ester. Among the different metal cation exchanged catalysts used, Al 3+ -montmorillonite nanoclay was found to be more active. The characterization of the material used was studied under different techniques, namely X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. The product obtained, p -cresyl phenyl acetate, was identified by thin-layer chromotography and confirmed by Fourier transform infrared, 1 H NMR and 13 C NMR. The regeneration activity of used catalyst was also investigated up to fourth generation.

  9. Performance of sulphonic cation exchangers in the recovery of ammonium from basic and slight acidic solutions.

    Science.gov (United States)

    Gefeniene, A; Kauspediene, D; Snukiskis, J

    2006-07-31

    Two sulphonated polystyrene-divinylbenzene cation exchangers (gel type Purolite SGC 100 x 10 MBH and macroporous Purolite C160 MBH) have been investigated for NH(4)(+) ions uptake from the ammonium-rich simulated solutions, corresponding to the caustic condensate of the nitrogen fertilizers production. One component (NH(3) or NH(4)NO(3)) solutions and the mixtures with varying molar ratio of these compounds have been used at the total concentration 0.214 mol/L. Batch and column experiments have been conducted to establish the influence of the matrix structure on the performance of the cation exchangers investigated during the sorption and the desorption. Batch sorption isotherms and breakthrough curves have shown the similar behaviour of the cation exchangers in the removal of NH(4)(+) and NH(3). On decreasing the influent pH from 11.4 to 5.74 a decrease in breakthrough capacity (BC) from 2.57 to 1.93 mol/L was observed. The distribution coefficients (K(d)), calculated from the batch sorption isotherms, are higher for the basic feed solution than for slightly acidic one. Both the degree of the cation exchanger regeneration (N/N(0)) and the efficiency of the NH(4)(+) ions recovery (N(R)), obtained using 0.7 bed volume (BV) of eluent (20% nitric acid) are lower for Purolite C 160 MBH than those for Purolite SGC 100 x 10 MBH. Using 5 BV of eluent the efficiency of the ammonium recovery amounted to 100% for both cation exchangers investigated. With respect to the efficiency of NH(4)(+) ions sorption and regeneration cation exchangers investigated are applicable for the recovery of ammonium ions from caustic condensate in the nitrogen fertilizers production.

  10. Homogeneous cation exchange membrane by radiation grafting

    International Nuclear Information System (INIS)

    Kolhe, Shailesh M.; G, Agathian; Ashok Kumar

    2001-01-01

    Preparation of a strong cation exchange membrane by radiation grafting of styrene on to polyethylene (LDPE) film by mutual irradiation technique in the presence of air followed by sulfonation is described. The grafting has been carried out in the presence of air and without any additive. Low dose rate has been seen to facilitate the grafting. Further higher the grafting percentage more is the exchange capacity. The addition of a swelling agent during the sulfonation helped in achieving the high exchange capacity. The TGA-MASS analysis confirmed the grafting and the sulfonation. (author)

  11. Cobalt 60 cation exchange with mexican clays

    International Nuclear Information System (INIS)

    Nava Galve, R.G.

    1993-01-01

    Mexican clays can be used to remove radioactive elements from contaminated aqueous solutions. Cation exchange experiments were performed with 60 Co radioactive solution. In the present work the effect of contact time on the sorption of Co 2+ was studied. The contact time in hydrated montmorillonite was from 5 to 120 minutes and in dehydrated montmorillonite 5 to 1400 minutes. The Co 2+ uptake value was, in hydrated montmorillonite, between 0.3 to 0.85 m eq/g and in dehydrated montmorillonite, between 0.6 to 1.40 m eq/g. The experiments were done in a pH 5.1 to 5.7 and normal conditions. XRD patterns were used to characterize the samples. The crystallinity was determined by X-ray Diffraction and it was maintained before and after the cation exchange. DTA thermo grams showed the temperatures of the lost humidity and crystallization water. Finally, was observed that dehydrated montmorillonite adsorb more cobalt than hydrated montmorillonite. (Author)

  12. Thermochemical stability of Soviet macroporous sulfonated cation-exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rukhlyada, N.N.; Plotnikova, V.P.; Roginskaya, B.S.; Znamenskii, Yu.P.; Zavodovskaya, A.S.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the influence of macroporosity on the thermochemical stability of sulfonated cation-exchangers. The investigations were carried out on commercial macroporous sulfonated cation-exchangers based on styrene-divinylbenzene copolymers. Study of the thermochemical stability of macroporous sulfonated cation-exchangers in dilute hydrogen peroxide solutions showed that the type of macroporosity has virtually no influence on their stability. The determining factor in thermal stability of macroporous cation-exchangers, as of the gel type, is the degree of cross-linking of the polymer matrix. The capacity loss of macroporous cation-exchangers during oxidative thermolysis is caused by destruction of the macromolecular skeleton and elution of fragments of polar chains containing sulfo groups into the solution.

  13. Cation-Exchanged Zeolitic Chalcogenides for CO2 Adsorption.

    Science.gov (United States)

    Yang, Huajun; Luo, Min; Chen, Xitong; Zhao, Xiang; Lin, Jian; Hu, Dandan; Li, Dongsheng; Bu, Xianhui; Feng, Pingyun; Wu, Tao

    2017-12-18

    We report here the intrinsic advantages of a special family of porous chalcogenides for CO 2 adsorption in terms of high selectivity of CO 2 /N 2 , large uptake capacity, and robust structure due to their first-ever unique integration of the chalcogen-soft surface, high porosity, all-inorganic crystalline framework, and the tunable charge-to-volume ratio of exchangeable cations. Although tuning the CO 2 adsorption properties via the type of exchangeable cations has been well-studied in oxides and MOFs, little is known about the effects of inorganic exchangeable cations in porous chalcogenides, in part because ion exchange in chalcogenides can be very sluggish and incomplete due to their soft character. We have demonstrated that, through a methodological change to progressively tune the host-guest interactions, both facile and nearly complete ion exchange can be accomplished. Herein, a series of cation-exchanged zeolitic chalcogenides (denoted as M@RWY) were studied for the first time for CO 2 adsorption. Samples were prepared through a sequential ion-exchange strategy, and Cs + -, Rb + -, and K + -exchanged samples demonstrated excellent CO 2 adsorption performance. Particularly, K@RWY has the superior CO 2 /N 2 selectivity with the N 2 adsorption even undetected at either 298 or 273 K. It also has the large uptake of 6.3 mmol/g (141 cm 3 /g) at 273 K and 1 atm with an isosteric heat of 35-41 kJ mol -1 , the best among known porous chalcogenides. Moreover, it permits a facile regeneration and exhibits an excellent recyclability, as shown by the multicycling adsorption experiments. Notably, K@RWY also demonstrates a strong tolerance toward water.

  14. Fabrication of Cationic Exchange Polystyrene Nanofibers for Drug ...

    African Journals Online (AJOL)

    Trop J Pharm Res, February 2014; 13(2): 192. Many polymers are used to produce nanofibers by electrospinning. Polystyrene (PS) is one of polymers used to produce cation exchange fibers. [9]. PS nanofibers were successfully produced using the electrospinning method and it has been demonstrated that electrospun PS.

  15. Selective oxidation of propane over cation exchanged zeolites

    NARCIS (Netherlands)

    Xu, J.

    2005-01-01

    This thesis focuses on investigation of the fundamental knowledge on a new method for selective oxidation of propane with O2 at low temperature (< 100°C). The relation between propane catalytic selective oxidation and physicochemical properties of cation exchanged Y zeolite has been studied. An

  16. Esterification of maleic acid and butanol using cationic exchange ...

    Indian Academy of Sciences (India)

    AARTI MULAY

    2017-11-15

    Nov 15, 2017 ... Abstract. Dibutyl maleate is a perfumery ester used as an intermediate in the production of paints, adhesives, and copolymers. Esterification of maleic acid and butanol was studied in presence of acidic cation exchange resin as a catalyst. The objective of this work was to test the suitability and efficacy of ...

  17. Esterification of maleic acid and butanol using cationic exchange ...

    Indian Academy of Sciences (India)

    AARTI MULAY

    2017-11-15

    Nov 15, 2017 ... Special Issue on Recent Trends in the Design and Development of Catalysts and their Applications. Esterification of maleic acid and butanol using cationic exchange resin as ..... Thus, the mole ratio of maleic acid to n-butanol was also varied as 1:3, 1:4, and 1:5 keeping other parameters at a constant value ...

  18. Exploration of overloaded cation exchange chromatography for monoclonal antibody purification.

    Science.gov (United States)

    Liu, Hui F; McCooey, Beth; Duarte, Tiago; Myers, Deanna E; Hudson, Terry; Amanullah, Ashraf; van Reis, Robert; Kelley, Brian D

    2011-09-28

    Cation exchange chromatography using conventional resins, having either diffusive or perfusive flow paths, operated in bind-elute mode has been commonly employed in monoclonal antibody (MAb) purification processes. In this study, the performance of diffusive and perfusive cation exchange resins (SP-Sepharose FF (SPSFF) and Poros 50HS) and a convective cation exchange membrane (Mustang S) and monolith (SO(3) Monolith) were compared. All matrices were utilized in an isocratic state under typical binding conditions with an antibody load of up to 1000 g/L of chromatographic matrix. The dynamic binding capacity of the cation exchange resins is typically below 100 g/L resin, so they were loaded beyond the point of anticipated MAb break through. All of the matrices performed similarly in that they effectively retained host cell protein and DNA during the loading and wash steps, while antibody flowed through each matrix after its dynamic binding capacity was reached. The matrices differed, though, in that conventional diffusive and perfusive chromatographic resins (SPSFF and Poros 50HS) demonstrated a higher binding capacity for high molecular weight species (HMW) than convective flow matrices (membrane and monolith); Poros 50HS displayed the highest HMW binding capacity. Further exploration of the conventional chromatographic resins in an isocratic overloaded mode demonstrated that the impurity binding capacity was well maintained on Poros 50HS, but not on SPSFF, when the operating flow rate was as high as 36 column volumes per hour. Host cell protein and HMW removal by Poros 50HS was affected by altering the loading conductivity. A higher percentage of host cell protein removal was achieved at a low conductivity of 3 mS/cm. HMW binding capacity was optimized at 5 mS/cm. Our data from runs on Poros 50HS resin also showed that leached protein A and cell culture additive such as gentamicin were able to be removed under the isocratic overloaded condition. Lastly, a MAb

  19. Effect of hydroxide polymenrs on cation exchange of montmorillonite

    NARCIS (Netherlands)

    Janssen, R.P.T.; Bruggenwert, M.G.M.; Riemsdijk, van W.H.

    2003-01-01

    Al hydroxide polymers (AlHO) can significantly influence the cation exchange behaviour of clays. We have determined the effect of synthesized AlHO on Ca¿Na, Zn¿Na and Pb¿Na exchange for a series of exchanger compositions and two Al loadings at pH 6.0 and an ionic strength of 0.01 m. The preference

  20. Selective Facet Reactivity During Cation Exchange in Cadmium Sulfide Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Sadtler, Bryce; Demchenko, Denis; Zheng, Haimei; Hughes, Steven; Merkle, Maxwell; Dahmen, Ulrich; Wang, Lin-Wang; Alivisatos, A. Paul

    2008-12-18

    The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper I (Cu+) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu2S) grows inwards from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver I (Ag+) exchange in CdS nanorods where non-selective nucleation of silver sulfide (Ag2S) occurs. From interface formation energies calculated for several models of epitaxialconnections between CdS and Cu2S or Ag2S, we infer the relative stability of each interface during the nucleation and growth of Cu2S or Ag2S within the CdS nanorods. The epitaxial connections of Cu2S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. However, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.

  1. Spontaneous Superlattice Formation in Nanorods through PartialCation Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Richard D.; Sadtler, Bryce; Demchenko, Denis O.; Erdonmez, Can K.; Wang, Lin-Wang; Alivisatos, A. Paul

    2007-03-14

    Lattice mismatch strains are widely known to controlnanoscale pattern formation in heteroepitaxy, but such effects have notbeen exploited in colloidal nanocrystal growth. We demonstrate acolloidal route to synthesizing CdS-Ag2S nanorod superlattices throughpartial cation exchange. Strain induces the spontaneous formation ofperiodic structures. Ab initio calculations of the interfacial energy andmodeling of strain energies show that these forces drive theself-organization. The nanorod superlattices exhibit high stabilityagainst ripening and phase mixing. These materials are tunablenear-infrared emitters with potential applications as nanometer-scaleoptoelectronic devices.

  2. Magnesium isotope fractionation in cation-exchange chromatography

    International Nuclear Information System (INIS)

    Oi, T.; Yanase, S.; Kakihana, H.

    1987-01-01

    Band displacement chromatography of magnesium has been carried out successfully for the purpose of magnesium isotope separation by using a strongly acidic cation-exchange resin and the strontium ion as the replacement ion. A small but definite accumulation of the heavier isotopes ( 25 Mg, 26 Mg) has been observed at the front parts of the magnesium chromatograms. The heavier isotopes have been fractionated preferentially into the solution phase. The single-stage separation factors have been calculated for the 25 Mg/ 24 Mg and 26 Mg/ 24 isotopic pairs at 25 0 C. The reduced partition function ratios of magnesium species involved in the present study have been estimated

  3. Applications of pressurized cation exchange chromatography for fission yield determination

    International Nuclear Information System (INIS)

    Yan Shuheng; Lin Fa; Zhang Hongdi; Li Xueliang; Zhang Shulan

    1988-01-01

    In order to determine the fission yields of lanthanides precisely, lanthanides with carriers of 1-2 mg per element are separated from each other by means of pressurized cation exchange chromatography - αHIBA concentration gradient elution. The effect of initial loading technique, concentration gradient, flow rate, and temperature on separation were investigated in detail. Under the optimum conditions adapted according to the results given in this work, all the lanthanides can be completely separated within about 90 minutes with a recovery of more than 95% and purity higher than 99%. (author) 3 refs.; 6 figs

  4. Separation of certain carboxylic acids utilizing cation exchange membranes

    Science.gov (United States)

    Chum, Helena L.; Sopher, David W.

    1984-01-01

    A method of substantially separating monofunctional lower carboxylic acids from a liquid mixture containing the acids wherein the pH of the mixture is adjusted to a value in the range of from about 1 to about 5 to form protonated acids. The mixture is heated to an elevated temperature not greater than about 100.degree. C. and brought in contact with one side of a perfluorinated cation exchange membrane having sulfonate or carboxylate groups or mixtures thereof with the mixture containing the protonated acids. A pressure gradient can be established across the membrane with the mixture being under higher pressure, so that protonated monofunctional lower carboxylic acids pass through the membrane at a substantially faster rate than the remainder of the mixture thereby substantially separating the acids from the mixture.

  5. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chih-Jen [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, University of Wisconsin - Parkside, Kenosha, WI 53144 (United States); Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Jean, Jiin-Shuh; Liu, Chia-Chuan [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2010-11-15

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca{sup 2+} as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK{sub a2} (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d{sub 001}) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  6. Using satellite data for soil cation exchange capacity studies

    Science.gov (United States)

    Ghaemi, M.; Astaraei, A. R.; Sanaeinejad, S. H.; Zare, H.

    2013-12-01

    This study was planned to examine the use of LandSat ETM+ images to develop a model for monitoring spatial variability of soil cation exchange capacity in a semi-arid area of Neyshaboor. 300 field data were collected from specific GPS registered points, 277 of which were error free, to be analysed in the soil laboratory.The statistical analysis showed that therewas a small R-Squared value, 0.17, when we used the whole data set. Visual interpretation of the graphs showed a trend among some of the data in the data set. Forty points were filtered based on the trends, and the statistical analysis was repeated for those data. It was discovered that the 40 series were more or less in the same environmental conditions; most of them were located in disturbed soils or abandoned lands with sparse vegetation cover. The soil was classified into high and medium salinity, with variable carbon (1.0 to 1.6%), heavy textured and with high silt and clay. Finally it was concluded that two different models could be fitted in the data based on their spatial dependency. The current models are able to explain spatial variability in almost 45 to 65% of the cases.

  7. Persorption of 35S-labelled cation exchangers in mammals

    International Nuclear Information System (INIS)

    Dedek, W.; Grahl, R.; Mothes, B.; Reuter, H.; Sabrowski, E.; Moehring, M.

    1983-01-01

    Persorption rates were determined of 35 S-labelled cation exchangers (sulphonated polystyrene-divinyl benzene copolymerisate) in two particle sizes, between 80μm and 125μm and smaller than 45μm in diameter, following oral administration to pigs of one single dose of 5 g / 25 kg body weight. Maximum persorption rates were 5 x 10 -3 after 51 hours and 7 x 10 -4 after 35 days for the larger particle size. For the fine grain sample the persorption rate showed already after 51 hours a lower value of 2 x 10 -3 , after 35 days it reached with 5 x 10 -4 approximately the same value as it was observed with the large grain sample. About 80 per cent of all substance recorded had been absorbed by muscles. Only less than 1 x 10 -4 of water-soluble 35 S activity and less than 2 x 10 -5 of solid particles were recordable from urine and could be, as well, identified directly by means of autoradiography. The number of particles absorbed by fine grain samples was roughly a hundred times higher than that in large grain samples. However, absorbed amounts were approximately the same after 35 days, related to the SO 3 H group active in ion exchange. The conclusion was drawn that no dependence of persorption rates on particle size was any longer detectable, when 35 days had passed. (author)

  8. Iridium containing honeycomb Delafossites by topotactic cation exchange.

    Science.gov (United States)

    Roudebush, John H; Ross, K A; Cava, R J

    2016-06-07

    We report the structure and magnetic properties of two new iridium-based honeycomb Delafossite compounds, Cu3NaIr2O6 and Cu3LiIr2O6, formed by a topotactic cation exchange reaction. The starting materials Na2IrO3 and Li2IrO3, which are based on layers of IrO6 octahedra in a honeycomb lattice separated by layers of alkali ions, are transformed to the title compounds by a topotactic exchange reaction through heating with CuCl below 450 °C; higher temperature reactions cause decomposition. The new compounds display dramatically different magnetic behavior from their parent compounds - Cu3NaIr2O6 has a ferromagnetic like magnetic transition at 10 K, while Cu3LiIr2O6 retains the antiferromagnetic transition temperature of its parent compound but displays significantly stronger dominance of antiferromagnetic coupling between spins. These results reveal that a surprising difference in the magnetic interactions between the magnetic Ir ions has been induced by a change in the non-magnetic interlayer species. A combination of neutron and X-ray powder diffraction is used for the structure refinement of Cu3NaIr2O6 and both compounds are compared to their parent materials.

  9. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite.

    Science.gov (United States)

    Wang, Chih-Jen; Li, Zhaohui; Jiang, Wei-Teh; Jean, Jiin-Shuh; Liu, Chia-Chuan

    2010-11-15

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca(2+) as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK(a2) (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d(001)) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Facile and green fabrication of cation exchange membrane adsorber with unprecedented adsorption capacity for protein purification.

    Science.gov (United States)

    Khan, M Kamran; Luo, Jianquan; Khan, Rashid; Fan, Jinxin; Wan, Yinhua

    2017-10-27

    Fabricating membrane adsorbers with high adsorption capacity and appreciable throughput for the separation and purification of protein products is challenging in biomedical and pharmaceutical industries. Herein, we report the synthesis of a novel membrane adsorber by functionalizing a nylon microfiltration membrane with alginate dialdehyde (ADA) followed by sulphonic addition, without any solvent usage, and its successful application in the purification of lysozyme. Taking advantage of abundant dual cation exchange (CEX) groups on sulphonic-ADA (S-ADA) ligands, this novel S-ADA-nylon membrane adsorber showed an unprecedented static binding capicity of 286mg/mL for lysozyme adsorption. Meanwhile, the prepared membrane adsorber could be easily regenerated (complete protein elution) under mild conditions and be reused at least for five times. Featured with a unique selectivity, the S-ADA-nylon membrane also captured lysozyme from chicken egg white solution with a high purity (100%) and a high recovery of 98%. The purified lysozyme showed similar specific activity as commercial product. The present work provides a facile, green and low-cost approach for the preparation of high-performance membrane adsorbers, which has a great potential in protein production. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Method for in situ determination cation exchange capacities of subsurface formations

    International Nuclear Information System (INIS)

    Fertl, W.H.; Welker, D.W.

    1980-01-01

    A method is disclosed for the in situ examination of each subsurface formation penetrated by a borehole to ascertain the cation exchange capacity of such formations within a geological region. Natural γ ray logging is used to develop signals functionally related to the total γ radiation and to the potassium-40, uranium and thorium energy-band radiations. A first borehole is traversed by a potential γ ray spectrometer to provide selected measurements of natural γ radiation. Core samples are taken from the logged formation and laboratory tests performed to determine the cation exchange capacity thereof. The cation exchange capacities thus are developed then correlated with selected parameters provided by the γ ray spectrometer to establish functional relationships. Cation exchange capacities of formations in subsequent boreholes within the region are then determined in situ by use of the natural γ ray spectrometer and these established relationships. (author)

  12. Ca-Na cation exchange in zeolite A: a microscopic approach using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Suffritti, G.B.; Demontis, P.; Sale, R.; Gulin-Gonzalez, J.

    2008-01-01

    Molecular dynamics computer simulation technique was applied to the study of Ca-Na cation exchange in hydrated zeolite A, one of the most widely exploited cation exchange processes in practical applications. The exchange can occur only by breaking and reconstructing the coordination shell of the cations, so that some steps of the mechanism show a high activation energy, even if the overall energy difference between the starting and the final states of the process is relatively small. Therefore, special procedures such as umbrella sampling must be used to force the system to overcome the energy barriers. The cation exchange appeared to follow a highly coordinated mechanism, and a complete exploration of the free-energy hypersurface is required to obtain quantitative results. In this paper some interesting qualitative features of the cation exchange process arc anticipated.

  13. Forward Osmosis Brine Drying

    Science.gov (United States)

    Flynn, Michael; Shaw, Hali; Hyde, Deirdre; Beeler, David; Parodi, Jurek

    2015-01-01

    The Forward Osmosis Brine Drying (FOBD) system is based on a technique called forward osmosis (FO). FO is a membrane-based process where the osmotic potential between brine and a salt solution is equalized by the movement of water from the brine to the salt solution. The FOBD system is composed of two main elements, the FO bag and the salt regeneration system. This paper discusses the results of testing of the FO bag to determine the maximum water recovery ratio that can be attained using this technology. Testing demonstrated that the FO bag is capable of achieving a maximum brine water recovery ratio of the brine of 95%. The equivalent system mass was calculated to be 95 kg for a feed similar to the concentrated brine generated on the International Space Station and 86 kg for an Exploration brine. The results have indicated that the FOBD can process all the brine for a one year mission for between 11% to 10% mass required to bring the water needed to make up for water lost in the brine if not recycled. The FOBD saves 685 kg and when treating the International Space Station brine and it saves 829 kg when treating the Exploration brine. It was also demonstrated that saturated salt solutions achieve a higher water recovery ratios than solids salts do and that lithium chloride achieved a higher water recovery ratio than sodium chloride.

  14. Cation Exchange Capacity of Biochar: An urgent method modification

    Science.gov (United States)

    Munera, Jose; Martinsen, Vegard; Mulder, Jan; Tau Strand, Line; Cornelissen, Gerard

    2017-04-01

    A better understanding of the cation exchange capacity (CEC) values of biochar and its acid neutralizing capacity (ANC) is crucial when tailoring a single biochar for a particular soil and crop. Literature values for the CEC of biochar are surprisingly variable, commonly ranging from 5 to 50 cmol+/Kg even as high as 69 to 204 cmol+/Kg and often poorly reproducible, suggesting methodological problems. Ashes and very fine pores in biochar may complicate the analysis and thus compromise the results. Here, we modify and critically assess different steps in a common method for CEC determination in biochar and investigate how the measured CEC may be affected by slow cation diffusion from micro-pores. We modified the existing ammonium acetate (NH4-OAc) method (buffered at pH 7), based on displaced ammonium (NH4+) in potassium chloride (KCl) extracts after removing excess NH4-OAc with alcohol in batch mode. We used pigeon pea biochar (produced at 350 ˚C; particle size 0.5mm to 2mm) to develop the method and we tested its reproducibility in biochars with different ANC. The biochar sample (1.00g) was pH-adjusted to 7 after 2 days of equilibration, using hydrochloric acid (HCl), and washed with water until the conductivity of the water was replacing cations (NH4+ and K+) in micro-pores, we equilibrated the biochar with NH4-OAc for 1 and 7 days, and after washing with alcohol, for 1, 3 and 7 days with KCl. The effects of the washing volume of alcohol (15, 30 and 45 ml) and of the biochar to NH4OAc solution ratio (1:15, 1:30 and 1:45) were also tested. The CEC values were corrected for dry matter content and mass losses during the process. Results indicate that the measured CEC values of the modified method were highly reproducible and that 1 day shaking with NH4OAc and KCl is enough to saturate the exchange sites with NH4+ and subsequently with K+. The biochar to NH4OAc solution ratio did not affect the measured CEC. Three washings with at least 15 ml alcohol are required to

  15. Pure zeolite exchange to synthetic zeolite characterized by XRD to produce cation exchange materials

    International Nuclear Information System (INIS)

    Zainab Ramli; Dewi Jamaliah Kamsiar; Hasidah Mohd Arsat

    2008-01-01

    In this study, natural mordenite was modified to other zeolites phases having low Si/ Al in order to increase the cation exchange capacity of the material. Modification was carried out hydrothermally at 100 degree Celsius in time range between 0 to 24 hours. The samples obtained were characterized by XRD and infrared spectroscopy. Results showed that a mixture of zeolite X and P were formed zeolite X was the dominant zeolite at 6 hrs heating time while zeolite P were dominant after 6 hrs. Ion Exchange capacity of natural mordenite, samples at 6 hr and 24 hrs heating, performed using Ca 2+ cation gave cation exchange in the decreasing order of 83.57 % , 72.50 %, 69.45 % for sample 24 hrs, 6 hrs and natural mordenite respectively. It indicates that sample having zeolite P phase is the best cation exchange capacity with 21 mg Ca 2+ / g zeolite with an increased of 23 % capacity compared to natural zeolite. (author)

  16. Measurement of cation exchange capacity (CEC) on natural zeolite by percolation method

    Science.gov (United States)

    Wiyantoko, Bayu; Rahmah, Nafisa

    2017-12-01

    The cation exchange capacity (CEC)measurement has been carried out in natural zeolite by percolation method. The natural zeolite samples used for cation exchange capacity measurement were activated beforehand with physical activation and chemical activation. The physically activated zeolite was done by calcination process at 600 °C for 4 hours. The natural zeolite was activated chemically by using sodium hydroxide by refluxing process at 60-80 °C for 3 hours. In summary, cation exchange capacity (CEC) determination was performed by percolation, distillation and titration processes. Based on the measurement that has been done, the exchange rate results from physical activated and chemical activated of natural zeolite were 181.90cmol (+)/kg and 901.49cmol (+)/kg respectively.

  17. Sorption of elements on phosphonic acid cation exchanger from nitric acid solutions

    International Nuclear Information System (INIS)

    Razbash, A.A.; Sevast'yanov, Yu.G.; Bykhovskii, D.N.

    1988-01-01

    The coefficients of distribution of 25 elements between KRF-20t-60 macroporous phosphonic acid cation exchanger and 0.1-2.0 M nitric acid have been determined by a static method. The above cation exchanger has a high affinity for some multivalent metal ions like Fe (III) , In (III) , Ce (IV) , Ti (IV) , etc. A mechanism has been proposed which explains the increase in cerium(IV) sorption with the rise of acid concentration above 2 M. An example of separation of an artificial mixture of lead and bismuth has been given

  18. Microbial desalination cell with sulfonated sodium poly(ether ether ketone) as cation exchange membranes for enhancing power generation and salt reduction.

    Science.gov (United States)

    Moruno, Francisco Lopez; Rubio, Juan E; Atanassov, Plamen; Cerrato, José M; Arges, Christopher G; Santoro, Carlo

    2018-06-01

    Microbial desalination cell (MDC) is a bioelectrochemical system capable of oxidizing organics, generating electricity, while reducing the salinity content of brine streams. As it is designed, anion and cation exchange membranes play an important role on the selective removal of ions from the desalination chamber. In this work, sulfonated sodium (Na + ) poly(ether ether ketone) (SPEEK) cation exchange membranes (CEM) were tested in combination with quaternary ammonium chloride poly(2,6-dimethyl 1,4-phenylene oxide) (QAPPO) anion exchange membrane (AEM). Non-patterned and patterned (varying topographical features) CEMs were investigated and assessed in this work. The results were contrasted against a commercially available CEM. This work used real seawater from the Pacific Ocean in the desalination chamber. The results displayed a high desalination rate and power generation for all the membranes, with a maximum of 78.6±2.0% in salinity reduction and 235±7mWm -2 in power generation for the MDCs with the SPEEK CEM. Desalination rate and power generation achieved are higher with synthesized SPEEK membranes when compared with an available commercial CEM. An optimized combination of these types of membranes substantially improves the performances of MDC, making the system more suitable for real applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands

    NARCIS (Netherlands)

    Fan, Zhaochuan; Lin, Li-Chiang; Buijs, Wim; Vlugt, Thijs J.H.; van Huis, M.A.

    2016-01-01

    Cation exchange is a powerful tool for the synthesis of nanostructures such as core–shell nanocrystals, however, the underlying mechanism is poorly understood. Interactions of cations with ligands and solvent molecules are systematically ignored in simulations. Here, we introduce the concept of

  20. A simple method for estimating cation exchange capacity from water vapor sorption

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus

    2016-01-01

    Knowledge of soil cation exchange capacity (CEC) is crucial for soil fertility considerations, sorption and release of polar and non-polar compounds, engineering applications, and other biogeochemical processes. Standard procedures such as the ammonium acetate or the BaCl2 compulsive exchange met...

  1. Ion transport resistance in Microbial Electrolysis Cells with anion and cation exchange membranes

    NARCIS (Netherlands)

    Sleutels, T.H.J.A.; Hamelers, H.V.M.; Rozendal, R.A.; Buisman, C.J.N.

    2009-01-01

    Previous studies have shown that Microbial Electrolysis Cells (MECs) perform better when an anion exchange membrane (AEM) than when a cation exchange membrane (CEM) separates the electrode chambers. Here, we have further studied this phenomenon by comparing two analysis methods for

  2. Sulfonation Process and Desalination Effect of Polystyrene/PVDF Semi-Interpenetrating Polymer Network Cation Exchange Membrane

    Directory of Open Access Journals (Sweden)

    Yin-lin Lei

    2014-07-01

    Full Text Available With the classical sulfonation method of polystyrene-based strongly acidic cation exchange resins, polystyrene/polyvinylidene fluoride (PVDF alloy particles were sulfonated to obtain a cation exchange resin, which was then directly thermoformed to prepare a semi-interpenetrating polymer network (semi-IPN cation exchange membrane. The effects of the swelling agent, sulfonation time and temperature and the relative contents of polystyrene and divinylbenzene (DVB in the alloy particles on the feasibility of the membrane formation are discussed. The results indicate that a favorable sulfonation degree above 80% and a suitable ion exchange capacity of 1.5–2.4 mmol/g can be gained, with concentrated sulfuric acid as the sulfonation agent and 1,2-dichloroethane as the swelling agent. The running electrical resistance and desalination effect of the prepared cation exchange membrane were measured in a pilot-scale electrodialyser and not only obviously exceeded a commercial heterogeneous cation exchange membrane, but was also very close to a commercial homogenous membrane. In this way, the authors have combined the classical sulfonation method of polystyrene-based cation exchange resins with the traditional thermoforming manufacturing process of heterogeneous cation exchange membranes, to successfully develop a novel, low-price, but relatively high-performance polystyrene/PVDF cation exchange membrane with the semi-IPN structure.

  3. New system applying image processor to automatically separate cation exchange resin and anion exchange resin for condensate demineralizer

    International Nuclear Information System (INIS)

    Adachi, Tsuneyasu; Nagao, Nobuaki; Yoshimori, Yasuhide; Inoue, Takashi; Yoda, Shuji

    2014-01-01

    In PWR plant, condensate demineralizer is equipped to remove corrosive ion in condensate water. Mixed bed packing cation exchange resin (CER) and anion exchange resin (AER) is generally applied, and these are regenerated after separation to each layer periodically. Since the AER particle is slightly lighter than the CER particle, the AER layer is brought up onto the CER layer by feeding water upward from the bottom of column (backwashing). The separation performance is affected by flow rate and temperature of water for backwashing, so normally operators set the proper condition parameters regarding separation manually every time for regeneration. The authors have developed the new separation system applying CCD camera and image processor. The system is comprised of CCD camera, LED lamp, image processor, controller, flow control valves and background color panel. Blue color of the panel, which is corresponding to the complementary color against both ivory color of AER and brown color of CER, is key to secure the system precision. At first the color image of the CER via the CCD camera is digitized and memorized by the image processor. The color of CER in the field of vision of the camera is scanned by the image processor, and the position where the maximum difference of digitized color index is indicated is judged as the interface. The detected interface is able to make the accordance with the set point by adjusting the flow rate of backwashing. By adopting the blue background panel, it is also possible to draw the AER out of the column since detecting the interface of the CER clearly. The system has provided the reduction of instability factor concerning separation of resin during regeneration process. The system has been adopted in two PWR plants in Japan, it has been demonstrating its stable and precise performance. (author)

  4. HTGR fuel development: loading of uranium on carboxylic acid cation-exchange resins using solvent extraction of nitrate

    International Nuclear Information System (INIS)

    Haas, P.A.

    1975-09-01

    The reference fuel kernel for recycle of 233 U to HTGR's (High-Temperature Gas-Cooled Reactors) is prepared by loading carboxylic acid cation-exchange resins with uranium and carbonizing at controlled conditions. The purified 233 UO 2 (NO 3 ) 2 solution from a fuel reprocessing plant contains excess HNO 3 (NO 3 - /U ratio of approximately 2.2). The reference flowsheet for a 233 U recycle fuel facility at Oak Ridge uses solvent extraction of nitrate by a 0.3 M secondary amine in a hydrocarbon diluent to prepare acid-deficient uranyl nitrate. This nitrate extraction, along with resin loading and amine regeneration steps, was demonstrated in 14 runs. No significant operating difficulties were encountered. The process is controlled via in-line pH measurements for the acid-deficient uranyl nitrate solutions. Information was developed on pH values for uranyl nitrate solution vs NO 3 - /U mole ratios, resin loading kinetics, resin drying requirements, and other resin loading process parameters. Calculations made to estimate the capacities of equipment that is geometrically safe with respect to control of nuclear criticality indicate 100 kg/day or more of uranium for single nitrate extraction lines with one continuous resin loading contactor or four batch loading contactors. (auth)

  5. Reactive transport modeling of multicomponent cation exchange at the laboratory and field scale

    International Nuclear Information System (INIS)

    Steefel, Carl I.

    2004-01-01

    Multicomponent ion exchange models have been successful in describing the chromatographic separation of cations in both laboratory and field settings. Their chief advantage lies in their ability to capture the competitive effects of other cations that may be present. By incorporating exchanger activity coefficients calculated on the basis of the Gibbs-Duhem equation applied to the exchanger phase, it is possible to correct for the non-ideality of exchange. The use of multiple exchange sites can also substantially improve the ability of the cation exchange models to describe adsorption and retardation. All of these benefits are associated with relatively little additional computational burden. Even where the cost of the multicomponent cation exchange calculations are considered too high, the models are useful in calculating distribution coefficients for the environmental conditions of interest

  6. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water

    KAUST Repository

    Han, Sanyang

    2016-10-04

    Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad range of fields hinges upon the development of a robust synthetic protocol that provides rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large classes of such nanocrystals. By combining the process of cation exchange with energy migration, the luminescence properties of the nanocrystals can be easily tuned while preserving the size, morphology and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us to achieve upconversion luminescence in Ce3+ and Mn2+-activated hexagonal-phased nanocrystals, opening a gateway towards applications ranging from chemical sensing to anti-counterfeiting.

  7. Infrared spectroscopy and thermal analysis of prepared cation exchangers from cellulosic materials

    International Nuclear Information System (INIS)

    Nada, A.M.A.; EI-Sherief, S.; Nasr, A.; Kamel, M.

    2005-01-01

    Different cation exchangers were prepared by incorporation of phosphate and sulfate groups into acid or alkali treated wood pulp. The molecular structure of these cation exchangers were followed by infrared spectroscopy and thermal degradation analysis technique. From infrared spectra, a new bands are seen at 1200 and 980 cm-1 in phosphorylated wood pulp due to the formation of C-O-P bond. Another bands were seen at 1400, 1200 and 980 cm-1 in phospho sulfonated wood pulp due to the formation of CO- P and C-O-S bonds. Also, it is seen from infrared spectra that the crystallinity index for acid treated wood pulp has a higher value than untreated and alkali treated wood pulp. On the other hand, the acid treated and phosphorylated acid treated wood pulp have a higher activation energy than untreated and phosphorylated alkali treated wood pulp

  8. Conventional resin cation exchangers versus EDI for CACE measurement in power plants. Feasibility and practical field results

    Energy Technology Data Exchange (ETDEWEB)

    Sigrist, Manuel [Swan Systeme AG, Hinwil (Switzerland)

    2017-10-15

    The conductivity measurement after a cation exchanger in power plants with steam turbines was introduced soon after 1950 by Larson and Lane. Due to the simple measuring principle, the sensitivity to ionic contaminations and to its high reliability, the conductivity measurement after a cation exchanger (CACE) has become the most commonly used online analytical method in power plants with steam generators. Swan has investigated electro deionisation (EDI) as substitution of the conventional cation exchange resin and has developed a new conductivity instrument using this principle. This paper provides a description of the conventional method for cation conductivity measurements as well as of the new AMI CACE using EDI method.

  9. Characterization of expandable clay minerals in Lake Baikal sediments by thermal dehydration and cation exchange

    Czech Academy of Sciences Publication Activity Database

    Grygar, Tomáš; Bezdička, Petr; Hradil, David; Hrušková, Michaela; Novotná, Kateřina; Kadlec, Jaroslav; Pruner, Petr; Oberhansli, H.

    2005-01-01

    Roč. 53, č. 4 (2005), s. 389-400 ISSN 0009-8604 R&D Projects: GA AV ČR(CZ) IAA3032401 Grant - others:European Commission(XE) EVK2-2000-00057 Institutional research plan: CEZ:AV0Z40320502 Keywords : cation exchange capacity * Lake Baikal * Lake Sediments Subject RIV: CA - Inorganic Chemistry Impact factor: 1.364, year: 2005

  10. Cation-exchange membranes: comparison of homopolymer, block copolymer, and heterogeneous membranes

    Czech Academy of Sciences Publication Activity Database

    Schauer, Jan; Llanos, J.; Žitka, Jan; Hnát, J.; Bouzek, K.

    2012-01-01

    Roč. 124, SI 1 (2012), E66-E72 ISSN 0021-8995 R&D Projects: GA MŠk(CZ) 7E08005 EU Projects: European Commission(XE) 212903 - WELTEMP Institutional research plan: CEZ:AV0Z40500505 Keywords : cation-exchange membranes * poly(phenylene oxide) * poly(ether ketones) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.395, year: 2012

  11. The colloid fraction and cation-exchange capacity in the soils of Vojvodina, Serbia

    Directory of Open Access Journals (Sweden)

    Nešić Ljiljana

    2015-01-01

    Full Text Available The colloidal complex of soil consists of humus and clay, the most important acidoids which are able to create the bonds between oppositely charged ions (cations through the forces strong enough to provide protection from leaching, and also weak enough to enable absorption through the plant root. This ability becomes more pronounced if the degree of dispersity is higher, i.e. if particles have smaller diameters. Total of 435 soil samples were collected from the surface horizon in 2011, for the purpose of soil fertility control in Vojvodina and prevention of its possible degradation in broader terms. This paper presents a part of study through selected representative soil samples, related to the research results of mechanical composition, basic chemical properties, and cation-exchange capacity in the most frequent types of soils in North Bačka and Banat (chernozem, fluvisol, semiglay, humoglay, solonchak, solonetz, due to the fact that soil fertility and its ecological function in environment protection largely depend on the studied properties. The average content of clay was 25.26%, ranging from 5.76 to 49.44%, the average content of humus was 3.10%, ranging between 1.02 and 4.30%, while the average value of CEC was 27.30 cmol/kg, ranging between 12.03 and 46.06 cmol/kg. Soils with higher content of clay and humus have greater cation-exchange capacity. According to the established average values of CEC in cmol/kg, the order of soil types is as follows: solonetz (40.06, semiglay (31.98, humoglay (30.98, solonchak (26.62, chernozem (22.72, and fluvisol (22.40. Research results have shown that cation-exchange capacity depends on clay fraction and humus content. Higher correlation coefficient between CEC and clay, compared to CEC and humus, indicates that clay content compared to humus content has greater effect on cation-exchange capacity.

  12. Adsorption Behavior of Charge Isoforms of Monoclonal Antibodies on Strong Cation Exchangers.

    Science.gov (United States)

    Steinebach, Fabian; Wälchli, Ruben; Pfister, David; Morbidelli, Massimo

    2017-12-01

    In this work, the adsorption behavior of the different charge isoforms of the same monoclonal antibody (mAb) on strong cation-exchange resins is analyzed. While charge isoforms of the same antibody mainly differ in their effective charge, the similar structure and size allows developing a simplified model, which describes the adsorption behavior of mAb charge isoforms independently of the number of isoforms with only four parameters. In contrast to classical model-based descriptions of the adsorption isotherm, the proposed work enables retrieving some physical meaning in the definition of the model parameters. These model parameters are determined for several resin-antibody combinations. Thereby it is found that for mAbs on commercial cation exchangers an effective resin charge density of 0.22 ± 0.08 mmol mL -1 of solid phase is used for protein binding, which was found to be independent of the absolute resin charge density measured by titration. The presented results help to understand the adsorption behavior of mAbs on cation-exchangers, which is applicable both for the isolation of the main charge isoform or for preserving a certain charge isoform pattern during the polishing processes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The role of cation exchange in controlling groundwater chemistry at Aspo, Sweden

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1995-01-01

    Construction-induced groundwater flow has resulted in the mixing of relatively dilute shallow groundwater with more concentrated groundwater at depth in the underground Hard Rock Laboratory (HRL) at Aespoe, Sweden. The observed compositional variation of the mixed groundwater cannot be explained using a conservative mixing model. The geochemical modeling package EQ3/6, to which a cation-exchange model was added, was used to simulate mixing between the two fluids. The results of modeling simulations suggest that cation exchange between groundwater and fracture-lining clays can explain the major element fluid chemistry observed in the HRL. The quantity of exchanger required to match simulated with observed fluid chemistry is reasonable and is consistent with the observed fracture mineralogy. This preliminary study establishes cation exchange as a viable mechanism for controlling the chemical evolution of groundwaters in a fracture-dominated dynamic flow system. This modeling study also strengthens their confidence in the ability to model the potential effects of fracture-lining minerals on the transport of radionuclides in a high level nuclear waste repository

  14. Esterification of oleic acid with ethanol catalyzed by sulfonated cation exchange resin: Experimental and kinetic studies

    International Nuclear Information System (INIS)

    Jiang, Yuwang; Lu, Jie; Sun, Kaian; Ma, Lingling; Ding, Jincheng

    2013-01-01

    Graphical abstract: - Highlights: • Esterification of oleic acid with ethanol was investigated in the presence of sulfonated cation exchange resin. • We studied kinetic model of the esterification of oleic acid with ethanol according to experimental data. • The proposed kinetic model can well predict oleic acid conversion. - Abstract: This paper investigated the effects of ethanol to oleic acid molar ratio, reaction temperature, catalyst loading, water content and catalyst recycling on sulfonated cation exchange resin in a stirred batch reactor under atmospheric pressure. When the esterification was carried out with an ethanol to oleic acid (42.4 g) molar ratio of 9:1, reflux of ethanol at 82 °C, 20 g of catalyst and 8 h of reaction time, the oleic acid conversion rate reached approximately 93%. A pseudo-homogeneous kinetic model for describing the esterification of oleic acid with ethanol by the sulfonated cation exchange resin was developed on the basis of laboratorial results. The kinetic model can well predict the oleic acid conversion

  15. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    KAUST Repository

    Binetti, Enrico

    2015-10-27

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices.

  16. Strong cation-exchange chromatography of proteins on a sulfoalkylated monolithic cryogel.

    Science.gov (United States)

    Perçin, Işık; Khalaf, Rushd; Brand, Bastian; Morbidelli, Massimo; Gezici, Orhan

    2015-03-20

    A new strong cation exchanger (SCX) monolithic column was synthesized by at-line surface modification of a cryogel prepared by copolymerization of 2-hydroxyethylmethacrylate (HEMA) and glycidylmethacrylate (GMA). Sodium salt of 3-Mercaptopropane sulfonic acid (3-MPS) was used as the ligand to transform the surface of the monolith into a strong cation exchanger. The obtained material was characterized in terms of elemental analysis, infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) N2 adsorption, and used as a stationary phase for strong-cation exchange chromatography of some proteins, such as α-chymotrypsinogen, cytochrome c and lysozyme. Water permeability of the column was calculated according to Darcy's law (2.66×10(-13)m(2)). The performance of the monolithic cryogel column was evaluated on the basis of Height Equivalent to a Theoretical Plate (HETP). Retention behavior of the studied proteins was modeled on the basis of Yamamoto model to understand the role of the ion-exchange mechanism in retention behaviors. The considered proteins were successfully separated, and the obtained chromatogram was compared with that obtained with a non-functionalized cryogel column. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Cation exchange in a temporally fluctuating thin freshwater lens on top of saline groundwater

    Science.gov (United States)

    Eeman, S.; De Louw, P. G. B.; Van der Zee, S. E. A. T. M.

    2016-10-01

    In coastal-zone fields with a high groundwater level and sufficient rainfall, freshwater lenses are formed on top of saline or brackish groundwater. The fresh and the saline water meet at shallow depth, where a transition zone is found. This study investigates the mixing zone that is characterized by this salinity change, as well as by cation exchange processes, and which is forced by seepage and by rainfall which varies as a function of time. The processes are first investigated for a one-dimensional (1D) stream tube perpendicular to the interface concerning salt and major cation composition changes. The complex sequence of changes is explained with basic cation exchange theory. It is also possible to show that the sequence of changes is maintained when a two-dimensional field is considered where the upward saline seepage flows to drains. This illustrates that for cation exchange, the horizontal component (dominant for flow of water) has a small impact on the chemical changes in the vertical direction. The flow's horizontal orientation, parallel to the interface, leads to changes in concentration that are insignificant compared with those that are found perpendicular to the interface, and are accounted for in the 1D flow tube. Near the drains, differences with the 1D considerations are visible, especially in the longer term, exceeding 100 years. The simulations are compared with field data from the Netherlands which reveal similar patterns.

  18. In vivo cation exchange in quantum dots for tumor-specific imaging.

    Science.gov (United States)

    Liu, Xiangyou; Braun, Gary B; Qin, Mingde; Ruoslahti, Erkki; Sugahara, Kazuki N

    2017-08-24

    In vivo tumor imaging with nanoprobes suffers from poor tumor specificity. Here, we introduce a nanosystem, which allows selective background quenching to gain exceptionally tumor-specific signals. The system uses near-infrared quantum dots and a membrane-impermeable etchant, which serves as a cation donor. The etchant rapidly quenches the quantum dots through cation exchange (ionic etching), and facilitates renal clearance of metal ions released from the quantum dots. The quantum dots are intravenously delivered into orthotopic breast and pancreas tumors in mice by using the tumor-penetrating iRGD peptide. Subsequent etching quenches excess quantum dots, leaving a highly tumor-specific signal provided by the intact quantum dots remaining in the extravascular tumor cells and fibroblasts. No toxicity is noted. The system also facilitates the detection of peritoneal tumors with high specificity upon intraperitoneal tumor targeting and selective etching of excess untargeted quantum dots. In vivo cation exchange may be a promising strategy to enhance specificity of tumor imaging.The imaging of tumors in vivo using nanoprobes has been challenging due to the lack of sufficient tumor specificity. Here, the authors develop a tumor-specific quantum dot system that permits in vivo cation exchange to achieve selective background quenching and high tumor-specific imaging.

  19. Concentration of ions Co(II), Ni(II) at the Tokem-250 carboxylic cation exchange for catalysts development

    Science.gov (United States)

    Zharkova, Valentina; Bobkova, Ludmila; Brichkov, Anton; Kozik, Vladimir

    2017-11-01

    Sorption and catalytic properties of the cation exchanger are investigated. It was found that the Tokem-250 has a wide operating range of pH. The value of the effective ionization constant of the functional groups of the cation exchanger (pKa) is 6.59. The Tokem-250 cation exchanger exhibits selectivity to Ni2+ ions to Co2+ (D˜103). This is probably due to the stability of ion-exchange complexes detected by the method of diffuse reflectance electron spectroscopy (ESDD). According to these data, for Co2+ ions, in contrast to Ni2+, tetragonal distortion of octahedral coordination is characteristic, which has a positive effect on the stability of complexes with Co2+. To obtain spherical catalysts on the basis of Tokem-250, cobalt-containing samples of cation exchanger were used. The developed spherical materials have catalytic activity in the reactions of deep and partial oxidation of n-heptane.

  20. Implications of cation exchange on clay release and colloid-facilitated transport in porous media.

    Science.gov (United States)

    Bradford, Scott A; Kim, Hyunjung

    2010-01-01

    Column experiments were conducted to study chemical factors that influence the release of clay (kaolinite and quartz minerals) from saturated Ottawa sand of different sizes (710,360, and 240 microm). A relatively minor enhancement of clay release occurred when the pH was increased (5.8 to 10) or the ionic strength (IS) was decreased to deionized (DI) water. In contrast, clay release was dramatically enhanced when monovalent Na+ was exchanged for multivalent cations (e.g., Ca2+ and Mg2+) on the clay and sand and then the solution IS was reduced to DI water. This solution chemistry sequence decreased the adhesive force acting on the clay as a result of an increase in the magnitude of the clay and sand zeta potential with cation exchange, and expansion of the double layer thickness with a decrease in IS to DI water. The amount of clay release was directly dependent on the Na+ concentration of the exchanging solution and on the initial clay content of the sand (0.026-0.054% of the total mass). These results clearly demonstrated the importance of the order and magnitude of the solution chemistry sequence on clay release. Column results and scanning electron microscope (SEM) images also indicated that the clay was reversibly retained on the sand, despite predictions of irreversible interaction in the primary minimum. One plausible explanation is that adsorbed cations increased the separation distance between the clay-solid interfaces as a result of repulsive hydration forces. A cleaning procedure was subsequently developed to remove clay via cation exchange and IS reduction; SEM images demonstrated the effectiveness of this approach. The transport of Cu2+ was then shown to be dramatically enhanced by an order of magnitude in peak concentration by adsorption on clays that were released following cation exchange and IS reduction.

  1. Quantitative electrochromatography of uranium and platinum on papers impregnated with thorium and antimony based cation exchanger

    International Nuclear Information System (INIS)

    Misra, A.K.

    1992-01-01

    Electrochromatography of 32 metal ions have been studied on papers impregnated with thorium antimonate cation exchanger in aq. organic acids, aq. nitric acid as well as in EDTA buffers. On the basis of differential migration which depends on the ion exchange properties of thorium antimonate and nature of complexes formed with the electrolytes, some useful qualitative and quantitative separations of synthetic mixtures of metal ions have been achieved. The effect of some other physical parameter has also been discussed. Quantitative separation of platinum and uranium has been developed. (author). 13 refs., 2 figs., 5 tabs

  2. A solid-state cation exchange reaction to form multiple metal oxide heterostructure nanowires.

    Science.gov (United States)

    Chen, Y H; Huang, C W; Yeh, P H; Chen, J Y; Lin, T Y; Chang, C F; Wu, W W

    2016-09-29

    Metal oxide nanostructures have been investigated extensively due to their wide range of physical properties; zinc oxide is one of the most promising materials. It exhibits fascinating functional properties and various types of morphologies. In particular, ZnO heterostructures have attracted great attention because their performance can be modified and further improved by the addition of other materials. In this study, we successfully transformed ZnO nanowires (NWs) into multiple ZnO/Al 2 O 3 heterostructure NWs via a solid-state cation exchange reaction. The experiment was carried out in situ via an ultrahigh vacuum transmission electron microscope (UHV-TEM), which was equipped with a video recorder. Moreover, we analyzed the structure and composition of the heterostructure NWs by Cs-corrected STEM equipped with EDS. Based on these experimental results, we inferred a cation exchange reaction ion path model. Additionally, we investigated the defects that appeared after the cation reaction, which resulted from the remaining zinc ions. These multiple heterostructure ZnO/Al 2 O 3 NWs exhibited excellent UV sensing sensitivity and efficiency.

  3. Chabazite: stable cation-exchanger in hyper alkaline concrete pore water.

    Science.gov (United States)

    Van Tendeloo, Leen; Wangermez, Wauter; Kurttepeli, Mert; de Blochouse, Benny; Bals, Sara; Van Tendeloo, Gustaaf; Martens, Johan A; Maes, André; Kirschhock, Christine E A; Breynaert, Eric

    2015-02-17

    To avoid impact on the environment, facilities for permanent disposal of hazardous waste adopt multibarrier design schemes. As the primary barrier very often consists of cement-based materials, two distinct aspects are essential for the selection of suitable complementary barriers: (1) selective sorption of the contaminants in the repository and (2) long-term chemical stability in hyperalkaline concrete-derived media. A multidisciplinary approach combining experimental strategies from environmental chemistry and materials science is therefore essential to provide a reliable assessment of potential candidate materials. Chabazite is typically synthesized in 1 M KOH solutions but also crystallizes in simulated young cement pore water, a pH 13 aqueous solution mainly containing K(+) and Na(+) cations. Its formation and stability in this medium was evaluated as a function of temperature (60 and 85 °C) over a timeframe of more than 2 years and was also asessed from a mechanistic point of view. Chabazite demonstrates excellent cation-exchange properties in simulated young cement pore water. Comparison of its Cs(+) cation exchange properties at pH 8 and pH 13 unexpectedly demonstrated an increase of the KD with increasing pH. The combined results identify chabazite as a valid candidate for inclusion in engineered barriers for concrete-based waste disposal.

  4. Esterification of palm fatty acid distillate with epychlorohydrin using cation exchange resin catalyst

    Science.gov (United States)

    Budhijanto, Budhijanto; Subagyo, Albertus F. P. H.

    2017-05-01

    Palm Fatty Acid Distillate (PFAD) is one of the wastes from the conversion of crude palm oil (CPO) into cooking oil. The PFAD is currently only utilized as the raw material for low grade soap and biofuel. To improve the economic value of PFAD, it was converted into monoglyceride by esterification process. Furthermore, the monoglyceride could be polymerized to form alkyd resin, which is a commodity of increasing importance. This study aimed to propose a kinetics model for esterification of PFAD with epichlorohydrin using cation exchange resin catalyst. The reaction was the first step from a series of reactions to produce the monoglyceride. In this study, the reaction between PFAD and epichlorohydirne was run in a stirred batch reactor. The stirrer was operated at a constant speed of 400 RPM. The reaction was carried out for 180 minutes on varied temperatures of 60°C, 70°C, 80°C, dan 90°C. Cation exchange resin was applied as solid catalysts. Analysis was conducted periodically by measuring the acid number of the samples, which was further used to calculate PFAD conversion. The data were used to determine the rate constants and the equilibrium constants of the kinetics model. The kinetics constants implied that the reaction was reversible and controlled by the intrinsic surface reaction. Despite the complication of the heterogeneous nature of the reaction, the kinetics data well fitted the elementary rate law. The effect of temperature on the equilibrium constants indicated that the reaction is exothermic.

  5. Preliminary studies of the total cation exchange capacity of sediments from two North Atlantic study sites

    International Nuclear Information System (INIS)

    Hydes, D.J.; Hill, N.C.; Clarke, H.; Carpenter, M.S.N.

    1983-01-01

    Initially four different methods of measuring total cation exchange capacity were compared. There were two chemical methods (ammonium saturation with displacement into seawater, and barium saturation followed by replacement with magnesium) and two radiochemical methods (sodium-22 and caesium-134 saturation). The barium-magnesium and sodium-22 methods were then applied to sediment samples from Core D10164Pound1K from the Nares Fracture Valley, and Core D10554Pound11K from the eastern flank of the Great Meteor Rise. The material at site 10164 is a pelagic clay whereas at site 10554 it is carbonate ooze. The total cation exchange capacities (T.C.E.C.) of samples from the two sites are similar when measured by the sodium-22 method, the mean for Core 10164 was 21.7 meq/100g and 24.4 meq/100g for Core 10554. However for Core 10554 the barium-magnesium method gives a mean of 42.8 meq/100g. The difference in T.C.E.C. measured by the two methods appears to be due to the high calcite content of core 10554 sediment. Measured exchange capacities are lower than in coastal sediments. In deep sea sediments organic matter either makes a very small contribution to the T.C.E.C. (core 10164) or actually blocks exchange sites (Core 10554). Amorphous oxides of iron and manganese contribute between 20 and 50% of the T.C.E.C. (author)

  6. Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures

    Science.gov (United States)

    Allen, E. R.; Hossner, L. R.; Ming, D. W.; Henninger, D. L.

    1993-01-01

    Mixtures of zeolite and phosphate rock (PR) have the potential to provide slow-release fertilization of plants in synthetic soils by dissolution and ion-exchange reactions. This study was conducted to examine solubility and cation-exchange relationships in mixtures of PR and NH4- and K-saturated clinoptilolite (Cp). Batch-equilibration experiments were designed to investigate the effect of PR source, the proportion of exchangeable K and NH4, and the Cp to PR ratio on solution N, P, K, and Ca concentrations. The dissolution and cation-exchange reactions that occurred after mixing NH4- and K-saturated Cp with PR increased the solubility of the PR and simultaneously released NH4 and K into solution. The more reactive North Carolina (NC) PR rendered higher solution concentrations of NH4 and K when mixed with Cp than did Tennessee (TN) PR. Solution P concentrations for the Cp-NC PR mixture and the Cp-TN PR mixture were similar. Solution concentrations of N, P, K, and Ca and the ratios of these nutrients in solution varied predictably with the type of PR, the Cp/PR ratio, and the proportions of exchangeable K and NH4 on the Cp. Our research indicated that slow-release fertilization using Cp/PR media may provide adequate levels of N, P, and K to support plant growth. Solution Ca concentrations were lower than optimum for plant growth.

  7. Cation exchange removal of Cd from aqueous solution by NiO

    International Nuclear Information System (INIS)

    Mahmood, T.; Saddique, M.T.; Naeem, A.; Mustafa, S.; Dilara, B.; Raza, Z.A.

    2011-01-01

    Graphical abstract: Sorption of Cd on NiO particles is described by modified Langmuir adsorption isotherms. - Abstract: Detailed adsorption experiments of Cd from aqueous solution on NiO were conducted under batch process with different concentrations of Cd, time and temperature of the suspension. The solution pH is found to play a decisive role in the metal ions precipitation, surface dissolution and adsorption of metal ions onto the NiO. Preliminary adsorption experiments show that the selectivity of NiO towards different divalent metal ions follows the trend Pb > Zn > Co > Cd, which is related to their first hydrolysis equilibrium constant. The exchange between the proton from the NiO surface and the metal from solution is responsible for the adsorption. The cation/exchange mechanism essentially remains the same for Pb, Zn, Co and Cd ions. The sorption of Cd on NiO particles is described by the modified Langmuir adsorption isotherms. The isosteric heat of adsorption (ΔH) indicates the endothermic nature of the cation exchange process. Spectroscopic analyses provide evidence that Cd is chemisorbed onto the surface of NiO.

  8. The role of cell walls and pectins in cation exchange and surface area of plant roots.

    Science.gov (United States)

    Szatanik-Kloc, A; Szerement, J; Józefaciuk, G

    2017-08-01

    We aimed to assess role of cell walls in formation of cation exchange capacity, surface charge, surface acidity, specific surface, water adsorption energy and surface charge density of plant roots, and to find the input of the cell wall pectins to the above properties. Whole roots, isolated cell walls and the residue after the extraction of pectins from the cell walls of two Apiaceae L. species (celeriac and parsnip) were studied using potentiometric titration curves and water vapor adsorption - desorption isotherms. Total amount of surface charge, as well as the cation exchange capacity were markedly higher in roots than in their cell walls, suggesting large contribution of other cell organelles to the binding of cations by the whole root cells. Significantly lower charge of the residues after removal of pectins was noted indicating that pectins play the most important role in surface charge formation of cell walls. The specific surface was similar for all of the studied materials. For the separated cell walls it was around 10% smaller than of the whole roots, and it increased slightly after the removal of pectins. The surface charge density and water vapor adsorption energy were the highest for the whole roots and the lowest for the cell walls residues after removal of pectins. The results indicate that the cell walls and plasma membranes are jointly involved in root ion exchange and surface characteristics and their contribution depends upon the plant species. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Obtention of the cation exchange capacity of a natural kaolinite with radioactive tracers

    International Nuclear Information System (INIS)

    Uribe I, A.; Badillo A, V.E.; Monroy G, F.

