WorldWideScience

Sample records for cation exchange separation

  1. Cation-exchange separation of uranium in dimethylsulphoxide medium.

    Science.gov (United States)

    Janauer, G E; Korkisch, J; Hubbard, S A

    1971-08-01

    Cation-exchange chromatography in a dimethylsulphoxide (DMSO) medium is a suitable means for separating uranium from metal ions, including copper, iron, nickel and molybdenum. Quantitative separations of uranium from 26 elements can best be effected on a column of Dowex 50W-X8 (200-400 mesh), using as the eluent a 20% v/v DMSO solution which is 0.6Min hydrochloric acid and 0.25M in sodium acetate. Only calcium is eluted with the uranium and all other elements studied are eluted either before or after uranium. The elution characteristics of uranium and of other metal ions were investigated with respect to changes in eluent and resin compositions. Separations were much less effective at higher concentrations of sodium ion or DMSO. None of the organic solvents methanol, ethanol, methyl glycol, acetone, dioxan or acetic acid was found to produce favourable separation conditions. Results with Dowex 50 resins of lower or higher cross-linkage were inferior to those obtained with the X8 resin. PMID:18960944

  2. Americium and samarium determination in aqueous solutions after separation by cation-exchange

    International Nuclear Information System (INIS)

    The concentration of trivalent americium and samarium in aqueous samples has been determined by means of alpha-radiometry and UV-Vis photometry, respectively, after chemical separation and pre-concentration of the elements by cation-exchange using Chelex-100 resin. Method calibration was performed using americium (241Am) and samarium standard solutions and resulted in a high chemical recovery for cation-exchange. Regarding, the effect of physicochemical parameters (e.g. pH, salinity, competitive cations and colloidal species) on the separation recovery of the trivalent elements from aqueous solutions by cation-exchange has also been investigated. The investigation was performed to evaluate the applicability of cation-exchange as separation and pre-concentration method prior to the quantitative analysis of trivalent f-elements in water samples, and has shown that the method could be successfully applied to waters with relatively low dissolved solid content. (author)

  3. Separation of Clay Minerals from Host Sediments Using Cation Exchange Resins

    Institute of Scientific and Technical Information of China (English)

    I.S. Ismael; H.M. Baioumy

    2003-01-01

    Classic physical and chemical treatments applied to separating clay minerals from the host sediments are often difficult or aggressive for clay minerals. A technique using cation exchange resins (amberlite IRC-50H and amberlite IR-120) is used to separate clay minerals from the host sediments. The technique is based on the exchange of cations in the minerals that may be associated clay minerals in sediments,such as Ca and Mg from dolomite; Ca from calcite,gypsum and francolite with cations carried by resin radicals. The associated minerals such as gypsum,calcite,dolomite and francolite are removed in descending order. Separation of clay minerals using cation exchange resins is less aggressive than that by other classic treatments.The efficiency of amberlite IRC-50H in the removal of associated minerals is greater than that of amberlite IR-120.

  4. Selective separation of sodium ions from a mixture with phenylalanine by Donnan dialysis with a profiled sulfogroup cation exchange membrane

    Science.gov (United States)

    Vasil'eva, V. I.; Goleva, E. A.

    2013-11-01

    The possibility of separating ions of metal from a mixture with ampholyte (an amino acid) by Donnan dialysis with an MK-40 sulfogroup cation exchange membrane is demonstrated. Conditions ensuring the selectivity and intensity of the mass transfer of sodium ions from a mixture with bipolar phenylalanine ions into a diffusate containing hydrochloric acid through a cation exchange membrane are found.

  5. chromatographic studies for separation of light lanthanides using Dowex-50X8 cation exchanger

    International Nuclear Information System (INIS)

    chromatographic elution of light lanthanides (La, Ce, Nd and Sm) using the strong cation exchange resin, Dowex-50X8 has been investigated through certain elution parameters. elution profiles of La, Ce, Nd and Sm were studied with three different mobile phases: oxalic acid, citric acid and sodium hexameta phosphate. considering % recovered, sodium hexameta phosphate showed the highest values with all investigated elements but it has some disadvantages like tailing, low separation and resolution values that indicating a poor separation pattern and long elution time. on other side citric acid showed many advantages as an eluent over the other eluents, where it has narrow and symmetrical elution peaks compared to those of the other eluents. increasing citric acid concentration , it was observed that the separation factor decreased although the % recovered increased. from ph 3.5-6.5 the retention volumes of the investigated ions decreased drastically, indicating that the separation factor between each neighboring element also decreased . it was also observed that, the distribution coefficient not affected by changing the flow rate from 1 to 10 ml/min. for easy detection and identification , the ion chromatography technique was used.

  6. Separation of proteins by cation-exchange sequential injection chromatography using a polymeric monolithic column.

    Science.gov (United States)

    Masini, Jorge Cesar

    2016-02-01

    Since sequential injection chromatography (SIC) emerged in 2003, it has been used for separation of small molecules in diverse samples, but separations of high molar mass compounds such as proteins have not yet been described. In the present work a poly(glycidyl methacrylate-co-ethylene dimethacrylate) (GMA-co-EDMA) monolithic column was prepared by free radical polymerization inside a 2.1-mm-i.d. activated fused silica-lined stainless steel tubing and modified with iminodiacetic acid (IDA). The column was prepared from a mixture of 24% GMA, 16% EDMA, 20% cyclohexanol, and 40% 1-dodecanol (all% as w/w) containing 1% of azobisisobutyronitrile (AIBN) (in relation to monomers). Polymerization was done at 60 °C for 24 h. The polymer was modified with 1.0 M IDA (in 2 M Na2CO3, pH 10.5) at 80 °C for 16 h. Separation of myoglobin, ribonuclease A, cytochrome C, and lysozyme was achieved at pH 7.0 (20 mM KH2PO4/K2HPO4) using a salt gradient (NaCl). Myoglobin was not retained, and the other proteins were separated by a gradient of NaCl created inside the holding coil (4 m of 0.8-mm-i.d. PTFE tubing) by sequential aspiration of 750 and 700 μL of 0.2 and 0.1 M NaCl, respectively. As the flow was reversed toward the column (5 μL s(-1)) the interdispersion of these solutions created a reproducible gradient which separated the proteins in 10 min, with the following order of retention: ribonuclease A < cytochrome C < lysozyme. The elution order was consistent with a cation-exchange mechanism as the retention increased with the isoelectric points. PMID:26677024

  7. Preparation of decarboxylic-functionalized weak cation exchanger and application for simultaneous separation of alkali, alkaline earth and transition metals.

    Science.gov (United States)

    Peng, Yahui; Gan, Yihui; He, Chengxia; Yang, Bingcheng; Guo, Zhimou; Liang, Xinmiao

    2016-06-01

    A novel weak cation exchanger (WCX) with dicarboxyl groups functionalized has been developed by clicking mercaptosuccinic acid onto silica gel. The simple synthesis starts with modification of silica gel with triethoxyvinylsilane, followed by efficient coupling vinyl-bonded silica with mercaptosuccinic acid via a "thiol-ene" click reaction. The obtained WCX demonstrated good separation and high selectivity towards common metals. Simultaneous separation of 10 alkali, alkaline earth and transition metals was achieved within 12min. Ion exchange and complex mechanism dominates the separation process. Its utility was demonstrated for determination of metals in tap water. PMID:27130093

  8. Development of low cost ceramic separator using mineral cation exchanger to enhance performance of microbial fuel cells

    International Nuclear Information System (INIS)

    This study deals with the development of ceramic separator (CS) made from red soil blended with cation exchanger, Montmorillonite and Kaolinite, for its application in microbial fuel cells (MFCs). The separators were characterized in terms of conductivity, oxygen, acetate and proton diffusion, and ion transport ability. Performance of MFCs using different CS was evaluated under batch mode of operation. MFC M-20 (CS blended with 20% Montmorillonite) exhibited maximum power density of 7.5 W/m3 which was 48% higher than MFC without exchanger (Control) and 30%, 9%, 27% higher than MFC M-10 (10% Montmorillonite), MFC M-15 (15% Montmorillonite), MFC K-20 (20% Kaolinite), respectively. Coulombic efficiency of MFC M-20 (30%) and MFC K-20 (23%) was higher compared to control (18%). Use of cation exchangers improved properties of ceramic separators compared to control. Higher cation exchange capacity (CEC) of Montmorillonite (150 meq/100 g) resulted in 4 fold decrease in charge transfer resistance (3.4 Ω) and 1.8 fold increase in conductivity (5.56 × 10−4 S/cm) of CS as compared to Kaolinite. This study demonstrates that Montmorillonite incorporated CS proved to be suitable alternative to replace costly polymeric membrane to increase power output of MFC at reduced cost

  9. On-line coupling of an ion chromatograph to the ICP-MS: Separations with a cation exchange chromatography column

    Energy Technology Data Exchange (ETDEWEB)

    Roellin, Stefan [Studsvik Nuclear AB, Nykoeping (Sweden)

    1999-12-01

    An ion chromatography system was coupled on-line to the ICP-MS. All separations were made with a cation exchange chromatography column. Fundamental laws about elution parameters affecting individual retention times and elution forms are explained by applying a proper ion exchange mechanism for the isocratic elution (separations with constant eluent concentration) of mono-, di-, tri-, and tetravalent cations and the actinide species MO{sub 2}{sup +} and MO{sub 2}{sup 2+}. A separation method with two eluents has been investigated to separate mono- from divalent ions in order to separate isobaric overlaps of Rb/Sr and Cs/Ba. The ions normally formed by actinides in aqueous solutions in the oxidation states III to VI are M{sup 3+}, M{sup 4+}, MO{sub 2}{sup +} and MO{sub 2}{sup 2+} respectively. Elution parameters were investigated to separate all four actinide species from each other in order to separate isobaric overlaps of the actinides Np, Pu, U and Am. A major question of concern over the possible release of actinides to the environment is the speciation of actinides within their four possible oxidation states. To check the possibility of speciation analysis with ion chromatography, a separation method was investigated to separate U{sup 4+} and UO{sub 2}{sup 2+} without changing the redox species composition during the separation. First results of Pu speciation analysis showed that Pu could be eluted as three different species. Pu(VI) was always eluting at the same time as Np(V). This was surprising as Pu(VI) is expected to have the same chemical characteristics as U(VI) and thus was expected to elute at the same time as U(VI)

  10. Toward Separating Alpha-lactalbumin and Beta-lactoglobulin Proteins from Whey through Cation-exchange Adsorption

    Science.gov (United States)

    El-Sayed, Mayyada; Chase, Howard

    2009-05-01

    This paper describes the cation-exchange adsorption of the two major whey proteins, alpha-lactalbumin (ALA) and beta-lactoglobulin (BLG) with the purpose of establishing a process for isolating them from cow's milk whey. The single- and two-component adsorption of 1.5 mg/ml ALA and 3 mg/ml BLG to the cation-exchanger SP Sepharose FF at 20° C using 0.1 M acetate buffer of pH 3.7 was studied. Langmuir isotherm parameters were determined for the pure proteins. In two-component systems, BLG breakthrough curve exhibited an overshoot phenomenon that gave evidence for the presence of a competitive adsorption between the two proteins. Complete separation occurred and it was possible to obtain each of the two proteins in a pure form. The process was then applied to a whey concentrate mixture where incomplete separation took place. However, BLG was produced with 95% purity and a recovery of 80%, while ALA showed an 84% recovery with low purity.