    2005-01-01

    One of the more used techniques for the elimination of the heavy metals present in water systems is to use adsorbent mineral phases like zeolites and clays, among others. The clays are able to exchange easily the fixed ions in the external surface of its crystals or well the ions present in the interlaminar spaces of the structures, for other existent ones in the encircling aqueous solutions for that the Cation exchange capacity (CIC) is defined as the sum of all the cations exchange that a mineral can possess independent to the physicochemical conditions. The CIC is equal to the measure of the total of negative charges of the mineral by mass of the solid (meq/g). In this investigation work, the value of the CIC equal to 2.5 meq/100 g is obtained, of a natural kaolinite from the State of Hidalgo studying the retention of the sodium in the kaolinite with the aid of the radioactive isotope 24 Na and of the selective electrodes technique, making vary the pH value. So is experimentally demonstrated that the CIC is an intrinsic property of the mineral independent of the pH value of the solution and of the charges origin. (Author)

  10. Brine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gallup, D.L.; Doty, H.W.; Wong, M.M.; Wong, C.F.; Featherstone, J.L.; Messer, P.H.

    1993-08-31

    A method is described for treating a corrosive feed geothermal brine containing suspended and dissolved scale forming constituents at least some of which comprise silicon-containing components and some of which comprise at least one recoverable metal selected from the group consisting of copper and metals below copper in the electromotive series said method comprising passing the brine through a conduit packed with at least one metal as high or higher in the electromotive series than copper for a time sufficient for a substantial portion of the recoverable metal to precipitate onto the packing in said conduit, to reduce the corrosivity of the brine, and to stabilize the scale forming constituents of the brine; and discharging from said conduit a treated brine less corrosive than the feed brine and having a substantially reduced scale forming potential.

  11. Cu2Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange

    KAUST Repository

    Casu, Alberto

    2016-01-27

    Among the different synthesis approaches to colloidal nanocrystals a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, post-synthetic treatments, such as thermally activated solid state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu “acceptors” phases represented by rod- and wire- shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu2-xSe nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu “donor” and “acceptor” particles were not always in direct contact with each other, hence the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state, and helps to shed light on the intermediate steps involved in such reactions.

  12. Destruction of gel sulfonated cation-exchangers of the KU-2 type under the influence of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Roginskaya, B.S.; Zavadovskaya, A.S.; Znamenskii, Yu.P.; Paskhina, N.A.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the mechanism of interaction of Soviet sulfonated cation-exchangers of the KU-2 type with hydrogen peroxide. It is shown that under the influence of hydrogen peroxide sulfonated cation-exchangers begin, after a certain induction period, to lose capacity and to release destruction products into water; the length of the induction period increases with the degree of cross-linking. In a given time of contact between the resin and the solution the degree of destruction falls with increase of cross-linking. The principal product of destruction of sulfonated cation-exchangers is an aromatic sulfonic acid containing oxidized groups in the side chains.

  13. Model Simulations of a Field Experiment on Cation Exchange-affected Multicomponent Solute Transport in a Sandy Aquifer

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Ammentorp, Hans Christian; Christensen, Thomas Højlund

    1993-01-01

    A large-scale and long-term field experiment on cation exchange in a sandy aquifer has been modelled by a three-dimensional geochemical transport model. The geochemical model includes cation-exchange processes using a Gaines-Thomas expression, the closed carbonate system and the effects of ionic...... by batch experiments and by the composition of the cations on the exchange complex. Potassium showed a non-ideal exchange behaviour with K&z.sbnd;Ca selectivity coefficients indicating dependency on equivalent fraction and K+ concentration in the aqueous phase. The model simulations over a distance of 35 m...

  14. Superparamagnetic cation-exchange adsorbents for bioproduct recovery from crude process liquors by high-gradient magnetic fishing

    DEFF Research Database (Denmark)

    Heebøll-Nielsen, Anders; Justesen, S.F.L; Hobley, Timothy John

    2004-01-01

    of epichlorohydrin formed on the particle surface. The resultant cation-exchanger had a maximum lysozyme binding capacity of 272 mg g(-1) and a dissociation constant of 0.73 muM. Using lysozyme as a model protein in small-scale studies, appropriate conditions were then selected for the capture of lactoperoxidase......Different routes were screened for the preparation of superparamagnetic cation-exchange adsorbents for the capture of proteins using high-gradient magnetic fishing. Starting from a polyglutaraldehyde-coated base particle, the most successful of these involved attachment of sulphite to oligomers...

  15. Formation of ZnSe/Bi2Se3 QDs by surface cation exchange and high photothermal conversion

    Directory of Open Access Journals (Sweden)

    Guozhi Jia

    2015-08-01

    Full Text Available Water-dispersed core/shell structure ZnSe/Bi2Se3 quantum dots were synthesized by ultrasonicwave-assisted cation exchange reaction. Only surface Zn ion can be replaced by Bi ion in ZnSe quantum dots, which lead to the ultrathin Bi2Se3 shell layer formed. It is significance to find to change the crystal of QDs due to the acting of ultrasonicwave. Cation exchange mechanism and excellent photothermal conversion properties are discussed in detail.

  16. Regeneration

    Science.gov (United States)

    George A. Schier; Wayne D. Shepperd; John R. Jones

    1985-01-01

    There are basically two approaches to regenerating aspen stands-sexual reproduction using seed, or vegetative regeneration by root suckering. In the West, root suckering is the most practical method. The advantage of having an existing, well established root system capable of producing numerous root suckers easily outweighs natural or artificial reforestation in the...

  17. Enhanced desorption of Cs from clays by a polymeric cation-exchange agent.

    Science.gov (United States)

    Park, Chan Woo; Kim, Bo Hyun; Yang, Hee-Man; Seo, Bum-Kyoung; Lee, Kune-Woo

    2017-04-05

    We report on a new approach to increase the removal of cesium from contaminated clays based on the intercalation of a cationic polyelectrolyte into the clay interlayers. A highly charged cationic polyelectrolyte, polyethyleneimine (PEI), was shown to intercalate into the negatively charged interlayers and readily replaced Cs ions adsorbed on the interlayers of montmorillonite. The polycation desorbed significantly more Cs strongly bound to the clay than did single cations. Moreover, additional NH 4 + treatment following the PEI treatment enhanced desorption of Cs ions that were less accessible by the bulky polyelectrolyte. This synergistic effect of PEI with NH 4 + yielded efficient desorption (95%) of an extremely low concentration of radioactive 137 Cs in the clay, which is very difficult to remove by simple cation-exchange methods due to the increased stability of the binding of Cs to the clay at low Cs concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Strong Cation Exchange Chromatography in Analysis of Posttranslational Modifications: Innovations and Perspectives

    Science.gov (United States)

    Edelmann, Mariola J.

    2011-01-01

    Strong cation exchange (SCX) chromatography has been utilized as an excellent separation technique that can be combined with reversed-phase (RP) chromatography, which is frequently used in peptide mass spectrometry. Although SCX is valuable as the second component of such two-dimensional separation methods, its application goes far beyond efficient fractionation of complex peptide mixtures. Here I describe how SCX facilitates mapping of the protein posttranslational modifications (PTMs), specifically phosphorylation and N-terminal acetylation. The SCX chromatography has been mainly used for enrichment of these two PTMs, but it might also be beneficial for high-throughput analysis of other modifications that alter the net charge of a peptide. PMID:22174558

  19. Luminescent CuInS2 quantum dots by partial cation exchange in Cu2- xS nanocrystals

    NARCIS (Netherlands)

    Van Der Stam, Ward; Berends, Anne C.; Rabouw, Freddy T.; Willhammar, Tom; Ke, Xiaoxing; Meeldijk, Johannes D.; Bals, Sara; De Mello Donega, Celso

    2015-01-01

    Here, we show successful partial cation exchange reactions in Cu2-xS nanocrystals (NCs) yielding luminescent CuInS2 (CIS) NCs. Our approach of mild reaction conditions ensures slow Cu extraction rates, which results in a balance with the slow In incorporation rate. With this method, we obtain CIS

  20. Structure-Selective Cation Exchange in the Synthesis of Zincblende MnS and CoS Nanocrystals.

    Science.gov (United States)

    Fenton, Julie L; Schaak, Raymond E

    2017-06-01

    The ability to selectively form one crystal structure among several options in a polymorphic system is an important goal in solid-state synthesis. Nanocrystal cation exchange, which proceeds rapidly under mild conditions, can retain key structural features and yield otherwise inaccessible phases, but the extent to which crystal structure can be retained and therefore selectively targeted during such reactions has been limited. Here, we show that nanocrystals of digenite Cu 2-x S transform to zincblende MnS and CoS upon cation exchange. Zincblende MnS and CoS, which are metastable in bulk, retain both the tetrahedral cation coordination and cubic close packed anion sublattice of digenite Cu 2-x S. Comparison with wurtzite MnS and CoS, which have been accessed previously through analogous cation exchange of roxbyite Cu 2-x S, demonstrates the selective formation of the related zincblende vs. wurtzite polymorphs by cation exchange of structurally distinct templates. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cation-exchange high-performance liquid chromatography: Separation of highly basic proteins using volatile acidic solvents

    NARCIS (Netherlands)

    Eijnden-van Raaij, A.J.M. van den; Koornneef, I.; Oostwaard, Th.M.J.; Laat, S.W. de; Zoelen, E.J.J. van

    1987-01-01

    The chromatographic behavior of a number of globular proteins was studied on a Bio-Sil TSK CM-2-SW weak cation exchange HPLC column under acidic conditions. A linear gradient of O-I M NH₄Ac in I M HOAc, inducing a convex pH gradient from 2.4-4.8, resulted in an excellent separation of highly

  2. Adsorption behavior of cation-exchange resin-mixed polyethersulfone-based fibrous adsorbents with bovine serum albumin

    NARCIS (Netherlands)

    Zhang, Y.; Zhang, Yuzhong; Borneman, Zandrie; Koops, G.H.; Wessling, Matthias

    2006-01-01

    The cation-exchange resin-mixed polyethersulfone (PES)-based fibrous adsorbents were developed to study their adsorption behavior with bovine serum albumin (BSA). A fibrous adsorbent with an open pore surface had much better adsorption behavior with a higher adsorbing rate. The adsorption capacity

  3. Atomic resolution monitoring of cation exchange in CdSe-PbSe heteronanocrystals during epitaxial solid-solid-vapor growth

    NARCIS (Netherlands)

    Yalcin, Anil O.; Fan, Zhaochuan; Goris, Bart; Li, Wun Fan; Koster, Rik S.; Fang, Changming; Van Blaaderen, Alfons; Casavola, Marianna; Tichelaar, Frans D.; Bals, Sara; Van Tendeloo, Gustaaf; Vlugt, Thijs J H; Vanmaekelbergh, Daniël; Zandbergen, Henny W.; Van Huis, Marijn A.

    2014-01-01

    Here, we show a novel solid-solid-vapor (SSV) growth mechanism whereby epitaxial growth of heterogeneous semiconductor nanowires takes place by evaporation-induced cation exchange. During heating of PbSe-CdSe nanodumbbells inside a transmission electron microscope (TEM), we observed that PbSe

  4. Atomic Resolution Monitoring of Cation Exchange in CdSe-PbSe Heteronanocrystals during Epitaxial Solid?Solid?Vapor Growth

    NARCIS (Netherlands)

    Yalcin, A.O.; Fan, Z.; Goris, B.; Li, W.F.; Koster, R.S.; Fang, C.M.; Van Blaaderen, A.; Casavola, M.; Tichelaar, F.D.; Bals, S.; Van Tendeloo, G.; Vlugt, T.J.H.; Vanmaekelbergh, D.; Zandbergen, H.W.; Van Huis, M.A.

    2014-01-01

    Here, we show a novel solid?solid?vapor (SSV) growth mechanism whereby epitaxial growth of heterogeneous semiconductor nanowires takes place by evaporation-induced cation exchange. During heating of PbSe-CdSe nanodumbbells inside a transmission electron microscope (TEM), we observed that PbSe

  5. Preparation and characterization of monovalent ion selective cation exchange membranes based on sulphonated poly(ether ether ketone)

    NARCIS (Netherlands)

    Balster, J.H.; Krupenko, O.; Krupenko, O.; Punt, Ineke G.M.; Stamatialis, Dimitrios; Wessling, Matthias

    2005-01-01

    This paper analyses the separation properties of various commercial cation exchange membranes (CEMs) and tailor made membranes based on sulphonated poly(ether ether ketone) and poly(ether sulphone) for binary electrolyte solutions containing protons and calcium ions. All membranes are thoroughly

  6. Assessing the role of cation exchange in controlling groundwater chemistry during fluid mixing in fractured granite at Aespoe, Sweden

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1996-06-01

    Geochemical modeling was used to simulate the mixing of dilute shallow groundwater with deeper more saline groundwater in the fractured granite of the Redox Zone at the Aespoe underground Hard Rock Laboratory (HRL). Fluid mixing simulations were designed to assess the role that cation exchange plays in controlling the composition of fluids entering the HRL via fracture flow. Mixing simulations included provision for the effects of mineral precipitation and cation exchange on fluid composition. Because the predominant clay mineral observed in fractures in the Redox Zone has been identified as illite or mixed layer illite smectite, an exchanger with the properties of illite was used to simulate cation exchange. Cation exchange on illite was modeled using three exchange sites, a planar or basal plane site with properties similar to smectite, and two edge sites that have very high affinities for K, Rb, and Cs. Each site was assumed to obey an ideal Vanselow exchange model, and exchange energies for each site were taken from the literature. The predicted behaviors of Na, Ca, and Mg during mixing were similar to those reported in a previous study in which smectite was used as the model for the exchanger. The trace elements Cs and Rb were predicted to be strongly associated with the illite exchanger, and the predicted concentrations of Cs in fracture fill were in reasonable agreement with reported chemical analyses of exchangeable Cs in fracture fill. The results of the geochemical modeling suggest that Na, Ca, and Sr concentrations in the fluid phase may be controlled by cation exchange reactions that occur during mixing, but that Mg appears to behave conservatively. There is currently not enough data to make conclusions regarding the behavior of Cs and Rb

  7. The influence of temperature and P/P0 upon cationic exchange constants

    International Nuclear Information System (INIS)

    Blanc, P.; Vieillard, P.; Gailhanou, H.; Gaboreau, S.; Gaucher, E.C.; Giffaut, E.

    2010-01-01

    Document available in extended abstract form only. The knowledge of thermodynamic properties of clay minerals forming clay materials is important in the context of a disposal within clayey formations (Callovo-Oxfordian argillite) or for clayey barriers. Different experiments have been previously performed concerning the long term behavior of clay materials, indicating that strong transformations are influenced by the alkaline solutions issued from the cementitious materials. But the first stages of the transformations affect the hydration and exchange capacity of the mineral, which are closely related to their retention properties. This work aims at assessing the influence of temperature and relative humidity upon the thermodynamic functions related to cationic exchange and hydration reactions. It is carried out within the framework of the Thermochimie project, aiming at defining a consistent thermodynamic database for modeling purposes. This work is an extension of the thermodynamic of hydration study carried out by Vieillard et al. (2010). Using the same, regular, solid solution model developed by the authors, we first consider the influence of temperature on the hydration reaction by expressing the hydration constant LogK hyd (T) according to the enthalpy and entropy of hydration and to the gas constant. Predicted isotherms are then compared with experimental data acquired on the MX80 smectite at 40, 60, 75, 90 and 100 deg. C. We now consider a cationic exchange reaction between cations A+ and B+, with z cations per mole of smectite and y2 and y1 mole of water per mole of smectite for A and B end members, respectively. The exchange constant LogK A/B , for a given temperature and relative humidity, is expressed as a function of the difference between anhydrous end members, and of the difference between anhydrous end-members activities. A comparison with room temperature exchange constants derived from experiments suggests that discrepancies are related to

  8. Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation.

    Science.gov (United States)

    Kulkarni, Vihangraj V; Golder, Animes Kumar; Ghosh, Pranab Kumar

    2018-01-05

    A new carboxylic bio-resin was synthesized from raw arecanut husk through mercerization and ethylenediaminetetraacetic dianhydride (EDTAD) carboxylation. The synthesized bio-resin was characterized using thermogravimetric analysis, field emission scanning electron microscopy, proximate & ultimate analyses, mass percent gain/loss, potentiometric titrations, and Fourier transform infrared spectroscopy. Mercerization extracted lignin from the vesicles on the husk and EDTAD was ridged in to, through an acylation reaction in dimethylformamide media. The reaction induced carboxylic groups as high as 0.735mM/g and a cation exchange capacity of 2.01meq/g functionalized mercerized husk (FMH). Potentiometric titration data were fitted to a newly developed single-site proton adsorption model (PAM) that gave pKa of 3.29 and carboxylic groups concentration of 0.741mM/g. FMH showed 99% efficiency in Pb(II) removal from synthetic wastewater (initial concentration 0.157mM), for which the Pb(II) binding constant was 1.73×10 3 L/mol as estimated from modified PAM. The exhaustion capacity was estimated to be 18.7mg/g of FMH. Desorption efficiency of Pb(II) from exhausted FMH was found to be about 97% with 0.1N HCl. The FMH simultaneously removed lead and cadmium below detection limit from a real lead acid battery wastewater along with the removal of Fe, Mg, Ni, and Co. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Morphologically Aligned Cation-Exchange Membranes by a Pulsed Electric Field for Reverse Electrodialysis.

    Science.gov (United States)

    Lee, Ju-Young; Kim, Jae-Hun; Lee, Ju-Hyuk; Kim, Seok; Moon, Seung-Hyeon

    2015-07-21

    A low-resistance ion-exchange membrane is essential to achieve the high-performance energy conversion or storage systems. The formation methods for low-resistance membranes are various; one of the methods is the ion channel alignment of an ion-exchange membrane under a direct current (DC) electric field. In this study, we suggest a more effective alignment method than the process with the DC electric field. First, an ion-exchange membrane was prepared under a pulsed electric field [alternating current (AC) mode] to enhance the effectiveness of the alignment. The membrane properties and the performance in reverse electrodialysis (RED) were then examined to assess the membrane resistance and ion selectivity. The results show that the membrane electrical resistance (MER) had a lower value of 0.86 Ω cm(2) for the AC membrane than 2.13 Ω cm(2) observed for the DC membrane and 4.30 Ω cm(2) observed for the pristine membrane. Furthermore, RED achieved 1.34 W/m(2) of maximum power density for the AC membrane, whereas that for the DC membrane was found to be 1.14 W/m(2) [a RED stack assembled with CMX, used as a commercial cation-exchange membrane (CEM), showed 1.07 W/m(2)]. Thereby, the novel preparation process for a remarkable low-resistance membrane with high ion selectivity was demonstrated.

  10. Independent control of the shape and composition of ionic nanocrystals through sequential cation exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Joseph Matthew; Zheng, Haimei; Sadtler, Bryce; Alivisatos, A. Paul

    2009-07-06

    Size- and shape-controlled nanocrystal growth is intensely researched for applications including electro-optic, catalytic, and medical devices. Chemical transformations such as cation exchange overcome the limitation of traditional colloidal synthesis, where the nanocrystal shape often reflects the inherent symmetry of the underlying lattice. Here we show that nanocrystals, with established synthetic protocols for high monodispersity, can be templates for independent composition control. Specifically, controlled interconversion between wurtzite CdS, chalcocite Cu2S, and rock salt PbS occurs while preserving the anisotropic dimensions unique to the as-synthesized materials. Sequential exchange reactions between the three sulfide compositions are driven by the disparate solubilites of the metal ion exchange pair in specific coordinating molecules. Starting with CdS, highly anisotropic PbS nanorods are created, which serve as an important material for studying strong 2-dimensional quantum confinement, as well as for optoelectronic applications. Furthermore, interesting nanoheterostructures of CdS|PbS are obtained by precise control over ion insertion and removal.

  11. Predicting cation exchange capacity from hygroscopic moisture in agricultural soils of Western Europe

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, J.; Campillo, M.C. del; Barrón, V.

    2015-07-01

    Soil cation exchange capacity (CEC) depends on the extent and negative charge density of surfaces of soil mineral and organic components. Soil water sorption also depends on the extent of such surfaces, giving thus way to significant relationships between CEC and hygroscopic moisture (HM) in many soils. In this work, we explored whether CEC could be accurately predicted from HM in agricultural soils of Mediterranean and humid temperate areas in Western Europe. For this purpose, we examined 243 soils across a wide variation range of their intrinsic properties. Soil CEC was determined using 1 M ammonium acetate at pH 7 and HM at an equilibrium air relative humidity (RH) of 43% (HM43). Most of the variation of soil CEC was explained by HM43 through a linear function (CEC = 1.4 + 0.78HM43; R2 = 0.962; standard deviation = 2.30 cmolc/kg). Coefficients of the regression equation were similar for subgroups of soils differing in moisture regime, clay mineralogy, carbonate content and organic carbon content. Therefore, soil hygroscopic moisture measurements at a fixed RH level provided a simple, robust, inexpensive method for predicting soil CEC. (Author)

  12. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber

    Science.gov (United States)

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao

    2015-01-01

    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265

  13. Composite membranes prepared from cation exchange membranes and polyaniline and their transport properties in electrodialysis

    Energy Technology Data Exchange (ETDEWEB)

    Sata, Tshikatsu; Ishii, Yuuko; Kawamura, Kohei; Matsusaki, Koji [Yamaguchi Univ., Ube City, Yamaguchi (Japan). Dept. of Applied Chemistry and Chemical Engineering

    1999-02-01

    A cation exchange membrane was modified with polyaniline by polymerizing aniline with ammonium peroxodisulfate on the membrane surfaces, producing a membrane with polyaniline layers on both surfaces or a membrane with a single polyaniline layer on the surface. The modified membranes, composite membranes, showed sodium ion permselectivity in electrodialysis compared with divalent cations at an optimum polymerization time. The electronic conductivity of dry membranes showed a maximum (ca. 5 {times} 10{sup {minus}3} S/cm) at the same polymerization time as the time to attain a maximum value of the sodium ion permselectivity. Because emeraldine-based polyaniline is conductive and has a cationic charge, the sodium ion permselectivity is based on the difference in the electrostatic repulsion forces of the cationic charge on the membrane surface of a desalting side to divalent cations and sodium ions. In fact, the selective permeation of sodium ions appeared only when the layer faced the desalting side of the membrane, and was affected by dissociation of polyaniline. Further oxidized polyaniline, pernigraniline-based polyaniline, did not affect the permselectivity between cations, and the diffusion coefficient of neutral molecules, urea, increased with increasing polymerization time. Sodium ion permselectivity was maintained with repeated electrodialysis.

  14. [Interactions between proteins and cation exchange adsorbents analyzed by NMR and hydrogen/deuterium exchange technique].

    Science.gov (United States)

    Wang, Kang; Hao, Dongxia; Qi, Shuting; Ma, Guanghui

    2014-09-01

    In silico acquirement of the accurate residue details of protein on chromatographic media is a bottleneck in protein chromatography separation and purification. Here we developed a novel approach by coupling with H/D exchange and nuclear magnetic resonance to observe hen egg white lysozyme (HEWL) unfolding behavior adsorbed on cation exchange media (SP Sepharose FF). Analysis of 1D 1H-NMR shows that protein unfolding accelerated H/D exchange rate, leading to more loss of signal of amide hydrogen owing to exposure of residues and the more unfolding of protein. Analysis of two-dimensional hydrogen-hydrogen total correlation spectroscopy shows that lysozyme lost more signals and experienced great unfolding during its adsorption on media surface. However, for several distinct fragments, the protection degrees varied, the adsorbed lysozyme lost more signal intensity and was less protected at disorder structures (coil, bend, and turn), but was comparatively more protected against exchange at secondary structure domains (α-helix, β-sheet). Finally, the binding site was determined by electrostatic calculations using computer simulation methods in conjunction with hydrogen deuterium labeled protein and NMR. This study would help deeply understand the microscopic mechanism of protein chromatography and guide the purposely design of chromatographic process and media. Moreover, it also provide an effective tool to study the protein and biomaterials interaction in other applications.

  15. Surface modification of cation exchange membranes by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nemati, Mahsa; Hosseini, Sayed Mohsen; Bagheripour, Ehsan [Faculty of Engineering, Arak University, Arak (Iran, Islamic Republic of); Madaeni, Sayed Siavash [Faculty of Engineering, Razi University, Kermanshah (Iran, Islamic Republic of)

    2016-03-15

    Surface modification of polyvinylchloride based heterogeneous cation exchange membrane was performed by graft polymerization of PAA and PAA-co-PANI/MWCNTs nanoparticles. The ion exchange membranes were prepared by solution casting technique. Spectra analysis confirmed graft polymerization clearly. SEM images illustrated that graft polymerization covers the membranes by simple gel network entanglement. The membrane water content was decreased by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles on membrane surface. Membrane transport number and selectivity declined initially by PAA graft polymerization and then began to increase by utilizing of composite nanoparticles in modifier solution. The sodium and barium flux was improved sharply by PAA and PAAco- 0.01%wt PANI/MWCNTs graft polymerization on membrane surface and then decreased again by more increase of PANI/MWCNTs nanoparticles content ratio in modifier solution. The electrodialysis experiment results in laboratory scale showed higher dialytic rate in heavy metals removal for grafted-PAA and grafted-PAA-co-PANI/MWCNTs modified membrane compared to pristine one. Membrane areal electrical resistance was also decreased by introducing graft polymerization of PAA and PAA-co-PANI/MWCNTs NPs on membrane surface.

  16. Synthesis of Grafted Hydrogels as Mono-Divalent Cation Exchange and Drug Delivery

    International Nuclear Information System (INIS)

    El-Arnaouty, M.B.; Eid, M.

    2010-01-01

    ph-sensitive grafted poly vinyl alcohol-poly acrylic acid (PVA-PAA) hydrogels has been prepared by direct radiation grafting of acrylic acid (AA) onto PVA hydrogels. The grafting percent increase as the monomer concentration and irradiation dose increase. The maximum grafting yield was obtained at monomer concentration 50 % and irradiation dose 50 kGy. The swelling, thermogravimetric analysis, activation energy and scanning electron microscope of the grafted copolymer hydrogels were studied. The swelling of co-polymeric hydrogel was studied at different ph, and the gel demonstrate high swelling at ph 6.8. The de swelling of the swollen hydrogel in Ni 2+ and Cu 2+ cations solution was explained on the basis of mono-divalent cation exchange. The hydrogel was loaded by antihistaminic chlorphenamine maleate hydrochloride (CPM) as drug model. The release of (CPM) was faster in stimulated gastric fluid (SGF) of ph 1.1 than in stimulated intestinal fluid (SIF) of ph 6.8

  17. Ultrathin Sicopion Composite Cation-Exchange Membranes: Characteristics and Electrodialytic Performance following a Conditioning Procedure

    Directory of Open Access Journals (Sweden)

    Erik Ayala-Bribiesca

    2012-01-01

    Full Text Available The aim of this work was to investigate the properties of Sicopion membranes: an ultrathin (≈20 μm composite cation-exchange membrane (CEM made from sulphonated poly(ether-ether-ketone (SPEEK containing different levels of sulphonic-functionalized silica particles (SFSPs. Sicopion membranes were conditioned according to the French Normalization Association procedure, consisting in a series of acid and alkaline washes, and their electrodialytic characteristics were compared to an existent commercial food-grade membrane (CMX-SB. Electrical conductivity of Sicopion membranes was higher than that of CMX-SB membranes (9.92 versus 6.98 mS/cm, as well as their water content (34.0 versus 27.6%. As the SFSP level was reduced, the ion-exchange capacity (IEC of Sicopion membranes increased. Concerning their electrodialytic performances, Sicopion membranes presented a lower demineralization rate than CMX-SB membranes (35.9 versus 45.5%, due to an OH− leakage through the pores created by dislodging the SFSP particles during the conditioning procedure.

  18. Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr(HPO3S)2.

    Science.gov (United States)

    Zhang, Qingrui; Pan, Bingcai; Pan, Bingjun; Zhang, Weiming; Jia, Kun; Zhang, Quanxing

    2008-06-01

    A novel polymeric hybrid sorbent, namely ZrPS-001, was fabricated for enhanced sorption of heavy metal ions by impregnating Zr(HPO3S)2 (i.e., ZrPS) nanoparticles within a porous polymeric cation exchanger D-001. The immobilized negatively charged groups bound to the polymeric matrix D-001 would result in preconcentration and permeation enhancement of target metal ions prior to sequestration, and ZrPS nanoparticles are expected to sequester heavy metals selectively through an ion-exchange process. Highly effective sequestration of lead, cadmium, and zinc ions from aqueous solution can be achieved by ZrPS-001 even in the presence of competing calcium ion at concentration several orders of magnitude greater than the target species. The exhausted ZrPS-001 beads are amenable to regeneration with 6 M HCI solution for repeated use without any significant capacity loss. Fixed-bed column treatment of simulated waters containing heavy metals at high or trace levels was also performed. The content of heavy metals in treated effluent approached or met the WHO drinking water standard.

  19. Influence of Sulfonated-Kaolin On Cationic Exchange Capacity Swelling Degree and Morphology of Chitosan/Kaolin Composites

    Directory of Open Access Journals (Sweden)

    Ozi Adi Saputra

    2016-06-01

    Full Text Available Preparation of sulfonated-kaolin (sKao has been conducted and used as filler on chitosan matrix via solution casting method, namely chitosan/sKao (Cs/sKao. Swelling degree, cationic exchange capacity and thermal stability were evaluated to determine chitosan/sKao membranes performance as proton exchange membrane in fuel cell. Functional group analysis of chitosan, sKao and synthesized products were studied using Fourier Transform Infra-Red (FTIR spectroscopy. In this study, swelling degree and swelling area of Cs/sKao are also studied to determine of membrane ability to swelling which compare to unmodified chitosan/kaolin (Cs/Kao. The presence of sKao in chitosan matrix was able to improve cationic exchange capacity (CEC which proved by morphological study of membrane surface after CEC test. Moreover, Thermal stability of Cs/sKao showed the membrane has meet requirement for PEM application.

  20. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  1. Characteristics of resin floc dispersion of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of resin floc dispersion. The factors related to resin floc dispersion of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index in addition to the measurement of physical, chemical and electrochemical properties of powdered ion exchange resin. The effect of adsorption of iron oxide and polymer electrolyte and of ion exchange were determined. In addition, considered floc dispersion with adsorbing iron oxide, it was assumed that the amount and filling ratio of resin floc were related to summation and multiplication of surface electric charge respectively. An experimental expression was obtained for simulation of the change of specific settle volume of resin floc by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  2. Preparation of Cation-Exchange Particle Designed for High-Speed Collection of Proteins by Radiation-Induced Graft Polymerization

    Science.gov (United States)

    Sekiya, Yuta; Shimoda, Yuichi; Umeno, Daisuke; Saito, Kyoichi; Furumoto, Goro; Shirataki, Hironobu; Shinohara, Naoyuki; Kubota, Noboru

    A cation-exchange polymer brush was immobilized onto a polyethylene-based particle with an average diameter of 35 μm by radiation-induced graft polymerization of glycidyl methacrylate and subsequent sulfonation with sodium sulfite. A lysozyme solution was forced to flow through a bed (height 2 cm, cross-sectional area 0.61 cm2) charged with the resultant cation-exchange particles at a space velocity ranging from 500 to 2300 h-1. From a viewpoint of equilibrium binding capacity and elution percentage of lysozyme, the dose of electron beam and the degree of GMA grafting were optimized to be 200 kGy and 100%, respectively. The bed exhibited a constant dynamic binding capacity of lysozyme 14 mg⁄mL irrespective of space velocity due to negligible diffusional mass-transfer resistance.

  3. Uranium adsorption from the sulphuric acid leach liquor containing more chlorides with cation-exchange resin SL-406

    International Nuclear Information System (INIS)

    Hu Jun; Wang Zhaoguo; Chi Renqing; Niu Xuejun

    1994-01-01

    The feasibility of uranium adsorption was studied from the sulphuric acid leach liquor of a uranium ore containing more chlorides with cation-exchange resin SL-406. The influence of some factors on uranium adsorption was investigated. It was shown that the resin possesses better selectivity, stability and higher capacity. It can be effectively used to recovery uranium from leach liquors of uranium ores containing more chlorides

  4. Energy storage in evaporated brine

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, R. Ian

    2010-09-15

    We propose storage of electrical energy in brine solutions by using the energy to enhance natural evaporation. Using properties of existing industrial evaporation technologies and estimates of power regeneration from brine by pressure retarded osmosis, efficiency near 100% is calculated. Modelling indicates that systems ranging from 50kW to 50MW output may be practical, with storage capacities of hours to days. The method appears to have potential to be economically competitive with other technologies over a wide range of capacity. It may present a large new application area that could aid the development of salinity-based power generation technology.

  5. Radial variations in cation exchange capacity and base saturation rate in the wood of pedunculate oak and European beech

    Energy Technology Data Exchange (ETDEWEB)

    Herbauts, J.; Penninckx, V.; Gruber, W.; Meerts, P. [Universite Libre de Bruxelles, Laboratoire de genetique et d' ecologie vegetales, Brussels (Belgium)

    2002-10-01

    Visual observation of pedunculate oak trees and European beech trees in a mixed forest stand in the Belgian Ardennes revealed decreasing cation concentration profiles in wood. In order to determine whether these profiles are attributable to endogenous factors or to decreased availability of cations in the soil, radial profiles of water-soluble, exchangeable and total cations were investigated. Cation exchange capacity of wood was also determined. Results showed wood cation exchange capacity to decrease from pith to bark in European beech and from pith to outer heartwood in pedunculate oak. Decreasing profiles of exchangeable calcium and magnesium in peduncular oak and exchangeable calcium in European beech were found to be strongly constrained by cation exchange capacity, and thus not related to environmental change. Base cation saturation rate showed no consistent radial change in either species. It was concluded that the results did not provide convincing evidence to attribute the decrease in divalent cation concentration in pedunculate oak and European beech in this location to be due to atmospheric pollution. 42 refs., 1 tab., 4 figs.

  6. Cation Exchange Efficiency Of Modified Bentonite Using In-Situ GAMMA Radiation Polymerization Of Acrylic Acid Or Acrylamide

    International Nuclear Information System (INIS)

    ISMAIL, S.A.; FALAZI, B.

    2009-01-01

    Modified bentonites as cation exchangers were prepared by treating raw bentonite with 3N NaOH at 95 0 C followed by in-situ polymerization using gamma irradiation as well as hydrogen peroxide initiation of acrylic acid or acrylamide in the matrix.Water swelling and acid capacity were determined and cation exchange capacity for Cu 2+ , Ni 2+ and Co 2+ was evaluated. It has been found that catiexchange capacity of treated bentonite was increased as result of formed polyacrylic acid and polyacrylamide in the matrix. In case of acrylic acid, the maximum cation exchange capacities of 3.5, 3.1 and 2.5 mg equivalent/g were determined for Cu 2+ , Ni 2+ and Co 2+ , respectively, and for acrylamide, the corresponding capacities were 2.9, 2.8 and 2.6 mg equivalent/g, respectively. Water swelling was found to be associated with holding large amounts of water, for instance, 49 g of water was sorbed per one gram of the sodium salt form of polyacrylic acid in bentonite matrix, in other words the degree of swelling in water achieved 4500%.

  7. A weak cation-exchange monolith as stationary phase for the separation of peptide diastereomers by CEC.

    Science.gov (United States)

    Ludewig, Ronny; Nietzsche, Sandor; Scriba, Gerhard K E

    2011-01-01

    A CEC weak cation-exchange monolith has been prepared by in situ polymerization of acrylamide, methylenebisacrylamide and 4-acrylamidobutyric acid in a decanol-dimethylsulfoxide mixture as porogen. The columns were evaluated by SEM and characterized with regard to the separation of diastereomers and α/β-isomers of aspartyl peptides. Column preparation was reproducible as evidenced by comparison of the analyte retention times of several columns prepared simultaneously. Analyte separation was achieved using mobile phases consisting of acidic phosphate buffer and ACN. Under these conditions the peptides migrated due to their electrophoretic mobility but the EOF also contributed as driving force as a function of the pH of the mobile phase due to increasing dissociation of the carboxyl groups of the polymer. Raising the pH of the mobile phase also resulted in deprotonation of the peptides reducing analyte mobility. Due to these mechanisms each pair of diastereomeric peptides displayed the highest resolution at a different pH of the buffer component of the mobile phase. Comparing the weak-cation exchange monolith to an RP monolith and a strong cation-exchange monolith different elution order of some peptide diastereomers was observed, clearly illustrating that interactions with the stationary phase contribute to the CEC separations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    Science.gov (United States)

    Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C

    2012-07-19

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  9. Effect of cation exchange of major cation chemistry in the large scale redox experiment at Aespoe. Revision 1

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1996-06-01

    Geochemical modeling was used to test the hypothesis that cation exchange with fracture-lining clays during fluid mixing in the Aespoe Hard Rock Laboratory can significantly affect major element chemistry. Conservative mixing models do not adequately account for changes in Na, Ca and Mg concentrations during mixing. Mixing between relatively dilute shallow waters and more concentrated waters at depth along fracture zones was modeled using the EQ3/6 geochemical modeling package. A cation exchange model was added to the code to describe simultaneously aqueous speciation, mineral precipitation/dissolution, and equilibration between a fluid and a cation exchanger. Fluid chemistries predicted to result from mixing were compared with those monitored from boreholes intersecting the fracture zone. Modeling results suggest that less than 0.1 equivalent of a smectite exchanger per liter of groundwater is necessary to account for discrepancies between predictions from a conservative mixing model and measured Na and Ca concentrations. This quantity of exchanger equates to an effective fracture coating thickness of 20 microm or less given a fracture aperture width of 1,000 microm or less. Trends in cation ratios in the fluid cannot be used to predict trends in cation ratios on the exchanger because of the influence of ionic strength on heterovalent exchange equilibrium. It is expected that Na for Ca exchange will dominate when shallow waters such as HBHO2 are mixed with deeper waters. In contrast, Na for Mg exchange will dominate mixing between deeper waters

  10. Converting Hg-1212 to Tl-2212 via Tl-Hg cation exchange in combination with Tl cation intercalation

    International Nuclear Information System (INIS)

    Zhao Hua; Wu, Judy Z

    2007-01-01

    In a cation exchange process developed recently for epitaxy of HgBa 2 CaCu 2 O 6 (Hg-1212) thin films, TlBa 2 CaCu 2 O 7 (Tl-1212) or Tl 2 Ba 2 CaCu 2 O 9 (Tl-2212) precursor films were employed as the precursor matrices and Hg-1212 was obtained by replacing Tl cations on the precursor lattice with Hg cations. The reversibility of the cation exchange dictates directly the underlying mechanism. Following our recent success in demonstrating a complete reversibility within '1212' structure, we show the conversion from Hg-1212 to Tl-2212 can be achieved via two steps: conversion from Hg-1212 to Tl-1212 followed by Tl intercalation to form double Tl-O plans in each unit cell. The demonstrated reversibility of the cation exchange process has confirmed the process is a thermal perturbation of weakly bonded cations on the lattice and the direction of the process is determined by the population ratio between the replacing cations and that to be replaced

  11. Ambient soil cation exchange capacity inversely associates with infectious and parasitic disease risk in regional Australia.

    Science.gov (United States)

    Liddicoat, Craig; Bi, Peng; Waycott, Michelle; Glover, John; Breed, Martin; Weinstein, Philip

    2018-06-01

    Human contact with soil may be important for building and maintaining normal healthy immune defence mechanisms, however this idea remains untested at the population-level. In this continent-wide, cross-sectional study we examine the possible public health benefit of ambient exposures to soil of high cation exchange capacity (CEC), a surrogate for potential immunomodulatory soil microbial diversity. We compare distributions of normalized mean 2011/12-2012/13 age-standardized public hospital admission rates (cumulative incidence) for infectious and parasitic diseases across regional Australia (representing an average of 29,516 patients/year in 228 local government areas), within tertiles of socioeconomic status and soil exposure. To test the significance of soil CEC, we use probabilistic individual-level environmental exposure data (with or without soil), and group-level variables, in robust non-parametric multilevel modelling to predict disease rates in unseen groups. Our results show that in socioeconomically-deprived areas with high CEC soils, rates of infectious and parasitic disease are significantly lower than areas with low CEC soils. Also, health inequality (relative risk) due to socioeconomic status is significantly lower in areas with high CEC soils compared to low CEC soils (Δ relative risk = 0.47; 95% CI: 0.13, 0.82). Including soil exposure when modelling rates of infectious and parasitic disease significantly improves prediction performance, explaining an additional 7.5% (Δ r 2  = 0.075; 95% CI: 0.05, 0.10) of variation in disease risk, in local government areas that were not used for model building. Our findings suggest that exposure to high CEC soils (typically high soil biodiversity) associates with reduced risk of infectious and parasitic diseases, particularly in lower socioeconomic areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Determination of tropane alkaloids by heart cutting reversed phase - Strong cation exchange two dimensional liquid chromatography.

    Science.gov (United States)

    Long, Zhen; Zhang, Yanhai; Gamache, Paul; Guo, Zhimou; Steiner, Frank; Du, Nana; Liu, Xiaoda; Jin, Yan; Liu, Xingguo; Liu, Lvye

    2018-01-01

    Current Chinese Pharmacopoeia (ChP) standards apply liquid extraction combined with one dimensional liquid chromatography (1DLC) method for determining alkaloids in herbal medicines. The complex pretreatments lead to a low analytical efficiency and possible component loss. In this study, a heart cutting reversed phase - strong cation exchange two dimensional liquid chromatography (RP - SCX 2DLC) approach was optimized for simultaneously quantifying tropane alkaloids (anisodine, scopolamine and hyoscyamine) in herbal medicines and herbal medicine tablets without further treatment of the filtered extract. The chromatographic conditions were systematically optimized in terms of column type, mobile phase composition and flow rate. To improve peak capacity and obtain symmetric peak shape of alkaloids, a polar group embedded C18 column combined with chaotropic salts was used in the first dimension. To remove the disturbance of non-alkaloids, achieve unique selectivity and acquire symmetric peak shape of alkaloids, an SCX column combined with phosphate buffer was used in the second dimension. Method validation was performed in terms of linearity, precision (0.54-0.82%), recovery (94.1-105.2%), limit of detection (LOD) and limit of quantification (LOQ) of the three analytes varied between 0.067-0.115mgL -1 and 0.195-0.268mgL -1 , respectively. The method demonstrated superiority over 1DLC method in respect of resolution (less alkaloid co-eluted), sample preparation (no pretreatment procedure) and transfer rate (minimum component loss). The optimized RP - SCX 2DLC approach was subsequently applied to quantify target alkaloids in five herbal medicines and herbal medicine tablets from three different manufactures. The results demonstrated that the developed heart cutting RP - SCX 2DLC approach represented a new, strategically significant methodology for the quality evaluation of tropane alkaloid in related herbal medicines that involve complex chemical matrix. Copyright

  13. Ring-opening metathesis polymerization for the preparation of norbornene-based weak cation-exchange monolithic capillary columns.

    Science.gov (United States)

    Gatschelhofer, Christina; Mautner, Agnes; Reiter, Franz; Pieber, Thomas R; Buchmeiser, Michael R; Sinner, Frank M

    2009-03-27

    Functionalized monolithic columns were prepared via ring-opening metathesis polymerization (ROMP) within silanized fused silica capillaries with an internal diameter of 200 microm by in situ grafting. This procedure is conducted in two steps, the first of which is the formation of the basic monolithic structure by polymerization of norborn-2-ene (NBE) and 1,4,4a,5,8,8a-hexahydro-1,4,5,8-exo,endo-dimethanonaphthalene (DMN-H6) in a porogenic system (toluene and 2-propanol) using RuCl(2)(PCy(3))(2)(CHPh) as ROMP initiator. In the second step the still active initiator sites located on the surface of the structure-forming microglobules were used as receptor groups for the attachment ("grafting") of functional groups onto the monolithic backbone by flushing the monolith with 7-oxanorborn-2-ene-5,6-carboxylic anhydride (ONDCA). Functionalization conditions were first defined that did not damage the backbone of low polymer content (20%) monoliths allowing high-throughput chromatographic separations. Variation of the functionalization conditions was then shown to provide a means of controlling the degree of functionalization and resulting ion-exchange capacity. The maximum level of in situ ONDCA grafting was obtained by a 3h polymerization in toluene at 40 degrees C. The weak cation-exchange monoliths obtained provided good separation of a standard peptide mixture comprising four synthetic peptides designed specifically for the evaluation of cation-exchange columns. An equivalent separation was also achieved using the lowest capacity column studied, indicative of a high degree of robustness of the functionalization procedure. As well as demonstrably bearing ionic functional groups enabling analyte separation in the cation-exchange mode, the columns exhibited additional hydrophobic characteristics which influenced the separation process. The functionalized monoliths thus represent useful tools for mixed-mode separations.

  14. Effect of efficient microorganisms on cation exchange capacity in acacia seedlings (Acacia melanoxylon) for soil recovery in Mondonedo, Cundinamarca

    International Nuclear Information System (INIS)

    Diaz Barragan Olga Angelica; Montero Robayo Diana Mercedes; Lagos Caballero Jesus Alberto

    2009-01-01

    We determined the effect of efficient microorganisms (EM) on the cation exchange capacity for soil recovery in the municipality of Mondonedo, Cundinamarca. A greenhouse unit was installed in order to maintain stable conditions. After harvesting, sifted and homogenization of the soil sample, initial physical and chemical analyses were made. For the experimental units we used Acacia melanoxylon seedlings from Zabrinsky. A completely randomized design was done with eight treatments and three repetitions. For the maintenance and monitoring of the seedlings behaviour, a frequency of irrigation of three times per week was found. The application of the EM was done during three months: in the first month, it was applied four times (once a week); during the second month, it was applied twice (biweekly), and during the third month there was only one application. Additionally, every 15 days morphological analyses were made (number of leaves, branches and stem diameter). In the end, soil samples were taken from each plant pot. In the laboratory we analysed the cation exchange capacity, alkali ion exchange, saturation alkali, relations between elements and plant tissue. These were done using an atomic absorption spectrophotometer. Statistical analyses consisted on multiple comparisons test and variance tests, in order to find whether or not treatments exhibited significant differences. In that way, the best alternative for improving environmental quality of eroded soils as the Zabrinsky desert is the efficient microorganisms in 5% doses in irrigation water. Additionally, the cation exchange capacity must be enhanced using organic fertilizers (compost, mulch and gallinaza) in one pound doses, and chemical fertilizers: electrolytic Mn (0.0002 g), Cu (0.0002 g), Zn (0.0001 g), URFOS 44 (166.66 g) and klip-boro (5 g).

  15. Tests of the use of cation exchange organic resins for the decontamination of radioactive aqueous effluents

    International Nuclear Information System (INIS)

    Bourdrez, Jean; Girault, Jacques; Wormser, Gerald

    1962-01-01

    The authors report tests performed in laboratory and results obtained during an investigation of the use of synthetic ion exchangers for the decontamination of radioactive effluents of moderate activity level and with a non neglectable salt loading. Resins are used under sodium form and regenerated after each fixing operation. Once decontaminated and free of its disturbing ions, the regenerating agent (NaCl) is used for several operations. The authors present the used resins, the treated effluents, describe the tests, and discuss the obtained results [fr

  16. The elution of erbium from a cation exchanger bed by means of the N-hydroxyethyl-ethylene-diamine triacetic acid

    International Nuclear Information System (INIS)

    Amer Amezaga, S.

    1963-01-01

    A physicochemical study of the phenomena resulting when erbium is eluted from a cation-exchanger bed at a steady by means of the N-hydroxyethyl-ethylene-diamine-triacetic acid (HEDTA) is made. Two different retaining beds are used, a hydrogen bed, in which no ammonium passes through, and a zinc bed, which leaks ammonium ion. Good agreement between experimental and calculated values by using the equations deduced for the concentrations of the main species has been achieved, with errors around 1-2% in most of the experiments. (Author) 69 refs

  17. Enhanced Transport of U(Vi) and Th(IV) Through Cation Exchange Membrane Using Electric Field

    International Nuclear Information System (INIS)

    Zaki, E.E.; Aly, H.F.

    2000-01-01

    Transport of ionic species through ion exchange membrane found several applications for water effluents purification and metal ion separation. To enhance the transport performance, the effect of electric field was introduced in this work. The transport of U (Vi) and Th(IV) species in nitric acid solutions across cation exchange membrane was investigated. In this concern, different parameters affecting the transport were studied. These parameters include; nitric acid concentration in the feed solution, stripping solution concentration and applied electric field. From the results obtained the permeability coefficient of U(Vi) and Th(IV) were calculated. Based on these information, a process for separation of thorium from uranium is developed

  18. Modelling of geochemical reactions and experimental cation exchange in MX 80 bentonite.

    Science.gov (United States)

    Montes-H, G; Fritz, B; Clement, A; Michau, N

    2005-10-01

    Bentonites are widely used for waste repository systems because of their hydrodynamic, surface and chemical-retention properties. MX 80 bentonite (bentonite of Wyoming) contains approximately 85% Na/Ca-montmorillonite and 15% accessory minerals. The dominant presence of Na/Ca-montmorillonite in this clay mineral could cause it to perform exceptionally well as an engineered barrier for a radioactive waste repository because this buffer material is expected to fill up by swelling the void between canisters containing waste and the surrounding ground. However, the Na/Ca-montmorillonite could be transformed to other clay minerals as a function of time under repository conditions. Previous modelling studies based on the hydrolysis reactions have shown that the Na/Ca-montmorillonite-to-Ca-montmorillonite conversion is the most significant chemical transformation. In fact, this chemical process appears to be a simple cation exchange into the engineered barrier. The purpose of the present study was two-fold. Firstly, it was hoped to predict the newly formed products of bentonite-fluid reactions under repository conditions by applying a thermokinetic hydrochemical code (KIRMAT: Kinetic Reactions and Mass Transport). The system modelled herein was considered to consist of a 1-m thick zone of water-saturated engineered barrier. This non-equilibrated system was placed in contact with a geological fluid on one side, which was then allowed to diffuse into the barrier, while the other side was kept in contact with iron-charged water. Reducing initial conditions ( [P(O)2 approximately equals 0] ; Eh=-200 mV) and a constant reaction temperature (100 degrees C) were considered. Secondly, it was hoped to estimate the influence of inter-layer cations (Ca and Na) on the swelling behaviour of the MX 80 bentonite by using an isothermal system of water vapour adsorption and an environmental scanning electron microscope (ESEM) coupled with a digital image analysis (DIA) program. Here, the

  19. Removal and Recovery of Chromium from Solutions Simulating Tannery Wastewater by Strong Acid Cation Exchanger

    Directory of Open Access Journals (Sweden)

    Gulten Cetin

    2013-01-01

    Full Text Available The process in this study was conducted on removal of chromium(III in a solution simulating a typical spent chrome tanning bath by the resin having matrix of styrene-divinylbenzene-based macroporous sulphonate, Amberjet 1200Na. The column experiments were carried out with the bed volumes of the resin as 751 mL and 1016 mL for different installation systems of the laboratory-scale pilot plant. The feeding solutions in the bed volumes of 200 and 190 were used for each installation system. The regeneration behaviour of the resin was determined by using reverse regeneration procedure with the solution of hydrogen peroxide in alkaline. The regeneration kinetics of the exhausted resin was examined with a range of the solutions having different concentration series of the alkaline hydrogen peroxide. The solutions of the basic chromium sulphate were recycled for each installation system following the regeneration cycles. The chromium ions in effluent were quantitatively eluted, and satisfactory removal of chromium(III and recovery of chromium(VI were achieved.

  20. Separation of macro-quantities of actinide elements at Savannah River by high-pressure cation exchange

    International Nuclear Information System (INIS)

    Burney, G.A.

    1980-01-01

    Large-scale separation of actinides from fission products and from each other by pressurized cation exchange chromatography at Savannah River is reviewed. Several kilograms of 244 Cm have been separated, with each run containing as much as 150 g of 244 Cm. Dowex 50W-X8 (Dow Chemical Co.) cation resin, graded to 30-70 micron size range, is used, and separation is made by eluting with 0.05M diethylenetriamine pentaacetic acid (DTPA) at a pH of 3. The effluent from the column is continuously monitored by a BF 3 detector, a NaI detector, and a lithium-drifted germanium detector and gamma spectrometer to guide collection of product fractions. Operating the columns at 300 to 1000 psi pressure eliminates resin bed disruption caused by radiolytically produced gases, and operating at increased flow rates decreases the radiolytic degradation of the resin per unit of product processed. A portion of the hot canyon of a production radiochemical separation plant was converted from a remote crane-operated facility to a master-slave manipulator-operated facility for separation and purification of actinide elements by pressurized cation exchange. It also contains an evaporator, furnaces, a calorimeter, and several precipitators and associated tanks. Actinide processing from target dissolution to packaging of purified product is planned in this facility

  1. Measurements on cation exchange capacity of bentonite in the long-term test of buffer material (LOT)

    International Nuclear Information System (INIS)

    Muurinen, A.

    2011-01-01

    Determination of cation exchange capacity (CEC) of bentonite in the LOT experiment was the topic of this study. The measurements were performed using the complex of copper(II) ion with trietylenetetramine [Cu(trien)] 2+ as the index cation. Testing of the determination method suggested that (i) drying and wetting of the bentonite, and (ii) exchange time affect the obtained result. The real CEC measurements were carried out with the bentonite samples taken from the A2 parcel of the LOT experiment. The CEC values of the LOT samples were compared with those of the reference samples taken from the same bentonite batch before the compaction of the blocks for the experiment. The conclusions drawn have been made on the basis of the results determined with the wet bentonite samples using the direct exchange of two weeks with 0.01 M [Cu(trien)] 2+ solution because this method gave the most complete cation exchange in the CEC measurements. The differences between the samples taken from different places of the A2 parcel were quite small and close to the accuracy of the method. However, it seems that the CEC values of the field experiment are somewhat higher than the CEC of the reference samples and the values of the hot area are higher than those obtained from the low temperature area. It is also obvious that the variation of CEC increases with increasing temperature. (orig.)

  2. Comparison of gaseous oxidized Hg measured by KCl-coated denuders, and nylon and cation exchange membranes.

    Science.gov (United States)

    Huang, Jiaoyan; Miller, Matthieu B; Weiss-Penzias, Peter; Gustin, Mae Sexauer

    2013-07-02

    The chemical compounds that make up gaseous oxidized mercury (GOM) in the atmosphere, and the reactions responsible for their formation, are not well understood. The limitations and uncertainties associated with the current method applied to measure these compounds, the KCl-coated denuder, are not known due to lack of calibration and testing. This study systematically compared the uptake of specific GOM compounds by KCl-coated denuders with that collected using nylon and cation exchange membranes in the laboratory and field. In addition, a new method for identifying different GOM compounds using thermal desorption is presented. Different GOM compounds (HgCl2, HgBr2, and HgO) were found to have different affinities for the denuder surface and the denuder underestimated each of these compounds. Membranes measured 1.3 to 3.7 times higher GOM than denuders in laboratory and field experiments. Cation exchange membranes had the highest collection efficiency. Thermodesorption profiles for the release of GOM compounds from the nylon membrane were different for HgO versus HgBr2 and HgCl2. Application of the new field method for collection and identification of GOM compounds demonstrated these vary as a function of location and time of year. Understanding the chemistry of GOM across space and time has important implications for those developing policy regarding this environmental contaminant.

  3. Uncertainties of Gaseous Oxidized Mercury Measurements Using KCl-Coated Denuders, Cation-Exchange Membranes, and Nylon Membranes: Humidity Influences.

    Science.gov (United States)

    Huang, Jiaoyan; Gustin, Mae Sexauer

    2015-05-19

    Quantifying the concentration of gaseous oxidized mercury (GOM) and identifying the chemical compounds in the atmosphere are important for developing accurate local, regional, and global biogeochemical cycles. The major hypothesis driving this work was that relative humidity affects collection of GOM on KCl-coated denuders and nylon membranes, both currently being applied to measure GOM. Using a laboratory manifold system and ambient air, GOM capture efficiency on 3 different collection surfaces, including KCl-coated denuders, nylon membranes, and cation-exchange membranes, was investigated at relative humidity ranging from 25 to 75%. Recovery of permeated HgBr2 on KCl-coated denuders declined by 4-60% during spikes of relative humidity (25 to 75%). When spikes were turned off GOM recoveries returned to 60 ± 19% of permeated levels. In some cases, KCl-coated denuders were gradually passivated over time after additional humidity was applied. In this study, GOM recovery on nylon membranes decreased with high humidity and ozone concentrations. However, additional humidity enhanced GOM recovery on cation-exchange membranes. In addition, reduction and oxidation of elemental mercury during experiments was observed. The findings in this study can help to explain field observations in previous studies.

  4. Synthesis, dehydration studies, and cation-exchange behavior of a new phase of niobium(V) phosphate

    International Nuclear Information System (INIS)

    Qureshi, M.; Ahmad, A.; Shakeel, N.A.; Gupta, A.P.

    1986-01-01

    Twenty-three samples of niobium(V) phosphate have been synthesized under different conditions using niobium sulfate and phosphoric acid solutions. The amorphous sample having the ion-exchange capacity of 1.06 mEq g -1 and niobium to phosphorus mole ratio of 0.670 was studied in detail for its cation-exchange behavior. Molar distribution coefficients for 25 cations have been studied on this gel at pH 1,2,3, and 5.5. Four quantitative separations of Mg 2+ -Ca 2+ , Mg 2+ -Ba 2+ , Zn 2+ -Cd 2+ , and Bi 3+ -Zn 2+ have successfully been achieved on it. The properties of this sample have been compared with those of niobium arsenate, niobium antimonate, and niobium molybdate. A tentative structural formula is proposed for this sample of niobium phosphate on the basis of chemical composition, cation-exchange capacity, pH-titration, IR spectra, T.G.A., water absorption, and heat treatment data. (author)

  5. Characteristics of floc formation of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    International Nuclear Information System (INIS)

    Adachi, Tetsurou; Sawa, Toshio; Shindoh, Toshikazu.

    1989-01-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of floc formation. The physical, chemical and electrochemical properties of powdered ion exchange resin were measured and the factors related to floc formation of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index. It was found that these factors were mixing ratio, nature of resins and particle size of resins. In addition, it was assumed on the bases of these results that the amount of resin floc was related to sum of the surface electric charges of both resins. The filling ratio of resin floc was related to their product by multiplication and an experimental expression was obtained. The specific settle volume of resin floc could then be simulated by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author)

  6. Characteristics of floc formation of anion and cation exchange resin in precoat filter using powdered ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tetsurou (Nitto Denko Corp., Ibaraki, Osaka (Japan)); Sawa, Toshio; Shindoh, Toshikazu

    1989-09-01

    The filtration performance of mixed filter aid consisting of powdered anion and cation exchange resins used in the precoat filter is closely related to the characteristics of floc formation. The physical, chemical and electrochemical properties of powdered ion exchange resin were measured and the factors related to floc formation of anion and cation exchange resin were investigated by measuring the specific settle volume of resin floc as an evaluating index. It was found that these factors were mixing ratio, nature of resins and particle size of resins. In addition, it was assumed on the bases of these results that the amount of resin floc was related to sum of the surface electric charges of both resins. The filling ratio of resin floc was related to their product by multiplication and an experimental expression was obtained. The specific settle volume of resin floc could then be simulated by particle size, surface area, ion exchange capacity and degree of ionization of the powdered ion exchange resin. (author).

  7. An Investigation into the Effect of Cation-exchange on the Adsorption Performance of Indium-based Sodalite-ZMOF

    KAUST Repository

    Samin, Umer A.

    2016-04-13

    There is a pressing need for advanced solid-state materials that can be implemented in industrial gas separation processes to achieve separations with a significantly reduced energy input compared to what is typically required from current technologies. Although certain porous materials like zeolites bear some commercial significance for gas separation; their inherent lack of tunability limits the extent to which these materials may be exploited in industry. Zeolite-like Metal-Organic Frameworks (ZMOFs) are a sub-class of Metal-Organic Framework materials (MOFs) that show a structural semblance to zeolites while possessing the tunability advantages of MOF materials. ZMOFs which are topologically similar to certain zeolites can be functionalised and tuned in numerous ways to improve their gas separation properties. In this work, indium-based sod-ZMOF was tuned by cation-exchange and then characterised by different experimental tools such as single-crystal x-ray diffraction, elemental analysis and gas adsorption. It was found that various parameters like the choice of cation, the concentration of salt solution and the choice of solvent had a significant bearing on the cation-exchange of sod-ZMOF and its subsequent adsorption properties.

  8. Coiled Brine Recovery Assembly (CoBRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Coiled Brine Recovery Assembly (CoBRA) project will result in a proof-of-concept demonstration for a lightweight, compact, affordable, regenerable and disposable...

  9. Coiled Brine Recovery Assembly (CoBRA): A New Approach to Recovering Water from Wastewater Brines

    Science.gov (United States)

    Pensinger, Stuart J.

    2015-01-01

    Brine water recovery represents a current technology gap in water recycling for human spaceflight. The role of a brine processor is to take the concentrated discharge from a primary wastewater processor, called brine, and recover most of the remaining water from it. The current state-of-the-art primary processor is the ISS Urine Processor Assembly (UPA) that currently achieves 70% water recovery. Recent advancements in chemical pretreatments are expected to increase this to 85% in the near future. This is a welcome improvement, yet is still not high enough for deep space transit. Mission architecture studies indicate that at least 95% is necessary for a Mars mission, as an example. Brine water recovery is the technology that bridges the gap between 85% and 95%, and moves life support systems one step closer to full closure of the water loop. Several brine water recovery systems have been proposed for human spaceflight, most of them focused on solving two major problems: operation in a weightless environment, and management and containment of brine residual. Brine residual is the leftover byproduct of the brine recovery process, and is often a viscous, sticky paste, laden with crystallized solid particles. Due to the chemical pretreatments added to wastewater prior to distillation in a primary processor, these residuals are typically toxic, which further complicates matters. Isolation of crewmembers from these hazardous materials is paramount. The Coiled Brine Recovery Assembly (CoBRA) is a recently developed concept from the Johnson Space Center that offers solutions to these challenges. CoBRA is centered on a softgoods evaporator that enables a passive fill with brine, and regeneration by discharging liquid brine residual to a collection bag. This evaporator is meant to be lightweight, which allows it to be discarded along with the accumulated brine solids contained within it. This paper discusses design and development of a first CoBRA prototype, and reports

  10. Studies of cation exchange for the isolation and concentration of trace level components of complex aqueous mixtures

    International Nuclear Information System (INIS)

    Kaczvinsky, J.R. Jr.

    1984-01-01

    Trace level organic bases are concentrated from aqueous solution by cation exchange on a column of sulfonated macroreticular XAD-4 resin. Washing of the column with organic solvents removes neutrals and acids. Ammonia gas is introduced into the column prior to elution of the basic organics with either methanol or ether containing ammonia. After solvent evaporation, the concentrated sample is analyzed by gas chromatography. Recoveries of over 85% are found with at least one of the eluents for over 50 bases tested at levels < 1 ppm. Improved recoveries and reproducibility are seen over a simple ether extraction procedure. Samples of river water, shale oil process water, and supernatant from an agricultural chemical disposal pit are analyzed. Preliminary studies of functionalized poly(styrene-divinylbenzene)s, coated exchangers, and liquid ion exchangers as possible approaches to nuclear waste decontamination are performed

  11. Accurate determination of trace amounts of thorium in silicate rocks by cation-exchange chromatography and spectrophotometry

    International Nuclear Information System (INIS)

    Victor, A.H.; Strelow, F.W.E.

    1982-01-01

    Thorium in four of the South African NIMROC standards and in four secondary standards is determined accurately by means of spectrophotometry with arsenazo-III after a selective cation-exchange separation on an AG50W-X4 resin column. All other elements are eluted with 6 M hydrobromic acid before the final elution of thorium with 5 M nitric acid. Small amounts of zirconium which may be present in the thorium eluate, are effectively complexed with oxalic acid which also eliminates the spectrophotometric interferences caused by organic material leached from the resin column. The accuracy and precision of the method are demonstrated by the analysis of synthetic mixtures containing various amounts of thorium. Amounts of 10 and 100 μg of thorium can finally be determined with coefficients of variation of 1% and 0.2%, respectively. (Auth.)

  12. Separation of Pu and Nd from Uranium matrix by equilibrated cation exchanger for burnup measurement of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Joe, Kih Soo; Kim, Jung Suk; Jeon, Young Shin; Han, Sun Ho; Eom, Tae Yoon

    1993-01-01

    Ion chromatographic method has been applied for burnup measurement of irradiated nuclear fuel by dynamic system using 1-octanesulfonate as a cation exchanger and α-hydroxyisobutyric acid as an eluant. A number of elution techniques were evaluated for the optimum separation of plutonium, uranium and neodymium. These elements were individually separated and collected by gradient elution between 0.05 M and 0.40 M of α-hydroxyisobutyric acid in a single column, and finally determined by isotope dilution mass spectrometry. The burnup data from this method were compared with those from conventional anion exchange method. The results showed a good agreement within 3.5 % of difference between two methods. (Author)

  13. High Ion-Exchange Capacity Semihomogeneous Cation Exchange Membranes Prepared via a Novel Polymerization and Sulfonation Approach in Porous Polypropylene.

    Science.gov (United States)

    Jiang, Shanxue; Ladewig, Bradley P

    2017-11-08

    Semihomogeneous cation exchange membranes with superior ion exchange capacity (IEC) were synthesized via a novel polymerization and sulfonation approach in porous polypropylene support. The IEC of membranes could reach up to 3 mmol/g because of high mass ratio of functional polymer to membrane support. Especially, theoretical IEC threshold value agreed well with experimental threshold value, indicating that IEC could be specifically designed without carrying out extensive experiments. Also, sulfonate groups were distributed both on membrane surface and across the membranes, which corresponded well with high IEC of the synthesized membranes. In addition, the semifinished membrane showed hydrophobic property because of the formation of polystyrene. In contrast, the final membranes demonstrated super hydrophilic property, indicating the adequate sulfonation of polystyrene. Furthermore, when sulfonation reaction time increased, the conductivity of membranes also showed a tendency to increase, revealing the positive relationship between conductivity and IEC. Finally, the final membranes showed sufficient thermal stability for electrodialysis applications such as water desalination.

  14. On the Structure-Property Relationships of Cation-Exchanged ZK-5 Zeolites for CO 2 Adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Trong D. [Department of Chemical and Biomolecular Engineering, University of Delaware, Newark Delaware 19716 USA; Hudson, Matthew R. [Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg Maryland 20899 USA; Brown, Craig M. [Department of Chemical and Biomolecular Engineering, University of Delaware, Newark Delaware 19716 USA; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg Maryland 20899 USA; Lobo, Raul F. [Department of Chemical and Biomolecular Engineering, University of Delaware, Newark Delaware 19716 USA

    2017-02-16

    The CO2 adsorption properties of cation-exchanged Li-, Na-, K-, and Mg-ZK-5 zeolites were correlated to the molecular structures determined by Rietveld refinements of synchrotron powder X-ray diffraction patterns. Li-, K-, and Na-ZK-5 all exhibited high isosteric heats of adsorption (Qst) at low CO2 coverage, with Na-ZK-5 having the highest Qst (ca. 49 kJ mol-1). Mg2+ was located at the center of the zeolite hexagonal prism with the cation inaccessible to CO2, leading to a much lower Qst (ca. 30 kJ mol-1) and lower overall uptake capacity. Multiple CO2 adsorption sites were identified at a given CO2 loading amount for all four cation-exchanged ZK-5 adsorbents. Site A at the flat eight-membered ring windows and site B/B* in the γ-cages were the primary adsorption sites in Li- and Na-ZK-5 zeolites. Relatively strong dual-cation adsorption sites contributed significantly to an enhanced electrostatic interaction for CO2 in all ZK-5 samples. This interaction gives rise to a migration of Li+ and Mg2+ cations from their original locations at the center of the hexagonal prisms toward the α-cages, in which they interact more strongly with the adsorbed CO2.

  15. Common Ion Effects In Zeoponic Substrates: Dissolution And Cation Exchange Variations Due to Additions of Calcite, Dolomite and Wollastonite

    Science.gov (United States)

    Beiersdorfer, R. E.; Ming, D. W.; Galindo, C., Jr.

    2003-01-01

    c1inoptilolite-rich tuff-hydroxyapatite mixture (zeoponic substrate) has the potential to serve as a synthetic soil-additive for plant growth. Essential plant macro-nutrients such as calcium, phosphorous, magnesium, ammonium and potassium are released into solution via dissolution of the hydroxyapatite and cation exchange on zeolite charged sites. Plant growth experiments resulting in low yield for wheat have been attributed to a Ca deficiency caused by a high degree of cation exchange by the zeolite. Batch-equilibration experiments were performed in order to determine if the Ca deficiency can be remedied by the addition of a second Ca-bearing, soluble, mineral such as calcite, dolomite or wollastonite. Variations in the amount of calcite, dolomite or wollastonite resulted in systematic changes in the concentrations of Ca and P. The addition of calcite, dolomite or wollastonite to the zeoponic substrate resulted in an exponential decrease in the phosphorous concentration in solution. The exponential rate of decay was greatest for calcite (5.60 wt. % -I), intermediate for wollastonite (2.85 wt.% -I) and least for dolomite (1.58 wt.% -I). Additions of the three minerals resulted in linear increases in the calcium concentration in solution. The rate of increase was greatest for calcite (3.64), intermediate for wollastonite (2.41) and least for dolomite (0.61). The observed changes in P and Ca concentration are consistent with the solubilities of calcite, dolomite and wollastonite and with changes expected from a common ion effect with Ca. Keywords: zeolite, zeoponics, common-ion effect, clinoptilolite, hydroxyapatite

  16. Quantification of the Pyrrolizidine Alkaloid Jacobine in Crassocephalum crepidioides by Cation Exchange High-Performance Liquid Chromatography.

    Science.gov (United States)

    Rozhon, Wilfried; Kammermeier, Lukas; Schramm, Sebastian; Towfique, Nayeem; Adebimpe Adedeji, N; Adesola Ajayi, S; Poppenberger, Brigitte

    2018-01-01

    Pyrrolizidine alkaloids (PAs) are secondary plant metabolites with considerable hepatoxic, tumorigenic and genotoxic potential. For separation, reversed phase chromatography is commonly used because of its excellent compatibility with detection by mass spectrometry. However, reversed phase chromatography has a low selectivity for PAs. The objective of this work was to investigate the suitability of cation exchange chromatography for separation of PAs and to develop a rapid method for quantification of jacobine in Crassocephalum crepidioides that is suitable for analysis of huge sample numbers as required for mutant screening procedures. We demonstrate that cation exchange chromatography offers excellent selectivity for PAs allowing their separation from most other plant metabolites. Due to the high selectivity, plant extracts can be directly analysed after simple sample preparation. Detection with UV at 200 nm instead of mass spectrometry can be applied, which makes the method very simple and cost-effective. The recovery rate of the method exceeded 95%, the intra-day and inter-day standard deviations were below 7% and the limit of detection and quantification were 1 mg/kg and 3 mg/kg, respectively. The developed method is sufficiently sensitive for reproducible detection of jacobine in C. crepidioides. Simple sample preparation and rapid separation allows for quantification of jacobine in plant material in a high-throughput manner. Thus, the method is suitable for genetic screenings and may be applicable for other plant species, for instance Jacobaea maritima. In addition, our results show that C. crepidioides cannot be considered safe for human consumption. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Fibrous polymer grafted magnetic chitosan beads with strong poly(cation-exchange) groups for single step purification of lysozyme.

    Science.gov (United States)

    Bayramoglu, Gulay; Tekinay, Turgay; Ozalp, V Cengiz; Arica, M Yakup

    2015-05-15

    Lysozyme is an important polypetide used in medical and food applications. We report a novel magnetic strong cation exchange beads for efficient purification of lysozyme from chicken egg white. Magnetic chitosan (MCHT) beads were synthesized via phase inversion method, and then grafted with poly(glycidyl methacrylate) (p(GMA)) via the surface-initiated atom transfer radical polymerization (SI-ATRP). Epoxy groups of the grafted polymer, were modified into strong cation-exchange groups (i.e., sulfonate groups) in the presence of sodium sulfite. The MCTH and MCTH-g-p(GMA)-SO3H beads were characterized by ATR-FTIR, SEM, and VSM. The sulphonate groups content of the modified MCTH-g-p(GMA)-4 beads was found to be 0.53mmolg(-1) of beads by the potentiometric titration method. The MCTH-g-p(GMA)-SO3H beads were first used as an ion-exchange support for adsorption of lysozyme from aqueous solution. The influence of different experimental parameters such as pH, contact time, and temperature on the adsorption process was evaluated. The maximum adsorption capacity was found to be 208.7mgg(-1) beads. Adsorption of lysozyme on the MCTH-g-p(GMA)-SO3H beads fitted to Langmuir isotherm model and followed the pseudo second-order kinetic. More than 93% of the adsorbed lysozyme was desorbed using Na2CO3 solution (pH 11.0). The purity of the lysozyme was checked by HPLC and SDS gel electrophoresis. In addition, the MCTH-g-p(GMA)-SO3H beads prepared in this work showed promising potential for separation of various anionic molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Kinetic Analyses of Cation Exchange Rates in Synthetic Birnessite Measured by Time- Resolved Synchrotron X-ray Diffraction

    Science.gov (United States)

    Lopano, C. L.; Heaney, P. J.; Post, J. E.; Bandstra, J.; Brantley, S. L.

    2006-05-01

    Birnessite is the most abundant and chemically important layer-structure Mn-oxide phase found in soils, desert varnishes, and ocean nodules. It also is industrially important for use in battery technology and octahedral sieves. Due to the poorly crystalline nature of natural birnessite, synthetic analogues typically have been employed in studies that explore the structural response of birnessite to variations in interlayer composition. For this work, we measured changes in unit-cell parameters over time to quantify the degree of cation exchange as a function of concentration. Aqueous K+, Cs+, and Ba2+ cations at varying concentrations at pH 7 were exchanged for interlayer Na+ in synthetic birnessite (Na0.58(Mn4+1.42,Mn3+0.58)O4·1.5H2O) using a simple flow- through cell, and the exchange products were monitored via time-resolved X-ray powder diffraction at the National Synchrotron Light Source. Powder X-ray diffraction patterns were collected every 2-3 minutes. Rietveld analyses of X-ray diffraction patterns for K- and Ba-exchanged birnessite revealed a decrease in unit- cell volume over time. In contrast, Cs+ substitution increased cell volume. For all three cations, the crystallographic data indicate that exchange occurred in two stages. A rapid and dramatic change in unit-cell volume was followed by a modest adjustment over longer timescales. Fourier electron difference syntheses revealed that the rapid, initial stage of exchange was marked by re-configuration of the interlayer species, whereas the second, protracted phase of substitution represented ordering into the newly established interlayer positions. For the first time, we have modeled the kinetics of interlayer substitution in Na-birnessite. For purposes of comparison, we have employed a simple one-stage reaction (i.e., Na-birnessite → K-birnessite) and a two stage reaction (i.e,. Na-birnessite → K-birnessitedisordered → K- birnessiteordered). For exchange with 0.01 M KCl solutions, the single

  19. Cation exchange and CaCO 3 dissolution during artificial recharge of effluent to a calcareous sandstone aquifer

    Science.gov (United States)

    Goren, Orly; Gavrieli, Ittai; Burg, Avihu; Lazar, Boaz

    2011-03-01

    SummaryThis research describes a field study and laboratory simulations of the geochemical evolution of groundwater following a recharge of effluent into aquifers. The study was conducted in the soil aquifer treatment (SAT) system of the Shafdan sewage reclamation plant, Israel. The SAT system recharges secondary effluent into the calcareous sandstone sediments of the Israeli Coastal Aquifer as a tertiary treatment. The reclaimed effluent is recovered ca. 500 m off the recharge basin and is used for unlimited irrigation. The laboratory simulations in which effluent was pumped through experimental columns packed with pristine Shafdan sediment showed that the chemical composition of the outflowing water was controlled mainly by cation exchange and CaCO 3 dissolution. Na +, K + and Mg 2+ were adsorbed and Ca 2+ was desorbed during the initial stage of recharge. The equilibrium distribution of the adsorbed cations was: Ca 2+ ˜ 60%, Mg 2+ ˜ 20%, and Na + and K + ˜ 10% each. The Ca 2+ in the Shafdan production wells and in the experimental columns outflow (˜5 meq L -1) was always higher than the Ca 2+ in the recharged effluent (˜3.5 meq L -1), indicating continuous CaCO 3 dissolution. This study demonstrates that besides mixing, a suite of geochemical processes should be considered when assessing groundwater quality following artificial recharge of aquifers.

  20. CO 2 adsorption in mono-, di- and trivalent cation-exchanged metal-organic frameworks: A molecular simulation study

    KAUST Repository

    Chen, Yifei

    2012-02-28

    A molecular simulation study is reported for CO 2 adsorption in rho zeolite-like metal-organic framework (rho-ZMOF) exchanged with a series of cations (Na +, K +, Rb +, Cs +, Mg 2+, Ca 2+, and Al 3+). The isosteric heat and Henry\\'s constant at infinite dilution increase monotonically with increasing charge-to-diameter ratio of cation (Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ < Al 3+). At low pressures, cations act as preferential adsorption sites for CO 2 and the capacity follows the charge-to-diameter ratio. However, the free volume of framework becomes predominant with increasing pressure and Mg-rho-ZMOF appears to possess the highest saturation capacity. The equilibrium locations of cations are observed to shift slightly upon CO 2 adsorption. Furthermore, the adsorption selectivity of CO 2/H 2 mixture increases as Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ ≈ Al 3+. At ambient conditions, the selectivity is in the range of 800-3000 and significantly higher than in other nanoporous materials. In the presence of 0.1% H 2O, the selectivity decreases drastically because of the competitive adsorption between H 2O and CO 2, and shows a similar value in all of the cation-exchanged rho-ZMOFs. This simulation study provides microscopic insight into the important role of cations in governing gas adsorption and separation, and suggests that the performance of ionic rho-ZMOF can be tailored by cations. © 2012 American Chemical Society.

  1. Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil.

    Science.gov (United States)

    Ramos, Fabricio T; Dores, Eliana Fg de Carvalho; Weber, Oscarlina L Dos Santos; Beber, Daniel C; Campelo, José H; Maia, João C de Souza

    2018-01-09

    Agricultural conservation practices increase total organic carbon storage in soil (T OCS ), a factor that is correlated with the physical and chemical qualities of highly weathered soils. In this study, we investigated the effects of T OCS on the physicochemical attributes of a Latosol after 10 years of no-till management in Mato Grosso State, Brazil. T COS was highly correlated (r = 0.92) with cation exchange capacity (CEC, pH = 7) and soil density. In the top 0.2 m soil layer, CEC increased by 25% with every 1.8 kg m -2 of stored organic carbon. Eliminating soil organic matter reduced CEC from an already low value of 8.40 cmol c kg -1 to 4.82 cmol c kg -1 . Humus is therefore clearly important for the formation of a negative liquid charge in a predominantly electropositive but clayey soil. We confirmed that T OCS is an indicator related to the physiochemical characteristics of weathered soils. Furthermore, our results demonstrate that the increased carbon storage under non-tilling systems is essential for guaranteeing weathered soil fertility in tropical climates. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  2. Microchemical determination of nine rare earth elements in silicate rocks by cation-exchange preconcentration - ion-interaction chromatography

    International Nuclear Information System (INIS)

    Oguma, K.; Sato, K.; Kuroda, R.

    1993-01-01

    A method of applying ion-interaction chromatography to the determination of the rare earth elements in silicate rocks on a 100 to 200 mg sample basis has been developed. The rare earths are first separated as a group from matrices by cation-exchange chromatography in hydrochloric acid-thiocyanate media and isolated in a small, defined volume (3.00 ml). Using fractions of this, on-column concentration of the rare earths on a C-18 bonded phase silica coated with 1-octanesulfonate and a subsequent concentration gradient elution with glycolate (0.05 to 0.35 M) at pH 3.5 allows the respective separation of La, Ce, Pr, Nd, and Y (100 μl aliquot used) and of Er, Tm, Yb, and Lu (2.00 ml aliquot used). Sm, Eu, Gd, Tb, and Dy elute together, and Ho is not sufficiently well resolved from these middle rare earth elements. The eluted rare earth elements are detected and quantified by post-column reaction with Arsenazo III photometrically, using a UV-VIS spectrophotometer at a wavelength of 650 nm. The method is shown to be capable of determining nine of the rare earth elements in a variety of international reference rock samples with good precision and accuracy. (orig.)

  3. Kinetics, thermodynamics and surface heterogeneity assessment of uranium(VI) adsorption onto cation exchange resin derived from a lignocellulosic residue

    Energy Technology Data Exchange (ETDEWEB)

    Anirudhan, T.S., E-mail: tsani@rediffmail.com [Department of Chemistry, University of Kerala, Kariavattom, Trivandrum 695581 (India); Radhakrishnan, P.G. [Department of Chemistry, University of Kerala, Kariavattom, Trivandrum 695581 (India)

    2009-02-15

    A new cation exchange resin (PGTFS-COOH) having a carboxylate functional group at the chain end was prepared by grafting poly(hydroxyethylmethacrylate) onto tamarind fruit shell, TFS (a lignocellulosic residue) using potassium peroxydisulphate-sodium thiosulphate redox initiator, and in the presence of N,N'-methylenebisacrylamide (MBA) as a crosslinking agent, followed by functionalisation. The adsorbent was characterized with the help of FTIR, XRD, scanning electron micrographs (SEM), and potentiometric titrations. The kinetic and isotherm data, obtained at optimum pH value 6.0 at different temperatures could be fitted with pseudo-second-order equation and Sips isotherm model, respectively. An increase in temperature induces positive effect on the adsorption process. The calculated activation energy of adsorption (E{sub a}, 18.67 kJ/mol) indicates that U(VI) adsorption was largely due to diffusion-controlled process. The values of adsorption enthalpy, Gibbs free energy, and entropy were calculated using thermodynamic function relationships. The decrease in adsorption enthalpy with increasing U(VI) uploading on the adsorbent, reflects the surface energetic heterogeneity of the adsorbent. The isosteric heat of adsorption was quantitatively correlated with the fractional loading for the U(VI) ions adsorption onto PGTFS-COOH. The results showed that the PGTFS-COOH possessed heterogeneous surface with sorption sites having different activities.

  4. Kinetics, thermodynamics and surface heterogeneity assessment of uranium(VI) adsorption onto cation exchange resin derived from a lignocellulosic residue

    Science.gov (United States)

    Anirudhan, T. S.; Radhakrishnan, P. G.

    2009-02-01

    A new cation exchange resin (PGTFS-COOH) having a carboxylate functional group at the chain end was prepared by grafting poly(hydroxyethylmethacrylate) onto tamarind fruit shell, TFS (a lignocellulosic residue) using potassium peroxydisulphate-sodium thiosulphate redox initiator, and in the presence of N,N'-methylenebisacrylamide (MBA) as a crosslinking agent, followed by functionalisation. The adsorbent was characterized with the help of FTIR, XRD, scanning electron micrographs (SEM), and potentiometric titrations. The kinetic and isotherm data, obtained at optimum pH value 6.0 at different temperatures could be fitted with pseudo-second-order equation and Sips isotherm model, respectively. An increase in temperature induces positive effect on the adsorption process. The calculated activation energy of adsorption ( Ea, 18.67 kJ/mol) indicates that U(VI) adsorption was largely due to diffusion-controlled process. The values of adsorption enthalpy, Gibbs free energy, and entropy were calculated using thermodynamic function relationships. The decrease in adsorption enthalpy with increasing U(VI) uploading on the adsorbent, reflects the surface energetic heterogeneity of the adsorbent. The isosteric heat of adsorption was quantitatively correlated with the fractional loading for the U(VI) ions adsorption onto PGTFS-COOH. The results showed that the PGTFS-COOH possessed heterogeneous surface with sorption sites having different activities.

  5. Highly Stereoselective Heterogeneous Diene Polymerization by Co-MFU-4l: A Single-Site Catalyst Prepared by Cation Exchange.

    Science.gov (United States)

    Dubey, Romain J-C; Comito, Robert J; Wu, Zhenwei; Zhang, Guanghui; Rieth, Adam J; Hendon, Christopher H; Miller, Jeffrey T; Dincă, Mircea

    2017-09-13

    Molecular catalysts offer tremendous advantages for stereoselective polymerization because their activity and selectivity can be optimized and understood mechanistically using the familiar tools of organometallic chemistry. Yet, this exquisite control over selectivity comes at an operational price that is generally not justifiable for the large-scale manufacture of polyfolefins. In this report, we identify Co-MFU-4l, prepared by cation exchange in a metal-organic framework, as a solid catalyst for the polymerization of 1,3-butadiene with high stereoselectivity (>99% 1,4-cis). To our knowledge, this is the highest stereoselectivity achieved with a heterogeneous catalyst for this transformation. The polymer's low polydispersity (PDI ≈ 2) and the catalyst's ready recovery and low leaching indicate that our material is a structurally resilient single-site heterogeneous catalyst. Further characterization of Co-MFU-4l by X-ray absorption spectroscopy provided evidence for discrete, tris-pyrazolylborate-like coordination of Co(II). With this information, we identify a soluble cobalt complex that mimics the structure and reactivity of Co-MFU-4l, thus providing a well-defined platform for studying the catalytic mechanism in the solution phase. This work underscores the capacity for small molecule-like tunability and mechanistic tractability available to transition metal catalysis in metal-organic frameworks.

  6. Solid cation exchange phase to remove interfering anthocyanins in the analysis of other bioactive phenols in red wine.

    Science.gov (United States)

    da Silva, Letícia Flores; Guerra, Celito Crivellaro; Klein, Diandra; Bergold, Ana Maria

    2017-07-15

    Bioactive phenols (BPs) are often targets in red wine analysis. However, other compounds interfere in the liquid chromatography methods used for this analysis. Here, purification procedures were tested to eliminate anthocyanin interference during the determination of 19 red-wine BPs. Liquid chromatography, coupled to a diode array detector (HPLC-DAD) and a mass spectrometer (UPLC-MS), was used to compare the direct injection of the samples with solid-phase extractions: reversed-phase (C18) and strong cation-exchange (SCX). The HPLC-DAD method revealed that, out of 13BPs, only six are selectively analyzed with or without C18 treatment, whereas SCX enabled the detection of all BPs. The recovery with SCX was above 86.6% for eight BPs. Moreover, UPLC-MS demonstrated the potential of SCX sample preparation for the determination of 19BPs. The developed procedure may be extended to the analysis of other red wine molecules or to other analytical methods where anthocyanins may interfere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Influence of MgO template on carbon dioxide adsorption of cation exchange resin-based nanoporous carbon.

    Science.gov (United States)

    Meng, Long-Yue; Park, Soo-Jin

    2012-01-15

    In this work, porous carbons with well-developed pore structures were directly prepared from a weak acid cation exchange resin (CER) by the carbonization of a mixture with Mg acetate in different ratios. The effect of the Mg acetate-to-CER ratio on the pore structure and CO(2) adsorption capacities of the obtained porous carbons was studied. The textural properties and morphologies of the porous carbons were analyzed via N(2)/77K adsorption/desorption isotherms, SEM, and TEM, respectively. The CO(2) adsorption capacities of the prepared porous carbons were measured at 298 K and 1 bar and 30 bar. By dissolving the MgO template, the porous carbons exhibited high specific surface areas (326-1276 m(2)/g) and high pore volumes (0.258-0.687 cm(3)/g). The CO(2) adsorption capacities of the porous carbons were enhanced to 164.4 mg/g at 1 bar and 1045 mg/g at 30 bar by increasing the Mg acetate-to-CER ratio. This result indicates that CER was one of the carbon precursors to producing the porous structure, as well as for improving the CO(2) adsorption capacities of the carbon species. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  8. Simplified in vitro refolding and purification of recombinant human granulocyte colony stimulating factor using protein folding cation exchange chromatography.

    Science.gov (United States)

    Vemula, Sandeep; Dedaniya, Akshay; Thunuguntla, Rahul; Mallu, Maheswara Reddy; Parupudi, Pavani; Ronda, Srinivasa Reddy

    2015-01-30

    Protein folding-strong cation exchange chromatography (PF-SCX) has been employed for efficient refolding with simultaneous purification of recombinant human granulocyte colony stimulating factor (rhG-CSF). To acquire a soluble form of renatured and purified rhG-CSF, various chromatographic conditions, including the mobile phase composition and pH was evaluated. Additionally, the effects of additives such as urea, amino acids, polyols, sugars, oxidizing agents and their amalgamations were also investigated. Under the optimal conditions, rhG-CSF was efficaciously solubilized, refolded and simultaneously purified by SCX in a single step. The experimental results using ribose (2.0M) and arginine (0.6M) combination were found to be satisfactory with mass yield, purity and specific activity of 71%, ≥99% and 2.6×10(8)IU/mg respectively. Through this investigation, we concluded that the SCX refolding method was more efficient than conventional methods which has immense potential for the large-scale production of purified rhG-CSF. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Purification of Monoclonal Antibodies Using a Fiber Based Cation-Exchange Stationary Phase: Parameter Determination and Modeling

    Directory of Open Access Journals (Sweden)

    Jan Schwellenbach

    2016-10-01

    Full Text Available Monoclonal antibodies (mAb currently dominate the market for protein therapeutics. Because chromatography unit operations are critical for the purification of therapeutic proteins, the process integration of novel chromatographic stationary phases, driven by the demand for more economic process schemes, is a field of ongoing research. Within this study it was demonstrated that the description and prediction of mAb purification on a novel fiber based cation-exchange stationary phase can be achieved using a physico-chemical model. All relevant mass-transport phenomena during a bind and elute chromatographic cycle, namely convection, axial dispersion, boundary layer mass-transfer, and the salt dependent binding behavior in the fiber bed were described. This work highlights the combination of model adaption, simulation, and experimental parameter determination through separate measurements, correlations, or geometric considerations, independent from the chromatographic cycle. The salt dependent binding behavior of a purified mAb was determined by the measurement of adsorption isotherms using batch adsorption experiments. Utilizing a combination of size exclusion and protein A chromatography as analytic techniques, this approach can be extended to a cell culture broth, describing the salt dependent binding behavior of multiple components. Model testing and validation was performed with experimental bind and elute cycles using purified mAb as well as a clarified cell culture broth. A comparison between model calculations and experimental data showed a good agreement. The influence of the model parameters is discussed in detail.

  10. [Preparation of strong cation-exchange monolithic column and its application in polypeptide separation by capillary electrochromatography].

    Science.gov (United States)

    Qi, Nan; Cui, Ruihong; You, Huiyan

    2011-09-01

    A strong cation-exchange monolithic column was prepared by polymerization inside the fused-silica capillary. The solution consisted of acrylic acid and 2-acrylamido-2-methyl-1-propanesulfonic acid as functional monomers, N,N'-methylenebisacrylamide as a cross-linking agent, dimethyl suiphoxide and dodecanol, 1 , 4-butanediol as organic porogenic solvents and azobisisobutyronitrile as a suitable initiator. The effects of the applied voltage, concentrations of organic modifier and salt solution, pH value on the electroosmotic flow were investigated. The experimental results showed that there existed a good linear relationship between the applied voltage and electroosmotic flow with a correlation coefficient of 0.9981; When the concentration of organic modifier (acetonitrile, ACN) was less than 70%, the swelling degree of stationary phase played a main role and the electroosmotic flow was decreased abnormally with the increase of ACN concentration; The electroosmotic flow was decreased with the increase of the concentration of phosphate. When the pH value was in the range of 3-9, it did not exert a significant change in electroosmotic flow. These results were consistent with the theoretical role. At the same time, five peptides were separated successfully under the optimal experimental conditions on the monolithic column for capillary electrochromatography. The column has obvious advantages in polypeptide separation and will be favorable for the protein investigation.

  11. Synthesis of silver embedded poly(o-anisidine molybdophosphate nano hybrid cation-exchanger applicable for membrane electrode.

    Directory of Open Access Journals (Sweden)

    Anish Khan

    Full Text Available Poly(o-anisidine molybdophosphate was expediently obtained by sol-gel mixing of Poly(o-anisidine into the inorganic matrices of molybdophosphate, which was allowed to react with silver nitrate to the formation of poly(o-anisidine molybdophosphate embedded silver nano composite. The composite was characterized by Fourier Transform Infrared Spectroscopy, X-ray powder diffraction, UV-Vis Spectrophotometry, Fluorescence Spectroscopy, Scanning Electron Microscopy/Energy-dispersive X-ray Spectroscopy and Thermogravimertic Analysis. Ion exchange capacity and distribution studies were carried out to understand the ion-exchange capabilities of the nano composite. On the basis of highest distribution studies, this nano composite cation exchanger was used as preparation of heavy metal ion selective membrane. Membrane was characterized for its performance as porosity and swelling later on was used for the preparation of membrane electrode for Hg(II, having better linear range, wide working pH range (2-4.5 with fast response in the real environment.

  12. Esterification of oleic acid in a three-phase, fixed-bed reactor packed with a cation exchange resin catalyst.

    Science.gov (United States)

    Son, Sung Mo; Kimura, Hiroko; Kusakabe, Katsuki

    2011-01-01

    Esterification of oleic acid was performed in a three-phase fixed-bed reactor with a cation exchange resin catalyst (Amberlyst-15) at high temperature, which was varied from 80 to 120 °C. The fatty acid methyl ester (FAME) yields in the fixed-bed reactor were increased with increases in the reaction temperature, methanol flow rate and bed height. Moreover, the FAME yields were higher than those obtained using a batch reactor due to an equilibrium shift toward the product that resulted from continuous evaporation of the produced water. In addition, there was no catalyst deactivation during the esterification of oleic acid. However, addition of sunflower oil to the oleic acid reduced the FAME yield obtained from simultaneous esterification and transesterification. The FAME yield was 97.5% at a reaction temperature of 100 °C in the fixed-bed with a height of 5 cm when the methanol and oleic acid feed rates were 8.6 and 9.0 mL/h, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. [Sulfonation modification-assisted enrichment and identification of histidine-containing peptides by strong cation exchange chromatography and mass spectrometry].

    Science.gov (United States)

    Cao, Dong; Zhou, Chunxi; Zhang, Yangjun; Han, Chunguang; Deng, Yulin; Qian, Xiaohong

    2009-03-01

    By the sulfonation at the N-terminal of peptides, the charge state of histidine-containing peptides is different from that of other peptides in pH sulfonated histidine-containing peptides from tryptic digest of proteins by strong cation exchange (SCX) chromatography and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF MS/MS). Using the standard proteins containing histidines as the model, the methodology was evaluated. The results show that sulfonated histidine-containing peptides were efficiently enriched by SCX, and the N-terminal sulfonation of the peptides simplifies the interpretation of the acquired mass spectra and facilitates the sequencing of histidine-containing peptides by producing consecutive and predominant ions in positive mode MS2 spectra, which is thought to be the result of the charge neutralization of b ions by the N-terminal sulfonic acid group. The discrimination of b ions and y ions can greatly enhance the confidence in peptide and subsequent protein identification. It is feasible to isolate and enrich the histidine-containing peptides by using this method which has the potential applications in proteomics.

  14. Advanced analytical method of nereistoxin using mixed-mode cationic exchange solid-phase extraction and GC/MS.

    Science.gov (United States)

    Park, Yujin; Choe, Sanggil; Lee, Heesang; Jo, Jiyeong; Park, Yonghoon; Kim, Eunmi; Pyo, Jaesung; Jung, Jee H

    2015-07-01

    Nereistoxin(NTX) was originated from a marine annelid worm Lumbriconereis heteropoda and its analogue pesticides including cartap, bensultap, thiocyclam and thiobensultap have been commonly used in agriculture, because of their low toxicity and high insecticidal activity. However, NTX has been reported about its inhibitory neuro toxicity in human and animal body, by blocking nicotinic acetylcholine receptor and it cause significant neuromuscular toxicity, resulting in respiratory failure. We developed a new method to determine NTX in biological fluid. The method involves mixed-mode cationic exchange based solid phase extraction and gas chromatography/mass spectrometry for final identification and quantitative analysis. The limit of detection and recovery were substantially better than those of other methods using liquid-liquid extraction or headspace solid phase microextraction. The good recoveries (97±14%) in blood samples were obtained and calibration curves over the range 0.05-20 mg/L have R2 values greater than 0.99. The developed method was applied to a fatal case of cartap intoxication of 74 years old woman who ingested cartap hydrochloride for suicide. Cartap and NTX were detected from postmortem specimens and the cause of the death was ruled to be nereistoxin intoxication. The concentrations of NTX were 2.58 mg/L, 3.36 mg/L and 1479.7 mg/L in heart, femoral blood and stomach liquid content, respectively. The heart blood/femoral blood ratio of NTX was 0.76. Copyright © 2015. Published by Elsevier Ireland Ltd.

  15. Application of mixed-mode, solid-phase extraction in environmental and clinical chemistry. Combining hydrogen-bonding, cation-exchange and Van der Waals interactions

    Science.gov (United States)

    Mills, M.S.; Thurman, E.M.; Pedersen, M.J.

    1993-01-01

    Silica- and styrene-divinylbenzene-based mixed-mode resins that contain C8, C18 and sulphonated cation-exchange groups were compared for their efficiency in isolation of neutral triazine compounds from water and of the basic drug, benzoylecgonine, from urine. The triazine compounds were isolated by a combination of Van der Waals and hydrogen-bonding interactions, and benzoylecgonine was isolated by Van der Waals interactions and cation exchange. All analytes were eluted with a polar organic solvent contaning 2% ammonium hydroxide. Larger recoveries (95%) were achieved on copolymerized mixed-mode resins where C18 and sulfonic acid are in closer proximity than on 'blended' mixed-mode resins (60-70% recovery).

  16. A determination method of Ru, Rh and Pd in high-level liquid waste (HLLW) by cation exchange separation and ICP-AES measurement

    International Nuclear Information System (INIS)

    Cao Desheng; Duan Shirong; Qin Fengzhou; Li Jinying; Zhang Huaili

    1992-01-01

    The authors describe a determination method of Ru, Rh and Pd in HLLW with cation-exchange separation and ICP-AES measurement. A sample of HLLW was treated with the hydrochloride acid containing enough sodium chloride, then passed through a strongly acidic cation-exchange resin column, the Ru, Rh and Pd as chloro-complexes go to the eluate while the interference elements are absorbed on the resins in the column. The Ru, Rh and Pd are collected and determined by ICP-AES. The obtained results show that the recovery is 90% and the relative standard deviation is 6% as the Ru content within the range (35-230) x 10 -6 ; the recovery is 106% and RSD is 10% as the Rh content within (2-20) x 10 -6 ; and the recovery of Pd is 72% as its content less than 2 x 10 -6

  17. Synthesis and Ion-Exchange Properties of Graphene Th(IV) Phosphate Composite Cation Exchanger: Its Applications in the Selective Separation of Lead Metal Ions.

    Science.gov (United States)

    Rangreez, Tauseef Ahmad; Asiri, Abdullah M; Alhogbi, Basma G; Naushad, Mu

    2017-07-24

    In this study, graphene Th(IV) phosphate was prepared by sol-gel precipitation method. The ion-exchange behavior of this cation-exchanger was studied by investigating properties like ion-exchange capacity for various metal ions, the effect of eluent concentration, elution behavior, and thermal effect on ion-exchange capacity (IEC). Several physicochemical properties as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) study, thermal studies, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were also carried out. The material possessed an IEC of 1.56 meq·dry·g -1 of the exchanger and was found to be nano-composite. The selectivity studies showed that the material is selective towards Pb(II) ions. The selectivity of this cation-exchanger was demonstrated in the binary separation of Pb(II) ions from mixture with other metal ions. The recovery was found to be both quantitative and reproducible.

  18. Geothermal brine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Van Note, N.R.

    1981-11-24

    A process is provided for treating spent geothermal brine to remove silica. The process includes introducing the brine into the reaction zone of a reactor-clarifier and allowing the brine to flow therefrom into the clarification zone of the reactorclarifier. In the clarification zone, particles settle from the brine and are urged to the center of the tank beneath the reaction zone, and the settled particles are drawn upwardly into the reaction zone by an impeller. The particles mix with the brine in the reaction zone to form a substantially uniform distribution therein to provide nuclei for silica precipitation from the brine. A stream of sludge is removed from the bottom of the reactor-clarifier and disposed of.

  19. Geothermal brine treatment

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-08

    A system is provided for treating spent geothermal brine to remove silica. The process includes introducing the brine into the reaction zone of a reactor-clarifier and allowing the brine to flow therefrom into the clarification zone of the reactor clarifier. In the clarification zone, particles settle from the brine and are urged to the center of the tank beneath the reaction zone, and the settled particles are drawn upwardly into the reaction zone by an impeller. The particles mix with the brine in the reaction zone to form a substantially uniform distribution therein to provide nuclei for silica precipitation from the brine. A stream of sludge is removed from the bottom of the reactor-clarifier and disposed of.

  20. Synthesis and Ion-Exchange Properties of Graphene Th(IV) Phosphate Composite Cation Exchanger: Its Applications in the Selective Separation of Lead Metal Ions

    OpenAIRE

    Rangreez, Tauseef Ahmad; Inamuddin,; Asiri, Abdullah M.; Alhogbi, Basma G.; Naushad, Mu.

    2017-01-01

    In this study, graphene Th(IV) phosphate was prepared by sol?gel precipitation method. The ion-exchange behavior of this cation-exchanger was studied by investigating properties like ion-exchange capacity for various metal ions, the effect of eluent concentration, elution behavior, and thermal effect on ion-exchange capacity (IEC). Several physicochemical properties as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) study, thermal studies, scanning electron microscopy ...

  1. High pH reversed-phase chromatography with fraction concatenation as an alternative to strong-cation exchange chromatography for two-dimensional proteomic analysis

    OpenAIRE

    Yang, Feng; Shen, Yufeng; Camp, David G.; Smith, Richard D.

    2012-01-01

    Orthogonal high-resolution separations are critical for attaining improved analytical dynamic range and protein coverage in proteomic measurements. High pH reversed-phase liquid chromatography (RPLC) followed by fraction concatenation affords better peptide analysis than conventional strong-cation exchange (SCX) chromatography applied for the two-dimensional proteomic analysis. For example, concatenated high pH reversed-phase liquid chromatography increased identification for peptides (1.8-fo...

  2. Rational methods for predicting human monoclonal antibodies retention in protein A affinity chromatography and cation exchange chromatography. Structure-based chromatography design for monoclonal antibodies.

    Science.gov (United States)

    Ishihara, Takashi; Kadoya, Toshihiko; Yoshida, Hideaki; Tamada, Taro; Yamamoto, Shuichi

    2005-11-04

    Rational methods for predicting the chromatographic behavior of human monoclonal antibodies (hMabs) in protein A affinity chromatography and cation exchange chromatography from the amino acid sequences information were proposed. We investigated the relation between the structures of 28 hMabs and their chromatographic behavior in protein A affinity chromatography and cation exchange chromatography using linear gradient elution experiments. In protein A affinity chromatography, the elution pH of the hMabs was correlated with not only the structure of the Fc region (subclass), but also that of the variable region. The elution pH of hMabs that have LYLQMNSL sequences in between the CDR2 and CDR3 regions of the heavy chain became lower among the same subclass of hMabs. In cation exchange chromatography, the peak salt concentrations IR of hMabs that have the same sequences of variable regions (or that have a structural difference in their Fc region, which puts them into a subclass) were similar. The IR values of hMabs were well correlated with the equilibrium association constant Ke, and also with the surface positive charge distribution of the variable region of the heavy chain (corrected surface net positive charge (cN) of the VH region). Based on these findings, we developed rational methods for predicting the retention behavior, which were also tested with eight additional hMabs. By considering the information on the number of binding sites associated with protein adsorption as determined experimentally, and the surface positive charge distribution from the three-dimensional structure of Mab A, we hypothesized that hMabs is separated by cation exchange chromatography as the surface positive charge distribution of the VH region is recognized.

  3. Cation-exchange high-performance liquid chromatography for variant hemoglobins and HbF/A2: What must hematopathologists know about methodology?

    OpenAIRE

    Sharma, Prashant; Das, Reena

    2016-01-01

    Cation-exchange high-performance liquid chromatography (CE-HPLC) is a widely used laboratory test to detect variant hemoglobins as well as quantify hemoglobins F and A2 for the diagnosis of thalassemia syndromes. It’s versatility, speed, reproducibility and convenience have made CE-HPLC the method of choice to initially screen for hemoglobin disorders. Despite its popularity, several methodological aspects of the technology remain obscure to pathologists and this may have consequences in spec...

  4. Hydrothermal Cation Exchange Enabled Gradual Evolution of Au@ZnS–AgAuS Yolk–Shell Nanocrystals and Their Visible Light Photocatalytic Applications

    Science.gov (United States)

    Feng, Jingwen; Liu, Jia; Cheng, Xiaoyan; Liu, Jiajia; Xu, Meng

    2017-01-01

    Abstract Yolk–shell hybrid nanoparticles with noble metal core and programmed semiconductor shell composition may exhibit synergistic effects and tunable catalytic properties. In this work, the hydrothermal cation exchange synthesis of Au@ZnS–AgAuS yolk–shell nanocrystals (Y–S NCs) with well‐fabricated void size, grain‐boundary‐architectured ZnS–AgAuS shell and in situ generated Au cocatalyst are demonstrated. Starting from the novel cavity‐free Au@AgAuS core‐shell NCs, via aqueous cation exchange reaction with Zn2+, the gradual evolution with produced Au@ZnS–AgAuS Y–S NCs can be achieved successfully. This unprecedented evolution can be reasonably explained by cation exchange initialized chemical etching of Au core, followed by the diffusion through the shell to be AgAuS and then ZnS. By hydrothermal treatment provided optimal redox environment, Au ions in shell were partially reduced to be Au NCs on the surface. The UV–vis absorption spectra evolution and visible light photocatalytic performances, including improved photodegradation behavior and photocatalytic hydrogen evolution activity, have demonstrated their potential applications. This new one‐pot way to get diverse heterointerfaces for better photoinduced electron/hole separation synergistically can be anticipated for more kinds of photocatalytic organic synthesis. PMID:29375968

  5. Hydrothermal Cation Exchange Enabled Gradual Evolution of Au@ZnS-AgAuS Yolk-Shell Nanocrystals and Their Visible Light Photocatalytic Applications.

    Science.gov (United States)

    Feng, Jingwen; Liu, Jia; Cheng, Xiaoyan; Liu, Jiajia; Xu, Meng; Zhang, Jiatao

    2018-01-01

    Yolk-shell hybrid nanoparticles with noble metal core and programmed semiconductor shell composition may exhibit synergistic effects and tunable catalytic properties. In this work, the hydrothermal cation exchange synthesis of Au@ZnS-AgAuS yolk-shell nanocrystals (Y-S NCs) with well-fabricated void size, grain-boundary-architectured ZnS-AgAuS shell and in situ generated Au cocatalyst are demonstrated. Starting from the novel cavity-free Au@AgAuS core-shell NCs, via aqueous cation exchange reaction with Zn 2+ , the gradual evolution with produced Au@ZnS-AgAuS Y-S NCs can be achieved successfully. This unprecedented evolution can be reasonably explained by cation exchange initialized chemical etching of Au core, followed by the diffusion through the shell to be AgAuS and then ZnS. By hydrothermal treatment provided optimal redox environment, Au ions in shell were partially reduced to be Au NCs on the surface. The UV-vis absorption spectra evolution and visible light photocatalytic performances, including improved photodegradation behavior and photocatalytic hydrogen evolution activity, have demonstrated their potential applications. This new one-pot way to get diverse heterointerfaces for better photoinduced electron/hole separation synergistically can be anticipated for more kinds of photocatalytic organic synthesis.

  6. Highly Emissive Divalent-Ion-Doped Colloidal CsPb1–xMxBr3 Perovskite Nanocrystals through Cation Exchange

    Science.gov (United States)

    2017-01-01

    Colloidal CsPbX3 (X = Br, Cl, and I) perovskite nanocrystals (NCs) have emerged as promising phosphors and solar cell materials due to their remarkable optoelectronic properties. These properties can be tailored by not only controlling the size and shape of the NCs but also postsynthetic composition tuning through topotactic anion exchange. In contrast, property control by cation exchange is still underdeveloped for colloidal CsPbX3 NCs. Here, we present a method that allows partial cation exchange in colloidal CsPbBr3 NCs, whereby Pb2+ is exchanged for several isovalent cations, resulting in doped CsPb1–xMxBr3 NCs (M= Sn2+, Cd2+, and Zn2+; 0 50%), sharp absorption features, and narrow emission of the parent CsPbBr3 NCs. The blue-shift in the optical spectra is attributed to the lattice contraction that accompanies the Pb2+ for M2+ cation exchange and is observed to scale linearly with the lattice contraction. This work opens up new possibilities to engineer the properties of halide perovskite NCs, which to date are demonstrated to be the only known system where cation and anion exchange reactions can be sequentially combined while preserving the original NC shape, resulting in compositionally diverse perovskite NCs. PMID:28260380

  7. [Preparation of weak cation exchange monolithic column and its applications for on-line determination of nifedipine in human plasma].

    Science.gov (United States)

    Yang, Xinru; Yang, Gengliang; Zhu, Tao; Feng, Xiaojuan; Yang, Guanqun

    2009-03-01

    A cation exchange monolithic column was prepared with methylacrylic acid (MAA) as the functional monomer and ethylene dimethacrylate (EDMA) as the cross linker. This column was applied to remove the matrix compounds and enrich the ionic medicines in human plasma with water as the mobile phase. As a result, the human plasma samples can be directly injected into chromatographic system. The relationship between the mobile phase flow rate and back pressure was studied. The results showed that the monolithic column had good performances in lower pressure and higher permeability. In addition, the maximum adsorption of nifedipine on this monolithic column was investigated. The on-line clean-up and enrichment of samples were carried out using this column as the solid-phase extraction material and the C18 column as the analytical column. The chromatography was performed on a C18 reversed-phase high performance liquid chromatographic column with ultraviolet detection at 235 nm. The mobile phase was a mixture of methanol-water (70:30, v/v), and the flow rate was 1.0 mL/min. The linear range of nifedipine in human plasma was 5.0-75.0 microg/L. The intra- and inter-day relative standard deviations (RSDs) were both less than 5.0%. The limit of detection (LOD) was 1 microg/L and the limit of quantification (LOQ) was 4 microg/L. In this method tedious pretreatment procedure is not necessary. It is a fast, economical, reproducible and efficient method for assaying trace nifedipine in human plasma.

  8. Spectrum of haemoglobinopathies diagnosed by cation exchange-HPLC & modulating effects of nutritional deficiency anaemias from north India.

    Science.gov (United States)

    Rao, Seema; Kar, Rakhee; Gupta, Sanjeev Kumar; Chopra, Anita; Saxena, Renu

    2010-11-01

    The usefulness of cation exchange high performance liquid chromatography (CE-HPLC) as a tool for detection of thalassaemia/haemoglobin variants was evaluated in a prospective study in a tertiary care centre in north India. We also tried to evaluate the effect of concurrent nutritional deficiency on the HPLC pattern in the local ethnic population. A total of 800 blood samples were analyzed on the Bio-Rad Variant HPLC system by β-thal short program. The retention times, proportion of the haemoglobin (%), and the peak characteristics for all haemoglobin fractions were recorded. Alkaline and acid haemoglobin electrophoresis was performed to document the identities of the haemoglobin variants, wherever necessary. Many cases were subjected to family studies for a definitive diagnosis. Among 800 samples tested, 553 (69.1%) were found to have normal HPLC pattern. Apart from β- thalassaemia, nine additional variants were encountered; HbS (2.8%), HbE (2.5%) and HbD (1.1%) being the most common variants present. Other variants included Hb Q-India, Hb-Lepore, δβ-thalassemia/ HPFH, HbD-Iran, HbJ-Meerut and HbH disease. There was a significant decrease in the level of HbA2 associated with iron deficiency anaemia (IDA) (P=0.004) and increase in megaloblastic anaemia (P<0.001) among subjects with normal HPLC pattern. HPLC was found to be a simple, rapid and reliable method for the detection of hemoglobin variants. An accurate diagnosis can be provided in majority of cases by use of retention time, proportion of total haemoglobin, and peak characteristics of HPLC. Haemoglobin electrophoresis and family studies play a valuable role in difficult cases. Concurrent nutritional deficiency also has an effect on HbA 2 levels.

  9. Electrochemical characterization of mixed matrix heterogeneous cation exchange membranes modified by simultaneous using ilmenite-co-iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Sayed Mohsen; Hamidi, Alireza; Moghadassi, Abdolreza [Faculty of Engineering, Arak University, Arak (Iran, Islamic Republic of); Madaeni, Sayed Siavash [Razi University, Kermanshah (Iran, Islamic Republic of)

    2015-03-15

    Mixed matrix heterogeneous cation exchange membranes were prepared by solution casting technique. Ilmenite-co-iron oxide nanoparticle was also employed as inorganic filler additive in membrane fabrication. The effect of the used additives on membrane electrochemical properties was studied. Membrane ion exchange capacity, membrane potential, transport number and selectivity all were improved by use of FeTiO{sub 3}/Fe{sub 3}O{sub 4} nanoparticles in membrane matrix. Utilizing FeTiO{sub 3}-co-Fe{sub 3}O{sub 4} nanoparticles in the casting solution also led to increase in ionic flux obviously. The modified membranes containing FeTiO{sub 3}-co-Fe{sub 3}O{sub 4} nanoparticles showed higher transport number, selectivity and ionic flux compared to modified membrane containing ilmenite. Electrodialysis experiment in laboratory scale also showed higher cation removal for modified membrane containing FeTiO{sub 3}-co-Fe{sub 3}O{sub 4} nanoparticles compared to other modified membranes and pristine ones. Results showed that membrane areal electrical resistance declined sharply by use of FeTiO{sub 3}-co-Fe{sub 3}O{sub 4} nanoparticles in membrane matrix. Moreover, modified membrane containing ilmenite showed lower electrical resistance compared to others. Results showed that oxidative stability of membranes was decreased slightly by use of FeTiO{sub 3}/Fe{sub 3}O{sub 4} nanoparticles in membrane matrix. The results revealed that modified membranes in this study are comparable with that of other commercial ones.

  10. Sorptive Removal of Cesium and Cobalt Ions in a Fixed bed Column Using Lewatit S100 Cation Exchange Resin

    International Nuclear Information System (INIS)

    El-Naggar, M.R.; Ibrahim, H.A.; El-Kamash, A.M.

    2014-01-01

    The sorptive removal of cesium and cobalt ions from aqueous solutions in a fixed bed column packed with Lewatit S100® cation exchange resin has been investigated. A preliminary batch studies were performed to estimate the effect of pH and contact time on the sorption process. Results indicated that Cs + and Co 2+ could be efficiently removed using Lewatit S100® at a ph range of 4-7 with more affinity towards Cs than Co 2+ . Kinetic models have been applied to the sorption rate data and the relevant parameters were determined. The obtained results indicated that the sorption of both Cs + and Co 2+ on Lewatit S100 followed pseudo second-order rather than pseudo first-order or Morris-Webber model. Fixed bed experiments were conducted at a constant initial concentration of 100 mg/l whereas the effect of bed depth (3, 4.5 and 6 cm) and volumetric flow rate (3 and 5 ml/min.) on the breakthrough characteristics of the fixed bed sorption systems were determined. The experimental sorption data were fitted to the well-established column models namely; Thomas and BDST models to compute the different model parameters. The higher column sorption capacities were obtained at bed depth of 3 cm with a flow rate of 3 ml/min., for both Cs + and Co 2+ . The BDST model appeared to describe experimental results better than Thomas model. Results indicate that Lewatit S100® is an efficient material for the removal of cesium and cobalt ions from aqueous solutions.

  11. Combined cation-exchange and extraction chromatographic method of pre-concentration and concomitant separation of Cu(II) with high molecular mass liquid cation exchanger after its online detection.

    Science.gov (United States)

    Mandal, B; Roy, U S; Datta, D; Ghosh, N

    2011-08-19

    A selective method has been developed for the extraction chromatographic trace level separation of Cu(II) with Versatic 10 (liquid cation exchanger) coated on silanised silica gel (SSG-V10). Cu(II) has been extracted from 0.1M acetate buffer at the range of pH 4.0-5.5. The effects of foreign ions, pH, flow-rate, stripping agents on extraction and elution have been investigated. Exchange capacity of the prepared exchanger at different temperatures with respect to Cu(II) has been determined. The extraction equilibrium constant (K(ex)) and different standard thermodynamic parameters have also been calculated by temperature variation method. Positive value of ΔH (7.98 kJ mol⁻¹) and ΔS (0.1916 kJ mol⁻¹) and negative value of ΔG (-49.16 kJ mol⁻¹) indicated that the process was endothermic, entropy gaining and spontaneous. Preconcentration factor was optimized at 74.7 ± 0.2 and the desorption constants K(desorption)¹(1.4 × 10⁻²) and K(desorption)²(9.8 × 10⁻²) were determined. The effect of pH on R(f) values in ion exchange paper chromatography has been investigated. In order to investigate the sorption isotherm, two equilibrium models, the Freundlich and Langmuir isotherms, were analyzed. Cu(II) has been separated from synthetic binary and multi-component mixtures containing various metal ions associated with it in ores and alloy samples. The method effectively permits sequential separation of Cu(II) from synthetic quaternary mixture containing its congeners Bi(III), Sn(II), Hg(II) and Cu(II), Cd(II), Pb(II) of same analytical group. The method was found effective for the selective detection, removal and recovery of Cu(II) from industrial waste and standard alloy samples following its preconcentration on the column. A plausible mechanism for the extraction of Cu(II) has been suggested. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Chemistry of sustainability-Part I: Carbon dioxide as an organic synthon and Part II: Study of thermodynamics of cation exchange reactions in semiconductor nanocrystals

    Science.gov (United States)

    Sathe, Ajay A.

    Sustainability is an important part of the design and development of new chemical and energy conversion processes. Simply put sustainability is the ability to meet our needs without sacrificing the ability of the next generations to meet theirs. This thesis describes our efforts in developing two orthogonal strategies for the fixation of CO2 by utilizing high energy intermediates which are generated via oxidative or reductive processes on common organic substrates and of thermochemical measurements of cation exchange reactions which will aid the development of new materials relevant for energy conversion and storage. The first chapter lays a background for the challenges and opportunities for the use of CO2 in organic synthesis. The rapidly growing field of continuous flow processing in organic synthesis is introduced, and its importance in the development of sustainable chemical conversions is highlighted. The second chapter describes the development of a novel route to alpha-amino acids via reductive carboxylation of imines. A mechanistic proposal is presented and the reaction is shown to proceed through the intermediacy of alpha-amino alkyl metal species. Possible strategies for designing catalytic and enantioselective variants of the reaction are presented. The third chapter describes the development of a catalytic oxidative carboxylation of olefins to yield cyclic carbonates. The importance of flow chemistry and membrane separation is demonstrated by allowing the combination of mutually incompatible reagents in a single reaction sequence. While the use of carbon dioxide for synthesis of organic fine chemicals is not expected to help reduce the atmospheric carbon dioxide levels, or tackle climate change, it certainly has the potential to reduce our dependence on non-sustainable carbon feedstocks, and help achieve a carbon neutral chemical life cycle. Having described the use of carbon dioxide and flow chemistry for sustainable chemical conversion, the fourth

  13. Analyzing Solutions High in Total Dissolved Solids for Rare Earth Elements (REEs) Using Cation Exchange and Online Pre-Concentration with the seaFAST2 Unit; NETL-TRS-7-2017; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Albany, OR, 2017; p 32

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Science; Torres, M. [Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Science; Verba, C. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States); Hakala, A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-08-01

    The accurate quantification of the rare earth element (REE) dissolved concentrations in natural waters are often inhibited by their low abundances in relation to other dissolved constituents such as alkali, alkaline earth elements, and dissolved solids. The high abundance of these constituents can suppress the overall analytical signal as well as create isobaric interferences on the REEs during analysis. Waters associated with natural gas operations on black shale plays are characterized by high salinities and high total dissolved solids (TDS) contents >150,000 mg/L. Methods used to isolate and quantify dissolved REEs in seawater were adapted in order to develop the capability of analyzing REEs in waters that are high in TDS. First, a synthetic fluid based on geochemical modelling of natural brine formation fluids was created within the Marcellus black shale with a TDS loading of 153,000 mg/L. To this solution, 1,000 ng/mL of REE standards was added based on preliminary analyses of experimental fluids reacted at high pressure and temperature with Marcellus black shale. These synthetic fluids were then run at three different dilution levels of 10, 100, and 1,000–fold dilutions through cation exchange columns using AG50-X8 exchange resin from Eichrom Industries. The eluent from the cation columns were then sent through a seaFAST2 unit directly connected to an inductively coupled plasma mass spectrometer (ICP-MS) to analyze the REEs. Percent recoveries of the REEs ranged from 80–110% and fell within error for the external reference standard used and no signal suppression or isobaric interferences on the REEs were observed. These results demonstrate that a combined use of cation exchange columns and seaFAST2 instrumentation are effective in accurately quantifying the dissolved REEs in fluids that are >150,000 mg/L in TDS and have Ba:Eu ratios in excess of 380,000.

  14. Integrated SDS removal and peptide separation by strong-cation exchange liquid chromatography for SDS-assisted shotgun proteome analysis.

    Science.gov (United States)

    Sun, Difei; Wang, Nan; Li, Liang

    2012-02-03

    We report an improved shotgun method for analyzing proteomic samples containing sodium dodecyl sulfate (SDS). This method is based on the use of strong-cation exchange (SCX) liquid chromatography (LC) for SDS removal that can be integrated with peptide separation as the first dimension of the two-dimensional LC tandem mass spectrometry workflow. To optimize the performance of SDS removal, various experimental conditions, including the concentrations of chemical reagents and salts in the sample, the SDS concentration, and the SCX mobile phase composition, were investigated. It was found that a peptide recovery rate of about 90% could be achieved while removing SDS efficiently. One key finding was that, by increasing the SDS concentration to a certain level (0.5%) in the digested peptide sample, the sample recovery rate could be increased. The peptide recovery rate of BSA digests was found to be 90.6 ± 1.0% (n = 3), and SDS in the SCX fractions collected was not detectable by pyrolysis GC-MS, i.e., below the detection limit of 0.00006% for the undesalted SCX fractions. The peptide recovery rates were found to be 90.9% ± 2.7 (n = 3) and 89.5% ± 0.5% (n = 3) for the digests of the membrane-protein-enriched fractions of E. coli cell lysates and the MCF-7 breast cancer cell line, respectively. Compared to the methods that use acid-labile surfactants, such as RapiGest and PPS, for the MCF-7 membrane fraction sample, the SDS method identified, on average (n = 3), more peptides (∼5%) and proteins (∼16%) than the RapiGest method, while the RapiGest method identified more peptides (∼21%) and proteins (∼7%) from the E. coli membrane fraction than the SDS method. In both cases, the two methods identified more peptides and proteins than the PPS method. Since SCX is widely used as the first dimension of 2D-LC MS/MS, integration of SDS removal with peptide separation in SCX does not add any extra steps to the sample handling process. We demonstrated the application of

  15. Insights in understanding aggregate formation and dissociation in cation exchange chromatography for a structurally unstable Fc-fusion protein.