  11. Simple cation-exchange separation for ICP-MS measurement of 79Se in spent nuclear fuel sample

    International Nuclear Information System (INIS)

    A simple separation using a single cation-exchange column has been developed for the measurement of 79Se in a spent nuclear fuel solution with inductively coupled plasma mass spectrometry (ICP-MS). An irradiated UO2 pellet cut out from a PWR fuel rod was dissolved and used as a standard sample. A known amount of 82Se (20 ng) was added to the sample solution for the determination of the amount of 79Se by isotope dilution mass spectrometry (IDMS). The 82Se-spiked and non-spiked sample solutions were fed to each cation-exchange resin-packed column, followed by 1 M nitric acid for washing. The first 3 mL of the effluent was directly injected to the ICP-MS for obtaining the isotopic ratio of 79Se/82Se. The recovery of Se in the effluent was 92%, while no leakage of Gd3+ (158Gd) and Dy3+ (164Dy) which cause major isobaric interferences on 79Se and 82Se determinations by forming 158Gd2+ and 164Dy2+, respectively, was observed. In addition, the highly radioactive coexisting components e.g., Sr2+, Y3+, Cs+, and Ba2+ were retained on the cation-exchange resin, leading to the decrease in the surface dose rate of the sample solution from 0.3 mSv/h to a background level. The isotopic ratio 82Se/79Se of the non-spiked and the spiked fractions were 5.4 ± 1.0 and 13.7 ± 2.2, respectively. From these isotopic ratios, the amounts of 79Se and 82Se in the sample solution were calculated to be 2.4 ± 0.7 and 13.3 ± 4.6 ng, respectively. (author)

  12. Ion chromatographic separation of inorganic ions using a combination of hydrophilic interaction chromatographic column and cation-exchange resin column

    Institute of Scientific and Technical Information of China (English)

    Kaori ARAI; Masanobu MORI; Takahiro HIRONAGA; Hideyuki ITABASHI; Kazuhiko TANAKA

    2012-01-01

    A combination of hydrophilic interaction chromatographic ( HILIC ) column and a weakly acidic cation-exchange resin (WCX) column was used for simultaneous separation of inorganic anions and cations by ion chromatography ( IC ).Firstly,the capability of HILIC column for the separation of analyte ions was evaluated under acidic eluent conditions.The columns used were SeQuant ZIC-HILIC (ZIC-HILIC) with a sulfobetainezwitterion stationary phase (ZIC-HILIC) and Acclaim HILIC-10 with a diol stationary phase (HILIC-10).When using tartaric acid as the eluent,the HILIC columns indicated strong retentions for anions,based on ion-pair interaction.Especially,HILIC-10 could strongly retain anions compared with ZIC-HILIC. The selectivity for analyte anions of HILIC-10 with 5 mmol/L tartaric acid eluent was in the order of I- > NO3- > Br- > Cl- >H2PO4-.However,since HILIC-10 could not separate analyte cations,a WCX column (TSKgel Super IC-A/C) was connected after the HILIC column in series.The combination column system of HILIC and WCX columns could successfully separate ten ions (Na+,NH4+,K+,Mg2+,Ca2+,H2PO4-,Cl-,Br-,NO3- and I-) with elution of 4 mmol/L tartaric acid plus 8 mmol/L 18-crown-6.The relative standard deviations (RSDs) of analyte ions by the system were in the ranges of 0.02% - 0.05% in retention times and 0.18% - 5.3% in peak areas through three-time successive injections.The limits of detection at signal-to-noise ratio of 3 were 0.24 - 0.30 μmol/L for the cations and 0.31 - 1.2 μmol/L for the anions.This system was applied for the simultaneous determination of the cations and the anions in a vegetable juice sample with satisfactory results.

  13. Chromatographic Column Separation of Rare Earth Elements by Resorcinol Formaldehyde Cationic Exchanger Resin

    International Nuclear Information System (INIS)

    Due to increase use of rare earth elements (REEs) in modern technology in the world over the past years, alternative separation method is essentially requested. Therefore, the main objective of this study is oriented to find efficient process for individual separation of light REEs from each other using resorcinol formaldehyde organic resin. In this investigation different type of eluent namely, oxalic acid, sodium hexameta phosphate and hydrazine have been tested for separation process of REEs. Optimizations of some parameters that affect on separation of REEs such as eluent concentration, flow rate and bed height of column have been performed. The results indicated that, 0.08 M of hydrazine as novel eluent at 1 ml/min is efficient for individual separation of REEs. Thus the improved successfully the separation process that more efficiently recovers the economically valuable REEs. The preliminary investigation has given promising results for lanthanides separation and production using resorcinol formaldehyde resin as stationary phase and hydrazine as novel eluent

  14. Ion exchange behaviour of polymeric zirconium cations

    International Nuclear Information System (INIS)

    Polymeric zirconium cations formed in weakly acid solutions (pH2) are taken up strongly into macroporous cation exchange resins, while uptake into normal cation exchange resins (pore diameter about 1 nm) is low. Macroporous cation exchange resins loaded with polymeric Zr cations are shown to function as ligand exchange sorbents. (Authors)

  15. A cation exchange method for separation of 111In from inactive silver, copper, traces of iron and radioactive gallium and zinc isotopes

    International Nuclear Information System (INIS)

    111In was produced by the 109Ag(α, 2n)111In reaction. A simple radiochemical separation technique, using Dowex-50 cation exchange resin (with prior removal of copper bulk, if present), has been employed to separate radioindium from inactive contaminants like Ag, Cu, Fe and active contaminant like 67Ga and 65Zn. The radiochemical separation yield was 90-99%. The radionuclide purity of 111In was >99% at 60 h after EOB. The level of all the inactive contaminants was <5 μg/mL in the final product. (Author)

  16. Cation exchange separation of 61Cu2+ from natCo targets and preparation of 61Cu-DOTA-HSA as a blood pool agent

    International Nuclear Information System (INIS)

    An improved method for isolation of 61Cu2+ from a natCo target using cation exchange was developed. 61Cu2+ was eluted from a cation exchange resin column by 0.2 M HCl with 90% acetone, while Co2+ remained on the column. The whole separation process was completed within 50 min at more than 72% yield. The Co2+ impurity level in 61Cu2+ solution was reduced to less than 0.1 ppm. Highly pure 61Cu2+ solution was then applied to prepare 61Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-human serum albumin (HSA) which showed good blood pool imaging properties

  17. Organometallic cation-exchanged phyllosilicates

    OpenAIRE

    Fleming, Shay

    1991-01-01

    Organotin (IV) complexes formed between 0 01 M dimethyltin dichloride solutions prepared at pH 2 6 and 4 0, and trimethyltin chloride prepared at pH 3 4, with Na- 119 montmori 1lonite clay have been characterised using Sn Mflssbauer spectroscopy, X-ray diffraction, thermogravimetric analysis and water sorption isotherms Following cation exchange, Mttssbauer spectroscopy identified two tin species in the dimethyltin (IV)-exchanged clay prepared at pH 2 6 A cis specie...

  18. Sequential Determination of Total Arsenic and Cadmium in Concentrated Cadmium Sulphate Solutions by Flow-Through Stripping Chronopotentiometry after Online Cation Exchanger Separation

    Directory of Open Access Journals (Sweden)

    Frantisek Cacho

    2012-01-01

    Full Text Available Flow-through stripping chronopotentiometry with a gold wire electrode was used for the determination of total arsenic and cadmium in cadmium sulphate solutions for cadmium production. The analysis is based on the online separation of arsenic as arsenate anion from cadmium cations by means of a cation exchanger. On measuring arsenate in the effluent, the trapped cadmium is eluted by sodium chloride solution and determined in a small segment of the effluent by making use of the same electrode. The elaborated protocol enables a full automatic measurement of both species in the same sample solution. The accuracy of the results was confirmed by atomic absorption spectrometry. The LOD and LOQ for Arsenic were found to be 0.9 μg dm-3 and 2.7 μg dm-3, respectively. A linear response range was observed in the concentration range of 1 to 300 μg dm-3 for sample volumes of 4 mL. The repeatability and reproducibility were found to be 2.9% and 5.2%, respectively. The linear response range for cadmium was found to be 0.5 to 60 g/L. The method was tested on samples from a cadmium production plant.

  19. Test procedure for cation exchange chromatography

    International Nuclear Information System (INIS)

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction

  20. Liquid-liquid extraction and separation of VIII group elements, especially ruthenium, by synergic combinations or aromatic polyimines and micellar cationic exchangers

    International Nuclear Information System (INIS)

    This thesis aims to characterize and to quantify the chemical equilibria involved in d-elements liquid-liquid extraction systems, especially elements belonging to the VIII group (Fe, Ni, Co, Ru, Rh, Pd, Pt). These systems are composed of synergic combination of aromatic polyimines and micellar cationic exchangers. Substitutions are first performed in aqueous acidic media by aromatic polyimines; then extractions are operated using micellic canionic exchangers. Chemical equilibria, selectivity effects, especially those due to ion-pair formations, kinetics, extractant behaviour are analysed and quantified

  1. Advancements in Anion Exchange Membrane Cations

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Long, Hai [National Renewable Energy Lab. (NREL), Golden, CO (United States); Park, Andrew M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pivovar, Bryan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-15

    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  2. Simultaneous Determination of Anions and Cations in Natural Water by Ion-exclusion/Cation-exchange Chromatography with a Weakly Acidic Cation-exchange Resin Column

    International Nuclear Information System (INIS)

    The simultaneous determination of anions (SO4 2-, Cl-, and NO3 -) and cations (Na+, NH4+, K+, Mg2+, and Ca2+) in natural water obtained by Nakdong River waters system in Korea were performed by ion-exclusion/cation exchange chromatography with conductimetric detection. The stationary phase was a polymethacrylate-based weakly acidic cation-exchange resin column in the H+-form and a weak-acid eluent. When using only a 1.4 mM sulfosalicylic acid/6 mM 18-crown-6 ether as an eluent, good resolution of both anions and cations, minimum time required for the separation, and satisfactory detection sensitivity were obtained in a reasonable time. The method was successfully applied to the simultaneous determination of anions and cations in natural waters

  3. Simultaneous Determination of Anions and Cations in Natural Water by Ion-exclusion/Cation-exchange Chromatography with a Weakly Acidic Cation-exchange Resin Column

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Pill; Choi, Seong Ho; Park, Yu Chul; Bae, Zun Ung; Lee, Mu Sang; Lee, Sang Hak; Chang, Hye Yong [Graduate School, Kyungpook National University, Daegu (Korea, Republic of); Kwon, Se Mok [Ulsan City Health and Environmental Research Institute, Ulsan (Korea, Republic of); Tanaka, Kazuhiko [National Industrial Research Institute of Nagoya, Nagoya (Japan)

    2003-09-15

    The simultaneous determination of anions (SO{sub 4} {sup 2-}, Cl{sup -}, and NO{sub 3} {sup -}) and cations (Na{sup +}, NH{sup 4+}, K{sup +}, Mg{sup 2+}, and Ca{sup 2+}) in natural water obtained by Nakdong River waters system in Korea were performed by ion-exclusion/cation exchange chromatography with conductimetric detection. The stationary phase was a polymethacrylate-based weakly acidic cation-exchange resin column in the H{sup +}-form and a weak-acid eluent. When using only a 1.4 mM sulfosalicylic acid/6 mM 18-crown-6 ether as an eluent, good resolution of both anions and cations, minimum time required for the separation, and satisfactory detection sensitivity were obtained in a reasonable time. The method was successfully applied to the simultaneous determination of anions and cations in natural waters.