    Science.gov (United States)

    Chen, Zhiqiang; Huang, Chao; Chennamsetty, Naresh; Xu, Xuankuo; Li, Zheng Jian

    2016-08-19

    Cation-exchange chromatography (CEX) of a structurally unstable Fc-fusion protein exhibited multi-peak elution profile upon a salt-step elution due to protein aggregation during intra-column buffer transition where low pH and high salt coexisted. The protein exhibited a single-peak elution behavior during a pH-step elution; nevertheless, the levels of soluble aggregates (i.e. high molecular weight species, HMW) in the CEX eluate were still found up to 12-fold higher than that for the load material. The amount of the aggregates formed upon the pH-step elution was dependent on column loading with maximum HMW achieved at intermediate loading levels, supporting the hypothesis that the aggregation was the result of both the conformational changes of the bound protein and the solution concentration of the aggregation-susceptible proteins during elution. Factors such as high load pH, short protein/resin contact time, hydrophilic resin surface, and weak ionizable ligand were effective, to some extent, to reduce aggregate formation by improving the structural integrity of the bound protein. An orthogonal technique, differential scanning fluorimetry (DSF) using Sypro Orange dye confirmed that the bound protein exposed more hydrophobic area than the native molecule in free solution, especially in the pH 4-5 range. The Sypro Orange dye study of resin surface property also demonstrated that the poly[styrene-divinylbenzene]-based Poros XS with polyhydroxyl surface coating is more hydrophobic compared to the agarose-based CM Sepharose FF and SP Sepharose FF. The hydrophobic property of Poros XS contributed to stronger interactions with the partially unfolded bound protein and consequently to the higher aggregate levels seen in Poros XS eluate. This work also investigates the aggregation reversibility in CEX eluate where up to 66% of the aggregates were observed to dissociate into native monomers over a period of 120h, and links the aggregate stability to such conditions as resin

  16. Results for the Brine Evaporation Bag (BEB) Brine Processing Test

    Science.gov (United States)

    Delzeit, Lance; Flynn, Michael; Fisher, John; Shaw, Hali; Kawashima, Brian; Beeler, David; Howard, Kevin

    2015-01-01

    The recent Brine Processing Test compared the NASA Forward Osmosis Brine Dewatering (FOBD), Paragon Ionomer Water Processor (IWP), UMPQUA Ultrasonic Brine Dewatering System (UBDS), and the NASA Brine Evaporation Bag (BEB). This paper reports the results of the BEB. The BEB was operated at 70 deg C and a base pressure of 12 torr. The BEB was operated in a batch mode, and processed 0.4L of brine per batch. Two different brine feeds were tested, a chromic acid-urine brine and a chromic acid-urine-hygiene mix brine. The chromic acid-urine brine, known as the ISS Alternate Pretreatment Brine, had an average processing rate of 95 mL/hr with a specific power of 5kWhr/L. The complete results of these tests will be reported within this paper.

  17. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    Science.gov (United States)

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  18. Near-Infrared Emitting CuInSe2/CuInS2 Dot Core/Rod Shell Heteronanorods by Sequential Cation Exchange

    Science.gov (United States)

    2015-01-01

    The direct synthesis of heteronanocrystals (HNCs) combining different ternary semiconductors is challenging and has not yet been successful. Here, we report a sequential topotactic cation exchange (CE) pathway that yields CuInSe2/CuInS2 dot core/rod shell nanorods with near-infrared luminescence. In our approach, the Cu+ extraction rate is coupled to the In3+ incorporation rate by the use of a stoichiometric trioctylphosphine-InCl3 complex, which fulfills the roles of both In-source and Cu-extracting agent. In this way, Cu+ ions can be extracted by trioctylphosphine ligands only when the In–P bond is broken. This results in readily available In3+ ions at the same surface site from which the Cu+ is extracted, making the process a direct place exchange reaction and shifting the overall energy balance in favor of the CE. Consequently, controlled cation exchange can occur even in large and anisotropic heterostructured nanocrystals with preservation of the size, shape, and heterostructuring of the template NCs into the product NCs. The cation exchange is self-limited, stopping when the ternary core/shell CuInSe2/CuInS2 composition is reached. The method is very versatile, successfully yielding a variety of luminescent CuInX2 (X = S, Se, and Te) quantum dots, nanorods, and HNCs, by using Cd-chalcogenide NCs and HNCs as templates. The approach reported here thus opens up routes toward materials with unprecedented properties, which would otherwise remain inaccessible. PMID:26449673

  19. Liquid-liquid extraction and separation of VIII group elements, especially ruthenium, by synergic combinations or aromatic polyimines and micellar cationic exchangers

    International Nuclear Information System (INIS)

    Vitart, X.

    1991-01-01

    This thesis aims to characterize and to quantify the chemical equilibria involved in d-elements liquid-liquid extraction systems, especially elements belonging to the VIII group (Fe, Ni, Co, Ru, Rh, Pd, Pt). These systems are composed of synergic combination of aromatic polyimines and micellar cationic exchangers. Substitutions are first performed in aqueous acidic media by aromatic polyimines; then extractions are operated using micellic canionic exchangers. Chemical equilibria, selectivity effects, especially those due to ion-pair formations, kinetics, extractant behaviour are analysed and quantified [fr

  20. Treatment of geothermal brine

    Energy Technology Data Exchange (ETDEWEB)

    Gallup, D.L.; Featherstone, J.L.

    1992-03-24

    This patent describes a method of precipitating at least one metal from a brine containing the same. It comprises contacting a brine containing at least one metal selected from the group consisting of iron, zinc, manganese, copper, silver and lead, and at least one scale forming species selected from the group consisting of silica and calcium compounds, with a condensate of steam, derived from the brine, in an amount to provide a mixture having a volume ratio of brine to condensate in the range of about 1:2 to 1:10 for a time sufficient to precipitate at least one of the metals and only a minor amount of the scale forming species.

  1. Fabrication, characterization and photocatalytic properties of Ag/AgI/BiOI heteronanostructures supported on rectorite via a cation-exchange method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yunfang [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Fang, Jianzhang, E-mail: fangjzh@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China); Lu, Shaoyou [Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Wu, Yan; Chen, Dazhi; Huang, Liyan [Institute of Engineering Technology of Guangdong Province, Key Laboratory of Water Environmental Pollution Control of Guangdong Province, Guangzhou 510440 (China); Xu, Weicheng; Zhu, Ximiao [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Fang, Zhanqiang [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China)

    2015-04-15

    Highlights: • Ag/AgI/BiOI-rectorite was prepared by twice cation-exchange process. • Ag/AgI/BiOI-rectorite photocatalyst possessed SPR and adsorption capacity. • Ag/AgI/BiOI-rectorite exhibited highly photocatalytic activity. • Trapped holes and ·O{sub 2}{sup −} were formed active species in the photocatalytic system. - Abstract: In this work, a new plasmonic photocatalyst Ag/AgI/BiOI-rectorite was prepared via a cation exchange process. The photocatalyst had been characterized by X-ray powder diffraction (XRD), Raman spectra, nitrogen sorption (BET), field-emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity, which was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) under visible light irradiation, was enhanced significantly by loading Ag/AgI/BiOI nanoparticles onto rectorite. The photogenerated holes and superoxide radical (·O{sub 2}{sup −}) were both formed as active species for the photocatalytic reactions under visible light irradiation. The existence of metallic Ag particles, which possess the surface plasmon resonance effect, acted as an indispensable role in the photocatalytic reaction.

  2. Obtention of the cation exchange capacity of a natural kaolinite with radioactive tracers; Obtencion de la capacidad de intercambio cationico de una kaolinita natural con trazadores radioactivos

    Energy Technology Data Exchange (ETDEWEB)

    Uribe I, A.; Badillo A, V.E. [Universidad Autonoma de Zacatecas, 98000 Zacatecas (Mexico); Monroy G, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: Adrya81@hotmail.com

    2005-07-01

    One of the more used techniques for the elimination of the heavy metals present in water systems is to use adsorbent mineral phases like zeolites and clays, among others. The clays are able to exchange easily the fixed ions in the external surface of its crystals or well the ions present in the interlaminar spaces of the structures, for other existent ones in the encircling aqueous solutions for that the Cation exchange capacity (CIC) is defined as the sum of all the cations exchange that a mineral can possess independent to the physicochemical conditions. The CIC is equal to the measure of the total of negative charges of the mineral by mass of the solid (meq/g). In this investigation work, the value of the CIC equal to 2.5 meq/100 g is obtained, of a natural kaolinite from the State of Hidalgo studying the retention of the sodium in the kaolinite with the aid of the radioactive isotope {sup 24} Na and of the selective electrodes technique, making vary the pH value. So is experimentally demonstrated that the CIC is an intrinsic property of the mineral independent of the pH value of the solution and of the charges origin. (Author)

  3. From Binary Cu2S to ternary Cu-In-S and quaternary Cu-In-Zn-S nanocrystals with tunable composition via partial cation exchange.

    Science.gov (United States)

    Akkerman, Quinten A; Genovese, Alessandro; George, Chandramohan; Prato, Mirko; Moreels, Iwan; Casu, Alberto; Marras, Sergio; Curcio, Alberto; Scarpellini, Alice; Pellegrino, Teresa; Manna, Liberato; Lesnyak, Vladimir

    2015-01-27

    We present an approach for the synthesis of ternary copper indium sulfide (CIS) and quaternary copper indium zinc sulfide (CIZS) nanocrystals (NCs) by means of partial cation exchange with In(3+) and Zn(2+). The approach consists of a sequential three-step synthesis: first, binary Cu2S NCs were synthesized, followed by the homogeneous incorporation of In(3+) by an in situ partial cation-exchange reaction, leading to CIS NCs. In the last step, a second partial exchange was performed where Zn(2+) partially replaced the Cu(+) and In(3+) cations at the surface, creating a ZnS-rich shell with the preservation of the size and shape. By careful tuning reaction parameters (growth and exchange times as well as the initial Cu(+):In(3+):Zn(2+) ratios), control over both the size and composition was achieved. This led to a broad tuning of photoluminescence of the final CIZS NCs, ranging from 880 to 1030 nm without altering the NCs size. Cytotoxicity tests confirmed the biocompatibility of the synthesized CIZS NCs, which opens up opportunities for their application as near-infrared fluorescent markers in the biomedical field.

  4. Ion exchange removal of chromium (iii) from tannery wastes by using a strong acid cation exchange resin amberlite ir-120 h+ and its hybrids

    International Nuclear Information System (INIS)

    Ahmad, T.

    2014-01-01

    A strong acid cation exchange resin Amberlite IR-120 H+ and its hybrids with Mn(OH)/sub 2/, Cu(OH)/sub 2/ and Fe(OH)/sub 3/ are used for the removal of chromium (III) from spent tannery bath. The experimental data give good fits with the Langmuir sorption model. The thermodynamic parameters entropy (delta S), enthalpy (delta H) and free energy (delta G) changes are computed, which reveal that the chromium removal from tannery wastes by ion exchangers is an endothermic, physical sorption and entropically driven process. The rate of sorption is found to increase with the increase of resin dosage, stirring speed and temperature. Different kinetic models such as film diffusion, particle diffusion and Lagergren pseudo first order are used to evaluate the mechanism of the process. It is found that the hybrid ion exchange resins have better removal capacity as compared to the parent ion exchanger. The increase in the removal capacity is found to be in the order of the corresponding PZC values of the hybrid ion exchangers. Further, it is suggested that the higher exchange capacity is the result of Donnan effect and specific adsorption of chromium by the oxides / hydroxides present inside the matrix of the organic cation exchanger. (author)

  5. The possibility of using underground chloride sodium brines in the territory of the Central Federal District to improve the efficiency, reliability and safety of power equipment of TPPs

    Science.gov (United States)

    Burakov, A. Y.; Burakov, I. A.; Verkhovsky, A. E.; Nikitina, I. S.

    2017-11-01

    Long-term use of ground sodium chloride brine at power plants of “Mosenergo” for the purposes of regeneration Na-cation unit of water treatment plants chemical plants provides the preconditions for operation of underground brines and other power systems of our country. Underground sodium chloride brines used in “Mosenergo” since 1979, when the first wells for the extraction of brines in the territory of TPP-22 was drilled. Currently production brines are well in 13 TPP of PJSC “Mosenergo”. Underground sodium chloride brines can be used to regenerate the sodium cation filters under the following conditions: salinity brines should be not less than 100 g/dm3; the ratio of sodium ion content (in mg-Eq/dm3) to the total rigidity brine (in mg-Eq/dm3) should not be less than 3.5. Performed zoning district on the possibility of using underground brine for regeneration of the sodium-cation filters On the basis of these requirements. The analysis of the possibility of using underground brine directly to the location of CHP stations in the northern part of the Central Federal District on the basis of geological and hydrogeological data. Particular attention is drawn to the area of large cities, where the use of underground brines most effectively. The conclusion about the possibility of using sodium chloride brines underground in most parts of the Central Federal District for energy purposes.

  6. Brine Recovery in Containment (BRIC)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Brine Residual in Containment (BRIC) system is a technology that enables recovery of water from concentrated brine wastewater. Recovery of water from...

  7. Brine Distribution after Vacuum Saturation

    DEFF Research Database (Denmark)

    Hedegaard, Kathrine; Andersen, Bertel Lohmann

    1999-01-01

    Experiments with the vacuum saturation method for brine in plugs of chalk showed that a homogeneous distribution of brine cannot be ensured at saturations below 20% volume. Instead of a homogeneous volume distribution the brine becomes concentrated close to the surfaces of the plugs...

  8. Comparison contemporary methods of regeneration sodium-cationic filters

    Science.gov (United States)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Verkhovsky, A. E.; Ilyushin, A. S.; Aladushkin, S. V.

    2017-11-01

    Regeneration plays a crucial role in the field of efficient application sodium-cationic filters for softening the water. Traditionally used as regenerant saline NaCl. However, due to the modern development of the energy industry and its close relationship with other industrial and academic sectors the opportunity to use in the regeneration of other solutions. The report estimated data and application possibilities as regenerant solution sodium-cationic filters brine wells a high mineral content, as both primary application and after balneotherapeutic use reverse osmosis and concentrates especially recycled regenerant water repeated. Comparison of the effectiveness of these solutions with the traditional use of NaCl. Developed and tested system for the processing of highly mineralized brines wells after balneological use. Recommendations for use as regeneration solutions for the sodium-cationic unit considered solutions and defined rules of brine for regeneration costs.

  9. Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate

    International Nuclear Information System (INIS)

    Shi, Chenglong; Jia, Yongzhong; Zhang, Chao; Liu, Hong; Jing, Yan

    2015-01-01

    Highlights: • We proposed a new system for Li recovery from salt lake brine by extraction using an ionic liquid. • Cation exchange was proposed to be the mechanism of extraction followed in ionic liquid. • This ionic liquid system shown considerable extraction ability for lithium and the single extraction efficiency of lithium reached 87.28% under the optimal conditions. - Abstract: Lithium is known as the energy metal and it is a key raw material for preparing lithium isotopes which have important applications in nuclear energy source. In this work, a typical room temperature ionic liquid (RTILs), 1-butyl-3-methyl-imidazolium hexafluorophosphate ([C 4 mim][PF 6 ]), was used as an alternative solvent to study liquid/liquid extraction of lithium from salt lake brine. In this system, the ionic liquid, NaClO 4 and tributyl phosphate (TBP) were used as extraction medium, co-extraction reagent and extractant respectively. The effects of solution pH value, phase ratio, ClO 4 − amount and other factors on lithium extraction efficiency had been investigated. Optimal extraction conditions of this system include the ratio of TBP/IL at 4/1 (v/v), O/A at 2:1, n(ClO 4 − )/n(Li + ) at 2:1, the equilibration time of 10 min and unadjusted pH. Under the optimal conditions, the single extraction efficiency of lithium was 87.28% which was much higher than the conventional extraction system. Total extraction efficiency of 99.12% was obtained by triple-stage countercurrent extraction. Study on the mechanism revealed that the use of ionic liquid increased the extraction yield of lithium through cation exchange in this system. Preliminary results indicated that the use of [C 4 mim][PF 6 ] as an alternate solvent to replace traditional organic solvents (VOCs) in liquid/liquid extraction was very promising

  10. Design of a fixed-bed ion-exchange process for the treatment of rinse waters generated in the galvanization process using Laminaria hyperborea as natural cation exchanger.

    Science.gov (United States)

    Mazur, Luciana P; Pozdniakova, Tatiana A; Mayer, Diego A; Boaventura, Rui A R; Vilar, Vítor J P

    2016-03-01

    In this study, the removal of zinc from galvanization wastewaters was performed in a fixed bed column packed with brown macro-algae Laminaria hyperborea, acting as a natural cation exchanger (resin). The rinse wastewater presents a zinc concentration between 9 and 22 mg/L, a high concentration of light metals (mainly Na and Ca), a high conductivity (0.5-1.5 mS/cm) and a low organic content (DOC = 7-15 mg C/L). The zinc speciation diagram showed that approximately 80% of zinc is in the form of Zn(2+) and ≅20% as ZnSO4, considering the effluent matrix. From all operational conditions tested for zinc uptake (17 treatment of 2.4 m(3)/day of galvanization wastewater, resulting in an estimated reactants cost of 2.44 €/m(3). Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. LA-ICP-MS of rare earth elements concentrated in cation-exchange resin particles for origin attribution of uranium ore concentrate.

    Science.gov (United States)

    Asai, Shiho; Limbeck, Andreas

    2015-04-01

    Rare earth elements (REE) concentrated on cation-exchange resin particles were measured with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to obtain chondrite-normalized REE plots. The sensitivity of REE increased in ascending order of the atomic number, according to the sensitivity trend in pneumatic nebulization ICP-MS (PN-ICP-MS). The signal intensities of REE were nearly proportional to the concentrations of REE in the immersion solution used for particle-preparation. Minimum measurable concentration calculated from the net signals of REE was approximately 1 ng/g corresponding to 0.1 ng in the particle-preparation solution. In LA analysis, formation of oxide and hydroxide of the light REE and Ba which causes spectral interferences in the heavy REE measurement was effectively attenuated due to the solvent-free measurement capability, compared to conventional PN-ICP-MS. To evaluate the applicability of the proposed method, the REE-adsorbed particles prepared by immersing them in a U-bearing solution (commercially available U standard solution) were measured with LA-ICP-MS. Aside from the LA analysis, each concentration of REE in the same U standard solution was determined with conventional PN-ICP-MS after separating REE by cation-exchange chromatography. The concentrations of REE were ranging from 0.04 (Pr) to 1.08 (Dy) μg/g-U. The chondrite-normalized plot obtained through LA-ICP-MS analysis of the U standard sample exhibited close agreement with that obtained through the PN-ICP-MS of the REE-separated solution within the uncertainties. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Soil washing for brine removal

    International Nuclear Information System (INIS)

    Ayyachamy, J.S.; Atalay, A.; Zaman, M.

    1992-01-01

    During the exploration for oil and thereafter, brine transfer lines get ruptured releasing the brine which contaminates the surrounding soil. The salinity level in brine is very high, sometimes approaching or exceeding that of sea water. Soils contaminated with brine are unproductive and unsuitable for plant growth. Several investigators have documented the pollution of surface water and groundwater due to brine disposal from oil and needed to clean up such sites. The objective of this study is to develop a soil washing technique that can be used to remove brine sites were collected and used in the study. This paper reports on results which indicate that soil washing using various surface active agents is effective in removing the brine

  13. Feasibility study of NaOH regeneration in acid gas removal unit using membrane electrolysis

    Science.gov (United States)

    Taufany, Fadlilatul; Pratama, Alvian; Romzuddin, Muhammad

    2017-05-01

    The world's energy demand is increasing with the development of human civilization. Due to limited energy resource, after 2020 fossil fuels thus is predicted will be replaced by renewable resources. Taking an example, one of the potential renewable energy to be considered is biogas, as its high content of methane, which can be produced via the fermentation process of the organic compounds under controlled anaerobic environment by utilizing the methanogen bacteria. However, prior the further use, this biogas must be purified from its impurities contents, i.e. acid gas of CO2 and H2S, up to 4% and 16 ppmv, respectively, in the acid gas removal unit. This such of purification efforts, will significantly increase the higher heating value of biogas, approximately from 600 to 900 Btu/Scf. During the purification process in this acid gas removal unit, NaOH solution is used as a liquid absorbent to reduce those acid gases content, in which the by-product of alkali salt (brine) was produced as waste. Here we report the feasibility study of the NaOH regeneration process in acid gas removal unit via membrane electrolysis technology, in which both the technical and economic aspects are taken account. To be precise in procedure, the anode semi-cell was filled with the brine solution, while the cathode semi-cell was filled with demineralized water, and those electrodes were separated by the cation exchange membrane. Furthermore, the applied potential was varied ranging from 5, 10, 15 and to 20 V, while the concentration of KCl electrolyte solutions were varied ranging from 0.01, 0.05, 0.1, and to 0.03 M. This study was conducted under controlled temperatures of 30 and 50 °C. Here we found that the % sodium recovery was increased along with the applied potential, temperature, and the decrease in KCl electrolyte concentration. We found that the best results, by means of the highest % sodium recovery, i.e. 97.26 %, was achieved under the experimental condition of temperature at 30

  14. Brine Sampling and Evaluation Program

    International Nuclear Information System (INIS)

    Deal, D.E.; Case, J.B.; Deshler, R.M.; Drez, P.E.; Myers, J.; Tyburski, J.R.

    1987-12-01

    The Brine Sampling and Evaluation Program (BSEP) Phase II Report is an interim report which updates the data released in the BSEP Phase I Report. Direct measurements and observations of the brine that seeps into the WIPP repository excavations were continued through the period between August 1986 and July 1987. That data is included in Appendix A, which extends the observation period for some locations to approximately 900 days. Brine observations at 87 locations are presented in this report. Although WIPP underground workings are considered ''dry,'' small amounts of brine are present. Part of that brine migrates into the repository in response to pressure gradients at essentially isothermal conditions. The data presented in this report is a continuation of moisture content studies of the WIPP facility horizon that were initiated in 1982, as soon as underground drifts began to be excavated. Brine seepages are manifested by salt efflorescences, moist areas, and fluid accumulations in drillholes. 35 refs., 6 figs., 11 tabs

  15. Microwave-assisted grafting polymerization modification of nylon 6 capillary-channeled polymer fibers for enhanced weak cation exchange protein separations

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Liuwei; Marcus, R. Kenneth, E-mail: marcusr@clemson.edu

    2017-02-15

    A weak cation exchange liquid chromatography stationary phase (nylon-COOH) was prepared by grafting polyacrylic acid on to native nylon 6 capillary-channeled polymer (C-CP) fibers via a microwave-assisted radical polymerization. To the best of our knowledge, this is the first study of applying microwave-assisted grafting polymerization to affect nylon material for protein separation. The C-CP fiber surfaces were characterized by attenuated total reflection (ATR) infrared spectroscopy and scanning electron microscope (SEM). The anticipated carbonyl peak at 1722.9 cm{sup −1} was found on the nylon-COOH fibers, but was not found on the native fiber, indicating the presence of the polyacrylic acid on nylon fibers after grafting. The nylon-COOH phase showed a ∼12× increase in lysozyme dynamic binding capacity (∼12 mg mL{sup −1}) when compared to the native fiber phase (∼1 mg mL{sup −1}). The loading capacity of the nylon-COOH phase is nearly independent of the lysozyme loading concentration (0.05–1 mg mL{sup −1}) and the mobile phase linear velocity (7.3–73 mm s{sup −1}). The reproducibility of the lysozyme recovery from the nylon-COOH (RSD = 0.3%, n = 10) and the batch-to-batch variability in the functionalization (RSD = 3%, n = 5) were also investigated, revealing very high levels of consistency. Fast baseline separations of myoglobin, α-chymotrypsinogen A, cytochrome c and lysozyme were achieved using the nylon-COOH column. It was found that a 5× increase in the mobile phase linear velocity (7.3-to-36.5 mm s{sup −1}) had little effect on the separation resolution. The microwave-assisted grafting polymerization has great potential as a generalized surface modification methodology across the applications of C-CP fibers. - Highlights: • A microwave-assisted grafting method to attach acrylic acid is described for the first time for chromatographic phases. • A high-density, weak cation exchange surface is created on a nylon

  16. Recover of some rare earth elements from leach liquor of the Saghand uranium ore using combined precipitation and cation exchange methods

    International Nuclear Information System (INIS)

    Khanchi, A. R.; Rafati, H.; Rezvaniyanzadeh, M. R.

    2008-01-01

    In this research work, the recovery and separation of La(III), Ce(III), Sm(III), Dy(III) and Nd(III) from Saghand uranium ore have been studied by precipitation and ion-exchange chromatography methods using Dowex 50 W-X 8 cation exchanger. At first, some preliminary and preconcentration experiments such as comminution, sieve analysis, gravity table and electrostatic in preconcentration of lanthanides were performed. Then, acidic digesting and leaching procedure were used. The results of experiments showed that rare earth elements, along with interfering ions such as Al(III), Fe(III), Mg(II) and Mn(II) present in the leach liquor solution. The investigation of separation process by precipitation method revealed that precipitation and then fast separation using centrifugal technique had the best results in the elimination of interference elements. In order to separate the lanthanides and to obtain their elution curves, the chromatographic column containing Dowex 50 W-X 8 resin was employed. For efficient separation of lanthanides from interference elements the hydrochloric acid with concentration of two and six molar was used respectively. Recovery of lanthanides from the leach liquor solution was achieved more than 85%

  17. Review of the thermal stability and cation exchange properties of the zeolite minerals clinoptilolite, mordenite, and analcime; applications to radioactive waste isolation in silicic tuff

    International Nuclear Information System (INIS)

    Smyth, J.R.; Caporuscio, F.A.

    1981-06-01

    Silicic tuffs of the southern Great Basin and basalts of the Columbia River Plateau are under investigation as potential host rocks for high- and intermediate-level radioactive wastes. Nonwelded and partially welded tuffs may contain major amounts (> 50%) of the zeolite minerals clinoptilolite, mordenite, and analcime. Densely welded tuffs and some basalt flows may contain clinoptilolite as fracture filling that limits the permeability of these rocks. The cation exchange properties of these zeolite minerals allow them to pose a formidable natural barrier to the migration of cationic species of various radionuclides in aqueous solutions. However, these minerals are unstable at elevated temperatures and at low water-vapor pressures and may break down either by reversible dehydration or by irreversible mineralogical reactions. All the breakdown reactions occurring at increased temperature involve a net volume reduction and evolution of fluids. Thus, they may provide a pathway (shrinkage fractures) and a driving force (fluid pressure) for release of radionuclides to the biosphere. These reactions may be avoided by keeping zeolite-bearing horizons saturated with water and below about 85 0 C. This may restrict allowable gross thermal loadings in waste repositories in volcanic rocks

  18. Cation-exchange antibody labeling for simultaneous electrochemical detection of tumor markers CA15-3 and CA19-9

    International Nuclear Information System (INIS)

    Wang, Guangjie; Qing, Yi; Shan, Jinlu; Jin, Feng; Wang, Dong; Yuan, Ruo

    2013-01-01

    We report on a new kind of non-covalent multi-label electrochemical immunoassay that was applied to simultaneously quantify the tumor markers CA15-3 and CA19-9. The method employs a nanohybrid composed of an ionomer and conductive titanium dioxide nanoparticles that act as a matrix support for the antibodies. The two antibodies (anti-CA153 and anti-CA199) were labeled (a) with a cobaltous dipyridine complex, and (b) with methylene blue. Labeling is based on cation-exchange interaction rather than on covalent conjugation. The redox potentials of the two labels are separated by an interval of 0.3 V. The resulting sandwich-type immunosensor was read out by differential pulse voltammetry. The potential sites and currents of the two redox probes reflect the concentration of the two analytes. The two analytes were determined with a detection limit of 1.6 U mL −1 for CA19-9, and of 0.3 U mL −1 for CA15-3 (author)

  19. Fast analysis of quaternary ammonium pesticides in food and beverages using cation-exchange chromatography coupled with isotope-dilution high-resolution mass spectrometry.

    Science.gov (United States)

    Nardin, Tiziana; Barnaba, Chiara; Abballe, Franco; Trenti, Gianmaria; Malacarne, Mario; Larcher, Roberto

    2017-10-01

    A fast separation based on cation-exchange liquid chromatography coupled with high-resolution mass spectrometry is proposed for simultaneous determination of chlormequat, difenzoquat, diquat, mepiquat and paraquat in several food and beverage commodities. Solid samples were extracted using a mixture of water/methanol/formic acid (69.6:30:0.4, v/v/v), while liquid samples were ten times diluted with the same solution. Separation was carried out on an experimental length-modified IonPac CS17 column (2 × 15 mm 2 ) that allowed the use of formic acid and acetonitrile as mobile phase. Detection limits for food and beverage matrices were established at 1.5 μg/L for chlormequat, difenzoquat and mepiquat, and 3 μg/L for diquat and paraquat, while for drinking water a pre-analytical sample concentration allowed detection limits of 9 and 20 ng/L, respectively. Precision, as repeatability (RSD%), ranged from 0.2 to 24%, with a median value of 6%, and trueness, as recovery, ranged from 64 to 118%, with a median value of 96%. The method developed was successfully applied to investigate the presence of herbicide residues in commercial commodities (mineral water, orange juice, beer, tea, green coffee bean, toasted coffee powder, cocoa bean, white corn flour, rice and sugar samples). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Benyoucef, A., E-mail: ghani29000@yahoo.fr [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Yahiaoui, A. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Quijada, C. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Pza Ferrandiz i Carbonel, E-03801 Alcoy, Alicante (Spain); Morallon, E. [Departamento de Quimica Fisica e Instituto Universitario de Materiales, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2013-02-25

    Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M-Na) and copper cation (M-Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M-Cu changes depending on the inorganic cation and the polymer intercalated in the M-Cu structure. TGA analyses reveal that polymer/M-Cu composites is less stable than M-Cu. The conductivity of the composites is found to be 10{sup 3} times higher than that for M-Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV-Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

  1. Preparation of cation-exchange stir bar sorptive extraction based on monolithic material and its application to the analysis of soluble cations in milk by ion chromatography.

    Science.gov (United States)

    Huang, Xiaojia; Lin, Jianbin; Yuan, Dongxing

    2011-10-21

    In this study, a new cation-exchange coating for stir bar sorptive extraction (SBSE) based on poly (acrylic acid-ethylene dimethacrylate) monolithic material was synthesized. The effect of polymerization conditions such as the ratio of functional monomer to cross-linker and the content of porogenic solvent on the extraction efficiencies were investigated in detail. The monolithic material was characterized by elemental analysis, scanning electron microscopy and infrared spectroscopy. In order to evaluate the usability of the new coating for the extraction of inorganic cations, the analysis of soluble K(+), Mg(2+) and Ca(2+) in milk by ion chromatography with conductivity detection was selected as a paradigm. Several extractive parameters, including pH value in sample matrix, desorption solvent, extraction and desorption time were optimized. Under the optimum conditions, low detection limits (S/N = 3) and quantification limits (S/N = 10) of the proposed method for the target cations were achieved within the range of 0.12-0.28 and 0.4-0.92 μg L(-1), respectively. The method also showed good linearity, simplicity, practicality and low cost for the extraction of inorganic cations. Finally, the proposed method was successfully used to analyse three different trademarks of commercial milk samples with satisfactory recoveries in the range of 71.1% to 102.8%.

  2. Cation-exchange high-performance liquid chromatography for variant hemoglobins and HbF/A2: What must hematopathologists know about methodology?

    Science.gov (United States)

    Sharma, Prashant; Das, Reena

    2016-03-26

    Cation-exchange high-performance liquid chromatography (CE-HPLC) is a widely used laboratory test to detect variant hemoglobins as well as quantify hemoglobins F and A2 for the diagnosis of thalassemia syndromes. It's versatility, speed, reproducibility and convenience have made CE-HPLC the method of choice to initially screen for hemoglobin disorders. Despite its popularity, several methodological aspects of the technology remain obscure to pathologists and this may have consequences in specific situations. This paper discusses the basic principles of the technique, the initial quality control steps and the interpretation of various controls and variables that are available on the instrument output. Subsequent sections are devoted to methodological considerations that arise during reporting of cases. For instance, common problems of misidentified peaks, totals crossing 100%, causes of total area being above or below acceptable limits and the importance of pre-integration region peaks are dealt with. Ultimately, CE-HPLC remains an investigation, the reporting of which combines in-depth knowledge of the biological basics with more than a working knowledge of the technological aspects of the technique.

  3. Preparation and characterization of electrically conducting polypyrrole Sn(IV phosphate cation-exchanger and its application as Mn(II ion selective membrane electrode

    Directory of Open Access Journals (Sweden)

    A.A. Khan

    2011-10-01

    Full Text Available Polypyrrole Sn(IV phosphate, an organic–inorganic composite cation-exchanger was synthesized via sol-gel mixing of an organic polymer, polypyrrole, into the matrices of the inorganic precipitate of Sn(IV phosphate. The physico-chemical properties of the material were determined using Atomic Absorption Spectrometry (AAS, CHN elemental analysis (inductively coupled plasma mass spectrometry, ICP-MS, UV–VIS spectrophotometry, FTIR (Fourier Transform Infra-Red, SEM (Scanning Electron Microscopy, TGA–DTA (Thermogravimetric Analysis–Differential Thermal Analysis, and XRD (X-ray diffraction. Ion-exchange behavior was observed to characterize the material. On the basis of distribution studies, the material was found to be highly selective for toxic heavy metal ion Mn2+. Due to its selective nature, the material was used as an electroactive component for the construction of an ion-selective membrane electrode. The proposed electrode shows fairly good discrimination of mercury ion over several other inorganic ions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations for Mn(II in water.

  4. P retention and cation exchange as affected by nanoparticle of volcanic ash and application of phosphate solubilizing bacteria on Andisol Ciater, West Java, Indonesia

    Science.gov (United States)

    Fitriatin, Betty Natalie; Arifin, Mahfud; Devnita, Rina; Yuniarti, Anni; Haryanto, Rachmat; Setiabudi, Mariska Amalia

    2018-02-01

    Andisols is a soil with high retention of phosphate and cannot be absorbed by plants. Some of soil bacteria have the ability to solubilize P and make it available to growing plants are known phosphate solubilizing bacteria (PSB). The research aims to study the effect of nanoparticle volcanic ash and phosphate solubilising bacteria (PSB) on P retention and cation exchangeable (CEC) in Andisol Ciater, West Java. This research was conducted from October 2016 to March 2017. The design of the analysis used was a complete randomized factorial design with two factors. The first factor was nanoparticle volcanic ash (a) consists of four dosages based on weight percentage (0%, 2.5%, 5.0% and 7.5%) and the second factor was PSB (h) consists of two dosages (without biofertilizer and with biofertilizer 1 g/Kg soil). The combination treatments replicated three times were incubated for 4 months. Soil samples were analyzed at first month and fourth month after incubation. The results showed that all dosages of nanoparticle volcanic ash and application of PSB decreased P retention by 75-77% at the first month after incubation. Nanoparticle volcanic ash dosage decreased to 7.5% the P retention reaches 90.36% in the fourth month after incubation. The nanoparticle of volcanic ash dosage 7.5% increased with CEC (24.787 cmol.kg-1 and 16.555 cmol.kg-1) at the first and fourth months after incubation. The application of PSB increased the CEC (28.606 cmol.kg-1) in the first month after incubation.

  5. Prevalence of hemoglobin variants and hemoglobinopathies using cation-exchange high-performance liquid chromatography in central reference laboratory of India: A report of 65779 cases

    Science.gov (United States)

    Warghade, Sandeep; Britto, Jyothi; Haryan, Reshma; Dalvi, Tejaswi; Bendre, Rajesh; Chheda, Pratiksha; Matkar, Sunmeet; Salunkhe, Yogita; Chanekar, Milind; Shah, Nilesh

    2018-01-01

    CONTEXT: Hemoglobinopathies constitute the world's most common genetically inherited red blood cell disorder. Screening and accurate identification of hemoglobin (Hb) variants have become increasingly important in antenatal diagnosis and prevention of Hb disorders. AIM: The aim of this study was to screen and identify Hb fractions prevalent in the Central Reference Laboratory of India. MATERIALS AND METHODS: A total of 65,779 cases were screened for hemoglobinopathies on the bio-rad variant high-performance liquid chromatography (HPLC) system by beta-thalassemia short program. The retention times, proportion of the hemoglobin (%) and the peak characteristics for all hemoglobin fractions were recorded. Molecular analysis of the beta-globin gene was carried out by DNA sequencing on eight cases. RESULTS: Total number of abnormal Hb fractions on cation exchange-HPLC (CE-HPLC) was seen in 12,131 (18.44%) cases. Beta-thalassemia trait was the predominant genetic Hb disorder accounting for 7377 cases (11.21%) of the total cases. This was followed by sickle cell trait (2.01%), sickle cell disease (1.59%), beta-thalassemia syndrome (0.80%), HbE trait (0.79%), and borderline HbA2 (0.51%). Molecular characterization of eight rare cases of hemoglobin variants by beta-globin gene sequencing identified three cases of Hb Beth Israel, two cases of Hb Hofu trait, and one case each of Hb J Cambridge, Hb Mizunami, and Hb Sherwood Forest. CONCLUSION: Superior resolution, rapid assay time, and accurate quantification make CE-HPLC suitable for the routine investigation of hemoglobinopathies. PMID:29403210

  6. Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell

    Energy Technology Data Exchange (ETDEWEB)

    Anirudhan, T.S. [Department of Chemistry, University of Kerala, Kariavattom, Trivandrum 695 581 (India)], E-mail: tsani@rediffmail.com; Radhakrishnan, P.G. [Department of Chemistry, University of Kerala, Kariavattom, Trivandrum 695 581 (India)

    2008-04-15

    A novel cation exchanger (TFS-CE) having carboxylate functionality was prepared through graft copolymerization of hydroxyethylmethacrylate onto tamarind fruit shell (TFS) in the presence of N,N'-methylenebisacrylamide as a cross-linking agent using K{sub 2}S{sub 2}O{sub 8}/Na{sub 2}S{sub 2}O{sub 3} initiator system, followed by functionalisation. The TFS-CE was used for the removal of Cu(II) from aqueous solutions. At fixed solid/solution ratio the various factors affecting adsorption such as pH, initial concentration, contact time, and temperature were investigated. Kinetic experiments showed that the amount of Cu(II) adsorbed increased with increase in Cu(II) concentration and equilibrium was attained at 1 h. The kinetics of adsorption follows pseudo-second-order model and the rate constant increases with increase in temperature indicating endothermic nature of adsorption. The Arrhenius and Eyring equations were used to obtain the kinetic parameters such as activation energy (E{sub a}) and enthalpy ({delta}H'), entropy ({delta}S') and free energy ({delta}G') of activation for the adsorption process. The value of E{sub a} for adsorption was found to be 10.84 kJ . mol{sup -1} and the adsorption involves diffusion controlled process. The equilibrium data were well fitted to the Langmuir isotherm. The maximum adsorption capacity for Cu(II) was 64 . 10 mg . g{sup -1} at T = 303 K. The thermodynamic parameters such as changes in free energy ({delta}G{sup 0}), enthalpy ({delta}H{sup 0}), and entropy ({delta}S{sup 0}) were derived to predict the nature of adsorption process. The isosteric heat of adsorption increases with increase in surface loading indicating some lateral interactions between the adsorbed metal ions.

  7. chemical studies and sorption behavior of some hazardous metal ions on polyacrylamide stannic (IV) molybdophosphate as 'organic - inorganic' composite cation - exchanger

    International Nuclear Information System (INIS)

    Abdel-Galil, E.A.M.

    2010-01-01

    compsite materials formed by the combination of multivalent metal acid salts and organic polymers provide a new class of (organic-inorganic) hypride ion exchangers with better mechanical and granulometric properties, good ion-exchange capacity, higher chemical and radiation stabilites, reproducibility and selectivity for heavy metals. this material was characterized using X-ray (XRD and XRF), IR, TGA-DTA and total elemental analysis studies. on the basis of distribution studies, the material has been found to be highly selective for pb(II). thermodynamic parameters (i.e δG 0 , δ S 0 and δH 0 ) have also been calculated for the adsorption of Pb 2+ , Cs + , Fe 3+ , Cd 2+ , Cu +2 , Zn 2+ , Co 2+ and Eu 3+ ions on polyacrylamide Sn(IV) molybdophosphate showing that the overall adsorption process is spontaneous endothermic. the mechanism of diffusion of Fe 3+ , Co 2+ , Cu +2 , Zn 2+ , Cd 2+ , Cs + , Pb 2+ and Eu 3+ in the H-form of polyacrylamide Sn(IV) molybdophosphate composite as cation exchanger was studied as a function of particle size, concentration of the exchanging ions, reaction temperature, dring temperature and pH. the exchange rate was controlled by particle diffusion mechanism as a limited batch techneque and is confirmed from straight lines of B versus 1/r 2 polts. the values of diffusion coefficients, activation energy and entropy of activation were calculated and their significance was discussed. the data obtained have been comared with that reported for other organic and inorganic exchangers.

  8. A novel approach to measure elemental concentrations in cation exchange resins using XRF-scanning technique, and its potential in water pollution studies

    Science.gov (United States)

    Huang, Jyh-Jaan; Lin, Sheng-Chi; Löwemark, Ludvig; Liou, Ya-Hsuan; Chang, Queenie; Chang, Tsun-Kuo; Wei, Kuo-Yen; Croudace, Ian W.

    2016-04-01

    X-ray fluorescence (XRF) core-scanning is a fast, and convenient technique to assess elemental variations for a wide variety of research topics. However, the XRF scanning counts are often considered a semi-quantitative measurement due to possible absorption or scattering caused by down core variability in physical properties. To overcome this problem and extend the applications of XRF-scanning to water pollution studies, we propose to use cation exchange resin (IR-120) as an "elemental carrier", and to analyze the resins using the Itrax-XRF core scanner. The use of resin minimizes the matrix effects during the measurements, and can be employed in the field in great numbers due to its low price. Therefore, the fast, and non-destructive XRF-scanning technique can provide a quick and economical method to analyze environmental pollution via absorption in the resin. Five standard resin samples were scanned by the Itrax-XRF core scanner at different exposure times (1 s, 5 s, 15 s, 30 s, 100 s) to allow the comparisons of scanning counts with the absolute concentrations. The regression lines and correlation coefficients of elements that are generally used in pollution studies (Ca, Ti, Cr, Ni, Cu, Zn, and Pb) were examined for the different exposure times. The result shows that within the test range (from few ppm to thousands ppm), the correlation coefficients are all higher than 0.97, even at the shortest exposure time (1 s). Therefore, we propose to use this method in the field to monitor for example sewage disposal events. The low price of resin, and fast, multi elements and precise XRF-scanning technique provide a viable, cost- and time-effective approach that allows large sample numbers to be processed. In this way, the properties and sources of wastewater pollution can be traced for the purpose of environmental monitoring and environmental forensics.

  9. Monoclonal antibody heterogeneity analysis and deamidation monitoring with high-performance cation-exchange chromatofocusing using simple, two component buffer systems.

    Science.gov (United States)

    Kang, Xuezhen; Kutzko, Joseph P; Hayes, Michael L; Frey, Douglas D

    2013-03-29

    The use of either a polyampholyte buffer or a simple buffer system for the high-performance cation-exchange chromatofocusing of monoclonal antibodies is demonstrated for the case where the pH gradient is produced entirely inside the column and with no external mixing of buffers. The simple buffer system used was composed of two buffering species, one which becomes adsorbed onto the column packing and one which does not adsorb, together with an adsorbed ion that does not participate in acid-base equilibrium. The method which employs the simple buffer system is capable of producing a gradual pH gradient in the neutral to acidic pH range that can be adjusted by proper selection of the starting and ending pH values for the gradient as well as the buffering species concentration, pKa, and molecular size. By using this approach, variants of representative monoclonal antibodies with isoelectric points of 7.0 or less were separated with high resolution so that the approach can serve as a complementary alternative to isoelectric focusing for characterizing a monoclonal antibody based on differences in the isoelectric points of the variants present. Because the simple buffer system used eliminates the use of polyampholytes, the method is suitable for antibody heterogeneity analysis coupled with mass spectrometry. The method can also be used at the preparative scale to collect highly purified isoelectric variants of an antibody for further study. To illustrate this, a single isoelectric point variant of a monoclonal antibody was collected and used for a stability study under forced deamidation conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Synthesis, characterization and analytical application of hybrid; Acrylamide zirconium (IV) arsenate a cation exchanger, effect of dielectric constant on distribution coefficient of metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Nabi, Syed A. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002, U.P. (India)], E-mail: sanabi@rediffmail.com; Shalla, Aabid H. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002, U.P. (India)

    2009-04-30

    A new hybrid inorganic-organic cation exchanger acrylamide zirconium (IV) arsenate has been synthesized, characterized and its analytical application explored. The effect of experimental parameters such as mixing ratio of reagents, temperature, and pH on the properties of material has been studied. FTIR, TGA, X-ray, UV-vis spectrophotometry, SEM and elemental analysis were used to determine the physiochemical properties of this hybrid ion exchanger. The material behaves as a monofunctional acid with ion-exchange capacity of 1.65 meq/g for Na{sup +} ions. The chemical stability data reveals that the exchanger is quite stable in mineral acids, bases and fairly stable in organic solvents, while as thermal analysis shows that the material retain 84% of its ion-exchange capacity up to 600 deg. C. Adsorption behavior of metal ions in solvents with increasing dielectric constant has also been explored. The sorption studies reveal that the material is selective for Pb{sup 2+} ions. The analytical utility of the material has been explored by achieving some binary separations of metal ions on its column. Pb{sup 2+} has been selectively removed from synthetic mixtures containing Mg{sup 2+}, Ca{sup 2+}, Sr{sup 2+}, Zn{sup 2+} and Cu{sup 2+}, Al{sup 3+}, Ni{sup 2+}, Fe{sup 3+}. In order to demonstrate practical utility of the material quantitative separation of the Cu{sup 2+} and Zn{sup 2+} in brass sample has been achieved on its columns.

  11. Online coupling of hydrophilic interaction/strong cation exchange/reversed-phase liquid chromatography with porous graphitic carbon liquid chromatography for simultaneous proteomics and N-glycomics analysis.

    Science.gov (United States)

    Zhao, Yun; Law, Henry C H; Zhang, Zaijun; Lam, Herman C; Quan, Quan; Li, Guohui; Chu, Ivan K

    2015-10-09

    In this study we developed a fully automated three-dimensional (3D) liquid chromatography methodology-comprising hydrophilic interaction separation as the first dimension, strong cation exchange fractionation as the second dimension, and low-pH reversed-phase (RP) separation as the third dimension-in conjunction downstream with additional complementary porous graphitic carbon separation, to capture non-retained hydrophilic analytes, for both shotgun proteomics and N-glycomics analyses. The performance of the 3D system alone was benchmarked through the analysis of the total lysate of Saccharomyces cerevisiae, leading to improved hydrophilic peptide coverage, from which we identified 19% and 24% more proteins and peptides, respectively, relative to those identified from a two-dimensional hydrophilic interaction liquid chromatography and low-pH RP chromatography (HILIC-RP) system over the same mass spectrometric acquisition time; consequently, the 3D platform also provided enhanced proteome and protein coverage. When we applied the integrated technology to analyses of the total lysate of primary cerebellar granule neurons, we characterized a total of 2201 proteins and 16,937 unique peptides for this primary cell line, providing one of its most comprehensive datasets. Our new integrated technology also exhibited excellent performance in the first N-glycomics analysis of cynomolgus monkey plasma; we successfully identified 122 proposed N-glycans and 135 N-glycosylation sites from 122 N-glycoproteins, and confirmed the presence of 38 N-glycolylneuraminic acid-containing N-glycans, a rare occurrence in human plasma, through tandem mass spectrometry for the first time. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Unfolding and aggregation of a glycosylated monoclonal antibody on a cation exchange column. Part I. Chromatographic elution and batch adsorption behavior.

    Science.gov (United States)

    Guo, Jing; Zhang, Shaojie; Carta, Giorgio

    2014-08-22

    A glycosylated IgG2 monoclonal antibody exhibits a two-peak elution behavior when loaded on a strong cation exchange column and eluted with either a linear salt gradient or two salt steps at increasing salt concentrations. The two-peak behavior is more pronounced for conditions where the initial antibody binding is stronger, i.e. at lower pH and buffer concentration, where the hold time prior to elution is longer, where the protein mass load is lower, and where the load flow rate is higher. The effect is also dependent on the resin type, being prominent for the polymer-functionalized resin Fractogel EMD SO₃(-) and virtually absent for a macroporous resin with similar backbone but no grafted polymers. Size exclusion chromatography and dynamic light scattering show that the early eluting peak consists exclusively of the native monomeric species while the late eluting peak is a mixture of monomeric and aggregated species. Batch adsorption/desorption experiments show that the bound protein can be desorbed in two steps, with a fraction desorbed in 0.33 M NaCl, corresponding to native monomer, and a second fraction desorbed in 1M NaCl. The latter fraction decreases with protein mass load and becomes almost negligible when the resin is initially completely saturated with protein. Confocal laser scanning microscopy showed that the two-peak elution/desorption behavior is related to the unique kinetics of protein binding in the Fractogel resin. Following partial loading of the resin, the bound protein migrates toward the center of the particles during a hold step and is redistributed across the particle volume attaining low local bound protein concentrations. For these conditions the protein is apparently destabilized forming a strongly-bound unfolded intermediate that, in turn, generates aggregates upon elution in high salt. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Membrane Cells for Brine Electrolysis.

    Science.gov (United States)

    Tingle, M.

    1982-01-01

    Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)

  14. Iodine recovery from brine solutions

    Energy Technology Data Exchange (ETDEWEB)

    Weetall, H.H.; Hertl, W.

    1985-10-15

    Iodine has been produced by the reaction of iodide with hydrogen peroxide in the presence of the catalyst ferrous sulfate. The presence of high concentrations of chloride or bromide in both natural and synthetic brines have no effect on the reaction specificity or kinetics. This approach is potentially a less caustic method for the recovery of iodine from brine as compared to the most commonly used chlorine displacement methods.

  15. Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay, China).

    Science.gov (United States)

    Zhang, Xiaoying; Miao, Jinjie; Hu, Bill X; Liu, Hongwei; Zhang, Hanxiong; Ma, Zhen

    2017-09-01

    The aquifer in the coastal area of the Laizhou Bay is affected by salinization processes related to intense groundwater exploitation for brine resource and for agriculture irrigation during the last three decades. As a result, the dynamic balances among freshwater, brine, and seawater have been disturbed and the quality of groundwater has deteriorated. To fully understand the groundwater chemical distribution and evolution in the regional aquifers, hydrogeochemical and isotopic studies have been conducted based on the water samples from 102 observation wells. Groundwater levels and salinities in four monitoring wells are as well measured to inspect the general groundwater flow and chemical patterns and seasonal variations. Chemical components such as Na + , K + , Ca 2+ , Mg 2+ , Sr 2+ , Cl - , SO 4 2- , HCO 3 - , NO 3 - , F - , and TDS during the same period are analyzed to explore geochemical evolution, water-rock interactions, sources of salt, nitrate, and fluoride pollution in fresh, brackish, saline, and brine waters. The decreased water levels without typical seasonal variation in the southeast of the study area confirm an over-exploitation of groundwater. The hydrogeochemical characteristics indicate fresh-saline-brine-saline transition pattern from inland to coast where evaporation is a vital factor to control the chemical evolution. The cation exchange processes are occurred at fresh-saline interfaces of mixtures along the hydraulic gradient. Meanwhile, isotopic data indicate that the brine in aquifers was either originated from older meteoric water with mineral dissolution and evaporation or repeatedly evaporation of retained seawater with fresher water recharge and mixing in geological time. Groundwater suitability for drinking is further evaluated according to water quality standard of China. Results reveal high risks of nitrate and fluoride contamination. The elevated nitrate concentration of 560 mg/L, which as high as 28 times of the standard content

  16. The elution of erbium from a cation exchanger bed by means of the N-hydroxyethyl-ethylene-diamine triacetic acid; Mecanismo de la elucion del erbio en un cambiador cationico con el acido n-hidroxietil-etilen-diamono-triacetico

    Energy Technology Data Exchange (ETDEWEB)

    Amer Amezaga, S.

    1963-07-01

    A physicochemical study of the phenomena resulting when erbium is eluted from a cation-exchanger bed at a steady by means of the N-hydroxyethyl-ethylene-diamine-triacetic acid (HEDTA) is made. Two different retaining beds are used, a hydrogen bed, in which no ammonium passes through, and a zinc bed, which leaks ammonium ion. Good agreement between experimental and calculated values by using the equations deduced for the concentrations of the main species has been achieved, with errors around 1-2% in most of the experiments. (Author) 69 refs.

  17. Use of combined ion exchangers on the basis of KU-23 and KM-2p cation exchangers for purification of ammonium molybdate and tungstate solutions from phosphate, arsenate, and silicate impurities

    International Nuclear Information System (INIS)

    Blokhin, A.A.; Majorov, D.Yu.; Kopyrin, A.A.; Taushkanov, V.P.

    2002-01-01

    Using the Tracer technique ( 32 P) and elementary analysis, potentiality of using combined ionites on the basis of macroporous cation-exchange resins KU-23 or KM-2p and hydrated zirconium oxide for purification of concentrated solutions of ammonium molybdate and tungstate from phosphate-, arsenate-, and silicate-ions impurities was studied. High selectivity of the combined ionites towards impurity ions was ascertained, which permits reducing the content of impurities by a factor of 50-100 compared with the initial one [ru

  18. NICE3: Textile Brine Separation

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    The goal of this project is to demonstrate the significant energy and waste savings that can be realized by using nanofiltration technology to reuse textile dyebath brines. Read this new fact sheet to learn how this new membrane technology can benefit your business.

  19. Brine Sampling and Evaluation Program: 1988 report

    International Nuclear Information System (INIS)

    Deal, D.E.; Abitz, R.J.; Case, J.B.; Crawley, M.E.; Deshler, R.M.; Drez, P.E.; Givens, C.A.; King, R.B.; Myers, J.; Pietz, J.M.; Roggenthen, W.M.; Tyburski, J.R.; Belski, D.S.; Niou, S.; Wallace, M.G.

    1989-12-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plant (WIPP) during 1988. These activities, which are a continuation and update of studies that began in 1982 as part of the Site Validation Program, were formalized as the BSEP in 1985 to document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation, and seepage of that brine into the excavations at the WIPP. Previous BSEP reports (Deal and Case, 1987; Deal and others, 1987) described the results of ongoing activities that monitor brine inflow into boreholes in the facility, moisture content of the Salado Formation, brine geochemistry, and brine weeps and crusts. The information provided in this report updates past work and describes progress made during the calendar year 1988. During 1988, BSEP activities focused on four major areas to describe and quantify brine activity: (1) monitoring of brine inflow parameters, e.g., measuring brines recovered from holes drilled upward from the underground drifts (upholes), downward from the underground drifts (downholes), and near-horizontal holes; (2) characterizing the brine, e.g., the geochemistry of the brine and the presence of bacteria and their possible interactions with experiments and operations; (3) characterizing formation properties associated with the occurrence of brine; e.g., determining the water content of various geologic units, examining these units in boreholes using a video camera system, and measuring their resistivity (conductivity); and (4) modeling to examine the interaction of salt deformation near the workings and brine seepage through the deforming salt. 77 refs., 48 figs., 32 tabs

  20. NASA TechPort Entry for Coiled Brine Recovery Assembly (CoBRA) CL IR&D Project

    Science.gov (United States)

    Pensinger, Stuart

    2014-01-01

    The Coiled Brine Recovery Assembly (CoBRA) project will result in a proof-of-concept demonstration for a lightweight, compact, affordable, regenerable and disposable solution to brine water recovery. The heart of CoBRA is an evaporator that produces water vapor from brine. This evaporator leverages a novel design that enables passive transport of brine from place to place within the system. While it will be necessary to build or modify a system for testing the CoBRA concept, the emphasis of this project will be on developing the evaporator itself. This project will utilize a “test early, test often” approach, building at least one trial evaporator to guide the design of the final product.

  1. Continuous Brine Evaporation Cartridge, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A microgravity-compatible Continuous Brine Evaporation Cartridge (CBEC) is proposed for greater than 95% water recovery from highly contaminated wastewater without...

  2. Brine disposal process for Morcinek coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Tait, J.H. [Aquatech Services, Inc., Citrus Heights, CA (United States)

    1995-04-01

    This paper describes the work to develop a commercial brine disposal process for the Morcinek mine, located 45 km south of the city of Katowice in Poland. Currently, brine is discharged into the Odra river and methane from the mine is released into the atmosphere. The process would use the released methane and convert a large percentage of the brine into potable water for commercial use. Thus, the proposed process has two environmental benefits. The brine salinity is about 31,100 ppm. Major brine components are Na (10,300 ppm), Ca (1,170 ppm), Mg (460 ppm), Cl (18,500 ppm) and SO{sub 4}{sup 2-} (252 ppm). Present in smaller amounts are K, S, Sr, B, Ba and NO{sub 3}. The process integrates a reverse osmosis (RO) unit and a submerged combustion evaporator. Extensive studies made at the Lawrence Livermore National Laboratory established the pretreatment method of the brine before it enters the RO unit. Without adequate pretreatment, mineral phases in the brine would become super-saturated and would precipitate in the RO unit. The pretreatment consists of first adding sodium carbonate to increase both the pH and the carbonate concentration of the brine. This addition causes precipitation of carbonate solids containing Ca, Mg, Sr, and Ba. After filtration of these precipitates, the fluid is acidified with HCl to prevent precipitation in the RO unit as the brine increases in salinity.

  3. Distribution of 14 elements from two solutions simulating Hanford HLW Tank 102-SY (acid-dissolved sludge and acidified supernate) on four cation exchange resins and five anion exchange resins having different functional groups

    International Nuclear Information System (INIS)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1995-01-01

    As part of the Tank Waste Remediation System program at Los Alamos, we evaluated a series of cation exchange and anion exchange resins for their ability to remove hazardous components from radioactive high-level waste (HLW). The anion exchangers were Reillex TM HPQ, a polyvinyl pyridine resin, and four strong-base polystyrene resins having trimethyl, tri ethyl, tri propyl, and tributyl amine as their respective functional groups. The cation exchange resins included Amberlyst TM 15 and Amberlyst tM XN-1010 with sulfonic acid functionality, Duolite TM C-467 with phosphonic acid functionality, and poly functional Diphonix TM with di phosphonic acid, sulfonic acid, and carboxylic acid functionalities. We measured the distributions of 14 elements on these resins from solutions simulating acid-dissolved sludge (pH 0.6) and acidified supernate (pH 3.5) from underground storage tank 102-SY at the Hanford Reservation near Richland, Washington, USA. To these simulants, we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U, Pu, and Am), and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr). For each of the 252 element/resin/solution combinations, distribution coefficients (Kds) were measured for dynamic contact periods of 30 minutes, 2 hours, and 6 hours to obtain information about sorption kinetics from these complex media. Because we measured the sorption of many different elements, the tabulated results indicate which unwanted elements are most likely to interfere with the sorption of elements of special interest. On the basis of these 756 measured Kd values, we conclude that some of the tested resins appear suitable for partitioning hazardous components from Hanford HLW. (author). 10 refs., 11 tabs

  4. Recommandations pour la détermination expérimentale de la capacité d'échange de cations des milieux argileux Recommendations for Experimentally Determining the Cation-Exchange Capacity of Shaly Media

    Directory of Open Access Journals (Sweden)

    Chambre Syndicale du Pétrole$

    2006-11-01

    Full Text Available Cet article présente une méthode relativement simple et précise destinée à la détermination de la capacité d'échanges de cations des milieux argileux qui permet de caractériser la réactivité des argiles. Cette mesure présente une certaine importance en raison des problèmes posés par les réservoirs argileux (interprétation des diagraphies, efficacité des méthodes de récupération améliorée par voie chimique. . . . Après avoir brièvement rappelé les propriétés fondamentales des argiles, la capacité d'échanges de cations (CEC est définie et la méthode recommandée de mesure de celle-ci (dosage par le chlorure de cobaltihexammine est décrite. Trois exemples viennent ensuite illustrer cette méthode dans le cas d'une argile pure, d'un sable argileux et d'un échantillon de grès argileux consolidé. This article describes a relatively simple and accurate method for determining the cation-exchange capacity of shaly media, which enables the characterization of the clay reactivity. This measurement is of some importance because of the problems posed by shaly reservoirs (interpreting well logs, effectiveness of improved-recovery methods by chemical means, etc. . After a brief review of the fondamental properties of shales, the cation-exchange capacity (CEC is defined, and the recommended measurement method by using cobaltihexammine chloride is described. Three examples are then given to illustrate this method for pure clay, for a shaly Band and for a consolidated shaly sandstone.