  4. Cation-Exchange Equilibria with Fused Salts

    International Nuclear Information System (INIS)

    Solute distributions of alkali metal, alkaline- earth, transition metal, and actinide ions have been studied in fused salt-cation exchanger systems. The fused salts employed were alkali halides and nitrates. The cation exchangers used were natural zeolites, synthetic zeolites, high-porosity glasses, and molten oxide mixtures. The molten exchangers were composed of Na2O and B2O3 in various proportions. The relative quantities not only determined the exchanger capacity and electrolyte penetration but also produced distribution coefficients for a given solute which varied over several orders of magnitude. Moreover, they produced marked reversals in the selectivity series. Additional studies on the anion distributions, miscibility diagrams, vapour pressures and diffusion rates in these systems have elucidated the mechanisms involved and the relation of selectivity to solute properties, system thermodynamics, exchanger structure and available functional groups. In the region of high Na2O composition, the distribution coefficients for mono-, di- and trivalent cations in NaCl have not only the same order of selectivity found in Dowex 50-HCl systems but also similar values for the distribution coefficients. The results are summarized qualitatively and compared to behaviour in aqueous systems (Table VII). (author)

  5. Synthesis and characterization of a new cation exchanger-zirconium(IV)iodotungstate: Separation and determination of metal ion contents of synthetic mixtures, pharmaceutical preparations and standard reference material

    International Nuclear Information System (INIS)

    Samples of zirconium(IV)iodotungstate have been synthesized under varying mixing order and ratios of aqueous solution of potassium iodate, sodium tungstate and zirconium oxychloride at pH 1. A tentative formula was proposed on the basis of chemical composition, FTIR and thermogravimetric studies. The material shows a capacity of 0.68 meq g-1 (for K+) which can be retained up to 200 deg. C. pH titration data reveal its monofunctional behavior. The distribution coefficient values of metal ions have been determined in various solvent systems. A number of important and analytically difficult quantitative separations of metal ions have been achieved using columns packed with this exchanger. In order to demonstrate practical utility of this material, Hg2+ and Pb2+ have been selectively separated and determined in the synthetic mixtures. Assay of Al3+ and Mg2+ in commercial tablets and analysis of lead in the standard reference material have also been attempted.

  6. Cobalt 60 cation exchange with mexican clays

    International Nuclear Information System (INIS)

    Mexican clays can be used to remove radioactive elements from contaminated aqueous solutions. Cation exchange experiments were performed with 60 Co radioactive solution. In the present work the effect of contact time on the sorption of Co 2+ was studied. The contact time in hydrated montmorillonite was from 5 to 120 minutes and in dehydrated montmorillonite 5 to 1400 minutes. The Co 2+ uptake value was, in hydrated montmorillonite, between 0.3 to 0.85 m eq/g and in dehydrated montmorillonite, between 0.6 to 1.40 m eq/g. The experiments were done in a pH 5.1 to 5.7 and normal conditions. XRD patterns were used to characterize the samples. The crystallinity was determined by X-ray Diffraction and it was maintained before and after the cation exchange. DTA thermo grams showed the temperatures of the lost humidity and crystallization water. Finally, was observed that dehydrated montmorillonite adsorb more cobalt than hydrated montmorillonite. (Author)

  7. Ion exchange separation for decontamination of centrifuge enrichment plant

    International Nuclear Information System (INIS)

    Ion exchange separation of uranyl ion (UO22+) from metal cations has been carried out by the columnar operation using ion exchange resins in 0.1 mol/dm3 sulfuric acid medium. Uranyl ion was adsorbed in an anion exchange resin and the rest metal cations, Fe(III), Al(III), Cr(III), Ni(II) and Cu(II) ions, were adsorbed in a cation exchange resin in this system. Desorption of uranyl ion and metal cations adsorbed in the resins were tested by 2 mol/dm3 sulfuric acid solution. Desorbed elements were confirmed to be precipitated by appropriate alkaline solutions. On the basis of the results obtained, a concept was made on a decontamination system for uranium-contaminated waste solution from centrifuge enrichment plant. (author)

  8. A comparison between three methods for the determination of cation exchange capacity and exchangeable cations in soils

    OpenAIRE

    Ciesielski, H.; Sterckeman, T.

    1997-01-01

    The object of this study is to compare the results obtained with three standardized methods of determination of cationic exchange capacity (CEC) and exchangeable cations (Ca, Mg, K) in soils. The three methods are based on different exchange reagents: cobalt hexamine (Cohex) trichloride, barium chloride and ammonium acetate. Exchange procedures are different as well; they are, respectively, single extraction, successive extractions and percolation. Values measured with barium and Cohex as ind...

  9. Ligand-exchange chromatographic separation of polycyclic aromatic hydrocarbons and polycyclic aromatic sulfur heterocycles on a chelating silica gel loaded with palladium (II) or silver (I) cations

    Energy Technology Data Exchange (ETDEWEB)

    Pyell, U.; Schober, S.; Stork, G. [Fachbereich Chemie der Philipps-Universitaet Marburg (Germany)

    1997-12-01

    2-Amino-1-cyclopentene-1-dithiocarboxylic acid silica gel (ACDA-SG) loaded with Ag(I) or Pd(II) ions has been examined for the group fractionation of polycyclic aromatic sulfur heterocycles (PASH) from polycyclic aromatic hydrocarbons (PAH) via ligand-exchange chromatography in the normal phase mode. It is shown that metal loading has a great impact on the selectivity of ACDA-SG for PASH and PAH. Pd(II) loaded ACDA-SG proved to be suitable for the group isolation of PASH from the aromatic fractions of petroleum mixtures (number of condensed rings{<=}3). (orig.) With 3 figs., 2 tabs., 14 refs.

  10. Isotope separation by chemical exchange

    International Nuclear Information System (INIS)

    Nitrogen-15 and oxygen-18 enrichment by chemical exchange in the (NO/NO2) - (H2O/HNO3) system, using a laboratory-scale experimental plant and a cascade for production of two isotopes, is presented. The results obtained from the laboratory-scale plant indicate that optimal flow rate for 15N separation is 1.55 - 1.86 ml/cm2 · min at 8 - 10 M/l nitric acid and 63.4 mg at. oxygen/cm2 · min for 18O separation at 5.8 M/l nitric acid. The height equivalent to a theoretical plate (HETP) of 4.11 - 4.56 cm is in good agreement with other published data for 15N separation using exchange column with Helipak packing. The HETP of 7.74 - 10.58 cm for 18O separation is greater by 20 - 30 % than those presented by Saxena and Taylor for 'Helipak' column packing, but in good agreement with the HRTP published by Borisov et al. on 'Levina' column packing. The HETP obtained for 15N separation by the production plant is in the range 11.5 - 13.8 cm at a flow rate of 2.2 ml HNO3(10M/l)/cm2 · min for the first column and 4.4 - 4.7 cm at a flow rate of 1.66 ml HNO3(10M/l)/cm2 · min for the second column. The optimal flow rate for 18O separation by the production plant is about 63 mg at. oxygen/cm2 · min (1.01 ml HNO3/cm2 · min). Enrichment of 13C and 18O by chemical exchange of carbon dioxide with its monoethanolamine carbamate in methanol and di-n-butylamine carbamate in triethylamine has also been studied, and optimum operating conditions for the separation of 13C in a packed column was determined. The HETP obtained for the 13C in a packed column was determined. The HETP obtained for the 13C separation column is 3.62 - 8.26 cm at a flow rate of 1.1 - 4.0 mmol carbamate/cm2 · min using the same column packing as for 15N and 18O separation, that is, stainless steel triangular wire springs (2.3 x 2.3 x 0.2 mm). (author)

  11. Modeling cation exchange using EQ3/6

    International Nuclear Information System (INIS)

    Geochemical modeling codes must be able to predict solid-solution and ion-exchange behavior of zeolites and smectites in order to design and assess strategies for containing and cleaning up toxic and/or radioactive wastes. Cation-exchange and solid-solution models have been implemented in the EQ3/6 geochemical modeling package and used to predict the composition of clinoptilolite under a variety of conditions. Published free energies of cation exchange on clinoptilolite at 25 degrees C were combined with the calorimetric data for clinoptilolite to derive free energies of formation of the component end members of a solid solution in which mixing is allowed only on the exchange site. The solid-solution model and component end-member data were incorporated into EQ3/6 and its data base. An option to treat cation exchange independently of the solid-solution model was also developed and implemented in EQ3/6. This option allows the user to model mixed-phase exchangers, multisite exchangers, and systems in which the exchanger is not in overall equilibrium with the solution. Two open-quotes idealclose quotes cation-exchange conventions [Vanselow (mole fraction) and Gapon (equivalent fraction)] are currently implemented in the code. A description of the cation-exchange models and their implementation into EQ3/6 is presented, and the relationship between the exchange formalisms and the solid-solution models is discussed. The advantages and limitations of the models and currently available thermodynamic data are addressed by comparing cation-exchange compositions of clinoptilolites with (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; and (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff

  12. Microscopic Theory of Cation Exchange in CdSe Nanocrystals

    OpenAIRE

    Ott, Florian D.; Spiegel, Leo L.; Norris, David J.; Erwin, Steven C.

    2014-01-01

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We used density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key...

  13. Determination of boron in silicates after ion exchange separation

    Science.gov (United States)

    Kramer, H.

    1955-01-01

    Existing methods for the determination of boron in silicates are not entirely satisfactory. Separation as the methyl ester is lengthy and frequently erratic. An accurate and rapid method applicable to glass, mineral, ore, and water samples uses ion exchange to remove interfering cations, and boron is determined titrimetrically in the presence of mannitol, using a pH meter to indicate the end point.

  14. PEMFC contamination model: Foreign cation exchange with ionomer protons

    Science.gov (United States)

    St-Pierre, Jean

    2011-08-01

    A generic, transient fuel cell ohmic loss mathematical model was developed for the case of contaminants that ion exchange with ionomer protons. The model was derived using step changes in contaminant concentration, constant operating conditions and foreign cation transport via liquid water droplets. In addition, the effect of ionomer cations redistribution within the ionomer on thermodynamic, kinetic and mass transport losses and migration were neglected. Thus, a simpler, ideal, ohmic loss case is defined and is applicable to uncharged contaminant species and gas phase contaminants. The closed form solutions were validated using contamination data from a membrane exposed to NH3. The model needs to be validated against contamination and recovery data sets including an NH4+ contaminated membrane exposed to a water stream. A method is proposed to determine model parameters and relies on the prior knowledge of the initial ionomer resistivity. The model expands the number of previously derived cases. Most models in this inventory, derived with the assumption that the reactant is absent, lead to different dimensionless current vs. time behaviors similar to a fingerprint. These model characteristics facilitate contaminant mechanism identification. Separation between membrane and catalyst (electroinactive contaminant) contamination is conceivably possible using additional indicative cell resistance measurements. Contamination is predicted to be significantly more severe under low relative humidity conditions.

  15. Iridium containing honeycomb Delafossites by topotactic cation exchange.

    Science.gov (United States)

    Roudebush, John H; Ross, K A; Cava, R J

    2016-06-01

    We report the structure and magnetic properties of two new iridium-based honeycomb Delafossite compounds, Cu3NaIr2O6 and Cu3LiIr2O6, formed by a topotactic cation exchange reaction. The starting materials Na2IrO3 and Li2IrO3, which are based on layers of IrO6 octahedra in a honeycomb lattice separated by layers of alkali ions, are transformed to the title compounds by a topotactic exchange reaction through heating with CuCl below 450 °C; higher temperature reactions cause decomposition. The new compounds display dramatically different magnetic behavior from their parent compounds - Cu3NaIr2O6 has a ferromagnetic like magnetic transition at 10 K, while Cu3LiIr2O6 retains the antiferromagnetic transition temperature of its parent compound but displays significantly stronger dominance of antiferromagnetic coupling between spins. These results reveal that a surprising difference in the magnetic interactions between the magnetic Ir ions has been induced by a change in the non-magnetic interlayer species. A combination of neutron and X-ray powder diffraction is used for the structure refinement of Cu3NaIr2O6 and both compounds are compared to their parent materials. PMID:27147423

  16. Synthetic crystalline calcium silicate hydrate (I): cation exchange and caesium selectivity

    International Nuclear Information System (INIS)

    Solid crystalline calcium silicate hydrate (I) synthesized from equimolar amounts of Ca and Si under hydrothermal conditions at 120 oC shows cation exchange properties towards divalent metal cations such as Ni, Cu, Cd, or Hg. It also exhibits caesium selectivity in the presence of Na+. The exchange capacity and selectivity of the solid can be increased by 10 and 28 %, respectively, upon substitution of 0.01 mol of the Ca2+ in its structure by Na+. The ability of metal cation uptake by the solid was found to obey the order Ni2+ > Hg2+ > Cu2+ > Cd2+. The different affinities of calcium silicate hydrate (I) towards these ions can be used for their separation from solutions and also in nuclear waste treatment. The mechanism of the exchange reaction is discussed. (author)

  17. Ligand Exchange Processes on Solvated Lithium Cations

    OpenAIRE

    Pasgreta, Ewa Maria

    2007-01-01

    In this work the solvation process of Li+ ion, as well as solvent and ligand exchange reactions on Li+ ion were studied. Li+ ions possess interesting properties and like other alkali metal ions are known to form complexes with macrocyclic ligands called cryptands. In this summary, an overview over the insights gained in the factors that control the reactivity of Li+ complexes with respect to the solvent and cryptand properties is presented. Three main questions were addressed: • How does the ...

  18. Denatured Thermodynamics of Proteins in Weak Cation-exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    LI Rong; CHEN Guo-Liang

    2003-01-01

    The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appearance of the thermal transition temperature indicates that the conformations of the proteins are destroyed seriously. The thermal behavior of the proteins in weak cation-exchange and hydrophobic interaction chromatographies were compared in a wide temperature range. It was found that the proteins have a higher thermostability in a weak cation-exchange chromatography system. The thermodynamic parameters(ΔH0, ΔS0) of those proteins were determined by means of Vant Hoff relationship(lnk-1/T). According to standard entropy change(ΔS0), the conformational change of the proteins was judged in the chromatographic process. The linear relationships between ΔH0 and ΔS0 can be used to evaluate "compensation temperature"(β) at the protein denaturation and identify the identity of the protein retention mechanism in weak cation-exchange chromatography.

  19. The isotope separation by ion exchange chromatography. Application to the lithium isotopes separation

    International Nuclear Information System (INIS)

    In this work is described the used study step to demonstrate the industrial feasibility of a lithium isotopes separation process by ion exchange chromatography. After having recalled how is carried out the exchange reaction between the lithium isotopes bound on the cations exchanger resin and those which are in solution and gave the ion exchange chromatography principle, the authors establish a model which takes into account the cascade theory already used for enriched uranium production. The size parameters of this model are: the isotopic separation factor (which depends for lithium of the ligands nature and of the coordination factor), the isotopic exchange kinetics and the mass flow (which depends of the temperature, the lithium concentration, the resins diameter and the front advance). The way they have to be optimized and the implementation of the industrial process are given. (O.M.)

  20. Effects of exchanged cation on the microporosity of montmorillonite

    Science.gov (United States)

    Rutherford, D.W.; Chiou, C.T.; Eberl, D.D.

    1997-01-01

    The micropore volumes of 2 montmorillonites (SAz- 1 and SWy-1), each exchanged with Ca, Na, K, Cs and tetramethylammonium (TMA) ions, were calculated from the measured vapor adsorption data of N2 and neo-hexane by use of t- and ??s-plots. The corresponding surface areas of the exchanged clays were determined from Brunauer-Emmett-Teller (BET) plots of N2 adsorption data. Micropore volumes and surface areas of the samples increased with the size of exchanged cation: TMA > Cs > K> Ca > Na. The SAz-1 exchanged clays showed generally greater micropore volumes and surface areas than the corresponding SWy-1 clays. The vapor adsorption data and d(001) measurements for dry clay samples were used together to evaluate the likely locations and accessibility of clay micropores, especially the relative accessibility of their interlayer spacing. For both source clays exchanged with Na, Ca and K ions, the interlayer spacing appeared to be too small to admit nonpolar gases and the accessible micropores appeared to have dimensions greater than 5.0 A??, the limiting molecular dimension of neo -hexane. In these systems, there was a good consistency of micropore volumes detected by N2 and neo-hexane. When the clays were intercalated with relatively large cations (TMA and possibly Cs), the large layer expansion created additional microporosity, which was more readily accessible to small N2 than to relatively large neo-hexane. Hence, the micropore volume as detected by N2 was greater than that detected by neo-hexane. The micropore volumes with pore dimensions greater than 5 A?? determined for clays exchanged with Na, Ca and K likely resulted from the pores on particle edges and void created by overlap regions of layers. The increase in micropore volumes with pore dimensions less than 5 A?? determined for clays exchanged with TMA and possibly Cs could be caused by opening of the interlayer region by the intercalation of these large cations.

  1. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chih-Jen [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, University of Wisconsin - Parkside, Kenosha, WI 53144 (United States); Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Jean, Jiin-Shuh; Liu, Chia-Chuan [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2010-11-15

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca{sup 2+} as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK{sub a2} (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d{sub 001}) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  2. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    International Nuclear Information System (INIS)

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca2+ as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pKa2 (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d001) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  3. Characterization of an aluminum pillared montmorillonite with cation exchange properties

    International Nuclear Information System (INIS)

    The methods of PIGE and XRF were used to determine the elemental composition and the structural formulae of a specially tailored PILC material during the steps of its preparation. The CEC, a crucial property for the characterization of a cation exchanger, was monitored through all stages of preparation. In addition, the charge carried by the pillars, a critical quantity of the pillaring process, was estimated. Exchange isotherms of strontium and cesium were performed through the use of radiotracers' exchange isotherms of 137Cs and 85Sr with typical γ-ray spectroscopy. These isotherms were of the Langmuir type and PILCs adsorption capacity was determined. The latter property was compared with the CEC determined by the elemental analysis and was found equal to the amount of the exchangeable interlamellar sodium ions. (author)

  4. Effects of exchanged cation and layer charge on the sorption of water and EGME vapors on montmorillonite clays

    Science.gov (United States)

    Chiou, C.T.; Rutherford, D.W.

    1997-01-01

    The effects of exchanged cation and layer charge on the sorption of water and ethylene glycol monoethyl ether (EGME) vapors on montmorillonite have been studied on SAz-1 and SWy-1 source clays, each exchanged respectively with Ca, Na, K, Cs and tetramethylammonium (TMA) cations. The corresponding lattice expansions were also determined, and the corresponding N2 adsorption data were provided for comparison. For clays exchanged with cations of low hydrating powers (such as K, Cs and TMA), water shows a notably lower uptake than does N2 at low relative pressures (P/P0). By contrast, EGME shows higher uptakes than N2 on all exchanged clays at all P/P0. The anomaly for water is attributed to its relatively low attraction for siloxane surfaces of montmorillonite because of its high cohesive energy density. In addition to solvating cations and expanding interlayers, water and EGME vapors condense into small clay pores and interlayer voids created by interlayer expansion. The initial (dry) interlayer separation varies more significantly with cation type than with layer charge; the water-saturated interlayer separation varies more with cation type than the EGME-saturated interlayer separation. Because of the differences in surface adsorption and interlayer expansion for water and EGME, no general correspondence is found between the isotherms of water and EGME on exchanged clays, nor is a simple relation observed between the overall uptake of either vapor and the cation solvating power. The excess interlayer capacities of water and of EGME that result from lattice expansion of the exchanged clays are estimated by correcting for amounts of vapor adsorption on planar clay surfaces and of vapor condensation into intrinsic clay pores. The resulting data follow more closely the relative solvating powers of the exchanged cations.

  5. Biochemical characterization of Extracellular Polymeric Substances extracted from an intertidal mudflat using a cation exchange resin.

    OpenAIRE

    Pierre, Guillaume; Graber, Marianne; Orvain, Francis; Dupuy, Christine; Maugard, Thierry

    2010-01-01

    The biochemical characterization of Extracellular Polymeric Substances (EPS) excreted in a European intertidal mudflat (Marennes-Oléron Bay) was performed. Experiments were carried out for the first time in situ, by using an improved extraction recently developed. This innovative procedure, using a cation exchange resin (Dowex), allows separating precisely different fractions of EPS, especially pure bound EPS. Moreover, it avoids the contamination of EPS fractions by residual and intracellula...

  6. Cryogenic gas separation with liquid exchanging columns

    International Nuclear Information System (INIS)

    An arrangement of distillation columns is disclosed for subambient distillative separation of 2 mixture of non-condensable gases wherein two columns which exchange liquid achieve a given level of separation over a smaller temperature range than that required by a single column producing the same separation. The arrangement is useful for air separation to produce medium purity (90 to 99%) O2 and/or N2

  7. Preparation of Weak Cation Exchange Packings Based on Monodisperse Poly (chloromethylstyrene-co-divinylbenzene) Particles and Its Chromatographic Properties

    Institute of Scientific and Technical Information of China (English)

    卫引茂; 陈强; 耿信笃

    2001-01-01

    Monodisperse poly ( chloromethylstyrene-co-divinylbenzene )particles were firstly prepared by a two-step swelling method.Based on this media, one kind of weak cation ion exchange packings was prepared. It was demonstrated that the prepared packings have comparative advantages for biopolymer separation with high column efficiency, low interstitial volume and low column backpressure, and have good resolution to proteins. The effects of salt concentration and pH of mobile phase on protein retentions were investigated. The properties of the weak cation ion exchange packings were evaluated by the unified retention model for mixed-mode interaction mechanison in ion exchange and hydrophobic interaction chromatography.

  8. Cation exchange abilities of nanocomposites based on ion exchange resin and zirconium hydrophosphate

    International Nuclear Information System (INIS)

    A modification of cation-exchange resin with nanoparticles of zirconium hydrophosphate leads to the synergism of ion-exchange properties. The exchange of Cu2+→H+ shows that the nanocomposite ion exchangers demonstrate a high affinity to d-metal ions due to the polymer matrix, as well as to the inorganic component. The best characteristics are obtained for materials containing spherical particles of zirconium hydrophosphate with a diameter of (1.4-1.7) x 10-8 m, these aggregates being the most porous.