  5. Detachable strong cation exchange monolith, integrated with capillary zone electrophoresis and coupled with pH gradient elution, produces improved sensitivity and numbers of peptide identifications during bottom-up analysis of complex proteomes.

    Science.gov (United States)

    Zhang, Zhenbin; Yan, Xiaojing; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J

    2015-04-21

    A detachable sulfonate-silica hybrid strong cation-exchange monolith was synthesized in a fused silica capillary, and used for solid phase extraction with online pH gradient elution during capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) proteomic analysis. Tryptic digests were prepared in 50 mM formic acid and loaded onto the strong cation-exchange monolith. Fractions were eluted using a series of buffers with lower concentration but higher pH values than the 50 mM formic acid background electrolyte. This combination of elution and background electrolytes results in both sample stacking and formation of a dynamic pH junction and allows use of relatively large elution buffer volumes while maintaining reasonable peak efficiency and resolution. A series of five pH bumps were applied to elute E. coli tryptic peptides from the monolith, followed by analysis using CZE coupled to an LTQ-Orbitrap Velos mass spectrometer; 799 protein groups and 3381 peptides were identified from 50 ng of the digest in a 2.5 h analysis, which approaches the identification rate for this organism that was obtained with an Orbitrap Fusion. We attribute the improved numbers of peptide and protein identifications to the efficient fractionation by the online pH gradient elution, which decreased the complexity of the sample in each elution step and improved the signal intensity of low abundance peptides. We also performed a comparative analysis using a nanoACQUITY UltraPerformance LCH system. Similar numbers of protein and peptide identifications were produced by the two methods. Protein identifications showed significant overlap between the two methods, whereas peptide identifications were complementary.

  6. Origin of the yellow brine and the black brine in Sichuan Basin

    International Nuclear Information System (INIS)

    Wang Dongsheng

    1988-01-01

    The spring water, geothermal water and Cretaceous brine in the outer zone of the Sichuan Basin has the Craig relationship, and they are cycling waters. The brine in the inner zone is mainly metasedimentary water. A basic feature of them is poor in 2 H, but rich in 18 O. The δD-values of the yellow brine in Jurassic and Upper Triassic aquifer of continental facies varies from -62.25 to -22.4, and the δ 18 O-values are -6.72 - +6.02. The δD-values of the black brine in marine aquifer (T 2 ,T 1 ,P,C,O and so on) varies from -49 to -25.1, and the 18 O values are +3.89 - +6.14. The δD of yellow brine is similar to that of meteoric water, and the δD of the black brine is around that of crystallization water expelled from gypsum by anhydritization. Increases of salinity in Jurassic yellow brine result primarily from the evapotranspiration process. The salinity in Upper Triassic yellow brine in Aa sub-area originated from underlying rock salt which was leached by paleometeoric water. Triassic black brine derived from the mixing of the crystallization water leached from rock salt with the residual sea water after salt crystallization. In Zhigong, the composition of yellow brine has mainly been changed by the mixing of the yellow brine with the black brine. (author). 2 refs, 2 figs, 2 tabs

  7. Lithium recovery from salt lake brine by H2TiO3.

    Science.gov (United States)

    Chitrakar, Ramesh; Makita, Yoji; Ooi, Kenta; Sonoda, Akinari

    2014-06-21

    The details of the ion exchange properties of layered H2TiO3, derived from the layered Li2TiO3 precursor upon treatment with HCl solution, with lithium ions in the salt lake brine (collected from Salar de Uyuni, Bolivia) are reported. The lithium adsorption rate is slow, requiring 1 d to attain equilibrium at room temperature. The adsorption of lithium ions by H2TiO3 follows the Langmuir model with an adsorptive capacity of 32.6 mg g(-1) (4.7 mmol g(-1)) at pH 6.5 from the brine containing NaHCO3 (NaHCO3 added to control the pH). The total amount of sodium, potassium, magnesium and calcium adsorbed from the brine was lithium ions from the brine containing competitive cations such as sodium, potassium, magnesium and calcium in extremely large excess. The results indicate that the selectivity order Li(+) ≫ Na(+), K(+), Mg(2+), Ca(2+) originates from a size effect. The H2TiO3 can be regenerated and reused for lithium exchange in the brine with an exchange capacity very similar to the original H2TiO3.

  8. On the physico-chemical characteristics of brines

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Rao, P.V.S.S.D.P.; Singbal, S.Y.S.

    Analyses of the natural brines form the salt lakes, salt pans and the artificial brines obtained after the solar desalination of seawater respectively, showed wide differences in their physico-chemical characteristics. The natural brines are markEd...

  9. A Novel Ion Exchange System to Purify Mixed ISS Waste Water Brines for Chemical Production and Enhanced Water Recovery

    Science.gov (United States)

    Lunn, Griffin; Spencer, LaShelle; Ruby, Anna-Maria; McCaskill, Andrew

    2014-01-01

    Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.

  10. Solubility of Nd in brine

    International Nuclear Information System (INIS)

    Khalili, F.I.; Symeopoulos, V.; Chen, J.F.; Choppin, G.R.

    1994-01-01

    The solubility of Nd(III) has been measured at 23±3 C in a synthetic brine at pcH 6.4, 8.4, 10.4 and 12.4. The brine consisted predominantly of (Na+K)Cl and MgCl 2 with an ionic strength of 7.8 M (9.4 m) a solid compound of Nd(III) at each pcH was assigned from X-ray diffraction patterns. The log values of the experimental solubilities decrease fomr -3 at pcH 6.4 to -5.8 at pcH 8.4; at pcH 10.4 and 12.4 the solubility was below the detection limit of -7.5. The experimental solubility does not follow closely the variation with pcH estimated from modeling of the species in solution in equilibrium with the Nd solid using S.I.T. (orig.)

  11. Liver regeneration

    NARCIS (Netherlands)

    Chamuleau, R. A.; Bosman, D. K.

    1988-01-01

    Despite great advances in analysing hemodynamic, morphological and biochemical changes during the process of liver regeneration, the exact (patho)physiological mechanism is still unknown. A short survey of literature is given of the kinetics of liver regeneration and the significance of different

  12. Cation exchange capacity of an oxisol amended with an effluent from domestic sewage treatment Capacidade de troca catiônica de um latossolo tratado com efluente de tratamento de esgoto doméstico

    Directory of Open Access Journals (Sweden)

    Adriel Ferreira da Fonseca

    2005-12-01

    Full Text Available The addition of Na-rich anthropogenic residues to tropical soils has stimulated the scientific community to study the role of sodium in both the soil solution and the exchange complex. In this study, several different methods were used to calculate the concentration of exchangeable and soluble cations and this data was then used to establish correlations between the level of these cations and both the accumulation of various elements and the dry weight of maize grown in a greenhouse under different conditions. In the closed environments of the pots, the most suitable method for calculating the effective cation exchange capacity (ECEC was the cation exchange capacity calculated by cations removed with barium chloride solution (CEC S. Then again, the actual cation exchange capacity (CEC A should be measured by using Mg adsorption to prevent ionic force from influencing electric charges. A strong positive correlation was obtained between the concentrations of Na in the 1:2 soil:water extracts and the accumulation of Na in the maize plants, indicating saline or double acid extractors are not needed when monitoring the Na concentration only.A disposição de resíduos antropogênicos ricos em sódio nos solos tropicais tem despertado o interesse da comunidade científica em estudar a participação deste elemento no complexo de troca, bem como na solução no solo. Objetivou-se neste trabalho estabelecer correlações entre as concentrações de cátions trocáveis e de cátions solúveis, obtidos por diferentes métodos, com o acúmulo de elementos e com a massa seca no milho. O experimento foi conduzido em casa de vegetação, sob diferentes condições. Para experimentos em ambiente fechado (vasos, o método mais indicado para o cálculo da capacidade de troca catiônica efetiva (CTCe é a capacidade de troca catiônica calculada a partir dos cátions removidos com solução de cloreto de bário. Ainda, a capacidade de troca catiônica atual deve

  13. Rubidium extraction from seawater brine by an integrated membrane distillation-selective sorption system.

    Science.gov (United States)

    Naidu, Gayathri; Jeong, Sanghyun; Johir, Md Abu Hasan; Fane, Anthony G; Kandasamy, Jaya; Vigneswaran, Saravanamuthu

    2017-10-15

    The ultimate goal of seawater reverse osmosis (SWRO) brine management is to achieve minimal liquid discharge while recovering valuable resources. The suitability of an integrated system of membrane distillation (MD) with sorption for the recovery of rubidium (Rb + ) and simultaneous SWRO brine volume reduction has been evaluated for the first time. Polymer encapsulated potassium copper hexacyanoferrate (KCuFC(PAN)) sorbent exhibited a good selectivity for Rb + sorption with 10-15% increment at 55 °C (Langmuir Q max  = 125.11 ± 0.20 mg/g) compared to at 25 °C (Langmuir Q max  = 108.71 ± 0.20 mg/g). The integrated MD-KCuFC(PAN) system with periodic membrane cleaning, enabled concentration of SWRO brine to a volume concentration factor (VCF) of 2.9 (65% water recovery). A stable MD permeate flux was achieved with good quality permeate (conductivity of 15-20 μS/cm). Repeated cycles of MD-KCuFC(PAN) sorption with SWRO brine enabled the extraction of 2.26 mg Rb + from 12 L of brine (equivalent to 1.9 kg of Rb/day, or 0.7 tonne/yr from a plant producing 10,000 m 3 /day brine). KCuFC(PAN) showed a high regeneration and reuse capacity. NH 4 Cl air stripping followed by resorcinol formaldehyde (RF) resin filtration enabled to recover Rb + from the desorbed solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Zooplankton at deep Red Sea brine pools

    KAUST Repository

    Kaartvedt, Stein

    2016-03-02

    The deep-sea anoxic brines of the Red Sea comprise unique, complex and extreme habitats. These environments are too harsh for metazoans, while the brine–seawater interface harbors dense microbial populations. We investigated the adjacent pelagic fauna at two brine pools using net tows, video records from a remotely operated vehicle and submerged echosounders. Waters just above the brine pool of Atlantis II Deep (2000 m depth) appeared depleted of macrofauna. In contrast, the fauna appeared to be enriched at the Kebrit Deep brine–seawater interface (1466 m).

  15. Migration of brine inclusions in salt

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1982-01-01

    Theories of the migration of brine inclusions in salt are interpreted as simple physical processes, and theories by Russian and U.S. workers are shown to yield the same results. The migration theory is used to predict threshold temperature gradients below which migration of brine inclusions should not occur. The predicted threshold gradients are compared with the temperature gradients expected at the Waste Isolation Pilot Plant in New Mexico. The theory of a threshold gradient helps explain the existence of brine inclusions in natural salt deposits

  16. The use of cation exchange matrix separation coupled with ICP-MS to directly determine platinum group element (PGE) and other trace element emissions from passenger cars equipped with diesel particulate filters (DPF)

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, Warren R.L.; Cozzi, Giulio [Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); De Boni, Antonella; Gabrieli, Jacopo [University of Venice, Department of Environmental Science, Venice (Italy); Asti, Massimo; Merlone Borla, Edoardo; Parussa, Flavio [Centro Ricerche Fiat, Orbassano (Italy); Moretto, Ezio [FIAT Powertrain Technologies S.p.A, Turin (Italy); Cescon, Paolo; Barbante, Carlo [University of Venice, Department of Environmental Science, Venice (Italy); Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); Boutron, Claude [Laboratoire de Glaciologie et Geophysique de l' Environnement, UMR CNRS 5183, B.P. 96, Saint Martin d' Heres Cedex (France)

    2011-03-15

    Inductively coupled plasma-mass spectrometry coupled with cation exchange matrix separation has been optimised for the direct determination of platinum group element (PGE) and trace element emissions from a diesel engine car. After matrix separation method detection limits of 1.6 ng g{sup -1} for Pd, 0.4 ng g{sup -1} for Rh and 4.3 ng g{sup -1} for Pt were achieved, the method was validated against the certified reference material BCR 723, urban road dust. The test vehicle was fitted with new and aged catalytic converters with and without diesel particulate filters (DPF). Samples were collected after three consecutive New European Driving Cycle (NEDC) of the particulate and ''soluble'' phases using a home-made sampler optimised for trace element analysis. Emission factors for the PGEs ranged from 0.021 ng km{sup -1} for Rh to 70.5 ng km{sup -1} for Pt; when a DPF was fitted, the emission factors for the PGEs actually used in the catalysts dropped by up to 97% (for Pt). Trace element emission factors were found to drop by a maximum of 92% for Ni to a minimum of 18% for Y when a DPF was fitted; a new DPF was also found to cause a reduction of up to 86% in the emission of particulate matter. (orig.)

  17. Nearly 1000 Protein Identifications from 50 ng of Xenopus laevis Zygote Homogenate Using Online Sample Preparation on a Strong Cation Exchange Monolith Based Microreactor Coupled with Capillary Zone Electrophoresis.

    Science.gov (United States)

    Zhang, Zhenbin; Sun, Liangliang; Zhu, Guijie; Cox, Olivia F; Huber, Paul W; Dovichi, Norman J

    2016-01-05

    A sulfonate-silica hybrid strong cation exchange monolith microreactor was synthesized and coupled to a linear polyacrylamide coated capillary for online sample preparation and capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) bottom-up proteomic analysis. The protein sample was loaded onto the microreactor in an acidic buffer. After online reduction, alkylation, and digestion with trypsin, the digests were eluted with 200 mM ammonium bicarbonate at pH 8.2 for CZE-MS/MS analysis using 1 M acetic acid as the background electrolyte. This combination of basic elution and acidic background electrolytes results in both sample stacking and formation of a dynamic pH junction. 369 protein groups and 1274 peptides were identified from 50 ng of Xenopus laevis zygote homogenate, which is comparable with an offline sample preparation method, but the time required for sample preparation was decreased from over 24 h to less than 40 min. Dramatically improved performance was produced by coupling the reactor to a longer separation capillary (∼100 cm) and a Q Exactive HF mass spectrometer. 975 protein groups and 3749 peptides were identified from 50 ng of Xenopus protein using the online sample preparation method.

  18. Fully automated multidimensional reversed-phase liquid chromatography with tandem anion/cation exchange columns for simultaneous global endogenous tyrosine nitration detection, integral membrane protein characterization, and quantitative proteomics mapping in cerebral infarcts.

    Science.gov (United States)

    Quan, Quan; Szeto, Samuel S W; Law, Henry C H; Zhang, Zaijun; Wang, Yuqiang; Chu, Ivan K

    2015-10-06

    Protein tyrosine nitration (PTN) is a signature hallmark of radical-induced nitrative stress in a wide range of pathophysiological conditions, with naturally occurring abundances at substoichiometric levels. In this present study, a fully automated four-dimensional platform, consisting of high-/low-pH reversed-phase dimensions with two additional complementary, strong anion (SAX) and cation exchange (SCX), chromatographic separation stages inserted in tandem, was implemented for the simultaneous mapping of endogenous nitrated tyrosine-containing peptides within the global proteomic context of a Macaca fascicularis cerebral ischemic stroke model. This integrated RP-SA(C)X-RP platform was initially benchmarked through proteomic analyses of Saccharomyces cerevisiae, revealing extended proteome and protein coverage. A total of 27 144 unique peptides from 3684 nonredundant proteins [1% global false discovery rate (FDR)] were identified from M. fascicularis cerebral cortex tissue. The inclusion of the S(A/C)X columns contributed to the increased detection of acidic, hydrophilic, and hydrophobic peptide populations; these separation features enabled the concomitant identification of 127 endogenous nitrated peptides and 137 transmembrane domain-containing peptides corresponding to integral membrane proteins, without the need for specific targeted enrichment strategies. The enhanced diversity of the peptide inventory obtained from the RP-SA(C)X-RP platform also improved analytical confidence in isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analyses.

  19. Optimization of elution salt concentration in stepwise elution of protein chromatography using linear gradient elution data. Reducing residual protein A by cation-exchange chromatography in monoclonal antibody purification.

    Science.gov (United States)

    Ishihara, Takashi; Kadoya, Toshihiko; Endo, Naomi; Yamamoto, Shuichi

    2006-05-05

    Our simple method for optimization of the elution salt concentration in stepwise elution was applied to the actual protein separation system, which involves several difficulties such as detection of the target. As a model separation system, reducing residual protein A by cation-exchange chromatography in human monoclonal antibody (hMab) purification was chosen. We carried out linear gradient elution experiments and obtained the data for the peak salt concentration of hMab and residual protein A, respectively. An enzyme-linked immunosorbent assay was applied to the measurement of the residual protein A. From these data, we calculated the distribution coefficient of the hMab and the residual protein A as a function of salt concentration. The optimal salt concentration of stepwise elution to reduce the residual protein A from the hMab was determined based on the relationship between the distribution coefficient and the salt concentration. Using the optimized condition, we successfully performed the separation, resulting in high recovery of hMab and the elimination of residual protein A.

  20. The effect of Sinabung volcanic ash and rock phosphate nanoparticle on CEC (cation exchange capacity) base saturation exchange (K, Na, Ca, Mg) and base saturation at Andisol soils Ciater, West Java

    Science.gov (United States)

    Yuniarti, Anni; Arifin, Mahfud; Sofyan, Emma Trinurasi; Natalie, Betty; Sudirja, Rija; Dahliani, Dewi

    2018-02-01

    Andisol, soil orders which covers an upland area dominantly. The aim of this research is to know the effect between the ameliorant of Sinabung volcanic ashes with the ameliorant of rock phosphatenanoparticle towards CEC and base saturation exchange (K, Na, Ca, Mg) and the base saturation on Ciater's Andisols, West Java. A randomized complete block design (RCBD) factorial with two factors was used in this research. The first factor is the volcanic ash and the second factor is rock phosphate which consists of four levels each amount of 0%, 2.5%, 5%, 7.5% with three replications. The result showed that there was no interaction between volcanic ash and rock phosphate nanoparticle formed in first month and fourth month towards the improvement of CEC and saturation base exchange rate unless magnesium cation exchange increased in fourth month. There was independent effect of volcanic ash formed nanoparticles towards base saturation exchange increased for 5% dose. There was independent effect of rock phosphate formed nanoparticles towards base saturation exchange and increased for 5% dose. The dose combination of volcanic ashes 7.5% with phosphate rock, 5% increased the base saturation in the first month incubation.

  1. Brine Dewatering Using Ultrasonic Nebulization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Recovery of water from brine is critically important for manned space exploration. Resupply of water is prohibitively costly for extended missions. It is anticipated...

  2. Enhanced Brine Dewatering System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the Enhanced Brine Dewatering System (EBDS) is to provide an easily scalable means of completely recovering usable water from byproducts created by...

  3. Brine Dewatering Using Ultrasonic Nebulization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Recovery of water from brine is critically important for future manned space exploration. Resupply of water is prohibitively costly for such extended missions. Water...

  4. Distillation Brine Purification for Resource Recovery Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Wastewater processing systems for space generate residual brine that contains water and salts that could be recovered to reduce life support consumables. The project...

  5. Enhanced Brine Dewatering System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the Enhanced Brine Dewatering System (EBDS) is to provide a scalable means of completely recovering usable water from byproducts created by reverse...

  6. Echinoderms as indicators of brine discharge impacts

    OpenAIRE

    Fernández-Torquemada, Yolanda; González-Correa, José Miguel; Sánchez-Lizaso, José Luis

    2013-01-01

    Echinoderms are osmoconformer organisms and are expected to be very sensitive to brine discharges. The objective of this study is to examine the use of echinoderms as early warning indicators of the impact of brine discharges and its application in the management of desalination discharges. We sampled using visual census along transect lines, for nine consecutive years and in three different stations, i.e. before the seawater reverse osmosis desalination plant began operating and thereafter. ...

  7. Integrated process for coalbed brine disposal

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, H. [AQUATECH Services, Inc., Fair Oaks, CA (United States)]|[California Univ., Davis, CA (United States). Dept. of Mechanical Engineering; Bourcier, W.L.; Jackson, K.J. [Lawrence Livermore National Lab., CA (United States)

    1994-03-01

    A brine disposal process is described that converts the brine stream of a coalbed gas producing site into clean water for agricultural use, combustion products and water vapor that can be released into the atmosphere and dry solids that can be recycled for industrial consumption. The process uses a reverse osmosis unit, a submerged combustion evaporator and a pulse combustion dryer. Pretreatment of the brine feedstream is necessary to prevent fouling of the membranes of the reverse osmosis unit and to separate from the brine stream hazardous metal and other constituents that may make the permeate from the reverse osmosis unit unsuitable for agricultural or other use. A chemical modeling code is used to calculate the saturation states of solids that may precipitate and foul the reverse osmosis membranes. Sodium carbonate is added to the brine to precipitate carbonates of Ba, Ca, Mg and Sr prior to filtration, acidification, and passage into the reverse osmosis unit. Optimization of the process in terms of types and amounts of additives is possible with analysis using the modeling code. The minimum amounts of additives to prevent scaling are calculated. In a typical operation, a brine feedstream of 1,000 m{sup 3}/day (6,290 bpd) that may have a total dissolved salt concentration (TDS) of 7,000 ppm will be separated into a permeate stream of 750 m{sup 3}/day (4,718 bpd) with a TDS of 400 ppm and a concentrated brine stream of 250 m{sup 3}/day (1,573 bpd) with a TDS of 26,800 ppm. The submerged combustion evaporator will concentrate this latter stream to a concentration of 268,000 ppm and reduce the volume to 25 m{sup 3}/day (158 bpd). The pulse combustion dryer can dry the concentrated brine mixture to a low moisture salt. Energy costs to operate the reverse osmosis unit are primarily the pumping costs.

  8. Jarosite dissolution rates in perchlorate brine

    Science.gov (United States)

    Legett, Carey; Pritchett, Brittany N.; Elwood Madden, Andrew S.; Phillips-Lander, Charity M.; Elwood Madden, Megan E.

    2018-02-01

    Perchlorate salts and the ferric sulfate mineral jarosite have been detected at multiple locations on Mars by both landed instruments and orbiting spectrometers. Many perchlorate brines have eutectic temperatures <250 K, and may exist as metastable or stable liquids for extended time periods, even under current Mars surface conditions. Therefore, jarosite-bearing rocks and sediments may have been altered by perchlorate brines. Here we measured jarosite dissolution rates in 2 M sodium perchlorate brine as well as dilute water at 298 K to determine the effects of perchlorate anions on jarosite dissolution rates and potential reaction products. We developed a simple method for determining aqueous iron concentrations in high salinity perchlorate solutions using ultraviolet-visible spectrophotometry that eliminates the risk of rapid oxidation reactions during analyses. Jarosite dissolution rates in 2 M perchlorate brine determined by iron release rate (2.87 × 10-12 ±0.85 × 10-12 mol m-2 s-1) were slightly slower than the jarosite dissolution rate measured in ultrapure (18.2 MΩ cm-1) water (5.06 × 10-12 mol m-2 s-1) using identical methods. No additional secondary phases were observed in XRD analyses of the reaction products. The observed decrease in dissolution rate may be due to lower activity of water (ɑH2O = 0.9) in the 2 M NaClO4 brine compared with ultrapure water (ɑH2O = 1). This suggests that the perchlorate anion does not facilitate iron release, unlike chloride anions which accelerated Fe release rates in previously reported jarosite and hematite dissolution experiments. Since dissolution rates are slower in perchlorate-rich solutions, jarosite is expected to persist longer in perchlorate brines than in dilute waters or chloride-rich brines. Therefore, if perchlorate brines dominate aqueous fluids on the surface of Mars, jarosite may remain preserved over extended periods of time, despite active aqueous processes.

  9. Space and Industrial Brine Drying Technologies

    Science.gov (United States)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  10. Porous Ceramic Spheres From Cation Exchange Beads

    Science.gov (United States)

    Dynys, Fred

    2005-01-01

    This document is a slide presentation that examines the use of a simple templating process to produce hollow ceramic spheres with a pore size of 1 to 10 microns. Using ion exchange process it was determined that the method produces porous ceramic spheres with a unique structure: (i.e., inner sphere surrounded by an outer sphere.)

  11. Characterisation and applications of synthesised cation exchanger ...

    African Journals Online (AJOL)

    The chemically modified guar gum sulphonic acid (GSA) resin was used for removal and pre-concentration of Zn2+, Cd2+, Fe2+, Pb2+ and Cu2+ ions in aqueous solutions and steel industry effluent from Jodhpur, India. This type of ion exchange resin represents a new class of hybrid ion exchangers with higher stability, ...

  12. Brine flow in heated geologic salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  13. Bandgap and Structure Engineering via Cation Exchange: From Binary Ag2S to Ternary AgInS2, Quaternary AgZnInS alloy and AgZnInS/ZnS Core/Shell Fluorescent Nanocrystals for Bioimaging.

    Science.gov (United States)

    Song, Jiangluqi; Ma, Chao; Zhang, Wenzhe; Li, Xiaodong; Zhang, Wenting; Wu, Rongbo; Cheng, Xiangcan; Ali, Asad; Yang, Mingya; Zhu, Lixin; Xia, Ruixiang; Xu, Xiaoliang

    2016-09-21

    Attention on semiconductor nanocrystals have been largely focused because of their unique optical and electrical properties, which can be applied as light absorber and luminophore. However, the band gap and structure engineering of nanomaterials is not so easy because of their finite size. Here we demonstrate an approach for preparing ternary AgInS2 (AIS), quaternary AgZnInS (AZIS), AgInS2/ZnS and AgZnInS/ZnS nanocompounds based on cation exchange. First, pristine Ag2S quantum dots (QDs) with different sizes were synthesized in one-pot, followed by the partial cation exchange between In(3+) and Ag(+). Changing the initial ratio of In(3+) to Ag(+), reaction time and temperature can control the components of the obtained AIS QDs. Under the optimized conditions, AIS QDs were obtained for the first time with a cation disordered cubic phase and high photoluminescence (PL) quantum yield (QY) up to 32% in aqueous solution, demonstrating the great potential of cation exchange in the synthesis for nanocrystals with excellent optical properties. Sequentially, Zn(2+) ions were incorporated in situ through a second exchange of Zn(2+) to Ag(+)/In(3+), leading to distinct results under different reaction temperature. Addition of Zn(2+) precursor at room temperature produced AIS/ZnS core/shell NCs with successively enhancement of QY, while subsequent heating could obtain AZIS homogeneous alloy QDs with a successively blue-shift of PL emission. This allow us to tune the PL emission of the products from 483 to 675 nm and fabricate the chemically stable QDs core/ZnS shell structure. Based on the above results, a mechanism about the cation exchange for the ternary nanocrystals of different structures was proposed that the balance between cation exchange and diffusion is the key factor of controlling the band gap and structure of the final products. Furthermore, photostability and in vitro experiment demonstrated quite low cytotoxicity and remarkably promising applications in the

  14. Brine and gas recovery from geopressured systems

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K.; Riney, T.D.; Wallace, R.H. Jr.

    1986-01-01

    A series of parametric calculations was run with the geopressured - geothermal simulator MUSHRM to assess the effects of important formation, fluid and well parameters on brine and gas recovery from geopressured reservoir systems. The specific parameters considered are formation permeability, pore-fluid salinity, temperature and gas content, well radius and location with respect to reservoir boundaries, desired flow rate, and possible shale recharge. It was found that the total brine and gas recovered (as a fraction of the resource in situ) were most sensitive to formation permeability, pore-fluid gas content and shale recharge.

  15. Silica scaling in simulated geothermal brines

    Energy Technology Data Exchange (ETDEWEB)

    Bohlmann, E.G.; Shor, A.J.; Berlinski, P.; Mesmer, R.E.

    1981-04-01

    A 6.3 1/sec (100 GPM) titanium corrosion test loop was modified to provide a dynamic facility for studying the formation of silica deposits, their properties and fates, as a function of brine composition, temperature, and flow conditions. Scale formation was studied in a segmented heat exchanger operating under realistic conditions; the segmented design permitted examination of scale formations in five temperature regimes. The program was terminated after minimal exploratory operation because of reduced sponsor perceptions of the need for concern with scaling problems. The runs which were completed dealt cursorily with brine concentration and pH effects. Results are presented.

  16. Brine Effluents: Characteristics, Environmental Impacts, and Their Handling

    OpenAIRE

    Ariono, Danu; Purwasasmita, Mubiar; Wenten, I Gede

    2016-01-01

    Brine discharge is one of the largest sources of wastewater from industrial processes. Because of the environmental impacts arising from improper treatment of brine discharge and more rigorous regulations of pollution control, industries have started to focus on waste minimization and improving the process of wastewater treatment. Several approaches have been proposed to provide a strategy for brine handling by recovering both brine and water or to remove pollutant components so it complies w...

  17. Brine Effluents: Characteristics, Environmental Impacts, and Their Handling

    Directory of Open Access Journals (Sweden)

    Danu Ariono

    2016-09-01

    Full Text Available Brine discharge is one of the largest sources of wastewater from industrial processes. Because of the environmental impacts arising from improper treatment of brine discharge and more rigorous regulations of pollution control, industries have started to focus on waste minimization and improving the process of wastewater treatment. Several approaches have been proposed to provide a strategy for brine handling by recovering both brine and water or to remove pollutant components so it complies with environmental regulations when discharged. One of the most promising alternatives to brine disposal is reusing the brine, which results in reduction of pollution, minimizing waste volume and salt recovery. The brine may also contain valuable components that could be recovered for profitable use. Also, water recovery from brine effluent is generally performed to save water. In the case of rejected brine from desalination plants, water recovery from higher brine concentrations has huge potential for salt production. This paper gives an overview of different types of brine effluents, their sources and characteristics. Also discussed are impacts of brine on the environment and management options related to their characteristics.

  18. Periodontal regeneration.

    Science.gov (United States)

    Ivanovski, S

    2009-09-01

    The ultimate goal of periodontal therapy is the regeneration of the tissues destroyed as a result of periodontal disease. Currently, two clinical techniques, based on the principles of "guided tissue regeneration" (GTR) or utilization of the biologically active agent "enamel matrix derivative" (EMD), can be used for the regeneration of intrabony and Class II mandibular furcation periodontal defects. In cases where additional support and space-making requirements are necessary, both of these procedures can be combined with a bone replacement graft. There is no evidence that the combined use of GTR and EMD results in superior clinical results compared to the use of each material in isolation. Great variability in clinical outcomes has been reported in relation to the use of both EMD and GTR, and these procedures can be generally considered to be unpredictable. Careful case selection and treatment planning, including consideration of patient, tooth, site and surgical factors, is required in order to optimize the outcomes of treatment. There are limited data available for the clinical effectiveness of other biologically active molecules, such as growth factors and platelet concentrates, and although promising results have been reported, further clinical trials are required in order to confirm their effectiveness. Current active areas of research are centred on tissue engineering and gene therapy strategies which may result in more predictable regenerative outcomes in the future.

  19. Biochemical processes for geothermal brine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Zhou, W.; Shelenkova, L.; Wilke, R.

    1998-08-01

    As part of the DOE Geothermal Energy Program, BNL`s Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines, (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  20. BIOCHEMICAL PROCESSES FOR GEOTHERMAL BRINE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; ZHOU,W.; SHELENKOVA,L.; WILKE,R.

    1998-09-20

    As part of the DOE Geothermal Energy Program, BNL's Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  1. Brine tolerant polymer for oil recovery applications

    Energy Technology Data Exchange (ETDEWEB)

    Tackett, J.E.

    1987-11-24

    This patent describes a beta-alanine-type branched partially hydrolyzed polyacrylamide, which is added to an aqueous injection fluid to increase the viscosity of the fluid. The polymer resists plugging of the wellbore face and/or matrix pores and is brine tolerant when injected into a subterranean hydrocarbon-bearing formation.

  2. Brine treatment, smoking and storage techniques

    African Journals Online (AJOL)

    Voi. 6 No. 2. The Journal of Food Technology in Africa. Brine treatment, smoking and storage techniques: their effects on the microbial quality of smoked mackerel. Eyabi Eyabi G. D. Research Station for Fisheries and Marine Science of the Institute of Agriculture Research for Development (IRAD). PMB77 Limbe, Cameroon.

  3. Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems

    Science.gov (United States)

    Pales, Ashley; Kinsey, Erin; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems Ashley R. Pales, Erin Kinsey, Chunyan Li, Linlin Mu, Lingyun Bai, Heather Clifford, and Christophe J. G. Darnault Department of Environmental Engineering and Earth Sciences, Laboratory of Hydrogeoscience and Biological Engineering, L.G. Rich Environmental Laboratory, Clemson University, Clemson, SC, USA Nanofluids are suspensions of nanometer sized particles in any fluid base, where the nanoparticles effect the properties of the fluid base. Commonly, nanofluids are water based, however, other bases such as ethylene-glycol, glycerol, and propylene-glycol, have been researched to understand the rheological properties of the nanofluids. This work aims to understand the fundamental rheological properties of silica nanoparticles in brine based and brine-surfactant based nanofluids with temperature variations. This was done by using variable weight percent of silica nanoparticles from 0.001% to 0.1%. Five percent brine was used to create the brine based nanofluids; and 5% brine with 2CMC of Tween 20 nonionic surfactant (Sigma-Aldrich) was used to create the brine-surfactant nanofluid. Rheological behaviors, such as shear rate, shear stress, and viscosity, were compared between these nanofluids at 20C and at 60C across the varied nanoparticle wt%. The goal of this work is to provide a fundamental basis for future applied testing for enhanced oil recovery. It is hypothesized that the addition of surfactant will have a positive impact on nanofluid properties that will be useful for enhance oil recovery. Differences have been observed in preliminary data analysis of the rheological properties between these two nanofluids indicating that the surfactant is having the hypothesized effect.

  4. Brine treatment test for reinjection on Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, R.; Mercado, S.; Gamino, H. (Departamento de Geotermia, Division de Fuentes de Energia, Instituto de Investigaciones Electricas, Justo Sierra y Herreros Sur 2098-Altos C.P. 21020, Mexicali, B.C. (MX))

    1989-01-01

    Reinjection of disposal brine from the Cerro Prieto Geothermal Power Plant System is attractive mainly because, on top of solving the brine disposal problem, it may significantly contribute to extend the reservoir useful lifetime, through thermal and hydraulic recharge. Because the high concentration of colloidal silica in the disposal brine, laboratory and pilot plant tests were conducted in order to develop the brine treatment process. Addition of 20-40 mg/1 lime to flashed and aged brine for 10-20 minutes yields a clarified brine relatively low in suspended solids (10-30 mg/1) when the over flow rate is 38.5 1/min-m/sup 2/. 1.1 mills/kWh was the estimated cost for treatment of 800 kg/s of separated brine from the Cerro Prieto I power station.

  5. Expected brine movement at potential nuclear waste repository salt sites

    International Nuclear Information System (INIS)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m 3 brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs

  6. Regeneration of clinoptilolite zeolite used for the ammonium removal

    International Nuclear Information System (INIS)

    Garcia G, M.C.

    2002-01-01

    The use of zeolites has been increased in the last years with different applications and with a great boom in the environmental area, but a little had been make about the regeneration of such zeolites. The presence of nitrogen-ammonia in water may cause serious pollution problems since it results to be toxic for fishes and other aquatic life forms, also it provokes the algae growing. The natural clinoptilolite contains interchangeable ions such as the sodium (Na + ), potassium (K + ), magnesium (Mg 2+ ) and calcium (Ca 2+ ) in different proportions depending on the mineral origin When the zeolite is upgraded to its sodium form, the cation exchange capacity and the preference by the nitrogen-ammonia are increased, allowing the reversible process of sorption. In this work it was proposed the regeneration to its sodium form about the ammonia clinoptilolite zeolite. The natural mineral was characterized using the methods such as: X-ray diffraction, Infrared spectroscopy, Thermal gravimetric analysis and surface area. The results show that the ammonium sorption was between 95% and 98.7% such an ambient temperature as a flow back. the zeolite was regenerated approximately from 60% in the first cycle up to 97% in the last cycle at flow back temperature and of 59.2% up to 96.9% at ambient temperature, it was not presented any significant effect which could be attributed to the temperature. During the exchange process, the cations present in the natural zeolite were exchanged with the ammonium ions, this process was not completed due to that retained ammonium quantity was major that of the desorpted ions, what shows that in addition of ion exchange, another type of sorption process exists. (Author)

  7. Valorization of brines in the chlor-alkali industry. Integration of precipitation and membrane processes

    OpenAIRE

    Casas Garriga, Sandra

    2011-01-01

    Reuse of brines in the chlor-alkali industry can be benefitial both in terms of new material source for the industry and environmental impact reduction of the brines disposal. In this thesis, reuse of Seawater Reverse Osmosis Desalination brine as well as potash mine brine is studied. Seawater Reverse Osmosis from the El Prat Desalination Plant and potash mine brine from the Llobregat brine collector pipe were used for this study. These kinds of brines were chemically characterized using diff...

  8. Mechanisms of Cardiac Regeneration

    Science.gov (United States)

    Uygur, Aysu; Lee, Richard T.

    2016-01-01

    Adult humans fail to regenerate their hearts following injury, and this failure to regenerate myocardium is a leading cause of heart failure and death worldwide. Although all adult mammals appear to lack significant cardiac regeneration potential, some vertebrates can regenerate myocardium throughout life. In addition, new studies indicate that mammals have cardiac regeneration potential during development and very soon after birth. The mechanisms of heart regeneration among model organisms, including neonatal mice, appear remarkably similar. Orchestrated waves of inflammation, matrix deposition and remodeling, and cardiomyocyte proliferation are commonly seen in heart regeneration models. Understanding why adult mammals develop extensive scarring instead of regeneration is a crucial goal for regenerative biology. PMID:26906733

  9. Brine handling and disposal by reinjection

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, D.W.; Boytim, R.G.

    1995-12-01

    Opportunities to reduce the cost of brine handling and disposal by reinjection in the gas and oil producing industry have been identified in an ongoing study sponsored by the Gas Research Institute and managed by ENSR Consulting and Engineering. Gas and oil fields operated by many production operating companies across Texas and Louisiana have been studied. To date, the East Texas portion of the study has been completed and includes seven companies, nine producing fields and 30 brine disposal stations. The study has focused on operating cost variations, state of the art technology in practice, and the most effective operating practices. Results from the East Texas study area are presented and include the following topics: Surface Equipment; Water Treatment; Disposal Wells and Reservoirs; System Monitoring and Control; Environmental Compliance; Operating Costs; and Improvement Opportunities.

  10. Approach to recover strategic metals from brines

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E.; Harrar, J.; Gregg, D.

    1981-09-16

    The objective of the proposed research is to evaluate hypersaline brines from geothermal sources and salt domes as possible sources for some strategic metals. This research is suggested because several previous analyses of brine from geothermal wells in the Imperial Valley, California, and from Gulf Coast salt domes, indicate near commercial values for platinum as well as other metals (i.e., gold, silver). Extraction of the platinum should be technically feasible. A research program should include more complete systematic sampling and analysis for resource delineation, followed by bench-scale investigation of several potential extraction processes. This could be followed by engineering feasibility and design studies, for extraction of the metals either as a by-product of other operations or in a stand-alone process.

  11. Ice Control with Brine on Highways

    DEFF Research Database (Denmark)

    Bolet, Lars

    During the years 1996-2006, the Division of Highways and Transportation in the former county of Funen gradually replaced pre-wetted salt with brine as de-icing agent in all her ice control activities. The replacement related to 1000 kilometres of highways. Jeopardizing neither road safety nor...... traffic flow the spread rate of pure sodium chloride (and thus the environmental impact) in the pre-salting operations was cut back by more than one third. Compared to neighbouring counties the use of salt is less than fifty percent per square meter. In addition, supply of brine from two mixer......-plants meant that six salt barns could be phased out. This made it possible to revise the staff's duty roster and thus meet the rest hour demands raised by the health and safety at work acts. Successful pre-salting is, of course, dependent on reliable weather forecasts and on staff well trained in the art...

  12. Assay of brines for common radiolysis products

    International Nuclear Information System (INIS)

    MacDougall, C.S.

    1981-01-01

    Brines are assayed for four common products of radiolytic reaction. Free chlorine is determined spectrophotometrically after reaction with o-tolidine. The test is specific for chlorine, and quantities of chlorine from 0.1 to 6 μg in the test aliquot are determined with a precision of about +- 5%. Hydrogen peroxide is reacted with xylenol orange and determined spectrophotometrically with a precision of +- 5% on 2-μg quantities of peroxide. A spectrophotometric method using thiocyanate is employed in the chlorate assay. After subtracting the bias caused by any H 2 O 2 or Cl 2 , 1-μg quantities of chlorate can be determined with a precision of +- 10%. Perchlorate ion quantities of 1 ppM can be determined directly in brines by ion chromatography with a precision of about +- 15%

  13. Formation of brine channels in sea ice.

    Science.gov (United States)

    Morawetz, Klaus; Thoms, Silke; Kutschan, Bernd

    2017-03-01

    Liquid salty micro-channels (brine) between growing ice platelets in sea ice are an important habitat for CO 2 -binding microalgaea with great impact on polar ecosystems. The structure formation of ice platelets is microscopically described and a phase field model is developed. The pattern formation during solidification of the two-dimensional interstitial liquid is considered by two coupled order parameters, the tetrahedricity as structure of ice and the salinity. The coupling and time evolution of these order parameters are described by a consistent set of three model parameters. They determine the velocity of the freezing process and the structure formation, the phase diagram, the super-cooling and super-heating region, and the specific heat. The model is used to calculate the short-time frozen micro-structures. The obtained morphological structure is compared with the vertical brine pore space obtained from X-ray computed tomography.

  14. Evolution of hydrologic systems and brine geochemistry in a deforming salt medium: Data from WIPP brine seeps

    International Nuclear Information System (INIS)

    Deal, D.E.; Roggenthen, W.M.

    1991-01-01

    The Brine Sampling and Evaluation Program (BSEP) is a formalized continuation of studies that began in 1982 as part of the Site Validation Program. The program was established in 1985. The mission was to document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and the seepage of that brine into the WIPP excavations. This document focuses on the cumulative data obtained from the BSEP. The overall activities of the BSEP described and quantified the brine. It includes documentation and study of brine inflow into boreholes in the facility. The BSEP investigated the occurrence and development of brine weeps, crusts, and brine geochemistry. The presence of salt-tolerant bacteria in the workings was recorded and their possible interactions with experiments and operations, was assessed. The formation properties associated with the occurrence of brine was characterized. The determination of formation properties included the water content of various geologic units, direct examination of these units in boreholes using a video camera system, and measurement of electrical properties relatable to the brine contents. Modeling examined the interaction of salt deformation near the workings and the flow of brine through the deforming rocks. 34 refs

  15. The Brine Sampling and Evaluation Program (PSEP) at WIPP

    International Nuclear Information System (INIS)

    Deal, D.E.; Roggenthen, W.M.

    1989-01-01

    The Permian salt beds of the WIPP facility are virtually dry. The amount of water present in the rocks exposed in the excavations that is free to migrate under pressure gradients was estimated by heating salt samples to 95 degrees C and measuring weight loss. Clear balite contains about 0.22 weight percent water and the more argillaceous units average about 0.75 percent. Measurements made since 1984 as part of the Brine Sampling and Evaluation Program (BSEP) indicate that small amounts of this brine can migrate into the excavations and does accumulate in the underground environment. Brine seepage into drillholes monitored since thy were drilled show that brine seepage decreases with time and that many have dried up entirely. Weeping of brine from the walls of the repository excavations also decreases after two or more years. Chemical analyses of brines shows that they are sodium-chloride saturated and magnesium-rich

  16. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    Energy Technology Data Exchange (ETDEWEB)

    Poole, Loree Joanne [Univ. of California, Berkeley, CA (United States); King, C. Judson [Univ. of California, Berkeley, CA (United States)

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO2 and H2S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The

  17. Integration of Direct Contact Membrane Distillation on desalination brine concentration

    OpenAIRE

    Casal Valls, Oriol

    2015-01-01

    This project is focused on the study of concentration of desalination brines, specifically those generated on the desalination of brackish waters using reverse osmosis. When concentrating brines two different objectives are pursued. The first one is to concentrate the brine up to reach the maximum salts concentration, close to saturation, to facilitate the subsequent recovery by a crystallization step. This option is recognized as Zero Liquid Discharge as all the water is evaporated and the s...

  18. Geophysical and geochemical signatures of Gulf of Mexico seafloor brines

    Directory of Open Access Journals (Sweden)

    S. B. Joye

    2005-01-01

    Full Text Available Geophysical, temperature, and discrete depth-stratified geochemical data illustrate differences between an actively venting mud volcano and a relatively quiescent brine pool in the Gulf of Mexico along the continental slope. Geophysical data, including laser-line scan mosaics and sub-bottom profiles, document the dynamic nature of both environments. Temperature profiles, obtained by lowering a CTD into the brine fluid, show that the venting brine was at least 10°C warmer than the bottom water. At the brine pool, thermal stratification was observed and only small differences in stratification were documented between three sampling times (1991, 1997 and 1998. In contrast, at the mud volcano, substantial temperature variability was observed, with the core brine temperature being slightly higher than bottom water (by 2°C in 1997 but substantially higher than bottom water (by 19°C in 1998. Detailed geochemical samples were obtained in 2002 using a device called the 'brine trapper' and concentrations of dissolved gases, major ions and nutrients were determined. Both brines contained about four times as much salt as seawater and steep concentration gradients of dissolved ions and nutrients versus brine depth were apparent. Differences in the concentrations of calcium, magnesium and potassium between the two brine fluids suggest that the fluids are derived from different sources, have different dilution/mixing histories, or that brine-sediment reactions are more important at the mud volcano. Substantial concentrations of methane, ammonium, and silicate were observed in both brines, suggesting that fluids expelled from deep ocean brines are important sources of these constituents to the surrounding environment.

  19. Brine disposal options for geopressed methane development. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Tatom, F.B.; Mullen, M.W.

    1982-12-01

    Brine disposal practices associated with conventional oil and gas field operations were examined along with brine disposal procedures relevant to the Strategic Petroleum Reserve (SPR) program. Four specific case studies were carried out involving brine disposal from North Markham-North Bay City oil field, Bryan Mound SPR facility, Louisiana Offshore Oil Port (LOOP), and Sweet Lake Prospect geopressured test well. A review of all available disposal options was completed resulting in the conclusion that the two most suitable options for geopressured brine disposal are subsurface injection and offshore submerged discharge. These two options were examined on engineering, environmental, and economic considerations.

  20. Evaluation of Brine Processing Technologies for Spacecraft Wastewater

    Science.gov (United States)

    Shaw, Hali L.; Flynn, Michael; Wisniewski, Richard; Lee, Jeffery; Jones, Harry; Delzeit, Lance; Shull, Sarah; Sargusingh, Miriam; Beeler, David; Howard, Jeanie; hide

    2015-01-01

    Brine drying systems may be used in spaceflight. There are several advantages to using brine processing technologies for long-duration human missions including a reduction in resupply requirements and achieving high water recovery ratios. The objective of this project was to evaluate four technologies for the drying of spacecraft water recycling system brine byproducts. The technologies tested were NASA's Forward Osmosis Brine Drying (FOBD), Paragon's Ionomer Water Processor (IWP), NASA's Brine Evaporation Bag (BEB) System, and UMPQUA's Ultrasonic Brine Dewatering System (UBDS). The purpose of this work was to evaluate the hardware using feed streams composed of brines similar to those generated on board the International Space Station (ISS) and future exploration missions. The brine formulations used for testing were the ISS Alternate Pretreatment and Solution 2 (Alt Pretreat). The brines were generated using the Wiped-film Rotating-disk (WFRD) evaporator, which is a vapor compression distillation system that is used to simulate the function of the ISS Urine Processor Assembly (UPA). Each system was evaluated based on the results from testing and Equivalent System Mass (ESM) calculations. A Quality Function Deployment (QFD) matrix was also developed as a method to compare the different technologies based on customer and engineering requirements.

  1. Selective Recovery of Metals from Geothermal Brines

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, Susanna [SRI International, Menlo Park, CA (United States); Bhamidi, Srinivas [SRI International, Menlo Park, CA (United States); Hornbostel, Marc [SRI International, Menlo Park, CA (United States); Nagar, Anoop [SRI International, Menlo Park, CA (United States); Perea, Elisabeth [SRI International, Menlo Park, CA (United States)

    2016-12-16

    The objective of this project was to determine the feasibility of developing a new generation of highly selective low-cost ion-exchange resins based on metal-ion imprinted polymers for the separation of metals from geothermal fluids. Expansion of geothermal energy production over the entire U.S. will involve exploitation of low-to-medium temperature thermal waters. Creating value streams from the recovery of critical and near-critical metals from these thermal waters will encourage geothermal expansion. Selective extraction of metals from geothermal fluids is needed to design a cost-effective process for the recovery of lithium and manganese-two near-critical metals with well-known application in the growing lithium battery industry. We have prepared new lithium- and manganese-imprinted polymers in the form of beads by crosslinking polymerization of a metal polymerizable chelate, where the metal acts as a template. Upon leaching out the metal template, the crosslinked polymer is expected to leave cavities defined by the ligand functional group with enhanced selectivity for binding the template metal. We have demonstrated that lithium- and manganese-imprinted polymer beads can be used as selective solid sorbents for the extraction of lithium and manganese from brines. The polymers were tested both in batch extractions and packed bed lab-scale columns at temperatures of 45-100°C. Lithium-imprinted polymers were found to have Li+ adsorption capacity as high as 2.8 mg Li+/g polymer at 45°C. Manganese-imprinted polymers were found to have a Mn2+ adsorption capacity of more than 23 mg Mn2+/g polymer at 75°C. The Li+ extraction efficiency of the Li-imprinted polymer was found to be more that 95% when a brine containing 390 ppm Li+, 410 ppm Na+, and 390 ppm K+ was passed through a packed bed of the polymer in a lab-scale column at 45°C. In brines containing 360 ppm Li

  2. Brine Transport Experiments in Granular Salt

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  3. Brine inflow to WIPP disposal rooms: Data, modeling, and assessment

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, E.J.; McTigue, D.F.; Beraun, R.

    1988-09-01

    A WIPP data base that characterizes brine movement and accumulation is summarized and analyzed. The data are interrupted in terms of a model for flow in a saturated porous medium. The model, summarized in this report, embodies the Darcy-flow assumption and storage due to linearly elastic compression of the salt and brine. Comparisons between model calculations and brine inflow rates measured in the WIPP show order-of-magnitude agreement for permeabilities in the range of 10/sup/minus/21/ to 10/sup/minus/20/ m/sup 2/ (1-10 nanodarcies) 2/. These values of permeability are in accord with independent, in situ determinations of permeability in the salt. Expected accumulations of brine in typical WIPP waste disposal rooms were calculated by numerical methods using a mathematical description for the brine inflow model. The expected brine accumulation in a disposal room was calculated to be in the range of 4 m/sup 3/ to 43 m/sup 3/ in 100 years. WIPP disposal rooms, filled with waste and backfilled, are expected to be virtually completely reconsolidated due to host rock creep in about 100 years, preventing further accumulation of brine. Calculations show that water-absorbing tailored backfill materials can readily absorb the maximum expected brine accumulations in WIPP disposal rooms while maintaining adequate mechanical strength. 59 refs., 20 figs., 4 tabs.

  4. Effect of brine composition on recovery of Moutray crude oil by waterflooding

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Hasan O. [Department of Petroleum and Natural Gas Engineering/New Mexico Petroleum Recovery Research Center, New Mexico Institute of Mining and Technology, Socorro, NM (United States); Morrow, Norman R. [Department of Chemical and Petroleum Engineering/Western Research Institute, University of Wyoming, Laramie, WY (United States)

    1996-05-30

    The effect of brine composition on oil recovery by waterflooding is under investigation. Wettability states of cores used in this study were achieved by aging with Moutray crude oil. Two brine compositions were tested, 4% NaCl+0.5% CaCl{sub 2} and 2% CaCl{sub 2}; they are referred to as Brine 1 and Brine 2, respectively. Tests in which the same brine was used throughout are referred to as standard waterfloods and standard imbibition tests. Those in which the brine composition is changed one or more times during the test are referred to as mixed-brine tests. In standard waterfloods, Brine 2 gave 5.5% higher waterflood recovery than Brine 1. Imbibition rate tests showed that Brine 2 gave less water-wet conditions than Brine 1. For mixed-brine waterfloods, Berea Sandstone gave waterflood recoveries of Moutray crude oil ranging from 59-72% of original oil-in-place (OOIP), according to the choice of initial and injected brine compositions and initial water saturation. Changes in brine composition can be favorable to recovery as compared to standard waterfloods. For Moutray/brine/Berea systems, waterflood recoveries were improved significantly if the core was initially equilibrated with Brine 2 and subsequently flooded first with Brine 1 and then with Brine 2. The effects of brine composition are highly specific to the crude oil and aging conditions. Standard waterfloods with Brine 1 and Brine 2 gave a difference of 15% OOIP for an Alaskan crude oil, but with Brine 1 giving the higher recovery and less water-wet conditions than Brine 2

  5. Geopressured brine disposal. Final report, Nov 81-Sep 83

    Energy Technology Data Exchange (ETDEWEB)

    Tatom, F.B.; Mullen, M.W.; Morel, F.M.M.

    1983-12-01

    This report covers a reveiw of current operational procedures and problems at existing Department of Energy geopressured brine disposal wells, and review available data concerning the possible accumulation of trace metals in bottom sediments in the vicinity of offshore brine disposal sites. The primary disposal option for geopressured brine is subsurface injection, with offshore submerged discharge representing the only feasible alternative. In the case of offshore disposal no experience with geopressured brine exists, but there is considerable data pertaining to the discharge of brine associated with conventional offshore oil and gas well production and with the DOE SPR program. Such data should provide a better understanding of certain environmental concerns relating primarily to the accumulation of trace metals in bottom sediments near offshore submerged diffusers.

  6. Tertiary-treatment of oil-field brine in a biosorption system with granulated activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Dalmacija, B.; Tamas, Z.; Karlovic, E.; Miskovic, D. [Institute of Chemistry, Novisad (Yugoslavia). Faculty of Science

    1996-05-01

    This work describes the possibility of application of a biosorption system with granulated activated carbon (GAG) for the tertiary treatment of oil-field brine. In addition to the dissolved and dispersed oil, the oil-field brine contained about 29 g/l of mineral matter, mainly NaCl. The investigation was carried out on two columns, each containing 300 g of GAG. To form the biofilm on GAC use was made of the microorganisms from the setup for the purification of refinery wastewaters by activated sludge procedure. The wastewater flow-rate through the columns was 40, 70, 95 and 130 l/d. It was found that the activated carbon in the columns was capable of removing 2.6 times more organic matter than was its adsorption capacity, and its adsorption power was not thus exhausted. The results indicate that the microorganisms present in the biofilm on activated carbon oxidize the adsorbed pollutants and thus regenerate the carbon surface. The procedure employed was very efficient - the organic matter content in the effluent did not exceed 2.5 mg/l (BOD5). (UK)

  7. Hidrólise parcial da superfície do polyethylene terephthalate (PET: transformando um rejeito em um material de troca catiônica para aplicação ambiental Partial hydrolysis of pet surface: transforming a plastic waste into a material with cationic exchange properties for environmental application

    Directory of Open Access Journals (Sweden)

    Marcelo G. Rosmaninho

    2009-01-01

    Full Text Available In this work it is proposed a simple and versatile undergraduate chemical experiment in polymer and environmental technology based on the process of polyethylene terephthalate (PET hydrolysis. Polyethylene terephthalate from post-consume bottles is submitted to a controlled partial hydrolysis which allows the students to follow the reaction by a simple procedure. The students can explore the reaction kinetics, the effect of catalysts and the exposed polyethylene terephthalate surface area on the hydrolysis reaction. The second and innovative part of this experiment is the technological and environmental application of the hydrolyzed polyethylene terephthalate as a material with cation exchange properties. The surface hydrolyzed polyethylene terephthalate can be used as adsorbent for cationic contaminants.

  8. Radionuclide transport in sandstones with WIPP brine

    International Nuclear Information System (INIS)

    Weed, H.C.; Bazan, F.; Fontanilla, J.; Garrison, J.; Rego, J.; Winslow, A.M.

    1981-02-01

    Retardation factors (R) have been measured for the transport of 3 H, /sup 95m/Tc, and 85 Sr in WIPP brine using St. Peter, Berea, Kayenta, and San Felipe sandstone cores. If tritium is assumed to have R=1, /sup 95m/Tc has R=1.0 to 1.3 and therefore is essentially not retarded. Strontium-85 has R = 1.0 to 1.3 on St. Peter, Berea, and Kayenta, but R=3 on San Felipe. This is attributed to sorption on the matrix material of San Felipe, which has 45 volume % matrix compared with 1 to 10 volume % for the others. Retardation factors (R/sub s/) for 85 Sr calculated from static sorption measurements are unity for all the sandstones. Therefore, the static and transport results for 85 Sr disagree in the case of San Felipe, but agree for St. Peter, Berea, and Kayenta

  9. Evaporation Rates of Brine on Mars

    Science.gov (United States)

    Sears, D. W. G.; Chittenden, J.; Moore, S. R.; Meier, A.; Kareev, M.; Farmer, C. B.

    2004-01-01

    While Mars is now largely a dry and barren place, recent data have indicated that water has flowed at specific locations within the last approx. 10(exp 6) y. This had led to a resurgence of interest in theoretical and experimental work aimed at understanding the behavior of water on Mars. There are several means whereby the stability of liquid water on Mars could be increased, one being the presence solutes that would depress the freezing point. Salt water on Earth is about 0.5M NaCl, but laboratory experiments suggest that martian salt water is quite different. We recently began a program of laboratory measurements of the stability of liquid water, ice and ice-dust mixtures under martian conditions and here report measurements of the evaporation rate of 0.25M brine.

  10. Sponge phase behaviour in concentrated surfactant-alcohol-brine system

    Science.gov (United States)

    Gomati, R.; Daoud, M.; Gharbi, A.

    1997-02-01

    The sponge phase monodomain extending from the brine corner to the alcohol corner of an ionic surfactant-alcohol-brine phase diagram is first detailed and then investigated by electrolytic conductivity and refractive index measurements. Upon progressive dimunition of the brine fraction of the sponge phase, the ionic conductivity suffers from two gumps corresponding to two respective critical concentrations, while the variation of the refractive index remains linear but exhibits two slope changes. According to the phase diagram observations we propose one scenario, in agreement with theoretical predictions, to explain these results in terms of continuous structural transformations of the amphiphilic membrane from the swollen sponge phase to the inverse micellar phase.

  11. Effect of brine composition on wettability and oil recovery of a Prudhoe Bay Crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, H.O. [New Mexico Inst. of Mining and Technology, NM (United States); Valat, M.N.R.; Morrow, N.R. [Wyoming Univ., Laramie, WY (United States)

    1999-01-01

    A study was conducted to determine waterflood recoveries of Prudhoe Bay crude oil from Berea Sandstone. Two brine compositions were used to study the effect of brine composition on the recovery of Moutray crude oil. Recovery by injection of both brines gave recoveries that were intermediate to the results of standard waterfloods. Standard waterflood recoveries for synthetic reservoir brine were comparable to those obtained with the first brine. It was concluded that brine composition can have a significant impact on oil recovery and that displacement efficiency is not always dominated by the composition of the initial brine. 8 refs., 3 tabs., 10 figs.

  12. Effect of brine composition on recovery of an Alaskan crude oil by waterflooding

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, N. R.; Valat, M. [Wyoming Univ., Laramie, WY (United States); Yildiz, H. [New Mexico Institute of Mining and Technology, Socorro, NM (United States)

    1996-09-01

    Waterflood recoveries of a Prudhoe Bay crude oil were determined for two brine compositions. For standard waterfloods Brine no. 1 (4 wt% NaCL + 0.5 wt% CaCl{sub 2}) gave 16 per cent more recovery than Brine no. 2 (2 wt% CaCl{sub 2}). Recovery by injection of Brine no. 1, with Brine no. 2 as the initial brine, gave results that were intermediate to the results of standard waterflood. Breakthrough recoveries were also intermediate to values for standard waterfloods. Standard waterflood recoveries for synthetic reservoir brine were comparable to those obtained with Brine no.1. Results demonstrated not only that brine composition can have a significant effect on oil recovery, but also that the effect of brine composition on oil recovery efficiency by waterflooding can be strongly dependent on the specific crude oil. 8 refs., 2 tabs., 10 figs.

  13. Evaluation of geothermal brine treatment facility through particle characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kandarpa, V.; Vetter, O.J.; Miller, R.; Nelson, R.

    1981-10-01

    The evaluation of the reactor/clarification system that was used to treat the heat-depleted geothermal brine at MCR Geothermal's Mercer 2 well site prior to reinjection is described. This was done through the monitoring of suspended particles in the brine downstream of the various components of the reactor/clarification system. The particle measurements were made by using four different techniques. The results showed that most of the suspended particle formation occurred at the reactor. The dissolved silica concentration in the brine downstream of the reactor is found to be undersaturated. The undersaturation is probably caused by the precipitation and removal of some of the silica as iron silicate. The filter installed downstream of the reactor/clarification system worked very well and is suitable for the brine treatment prior to reinjection.

  14. Integrated process for coalbed brine and methane disposal

    Energy Technology Data Exchange (ETDEWEB)

    Byam, J.W. Jr.; Tait, J.H.; Brandt, H.