  9. Separation of americium from curium by oxidation and ion exchange.

    Science.gov (United States)

    Burns, Jonathan D; Shehee, Thomas C; Clearfield, Abraham; Hobbs, David T

    2012-08-21

    Nuclear energy has the potential to be a clean alternative to fossil fuels, but in order for it to play a major role in the US, many questions about the back end of the fuel cycle must be addressed. One of these questions is the difficult separation of americium from curium. Here, we report the oxidation of Am in two systems, perchloric acid and nitric acid and the affect of changing the acid has on the oxidation. K(d) values were observed and a direct separation factor was calculated and was seen to be as high as 20 for four metal(IV) pillared phosphate phosphonate inorganic organic hybrid ion exchange materials. These ion exchangers are characterized by very low selectivity for cations with low charge but extremely high uptake of ions of high charge. PMID:22827724

  10. Electron exchange involving a sulfur-stabilized ruthenium radical cation.

    Science.gov (United States)

    Shaw, Anthony P; Ryland, Bradford L; Norton, Jack R; Buccella, Daniela; Moscatelli, Alberto

    2007-07-01

    Half-sandwich Ru(II) amine, thiol, and thiolate complexes were prepared and characterized by X-ray crystallography. The thiol and amine complexes react slowly with acetonitrile to give free thiol or amine and the acetonitrile complex. With the thiol complex, the reaction is dissociative. The thiolate complex has been oxidized to its Ru(III) radical cation and the solution EPR spectrum of that radical cation recorded. Cobaltocene reduces the thiol complex to the thiolate complex. The 1H and 31P NMR signals of the thiolate complex in acetonitrile become very broad whenever the thiolate and thiol complexes are present simultaneously. The line broadening is primarily due to electron exchange between the thiolate complex and its radical cation; the latter is generated by an unfavorable redox equilibrium between the thiol and thiolate complexes. Pyramidal inversion of sulfur in the thiol complex is fast at room temperature but slow at lower temperatures; major and minor conformers of the thiol complex were observed by 31P NMR at -98 degrees C in CD2Cl2. PMID:17569530

  11. Effect of cation exchange of major cation chemistry in the large scale redox experiment at Aespoe. Revision 1

    International Nuclear Information System (INIS)

    Geochemical modeling was used to test the hypothesis that cation exchange with fracture-lining clays during fluid mixing in the Aespoe Hard Rock Laboratory can significantly affect major element chemistry. Conservative mixing models do not adequately account for changes in Na, Ca and Mg concentrations during mixing. Mixing between relatively dilute shallow waters and more concentrated waters at depth along fracture zones was modeled using the EQ3/6 geochemical modeling package. A cation exchange model was added to the code to describe simultaneously aqueous speciation, mineral precipitation/dissolution, and equilibration between a fluid and a cation exchanger. Fluid chemistries predicted to result from mixing were compared with those monitored from boreholes intersecting the fracture zone. Modeling results suggest that less than 0.1 equivalent of a smectite exchanger per liter of groundwater is necessary to account for discrepancies between predictions from a conservative mixing model and measured Na and Ca concentrations. This quantity of exchanger equates to an effective fracture coating thickness of 20 microm or less given a fracture aperture width of 1,000 microm or less. Trends in cation ratios in the fluid cannot be used to predict trends in cation ratios on the exchanger because of the influence of ionic strength on heterovalent exchange equilibrium. It is expected that Na for Ca exchange will dominate when shallow waters such as HBHO2 are mixed with deeper waters. In contrast, Na for Mg exchange will dominate mixing between deeper waters

  12. Computer simulation of methanol exchange dynamics around cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Santanu; Dang, Liem X.

    2016-03-03

    In this paper, we present the first computer simulation of methanol exchange dynamics between the first and second solvation shells around different cations and anions. After water, methanol is the most frequently used solvent for ions. Methanol has different structural and dynamical properties than water, so its ion solvation process is different. To this end, we performed molecular dynamics simulations using polarizable potential models to describe methanol-methanol and ion-methanol interactions. In particular, we computed methanol exchange rates by employing the transition state theory, the Impey-Madden-McDonald method, the reactive flux approach, and the Grote-Hynes theory. We observed that methanol exchange occurs at a nanosecond time scale for Na+ and at a picosecond time scale for other ions. We also observed a trend in which, for like charges, the exchange rate is slower for smaller ions because they are more strongly bound to methanol. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  13. Continuous ion exchange separation of zirconium and hafnium

    International Nuclear Information System (INIS)

    A pressurized continuous annular chromatograph (CAC) has been developed for truly continuous ion exchange preparative separations. This device utilizes a slowly rotating annular bed of sorbent material, fixed multiple feed points, and fixed withdrawal locations. Most of our investigations have been performed with a 28-cm-diam by 60-cm-long CAC, but a larger model has recently been designed and constructed. A detailed study has been made of the separation of copper, nickel, and cobalt components from a simulated carbonate leach liquor of the Caron process for recovering nickel and cobalt from laterite ores. Recent studies have investigated the ion exchange separation of zirconium and hafnium from a sulfate feed solution. Nuclear reactor-grade zirconium, containing < 0.01 wt % hafnium, and hafnium, containing < 1% zirconium, have been continuously prepared using cation exchange resin in the pressurized CAC. This device, because of its continuous feed and product withdrawal, its adaptability to largescale operations, and its ability to separate many components, is expected to make chromatography a more competitive process in the industrial sector

  14. Rare earth separation using selective ion-exchangers containing phospho-groups

    International Nuclear Information System (INIS)

    The behaviour of various cation exchangers containing phosphinic, phosphonic or phosphoric acid groups was investigated for the selective separation of lanthanides either from miscellaneous elements or inside the lanthanide series. The observed affinity of -PO(CH)2 or -OPO(CH)2 exchanging groups in acidic solutions falls from lutetium to lanthanum. Using a chromatographic technique it is possible to separate on such exchangers some mixtures of lanthanides without a complexing elution agents. For such separation procedures, solutions of hydrochloric or nitric acid are useful. The influence of the resin composition, particle size, temperature, flow rate, composition and concentration of eluting solutions on the quality of the separation is discussed. (author)

  15. Separation of cesium by ion exchange columns

    International Nuclear Information System (INIS)

    Crystalline silico titanate (CST) has been tested as a selective inorganic ion exchanger to separate Cs 137 from the residual fission product s solution of the Mo 99 plant. The tests are described in detail and show decontamination factors higher than 6000 and a good elution yield

  16. The importance of cerium substituted phosphates as cation exchanger some unique properties and related application potentials

    International Nuclear Information System (INIS)

    Seven different samples of an inorganic ion exchanger, cerium phosphate, suitable for column use have been prepared under varying conditions. The property of these exchangers has been characterized by Inductively Coupled Plasma Spectroscopy. These exchangers are stable in water, dilute mineral acids, ethanol, methanol, acetone and ether. However, in concentrated HCl and HNO3 they decompose. They retain about 50% of their exchange value after drying at 80 degC, and can be regenerated twice without any decrease in exchange capacity. The distribution coefficient measurements for alkaline earth metals, tellurium, iodine and molybdenum using these seven ion exchangers were studied. This revealed the relative affinity for each exchanger, where the sorption in general was most effective at P H 6-8. The titration curves of cerium phosphate (disodium) with alkaline earth metals showed that the selectivity sequence Ba2+>Sr2+>CA2+>Mg2+ is observed. Furthermore, it could be deduced that the adsorption of alkaline earth metal cations greatly depends on the cation. These studies have also shown that cerium phosphates with divalent ions are strongly preferred to monovalent ones. Therefore, as for the cerium phosphates with large monovalent ions, the lack of exchange for Ba2+, Mg2+ or other alkaline earth metal ions should be essentially due to steric hindrance and this could include any one of the following: the large crystalline radius of metal ions or large hydrated ionic radius and high energy of hydration for other divalent ions. Three binary separations of TeIV - MoIV, TeIV -I1 has been developed and the recovery ranging from 90 to 100% has been achieved on cerium phosphate (disodium) columns

  17. Soil exchangeable cations: A geostatistical study from Russia

    Directory of Open Access Journals (Sweden)

    Tayfun Aşkın

    2012-01-01

    Full Text Available In present study, geostatistical techniques was applied to assess the spatial variability of exchangeable cations such as; calcium (Ex-Ca2+, magnesium (Ex-Mg2+, potassium (Ex-K+ and sodium (Ex-Na+ in the tillaged layer in a Perm State Agricultural Academy Farm site in Perm region, West Urals, Russia. A 250x100 m plot (approximately 2.35 ha was divided into grids with 25x25 m spacing that included 51 sampling points from 0-0.2 m in depth. Soil reaction (pH was the least variable property while the Ex-K was the most variable. The greatest range of influence (237.6 m occurred for Ex-Ca and the least range (49.7 m for Ex-Mg.

  18. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands

    Science.gov (United States)

    Fan, Zhaochuan; Lin, Li-Chiang; Buijs, Wim; Vlugt, Thijs J. H.; van Huis, Marijn A.

    2016-05-01

    Cation exchange is a powerful tool for the synthesis of nanostructures such as core-shell nanocrystals, however, the underlying mechanism is poorly understood. Interactions of cations with ligands and solvent molecules are systematically ignored in simulations. Here, we introduce the concept of pseudoligands to incorporate cation-ligand-solvent interactions in molecular dynamics. This leads to excellent agreement with experimental data on cation exchange of PbS nanocrystals, whereby Pb ions are partially replaced by Cd ions from solution. The temperature and the ligand-type control the exchange rate and equilibrium composition of cations in the nanocrystal. Our simulations reveal that Pb ions are kicked out by exchanged Cd interstitials and migrate through interstitial sites, aided by local relaxations at core-shell interfaces and point defects. We also predict that high-pressure conditions facilitate strongly enhanced cation exchange reactions at elevated temperatures. Our approach is easily extendable to other semiconductor compounds and to other families of nanocrystals.

  19. Determination of organoarsenic species in marine samples using gradient elution cation exchange HPLC-ICP-MS

    DEFF Research Database (Denmark)

    Sloth, Jens Jørgen; Larsen, Erik Huusfeldt; Julshamn, Kåre

    2003-01-01

    A method for the determination of arsenic species in marine samples using high performance liquid chromatography coupled to inductively coupled mass spectrometry (HPLC-ICP-MS) has been developed. Cation exchange HPLC with gradient elution using pyridine formate as the mobile phase was employed for...... the separation of a large number of arsenicals that occurred in the samples. The arsenic species were extracted using a 50% (v/v) methanol-water mixture and mechanical agitation overnight. The effect of the sample matrix on HPLC retention time was investigated and showed a dramatic effect for...

  20. Comparative study of the ionic exchange of Ca++, Sr++, and Ba++ cations on resins and inorganic exchangers

    International Nuclear Information System (INIS)

    With a view to applying the results to certain problems related to chemical separations in activation analysis, a study has been made, of the possibilities of separating the alkaline-earth elements Ca, Sr and Ba on organic resins and inorganic exchangers using the radioactive indicator method. The partition coefficients of the cations Ca2+, Sr2+ and Ba2+ have been measured on Dowex 50 W (NH4+) x 8 resin in the presence of EDTA - NTA - EGTA and DCTA as complexing agents, and on zirconium phosphate, tungstate and molybdate in the presence of HCl and NH4Cl. Methods have been developed for separating mixtures of alkaline-earth elements using DCTA-NH4+ followed by elution on Dowex 50 W (NH4+) x 8 resin columns and on zirconium phosphate. Amongst the complexing agents used on the ion-exchange resins the most promising appears to be DCTA which leads to partition coefficients Ca, Sr and Ba which are very different. The results of measurements of partition coefficients on zirconium phosphate (NH4+ form) using DCTA-NH4+ show the interesting possibilities of separations on columns. The separation of the alkaline-earth elements on zirconium phosphate seems to be less quantitative than on Dowex 50 resin; it is however much faster in the former case and this can be useful for treating short half-life radioisotopes in activation analysis. (author)

  1. Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites.

    Science.gov (United States)

    Pham, Trong D; Liu, Qingling; Lobo, Raul F

    2013-01-15

    Samples of high-silica SSZ-13, ion exchanged with protons and alkali-metal cations Li(+), Na(+), and K(+), were investigated using adsorption isotherms of CO(2) and N(2). The results show that Li-, Na-SSZ-13 have excellent CO(2) capacity at ambient temperature and pressure; in general, Li-SSZ-13 shows the highest capacity for N(2), CO(2) particularly in the low-pressure region. The effect of cation type and Si/Al ratio (6 and 12) on the adsorption properties was investigated through analysis of adsorption isotherms and heats of adsorption. The separation of CO(2) in a flue gas mixture was evaluated for these adsorbents in the pressure swing adsorption and vacuum pressure adsorption processes. PMID:23249267

  2. Radiochemical separation of gold by amalgam exchange

    Science.gov (United States)

    Ruch, R.R.

    1970-01-01

    A rapid and simple method for the radiochemical separation of gold after neutron activation. The technique is based on treatment with a dilute indium-gold amalgam, both chemical reduction and isotopic exchange being involved. The counting efficiency for 198Au in small volumes of the amalgam is good. Few interferences occur and the method is applicable to clays, rocks, salts and metals. The possibility of determining silver, platinum and palladium by a similar method is mentioned. ?? 1970.

  3. Cesium separation Using Electrically Switched Ion Exchange

    International Nuclear Information System (INIS)

    Electrically Switched Ion Exchange (ESIX) is a separation technology being developed at Pacific Northwest National Laboratory as an alternative to conventional ion exchange for removing metal ions from wastewater. In ESIX, which combines ion exchange and electro-chemistry, ion uptake and elution can be controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto an electrode. This paper presents the results of experiments on high surface area electrodes and the development of a flow system for cesium ion separation. Bench-scale flow system studies showed no change in capacity or performance of the ESIX films at a flow rate up to 113 BV/h, the maxi-mum flow rate tested, and breakthrough curves supported once-through waste processing. A comparison of results for a stacked 5-electrode cell versus a single-electrode cell showed enhanced breakthrough performance. In the stacked configuration, break-through began at about 120 BV for a feed containing 0.2 ppm cesium at a flow rate of 13 BV/h. A case study for the KE Basin (a spent nuclear fuel storage basin) on the Hanford Site demonstrated that KE Basin wastewater could be processed continuously with minimal waste generation, reduced disposal costs, and lower capital expenditures

  4. Ergot alkaloids in rye flour determined by solid phase cation-exchange and high pressure liquid chromatography with fluorescence detection

    OpenAIRE

    Storm, Ida Drejer; Have Rasmussen, Peter; Strobel, Bjarne W.; Hansen, Hans Christian Bruun

    2008-01-01

    Abstract Ergot alkaloids (EAs) are mycotoxins which are unavoidable contaminants of cereal products, particularly rye. A method was compiled employing clean-up by cation-exchange solid phase extraction, separation by high-pressure liquid chromatography under alkaline conditions and fluorescence detection. It is capable of separating and quantifying both C8-isomers of ergocornine, a-ergocryptine, ergocristine, ergonovine, and ergotamine. The average recovery was 61?10 % with limits ...

  5. Enhanced DOC removal using anion and cation ion exchange resins.

    Science.gov (United States)

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. PMID:26624231

  6. Preparation of Medium Cation Exchange Stationary Phase of Polymeric Matrix and Their Chromatographic Properties

    Institute of Scientific and Technical Information of China (English)

    CHEN,Gang; GONG,Bo-Lin; BAI,Quan; GENG,Xin-Du

    2007-01-01

    Based on the monodisperse poly(glycidyl methacrylate-co-ethylenedimethacrylate) beads (PGMA/EDMA) with macropore as a medium, a new hydrophilic medium cation exchange (MCX) stationary phase for HPLC was synthesized by a new chemically modified method. The stationary phase was evaluated with the property of ion exchange, separability, reproducibility, hydrophilicity, effect of salt concentration, salt types, column loading and pH on the separation and retention of proteins in detail. It was found that it follows ion exchange chromatographic (IEC)retention mechanism. The measured bioactivity recovery for lysozyme was (96±5)%. The dynamic protein loading capacity of the synthesized MCX packings was 21.8 mg/g. Five proteins were almost completely separated within 6.0 min at a flow rate of 4 mL/min using the synthesized MCX resin. The MCX resin was also used for the rapid separation and purification of lysozyme from egg white with only one step. The purity and specific bioactivity of the purified lysozyme was found more than 95% and 70345 U/mg, respectively.

  7. Preparation of poly(glycidylmethacrylate-divinylbenzene) weak acid cation exchange stationary phases with succinic anhydride, phthalic anhydride, and maleic anhydride for ion chromatography.

    Science.gov (United States)

    Liu, Junwei; Wang, Yong; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2016-08-01

    In this work, poly(glycidylmethacrylate-divinylbenzene) microspheres were prepared and applied for the preparation of weak acid cation exchange stationary phases. Succinic anhydride, phthalic anhydride, and maleic anhydride were selected as carboxylation reagents to prepare three weak acid cation exchangers by direct chemical derivatization reaction without solvent or catalyst. The diameters and dispersity of the microspheres were characterized by scanning electron microscopy; the amount of accessible epoxy groups and mechanical stability were also measured. The weak acid cation exchangers were characterized by Fourier transform infrared spectroscopy; the content of carboxyl groups was measured by traditional acid base titration method. The chromatographic properties were characterized and compared by separating alkali, alkaline earth metal ions and ammonium and polar amines. The separation properties enhanced in the order of succinic anhydride, phthalic anhydride, and maleic anhydride modified poly(glycidylmethacrylate-divinylbenzene) cation exchangers. PMID:27288092

  8. CO 2 adsorption in mono-, di- and trivalent cation-exchanged metal-organic frameworks: A molecular simulation study

    KAUST Repository

    Chen, Yifei

    2012-02-28

    A molecular simulation study is reported for CO 2 adsorption in rho zeolite-like metal-organic framework (rho-ZMOF) exchanged with a series of cations (Na +, K +, Rb +, Cs +, Mg 2+, Ca 2+, and Al 3+). The isosteric heat and Henry\\'s constant at infinite dilution increase monotonically with increasing charge-to-diameter ratio of cation (Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ < Al 3+). At low pressures, cations act as preferential adsorption sites for CO 2 and the capacity follows the charge-to-diameter ratio. However, the free volume of framework becomes predominant with increasing pressure and Mg-rho-ZMOF appears to possess the highest saturation capacity. The equilibrium locations of cations are observed to shift slightly upon CO 2 adsorption. Furthermore, the adsorption selectivity of CO 2/H 2 mixture increases as Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ ≈ Al 3+. At ambient conditions, the selectivity is in the range of 800-3000 and significantly higher than in other nanoporous materials. In the presence of 0.1% H 2O, the selectivity decreases drastically because of the competitive adsorption between H 2O and CO 2, and shows a similar value in all of the cation-exchanged rho-ZMOFs. This simulation study provides microscopic insight into the important role of cations in governing gas adsorption and separation, and suggests that the performance of ionic rho-ZMOF can be tailored by cations. © 2012 American Chemical Society.

  9. Ra/Ca separation by ion exchange chromatography

    International Nuclear Information System (INIS)

    Ra/Ca separation by ion exchange. The objective of this work was to acquire knowledge of the chromatographic behaviour of the alkaline earth cations calcium, barium and radium and the obtention of well-defined alpha spectra of 226 Ra. Three cationic ion exchange resins (Dower 50 W-X8, AG 50W-XB and Merck I) and three complexing agents (ethylenediaminetetraacetic acid, citric acid and tartaric acid) at various pH values have been investigated. The three types of ions are fixed on the resins at pH 4.8; calcium is eluted at pH between 5 and 6 depending on the resin; barium and radium are eluted at pH values from 8 to 11. Radium is also eluted with a 2 M nitric acid solution, from which it can be electrodeposited on a stainless steel disk potassium fluoride as electrolyte at pH 14. The electrolysis is conducted for 18 hours with a current of mA. Under these conditions high resolution alpha spectra were obtained for 226 Ra, which was practically free from radioactive contaminants (Author)

  10. Study on degradation of cation exchange resin for condensate polishing plant

    International Nuclear Information System (INIS)

    The degradation of condensate polisher resin might cause the deterioration of water chemistry in power plants. The cause of cation resin degradation was studied in laboratory tests which simulated actual operating condition in a condensate polishing plant. It was found that air-scrubbing and unregenerated storage accelerate the decomposition of the cation exchange resin. Decrease of air-scrubbing times and regenerated storage are suggested as countermeasures against cation exchange resin degradation. (author)

  11. Radiochemical separation of gallium by amalgam exchange

    Science.gov (United States)

    Ruch, R.R.

    1969-01-01

    An amalgam-exchange separation of radioactive gallium from a number of interfering radioisotopes has been developed. A dilute (ca. 0.3%) gallium amalgam is agitated with a slightly acidic solution of 72Ga3+ containing concentrations of sodium thiocyanate and either perchlorate or chloride. The amalgam is then removed and the radioactive gallium stripped by agitation with dilute nitric acid. The combined exchange yield of the perchlorate-thiocyanate system is 90??4% and that of the chloride-thiocyanate system is 75??4%. Decontamination yields of most of the 11 interfering isotopes studied were less than 0.02%. The technique is applicable for use with activation analysis for the determination of trace amounts of gallium. ?? 1969.