    1996-12-31

    This paper describes a technology and project to demonstrate and commercialize a brine disposal process for converting the brine stream of a coalbed gas producing site into clean water for agricultural use and dry solids that can be recycled for industrial consumption. The process also utilizes coalbed methane (CBM) released from coal mining for the combustion process thereby substantially reducing the potential for methane emissions to the atmosphere. The technology is ideally suited for the treatment and disposal of produced brines generated from the development of coal mines and coalbed methane resources worldwide. Over the next 10 to 15 years, market potential for brine elimination equipment and services is estimated to be in the range of $1 billion.

  15. A network model for characterizing brine channels in sea ice

    Directory of Open Access Journals (Sweden)

    R. M. Lieblappen

    2018-03-01

    Full Text Available The brine pore space in sea ice can form complex connected structures whose geometry is critical in the governance of important physical transport processes between the ocean, sea ice, and surface. Recent advances in three-dimensional imaging using X-ray micro-computed tomography have enabled the visualization and quantification of the brine network morphology and variability. Using imaging of first-year sea ice samples at in situ temperatures, we create a new mathematical network model to characterize the topology and connectivity of the brine channels. This model provides a statistical framework where we can characterize the pore networks via two parameters, depth and temperature, for use in dynamical sea ice models. Our approach advances the quantification of brine connectivity in sea ice, which can help investigations of bulk physical properties, such as fluid permeability, that are key in both global and regional sea ice models.

  16. Effect of different brine concentrations and ripening period on some ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    25240, Erzurum, Turkey. Accepted 25 May, 2011. The aim of this study was to determine the effects of different brine concentrations on some properties of Turkish white cheese. Cheeses made from pasteurized milk (65°C for 30 ...

  17. Observations of brine plumes below melting Arctic sea ice

    OpenAIRE

    Peterson, Algot K.

    2018-01-01

    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous obse...

  18. Observations of brine plumes below Arctic sea ice

    OpenAIRE

    Peterson, Algot Kristoffer

    2017-01-01

    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anti-correlated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations...

  19. Environmental impact of brine discharge from desalination plant

    OpenAIRE

    Gregorič, Elio

    2016-01-01

    Population growth demands constant increase in drinkable water production. Many developing countries have a shortage of fresh water so they have to tap into alternative water sources. Desalination technologies provide the possibility to produce fresh water from sea or brackish water. Every technological process has its by-products; the major one in desalination is the rejected brine. This thesis presents some research made on the influence of brine discharge on the marine environments and ...

  20. The effects of brine disposal on a subtidal meiofauna community

    Science.gov (United States)

    Riera, Rodrigo; Tuya, Fernando; Sacramento, Alicia; Ramos, Eva; Rodríguez, Myriam; Monterroso, Óscar

    2011-07-01

    Desalination plants generate notable (>1,000 s m 3) quantities of hypersaline brine which potentially affect the biological communities in the receiving area. We assessed whether proximity to a brine discharge point located off Gran Canaria (Canary Islands, eastern Atlantic) altered patterns in the abundance and assemblage structure of subtidal, soft-bottom, meiofauna. Samples were collected twice (May 2008 and January 2009) at 0, 15 and 30 m away from the brine discharge point, corresponding to a change in salinity from 45 to 36. Proximity to the brine discharge point affected overall meiofaunal abundances: lowest abundances were observed at 0 m (64.55 ± 39.86 ind 10 cm -2, mean ± SD) than at 15 (210.49 ± 121.01 ind 10 cm -2) and 30 m (361.88 ± 102.64 ind 10 cm -2) away from the brine discharge point. This pattern was particularly notable for the most conspicuous meiofaunal groups: nematodes and copepods, and meiofaunal assemblage structure also differed with varying proximity to the brine discharge point. Although multivariate techniques identified changes in salinity as a relevant driver of patterns in meiofaunal assemblage structure with varying proximity to the brine outfall, a shift in particle size composition between May 2008 and January 2009 also contributed to explain differences in meiofaunal abundances and assemblage structure with varying proximity to the brine discharge point. Hence, meiofauna can be considered a suitable tool to monitor environmental impacts derived from the discharge of hypersaline effluents on subtidal, soft-bottom, assemblages if potential confounding drivers, i.e. here temporal changes in particle size composition, are accounted for to avoid possible confusing interpretations.

  1. Boric acid extraction from Kara-Bogaz-Gol brines

    International Nuclear Information System (INIS)

    Putnin', A.Ya.; Shvarts, E.M.; Tel'zhenskaya, P.N.; Sennikova, L.M.; Kalve, I.A.

    1991-01-01

    Conditions of boron extraction in the form of boric acid from the Kara-Bogaz-Gol saline waters and industrial brines were studied. It is shown that the mixture of n.-1.3-diols-C 9 -C 11 can be used for boron isolation from the brines mentioned in case of their complex reprocessing. The degree of boric acid extraction increases considerably with an increase in the medium acidity

  2. Calcium extraction from brine water and seawater using oxalic acid

    Science.gov (United States)

    Natasha, Nadia Chrisayu; Lalasari, Latifa Hanum

    2017-01-01

    Calcium can be extracted not only from rocks but also from natural liquor such as seawater and brine water. In order to extract the calcium from seawater and brine water, oxalic acid was used in this research. Effect of variations of the volume of the oxalic acid at a constant concentration in seawater and brine water to produce calcium was investigated. The concentration of oxalic acid was 100 g/l and the variations of its volume were 2 ml, 4 ml, 6 ml, 8 ml, 10 ml, 20 ml, 30 ml, 40 ml, and 50 ml. The used seawater and brine water were firstly evaporated from 100 ml into 50 ml and then the oxalic acid was added into them with mixing to produce the calcium precipitates. The precipitates were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) and the filtrates were analyzed by inductively coupled plasma-optical emission spectrometry (ICP-OES). The SEM analysis showed that the precipitates from brine water were consisted of only calcium compound while from seawater sodium one was also found along with calcium compound. The XRD analysis showed that the calcium was present in the form of calcium oxalate for both seawater and brine water. The ICP-OES analysis of the filtrate from seawater precipitation showed that the its calcium content was decreased from 826.20 ppm to 0.04 ppm while from brine water, it decreased from 170.06 ppm to 1.96 ppm. These results showed that both seawater and brine water have the potential to be a raw material for calcium production.

  3. Thermal-gradient migration of brine inclusions in salt

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-02-01

    It has been proposed that the high level nuclear waste be buried deep underground in a suitable geologic formation. Natural salt deposits have been under active consideration as one of the geologic formations where a nuclear waste repository may be built in future. The salt deposits, however, are known to contain a small amount (about 0.5 vol.%) of water in the form of brine inclusions which are dispersed throughout the medium. The temperature gradients imposed by the heat generating nuclear waste will mobilize these brine inclusions. It is important to know the rate and the amount of brine accumulating at the waste packages to properly evaluate the performance of a nuclear waste repository. An extensive experimental investigation of the migration velocities of brine inclusions in synthetic single crystals of NaCl and in polycrystalline natural salt crystals has been conducted. The results show that in a salt repository the brine inclusions within a grain would move with the diffusion controlled velocities. The brine reaching a grain boundary may be swept across, if the thermal gradient is high enough. Grain boundaries in polycrystalline rock salt are apparently quite weak and open up due to drilling the hole for a waste canister and to the thermal stresses which accompany the thermal gradient produced by the heat generating waste. The enhanced porosity allows the water reaching the grain boundary to escape by a vapor transport process

  4. Brine: a computer program to compute brine migration adjacent to a nuclear waste canister in a salt repository

    International Nuclear Information System (INIS)

    Duckworth, G.D.; Fuller, M.E.

    1980-01-01

    This report presents a mathematical model used to predict brine migration toward a nuclear waste canister in a bedded salt repository. The mathematical model is implemented in a computer program called BRINE. The program is written in FORTRAN and executes in the batch mode on a CDC 7600. A description of the program input requirements and output available is included. Samples of input and output are given

  5. Treatment of geothermal brine sulfate-rich fluids to facilitate the precipitation of silica

    Energy Technology Data Exchange (ETDEWEB)

    Rex, R.W.

    1984-03-20

    A method for the treatment of geothermal brines to control the precipitation of silica is disclosed. A sulfate-rich liquid is introduced into geothermal brine within a production well prior to flashing or is introduced into the residual geothermal brine remaining after the brine has been flashed to produce steam. The sulfate in the liquid reacts with the barium, calcium, and/or lead salts within the brine to produce a colloidal suspension which serves to accelerate precipitation of silica from the brine and to adsorb the precipitated silica particles. The colloidal suspension with its adsorbed silica particles is then removed from the brine by conventional gravimetric or filtration methods. The method of the invention substantially reduces the deposition of silica in wellbores and in energy extraction equipment and facilitates removal of the silica from the brine. The method further reduces the deposition of silica in injection wells wherein the silica cleansed brine is discharged.

  6. Feasibility and kinetics study on the direct bio-regeneration of perchlorate laden anion-exchange resin.

    Science.gov (United States)

    Wang, Chao; Lippincott, Lee; Meng, Xiaoguang

    2008-11-01

    Anion exchange is one of the most promising treatment technologies for the removal of low levels of perchlorate. The spent anion-exchange resins, however, need to be disposed of or regenerated because they contain high contents of perchlorate. This study investigated the feasibility and kinetics of a direct bio-regeneration method. The method accomplished resin regeneration and biological perchlorate destruction concurrently, by directly contacting the spent resin with the perchlorate-reducing bacteria (PRB). The results indicated that the method was effective in regeneration of perchlorate and nitrate loaded resin and the resin could be repeatedly regenerated with the method. The regenerated resin was effective, stable, and durable in the filtration treatment of perchlorate in well water from the Saddle River area, NJ. Moreover, the method was also effective in regeneration of the spent A-530E resin, which had high perchlorate affinity and was yet very difficult for regeneration with the conventional brine desorption technique. Besides, the results further suggested that the perchlorate and nitrate desorption from the loaded resin coupling with their subsequent biological reduction could be the direct bio-regeneration mechanism. No biofilm was formed on the regenerated resin surface according to a scanning electron microscopy (SEM) analysis.

  7. Thermal gradient migration of brine inclusions in salt crystals

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-01-01

    Natural salt deposits, which are being considered for high-level nuclear wastes repositories, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In the present work, thermal gradient migration of both all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boudaries was observed

  8. Thermal-gradient migration of brine inclusions in salt crystals

    International Nuclear Information System (INIS)

    Yagnik, S.K.

    1982-09-01

    It has been proposed that high-level nuclear waste be disposed in a geologic repository. Natural-salt deposits, which are being considered for this purpose, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive-decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of both all-liquid and gas-liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot-stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is non-linear.At high axial loads, however, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, three different gas phases (helium, air and argon) were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large angle grain boundaries was observed. 35 figures, 3 tables

  9. Retina regeneration in zebrafish.

    Science.gov (United States)

    Wan, Jin; Goldman, Daniel

    2016-10-01

    Unlike mammals, zebrafish are able to regenerate a damaged retina. Key to this regenerative response are Müller glia that respond to retinal injury by undergoing a reprogramming event that allows them to divide and generate a retinal progenitor that is multipotent and responsible for regenerating all major retinal neuron types. The fish and mammalian retina are composed of similar cell types with conserved function. Because of this it is anticipated that studies of retina regeneration in fish may suggest strategies for stimulating Müller glia reprogramming and retina regeneration in mammals. In this review we describe recent advances and future directions in retina regeneration research using zebrafish as a model system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Thermodynamic treatment of morphogenesis of brine channels in sea ice

    Science.gov (United States)

    Thoms, S.; Kutschan, B.; Morawetz, K.; Gemming, S.

    2012-04-01

    Sea ice is a very variable biotope with respect to extension,thickness, porosity or texture. Therefore the basic understanding of brine channel formation in sea ice is important for the interplay between the microbial colonization and their natural habitat. The early phase of brine channel formation in sea ice is considered. The first structures emerging during sea-ice formation are determined by the phase instability of the ice-water system in the presence of salt. We apply a Ginzburg-Landau type approach to describe the phase separation in the two-component system (ice, salt). The free energy density involves two order parameters: one for the hexagonal ice phase with low salinity, and one for the liquid water with high salinity. A gradient dynamics minimizes the free energy with respect to the conservation of the salinity. The resulting model equations are solved numerically in one and two dimensions. The numerical solution shows a short-time behavior of structure formation where the freezing is assumed and a large-time broadening of the structure. A stability analysis provides the phase diagram where brine channels can be formed. In thermodynamics the parameters determine the supercooling or superheating region and the specific heat respectively. The size of the brine channels depends on the salinity and the temperature. With the help of realistic parameters the brine channel distribution is calculated and found in agreement with the measured samples.

  11. Stability of polyvinyl alcohol-coated biochar nanoparticles in brine

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Christopher, E-mail: cgriffith@utexas.edu; Daigle, Hugh [University of Texas at Austin, Department of Petroleum and Geosystems Engineering (United States)

    2017-01-15

    This paper reports on the dispersion stability of 150 nm polyvinyl alcohol coated biochar nanoparticles in brine water. Biochar is a renewable, carbon based material that is of significant interest for enhanced oil recovery operations primarily due to its wide ranging surface properties, low cost of synthesis, and low environmental toxicity. Nanoparticles used as stabilizing agents for foams (and emulsions) or in nanofluids have emerged as potential alternatives to surfactants for subsurface applications due to their improved stability at reservoir conditions. If, however, the particles are not properly designed, they are susceptible to aggregation because of the high salinity brines typical of oil and gas reservoirs. Attachment of polymers to the nanoparticle surface, through covalent bonds, provides steric stabilization, and is a necessary step. Our results show that as the graft density of polyvinyl alcohol increases, so too does the stability of nanoparticles in brine solutions. A maximum of 34 wt% of 50,000 Da polyvinyl alcohol was grafted to the particle surface, and the size of the particles was reduced from ~3500 nm (no coating) to 350 nm in brine. After 24 h, the particles had a size of ~500 nm, and after 48 h completely aggregated. 100,000 Da PVA coated at 24 wt% on the biochar particles were stable in brine for over 1 month with no change in mean particle size of ~330 nm.

  12. Chemistry of glass corrosion in high saline brines

    International Nuclear Information System (INIS)

    Grambow, B.; Mueller, R.

    1990-01-01

    Corrosion data obtained in laboratory tests can be used for the performance assessment of nuclear waste glasses in a repository if the data are quantitatively described in the frame of a geochemical model. Experimental data were obtained for conventional pH values corrected for liquid junction, amorphous silica solubility and glass corrosion in concentrated salt brines. The data were interpreted with a geochemical model. The brine chemistry was described with the Pitzer formalism using a data base which allows calculation of brine compositions in equilibrium with salt minerals at temperatures up to 200C. In MgCl 2 dominated brines Mg silicates form and due to the consumption of Mg the pH decreases with proceeding reaction. A constant pH (about 4) and composition of alteration products is achieved, when the alkali release from the glass balances the Mg consumption. The low pH results in high release of rare earth elements REE (rare earth elements) and U from the glass. In the NaCl dominated brine MgCl 2 becomes exhausted by Mg silicate formation. As long as there is still Mg left in solution the pH decreases. After exhaustion of Mg the pH rises with the alkali release from the glass and analcime is formed

  13. Searching for brine on Mars using Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, E.

    2016-07-01

    In the last few years, water ice and perchlorate salts capable of melting this ice and producing liquid solutions have been discovered at the surface and shallow subsurface of Mars. In addition to via melting of ice, perchlorate salts may also form liquid solutions by absorbing water vapor when the relative humidity is above a certain threshold in a process known as deliquescence. Formed either by melting or deliquescence, liquid solutions (brine) are the most likely way of liquid water activity on the Martian surface and in the shallow subsurface and are therefore important to understand the habitability of Mars. Using Raman spectroscopy, we provide reference spectra of various mixing states of liquid water, water ice and calcium perchlorate, all of which can occur during brine formation. We focus on the perchlorate symmetric stretching band and the O-H stretching vibrational band to distinguish brine from crystalline salt and water ice. We show that perchlorate brines can be identified by analyzing the peaks and their widths in the decomposed Raman spectra of the investigated samples. This serves as an important reference for future in-situ Raman spectrometers on Mars, such as those on the ExoMars and Mars 2020 rovers and can aid in the detection of brine formation on Mars. (Author)

  14. Brine Migration in Heated Salt: Lessons Learned from Field Experiments

    Science.gov (United States)

    Kuhlman, K. L.; Matteo, E. N.; Mills, M.

    2017-12-01

    We summarize several interesting brine migration related phenomena hinted at in field experiments from field testing related to salt radioactive waste repositories in Germany and the US. Past heater tests in salt have shown 1) thermal-hydrological-mechanical coupling is quite strong during both heating and cooling; 2) chemical composition of brine evolves during heating, and comprises a mix of several water sources; and 3) acid gas (HCl) generation has been observed during past heater tests and may have multiple mechanisms for formation. We present a heated brine migration test design, formulated with these complexities in mind. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  15. Ice Control with Brine Spread with Nozzles on Highways

    DEFF Research Database (Denmark)

    Bolet, Lars; Fonnesbech, Jens Kristian

    2010-01-01

    During the years 1996-2006, the former county of Funen, Denmark, gradually replaced pre-wetted salt with brine spread with nozzles as anti-icing agent in all her ice control activities. The replacement related to 1000 kilometres of highways. Jeopardizing neither road safety nor traffic flow...... spreading on a highway with traffic. A total of 800 spots were measured for residual salt for every spreader. The measurements and the spread pattern for brine spreading with nozzles were so precisely, that we learned: “When there is moisture, water or ice on the road, we need to take into account...... that the salt will run from the high level of the road to the lower level”. In the test the salt moved 1 meter in 3 hours. The knowledge gained from the measurements in the county of Funen - brine spread with nozzles, spreading salt to high level of the road and using GPS controlled spreading – was implemented...

  16. Coastal Plain Soil Fertility Degradation And Natural Forest Ecosystem Regeneration

    Science.gov (United States)

    Casagrande, J. C.; Sato, C. A.; Reis-Duarte, R. M.; Soares, M. R.; Galvão Bueno, M. S.

    2009-04-01

    The sand coastal plain vegetation (Restinga Forest) has been described as an ecosystem associated with the Atlantic Forest, constituted of mosaics, which occur in areas of great ecological diversity, particularly the features of the soil which mostly influence the forest, therefore assigned as edaphic community. The Restinga forest is one of the most fragile, showing low resilience to human damage This work was carried out in several points (14) of Restinga Forest (six low - trees from 3 to 10 m high - and eight high forest - trees from 10 to 15 m high) in the litoral coast of the state of São Paulo. Each sample was made of 15 subsamples of each area collected in each depth (one in 0 - 5, 5 - 10, 10 - 15, 15 - 20, and another in 0 - 20, 20 - 40, 40 and 60 cm). Soil characteristics analyzed were pH, P, Na, K, Ca, Mg, S, H + Al, Al, B, Cu, Fe, Mn, Zn contents and base saturation, cation exchange capacity and aluminum saturation. The vegetation physiognomies of Restinga forest (low and high) were associated with soil results and with the history of human occupation. The soils are sandy (2 to 4% of clay), resulting in a low capacity of nutrient retention. Soil fertility analysis to low and high Restinga forest were similar and showed very low contents of phosphorous, calcium and magnesium in all areas investigated. The base saturation was low due to low amounts of Na, K, Ca and Mg. Base saturation presents low level in all cases, less than 10, indicating low nutritional reserve in the soil. The aluminum saturation values varied from 58 to 69%. The level of calcium and magnesium were low in the subsurface soil layer mainly, associate with high aluminum saturation, representing an limiting factor for the root system development in depth. If soil fertility parameters do not show any significant difference between low and high Restinga physiognomy, what make distinction is the recuperation time. In the areas of high Forest can be note a too long time of recuperation

  17. Guidelines to Facilitate the Evaluation of Brines for Winter Roadway Maintenance Operations.

    Science.gov (United States)

    2017-09-19

    This document presents guidelines to facilitate the evaluation of brines for winter weather roadway maintenance applications in Texas. Brines are used in anti-icing applications which typically consist of placing liquid snow and ice control chemicals...

  18. Studies of brine chemistry and scaling at the Salton Sea Geothermal field

    Science.gov (United States)

    Harrar, J. E.

    1981-01-01

    Features of studies related to brine chemistry and scaling are reported. The results of investigations of brine chemistry, the effects of brine acidification and organic additives on the rate of scale formation and scale composition, and the use of other additives for scale control are summarized. High salinity, high silica geothermal brines were studied and it was shown that the silica and sulfide scales formed from these brines could be eliminated by lowering the pH of brine. The following steps were completed: testing of technical chemical solutions to the scaling problem; finding low cost metallic materials that will resist the brine; proving a method for the treatment of spend brine for injection; perfection of chemical measurement techniques. Most environmental issues are addressed and first increments of electrical power are generated.

  19. Microbially mediated barite dissolution in anoxic brines

    International Nuclear Information System (INIS)

    Ouyang, Bingjie; Akob, Denise M.; Dunlap, Darren; Renock, Devon

    2017-01-01

    Fluids injected into shale formations during hydraulic fracturing of black shale return with extraordinarily high total-dissolved-solids (TDS) and high concentrations of barium (Ba) and radium (Ra). Barite, BaSO 4 , has been implicated as a possible source of Ba as well as a problematic mineral scale that forms on internal well surfaces, often in close association with radiobarite, (Ba,Ra)SO 4 . The dissolution of barite by abiotic processes is well quantified. However, the identification of microbial communities in flowback and produced water necessitates the need to understand barite dissolution in the presence of bacteria. Therefore, we evaluated the rates and mechanisms of abiotic and microbially-mediated barite dissolution under anoxic and hypersaline conditions in the laboratory. Barite dissolution experiments were conducted with bacterial enrichment cultures established from produced water from Marcellus Shale wells located in northcentral Pennsylvania. These cultures were dominated by anaerobic halophilic bacteria from the genus Halanaerobium. Dissolved Ba was determined by ICP-OES and barite surfaces were investigated by SEM and AFM. Our results reveal that: 1) higher amounts of barium (up to ∼5 × ) are released from barite in the presence of Halanaerobium cultures compared to brine controls after 30 days of reaction, 2) etch pits that develop on the barite (001) surface in the presence of Halanaerobium exhibit a morphology that is distinct from those that form during control experiments without bacteria, 3) etch pits that develop in the presence of Halanaerobium exhibit a morphology that is similar to the morphology of etch pits formed in the presence of strong organic chelators, EDTA and DTPA, and 4) experiments using dialysis membranes to separate barite from bacteria suggest that direct contact between the two is not required in order to promote dissolution. These results suggest that Halanaerobium increase the rate of barite dissolution in anoxic

  20. Separation behavior of U(VI) and Th(IV) on a cation exchange column using 2,6-pyridine dicarboxylic acid as a complexing agent and its application for the rapid separation and determination of U and Th by ion chromatography.

    Science.gov (United States)

    Jeyakumar, Subbiah; Mishra, Vivekchandra Guruprasad; Das, Mrinal Kanti; Raut, Vaibhavi Vishwajeet; Sawant, Ramesh Mahadev; Ramakumar, Karanam Lakshminarayana

    2011-03-01

    The retention behavior of U and Th as their 2,6-pyridine dicarboxylic acid (PDCA) complexes on a cation exchange column was investigated under low pH conditions. Based on the observed retention characteristics, an ion chromatographic method for the rapid separation of uranium and thorium in isocratic elution mode using 0.08 mM PDCA and 0.24 M KNO(3) in 0.22 M HNO(3) as the eluent was developed. Both uranium and thorium were eluted as their PDCA complexes within 2 min, whereas the transition and lanthanide metal cations were eluted as an unresolved broad peak after thorium. Under the optimized conditions both U and Th have no interference either from alkali and alkaline earth elements up to a concentration ratio of 1:500 or from other elements up to 1:100. The detection limits (LOD) of U and Th were calculated as 0.04 and 0.06 ppm, respectively (S/N=3). The precision in the measurement of peak area of 0.5 ppm of both U and Th was better than 5% and a linear calibration in the concentration range of 0.25-25 ppm of U and Th was obtained. The method was successfully applied to determine U and Th in effluent water samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. New trends in sample preparation: on-line microextraction in packed syringe (MEPS) for LC and GC applications Part III: Determination and validation of local anaesthetics in human plasma samples using a cation-exchange sorbent, and MEPS-LC-MS-MS.

    Science.gov (United States)

    Altun, Zeki; Abdel-Rehim, Mohamed; Blomberg, Lars G

    2004-12-25

    The need for on-line sample preparation for high-throughput applications in bioanalysis has increased during the past decade. In this paper a robust and on-line sample preparation technique, micro extraction in packed syringe (MEPS) has been developed and validated. The method is a miniaturized, fully automated, solid-phase extraction (SPE) technique that can be connected on-line to GC or LC without any modification of the chromatographs. The performance of MEPS as sample preparation method is illustrated by the determination of local anaesthetics in human plasma samples on-line with high performance liquid chromatography (HPLC) and tandem mass spectrometry. The sampling sorbent was 1mg silica based benzenesulphonic acid cation exchanger that was inserted in a 250 microl syringe. Ropicavine and two of its metabolites (PPX and 3-OH-ropivacine), lidocaine and bupivacine were used as model substances. The accuracy values of quality control samples (QC) were between 95% and 109%, and precision (relative standard deviation, R.S.D.) had a maximum deviation of 9% for the analytes.

  2. Étude de la technique d'échange ionique avec compétition. Cas du dépôt de platine sur support solide acide par échange cationique Research on the Ion Exchange Technique with Competition. Case of Platinum Deposit on a Solid Acid Support by Cation Exchange

    Directory of Open Access Journals (Sweden)

    Ribeiro F.

    2006-11-01

    Full Text Available Cet article présente une étude détaillée de la technique de dépôt de platine sur support acide par échange cationique avec compétition. Cette technique permet d'obtenir à la fois une dispersion quasi atomique et une répartition macroscopique homogène du métal sur la surface du solide. En l'absence de limitations diffusionnelles extra-granulaires, les résultats expérimentaux sont en bon accord avec les prévisions théoriques . This article is a detailed examination of the technique of depositing platinum on an acid support by cation exchange with compétition. This technique produces both a quasi-atomic dispersion and a homogeneous macroscopic distribution of the métal onthe surface of the solid. In the absence of extragranular diffusion limitations, experimental findings are in good agreement with theoretical predictions.

  3. Assessing Radium Activity in Shale Gas Produced Brine

    Science.gov (United States)

    Fan, W.; Hayes, K. F.; Ellis, B. R.

    2015-12-01

    The high volumes and salinity associated with shale gas produced water can make finding suitable storage or disposal options a challenge, especially when deep well brine disposal or recycling for additional well completions is not an option. In such cases, recovery of commodity salts from the high total dissolved solids (TDS) of the brine wastewater may be desirable, yet the elevated concentrations of the naturally occurring radionuclides such as Ra-226 and Ra-228 in produced waters (sometimes substantially greater than the EPA limit of 5 pCi/L) may concentrate during these steps and limit salt recovery options. Therefore, assessing the potential presence of these Ra radionuclides in produced water from shale gas reservoir properties is desirable. In this study, we seek to link U and Th content within a given shale reservoir to the expected Ra content of produced brine by accounting for secular equilibrium within the rock and subsequent release to Ra to native brines. Produced brine from a series of Antrim shale wells and flowback from a single Utica-Collingwood shale well in Michigan were sampled and analyzed via ICP-MS to measure Ra content. Gamma spectroscopy was used to verify the robustness of this new Ra analytical method. Ra concentrations were observed to be up to an order of magnitude higher in the Antrim flowback water samples compared to those collected from the Utica-Collingwood well. The higher Ra content in Antrim produced brines correlates well with higher U content in the Antrim (19 ppm) relative to the Utica-Collingwood (3.5 ppm). We also observed an increase in Ra activity with increasing TDS in the Antrim samples. This Ra-TDS relationship demonstrates the influence of competing divalent cations in controlling Ra mobility in these clay-rich reservoirs. In addition, we will present a survey of geochemical data from other shale gas plays in the U.S. correlating shale U, Th content with produced brine Ra content. A goal of this study is to develop a

  4. Brine and gas recovery from geopressured systems. I. Parametric calculations

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K.; Riney, T.D.

    1984-02-01

    A series of parametric calculations was run with the S-CUBED geopressured-geothermal simulator MUSHRM to assess the effects of important formation, fluid and well parameters on brine and gas recovery from geopressured reservoir systems. The specific parameters considered are formation permeability, pore-fluid salinity, temperature and gas content, well radius and location with respect to reservoir boundaries, desired flow rate, and possible shale recharge. It was found that the total brine and gas recovered (as a fraction of the resource in situ) were most sensitive to formation permeability, pore-fluid gas content, and shale recharge.

  5. Controls on Transition Metal Concentrations in Crustal Brines

    Science.gov (United States)

    Yardley, B. W.

    2004-12-01

    Experimental studies of mineral solubilities have systematically explored the effects of pH and other parameters on metal concentrations over relatively narrow temperature ranges. This study has compiled a data base of brine analyses, ranging from low temperature shield and formation brines to magmatic brines, including geothermal and metamorphic brine analyses. The data includes both analyses of samples from drilling, and fluid inclusion analyses, and there is a span of over an order of magnitude in chloride concentration. Concentrations of Fe, Mn, Zn and Pb vary systematically across the entire data set, and the principal controls on their concentrations are salinity and temperature. In each suite of analyses in the data set, metal concentrations increase linearly with Cl over the entire salinity range, with a slope of between 1 and 1.5 in log mol units. For Fe and Mn in all the data sets, Me/Cl remains nearly constant over a wide range of salinities at constant temperature, but there is almost 6 orders of magnitude variation in Me/Cl between low-T formation brines and magmatic brines. Larger scatter in the Fe data may be attributed to variations in redox, and correlates with Mn/Fe. The slope of the data array on a Zn-Cl plot may be somewhat higher for formation waters than for magmatic fluids, indicating a possible change in complexing with temperature, but at no temperature is there evidence for a change in complexing with Cl concentration. Pb data is sparse but shows similar trends, though with less dependence on temperature. The continuity in crustal brine chemistry from sedimentary to metamorphic and magmatic fluids demonstrates the importance of wall rock buffering for the control of crustal fluid composition, and shows that the variation in pH, fS2 and redox environment between different lithologies is not sufficiently large for variation in these parameters to dominate the variation in metal contents of fluids. In contrast, temperature and salinity emerge

  6. Carbonation of residual brines produced by ammonia-soda process

    Science.gov (United States)

    Filippova, I. V.; Piriou, P.; Filippov, L. O.; Yvon, J.; Grandjean, M.

    2013-03-01

    This work deals with the carbonation of residual brines produced during the manufacture of soda ash to avoid the unsuitable phase transformation during the land storage. The study resulted in a demonstration pilot, which showed the feasibility of such an approach and the possibility of his extension to an industrial scale. Carbonation of the residual brines is a promising process as it entirely transforms Ca(OH)2, "CaOHCl" and CSH into calcite, avoids the further phase evolution, allows to obtain a neutral pH which considerably reduce the land storage impact on environment and shorten by around 10 % the global CO2 emission of the ammonia-soda process.

  7. Valorization of brines in the chlor-alkaly industry using membrane technology

    OpenAIRE

    Gasulla Casamajó, Neus

    2012-01-01

    In this master thesis, the reuse Seawater Reverse Osmosis (SWD-RO) brine extracted from the El Prat Desalination plant was studied and valorised, in order to assess the possible usage in the chlor-alkali industry. The brine was chemically characterized using different analytical methods adapted to the high salinities of the samples. Experiments were carried out in order to study nanofiltration for brine purification and electrodialysis for brines concentration. Moreover, ...

  8. 9 CFR 96.14 - Uncertified casings; disinfection with saturated brine solution.

    Science.gov (United States)

    2010-01-01

    ... saturated brine solution. 96.14 Section 96.14 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... § 96.14 Uncertified casings; disinfection with saturated brine solution. Foreign animal casings offered... acid as at present or if preferred may be submerged in a saturated brine solution at a temperature not...

  9. Activated carbon regeneration process

    Energy Technology Data Exchange (ETDEWEB)

    Skripnik, K.I.; Burachevskii, I.I.; Tarkovskaya, I.A.; Yarovenko, V.L.

    1981-01-01

    The regeneration process was tested by oxidative treatment of activated carbon, employable in the vodka industry, with an aqueous KMnO/sub 4/ (I) solution. The spent carbon is exposed to a 0.4% solution of for 30-50 min, then washed with water, and blown through for 15-30 min with steam at a temperature of 105-110/sup 0/ C under 0.07 MPa pressure. A check of the activity of the regenerated carbon revealed an increase in pore volume by 29% with respect to benzene adsorption and a higher adsorptive capacity (by a factor of about 2) with respect to fatty acids by comparison with carbon regenerated by the conventional steam procedure. Application of the process in the plant made it possible to use the carbon for 3-4 months additionally because of an increase in activity after regeneration. Iodine comsumption amounts to 5-6 kg per column.

  10. Solar desalination, brine and fine chemicals - a preliminary report

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Nagarajan, R.

    Solar stills put into operation by taking known quantities of sea water of different salinities varying from 27.75-36.27 x 10 super(3) during April-May 1990, indicated fresh water yield of 55-68% (av. 64). The volumes of brine as well as those...

  11. Influence of cultivar, soak treatment and brine composition on the ...

    African Journals Online (AJOL)

    The effect of cultivar, soak treatment and brine composition on physico-chemical and sensory properties of unpeeled whole canned tomatoes was investigated with a view to understanding the influence of these process conditions on the canned product characteristics. Two tomato cultivars (Lycopersicon esculentum Var.

  12. Brine treatment, smoking and storage techniques: their effects on the ...

    African Journals Online (AJOL)

    Sample of Atlantic Mackerel (Scomber scombrus) were treated with 800 brine for 2 hours with slight agitation while untreated fish served as control. Both treated and untreated fish were loaded in a Torry Afos Mini Kiln set at 50o C. The temperature was raised to 80o C after one hour and maintained at this temperature ...

  13. Preventing Soft Texture Fish Fillets through Brine Injection Technology

    Directory of Open Access Journals (Sweden)

    Silvana Dinaintang Harikedua

    2017-01-01

    Full Text Available An exploratory study was conducted to determine if multineedle injection technology could deliver protease inhibitor ingredients into fish fillets at sufficient levels to inhibit protease activity. Pacific whiting is used as a model in this study. Fillet treatments (n=8/treatment included noninjection (C, injection of base brine containing 3% salt and 3% sodium tripolyphosphate (B, injection of base brine and 3% egg white (BEW, and injection of base brine, 0.1% xanthan gum, and 3% dried potato extract (BPE. Xanthan gum was used as a suspension aid. Actual brine incorporation was 12.2±0.5%. Cathepsin L activity was evaluated at pH 5.5 (optimal pH and ultimate pH. Quality measures evaluated included CIE Lab color, shear force, and lipid oxidation. Fillets injected with BEW and BPE were significantly lower in cathepsin L activity when measured at pH 5.5. BEW and BPE fillets were darker in appearance than B or C fillets. Untreated fillets (C had higher variability in shear force value than treated fillets. There was no effect of treatment on lipid oxidation. Results suggested that injection technology can be utilized to incorporate protease inhibitor ingredients (3% EW or 3% PE at levels sufficient to reduce cathepsin L activity in Pacific whiting fillets.

  14. Insecticidal, brine shrimp cytotoxicity, antifungal and nitric oxide free ...

    African Journals Online (AJOL)

    The crude methanolic extract and various fractions derived from the aerial parts of Myrsine africana were screened in vitro for possible insecticidal, antifungal, brine shrimp lethality and nitric oxide free radical scavenging activities. Low insecticidal activity (20 %) was shown by chloroform (CHCl3) and aqueous fractions ...

  15. Toxicity assessment of natural and chemical coagulants using brine ...

    African Journals Online (AJOL)

    Coagulants used in preparing soft cheese or 'Wara' or 'Tofu', and in portable water treatment needed to be assessed preliminarily for toxicity and a simple bench top bioassay, brine shrimp lethality assay, is suitable for such preliminary investigation. Thirteen extracts obtained from seven coagulants, comprising five plants ...

  16. determination of toxicity levels of some savannah plants using brine

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. Twenty plant species belonging to 15 families were selected in this study on the bases of their uses in Hausa and Kanuri folk medicine to cure malaria and cancer diseases. Extracts prepared form the plants were solvent partitioned and screened for activity in the brine shrimp (Artemia salina Leach) lethality test ...

  17. Brine Shrimp Toxicity Evaluation Of Some Tanzanian Plants Used ...

    African Journals Online (AJOL)

    Plants which are used by traditional healers in Tanzania have been evaluated to obtain preliminary data of their toxicity using the brine shrimps test. The results indicate that 9 out of 44 plant species whose extracts were tested exhibited high toxicity with LC50 values below 20μg/ml. These include Aloe lateritia Engl.

  18. Brine transport in porous media self-similar solutions

    NARCIS (Netherlands)

    C.J. van Duijn (Hans); L.A. Peletier (Bert); R.J. Schotting (Ruud)

    1996-01-01

    textabstractIn this paper we analyze a model for brine transport in porous media, which includes a mass balance for the fluid, a mass balance for salt, Darcy's law and an equation of state, which relates the fluid density to the salt mass fraction. This model incorporates the effect of local volume

  19. Solar desalination, brine and fine chemicals - a preliminary report

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Nagarajan, R.

    from 3.65 - 4.63 ppm. The definite volumes of seawater samples (3.7 litres) taken in stills for desalination correspond to 13.08 - 31.16 mg of net boron content. Analyses on the recovery of the total content of boron in brines as well as in the bitterns...

  20. Uranium (VI) solubility in carbonate-free ERDA-6 brine

    Energy Technology Data Exchange (ETDEWEB)

    Lucchini, Jean-francois [Los Alamos National Laboratory; Khaing, Hnin [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory

    2010-01-01

    When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.

  1. Durability of concrete materials in high-magnesium brine

    International Nuclear Information System (INIS)

    Wakeley, L.D.; Poole, T.S.; Burkes, J.P.

    1994-03-01

    Cement pastes and mortars representing 11 combinations of candidate concrete materials were cast in the laboratory and monitored for susceptibility to chemical deterioration in high-magnesium brine. Mixtures were selected to include materials included in the current leading candidate concrete for seals at the Waste Isolation Pilot Plant (WIPP). Some materials were included in the experimental matrix to answer questions that had arisen during study of the concrete used for construction of the liner of the WIPP waste-handling shaft. Mixture combinations compared Class C and Class F fly ashes, presence or absence of an expansive component, and presence or absence of salt as a mixture component. Experimental conditions exposed the pastes and mortars to extreme conditions, those being very high levels of Mg ion and an effectively unlimited supply of brine. All pastes and mortars showed deterioration with brine exposure. In general, mortars deteriorated more extensively than the corresponding pastes. Two-inch cube specimens of mortar were not uniformly deteriorated, but showed obvious zoning even after a year in the brine, with a relatively unreacted zone remaining at the center of each cube. Loss of calcium from the calcium hydroxide of paste/aggregate interfaces caused measurable strength loss in the reacted zone comprising the outer portion of every mortar specimen. The current candidate mass concrete for WIPP seals includes salt as an initial component, and has a relatively closed initial microstructure. Both of these features contribute to its suitability for use in large placements within the Salado Formation

  2. Comparison of antimicrobial activities of brine salting, Chlorinated ...

    African Journals Online (AJOL)

    Chemical preservatives can be used to reduce the overall microbial populations in fish and fish products. This study was set to determine the antimicrobial activities of brine salting, chlorinated solution, and Moringa oleifera plant extracts treatments on enteric bacteria in Rastrineobola argentea and Oreochromis niloticus fish ...

  3. Marine Origin Of Nigerian Brines – A Contribution From Recent ...

    African Journals Online (AJOL)

    Trace element analyses which employ the X – ray fluorescence (XRF) and pelletisation have been carried out on 17 salt samples extracted from Nigerian brines. Results of the analyses reveal that these samples, from the Albian – Turonian formations in the middle Benue and Anambra basins, have Sr values of between ...

  4. Brine shrimp lethality bioassay of selected Indian medicinal plants.

    Science.gov (United States)

    Padmaja, R; Arun, P C; Prashanth, D; Deepak, M; Amit, A; Anjana, M

    2002-10-01

    Ethanolic extracts of six Indian medicinal plants, piperine, guggulsterone E and guggulsterone Z were tested for cytotoxicity using brine shrimp lethality test. Piper longum showed most potent cytotoxic activity. Piperine, guggulsterone E and guggulsterone Z showed potent activity with LC(50) 2.4, 8.9 and 4.9, respectively. Copyright 2002 Elsevier Science B.V.

  5. Modeling the morphogenesis of brine channels in sea ice.

    Science.gov (United States)

    Kutschan, B; Morawetz, K; Gemming, S

    2010-03-01

    Brine channels are formed in sea ice under certain constraints and represent a habitat of different microorganisms. The complex system depends on a number of various quantities as salinity, density, pH value, or temperature. Each quantity governs the process of brine channel formation. There exists a strong link between bulk salinity and the presence of brine drainage channels in growing ice with respect to both the horizontal and vertical planes. We develop a suitable phenomenological model for the formation of brine channels both referring to the Ginzburg-Landau theory of phase transitions as well as to the chemical basis of morphogenesis according to Turing. It is possible to conclude from the critical wave number on the size of the structure and the critical parameters. The theoretically deduced transition rates have the same magnitude as the experimental values. The model creates channels of similar size as observed experimentally. An extension of the model toward channels with different sizes is possible. The microstructure of ice determines the albedo feedback and plays therefore an important role for large-scale global circulation models.

  6. Antimicrobial and brine shrimp toxicity of some plants used in ...

    African Journals Online (AJOL)

    Antimicrobial and brine shrimp toxicity of some plants used in traditional medicine in Bukoba District, north-western Tanzania. MJ Moshi, E Innocent, PJ Masimba, DF Otieno, A Weisheit, P Mbabazi, M Lynes, K Meachem, A Hamilton, I Urassa ...

  7. Brine shrimp lethality and antimicrobial studies on the seeds of ...

    African Journals Online (AJOL)

    Garcinia kola (Family, Guttiferae) is employed in a variety of therapies ranging from skin, gastrointestinal, chest to tumour problems. Preparations of the stem and roots are used as antitumour in traditional medicine but the potential of the seeds as antitumour had not yet been investigated hence the brine-shrimp lethality and ...

  8. Brine Shrimp Lethality of Alkaloids from Croton sylvaticus Hoechst ...

    African Journals Online (AJOL)

    Euphorbiaceae) and evaluated for their brine shrimp lethality. Julocrotine, a glutarimide alkaloid, was very toxic in vitro with a LC50 (95% confidence interval) value of 0.074 (0.052-0.105) μg/ml. Lupeol and penduliflaworosin were not toxic. The structures ...

  9. Brine Shrimp Lethality of a Glutarimide Alkaloid from Croton ...

    African Journals Online (AJOL)

    Euphorbiaceae) against brine shrimp (Artemia salina) larvae were investigated. A glutarimide alkaloid, julocrotine (1) showed'very high cytotoxic activity with a LCs0. (95 % CI) value of 0.074 (0.052-0.105) pglml when tested in vitro while lupeol (2).

  10. Brine migration in salt and its implications in the geologic disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Jenks, G.H.; Claiborne, H.C.

    1981-12-01

    This report respresents a comprehensive review and analysis of available information relating to brine migration in salt surrounding radioactive waste in a salt repository. The topics covered relate to (1) the characteristics of salt formations and waste packages pertinent to considerations of rates, amounts, and effects of brine migration, (2) experimental and theoretical information on brine migration, and (3) means of designing to minimize any adverse effects of brine migration. Flooding, brine pockets, and other topics were not considered, since these features will presumably be eliminated by appropriate site selection and repository design. 115 references.

  11. Oil production enhancement through a standardized brine treatment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adewumi, A.; Watson, R.; Tian, S.; Safargar, S.; Heckman, S.; Drielinger, I.

    1995-08-01

    In order to permit the environmentally safe discharge of brines produced from oil wells in Pennsylvania to the surface waters of the Commonwealth and to rapidly brings as many wells as possible into compliance with the law, the Pennsylvania Oil and Gas Association (POGAM) approached the Pennsylvania State University to develop a program designed to demonstrate that a treatment process to meet acceptable discharge conditions and effluent limitations can be standardized for all potential stripper wells brine discharge. After the initial studies, the first phase of this project was initiated. A bench-scale prototype model was developed for conducting experiments in laboratory conditions. The experiments pursued in the laboratory conditions were focused on the removal of ferrous iron from synthetically made brine. Iron was selected as the primary heavy metals for studying the efficiency of the treatment process. The results of a number of experiments in the lab were indicative of the capability of the proposed brine treatment process in the removal of iron. Concurrent with the laboratory experiments, a comprehensive and extensive kinetic study was initiated. This study was necessary to provide the required data base for process modeling. This study included the investigation of the critical pH as well as the rate and order of reactions of the studied elements: aluminum, lead, zinc, and copper. In the second phase of this project, a field-based prototype was developed to evaluate and demonstrate the treatment process effectiveness. These experiments were conducted under various conditions and included the testing on five brines from different locations with various dissolved constituents. The outcome of this research has been a software package, currently based on iron`s reactivity, to be used for design purposes. The developed computer program was refined as far as possible using the results from laboratory and field experiments.

  12. Vacuum membrane distillation of seawater reverse osmosis brines.

    Science.gov (United States)

    Mericq, Jean-Pierre; Laborie, Stéphanie; Cabassud, Corinne

    2010-10-01

    Seawater desalination by Reverse Osmosis (RO) is an interesting solution for drinking water production. However, because of limitation by the osmotic pressure, a high recovery factor is not attainable. Consequently, large volumes of brines are discharged into the sea and the flow rate produced (permeate) is limited. In this paper, Vacuum Membrane Distillation (VMD) is considered as a complementary process to RO to further concentrate RO brines and increase the global recovery of the process. VMD is an evaporative technology that uses a membrane to support the liquid-vapour interface and enhance the contact area between liquid and vapour in comparison with conventional distillation. This study focuses on VMD for the treatment of RO brines. Simulations were performed to optimise the operating conditions and were completed by bench-scale experiments using actual RO brines and synthetic solutions up to a salt concentration of 300 g L(-1). Operating conditions such as a highly permeable membrane, high feed temperature, low permeate pressure and a turbulent fluid regime allowed high permeate fluxes to be obtained even for a very high salt concentration (300 g L(-1)). For the membrane studied, temperature and concentration polarisation were shown to have little effect on permeate flux. After 6 to 8 h, no organic fouling or biofouling was observed for RO brines. At high salt concentrations, scaling occurred (mainly due to calcium precipitation) but had only a limited impact on the permeate flux (24% decrease for a permeate specific volume of 43L m(-2) for the highest concentration of salt). Calcium carbonate and calcium sulphate precipitated first due to their low solubility and formed mixed crystal deposits on the membrane surface. These phenomena only occurred on the membrane surface and did not totally cover the pores. The crystals were easily removed simply by washing the membrane with water. A global recovery factor of 89% can be obtained by coupling RO and VMD

  13. Assessment of Brine Management for Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Hanna M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Borgia, Andrea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; McKone, Thomas E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2013-06-13

    Geologic carbon sequestration (GCS) is the injection of carbon dioxide (CO2), typically captured from stationary emission sources, into deep geologic formations to prevent its entry into the atmosphere. Active pilot facilities run by regional United States (US) carbon sequestration partnerships inject on the order of one million metric tonnes (mt) CO2 annually while the US electric power sector emits over 2000 million mt-CO2 annually. GCS is likely to play an increasing role in US carbon mitigation initiatives, but scaling up GCS poses several challenges. Injecting CO2 into sedimentary basins raises fluid pressure in the pore space, which is typically already occupied by naturally occurring, or native, brine. The resulting elevated pore pressures increase the likelihood of induced seismicity, of brine or CO2 escaping into potable groundwater resources, and of CO2 escaping into the atmosphere. Brine extraction is one method for pressure management, in which brine in the injection formation is brought to the surface through extraction wells. Removal of the brine makes room for the CO2 and decreases pressurization. Although the technology required for brine extraction is mature, this form of pressure management will only be applicable if there are cost-­effective and sustainable methods of disposing of the extracted brine. Brine extraction, treatment, and disposal may increase the already substantial capital, energy, and water demands of Carbon dioxide Capture and Sequestration (CCS). But, regionally specific brine management strategies may be able to treat the extracted water as a source of revenue, energy, and water to subsidize CCS costs, while minimizing environmental impacts. By this approach, value from the extracted water would be recovered before disposing of any resulting byproducts. Until a price is placed on carbon, we expect that utilities and other CO2 sources will be

  14. Regeneration of clinoptilolite zeolite used for the ammonium removal; Regeneracion de zeolita clinoptilolita empleada para la remocion de amonio

    Energy Technology Data Exchange (ETDEWEB)

    Garcia G, M.C

    2002-07-01

    The use of zeolites has been increased in the last years with different applications and with a great boom in the environmental area, but a little had been make about the regeneration of such zeolites. The presence of nitrogen-ammonia in water may cause serious pollution problems since it results to be toxic for fishes and other aquatic life forms, also it provokes the algae growing. The natural clinoptilolite contains interchangeable ions such as the sodium (Na{sup +}), potassium (K{sup +}), magnesium (Mg{sup 2+}) and calcium (Ca{sup 2+}) in different proportions depending on the mineral origin When the zeolite is upgraded to its sodium form, the cation exchange capacity and the preference by the nitrogen-ammonia are increased, allowing the reversible process of sorption. In this work it was proposed the regeneration to its sodium form about the ammonia clinoptilolite zeolite. The natural mineral was characterized using the methods such as: X-ray diffraction, Infrared spectroscopy, Thermal gravimetric analysis and surface area. The results show that the ammonium sorption was between 95% and 98.7% such an ambient temperature as a flow back. the zeolite was regenerated approximately from 60% in the first cycle up to 97% in the last cycle at flow back temperature and of 59.2% up to 96.9% at ambient temperature, it was not presented any significant effect which could be attributed to the temperature. During the exchange process, the cations present in the natural zeolite were exchanged with the ammonium ions, this process was not completed due to that retained ammonium quantity was major that of the desorpted ions, what shows that in addition of ion exchange, another type of sorption process exists. (Author)

  15. Gypsum and hydrohalite dynamics in sea ice brines

    Science.gov (United States)

    Butler, Benjamin M.; Papadimitriou, Stathys; Day, Sarah J.; Kennedy, Hilary

    2017-09-01

    Mineral authigenesis from their dissolved sea salt matrix is an emergent feature of sea ice brines, fuelled by dramatic equilibrium solubility changes in the large sub-zero temperature range of this cryospheric system on the surface of high latitude oceans. The multi-electrolyte composition of seawater results in the potential for several minerals to precipitate in sea ice, each affecting the in-situ geochemical properties of the sea ice brine system, the habitat of sympagic biota. The solubility of two of these minerals, gypsum (CaSO4 ·2H2O) and hydrohalite (NaCl · 2H2O), was investigated in high ionic strength multi-electrolyte solutions at below-zero temperatures to examine their dissolution-precipitation dynamics in the sea ice brine system. The gypsum dynamics in sea ice were found to be highly dependent on the solubilities of mirabilite and hydrohalite between 0.2 and - 25.0 ° C. The hydrohalite solubility between - 14.3 and - 25.0 ° C exhibits a sharp change between undersaturated and supersaturated conditions, and, thus, distinct temperature fields of precipitation and dissolution in sea ice, with saturation occurring at - 22.9 ° C. The sharp changes in hydrohalite solubility at temperatures ⩽-22.9 °C result from the formation of an ice-hydrohalite aggregate, which alters the structural properties of brine inclusions in cold sea ice. Favourable conditions for gypsum precipitation in sea ice were determined to occur in the region of hydrohalite precipitation below - 22.9 ° C and in conditions of metastable mirabilite supersaturation above - 22.9 ° C (investigated at - 7.1 and - 8.2 ° C here) but gypsum is unlikely to persist once mirabilite forms at these warmer (>-22.9 °C) temperatures. The dynamics of hydrohalite in sea ice brines based on its experimental solubility were consistent with that derived from thermodynamic modelling (FREZCHEM code) but the gypsum dynamics derived from the code were inconsistent with that indicated by its

  16. Modelling CO2-Brine Interfacial Tension using Density Gradient Theory

    KAUST Repository

    Ruslan, Mohd Fuad Anwari Che

    2018-03-01

    Knowledge regarding carbon dioxide (CO2)-brine interfacial tension (IFT) is important for petroleum industry and Carbon Capture and Storage (CCS) strategies. In petroleum industry, CO2-brine IFT is especially importance for CO2 – based enhanced oil recovery strategy as it affects phase behavior and fluid transport in porous media. CCS which involves storing CO2 in geological storage sites also requires understanding regarding CO2-brine IFT as this parameter affects CO2 quantity that could be securely stored in the storage site. Several methods have been used to compute CO2-brine interfacial tension. One of the methods employed is by using Density Gradient Theory (DGT) approach. In DGT model, IFT is computed based on the component density distribution across the interface. However, current model is only applicable for modelling low to medium ionic strength solution. This limitation is due to the model only considers the increase of IFT due to the changes of bulk phases properties and does not account for ion distribution at interface. In this study, a new modelling strategy to compute CO2-brine IFT based on DGT was proposed. In the proposed model, ion distribution across interface was accounted for by separating the interface to two sections. The saddle point of tangent plane distance where ( ) was defined as the boundary separating the two sections of the interface. Electrolyte is assumed to be present only in the second section which is connected to the bulk liquid phase side. Numerical simulations were performed using the proposed approach for single and mixed salt solutions for three salts (NaCl, KCl, and CaCl2), for temperature (298 K to 443 K), pressure (2 MPa to 70 MPa), and ionic strength (0.085 mol·kg-1 to 15 mol·kg-1). The simulation result shows that the tuned model was able to predict with good accuracy CO2-brine IFT for all studied cases. Comparison with current DGT model showed that the proposed approach yields better match with the experiment data

  17. Reduced-order modeling with sparse polynomial chaos expansion and dimension reduction for evaluating the impact of CO2 and brine leakage on groundwater

    Science.gov (United States)

    Liu, Y.; Zheng, L.; Pau, G. S. H.

    2016-12-01

    A careful assessment of the risk associated with geologic CO2 storage is critical to the deployment of large-scale storage projects. While numerical modeling is an indispensable tool for risk assessment, there has been increasing need in considering and addressing uncertainties in the numerical models. However, uncertainty analyses have been significantly hindered by the computational complexity of the model. As a remedy, reduced-order models (ROM), which serve as computationally efficient surrogates for high-fidelity models (HFM), have been employed. The ROM is constructed at the expense of an initial set of HFM simulations, and afterwards can be relied upon to predict the model output values at minimal cost. The ROM presented here is part of National Risk Assessment Program (NRAP) and intends to predict the water quality change in groundwater in response to hypothetical CO2 and brine leakage. The HFM based on which the ROM is derived is a multiphase flow and reactive transport model, with 3-D heterogeneous flow field and complex chemical reactions including aqueous complexation, mineral dissolution/precipitation, adsorption/desorption via surface complexation and cation exchange. Reduced-order modeling techniques based on polynomial basis expansion, such as polynomial chaos expansion (PCE), are widely used in the literature. However, the accuracy of such ROMs can be affected by the sparse structure of the coefficients of the expansion. Failing to identify vanishing polynomial coefficients introduces unnecessary sampling errors, the accumulation of which deteriorates the accuracy of the ROMs. To address this issue, we treat the PCE as a sparse Bayesian learning (SBL) problem, and the sparsity is obtained by detecting and including only the non-zero PCE coefficients one at a time by iteratively selecting the most contributing coefficients. The computational complexity due to predicting the entire 3-D concentration fields is further mitigated by a dimension

  18. PEMFC contamination model: Foreign cation exchange with ionomer protons

    Science.gov (United States)

    St-Pierre, Jean

    2011-08-01

    A generic, transient fuel cell ohmic loss mathematical model was developed for the case of contaminants that ion exchange with ionomer protons. The model was derived using step changes in contaminant concentration, constant operating conditions and foreign cation transport via liquid water droplets. In addition, the effect of ionomer cations redistribution within the ionomer on thermodynamic, kinetic and mass transport losses and migration were neglected. Thus, a simpler, ideal, ohmic loss case is defined and is applicable to uncharged contaminant species and gas phase contaminants. The closed form solutions were validated using contamination data from a membrane exposed to NH3. The model needs to be validated against contamination and recovery data sets including an NH4+ contaminated membrane exposed to a water stream. A method is proposed to determine model parameters and relies on the prior knowledge of the initial ionomer resistivity. The model expands the number of previously derived cases. Most models in this inventory, derived with the assumption that the reactant is absent, lead to different dimensionless current vs. time behaviors similar to a fingerprint. These model characteristics facilitate contaminant mechanism identification. Separation between membrane and catalyst (electroinactive contaminant) contamination is conceivably possible using additional indicative cell resistance measurements. Contamination is predicted to be significantly more severe under low relative humidity conditions.

  19. CATION-EXCHANGE SOLID-PHASE AND LIQUID-LIQUID ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    stimulating properties, resulting from the presence of the phenylpropylamino alkaloids. The determination of these alkaloids is important in pharmacological, phytochemical, forensic and law enforcement environments. In this study, the use of ...

  20. Sulfonated hydrocarbon graft architectures for cation exchange membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    A synthetic strategy to hydrocarbon graft architectures prepared from a commercial polysulfone and aimed as ion exchange membrane material is proposed. Polystyrene is grafted from a polysulfone macroinitiator by atom transfer radical polymerization, and subsequently sulfonated with acetyl sulfate...

  1. Fabrication of Cationic Exchange Polystyrene Nanofibers for Drug ...

    African Journals Online (AJOL)

    Method: The nanofibers were prepared from 15% w/v polystyrene solution in dimethylacetamide (DMAc) containing 0.025 %w/v tetrabutylammonium bromide (TBAB) using electrospinning technique, followed by crosslinking with sulfuric acid/formaldehyde in a ratio ranging from 100/0 to 50/50 v/v and sulfonation in sulfuric ...

  2. Cation exchange applications of synthetic tobermorite for the ...

    Indian Academy of Sciences (India)

    Immobilization and solidification of hazardous cations like Cs137 and Sr90 are required while handling the radioactive waste of nuclear power plants. Efforts are on to find a fail proof method of safe disposal of nuclear wastes. In this context, various materials like borosilicate glass, zeolites, cements and synthetic rocks have ...

  3. Esterification of maleic acid and butanol using cationic exchange ...

    Indian Academy of Sciences (India)

    ://www.ias.ac.in/article/fulltext/jcsc/129/11/1713-1720 ... Various parameters deciding the conversion of reaction such as mole ratio, catalyst loading, molecular sieves, speed of agitation and effect of temperature were optimized for the ...

  4. Evaluation of a Weakly Cationic Exchange Poly (Methacrylic Acid ...

    African Journals Online (AJOL)

    Results: Tablets made from PMD (thickness: 3.54 - 4.46 mm) were thicker than those of MCC (2.93 - 3.33 mm). At compression pressures ≥ 309 MPa, the crushing strength of PMD tablets was so high that it exceeded the capacity of the tester (500 N). PMD tablets rapidly disintegrated (0.43 - 9.56 min), but MCC tablets did ...

  5. [Regeneration of airway epithelium].

    Science.gov (United States)

    Adam, D; Perotin, J-M; Lebargy, F; Birembaut, P; Deslée, G; Coraux, C

    2014-04-01

    Epithelial regeneration is a complex process. It can lead to the remodeling of the airway epithelium as in asthma, COPD or cystic fibrosis. The development of in vivo and in vitro models has allowed the analysis of remodeling mechanisms and showed the role of components of extracellular matrix, proteases, cytokines and growth factors. Airway epithelial progenitors and stems cells have been studied in these models. However, their identification remains difficult. Identification and characterization of airway epithelial progenitor/stem-cells, and a better knowledge of the regeneration process may allow the development of new therapeutic strategies for airway epithelial reconstitution. Copyright © 2013 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  6. Natural Oxidation of Bromide to Bromine in Evaporated Dead Sea Brines

    Science.gov (United States)

    Gavrieli, Ittai; Golan, Rotem; Lazar, Boaz; Baer, Gidi; Zakon, Yevgeni; Ganor, Jiwchar

    2016-04-01

    Highly evaporated Dead Sea brines are found in isolated sinkholes along the Dead Sea. Many of these brines reach densities of over 1.3 kg/L and pHpH and the reddish to brownish hue of these brines were an enigma until recently. Despite the rather high total alkalinity (TA) of the Dead Sea (3.826 mmol/kg) the pH of the Dead Sea brine is known to be slightly acidic with a value of ~6.3. In comparison, seawater with the same alkalinity would have a pH value well above 8.3, meaning that H+ activity is 100 fold lower than that of Dead Sea brine. In the present work we assess the apparent dissociation constant value of boric acid (K`B) for the Dead Sea brine and use it to explain the brine's low pH value. We then show that pH decreases further as the brine evaporates and salinity increases. Finally we explain the reddish hue of the hypersaline brines in the sinkholes as due to the presence of dissolved bromine. The latter is the product of oxidation of dissolved bromide, a process that is enabled by the low pH of the hypersaline brines and their high bromide concentration.

  7. Transient heat conduction through a substrate of brine-spongy ice

    Science.gov (United States)

    Dehghani, S. R.; Naterer, G. F.; Muzychka, Y. S.