  12. Enhanced Transport of U(Vi) and Th(IV) Through Cation Exchange Membrane Using Electric Field

    International Nuclear Information System (INIS)

    Transport of ionic species through ion exchange membrane found several applications for water effluents purification and metal ion separation. To enhance the transport performance, the effect of electric field was introduced in this work. The transport of U (Vi) and Th(IV) species in nitric acid solutions across cation exchange membrane was investigated. In this concern, different parameters affecting the transport were studied. These parameters include; nitric acid concentration in the feed solution, stripping solution concentration and applied electric field. From the results obtained the permeability coefficient of U(Vi) and Th(IV) were calculated. Based on these information, a process for separation of thorium from uranium is developed

  13. Ion exchange separation and production of metallic tachnetium

    International Nuclear Information System (INIS)

    The ion-exchange method of technetium concentration on resins permits to separate it from radioruthenium which transforms into the cation form rather completely at pH 3. It is established that increase of nitric acid concentration in the solution brings about monotonous decrease of pertechnetate-ion distribution coefficient. It is found that selectiveness of resins to [TcO4]- is conditioned by properties of resins, [TcO4]- structure, high degree of hydration. Technetium desorption from resin is performed by sodium nitrate. After deep purification by extraction from fission products and large content of technetium salts is transformed into metallic state by thermal decomposition of pertechnates of organic substances in inert atmosphere

  14. A DFT-D study of the interaction of methane, carbon monoxide, and nitrogen with cation-exchanged SAPO-34

    International Nuclear Information System (INIS)

    Density-functional theory calculations including a semi-empirical dispersion correction (DFT-D) are employed to study the interaction of small guest molecules (CH4, CO, N2) with the cation sites in the silicoaluminophosphate SAPO-34. Eight different cations from three different groups (alkali cations, alkaline earth cations, transition metals) are included in the study. For each case, the total interaction energy as well as the non-dispersive contribution to the interaction are analysed. Electron density difference plots are used to investigate the nature of this non-dispersive contribution in more detail. Despite a non-negligible contribution of polarisation interactions, the total interaction remains moderate in systems containing main group cations. In SAPOs exchanged with transition metals, orbital interactions between the cations and CO and N2 lead to a very strong interaction, which makes these systems attractive as adsorbents for the selective adsorption of these species. A critical comparison with experimental heats of adsorption shows reasonable quantitative agreement for CO and N2, but a pronounced overestimation of the interaction strength for methane. While this does not affect the conclusions regarding the suitability of TM-exchanged SAPO-34 materials for gas separations, more elaborate computational approaches may be needed to improve the quantitative accuracy for this guest molecule.

  15. Black Carbon Increases Cation Exchange Capacity in Soils

    International Nuclear Information System (INIS)

    Black Carbon (BC) may significantly affect nutrient retention and play a key role in a wide range of biogeochemical processes in soils, especially for nutrient cycling. Anthrosols from the Brazilian Amazon (ages between 600 and 8700 yr BP) with high contents of biomass-derived BC had greater potential cation exchange capacity (CEC measured at pH 7) per unit organic C than adjacent soils with low BC contents. Synchrotron-based near edge X-ray absorption fine structure (NEXAFS) spectroscopy coupled with scanning transmission X-ray microscopy (STXM) techniques explained the source of the higher surface charge of BC compared with non-BC by mapping cross-sectional areas of BC particles with diameters of 10 to 50 (micro)m for C forms. The largest cross-sectional areas consisted of highly aromatic or only slightly oxidized organic C most likely originating from the BC itself with a characteristic peak at 286.1 eV, which could not be found in humic substance extracts, bacteria or fungi. Oxidation significantly increased from the core of BC particles to their surfaces as shown by the ratio of carboxyl-C/aromatic-C. Spotted and non-continuous distribution patterns of highly oxidized C functional groups with distinctly different chemical signatures on BC particle surfaces (peak shift at 286.1 eV to a higher energy of 286.7 eV) indicated that non-BC may be adsorbed on the surfaces of BC particles creating highly oxidized surface. As a consequence of both oxidation of the BC particles themselves and adsorption of organic matter to BC surfaces, the charge density (potential CEC per unit surface area) was greater in BC-rich Anthrosols than adjacent soils. Additionally, a high specific surface area was attributable to the presence of BC, which may contribute to the high CEC found in soils that are rich in BC

  16. Synthesis, characterization and ion exchange properties of zirconium(IV) tungstoiodophosphate, a new cation exchanger

    Indian Academy of Sciences (India)

    Weqar Ahmad Siddiqui; Shakeel Ahmad Khan

    2007-02-01

    Zirconium(IV) tungstoiodophosphate has been synthesized under a variety of conditions. The most chemically and thermally stable sample is prepared by adding a mixture of aqueous solutions of 0.5 mol L-1 sodium tungstate, potassium iodate and 1 mol L-1 orthophosphoric acid to aqueous solution of 0.1 mol L-1 zirconium(IV) oxychloride. Its ion exchange capacity for Na+ and K+ was found to be 2.20 and 2.35 meq g-1 dry exchanger, respectively. The material has been characterized on the basis of chemical composition, pH titration, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis. The effect on the exchange capacity of drying the exchanger at different temperatures has been studied. The analytical importance of the material has been established by quantitative separation of Pb2+ from other metal ions.

  17. Method for in situ determination cation exchange capacities of subsurface formations

    International Nuclear Information System (INIS)

    A method is disclosed for the in situ examination of each subsurface formation penetrated by a borehole to ascertain the cation exchange capacity of such formations within a geological region. Natural γ ray logging is used to develop signals functionally related to the total γ radiation and to the potassium-40, uranium and thorium energy-band radiations. A first borehole is traversed by a potential γ ray spectrometer to provide selected measurements of natural γ radiation. Core samples are taken from the logged formation and laboratory tests performed to determine the cation exchange capacity thereof. The cation exchange capacities thus are developed then correlated with selected parameters provided by the γ ray spectrometer to establish functional relationships. Cation exchange capacities of formations in subsequent boreholes within the region are then determined in situ by use of the natural γ ray spectrometer and these established relationships. (author)

  18. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    Science.gov (United States)

    Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C

    2012-01-01

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load. PMID:24958292

  19. Measurement of the acidities of several cation-exchange resins using hydrogen-isotope exchange reaction

    International Nuclear Information System (INIS)

    The hydrogen-isotope exchange reaction between ethanol (unlabeled) and one of three cation-exchange resins labeled with tritium has been observed at 40-80degC. The acidity (acidity based on kinetic logic) at each temperature has been obtained from a A'-McKay plot based on the respective data obtained. The following results have been obtained on the basis of both the acidities obtained in this work and the acidities (of several materials) obtained previously. (1) The order of the reactivity is (Amberlite IRC-76)>(Dowex A-1)>(PVA2000>(Amberlite IRC-50) at 60degC. (2) The higher the temperature, the larger is the reactivity of each material. (3) The temperature dependence of the reactivity of Dowex A-1 is the largest in the four. (4) The reactivity of the functional group (i.e., COOH group or OH group) bonded to the polymer chain can be clarified using the A'-McKay plot method. (5) It seems that method can be applied to analyze other reactions, e.g., other isotope-exchange reactions, surface reactions, catalytic reactions, etc. (author)

  20. Aspects of the super-equivalent sorption of glycine by cation exchanger KU-2-8

    Science.gov (United States)

    Khokhlova, O. N.; Khokhlov, V. Yu.; Trunaeva, E. S.; Nechaeva, L. S.

    2016-07-01

    The structure formed in a sorbent during the super-equivalent sorption of glycine by cation exchanger KU-2-8 is optimized via quantum chemical simulation. The differential thermodynamic characteristics of ion exchange and super-equivalent sorption in the studied system are calculated using a thermodynamic approach that allows us to describe the simultaneous exchange and super-equivalent sorption of compounds by ion-exchangers.

  1. Study of Aging ion exchange membranes used in separation processes

    International Nuclear Information System (INIS)

    Presently, the most important application of ion exchange membranes (IEM) is the electrodialysis. This technique consists of a membrane separation using a series of anion exchange membranes alternately and cations, often used for the desalination of brackish water. These membranes are confronted with problems of aging. Indeed, the more they are used more physical and chemical properties will change. A comparative study of the behavior of both EMI and new but the same treatment is carried out by measuring a magnitude transfer characteristic: ion permeability. Ionic permeability is a physical quantity can have an idea about the selectivity of the membrane towards the charged species and the porosityof the membrane. It is a transport of ions (cations + anions) through the membrane. Thus, determining the ion permeability is to determine the diffusion flux of a strong electrolyte through a membrane separating two compartments (one containing electrolytes and other water initially ultrapure who will gradually electrolyte through the membrane). The measurement technique used is that by conductimetric detection because of the ease of its implementation and its accuracy. Thus, the variation of the concentration of the electrolyte is continuously monitored by measuring the conductivity of the solution diluted with time. The curves s = f (t) MEA and MEC new and used varying concentration of the electrolyte membranes show that let in less waste of strong electrolyte (NaCl and HCl) than new ones. This can be explained by: - The functional sites are combined with polyvalent ions present even in trace amounts in the solution process and become inactive. The membrane loses its hydrophilic character and turns into a film almost hydrophobic. - The chemical attacks and electrodialysis operations have degraded and eliminated much of the fixed sites leading to the same effects on the hydrophilic membrane. - These two assumptions have been reinforced by the extent of exchange capacities

  2. An Investigation into the Effect of Cation-exchange on the Adsorption Performance of Indium-based Sodalite-ZMOF

    KAUST Repository

    Samin, Umer A.

    2016-04-13

    There is a pressing need for advanced solid-state materials that can be implemented in industrial gas separation processes to achieve separations with a significantly reduced energy input compared to what is typically required from current technologies. Although certain porous materials like zeolites bear some commercial significance for gas separation; their inherent lack of tunability limits the extent to which these materials may be exploited in industry. Zeolite-like Metal-Organic Frameworks (ZMOFs) are a sub-class of Metal-Organic Framework materials (MOFs) that show a structural semblance to zeolites while possessing the tunability advantages of MOF materials. ZMOFs which are topologically similar to certain zeolites can be functionalised and tuned in numerous ways to improve their gas separation properties. In this work, indium-based sod-ZMOF was tuned by cation-exchange and then characterised by different experimental tools such as single-crystal x-ray diffraction, elemental analysis and gas adsorption. It was found that various parameters like the choice of cation, the concentration of salt solution and the choice of solvent had a significant bearing on the cation-exchange of sod-ZMOF and its subsequent adsorption properties.

  3. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands

    Science.gov (United States)

    Fan, Zhaochuan; Lin, Li-Chiang; Buijs, Wim; Vlugt, Thijs J. H.; van Huis, Marijn A.

    2016-01-01

    Cation exchange is a powerful tool for the synthesis of nanostructures such as core–shell nanocrystals, however, the underlying mechanism is poorly understood. Interactions of cations with ligands and solvent molecules are systematically ignored in simulations. Here, we introduce the concept of pseudoligands to incorporate cation-ligand-solvent interactions in molecular dynamics. This leads to excellent agreement with experimental data on cation exchange of PbS nanocrystals, whereby Pb ions are partially replaced by Cd ions from solution. The temperature and the ligand-type control the exchange rate and equilibrium composition of cations in the nanocrystal. Our simulations reveal that Pb ions are kicked out by exchanged Cd interstitials and migrate through interstitial sites, aided by local relaxations at core–shell interfaces and point defects. We also predict that high-pressure conditions facilitate strongly enhanced cation exchange reactions at elevated temperatures. Our approach is easily extendable to other semiconductor compounds and to other families of nanocrystals. PMID:27160371

  4. Adsorption of reovirus to clay minerals: effects of cation-exchange capacity, cation saturation, and surface area.

    OpenAIRE

    Lipson, S M; Stotzky, G

    1983-01-01

    The adsorption of reovirus to clay minerals has been reported by several investigators, but the mechanisms defining this association have been studied only minimally. The purpose of this investigation was to elucidate the mechanisms involved with this interaction. More reovirus type 3 was adsorbed, in both distilled and synthetic estuarine water, by low concentrations of montmorillonite than by comparable concentrations of kaolinite containing a mixed complement of cations on the exchange com...