    2017-08-01

    An analytical model for heat conduction through brine-spongy ice is developed. This model fills a gap in knowledge related to transient heat conduction to a two-phase substrate which is crucial for modeling transient icing and deicing of cold surfaces in contact with salt water. The core of the model is based on the phase change of pure ice and brine pockets trapped in the structure of spongy ice. Freezing of brine pockets causes the release of the latent heat of fusion that is considered as the source of heat generation distributed throughout the brine-spongy ice. A nonlinear partial differential equation and a number of equations of state for ice, brine, and brine-spongy ice create governing equations of heat transfer through brine-spongy ice. A standard numerical scheme solves the set of equations in various initial conditions. The variation of temperature, volume fraction of brine and salinity of brine pockets are calculated numerically. Experimental samples of brine-spongy ice are examined under transient conditions and their surface temperatures are captured using an infrared thermal camera. The numerical results, which are for various overall salinities, are closely aligned with the measured surface temperatures.

  8. An improved brine shrimp larvae lethality microwell test method.

    Science.gov (United States)

    Zhang, Yi; Mu, Jun; Han, Jinyuan; Gu, Xiaojie

    2012-01-01

    This article described an improved brine shrimp larvae lethality microwell test method. A simply designed connecting vessel with alternative photoperiod was used to culture and collect high yield of active Artemia parthenogenetica nauplii for brine shrimp larvae lethality microwell test. Using this method, pure A. parthenogenetica nauplii suspension was easily cultured and harvested with high density about 100-150 larvae per milliliter and the natural mortality was reduced to near zero by elimination of unnecessary artificial disturbance. And its sensitivity was validated by determination of LC(50)-24 h of different reference toxicants including five antitumor agents, two pesticides, three organic pollutants, and four heavy metals salts, most of which exhibited LC(50)-24 h between 0.07 and 58.43 mg/L except for bleomycin and mitomycin C with LC(50)-24 h over 300 mg/L.

  9. The determination of vanadium in brines by atomic absorption spectroscopy

    Science.gov (United States)

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  10. Insertion sequences enrichment in extreme Red sea brine pool vent

    KAUST Repository

    Elbehery, Ali H. A.

    2016-12-03

    Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world’s largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.

  11. Geochemical evolution of brines in the Salar of Uyuni, Bolivia.

    Science.gov (United States)

    Rettig, S.L.; Jones, B.F.; Risacher, F.

    1980-01-01

    Recent analyses of brines from the Salars of Uyuni and Coipasa have been compared with published data for Lakes Titicaca and Poopo to evaluate solute compositional trends in these remnants of two large Pleistocene lakes once connected by overflow from the N to the S of the Bolivian Altiplano. From Titicaca to Poopo the water shows an increase in Cl and N somewhat greater than the total solutes. Ca and SO4 increase to a lesser extent than total dissolved solids, and carbonate species are relatively constant. Between Poopo and Coipasa proportions of Ca, SO4 and CO3 continue to decrease. At Coipasa and Uyuni, the great salars frequently evaporate to halite saturation. Halite crystallization is accompanied by an increased K, Mg and SO4 in residual brines. - from Authors

  12. Brine crude oil interactions at the oil-water interface

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    -, HPO42-, and HCO3- (anions), were studied through gas chromatographic analysis. Crude oil from the North Sea was doped with various fractions of organic acids to mimic different polar behavior. Increased brine concentration showed up to 15% upsurge of polar fractions on the oil-water emulsion formation...... in enhancing oil emulsion formation by increasing interactions between polar acids and brine solutions. The results propose the potential use of HPO42- ions in reservoirs having inactive mineral surfaces. The relative oil affinity of different ions including K+, Na+, Mg2+, and Ca2+ (cations), and Cl-, SO42....... During emulsion formation the relative interactions at the oil-water interface are proved to follow the Hofmeister series: K+emulsion formation was observed. Among anions, SO42- and HPO42- showed optimum...

  13. Dispersion of brine discharge from seawater reverse osmosis desalination plants

    OpenAIRE

    Fernández-Torquemada, Yolanda; González-Correa, José Miguel; Loya-Fernández, Angel; Ferrero-Vicente, Luis Miguel; Díaz Valdés, Marta; Sánchez-Lizaso, José Luis

    2008-01-01

    Desalination of seawater has been considered as a potential solution for the water shortage problem in coastal areas and the number of projected and constructed desalination plants has significantly increased in recent years. The challenge of the desalination industry is to produce new water resources without increasing the pressure on the marine environment. Environmental impact of SWRO desalination plants is mainly associated with the discharge into the sea of the brine produced. To estimat...

  14. Brine-resistant sulfonate surfactants for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Stournas, S.

    1983-01-01

    One of the most severe limitations of surfactant waterflooding is the instability of the commonly employed surfactants in the usual ionic environments of oil reservoirs. A specific modification to the usual structure of sulfonate surfactants not only makes them immune to high concentrations of monovalent and divalent cations, but also enables them to act as stabilizer of the common surfactants and to displace tertiary oil in brines of high salinity and divalent ion content.

  15. Brine shrimp lethality bioassay of selected Centaurea L. species (Asteraceae

    Directory of Open Access Journals (Sweden)

    Janaćković P.

    2008-01-01

    Full Text Available Ether extracts of 15 Centaurea L. species (Asteraceae methanol extracts of 12species, and cnicin isolated from C. derventana were tested for general bioactivity using the brine shrimp lethality test. Cnicin showed the most potent activity with LC50 0.2. Also, ether extract of C. splendens showed significant activity with LC50 7.3, as did methanol extract of C. arenaria with LC50 12.4.

  16. Modeling acid-gas generation from boiling chloride brines

    Directory of Open Access Journals (Sweden)

    Sonnenthal Eric

    2009-11-01

    Full Text Available Abstract Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual

  17. Comparative Brine Shrimp Toxicity of Withenia somnifera and ...

    African Journals Online (AJOL)

    lethality test at serial dilutions of 1000 μg/ml, 100 μg/ ml and 10 μg/ml. The median lethal concentration (LC50) for each extract was determined. Both plant extracts were found to be toxic to brine shrimp with LC50 of 110.3 μg/ml and 106.6 μg/ml for W. somnifera and C. cinerarieafolium respectively. Kenya Veterinarian Vol.

  18. Effect of different brine concentrations and ripening period on some ...

    African Journals Online (AJOL)

    Cheeses made from pasteurized milk (65°C for 30 min) were ripened in 11, 14 and 17 g 100 ml-1 NaCl for 90 days at 7±1°C. Some physicochemical and biochemical analyses were carried out during storage time. The effects of brine concentrations on total solids, protein, ash, salt, pH, and WSN values were found to be ...

  19. Impacts of seawater desalination brine on coastal environments

    OpenAIRE

    Petersen, Karen Lykkebo

    2017-01-01

    Terrestrial water resources are scarce in arid and semi-arid regions of the world and increasing demands for water worldwide are adding additional pressures on limited water resources. Seawater desalination provides a reliable source of potable water. The process of desalination creates a high-salinity byproduct that is discharged back into the coastal environment by various methods (pipes, diffusers, channels). The brine effluent is often mixed with chemicals used at the desalination facilit...

  20. Natural Regeneration of Longleaf Pine

    Science.gov (United States)

    William D. Boyer

    1979-01-01

    Natural regeneration is now a reliable alternative for existing longleaf pine forests. The shelterwood system, or modifications of it, has been used experimentally to regenerate longleaf pine for over 20 years, and regional tests have confirmed its value for a wide range of site conditions. Natural regeneration, because of its low cost when compared to other...

  1. Essentials in Periodontal Regeneration

    OpenAIRE

    F. Haghighati; G. Saaveh

    2007-01-01

    Various materials and techniques have been used in the treatment of periodontal disease to achieve regeneration of lost periodontal tissues including cementum, periodontal ligament (PDL) and alveolar bone. The composition, regenerative potential, application and therapeutic characteristics of several regenerative materials have been evaluated in the present study.

  2. Infection and Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Sahng G. Kim

    2016-03-01

    Full Text Available The regeneration of the pulp-dentin complex has been a great challenge to both scientists and clinicians. Previous work has shown that the presence of prior infection may influence the characteristics of tissues formed in the root canal space after regenerative endodontic treatment. The formation of ectopic tissues such as periodontal ligament, bone, and cementum has been observed in the root canal space of immature necrotic teeth with apical periodontitis, while the regeneration of dentin and pulp has been identified in previously non-infected teeth. The current regenerative endodontic therapy utilizes disinfection protocols, which heavily rely on chemical irrigation using conventional disinfectants. From a microbiological point of view, the current protocols may not allow a sufficiently clean root canal microenvironment, which is critical for dentin and pulp regeneration. In this article, the significance of root canal disinfection in regenerating the pulp-dentin complex, the limitations of the current regenerative endodontic disinfection protocols, and advanced disinfection techniques designed to reduce the microorganisms and biofilms in chronic infection are discussed.

  3. Fluid inclusion brine compositions from Palo Duro Basin salt sites

    International Nuclear Information System (INIS)

    Moody, J.B.

    1987-01-01

    The fluid inclusion analyses were done on salt samples from Lower San Andres Cycle 4 and 5. The stable isotope composition of the fluid inclusion brines was measured on duplicate samples taken from the same fluid inclusion brine for correlation of geochemical content with the stable isotopic content. The analyzed Palo Duro Basin salt fluid inclusions are predominantly one phase, i.e., the presence of a fluid only. However, many of the larger fluid inclusions do have a small vapor bubble. This liquid/vapor ratio is so high in these vapor-containing fluid inclusions that their behavior in a thermal gradient would be almost identical to that of all liquid inclusions. Closely associated with the fluid inclusions are cryptomelane where some fibers penetrate into halite host crystal. The fluid inclusions have a wide variability in content for those components that were analyzed, even within the same salt type. The fluid inclusion brines are also acidic, ranging from 3 to 6 as measured with pH test papers

  4. Design of Tomato Drying System by Utilizing Brine Geothermal

    Science.gov (United States)

    Afuar, W.; Sibarani, B.; Abdurrahman, G.; Hendrarsakti, J.

    2016-09-01

    Cultivation of tomato plants in Indonesia has been started since 1961.Tomatoes generally will rot in three days if left on storage. Moreover, low quality tomatoes have cheaper price. After harvested, tomatoes need to be treated by drying process so it can last longer. Energy for drying tomatoes can be obtained by utilizing heat from geothermal brine. Purpose of this research is to design a tomato drying system by extracting heat of geothermal brine from separator with certain flow rate to heat up water by using a heat exchanger. Furthermore, this water will be used to heat up the surrounding air which is circulated by blower system to heat up the tomatoes chamber. Tomatoes drying process needs temperature range of 50-70°C to evaporate water content from 95.7% to 26%. After that treatment, the tomatoes are expected to have better durability. The objective of this study is to determine the quantity of hot brine which is needed for drying tomatoes and to design a drying system so that tomatoes can last longer.

  5. Reverse osmosis brine for phosphorus recovery from source separated urine.

    Science.gov (United States)

    Tian, Xiujun; Wang, Guotian; Guan, Detian; Li, Jiuyi; Wang, Aimin; Li, Jin; Yu, Zhe; Chen, Yong; Zhang, Zhongguo

    2016-12-01

    Phosphorus (P) recovery from waste streams has recently been recognized as a key step in the sustainable supply of this indispensable and non-renewable resource. The feasibility of using brine from a reverse osmosis (RO) membrane unit treating cooling water as a precipitant for P recovery from source separated urine was evaluated in the present study. P removal efficiency, process parameters and precipitate properties were investigated in batch and continuous flow experiments. More than 90% of P removal was obtained from both undiluted fresh and hydrolyzed urines by mixing with RO brine (1:1, v/v) at a pH over 9.0. Around 2.58 and 1.24 Kg of precipitates could be recovered from 1 m 3 hydrolyzed and fresh urine, respectively, and the precipitated solids contain 8.1-19.0% of P, 10.3-15.2% of Ca, 3.7-5.0% of Mg and 0.1-3.5% of ammonium nitrogen. Satisfactory P removal performance was also achieved in a continuous flow precipitation reactor with a hydraulic retention time of 3-6 h. RO brine could be considered as urinal and toilet flush water despite of a marginally higher precipitation tendency than tap water. This study provides a widely available, low - cost and efficient precipitant for P recovery in urban areas, which will make P recovery from urine more economically attractive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Brine migration test - Asse salt mine, Federal Republic of Germany

    International Nuclear Information System (INIS)

    Rothfuchs, T.; Wieczorek, K.; Feddersen, H.K.; Staupendahl, G.; Coyle, A.J.; Kalia, H.; Eckert, J.

    1988-03-01

    This document is the final report on the Cooperative German-American 'Brine Migration Tests' that were performed at the Asse Salt Mine in the Federal Republic of Germany (FRG), the Office of Nuclear Waste Isolation (ONWI), Columbus, Ohio, and the Institut fuer Tieflagerung (IfT), Braunschweig, of the Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen (GSF). Final test and equipment design as well as manufacturing and installation was carried out by Westinghouse Electric Corporation. The tests were designed to simulate a nuclear waste repository to measure the effects of heat and gamma radiation on brine migration, salt decrepitation, disassociation of brine, and gases collected. The thermal mechanical behavior of salt, such as room closure, stresses and changes of the properties of salt are measured and compared with predicted behavior. The performance of an array of candidate waste package materials, test equipment and procedures under repository conditions will be evaluated with a view towards future in-depth testing of potential repository sites. (orig./RB)

  7. Brine shrimp cytotoxic activities of Hippophae rhamnoides Linn leaves extracts

    Directory of Open Access Journals (Sweden)

    Javid Ali

    2015-04-01

    Full Text Available Objective: To evaluate brine shrimp lethality assay of solvent extracts (aqueous, methanol, ethanol, acetone, ethyl acetate, chloroform and n-hexane of Hippophae rhamnoides (H. rhamnoides leaves. Methods: Brine shrimp cytotoxicity assay was used to assess the cytotoxic potential of H. rhamnoides leaves extracts. Three vials for concentration of each extract were made and 10 shrimps per vial (30 shrimps per dilution were transferred to specific concentration of each extract. Results: The mortality of aqueous extract was 46.7%, methanol extract was 46.7%, ethanolic extract was 50.0%, ethyl acetate was 26.7%, acetone extract was 33.3%, chloroform extract was 40.0% and n-hexane extract was 33.3%. The lowest LD50 was found in methanol extracts (1199.97 µg/mL. Brine shrimp cytotoxicity of tested extracts of H. rhamnoides showed that mortality rate was concentration dependent. Conclusions: It is concluded that bioactive components are present in all leaves extracts of H. rhamnoides, which could be accounted for its pharmacological effects. Thus, the results support the uses of this plant species in traditional medicine.

  8. Stimulating endogenous cardiac regeneration

    Directory of Open Access Journals (Sweden)

    Amanda eFinan

    2015-09-01

    Full Text Available The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration,a combination of these approaches couldameliorate the overall repair process to incorporate the participation ofmultiple cell players.

  9. Pressurized brines in continental Antarctica as a possible analogue of Mars.

    Science.gov (United States)

    Forte, Emanuele; Dalle Fratte, Michele; Azzaro, Maurizio; Guglielmin, Mauro

    2016-09-12

    Interest in brines in extreme and cold environments has recently increased after they have been found on Mars. Those brines can be potential new subsurface habitats for peculiar ecosystems. In the McMurdo Dry Valleys of the Antarctic, the best analogue for Mars conditions, only a few cases of brines have been identified in some perennially frozen lakes and in one case in an underground aquifer. Here, we present the occurrence of pressurized brines in a shallow perennially ice-covered lake south of 70°S in an ice-free area of Victoria Land, Antarctica. For the first time, we also imaged, by means of ground penetrating radar data, the existence of a pingo-like-feature (PLF) formed by the extrusion of brines, which has also been confirmed by borehole evidence. Those brines are fed by an underground talik external to the lake basin, enhancing the possibility of unexploited ecosystems that could find an analogue in Martian environments.

  10. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    OpenAIRE

    Kwak, Rhokyun; Kwon, Hyukjin J.; Al-Anzi, Bader; Lim, Geunbae; Kim, Bumjoo; Pham, Van-Sang; Kim, Minseok; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000?ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Pol...

  11. Prospects of improved oil recovery related to wettability and brine composition

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Norman R.; Tang, Guo-qing; Valat, Marc; Xie, Xina [Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071 (United States)

    1998-06-06

    Although attention is given to the composition of the injected brine in a waterflood with respect to compatibility with the formation, tests are not usually made to determine its effect on oil recovery. This study shows that the wettability and laboratory waterflood recoveries of crude oil/brine/rock (COBR) ensembles can be strongly dependent on brine composition and on related COBR interactions. The sensitivity of these interactions to temperature and crude oil composition is also demonstrated

  12. The technology of uranium extraction from the brine with high chlorine-ion content

    International Nuclear Information System (INIS)

    Khakimov, N.; Nazarov, Kh.M.; Mirsaidov, I.U.; Negmatov, Sh.I.; Barotov, B.B.

    2010-01-01

    Present article is devoted to technology of uranium extraction from the brine with high chlorine-ion content. The research results on uranium extraction from the brine of Sasik-Kul Lake by means of sorption method were considered. The chemical composition of salt was determined. The process of uranium sorption was described and analyzed. The technology of uranium extraction from the brine with high chlorine-ion content was proposed.

  13. Regeneration of FGD dry-sorbent materials. Phase I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kapsalopoulou, A.J.; Sargent, D.H.; Rissman, E.F.

    1982-05-01

    Sodium-based sorbent injection directly into the flue gas duct of a coal-burning power plant has been investigated since 1975 by GFETC (using laboratory and pilot plant apparatus) as an SO/sub 2/ control technology. Regeneration of sorbent from spent sorbent material is highly desirable to reduce the sorbent cost, and to alleviate the leaching and potential pollution problems of soluble sodium compounds when disposing of spent sorbent materials in landfills. The work reported herein was initiated to develop a continuous, aqueous-based process for regeneration of sodium carbonate-type sorbents from spent sodium-base sorbent/flyash materials. Specific project objectives are to: (1) retain process simplicity and to avoid difficult process conditions; (2) maximize recovery of sodium from spent sorbents; (3) minimize process costs and energy requirements; (4) maximize reactivity of the regenerated sodium bicarbonate sorbent; and (5) produce process waste materials that may be disposed of in an environmental acceptable manner. The sorbent regeneration process which has been developed during the laboratory investigation (Phase I) of this project may be divided into three parts: (1) leaching of the spent sodium-based sorbent; (2) conversion of the leachate to a NaCl brine; and (3) production of NaHCO/sub 3/ (regenerated sorbent) using commercially-proven Solvay (ammonia-soda) process technology. Significant results from the laboratory study are as given.

  14. Pressurized brines in continental Antarctica as a possible analogue of Mars

    OpenAIRE

    Forte, Emanuele; Dalle Fratte, Michele; Azzaro, Maurizio; Guglielmin, Mauro

    2016-01-01

    Interest in brines in extreme and cold environments has recently increased after they have been found on Mars. Those brines can be potential new subsurface habitats for peculiar ecosystems. In the McMurdo Dry Valleys of the Antarctic, the best analogue for Mars conditions, only a few cases of brines have been identified in some perennially frozen lakes and in one case in an underground aquifer. Here, we present the occurrence of pressurized brines in a shallow perennially ice-covered lake sou...

  15. Effects of shield brine on the safe disposal of waste in deep geologic environments

    Science.gov (United States)

    Park, Y.-J.; Sudicky, E. A.; Sykes, J. F.

    2009-08-01

    The salinity of groundwater increases with depth in the Canadian Shield (up to 1.3 kg/L of density). The existence of brine can be critically important for the safe geologic disposal of radioactive wastes, as dense brine can significantly retard the upward migration of radionuclides released from repositories. Static and flushing conditions of the deep brine are analyzed using a U-tube analogy model. Velocity reduction due to the presence of dense brine is derived under flushing conditions. A set of illustrative numerical simulations in a two-dimensional cross section is presented to demonstrate that dense brine can significantly influence regional groundwater flow patterns in a shield environment. It is implied from the results that (1) the existence of Shield brine can be an indicator of a hydrogeologically stable environment, (2) activities near ground surface may not perturb the stable groundwater environment in the deep brine region, and thus, (3) the deep brine region can be considered as a candidate geologic site for the safe disposal of waste. In addition to brine, other issues associated with long-term waste disposal, such as geological, glacial and seismic events, may need to be considered for the safe storage of spent nuclear fuel in a shield environment.

  16. Chemical and isotopic characteristics of brines from three oil- and gas-producing sandstones in eastern Ohio, with applications to the geochemical tracing of brine sources

    Science.gov (United States)

    Breen, K.J.; Angelo, Clifford G.; Masters, Robert W.; Sedam, Alan C.

    1985-01-01

    Chemical and isotopic characteristics of selected inorganic constituents are reported for brines from the Berea Sandstone of Mississippian age, the Clinton sandstone, Albion Sandstone of Silurian age, and the Rose Run formation of Cambrian and Ordovician age in 24 counties in eastern Ohio. Ionic concentrations of dissolved constituents in brines from these formations generally fall in the following ranges (in millimoles per kilogram of brine): Na, Cl > 1,000; 100 < Ca, Mg < 1,000; 1 < K, Br, Sr, Li, Fe, SO4 < 100; Mn, Zn, Al, I, HCO3, SiO2 < 1. Mean ionic concentrations of Ca, Mg, Na, Cl, K, SO4 and Br, and mean values of density and dissolved solids are significantly different at the 95-percent confidence level in each formation. Only potassium has a unique concentration range in each formation. Selected concentration ratios are identified as potential indicators for geochemical tracing of brines having some history of dilution. The k:Na ratios work best for identifying the source formation of an unidentified brine. Isotopic characteristics of hydrogen and oxygen indicate a meteoric origin for the water matrix of the brines. Sulfur isotopes may have utility for differentiating brines from oxidizing ground water.

  17. Urban regeneration and bioregionalism

    Directory of Open Access Journals (Sweden)

    Antonio Passaro

    2015-11-01

    Full Text Available The sustainable development and the bioregionalism find their meeting point in the strategies of urban regeneration adoptable in the Campania Region. In the article, following a brief consideration about possible scenarios of short chain to be triggered between the agricultural and the building sector, three samples of experimental actions are described, which are under development in three areas, in S. Arsenio in the Diano valley, in S. Antonio Abate and in Naples. All the here presented cases are object of a collaboration between the University (Research and education institution, the local authorities and the Small and Medium Enterprises of the bioregions, which has led to application of those principles within design proposals of sustainable and bioregionalist urban regeneration.

  18. Bionanomaterials for skin regeneration

    CERN Document Server

    Leonida, Mihaela D

    2016-01-01

    This book gives a concise overview of bionanomaterials with applications for skin regeneration. The advantages and challenges of nanoscale materials are covered in detail, giving a basic view of the skin structure and conditions that require transdermal or topical applications. Medical applications, such as wound healing, care for burns, skin disease, and cosmetic care, such as aging of the skin and photodamage, and how they benefit from bionanomaterials, are described in detail. A final chapter is devoted to the ethical and social issues related to the use of bionanomaterials for skin regeneration. This is an ideal book for researchers in materials science, medical scientists specialized in dermatology, and cosmetic chemists working in formulations. It can also serve as a reference for nanotechnologists, dermatologists, microbiologists, engineers, and polymer chemists, as well as students studying in these fields.

  19. Biomaterials for cardiac regeneration

    CERN Document Server

    Ruel, Marc

    2015-01-01

    This book offers readers a comprehensive biomaterials-based approach to achieving clinically successful, functionally integrated vasculogenesis and myogenesis in the heart. Coverage is multidisciplinary, including the role of extracellular matrices in cardiac development, whole-heart tissue engineering, imaging the mechanisms and effects of biomaterial-based cardiac regeneration, and autologous bioengineered heart valves. Bringing current knowledge together into a single volume, this book provides a compendium to students and new researchers in the field and constitutes a platform to allow for future developments and collaborative approaches in biomaterials-based regenerative medicine, even beyond cardiac applications. This book also: Provides a valuable overview of the engineering of biomaterials for cardiac regeneration, including coverage of combined biomaterials and stem cells, as well as extracellular matrices Presents readers with multidisciplinary coverage of biomaterials for cardiac repair, including ...

  20. Regeneration of Optic Nerve

    Directory of Open Access Journals (Sweden)

    Kwok-Fai So

    2011-05-01

    Full Text Available The optic nerve is part of the central nervous system (CNS and has a structure similar to other CNS tracts. The axons that form the optic nerve originate in the ganglion cell layer of the retina and extend through the optic tract. As a tissue, the optic nerve has the same organization as the white matter of the brain in regard to its glia. There are three types of glial cells: Oligodendrocytes, astrocytes, and microglia. Little structural and functional regeneration of the CNS takes place spontaneously following injury in adult mammals. In contrast, the ability of the mammalian peripheral nervous system (PNS to regenerate axons after injury is well documented. A number of factors are involved in the lack of CNS regeneration, including: (i the response of neuronal cell bodies against the damage; (ii myelin-mediated inhibition by oligodendrocytes; (iii glial scarring, by astrocytes; (iv macrophage infiltration; and (v insufficient trophic factor support. The fundamental difference in the regenerative capacity between CNS and PNS neuronal cell bodies has been the subject of intensive research. In the CNS the target normally conveys a retrograde trophic signal to the cell body. CNS neurons die because of trophic deprivation. Damage to the optic nerve disconnects the neuronal cell body from its target-derived trophic peptides, leading to the death of retinal ganglion cells. Furthermore, the axontomized neurons become less responsive to the peptide trophic signals they do receive. On the other hand, adult PNS neurons are intrinsically responsive to neurotrophic factors and do not lose trophic responsiveness after axotomy. In this talk different strategies to promote optic-nerve regeneration in adult mammals are reviewed. Much work is still needed to resolve many issues. This is a very important area of neuroregeneration and neuroprotection, as currently there is no cure after traumatic optic nerve injury or retinal disease such as glaucoma, which

  1. Digit Tip Regeneration: Merging Regeneration Biology with Regenerative Medicine.

    Science.gov (United States)

    Dolan, Connor P; Dawson, Lindsay A; Muneoka, Ken

    2018-03-01

    Regeneration Biology is the study of organisms with endogenous regenerative abilities, whereas Regenerative Medicine focuses on engineering solutions for human injuries that do not regenerate. While the two fields are fundamentally different in their approach, there is an obvious interface involving mammalian regeneration models. The fingertip is the only part of the human limb that is regeneration-competent and the regenerating mouse digit tip has emerged as a model to study a clinically relevant regenerative response. In this article, we discuss how studies of digit tip regeneration have identified critical components of the regenerative response, and how an understanding of endogenous regeneration can lead to expanding the regenerative capabilities of nonregenerative amputation wounds. Such studies demonstrate that regeneration-incompetent wounds can respond to treatment with individual morphogenetic agents by initiating a multi-tissue response that culminates in structural regeneration. In addition, the healing process of nonregenerative wounds are found to cycle through nonresponsive, responsive and nonresponsive phases, and we call the responsive phase the Regeneration Window. We also find the responsiveness of mature healed amputation wounds can be reactivated by reinjury, thus nonregenerated wounds retain a potential for regeneration. We propose that regeneration-incompetent injuries possess dormant regenerative potential that can be activated by targeted treatment with specific morphogenetic agents. We believe that future Regenerative Medicine-based-therapies should be designed to promote, not replace, regenerative responses. Stem Cells Translational Medicine 2018;7:262-270. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  2. Protein removal from waste brines generated during ham salting through acidification and centrifugation.

    Science.gov (United States)

    Gutiérrez-Martínez, Maria del Rosario; Muñoz-Guerrero, Hernán; Alcaína-Miranda, Maria Isabel; Barat, José Manuel

    2014-03-01

    The salting step in food processes implies the production of large quantities of waste brines, having high organic load, high conductivity, and other pollutants with high oxygen demand. Direct disposal of the residual brine implies salinization of soil and eutrophication of water. Since most of the organic load of the waste brines comes from proteins leaked from the salted product, precipitation of dissolved proteins by acidification and removal by centrifugation is an operation to be used in waste brine cleaning. The aim of this study is optimizing the conditions for carrying out the separation of proteins from waste brines generated in the pork ham salting operation, by studying the influence of pH, centrifugal force, and centrifugation time. Models for determining the removal of proteins depending on the pH, centrifugal force, and time were obtained. The results showed a high efficacy of the proposed treatment for removing proteins, suggesting that this method could be used for waste brine protein removal. The best pH value to be used in an industrial process seems to be 3, while the obtained results indicate that almost 90% of the proteins from the brine can be removed by acidification followed by centrifugation. A further protein removal from the brine should have to be achieved using filtrating techniques, which efficiency could be highly improved as a consequence of the previous treatment through acidification and centrifugation. Waste brines from meat salting have high organic load and electrical conductivity. Proteins can be removed from the waste brine by acidification and centrifugation. The total protein removal can be up to 90% of the initial content of the waste brine. Protein removal is highly dependent on pH, centrifugation rate, and time. © 2014 Institute of Food Technologists®

  3. Radiation chemistry of salt-mine brines and hydrates

    International Nuclear Information System (INIS)

    Jenks, G.H.; Walton, J.R.; Bronstein, H.R.; Baes, C.F. Jr.

    1981-07-01

    Certain aspects of the radiation chemistry of NaCl-saturated MgCl 2 solutions and MgCl 2 hydrates at temperatures in the range of 30 to 180 0 C were investigated through experiments. A principal objective was to establish the values for the yields of H 2 [G(H 2 )] and accompanying oxidants in the gamma-ray radiolysis of concentrated brines that might occur in waste repositories in salt. We concluded that G(H 2 ) from gamma-irradiated brine solution into a simultaneously irradiated, deaerated atmosphere above the solution is between 0.48 and 0.49 over most of the range 30 to 143 0 C. The yield is probably somewhat lower at the lower end of this range, averaging 0.44 at 30 to 45 0 C. Changes in the relative amounts of MgCl 2 and NaCl in the NaCl-saturated solutions have negligible effects on the yield. The yield of O 2 into the same atmosphere averages 0.13, independent of the temperature and brine composition, showing that only about 50% of the radiolytic oxidant that was formed along with the H 2 was present as O 2 . We did not identify the species that compose the remainder of the oxidant. We concluded that the yield of H 2 from a gamma-irradiated brine solution into a simultaneously irradiated atmosphere containing 5 to 8% air in He may be greater than the yield in deaerated systems by amounts ranging from 0% for temperatures of 73 to 85 0 C, to about 30 and 40% for temperatures in the ranges 100 to 143 0 C and 30 to 45 0 C, respectively. We did not establish the mechanism whereby the air affected the yields of H 2 and O 2 . The values found in this work for G(H 2 ) in deaerated systems are in approximate agreement with the value of 0.44 for the gamma-irradiation yield of H 2 in pure H 2 O at room temperature. They are also in agreement with the values predicted by extrapolation from the findings of previous researchers for the value for G(H 2 ) in 2 M NaCl solutions at room temperature

  4. Nanocomposites for bone tissue regeneration.

    Science.gov (United States)

    Sahoo, Nanda Gopal; Pan, Yong Zheng; Li, Lin; He, Chao Bin

    2013-04-01

    Natural bone tissue possesses a nanocomposite structure that provides appropriate physical and biological properties. For bone tissue regeneration, it is crucial for the biomaterial to mimic living bone tissue. Since no single type of material is able to mimic the composition, structure and properties of native bone, nanocomposites are the best choice for bone tissue regeneration as they can provide the appropriate matrix environment, integrate desirable biological properties, and provide controlled, sequential delivery of multiple growth factors for the different stages of bone tissue regeneration. This article reviews the composition, structure and properties of advanced nanocomposites for bone tissue regeneration. It covers aspects of interest such as the biomimetic synthesis of bone-like nanocomposites, guided bone regeneration from inert biomaterials and bioactive nanocomposites, and nanocomposite scaffolds for bone tissue regeneration. The design, fabrication, and in vitro and in vivo characterization of such nanocomposites are reviewed.

  5. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  6. Understanding Urban Regeneration in Turkey

    Science.gov (United States)

    Candas, E.; Flacke, J.; Yomralioglu, T.

    2016-06-01

    In Turkey, rapid population growth, informal settlements, and buildings and infrastructures vulnerable to natural hazards are seen as the most important problems of cities. Particularly disaster risk cannot be disregarded, as large parts of various cities are facing risks from earthquakes, floods and landslides and have experienced loss of lives in the recent past. Urban regeneration is an important planning tool implemented by local and central governments in order to reduce to disaster risk and to design livable environments for the citizens. The Law on the Regeneration of Areas under Disaster Risk, commonly known as the Urban Regeneration Law, was enacted in 2012 (Law No.6306, May 2012). The regulation on Implementation of Law No. 6306 explains the fundamental steps of the urban regeneration process. The relevant institutions furnished with various authorities such as expropriation, confiscation and changing the type and place of your property which makes urban regeneration projects very important in terms of property rights. Therefore, urban regeneration projects have to be transparent, comprehensible and acceptable for all actors in the projects. In order to understand the urban regeneration process, the legislation and projects of different municipalities in Istanbul have been analyzed. While some steps of it are spatial data demanding, others relate to land values. In this paper an overview of the urban regeneration history and activities in Turkey is given. Fundamental steps of the urban regeneration process are defined, and particularly spatial-data demanding steps are identified.

  7. Solar thermal decomposition of desalination reject brine for carbon dioxide removal and neutralisation of ocean acidity

    OpenAIRE

    Davies, P.A.

    2015-01-01

    Desalination plants could become net absorbers (rather than net emitters) of CO2. Thermal decomposition of salts in desalination reject brine can yield MgO which, added to the ocean, would take up CO2 through conversion to bicarbonate. The process proposed here comprises dewatering of brine followed by decomposition in a solar receiver using a heliostat field.

  8. Water Recovery from Brine in the Short and Long Term: A KSC Approach

    Science.gov (United States)

    Lunn, Griffin; Melendez, Orlando; Anthony, Steve

    2014-01-01

    KSC has spent many years researching Hollow Fiber Membrane Bioreactors as well as research encompassing:Alternate ammonia removal/Advanced oxidation. Brine purification technologies KSC-ISRU has built an electrolysis cell for the removal of acids in ISRU mining brines. Our goal is to combine all such technologies.

  9. Corrosion and hydrogen permeation of A216 Grade WCA steel in hydrothermal magnesium-containing brines

    International Nuclear Information System (INIS)

    Haberman, J.H.; Frydrych, D.J.; Westerman, R.E.

    1988-03-01

    Corrosion rates determined at 1 month in 150/degree/C brine increased with magnesium concentration. The structure of the corrosion product, as determined by x-ray diffraction, depended upon the magnesium concentration. In brines with less than 10,000 ppM magnesium, the primary corrosion product had a spinel structure characteristic of magnetite or magnesioferrite. In brines containing magnesium concentrations greater than 20,000 ppM, the primary corrosion product had the amakinite structure characteristic of a complex iron-magnesium hydroxide. The high corrosion rates observed in brines containing high magnesium concentrations suggest that the corrosion products having the amakinite structure is less protective than corrosion products having the spinel structure. Corrosion rates in high-magnesium (inclusion) brine determined over a 6-month test duration were essentially constant. Hydrogen permeation rates observed in exposing mild steel to high-Mg/sup 2/plus// brine at 150/degree/C could be potentially damaging to a mild steel waste package container. The rate of hydrogen permeation was proportional to the brine flow rate in the autoclave. Thiourea additions to the brine increased the hydrogen permeation rate; sulfate and bromide ion additions did not. The maximum gaseous hydrogen pressure attainable is not known (based on 3Fe /plus/ 4H 2 O /plus/ Fe(sub 3)O /plus/ 4H 2 , would be /approximately/900 atmospheres), and the dependence of permeation rate on temperature is not known. 8 refs., 13 figs., 3 tabs

  10. Laboratory monitoring of CO2 migration within brine-saturated reservoir rock though complex electrical impedance

    NARCIS (Netherlands)

    Kirichek, O.; Ghose, R.; Heller, H.K.J.

    2013-01-01

    We investigate the ability of complex electrical measurements to monitor the CO2 front propagation within brine-saturated reservoir rock. A laboratory facility has been developed to perform CO2-brine substitution experiments under reservoir conditions. In the present study, CO2 is injected into a

  11. Geochemistry of Salado Formation brines recovered from the Waste Isolation Pilot Plant (WIPP) repository

    International Nuclear Information System (INIS)

    Abitz, R.; Myers, J.; Drez, P.; Deal, D.

    1990-01-01

    Intergranular brines recovered from the repository horizon of the Waste Isolation Pilot Plant (WIPP) have major- and trace-element compositions that reflect seawater evaporation and diagenetic processes. Brines obtained from repository drill holes are heterogenous with respect to composition, but their compositional fields are distinct from those obtained from fluid inclusions in WIPP halite. The heterogeneity of brine compositions within the drill-hole population indicates a lack of mixing and fluid homogenization within the salt at the repository level. Compositional differences between intergranular (drill hole) and intragranular (fluid inclusions) brines is attributed to isolation of the latter from diagenetic fluids that were produced from dehydration reactions involving gypsum and clay minerals. Modeling of brine-rock equilibria indicates that equilibration with evaporite minerals controls the concentrations of major elements in the brine. Drill-hole brines are in equilibrium with the observed repository minerals halite, anhydrite, magnesite, polyhalite and quartz. The equilibrium model supports the derivation of drill-hole brines from near-field fluid, rather than large-scale vertical migration of fluids from the overlying Rustler or underlying Castile Formations. 13 refs., 6 figs., 6 tabs

  12. Fermentation cover brine reformulation for cucumber processing with low salt to reduce bloater defect

    Science.gov (United States)

    Reformulation of calcium chloride cover brine for cucumber fermentation was explored as a mean to minimize the incidence of bloater defect. This study particularly focused on cover brine supplementation with calcium hydroxide, sodium chloride (NaCl), and acids to enhance buffer capacity, inhibit the...

  13. Improving the performance of brine wells at Gulf Coast strategic petroleum reserve sites

    Energy Technology Data Exchange (ETDEWEB)

    Owen, L.B.; Quong, R. (eds.)

    1979-11-05

    At the request of the Department of Energy, field techniques were developed to evaluate and improve the injection of brine into wells at Strategic Petroleum Reserve (SPR) sites. These wells are necessary for the disposal of saturated brine removed from salt domes where oil is being stored. The wells, which were accepting brine at 50 percent or less of their initial design rates, were impaired by saturated brine containing particulates that deposited on the sand face and in the geologic formation next to the wellbore. Corrosion of the brine-disposal pipelines and injection wells contributed to the impairment by adding significant amounts of particulates in the form of corrosion products. When tests were implemented at the SPR sites, it was found that the poor quality of injected brines was the primary cause of impaired injection; that granular-media filtration, when used with chemical pretreatment, is an effective method for removing particulates from hypersaline brine; that satisfactory injection-well performance can be attained with prefiltered brines; and that corrosion rates can be substantially reduced by oxygen-scavenging.

  14. Microbiological soil regeneration

    International Nuclear Information System (INIS)

    Behrens, D.; Wiesner, J.

    1992-01-01

    The Interdiciplinary Task Force ''Environmental Biotechnology - Soil'' of DECHEMA aims to pool the knowledge potential of the Dechema study committees on environmental biotechnology and soil protection with a view to the advancement of microbiological soil decontamination techniques. This conference volume on the 9th expert meeting of Dechema on environmental protection subjects entitled ''Microbiological Soil Regeneration'', held on February 27th and 28th, 1991, and the subsequent compilation of results give an intermediate account of the ongoing work of the Dechema Task Force. (orig.) [de

  15. Low Temperature Regenerator Study.

    Science.gov (United States)

    1979-08-01

    a definite value: where eis Avogadros number k is the Boltzman constant and V. is the gas constant. This relationship, known as the law of Dulong and...for bulk material. 2.2 Bulk Lattice Specific Heat The first law of thermodynamics is written as S = 4 + (2) wheresis heat absorbed by a system 1Uis...TEMPERATURE REGENERATOR STUDY. Augutwt -*e Aug4W79 7. AUHO~t()_,_ . CONTRACT OR GRANT NUN8ER( s ) P. 7J.alshF33615-78-c-3425-( 9. PERFORMING

  16. BELL PEPPER CULTIVATION WITH BRINE FROM BRACKISH WATER DESALINATION

    Directory of Open Access Journals (Sweden)

    CARLOS EDUARDO DE MOURA ARRUDA

    2011-01-01

    Full Text Available In desalination process, besides the potable water, highly salty and pollutant water (brine is generated, which can be used for producing crops since it is carefully monitored. In order to test this hypothesis, bell pepper plants, cv. 'Margarita', were grown in coconut fiber substrate under greenhouse and were irrigated with nutrient solutions prepared with tap water, brine from desalination plant, and its dilution with tap water at 75, 50 and 25%, giving a range of electrical conductivities of the nutrient solution (ECs of 2.6, 3.1, 6.6, 10.0 and 12.2 dS m-1 after the dilutions and fertilizers addition. Completely randomized blocks design was used with 5 treatments (salinity levels of the nutrient solutions and six replications. Leaf area, number of marketable fruit, total and marketable yield were reduced with ECs increase. The marketable yield of bell pepper 'Margarita' reduced 6.3% for each unitary increase of ECs above 2.6 dS m-1 (threshold salinity and the results suggest that in hydroponic system, the reduction of marketable yield with increasing ECs is promoted by reduction of the number of fruits per plant instead of a reduction of fruit mean weight.

  17. Selection of a Brine Processor Technology for NASA Manned Missions

    Science.gov (United States)

    Carter, Donald L.; Gleich, Andrew F.

    2016-01-01

    The current ISS Water Recovery System (WRS) reclaims water from crew urine, humidity condensate, and Sabatier product water. Urine is initially processed by the Urine Processor Assembly (UPA) which recovers 75% of the urine as distillate. The remainder of the water is present in the waste brine which is currently disposed of as trash on ISS. For future missions this additional water must be reclaimed due to the significant resupply penalty for missions beyond Low Earth Orbit (LEO). NASA has pursued various technology development programs for a brine processor in the past several years. This effort has culminated in a technology down-select to identify the optimum technology for future manned missions. The technology selection is based on various criteria, including mass, power, reliability, maintainability, and safety. Beginning in 2016 the selected technology will be transitioned to a flight hardware program for demonstration on ISS. This paper summarizes the technology selection process, the competing technologies, and the rationale for the technology selected for future manned missions.

  18. Observations of brine plumes below melting Arctic sea ice

    Science.gov (United States)

    Peterson, Algot K.

    2018-02-01

    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m-2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  19. The use of bacconcentrate Herobacterin in brine cheese technology

    Directory of Open Access Journals (Sweden)

    I. Slyvka:

    2017-12-01

    Full Text Available In the article a comparative analysis of the use of the bacterial preparation Herobacterin and the starter RSF-742 (Chr. Hansen, Denmark in the technology of brine cheese was conducted. Herobacterin is a bacterial preparation created using bacteria Lactococcus lactis, Lactobacillus plantarum, Enterococcus faecium, Leuconostoc mesenteroides and Lactococcus garvieae, isolated from traditional Carpathian brine cheese brynza and identified using classical microbiological and modern molecular genetic methods (RAPD-PCR, RFLP-PCR, sequencing of the 16S rRNA gene. The results of investigations of organoleptic, physico-chemical, syneretical and microbiological parameters of cheese brynza with use of preparation Herobacterin are presented in comparison with the starter RSF-742, which includes cultures: Lactococcus lactis subsp. сremoris, Lactococcus lactis subsp. lactis, Streptococcus thermophilus, Lactobacillus helveticus. The use of Herobacterin has a positive effect on organoleptic, physico-chemical and microbiological parameters, all parameters complied with the requirements of DSTU 7065:2009. The level of survival of lactic acid bacteria in brynza during maturation and storage is high, which confirms the correctness of the selection of strains to preparation Herobakterin, which demonstrated good adaptability to the composition and properties of ewe's milk.

  20. Solubility of Calcium Phosphate in Concentrated Dairy Effluent Brines.

    Science.gov (United States)

    Kezia, K; Lee, J; Zisu, B; Chen, G Q; Gras, S L; Kentish, S E

    2017-05-24

    The solubility of calcium phosphate in concentrated dairy brine streams is important in understanding mineral scaling on equipment, such as membrane modules, evaporators, and heat exchangers, and in brine pond operation. In this study, the solubility of calcium phosphate has been assessed in the presence of up to 300 g/L sodium chloride as well as lactose, organic acids, and anions at 10, 30, and 50 °C. As a neutral molecule, lactose has a marginal but still detectable effect upon calcium solubility. However, additions of sodium chloride up to 100 g/L result in a much greater increase in calcium solubility. Beyond this point, the concentrations of ions in the solution decrease significantly. These changes in calcium solubility can readily be explained through changes in the activity coefficients. There is little difference in calcium phosphate speciation between 10 and 30 °C. However, at 50 °C, the ratio of calcium to phosphate in the solution is lower than at the other temperatures and varies less with ionic strength. While the addition of sodium lactate has less effect upon calcium solubility than sodium citrate, it still has a greater effect than sodium chloride at an equivalent ionic strength. Conversely, when these organic anions are present in the solution in the acid form, the effect of pH dominates and results in much higher solubility and a calcium/phosphate ratio close to one, indicative of dicalcium phosphate dihydrate as the dominant solid phase.

  1. Observations of brine plumes below melting Arctic sea ice

    Directory of Open Access Journals (Sweden)

    A. K. Peterson

    2018-02-01

    Full Text Available In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m−2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  2. Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments

    Science.gov (United States)

    DeBell, L.; Paulsen, A.; Spooner, B.

    1992-01-01

    Brine shrimp are encysted as gastrula stage embryos, and may remain dehydrated and encysted for years without compromising their viability. This aspect of brine shrimp biology is desirable for studying development of animals during space shuttle flight, as cysts placed aboard a spacecraft may be rehydrated at the convenience of an astronaut, guaranteeing that subsequent brine shrimp development occurs only on orbit and not on the pad during launch delays. Brine shrimp cysts placed in 5 ml syringes were rehydrated with salt water and hatched during a 9 day space shuttle mission. Subsequent larvae developed to the 8th larval stage in the sealed syringes. We studied the morphogenesis of the brine shrimp larvae and found the larvae from the space shuttle experiments similar in rate of growth and extent of development, to larvae grown in sealed syringes on the ground. Extensive differentiation and development of embryos and larvae can occur in a microgravity environment.

  3. Microbial changes and growth of Listeria monocytogenes during chilled storage of brined shrimp ( Pandalus borealis )

    DEFF Research Database (Denmark)

    Mejlholm, Ole; Kjeldgaard, J.; Modberg, A.

    2008-01-01

    conditions. Shrimp in brine with benzoic. citric and sorbic acids prevented growth of L monocytogenes during more than 40 days at 7 degrees C when the preserving parameters resembled those of commercial products. However, small changes in the preserving parameters and, particularly, reduced concentrations......Thirteen storage trials and ten challenge tests were carried out to examine microbial changes, spoilage and the potential growth of Listeria monocytogenes in brined shrimp (Pandalus borealis). Shrimp in brine as well as brined and drained shrimp in modified atmosphere packaging (MAP) were produced...... and studied. Different recipes were used to study the effect of preserving parameters (organic acids, pH and NaCl) on growth of microorganisms and shelf life at 7-8 degrees C or 12 degrees C. Particularly, brines with different concentrations of (i) benzoic, citric and sorbic acids or (ii) acetic, citric...

  4. Thermal Enhanced Oil Recovery Using Geopressured-Geothermal Brine

    Energy Technology Data Exchange (ETDEWEB)

    none

    1989-12-01

    This white paper presents a unique plan for an Oil Industry-DOE cost sharing research project for Thermal Enhanced Oil Recovery (TEOR) of medium and heavy oil using geopressured-geothermal brine. This technology would provide an environmentally clean method of recovery as opposed to the burning of crude oil or natural gas used widely by the industry, but presently under scrutiny by federal and state air quality agencies, as well as provide an alternative to the very expensive operational and mechanical problems associated with heating water on the surface for injection. An example test reservoir is a shallow, small structural reservoir about 1-l/2 miles long by 1/2 mile wide. It is presently producing heavy oil (18.6 API gravity) from 5 wells, and is marginally economic. One of three nearby geopressured-geothermal wells could be re-entered and recompleted to supply about 400 F brine from 13-16,000 feet. This brine can be used to heat and drive the heavy oil. It is anticipated that about one million barrels of oil may be recovered by this project. Over 3 million barrels are estimated to be in place; only 2.7% of the oil in place has been produced. The suggested teaming arrangement includes: (1) EG&G Idaho, Inc., which presently provides technical and management support to DOE in the Gulf EG&G would supply coordination, management and Coast Geopressured-Geothermal Program. technical support to DOE for the Thermal Enhanced Oil Recovery Project. (2) A small business which would supply the field, geologic and well data, production wells, and production operation. They would cost-share the project and provide revenue from increased production (5% of increased production) to help offset DOE costs. Though DOE would cost-share brine supply and injection system, they would not assume well ownership. The small business would supply engineering and operations for brine supply, injection system, and collection of field producing and injection data. Phase 1--Geologic, reservoir

  5. Selective passive adsorption of nitrate with surfactant treated porous electrode and electrostatic regeneration

    Science.gov (United States)

    Oyarzun, Diego I.; Hemmatifar, Ali; Palko, James W.; Stadermann, Michael; Santiago, Juan G.; Stanford microfluidics lab Team; Lawrence Livermore National Lab Team

    2017-11-01

    Nitrate is an important pollutant in drinking water worldwide, and a number of methods exist for the removal of nitrate from water including ion exchange and reverse osmosis. However, these approaches suffer from a variety of disadvantages including the need for a regenerating brine supply and disposal of used brine for ion exchange and low water recovery ratio for reverse osmosis. We are researching and developing a form of capacitive deionization (CDI) for energy efficient desalination and selective removal of ionic toxins from water. In CDI an electrode is used to electrostatically trap ions in a pair of porous electrodes. Here, we demonstrate the use of high surface area activated carbon electrodes functionalized with ion exchange moieties for adsorption of nitrate from aqueous solution. Unlike a traditional ion exchanger, the functionalized surfaces can be repeatedly regenerated by the application of an electrostatic potential which displaces the bound NO3- while leaving an excess of electronic charge on the electrode. Trimethylammonium has an intrinsic selectivity, we are using this moiety to selectively remove nitrate over chloride. We performed adsorption/desorption cycles under several desorption voltages and ratios of concentrations.

  6. Geothermal brine well: Mile-deep drill hole may tap ore-bearing magmatic water and rocks Undergoing Metamorphism

    Science.gov (United States)

    White, D.E.; Anderson, E.T.; Grubbs, D.K.

    1963-01-01

    A deep geothermal well in California has tapped a very saline brine extraordinarily high in heavy metals and other rare elements; copper and silver are precipitated during brine production. Preliminary evidence suggests that the brine may be pure magmatic water and an active ore-forming solution. Metamorphism of relatively young rocks may also be occurring within accessible depths.

  7. Manipulations to regenerate aspen ecosystems

    Science.gov (United States)

    Wayne D. Shepperd

    2001-01-01

    Vegetative regeneration of aspen can be initiated through manipulations that provide hormonal stimulation, proper growth environment, and sucker protection - the three elements of the aspen regeneration triangle. The correct course of action depends upon a careful evaluation of the size, vigor, age, and successional status of the existing clone. Soils and site...

  8. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...

  9. The Basis of Muscle Regeneration

    Directory of Open Access Journals (Sweden)

    Antonio Musarò

    2014-01-01

    Full Text Available Muscle regeneration recapitulates many aspects of embryonic myogenesis and is an important homeostatic process of the adult skeletal muscle, which, after development, retains the capacity to regenerate in response to appropriate stimuli, activating the muscle compartment of stem cells, namely, satellite cells, as well as other precursor cells. Moreover, significant evidence suggests that while stem cells represent an important determinant for tissue regeneration, a “qualified” environment is necessary to guarantee and achieve functional results. It is therefore plausible that the loss of control over these cell fate decisions could lead to a pathological transdifferentiation, leading to pathologic defects in the regenerative process. This review provides an overview about the general aspects of muscle development and discusses the cellular and molecular aspects that characterize the five interrelated and time-dependent phases of muscle regeneration, namely, degeneration, inflammation, regeneration, remodeling, and maturation/functional repair.

  10. Production of L-malic acid with fixation of HCO3(-) by malic enzyme-catalyzed reaction based on regeneration of coenzyme on electrode modified by layer-by-layer self-assembly method.

    Science.gov (United States)

    Zheng, Haitao; Ohno, Yoko; Nakamori, Toshihiko; Suye, Shin-Ichiro

    2009-01-01

    Malic enzyme prepared and purified from Brevundimonas diminuta IFO13182 catalyzed the decarboxylation reaction of malate to pyruvate and CO2 using NAD+ as the coenzyme, and the reverse reaction was used in the present study for L-malic acid production with fixation of HCO3(-) as a model compound for carbon source. The L-malic acid production was based on electrochemical regeneration of NADH on a carbon plate electrode modified by layer-by-layer adsorption of polymer-bound mediator (Alginic acid bound viologen derivative, Alg-V), polymer-bound coenzyme (Alginic acid bound NAD+, Alg-NAD+), and lipoamide dehydrogenase (LipDH). Electrochemical reduction of immobilized NAD+ catalyzed by LipDH in a multilayer film was achieved, and the L-malic acid production with HCO3(-) fixation system with layer-by-layer immobilization of Alg-V/LipDH/Alg-NAD+/malic enzyme multilayer film on the electrode gave an L-malic acid production of nearly 11.9 mmol and an HCO3(-) fixation rate of nearly 47.4% in a buffer containing only KHCO3 and pyruvic acid potassium salt, using a cation exchange membrane. The total turnover number of NADH within 48 h was about 19,000, which suggests that efficient NADH regeneration and fast electron transfer were achieved within the multilayer film, and that the modified electrode is a potential method for the fixation of HCO3(-) without addition of free coenzyme.

  11. Bone regeneration in dentistry

    Science.gov (United States)

    Tonelli, Paolo; Duvina, Marco; Barbato, Luigi; Biondi, Eleonora; Nuti, Niccolò; Brancato, Leila; Rose, Giovanna Delle

    2011-01-01

    Summary The edentulism of the jaws and the periodontal disease represent conditions that frequently leads to disruption of the alveolar bone. The loss of the tooth and of its bone of support lead to the creation of crestal defects or situation of maxillary atrophy. The restoration of a functional condition involves the use of endosseous implants who require adequate bone volume, to deal with the masticatory load. In such situations the bone need to be regenerated, taking advantage of the biological principles of osteogenesis, osteoinduction and osteoconduction. Several techniques combine these principles with different results, due to the condition of the bone base on which we operate changes, the surgical technique that we use, and finally for the bone metabolic conditions of the patient who can be in a state of systemic osteopenia or osteoporosis; these can also affect the result of jaw bone reconstruction. PMID:22461825

  12. Results from neutral kaon regeneration at high energies

    International Nuclear Information System (INIS)

    Hladky, J.

    1976-01-01

    Experimental neutral kaon regeneration results at Serpukhov energies up to 50 GeV are presented, including the coherent regeneration on hydrogen, deuterium and carbon regenerators and elastic regeneration on deuterium and carbon regenerators. (author)

  13. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    Science.gov (United States)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-08-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.

  14. Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments

    KAUST Repository

    Adel, Mustafa

    2016-09-06

    The central rift of the Red Sea has 25 brine pools with different physical and geochemical characteristics. Atlantis II (ATIID), Discovery Deeps (DD) and Chain Deep (CD) are characterized by high salinity, temperature and metal content. Several studies reported microbial communities in these brine pools, but few studies addressed the brine pool sediments. Therefore, sediment cores were collected from ATIID, DD, CD brine pools and an adjacent brine-influenced site. Sixteen different lithologic sediment sections were subjected to shotgun DNA pyrosequencing to generate 1.47 billion base pairs (1.47 × 109 bp). We generated sediment-specific reads and attempted to annotate all reads. We report the phylogenetic and biochemical uniqueness of the deepest ATIID sulfur-rich brine pool sediments. In contrary to all other sediment sections, bacteria dominate the deepest ATIID sulfur-rich brine pool sediments. This decrease in virus-to-bacteria ratio in selected sections and depth coincided with an overrepresentation of mobile genetic elements. Skewing in the composition of viruses-to-mobile genetic elements may uniquely contribute to the distinct microbial consortium in sediments in proximity to hydrothermally active vents of the Red Sea and possibly in their surroundings, through differential horizontal gene transfer.

  15. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination.

    Science.gov (United States)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-08-22

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.

  16. Alcohol Brine Freezing of Japanese Horse Mackerel (Trachurus japonicus) for Raw Consumption

    Science.gov (United States)

    Maeda, Toshimichi; Yuki, Atsuhiko; Sakurai, Hiroshi; Watanabe, Koichiro; Itoh, Nobuo; Inui, Etsuro; Seike, Kazunori; Mizukami, Yoichi; Fukuda, Yutaka; Harada, Kazuki

    In order to test the possible application of alcohol brine freezing to Japanese horse mackerel (Trachurus japonicus) for raw consumption, the quality and taste of fish frozen by direct immersion in 60% ethanol brine at -20, -25 and -30°C was compared with those by air freezing and fresh fish without freezing. Cracks were not found during the freezing. Smell of ethanol did not remain. K value, an indicator of freshness, of fish frozen in alcohol brine was less than 8.3%, which was at the same level as those by air freezing and fresh fish. Oxidation of lipid was at the same level as air freezing does, and lower than that of fresh fish. The pH of fish frozen in alcohol brine at -25 and -30°C was 6.5 and 6.6, respectively, which were higher than that by air freezing and that of fresh fish. Fish frozen in alcohol brine was better than that by air and at the same level as fresh fish in total evaluation of sensory tests. These results show that the alcohol brine freezing is superior to air freezing, and fish frozen in alcohol brine can be a material for raw consumption. The methods of thawing in tap water, cold water, refrigerator, and at room temperature were compared. Thawing in tap water is considered to be convenient due to the short thaw time and the quality of thawed fish that was best among the methods.

  17. Quorum Quenching Bacillus sonorensis Isolated from Soya Sauce Fermentation Brine

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2012-03-01

    Full Text Available An N-acylhomoserine lactone (AHL-degrading bacterial strain, L62, was isolated from a sample of fermentation brine of Chinese soya sauce by using rich medium agar supplemented with soya sauce (10% v/v. L62, a rod-shaped Gram positive bacterium with amylolytic activity, was phylogentically related to Bacillus sonorensis by 16S ribosomal DNA and rpoB sequence analyses. B. sonorensis L62 efficiently degraded N-3-oxohexanoyl homoserine lactone and N-octanoylhomoserine lactone. However, the aiiA homologue, encoding an autoinducer inactivation enzyme catalyzing the degradation of AHLs, was not detected in L62, suggesting the presence of a different AHL-degrading gene in L62. To the best of our knowledge, this is the first report of AHL-degrading B. sonorensis from soya sauce liquid state fermentation.

  18. Brine Shrimp test Triterpenes from root bark of Sandoricum emarginatum

    Directory of Open Access Journals (Sweden)

    Pratiwi Pratiwi

    1997-12-01

    Full Text Available The root of Sondoricum emargiatum , Meliaceae was collected in North Tapanuli, North Sumatera. Local people use this timber plany for construction and the fruit bark for cooking (Naito, 1986. In the previous investigation, 1,3,4 cuparatrien-15-ol, 4.15-cubebene and secobryononic acid were isolated from stem bark of Sondoricum emargiatum (Pratiwi. Further fractionation of n-hexane extract of root bark of Sondoricum emargiatum in the isolation of two triterpenes resulted byononic (1 and 3,4-seco-olean-4 (23, 12-dien-3,29-dionic acids (3 and their structures were elucidated by IR, MS, and NMR-spectroscopy. Compound (1 and (3 were forund more active than methyl bryononic derivate (2 with Brine Shrimp as bioindicator.

  19. In-situ fracture mapping using geotomography and brine tracers

    International Nuclear Information System (INIS)

    Deadrick, F.J.; Ramirez, A.L.; Lytle, R.J.

    1981-01-01

    The Lawrence Livermore National Laboratory is currently assessing the capabilities of high resolution geophysical methods to characterize geologic sites for the disposal of high level nuclear waste. A successful experiment has recently been performed in which salt water tracers and high frequency electromagnetic waves were utilized to map rock mass fracture zones in-situ. Multiple cross-borehole EM transmissions were used to generate a tomographic image of the fractured rock region between two boreholes. The tomographs obtained correlate well with conventional wireline geophysical logs which can be used to infer the location of fractured zones in the rock mass. This indirect data suggests that the geotomography and brine tracer technique may have merit in mapping fractured zones between boreholes

  20. Regenerating the English coalfields

    Energy Technology Data Exchange (ETDEWEB)

    Morse, A. [National Audit Office, London (United Kingdom)

    2009-12-17

    In England 124 coalfield pits out of 130 have closed since 1981, resulting in 193,000 job losses from an industry of 200,000. This report by Amyas Morse, the Comptroller and Auditor General, examines the progress and impact of the Department for Communities and Local Government's (the Department) three specific initiatives to tackle coalfields' regeneration in England: the National Coalfields Programme, to decontaminate and find uses for former coalfield sites; the Coalfield Regeneration Trust, to provide grants to community projects; and the Enterprise fund, to support businesses. The cost for these three schemes is 630 million pounds to date and spending is set to reach almost 1.1 billion pounds. The National Coalfields Programme has brought into new use 54 of 107 former coalfield sites, making them suitable for private development or recreational use; and work is underway on a further 22 sites. Private developers have built housing and employment space on 44 sites. The Programme expects to have treated 90 per cent of land by its target completion date of 2012 and it will take twice the ten-year timescale of the original Programme to achieve its aims for housing and employment space. While the Trust has helped to fund over 3,000 community projects and exceeded most of its targets, including building or enhancing over 2,300 community centres, because of strict funding cycles for departments it can currently offer support only up to 2011 and so the future of many projects is at risk. The Department for Communities and Location Government took five years to put the Enterprise Fund in place because of delays in meeting state aid requirements and protracted and unsuccessful negotiations with a private bank. The Fund has invested 6.5 million in 23 companies employing a total of 312 people. 12 figs., 2 apps.

  1. Impacts of Methane on Carbon Dioxide Storage in Brine Formations.

    Science.gov (United States)

    Soltanian, Mohamad R; Amooie, Mohammad A; Cole, David R; Darrah, Thomas H; Graham, David E; Pfiffner, Susan M; Phelps, Tommy J; Moortgat, Joachim

    2018-03-01

    In the context of geological carbon sequestration (GCS), carbon dioxide (CO 2 ) is often injected into deep formations saturated with a brine that may contain dissolved light hydrocarbons, such as methane (CH 4 ). In this multicomponent multiphase displacement process, CO 2 competes with CH 4 in terms of dissolution, and CH 4 tends to exsolve from the aqueous into a gaseous phase. Because CH 4 has a lower viscosity than injected CO 2 , CH 4 is swept up into a 'bank' of CH 4 -rich gas ahead of the CO 2 displacement front. On the one hand, this may provide a useful tracer signal of an approaching CO 2 front. On the other hand, the emergence of gaseous CH 4 is undesirable because it poses a leakage risk of a far more potent greenhouse gas than CO 2 if the cap rock is compromised. Open fractures or faults and wells could result in CH 4 contamination of overlying groundwater aquifers as well as surface emissions. We investigate this process through detailed numerical simulations for a large-scale GCS pilot project (near Cranfield, Mississippi) for which a rich set of field data is available. An accurate cubic-plus-association equation-of-state is used to describe the non-linear phase behavior of multiphase brine-CH 4 -CO 2 mixtures, and breakthrough curves in two observation wells are used to constrain transport processes. Both field data and simulations indeed show the development of an extensive plume of CH 4 -rich (up to 90 mol%) gas as a consequence of CO 2 injection, with important implications for the risk assessment of future GCS projects. © 2018, National Ground Water Association.

  2. Buoyancy-driven CO2/brine flow at reservoir conditions

    Science.gov (United States)

    Oh, J.; Kim, K.; Han, W.; Kim, T.; Kim, J.; Park, E.

    2013-12-01

    Suitable geological formations should guarantee a long-term safe and reliable storage of the injected supercritical CO2. In this study we targeted the cases of gravity-driven CO2 plume migration in a storage formation and the resulting CO2 leakage to overlying formation through a possible fractures or abandoned wells. A laboratory experiment and numerical model for two-phase core-flooding tests were designed to understand the buoyancy effect on supercritical CO2 migration under reservoir conditions. A series of core flooding tests were performed with Berea sandstone cores which have 20 % porosity and 1.7×10-13 m2 permeability. Unlike the normal core-flooding tests, the core was set up in a vertical direction and the CO2 was released at the bottom of the core to investigate the gravity effect on CO2 migration. During the test, the downstream pressure was maintained at 10 MPa, and the confining pressure was kept at 20 MPa. The temperature was set to be 40 °C to reflect the 1 km subsurface environment. The CO2-flooding (drainage) tests with brine-saturated core were performed with various CO2-release periods. The CO2 saturation was measured with a linear X-ray scanner. In addition to laboratory experiments, numerical simulations were performed to provide further insight into the CO2 migration behavior. TOUGH2 with ECO2N module was used to simulate CO2/brine core-flooding tests. Dimensionless numbers (Capillary number and Bond number) were calculated with the simulation results at various time points covering both the release and monitoring period.

  3. Two-stage Sequential Electrochemical Treatment of Nitrate Brine Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Yu Jiefei; Kupferle, Margaret J. [University of Cincinnati, Department of Civil and Environmental Engineering (United States)], E-mail: Margaret.Kupferle@uc.edu

    2008-08-15

    Nitrates in concentrated brines can be electrochemically reduced in the cathodic chamber of a split-cell electrochemical reactor with formation of ammonium (and small amounts of nitrite). Fortunately, ammonium may be electrochemically oxidized to nitrogen gas in the anodic reaction chamber if a coupled sequential process is used. The presence of chloride in the brine waste is an important consideration in oxidative electrochemical processes, however, because it cycles through oxidized and reduced states at the electrode surfaces and in the bulk solution. Electrochemical oxidation converts chloride ions to 'active chlorine' species with additional oxidizing capability (chlorine, hypochlorous acid and hypochlorite - essentially bleach), as well as to chlorates, depending on the reaction conditions. The production of these active species improves treatment performance in the ammonium oxidation phase since oxidation is no longer limited to the electrode surface. However, the process must be engineered to minimize loss of process efficiency due to parasitic side reactions (chloramines and chlorate). In this study, two-stage batch electrolysis was conducted using a three-electrode (copper anode, platinum-coated titanium cathode, silver/silver chloride reference) electrochemical cell, with the anodic and cathodic chambers separated by a Nafion 117 membrane. Treatment of nitrate and ammonium was tested with and without the presence of chloride in the waste. No significant difference was observed in cathodic nitrate reduction with chloride present or absent. However, the presence of chloride in the solution favored overall soluble nitrogen elimination upon oxidation. Increasing applied current increased production of undesirable byproducts (especially chlorate)

  4. Weeks Island brine diffuser site study: baseline conditions and environmental assessment technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-12

    This technical report presents the results of a study conducted at two alternative brine diffuser sites (A and B) proposed for the Weeks Island salt dome, together with an analysis of the potential physical, chemical, and biological effects of brine disposal for this area of the Gulf of Mexico. Brine would result from either the leaching of salt domes to form or enlarge oil storage caverns, or the subsequent use of these caverns for crude oil storage in the Strategic Petroleum Reserve (SPR) program. Brine leached from the Weeks Island salt dome would be transported through a pipeline which would extend from the salt dome either 27 nautical miles (32 statute miles) for Site A, or 41 nautical miles (47 statute miles) for Site B, into Gulf waters. The brine would be discharged at these sites through an offshore diffuser at a sustained peak rate of 39 ft/sup 3//sec. The disposal of large quantities of brine in the Gulf could have a significant impact on the biology and water quality of the area. Physical and chemical measurements of the marine environment at Sites A and B were taken between September 1977 and July 1978 to correlate the existing environmental conditions with the estimated physical extent of tthe brine discharge as predicted by the MIT model (US Dept. of Commerce, 1977a). Measurements of wind, tide, waves, currents, and stratification (water column structure) were also obtained since the diffusion and dispersion of the brine plume are a function of the local circulation regime. These data were used to calculate both near- and far-field concentrations of brine, and may also be used in the design criteria for diffuser port configuration and verification of the plume model. Biological samples were taken to characterize the sites and to predict potential areas of impact with regard to the discharge. This sampling focused on benthic organisms and demersal fish. (DMC)

  5. Cardiac Regeneration and Stem Cells.

    Science.gov (United States)

    Zhang, Yiqiang; Mignone, John; MacLellan, W Robb

    2015-10-01

    After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear. These same studies have also revealed an astonishing capacity for cardiac repair early in life that is largely lost with adult differentiation and maturation. Regardless, this renewed focus on cardiac regeneration as a therapeutic goal holds great promise as a novel strategy to address the leading cause of death in the developed world. Copyright © 2015 the American Physiological Society.

  6. Biomaterial Selection for Tooth Regeneration

    Science.gov (United States)

    Yuan, Zhenglin; Nie, Hemin; Wang, Shuang; Lee, Chang Hun; Li, Ang; Fu, Susan Y.; Zhou, Hong

    2011-01-01

    Biomaterials are native or synthetic polymers that act as carriers for drug delivery or scaffolds for tissue regeneration. When implanted in vivo, biomaterials should be nontoxic and exert intended functions. For tooth regeneration, biomaterials have primarily served as a scaffold for (1) transplanted stem cells and/or (2) recruitment of endogenous stem cells. This article critically synthesizes our knowledge of biomaterial use in tooth regeneration, including the selection of native and/or synthetic polymers, three-dimensional scaffold fabrication, stem cell transplantation, and stem cell homing. A tooth is a complex biological organ. Tooth loss represents the most common organ failure. Tooth regeneration encompasses not only regrowth of an entire tooth as an organ, but also biological restoration of individual components of the tooth including enamel, dentin, cementum, or dental pulp. Regeneration of tooth root represents perhaps more near-term opportunities than the regeneration of the whole tooth. In the adult, a tooth owes its biological vitality, arguably more, to the root than the crown. Biomaterials are indispensible for the regeneration of tooth root, tooth crown, dental pulp, or an entire tooth. PMID:21699433

  7. Salted herring brine as a coating or additive for herring (Clupea harengus) products — A source of natural antioxidants?

    DEFF Research Database (Denmark)

    Albertos, Irene; Gringer, Nina; Rico, Daniel

    2016-01-01

    The objective of this study was to characterise herring brine and assess its use as natural antioxidant in herring preservation. Herring brines from different marinated products (brine from fillet-ripened spice-cured herring SC, traditional barrel-salted spice-cured herring TSp and brine from...... traditional barrel-salted herring TSa) were used without any pre-treatment or with a previous pH adjustment, and tested either as coating agents (glazing) for frozen herring or additives in fresh mince herring, in order to prevent oxidation. TSa and TSp were the most effective glazing agents, retarding lipid...... oxidation. Brines tested as additive retarded lipid and protein oxidation in a similar trend than herring mince containing salt and/or protein. SC brine was more efficient against lipid and protein oxidation when compared to the other tested brines. Using protein fractions isolated from herring marinating...

  8. Evaluation of the bioactivities of some Myanmar medicinal plants using brine shrimp (Artemia salina) toxicity test

    International Nuclear Information System (INIS)

    Sabai; Khin Khin Win Aung; Nwe Ni Thin; Kyi Shwe; Tin Myint Htwe

    2001-01-01

    For a variety of toxic substances, brine shrimp larvae (Artemia salina) are usually used as a simple bioassay method and it is also applied for natural product research. The brine shrimp larvae (nauplii) are obtained by natural hatching method from Artemia cysts. By using the larvae, the results from these experiments lead to the lethal dose, LD 50 values of extracts of selected medicinal plants. Activities of a broad range of plant extracts are manifested as toxicity to the brine shrimp. Screening results with six plant extracts are compared with pure caffeine. This method is rapid, reliable, inexpensive and convenient. (author)

  9. A Brine Shrimp Bioassay for Measuring Toxicity and Remediation of Chemicals

    Science.gov (United States)

    Lieberman, Marya

    1999-12-01

    A bioassay using Artemia franciscana (brine shrimp) was adapted to measure the toxicity of household chemicals. One project is described in which students collect dose-response curves for seven commercial flea-killing products. Next, groups of students researched the insecticidal ingredients of the flea products. On the basis of the structures of the active ingredients, they chose remediation methods to make the flea product less toxic to brine shrimp; procedures included copper-catalyzed hydrolysis, adsorption onto activated charcoal, bleach treatment, and photodegradation. No special equipment or supplies are necessary for the bioassay other than the brine shrimp eggs, which can be obtained at any aquarium store.

  10. Precipitation of halite from supersaline brine from Tønder formation

    DEFF Research Database (Denmark)

    Arturi, Kasia; Søgaard, Erik Gydesen

    2014-01-01

    of NaCl as a result of cooling. Neither the heat exchanger nor the system were afflicted by scaling problems, formation of coating or clogging. The were no problems with the flow of brine in the plant whatsoever. The absence of precipitation was confirmed by both concentration measurements (titration......This project deals various treatments for geothermal brine, which is a highly salty solution containing more that 50 TDS (Total Dissolved Solids). This project focuses on the brine from Tønder formation (T=73°C), which has an extraordinarily high salt content NaCl ([C] = 300-310 g/l). According...

  11. Deep brine recognition upstream the EBE syndicate. Geochemical and isotopic investigations. Final report

    International Nuclear Information System (INIS)

    2009-01-01

    The authors report and discuss the results obtained after performing a drilling upstream the drinkable water harnessing field of a water supply syndicate in Alsace (Ensisheim, Bollwiller and surroundings), in order to confirm the existence of a deep brine source. This brine is diluted by recent waters. The first isotopic investigations do not allow the origin of this brine to be identified, but fractures due to some seismic events are suspected. The report presents the drilling and the various aspects of the chemical and isotopic studies (sampling, physico-chemical analysis, dating, identification of various isotopes)

  12. Examination of brine contamination risk to aquatic resources from petroleum development in the Williston Basin

    Science.gov (United States)

    Gleason, Robert A.; Thamke, Joanna N.; Smith, Bruce D.; Tangen, Brian A.; Chesley-Preston, Tara; Preston, Todd M.

    2011-01-01

    U.S. Geological Survey scientists and cooperating partners are examining the potential risk to aquatic resources (for example, wetlands, streams) by contamination from saline waters (brine) produced by petroleum development in the Williston Basin of Montana, North Dakota, and South Dakota. The primary goals of this study are to provide a science-based approach to assess potential risk of brine contamination to aquatic systems and to help focus limited monitoring and mitigation resources on the areas of greatest need. These goals will be accomplished through field investigations that quantify brine movement and risk assessments using remotely-sensed and other spatial datasets.

  13. Threshold temperature gradient effect on migration of brine inclusions in salt

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1987-01-01

    Theories of the migration of brine inclusions in salt were interpreted as simple physical processes, and theories by Russian and US workers were shown to yield the same results. The migration theory was used to predict threshold temperature gradients below which migration of brine inclusions should not occur. The predicted threshold gradients were compared with the temperature gradients expected at the Waste Isolation Pilot Plant in New Mexico. The theory of threshold gradients helps explain the existence of brine inclusions in natural salt deposits

  14. Buoyancy effects on upward brine displacement caused by CO2 injection

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Rinaldi, A.

    2010-01-15

    Upward displacement of brine from deep reservoirs driven by pressure increases resulting from CO{sub 2} injection for geologic carbon sequestration may occur through improperly sealed abandoned wells, through permeable faults, or through permeable channels between pinch-outs of shale formations. The concern about upward brine flow is that, upon intrusion into aquifers containing groundwater resources, the brine may degrade groundwater. Because both salinity and temperature increase with depth in sedimentary basins, upward displacement of brine involves lifting fluid that is saline but also warm into shallower regions that contain fresher, cooler water. We have carried out dynamic simulations using TOUGH2/EOS7 of upward displacement of warm, salty water into cooler, fresher aquifers in a highly idealized two-dimensional model consisting of a vertical conduit (representing a well or permeable fault) connecting a deep and a shallow reservoir. Our simulations show that for small pressure increases and/or high-salinity-gradient cases, brine is pushed up the conduit to a new static steady-state equilibrium. On the other hand, if the pressure rise is large enough that brine is pushed up the conduit and into the overlying upper aquifer, flow may be sustained if the dense brine is allowed to spread laterally. In this scenario, dense brine only contacts the lower-most region of the upper aquifer. In a hypothetical case in which strong cooling of the dense brine occurs in the upper reservoir, the brine becomes sufficiently dense that it flows back down into the deeper reservoir from where it came. The brine then heats again in the lower aquifer and moves back up the conduit to repeat the cycle. Parameter studies delineate steady-state (static) and oscillatory solutions and reveal the character and period of oscillatory solutions. Such oscillatory solutions are mostly a curiosity rather than an expected natural phenomenon because in nature the geothermal gradient prevents the

  15. CO2 Mineralization Using Brine Discharged from a Seawater Desalination Plant

    OpenAIRE

    Jun-Hwan Bang; Yeongsuk Yoo; Seung-Woo Lee; Kyungsun Song; Soochun Chae

    2017-01-01

    CO2 mineralization is a method of sequestering CO2 in the form of carbonated minerals. Brine discharged from seawater desalination is a potential source of Mg and Ca, which can precipitate CO2 as forms of their carbonate minerals. The concentration of Mg and Ca in brine are twice those in the seawater influent to desalination process. This study used a cycle for CO2 mineralization that involves an increase in the pH of the brine, followed by CO2 bubbling, and, finally, filtration. To the best...

  16. An active magnetic regenerator device

    DEFF Research Database (Denmark)

    2015-01-01

    A rotating active magnetic regenerator (AMR) device comprising two or more regenerator beds, a magnet arrangement and a valve arrangement. The valve arrangement comprises a plurality of valve elements arranged substantially immovably with respect to the regenerator beds along a rotational direction....... A cam surface is arranged substantially immovably with respect to the magnet arrangement along the rotational direction, and comprises a plurality of cam elements arranged to cooperate with the valve elements in order to control opening degrees of the valve elements, in accordance with a relative...... position of the cam elements and the valve elements. Thereby the opening degree of each valve element is controlled in accordance with a relative angular position of the regenerator beds and the magnet arrangement....

  17. Regenerable Carbon Filter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A Regenerable Carbon Filter (RCF) is proposed for the removal of carbonaceous particulate matter produced in Environmental Control and Life Support (ECLS) processes....

  18. DECOLORIZATION AND CHEMICAL REGENERATION OF ...

    African Journals Online (AJOL)

    GAC) was studied and an improved chemical regeneration method of the exhausted GAC by the color of CAF liquor was investigated. The effects of the GAC dosage, time and temperature on the decoloring efficiency (DE %) were studied.

  19. Microstructural, protein denaturation and water holding properties of lamb under pulse vacuum brining.

    Science.gov (United States)

    Wang, Zhenyu; Xu, Weiwei; Kang, Ning; Shen, Qingwu; Zhang, Dequan

    2016-03-01

    The objective of this study was to investigate the microstructure, protein denaturation and water holding capacity of lamb pickled under pulse vacuum. Sixty topside samples (M. semimembranosus) were randomly assigned into two groups and cured for 0, 1.5, 3, 4.5 and 6h by pulse vacuum brining (PVB) and atmospheric brining (AB) (control), respectively. The salt content of samples by PVB was about 1% higher than AB from 1.5h to 6h. The water holding capacity was greater for PVB group before 4.5h (Pvacuum brining can be used to improve the brining efficiency, promoting the actomyosin dissociation and improving the water holding capacity of lamb, which will be a potential technology to be used in practice. Copyright © 2015. Published by Elsevier Ltd.

  20. Diverse methane concentrations in anoxic brines and underlying sediments, eastern Mediterranean Sea

    Science.gov (United States)

    Karisiddaiah, S. M.

    2000-10-01

    Elevated methane (CH 4) concentrations (128-2692×10 3 nM) occur in the hypersaline anoxic brine pools of Bannock and Urania Basins, eastern Mediterranean Sea, compared to low concentrations (17-80×10 3 nM) in the sediments below the anoxic brines. The CH 4 enrichment in the brines might be due to the long residence time of the brine in the Basin. An attempt is made to determine the sources for the enriched dissolved CH 4 by considering the influence of hydrothermal activity, the occurrence of sapropel layers (biogenic) and dissolution of gas hydrates. Furthermore, it is suggested that the enriched CH 4 in Bannock and Urania Basins is diffused and mixed with the overlying waters by local upward transport mechanisms that selectively move CH 4 upward in these Basins.

  1. Effect of Brine Composition on Wettability Alteration and Oil Recovery from Oil-wet Carbonate Rocks

    Science.gov (United States)

    Purswani, P.; Karpyn, Z.

    2016-12-01

    Brine composition is known to affect the effectiveness of waterflooding during enhanced oil recovery from carbonate reservoirs. Recent studies have identified Mg2+, Ca2+ and SO42- as critical ions, responsible for incremental oil recovery via wettability alteration. To investigate the underlying mechanism of wettability alteration and, to evaluate the individual contribution of these ions towards improving oil recovery, a series of coreflooding experiments are performed. Various characterization techniques like zeta potential (ZP), drop angle analysis and inductively coupled plasma mass spectrometry (ICP MS) analysis are performed to evaluate the surface interactions taking place at the carbonate core samples, brine solution and crude oil interfaces. Total dissolved solids and electrical conductivity measurements confirm the ionic strength of the brine samples. Acid number calculations, ZP and contact angle measurements confirm the initial oil-wetting state of the core. ICP MS analysis of the effluent brine, confirm the relationship between the ionic interactions and oil recovery.

  2. Bead Evaporator for Complete Water and Salt Recovery from Brine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A microgravity-compatible Brine Evaporation and Mineralization System (BEMS) is proposed for 100% water recovery from highly contaminated wastewater as well as water...

  3. Brine shrimp lethality and antibacterial activity of extracts from the bark of Schleichera oleosa

    Directory of Open Access Journals (Sweden)

    Laxman Pokhrel

    2015-08-01

    Full Text Available Objective: To determine the antibacterial efficacy and brine shrimp toxicity of extracts (hexane, dichloromethane, ethyl acetate, methanol and water obtained from the bark of Schleichera oleosa. Methods: The powdered bark sample was Soxhlet extracted sequentially in hexanes, dichloromethane, ethyl acetate, methanol and water. Antibacterial evaluation was carried out by following the agar diffusion method and amoxicillin disc was used as a reference. Slightly modified Meyer’s method was used to determine the toxicity of the extracts in brine shrimps. Results: Among the nine bacterial strains tested, the methanolic and aqueous extracts showed promising antibacterial efficacy against Serratia marcescens, Escherarichia coli, Bacillus subtilis and Micrococcus luteus. None of the extracts were found significantly toxic to brine shrimps. Conclusions: Strong antibacterial activity and low brine shrimp toxicity of methanolic and aqueous extracts can provide new antibacterial compounds.

  4. Precipitation of halite from supersaline brine from Tønder formation

    DEFF Research Database (Denmark)

    Arturi, Kasia; Søgaard, Erik Gydesen

    2014-01-01

    This project deals various treatments for geothermal brine, which is a highly salty solution containing more that 50 TDS (Total Dissolved Solids). This project focuses on the brine from Tønder formation (T=73°C), which has an extraordinarily high salt content NaCl ([C] = 300-310 g/l). According....... With a flow of 200 m3/h, that gives precipitation of 100 kg salt per hour. The purpose behind this project is to determine if the precipitation will take place, and how it can be avoided. Additionally, membrane filtration will be examined as a potential tool for removal of salt from brine before the re...... of NaCl as a result of cooling. Neither the heat exchanger nor the system were afflicted by scaling problems, formation of coating or clogging. The were no problems with the flow of brine in the plant whatsoever. The absence of precipitation was confirmed by both concentration measurements (titration...

  5. Imaged brine inclusions in young sea ice—Shape, distribution and formation timing

    DEFF Research Database (Denmark)

    Galley, R.J.; Else, B.G.T.; Geilfus, Nicolas-Xavier

    2015-01-01

    prior to sea ice growth through the sampling date, and observe its physical characteristics. We illustrate that brine drain- age channels may be established concurrently with ice growth, and indicate the amount and location of vertical and horizontal fluid connectivity in the young sea ice sample...... quantification of the morphology and vertical dis- tribution of brine inclusions in sea ice. Using a magnetic (3.0 T) resonance (MR) imager using constructive inter- ference steady state gradient echo sequence, we show that it is possible to image brine channels and pockets in an 18.5 cm young sea ice core...... in the context of the environment in which it grew. Finally, we show that a vertical brine volume distribution profile can be calculated using MR image data, extend- ing the (non-imaging) nuclear magnetic resonance work of others in this vein....

  6. Contribuição de constituintes de solo à capacidade de troca de cátions obtida por diferentes métodos de extração Contribution of soil constituents to the cation exchange capacity as determined by different extraction methods

    Directory of Open Access Journals (Sweden)

    Edson Campanhola Bortoluzzi

    2009-06-01

    Full Text Available A capacidade de troca de cátions (CTC é uma propriedade físico-química intrínseca aos constituintes minerais e orgânicos do solo. Apesar do uso de diferentes extratores e procedimentos, a CTC é normalmente expressa considerando apenas o controle ou não do pH na solução extratora. O objetivo deste trabalho foi discutir o significado da contribuição da matéria orgânica do solo prepresentada pelo carbono orgânico total (COT e da argila à capacidade de troca de cátions de um Argissolo quando diferentes métodos estão envolvidos na determinação desse parâmetro. Para isso, utilizaram-se 75 amostras de um Argissolo Vermelho-Amarelo distrófico abrúptico da área do Departamento de Solos da Universidade Federal de Santa Maria, representando, em triplicata, cinco profundidades e cinco sistemas de uso e manejo de solo. A CTC efetiva (CTC E foi estimada pelo cloreto de hexamina cobalto (CTC E Cohex e pela soma de cátions Al3+, Ca2+, Mg2+ e K+ (CTC E SB + AlKCl, os três primeiros extraídos por KCl e o último por Mehlich-1; a CTC em pH 7,0 (CTC7 foi estimada por acetato de amônio (CTC7 Metson e pela soma de cátions Ca2+, Mg2+ e K+ e H + Al estimado pelo índice SMP (CTC7 SB + H + AlSMP. Os valores de CTC obtidos pelos diferentes métodos se relacionam entre si, com coeficientes de correlação linear simples acima de 0,93. Os valores de CTC7 Metson são subestimados quando comparados com o método CTC7 (SB + H + AlSMP. Nesse sentido, as contribuições da argila e do COT à CTC7 foram, respectivamente, menores para a CTC7 Metson, 19 e 256 cmol c kg-1, que para a CTC7 (SB + H + AlSMP, 23 e 399 cmol c kg-1. A contribuição dos constituintes de solo depende, então, do cátion extrator e da capacidade de extração dos métodos empregados.The cation exchange capacity (CEC is a physicochemical property dependent on mineral and organic soil constituents. Despite the use of different procedures and extractors the CEC is normally

  7. Contribuição dos constituintes da fração argila de solos subtropicais à área superficial específica e à capacidade de troca catiônica Contribution of clay fraction minerals of subtropical soils to the specific surface area and cation exchange capacity

    Directory of Open Access Journals (Sweden)

    Ivan Granemann de Souza Junior

    2007-12-01

    area (SSA is related to several properties that define the soil physico-chemical behavior. In this research, 23 soil samples developed from different parent materials found in the southern Brazil were used. They were evaluated for the contribution of the main soil constituents to the effective cation exchange capacity (CECe and SSA. The clay fraction minerals were identified by X ray diffraction (XRD and quantified by thermal analysis; the CECe, the SSAt (total by the ethylene glycol monoethyl ether method (EGME, the SSAe (external by the BET-N2 method, and the ASEi (internal by the difference of the values obtained with the two methods. The clay fraction samples were determined before and after the following sequential selective dissolution procedures: removal of organic matter (clay-NaOCl; removal of organic matter and free iron oxides (clay-NaOCl + DCB; removal of kaolinite, gibbsite and low cristalinity aluminosilicate minerals (clay-NaOCl+DCB + NaOH 5 mol L-1. The mineralogy of the clay fraction of the soils varied considerably, as verified by X ray diffraction, thermogravimetric analysis, and SSA and CECe values. For most soils kaolinite is the predominant mineral in the clay fraction, followed by expandable 2:1 clay mineral or iron and aluminum oxihydroxides. SSA and CECe of the natural clay fraction were not correlated due to the occlusion of the clay surface by organic matter. Iron oxide aggregate effects reduced SSAe by 21 %. For the studied samples, the 2:1 clay minerals were present in concentrations varying from 3 to 65 % of the silicate fraction and presented average values of 1.054 mmol c kg-1 and 202 m² g-1 for CECe and SSEt, respectively. SSAi contributed with 58 % of SSAt of the clay fraction, mostly due to 2:1 clay type minerals.

  8. USE OF BRINE SHRIMP (ARTEMIA IN THE FEEDING OF STURGEON JUVENILES (ACIPENSERIDAE (REVIEW

    Directory of Open Access Journals (Sweden)

    M. Simon

    2016-06-01

    Full Text Available Purpose. To review scientific sources on the technological and biological characteristics of the use of brine shrimp (Artemia in the feeding of sturgeon juvenilse (Acipenseridae. To highlight the common biotechnological bases of the enrichment of brine shrimp with biologically active substances necessary for the full development of sturgeon juveniles. Findings. The review of scientific papers showed that the technology is the use of brine shrimp in the feeding of sturgeon speices not only had not lost its relevance in aquaculture, but also continued to evolve in response to new challenges. The review contains a description of the peculiarities of the biological structure of brine shrimp eggs and methods of their quality assessment in the field. It describes the nutritional characteristics of Artemia. It is shown that brine shrimp is the best food organism for the use in the feeding of sturgeon fingerlings. The calculation scheme for Artemia decapsulation and incubation is provided. The main technological stages of of the preparation of shrimps before their use in feeding – activation, hydration, decapsulation, incubation, dehydration were described. The effect of brine shrimp nauplia enriched with biologically active substances enriched brine shrimp on sturgeon juveniles was highlighted. Practical value. Fish farm owners search for cost-effective, easy to use, and available food that is preferred by sturgeon juveniles (Acipenseridae. Brine shrimp nauplii obtained from cysts can be readil used to feed fish just after one-day incubation. Instar I (the nauplii that just hatched and contain large yolk reserves in their body and instar II nauplii (the nauplii after first moult and with functional digestive tracts are more widely used in aquaculture, because they are easy for operation, rich in nutrients, and small, which makes them suitable for feeding fish larvae as live feed or after drying. The generalized information will be important for

  9. Mechanisms of sulfate removal from subsurface calcium chloride brines: Heletz-Kokhav oilfields, Israel

    Science.gov (United States)

    Gavrieli, Ittai; Starinsky, Avraham; Spiro, Baruch; Aizenshtat, Zeev; Nielsen, Heimo

    1995-09-01

    The evolution of the Ca-chloride brines in the Heletz Formation, Lower Cretaceous, in the southern coastal plain of Israel was reconstructed through the study of its sulfate concentration and isotopic composition. Particular emphasis was given to the brine-oil interaction in the oilfields and to the sulfate depletion and lower SO 4/Cl ratio in brines in contact with hydrocarbons (oil brines) relative to "oil-free" from dry wells in the same oilfields. A method is presented for a calculation of the amount of sulfate removed from the original seawater in the various stages of its evolution to Ca-chloride brine. These stages include evaporation, dolomitization, and sulfate reduction in different stages of its evolution, from early diagenetic processes to the contact with crude oil. In the present study, based on the δ34S SO 4 and SO 4/Cl ratio, it was found that in the Heletz brines most of the sulfate (80-94%) was removed from the original seawater prior to their interaction with the hydrocarbons and only a negligible fraction of few percent of the sulfate was removed during the crude oil-water contact. The Ca-chloride brines evolved from Messinian (Upper Miocene) seawater that underwent evaporation during the desiccation of the Mediterranean. Sulfate was removed from Messinian lagoon (s) during gypsum precipitation due to evaporation and dolomitization. Bacterial sulfate reduction further depleted the brine in sulfate and changed its isotopic composition, from its original Miocene seawater composition of δ34S SO 4 ˜ 20%o, 26%o. Overall, some 50% of the original sulfate, as normalized to chloride, was removed from the original lagoon through the above processes, mostly by gypsum precipitation. Eastward migration of the Messinian Ca-Chloride brine into the Heletz Formation was accompanied by dolomitization of the country rock. Final depletion of sulfate from the brines took place, and possibly still occurs, in the presence of crude oil in the oilfields. The two oil

  10. Modeling Episodic Ephemeral Brine Lake Evaporation and Salt Crystallization on the Bonneville Salt Flats, Utah

    Science.gov (United States)

    Liu, T.; Harman, C. J.; Kipnis, E. L.; Bowen, B. B.

    2017-12-01

    Public concern about apparent reductions in the areal extent of the Bonneville Salt Flat (BSF) and perceived changes in inundation frequency has motivated renewed interest in the hydrologic and geochemical behavior of this salt playa. In this study, we develop a numerical modeling framework to simulate the relationship between hydrometeorologic variability, brine evaporation and salt crystallization processes on BSF. The BSF, locates in Utah, is the remnant of paleo-lake Bonneville, and is capped by up to 1 meter of salt deposition over a 100 km2 area. The BSF has two distinct hydrologic periods each year: a winter wet periods with standing surface brine and the summer dry periods when the brine is evaporated, exposing the surface salt crust. We develop a lumped non-linear dynamical models coupling conservation expressions from water, dissolved salt and thermal energy to investigate the seasonal and diurnal behavior of brine during the transition from standing brine to exposed salt at BSF. The lumped dynamic models capture important nonlinear and kinetic effects introduced by the high ionic concentration of the brine, including the pronounced effect of the depressed water activity coefficient on evaporation. The salt crystallization and dissolution rate is modeled as a kinetic process linearly proportional to the degree of supersaturation of brine. The model generates predictions of the brine temperature and the solute and solvent masses controlled by diurnal net radiation input and aerodynamic forcing. Two distinct mechanisms emerge as potential controls on salt production and dissolution: (1) evapo-concentration and (2) changes in solubility related to changes in brine temperature. Although the evaporation of water is responsible for ultimate disappearance of the brine each season ,variation in solubility is found to be the dominant control on diurnal cycles of salt precipitation and dissolution in the BSF case. Most salt is crystallized during nighttime, but the

  11. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    International Nuclear Information System (INIS)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed

  12. The Effect of adjusting PH on Stretchability and Meltability to White Brined Nabulsi Cheese

    OpenAIRE

    Ayman S. Mazahreh; Jihad M. Quasem; Ali F. Al-Shawabkeh; Ibrahim A. Afaneh; Ayman S. Mazahreh; Jihad M. Quasem; Ali F. Al-Shawabkeh; Ibrahim A. Afaneh

    2009-01-01

    Problem statement: Boiled white brined (Nabulsi cheese) is the mostly consumed in Jordan; this cheese should show meltability and high stretchability in order to fit in the production of high quality Kunafa and other popular local sweets and pastries.The most outstanding characteristic of Nabulsi cheese is the long keeping ability (more than one year) without cooling, since it is preserved in concentrated brine (up to 25%). Approach: This work was based on the hypothesis that it would be poss...

  13. Quantifying the efficiency of a mono-port diffuser in the dispersion of brine discharges

    OpenAIRE

    Loya-Fernández, Angel; Ferrero-Vicente, Luis Miguel; Marco-Méndez, Candela; Martinez-Garcia, Elena; Zubcoff, Jose; Sánchez-Lizaso, José Luis

    2018-01-01

    Reverse-osmosis seawater desalination processes produce a hypersaline effluent waste (brine) which is usually discharged back into the sea via an underwater outfall. Brine discharges can cause environmental problems due to their high salt concentration, but the effects can be minimised by installing a diffuser structure at the end of the pipeline. In May 2010, a mono-port diffuser was installed at the Nuevo Canal de Cartagena desalination plant pipeline (located in Murcia, Spain) in order to ...

  14. Dynamics of subcritical CO/sub 2//brine floods for heavy-oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, G.A.; Ali, S.M.F.

    1988-02-01

    Immiscible CO/sub 2/ flooding is an important, field-proven heavy-oil recovery method, particularly suited for thin, marginal, or otherwise poor heavy-oil reservoirs, where thermal recovery processes are likely to be uneconomical. This paper describes the dynamics of this recovery technique on the basis of experiments conducted in a scaled model. The experiments represent a medium-heavy oil (1032 mPa . s at 23/sup 0/C (1,032 cp at 73/sup 0/F)) occurring in a shallow, thin sand. CO/sub 2/ was injected together with brine at subcritical conditions (5.5 MPa and 21 to 23/sup 0/C (800 psi and 70 to 73/sup 0/F)). The CO/sub 2/ and brine superficial velocities were varied from 0.18 to 2.9 m/d (0.6 to 9.5 ft/D). This broad range of velocities permitted the study of the effect of the viscous, diffusive, and gravitational forces on the CO/sub 2/ slug (20% HCPV) process for heavy-oil recovery. It was found that viscous forces completely dominant CO/sub 2/ injection. Also, the mass transfer between CO/sub 2/ and oil had a stabilizing effect on the brine injection. Although the molecular diffusion of CO/sub 2/ in oil was high, it was not high enough to mobilize appreciable amounts of oil from uninvaded zones. The scaled experiment results showed that oil recoveries at CO/sub 2/ and brine breakthroughs were rate-dependent. While recovery at CO/sub 2/ breakthrough decreased with increasing rate, recovery at brine breakthrough increased. Reduction of interfacial tension (IFT) between brine and oil, leading to the formation of brine-in-oil emulsions, was found to be an additional effective mechanism of heavy-oil recovery by CO/sub 2//brine injection.

  15. Polyalkoxy sulfonate, CO/sub 2/ and brine drive process for oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Wellington, S. L.; Bright, D. B.; Lutz, E. F.; Reisberg, J.

    1985-03-05

    Oil is displaced within a subterranean reservoir by injecting a combination of substantially liquefied CO/sub 2/, brine and surfactant material into the reservoir, with the surfactant material being a polyalkoxy aliphatic sulfonate surfactant material which has specified dispersing and partitioning properties in contact with the brine and the fluids in the reservoir at the reservoir temperature and a pressure sufficient to substantially liquefy the CO/sub 2/ within the reservoir.

  16. Corrosion of N80 and Cr13 steels in brine and CO2

    NARCIS (Netherlands)

    Zhang, X.; Zhan, H.; Zevenbergen, J.

    2013-01-01

    The corrosion behavior of the N80 casing and Cr13 steels was studied in a brine-CO2 mixture in autoclaves using electrochemical measurements and mass loss test. The brine solution contained 130 g/l NaCl, 22.2 g/l CaCl2 and 4 g/l MgCl2, representative for formation waters in North Sea wells. The

  17. Depletion of a brine layer at the base of ridge-crest hydrothermal systems

    OpenAIRE

    Schoofs, Stan; Hansen, Ulrich

    2000-01-01

    The variable salinity of fluid venting from mid-ocean ridges is indicative of mixing between hydrothermal seawater and fluids that have undergone supercritical phase separation. In order to study the stability of a brine-saturated layer that may form in the lowermost part of the hydrothermal system, we have performed numerical simulations of a system that has returned into the subcritical regime. For typical geological parameters, it is shown that the interface between the brine layer and the...

  18. Antagonism Between Osmophilic Lactic Acid Bacteria and Yeasts in Brine Fermentation of Soy Sauce

    OpenAIRE

    Noda, Fumio; Hayashi, Kazuya; Mizunuma, Takeji

    1980-01-01

    Brine fermentation by osmophilic lactic acid bacteria and yeasts for long periods of time is essential to produce a good quality of shoyu (Japanese fermented soy sauce). It is well known that lactic acid fermentation by osmophilic lactic acid bacteria results in the depression of alcoholic fermentation by osmophilic yeasts, but the nature of the interaction between osmophilic lactic acid bacteria and yeasts in brine fermentation of shoyu has not been revealed. The inhibitory effect of osmophi...

  19. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

  20. Meltability and Stretchability of White Brined Cheese: Effect of Emulsifier Salts

    OpenAIRE

    Khaled Abu-Alruz; Ayman S. Mazahreh; Ali F. Al-Shawabkeh; Amer A. Omari; Jihad M. Quasem

    2009-01-01

    Problem statement: This study was based on the hypothesis that by adding low concentrations of emulsifier salts, may specifically act on the cross linking bonds of the protein matrix, to the original brine (storage medium) it would be possible to induce meltability and stretchability in white brined cheese. Approach: A new apparatus for measuring the actual stretchability was designed and constructed; measurements on different cheese samples proved its validity and reliability to measure stre...

  1. CONTACT ANGLE OF YUCCA MOUNTAIN WELDED TUFF WITH WATER AND BRINES

    International Nuclear Information System (INIS)

    H. Kalia

    2006-01-01

    A number of tests were performed to acquire contact angles between Yucca Mountain welded tuff from Topopah Springs Lower Lithophysal geologic unit and various brine solutions. The tests were performed on core disks received from Sample Management Facility (SMF), oven dried to a constant weight and the core disks vacuum saturated in: distilled water, J-13 water, calcium chloride brine and sodium chloride brine to constant weight. The contact angles were acquired from eight points on the surface of the core disks, four on rough surface, and four on polished surface. The contact angle was measured by placing a droplet of the test fluid, distilled water, J-13 water, calcium chloride brine and sodium chloride brine on the core disks. The objective of this test was to acquire contact angles as a potential input to estimating capillary forces in accumulated dust on the waste packages and drip shields slated for the proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada. It was noted that once the droplet contacts the test surface, it continues to spread hence the contact angle continues to decrease with elapsed time. The maximum observed angle was at time 0 or when the drop contacted the rock surface. The measured contact angle, in all cases has significant scatter. In general, the time zero contact angles for core disks saturated in sodium chloride brine were smaller than those saturated in calcium chloride brine, distilled water, and J-13 water. The contact angles for samples saturated in distilled water, J-13 water and calcium chloride brine at time zero were similar. There was slight difference between the observed contact angles for smooth and rough surface of the test samples. The contact angles for smooth surfaces were smaller than for the rough surfaces

  2. The analysis of the differences between the results of the thermal response test and the data from the operation of the brine-to-water heat pump’s vertical exchanger

    Directory of Open Access Journals (Sweden)

    Fidorów-Kaprawy Natalia

    2017-01-01

    Full Text Available The article discusses the principles and the problems of obtaining an accurate data input for the design of brine-to-water heat pump’s vertical exchangers. Currently, the most accurate method is the thermal response test (TRT. Unfortunately, the test procedure has its limitations and the quality of the results depends on many factors that cannot be fully controlled during the test. As an illustration of the problems, the results of the TRT were presented. The test was executed on the vertical boreholes (one actively regenerated and one not actively regenerated during the summer which are parts of the operating heat pump system. The test results were compared to the data from the device’s operation, in particular with the measurements of the undisturbed ground temperature profiles and the actual unit energy gains from the boreholes. The level of difference between the results of the test and the data from the operation of the boreholes under the real load and the threats concerning the boreholes overload were shown. Additionally the performance differences between the actively regenerated and not actively regenerated boreholes have been emphasised.

  3. Nuclear waste repository simulation experiments (brine migration), Asse Mine of the Federal Republic of Germany: Quarterly brine migration data report, October--December 1985

    International Nuclear Information System (INIS)

    Eckert, J.L.; Kalia, H.N.; Coyle, A.J.

    1988-03-01

    The tenth brine migration data report describes experiments simulating a nuclear waste repository at the 800-m (2624-ft) level of the Asse Salt Mine in the Federal Republic of Germany from May 1983 through December 1985. This report describes the test equipment, the Asse Salt Mine, and the pretest properties of the salt in the test gallery. This report includes test data for 31 months of operations on brine migration rates, borehole pressure, salt temperatures and thermomechanical behavior of the salt. 3 refs., 118 figs., 93 tabs

  4. Quarterly brine migration data report, May-September 1983: Nuclear Waste Repository simulation experiments (brine migration), Asse Mine of the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Coyle, A.J.; Kalia, H.N.; Eckert, J.L.

    1987-04-01

    The first quarterly brine migration data report describes experiments simulating a nuclear waste repository at the 800-m (2624-ft) level of the Asse Salt Mine in the Federal Republic of Germany from May 1983 through September 1983. This report describes the test equipment, the Asse Salt Mine, and the pretest properties of the salt in the test gallery. This report also includes test data for the first 4 months of operations on brine migration rates, borehole pressure, salt temperatures, and thermomechanical behavior of the salt. The duration of the experiments will be approximately 2 years, ending in December 1985. 83 figs., 55 tabs

  5. Facies heterogeneity and brine-disposal potential of miocene barrier-island, fluvial, and deltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, W.A.

    1990-01-01

    Large volumes of brine must be produced from watered out, geopressured gas reservoirs in the Gulf Coast to recover remaining gas in solution. Secondary-gas recovery in an upper Frio (Oligocene) reservoir in Northeast Hitchcock and Alta Loma fields in Galveston County, Texas, requires the disposal of approximately 20,000 barrels of brine per day into several disposal wells. Lower and middle Miocene barrier-island sands in these fields contain reservoir volumes sufficient for brine disposal at rates of more than 5,000 barrels per well per day for 10 years or more. These sands are continuous and homogeneous and have permeabilities in excess of 2,000 millidarcys. Optimal areas for brine disposal are where new wells contact several of these sands. In contrast, there are fewer well sites for brine disposal in upper Miocene fluvial and deltaic sands in Northeast Hitchcock and Alta Loma fields because these sands are heterogeneous and discontinuous. This book provides core data and net-sand and log-facies maps of several Miocene sands and evaluates sites in these fields for cost-efficient disposal of large volumes of brine.

  6. Dynamics of subcritical CO/sub 2//brine floods for heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, G.; Faroug, S.M.

    1985-03-01

    Immiscible carbon dioxide flooding is an important, field-proven heavy oil recovery method, particularly suited for thin, marginal, or otherwise poor heavy oil reservoirs, where thermal recovery processes are likely to be uneconomical. This paper describes dynamics of this recovery technique, based upon experiments conducted in a scaled model. The experiments represent a medium heavy oil (1032 mPa.s at 23/sup 0/ C) occurring in a shallow, thin sand. Carbon dioxide was injected at subcritical conditions (5.5 MPa, 21-23/sup 0/ C), together with brine. The scaled experiment results showed that oil recoveries at CO/sub 2/ and brine breakthroughs were ratedependent. While recovery at CO/sub 2/ breakthrough decreased with increasing rate, recovery at brine breakthrough increased. Reduction of interfacial tension between brine and oil, leading to the formation of brine-in-oil emulsions, was found to be an additional effective mechanism of heavy oil recovery by CO/sub 2//brine injection.

  7. Surface Complexation Modeling of Calcite Zeta Potential Measurement in Mixed Brines for Carbonate Wettability Characterization

    Science.gov (United States)

    Song, J.; Zeng, Y.; Biswal, S. L.; Hirasaki, G. J.

    2017-12-01

    We presents zeta potential measurements and surface complexation modeling (SCM) of synthetic calcite in various conditions. The systematic zeta potential measurement and the proposed SCM provide insight into the role of four potential determining cations (Mg2+, SO42- , Ca2+ and CO32-) and CO2 partial pressure in calcite surface charge formation and facilitate the revealing of calcite wettability alteration induced by brines with designed ionic composition ("smart water"). Brines with varying potential determining ions (PDI) concentration in two different CO2 partial pressure (PCO2) are investigated in experiments. Then, a double layer SCM is developed to model the zeta potential measurements. Moreover, we propose a definition for contribution of charged surface species and quantitatively analyze the variation of charged species contribution when changing brine composition. After showing our model can accurately predict calcite zeta potential in brines containing mixed PDIs, we apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential applications in carbonate enhanced oil recovery including miscible CO2 flooding and CO2 sequestration in carbonate reservoirs. Model prediction reveals that pure calcite surface will be positively charged in all investigated brines in pressurized CO2 environment (>1atm). Moreover, the sensitivity of calcite zeta potential to CO2 partial pressure in the various brine is found to be in the sequence of Na2CO3 > Na2SO4 > NaCl > MgCl2 > CaCl2 (Ionic strength=0.1M).

  8. Water Recovery from Brines to Further Close the Water Recovery Loop in Human Spaceflight

    Science.gov (United States)

    Jackson, W. Andrew; Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin E.; Hanford, Anthony J.; Shull, Sarah A.; Carter, D. Layne

    2014-01-01

    Further closure of water recovery systems will be necessary for future long duration human exploration missions. NASA's Space Technology Roadmap for Human Health, Life Support and Habitation Systems specified a milestone to advance water management technologies during the 2015 to 2019 timeframe to achieve 98% H2O recovery from a mixed wastewater stream containing condensate, urine, hygiene, laundry, and water derived from waste. This goal can only be achieved by either reducing the amount of brines produced by a water recovery system or by recovering water from wastewater brines. NASA convened a Technical Interchange Meeting (TIM) on the topic of Water Recovery from Brines (WRB) that was held on January14-15th, 2014 at Johnson Space Center. Objectives of the TIM were to review systems and architectures that are sources of brines and the composition of brines they produce, review the state of the art in NASA technology development and perspectives from other industries, capture the challenges and difficulties in developing brine processing hardware, identify key figures of merit and requirements to focus technology development and evaluate candidate technologies, and identify other critical issues including microgravity sensitivity, and concepts of operation, safety. This paper represents an initial summary of findings from the workshop.

  9. Recovery of energy from geothermal brine and other hot water sources

    Science.gov (United States)

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  10. CO2 Mineralization Using Brine Discharged from a Seawater Desalination Plant

    Directory of Open Access Journals (Sweden)

    Jun-Hwan Bang

    2017-10-01

    Full Text Available CO2 mineralization is a method of sequestering CO2 in the form of carbonated minerals. Brine discharged from seawater desalination is a potential source of Mg and Ca, which can precipitate CO2 as forms of their carbonate minerals. The concentration of Mg and Ca in brine are twice those in the seawater influent to desalination process. This study used a cycle for CO2 mineralization that involves an increase in the pH of the brine, followed by CO2 bubbling, and, finally, filtration. To the best of our knowledge, this is the first time that non-synthesized brine from a seawater desalination plant has been used for CO2 mineralization. The resulting precipitates were CaCO3 (calcite, Mg5(CO34(OH2·4H2O (hydromagnesite, and NaCl (halite with these materials being identified by X-ray Diffraction (XRD, Fourier transform infrared (FTIR and thermo gravimetric-differentail thermal Analysis (TGA-DTA. Despite the presence of Ca with Mg in brine being unfavorable for the precipitation of Mg carbonate, Mg reacted with CO2 to form hydromagnesite at a yield of 86%. Most of the Ca formed calcite, at 99% yield. This study empirically demonstrates that brine from seawater desalination plants can be used for CO2 mineralization.

  11. A review of degradation modes of low carbon steel in brine environments

    International Nuclear Information System (INIS)

    Natalie, C.A.

    1987-01-01

    A literature search was conducted to review information on degradation modes of low carbon steel in brine solutions. A computer search was used to obtain articles from 1970 to present while a manual search was conducted for articles published prior to 1970. The published articles and reports indicated that uniform corrosion occurred in sea water, geothermal brines and simulated repository brines. The uniform corrosion rate increased with decreasing pH, increasing oxygen contest of brine and increasing temperature. Pitting of low carbon steel in brine solutions was related to scale formation due to presences of sulfur and heavy metal ions or mill scale present prior to exposure. Low carbon steel did not appear to be susceptible to stress corrosion cracking, but data was limited. The presence of anaerobic bacteria greatly increased the rate of corrosion of low carbon steel as compared to sterile conditions. If sufficient hydrogen is present, low carbon steel could fail due to hydrogen embrittlement in brine solutions. However, this is an area where experimental work needs to be done under more specific conditions related to salt repositories. Corrosion fatigue and stray current corrosion require specific conditions to occur which can be avoided during waste storage and were there fore not addressed. Also, galvanic effects were not addressed as it will be possible to minimize galvanic effects by design. 226 refs., 4 tabs

  12. Concentrated Brine Treatment using New Energy in Coal Mine Evaporation Ponds

    Science.gov (United States)

    Li, Ting; Li, Jingfeng

    2017-12-01

    Recently, more and more coal mine water is being advanced treated and reused in China. The concentrated brine that results from advanced treatment methods can only be evaporated in an evaporation pond. Because of limited treatment capabilities and winter freezing, evaporation ponds often overflow, causing environment contamination. In this paper, based on analysis of brine water quality and economic-technical feasibility, we present a suitable treatment method for brine in evaporation ponds as electrodialysis using solar energy. In addition, we propose a new system to treat brine in coal mine evaporation ponds, which is powered by solar and wind. The operating efficiency of this treatment system proposed in this paper can meet the concentrated brine treatment demands in most coal mines in western mining areas of China and it places the photovoltaic power generation plates on the surface of the evaporation pond on a fixed floating island, which reduces any risk associated with land acquisition. This system can enhance brine treatment efficiency, requires a reduced evaporation pond area, increases the utilization of coal mine water, and minimizes the risk of environment contamination.

  13. Acid-base treated vermiculite as high performance adsorbent: Insights into the mechanism of cationic dyes adsorption, regeneration, recyclability and stability studies.

    Science.gov (United States)

    Stawiński, Wojciech; Węgrzyn, Agnieszka; Dańko, Tomasz; Freitas, Olga; Figueiredo, Sónia; Chmielarz, Lucjan

    2017-04-01

    Additional treatment with NaOH of acid activated vermiculite results in even higher increase in the adsorption capacity in comparison to samples modified only in acidic solution (first step of activation) with respect to raw material. Optimization of treatment conditions and adsorption capacity for two cationic dyes (methylene blue (MB) and astrazon red (AR)), also as binary mixture, was evaluated. The capacity, based on column studies, increased from 48 ± 2 to 203 ± 4 mg g -1 in the case of methylene blue and from 51 ± 1 to 127 ± 2 mg g -1 in the case of astrazon red on starting and acid-base treated material, respectively. It was shown that adsorption mechanism changes for both cationic dyes after NaOH treatment and it results in decrease of adsorption rate. In binary mixtures methylene blue is bound stronger by adsorbent and astrazon red may be removed in initial stage of adsorption. Extensive studies on desorption/regeneration process proved high efficiency in recyclable use of all materials. Although cation exchange capacity decreases due to acid treatment, after base treatment exchange properties are used more efficiently. On the other hand, increased specific surface area has less significant contribution into the adsorption potential of studied materials. Obtained adsorbents worked efficiently in 7 adsorption-regeneration cycles and loss of adsorption capacity was observed only in two first cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Origin and Evolution of Li-rich Brines at Clayton Valley, Nevada, USA

    Science.gov (United States)

    Munk, L. A.; Bradley, D. C.; Hynek, S. A.; Chamberlain, C. P.

    2011-12-01

    Lithium is the key component in Li-ion batteries which are the primary energy storage for electric/hybrid cars and most electronics. Lithium is also an element of major importance on a global scale because of interest in increasing reliance on alternative energy sources. Lithium brines and pegmatites are the primary and secondary sources, respectively of all produced Li. The only Li-brine in the USA that is currently in production exists in Clayton Valley, NV. The groundwater brines at Clayton Valley are located in a closed basin with an average evaporation rate of 142 cm/yr. The brines are pumped from six aquifer units that are composed of varying amounts of volcanic ash, gravel, salt, tufa, and fine-grained sediments. Samples collected include spring water, fresh groundwater, groundwater brine, and meteoric water (snow). The brines are classified as Na-Cl waters and the springs and fresh groundwater have a mixed composition and are more dilute than the brines. The Li content of the waters in Clayton Valley ranges from less than 1 μg/L (snow) up to 406.9 mg/L in the lower ash aquifer system (one of six aquifers in the basin). The cold springs surrounding Clayton Valley have Li concentrations of about 1 mg/L. A hot spring located just east of Clayton Valley contains 1.6 mg/L Li. The Li concentration of the fresh groundwater is less than 1 mg/L. Hot groundwater collected in the basin contain 30-40 mg/L Li. Water collected from a geothermal drilling north of Silver Peak, NV, had water with 4.9 mg/L Li at a depth of >1000m. The δD and δ18O isotopic signatures of fresh groundwater and brine form an evaporation path that extends from the global meteoric water line toward the brine from the salt aquifer system (the most isotopically enriched brine with ave. δD = -3.5, ave. δ18O = -67.0). This suggests that mixing of inflow water with the salt aquifer brine could have played an important role in the evolution of the brines. Along with mixing, evaporation appears to

  15. Actinide Biocolloid Formation in Brine by Halophilic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.V.; Papenguth, H.W.

    1999-07-28

    We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  16. Effect of electroosmotic flow on brine imbibition in porous media

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2009-03-01

    Full Text Available Based on Darcy's Law and the Helmholta-Smoluchowski equation, an imbibition velocity formula for the water phase with an electric field was deduced, showing that the imbibition velocity with an electric field is to various extents not only related to the rock permeability and characteristic length, the fluid viscosity, the oil-water interface tension and the gravity of the imbibing brine, but also to the fluid dielectric permittivity, zeta potential, applied electric field direction, and strength. Imbibition experiments with electric fields that are different in direction and strength were conducted, showing that application of a positive electric field enhances the imbibition velocity and increases the imbibition recovery ratio, while application of a negative electric field reduces the imbibition velocity and decreases the imbibition recovery ratio. The imbibition recovery ratio with a positive electric field increases with the strength of the electric field, and the imbibition recovery ratio with a negative electric field is lower than that without an electric field.

  17. Model for the origin of carboxylic acids in basinal brines

    Science.gov (United States)

    Seewald, Jeffrey S.

    2001-11-01

    Carboxylic acids are ubiquitous in basinal brines from petroleum-producing sedimentary basins. Although the absolute concentrations of individual short-chain acids vary systematically over many orders of magnitude, relative abundances are characterized by approximately constant ratios. Laboratory experiments have demonstrated that oxidation of aqueous n-alkanes proceeds through a sequence of reactions involving alkene, alcohol, ketone, and carboxylic acid reaction intermediaries. The highly specific nature of these reactions allows the relative distribution of carboxylic acids produced during oxidation of n-alkanes to be predicted quantitatively as a function of petroleum composition. A model based on the results of laboratory experiments was developed to account for the thermogenic production of aqueous carboxylic acids in sedimentary basins. Model predictions are highly consistent with the distribution of carboxylic acids observed in nature. This result suggests that hydrocarbon oxidation reactions may be pervasive during petroleum maturation in sedimentary basins. Likely oxidizing agents include ferric iron-bearing aluminosilicates, oxides, and hydroxides, pyrite, sulfate-bearing minerals, and water. Such chemical interactions allow inorganic sedimentary components to act as sources of oxygen for the formation of oxygenated organic alteration products. Accordingly, the absolute amount and timing of carboxylic acid generation may not be limited by the compositional evolution of kerogen, as suggested by previous models.

  18. Brine shrimp lethality bioassay of selected gymnosperm and angiosperm species

    Directory of Open Access Journals (Sweden)

    Janaćković Peđa T.

    2016-01-01

    Full Text Available Methanol extracts of selected species of flowering plants Anthemis cotula, A. ruthenica, Centaurea dubia (Asteraceae, Ajuga genevensis, A. chamaepitys, A. reptans, Micromeria albanica, M. cristata, M. dalmatica, M. juliana, Thymus tosevii (Lamiaceae and conifers - Abies alba, Picea omorika, Pinus heldreichii (Pinaceae and Taxus baccata (Taxaceae, as well as diethyl ether extracts of ten species Anthemis cotula, A. ruthenica, Centaurea dubia, Ajuga genevensis, A. chamaepitys, A. reptans, Micromeria albanica, M. cristata, M. dalmatica and M. juliana from two flowering plant families (Asteraceae and Lamiaceae were tested for general bioactivity using brine shrimp (Artemia salina lethality test. Lethal concentration (LC50 and 95% confidence intervals were determined by computer program LdP line. Out of fifteen tested methanol extracts, three possessed cytotoxic effect. Taxus baccata methanol extract showed the highest effect (LC50 = 18.60 μg/ml, while Thymus tosevii methanol extract expressed the lowest (LC50 = 842.50 μg/ml. All other analyzed species did not express significant cytotoxicity. Also, diethyl ether extracts of all tested species did not show significant cytotoxicity. The obtained results for methanol extracts which show certain cytotoxic effect could be guide for further phytochemical and pharmacological investigations. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 173029

  19. Electrochemical Ion-Exchange Regeneration and Fluidized Bed Crystallization for Zero-Liquid-Discharge Water Softening.

    Science.gov (United States)

    Chen, Yingying; Davis, Jake R; Nguyen, Chi H; Baygents, James C; Farrell, James

    2016-06-07

    This research investigated the use of an electrochemical system for regenerating ion-exchange media and for promoting the crystallization of hardness minerals in a fluidized bed crystallization reactor (FBCR). The closed-loop process eliminates the creation of waste brine solutions that are normally produced when regenerating ion-exchange media. A bipolar membrane electrodialysis stack was used to generate acids and bases from 100 mM salt solutions. The acid was used to regenerate weak acid cation (WAC) ion-exchange media used for water softening. The base solutions were used to absorb CO2 gas and to provide a source of alkalinity for removing noncarbonate hardness by WAC media operated in H(+) form. The base solutions were also used to promote the crystallization of CaCO3 and Mg(OH)2 in a FBCR. The overall process removes hardness ions from the water being softened and replaces them with H(+) ions, slightly decreasing the pH value of the softened water. The current utilization efficiency for acid and base production was ∼75% over the operational range of interest, and the energy costs for producing acids and bases were an order of magnitude lower than the costs for purchasing acid and base in bulk quantities. Ion balances indicate that the closed-loop system will accumulate SO4(2-), Cl(-), and alkali metal ions. Acid and base balances indicate that for a typical water, small amounts of base will be accumulated.

  20. Desalination Technology Waste Streams: Impact of pH and Brine on Bacterial Metabolism Among Natural Marine Assemblages

    Science.gov (United States)

    2008-09-10

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--08-9138 Desalination Technology Waste Streams: Impact of pH and Brine on Bacterial...31 I)ecember 2(X)8 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 61-5557-M65 Desalination Technology Waste Streams: Impact of pI4 and Brine on...AND BRINE ON BACTERIAL METABOLISM AMONG NATURAL MARINE ASSEMBLAGES ABSTRACT Hydrate formation-based techniques have been proposed as desalination