  5. Ionic Liquid Synergistic Cation-Exchange System for the Selective Extraction of Lanthanum(III) Using 2-Thenoyltrifluoroacetone and 18-Crown-6

    OpenAIRE

    Hirayama, Naoki; Okamura, Hiroyuki; Kidani, Keiji; Imura, Hisanori

    2008-01-01

    A novel synergistic extraction system was investigated for the possible selective separation of light lanthanoids using an ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, as an extraction solvent and 2-thenoyltrifluoroacetone and 18-crown-6 as extractants. Trivalent lanthanum was efficiently extracted as a cationic ternary complex by the cation-exchange process, whereas europium and lutetium showed relatively low extractability without forming respective ternary ...

  6. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    International Nuclear Information System (INIS)

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe3+ > Al3+ > Cu2+ >> Ca2+ > K+ > Na+, which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na+-smectite and K+-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe3+, Al3+, and Cu2+ are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O2−· , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation

  7. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hanzhong, E-mail: jiahz@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Li, Li [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Chen, Hongxia; Zhao, Yue [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); School of Geology and Mining Engineering, Xinjiang University, Urumqi 830046 (China); Li, Xiyou [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Wang, Chuanyi, E-mail: cywang@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China)

    2015-04-28

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe{sup 3+} > Al{sup 3+} > Cu{sup 2+} >> Ca{sup 2+} > K{sup +} > Na{sup +}, which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na{sup +}-smectite and K{sup +}-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe{sup 3+}, Al{sup 3+}, and Cu{sup 2+} are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O{sub 2}{sup −}· , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation.

  8. Optimal design of the separate type heat pipe heat exchanger

    Institute of Scientific and Technical Information of China (English)

    YU Zi-tao; HU Ya-cai; CEN Ke-fa

    2005-01-01

    Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations. The traditional method of designing an ordinary HPHE (heat pipe heat exchanger) is commonly applied in the separate type exchanger design, but the calculations have to be carried out separately, which makes it very complicated. In this work, the ε-NTU (effectiveness-Number of Transfer Units) method was applied for optimization analysis of single- or multi-level separate type heat pipe heat exchangers. An optimizing formula for single-level separate type heat pipe heat exchangers was obtained. The optimizing principles of effectiveness-NTU and heat transfer rate by the equal distribution method for multi-level separate type heat pipe heat exchanger are presented. The design of separate type heat pipe heat exchangers by the optimizing method is more convenient and faster than by the traditional method.

  9. Characterization and cation exchange capacity of seeds of Ziziphus spina-christi

    Directory of Open Access Journals (Sweden)

    Shadia M. Sirry

    2014-09-01

    Full Text Available There are several naturally existing materials have ability to utilize as ion-exchangers. Most of these materials are by-products of waste material from industry or agriculture. Agriculture ion exchange materials include: lemon orange, grapefruit, apple, peas, broad bean, and meddler peels, kernel core, and grape skins. This research deals with the utilization of agriculture waste biomass of napak seed as natural cation exchanger for removal of cationic pollutant from aqueous solution. Methylene blue dye method was used to determine the cation exchange capacity of the stone and it was characterized by IR and TGA methods. The results showed that the highest dye sorption capacity was found at pH 7, the equilibrium time was 60 min, sorbent dose = 0.1g, particle size 177μm and methylene blue concentration range 10-50 ppm. The equilibrium sorption data were analyzed by Langmuir and Freundlich isotherm models.

  10. Behavior of cationic, anionic and colloidal species of titanium, zirconium and thorium in presence of ion exchange resins

    International Nuclear Information System (INIS)

    The distribution of titanium, zirconium and thorium is aqueous and resin phases has been studied using strong cationic resin in the R-NH4 form. Solutions of the above elements in perchloric, nitric, hydrochloric and suphuric media were used. Each set of experiments was made by separately varying one of the five parameters - type of anion present, acidity of solution, temperature of percolation, age of solution and concentration of the element. It was found that, depending on the particular balance of these parameters, the elements investigated may be found in acidic solutions either as cationic, anionic or colloidal species. It is emphasized that the colloidal species of titanium, zirconium or thorium are not retained by the ion exchangers, and from this property a method for the separation and purification of the above elements has been outlined

  11. Simultaneous determinations of Cr(VI) and Cr(III) by ion-exclusion/cation-exchange chromatography with an unmodified silica-gel column.

    Science.gov (United States)

    Hirata, Shizuko; Kozaki, Daisuke; Sakanishi, Kinya; Nakagoshi, Nobukazu; Tanaka, Kazuhiko

    2010-01-01

    In order to characterize the ion-exclusion and cation-exchange properties of an unmodified silica-gel column, the retention behaviors of Cr(VI) and Cr(III) ions were investigated using a Develosil 30-5 (150 x 4.6 mm i.d.) in the acidic region. Cr(VI) was separated from other anions by an ion-exclusion and ion-adsorption mechanism, and Cr(III) was separated from other cations with a cation-exchange mechanism. When using 2.0 mM oxalic acid (pH 2.6) as an eluent, a good separation of Cr(VI) and Cr(III) was obtained using conductimetric detection in 12 min. The method was successfully applied to the simultaneous determinations of Cr(VI) and Cr(III) added into tap-water and river-water samples. PMID:20215693

  12. Adsorptive bubble separation of zinc and cadmium cations in presence of ferric and aluminum hydroxides.

    Science.gov (United States)

    Jurkiewicz, Kazimierz

    2005-06-15

    The adsorptive bubble separation of zinc and cadmium cations from solution in the presence of ferric and aluminum hydroxides was carried out by means of Tween 80 (nonionic surfactant), and sodium laurate and stearate (anionic surfactants). The mechanism of metal removal is different depending on the nature of the surfactant used. The removal of zinc cations by adsorbing colloid flotation is higher than that of cadmium cations. It increases with increases in the amount of hydroxide precipitate and the concentration of Tween 80. The removal of zinc cations by ion flotation is lower than that of cadmium cations. It does not change with increases in the hydroxide amount. It increases, however, with increased sodium laurate or stearate concentration. Both separation methods turned out to be helpful for studying both the solution's structure and the interactions at the solution-solid interface. PMID:15897071

  13. Effect of Lanthanum Accumulation on Cation Exchange Capacity and Solution Composition of Red Soil

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Pot and adsorption-exchange experiments were carried out by collecting the soil samples from the surface layer (0~15 cm) of red soil at the Ecological Experiment Station of Red Soil, the Chinese Academy of Sciences, in Jiangxi Province of China. When concentration of the exogenous La3+ exceeded 400 mg kg-1, there was less non-exchangeable La3+ than exchangeable La3+ in the soil. Cation exchange capacity of the soil changed slightly with increasing concentration of the exogenous La3+ in both experiments. However, in the adsorption-exchange experiment, when concentration of the exogenous La3+ was higher than 300 mg kg-1, exchangeable basic cations decreased significantly, while exchangeable hydrogen and exchangeable aluminum increased significantly compared with the control treatments. The amounts of base cations (Ca2+, Mg2+, K+ and Na+) exchanged by La3+ in the supernatant solution increased with the concentration of the exogenous La3+, especially when concentration of the exogenous La3+ was higher than 50 mg kg-1.

  14. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    Science.gov (United States)

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  15. Charge exchange of a polar molecule at its cation

    International Nuclear Information System (INIS)

    The Landau-Herring method is used to derive an analytic expression for the one-electron exchange interaction of a polar molecule with its positively charged ion, induced by a σ-electron. Analogously to the classical Van der Pole method, the exchange interaction potential is averaged over the rotational states of colliding particles. The resonant charge-transfer cross section is calculated, and the effect of the dipole moments of the core on the cross section is analyzed. It is shown that allowance for the dependence of the exchange potential on the orientation of the dipole moments relative to the molecular axis may change the dependence of the cross section on the velocity of colliding particles, which is typical of the resonant charge exchange, from the resonance to the quasi-resonance dependence.

  16. Synthesis, dehydration studies, and cation-exchange behavior of a new phase of niobium(V) phosphate

    International Nuclear Information System (INIS)

    Twenty-three samples of niobium(V) phosphate have been synthesized under different conditions using niobium sulfate and phosphoric acid solutions. The amorphous sample having the ion-exchange capacity of 1.06 mEq g-1 and niobium to phosphorus mole ratio of 0.670 was studied in detail for its cation-exchange behavior. Molar distribution coefficients for 25 cations have been studied on this gel at pH 1,2,3, and 5.5. Four quantitative separations of Mg2+-Ca2+, Mg2+-Ba2+, Zn2+-Cd2+, and Bi3+-Zn2+ have successfully been achieved on it. The properties of this sample have been compared with those of niobium arsenate, niobium antimonate, and niobium molybdate. A tentative structural formula is proposed for this sample of niobium phosphate on the basis of chemical composition, cation-exchange capacity, pH-titration, IR spectra, T.G.A., water absorption, and heat treatment data. (author)

  17. Ergot alkaloids in rye flour determined by solid-phase cation-exchange and high-pressure liquid chromatography with fluorescence detection

    DEFF Research Database (Denmark)

    Storm, Ida Marie Lindhardt Drejer; Rasmussen, Peter Have; Strobel, B.W.;

    2008-01-01

    Ergot alkaloids are mycotoxins that are undesirable contaminants of cereal products, particularly rye. A method was developed employing clean-up by cation-exchange solid-phase extraction, separation by high-performance liquid chromatography under alkaline conditions and fluorescence detection. It...

  18. Sulfonation Process and Desalination Effect of Polystyrene/PVDF Semi-Interpenetrating Polymer Network Cation Exchange Membrane

    OpenAIRE

    Yin-lin Lei; Yun-jie Luo; Fei Chen; Le-he Mei

    2014-01-01

    With the classical sulfonation method of polystyrene-based strongly acidic cation exchange resins, polystyrene/polyvinylidene fluoride (PVDF) alloy particles were sulfonated to obtain a cation exchange resin, which was then directly thermoformed to prepare a semi-interpenetrating polymer network (semi-IPN) cation exchange membrane. The effects of the swelling agent, sulfonation time and temperature and the relative contents of polystyrene and divinylbenzene (DVB) in the alloy particles on the...

  19. Electrophoretic preconcentration and separation of cationic labeled saccharides

    Czech Academy of Sciences Publication Activity Database

    Partyka, Jan; Foret, František

    Grupo VLS Print Solution, 2014 - (Guzman, N.; Taveres, M.). s. 97-97 [International Symposium on Electro- and Liquid Phase-Separation Techniques /21./ and Latin-American Symposium on Biotechnology, Biomedical, Biopharmaceutical, and Industrial Applications of Capillary Electrophoresis and Microchip Technology /21./. 04.10.2014-08.10.2014, Natal] R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081715 Keywords : saccharide * AETMA * electrophoresis Subject RIV: CB - Analytical Chemistry, Separation

  20. Separation of boron isotopes using NMG type anion exchange resin

    International Nuclear Information System (INIS)

    Ion exchange separation of boron isotopes (B-10 and B-11) has been studied by using a special boron selective ion exchange resin; NMG (n-methyl glucamine)-type anion exchange resin. The resin has shown a large isotope separation coefficient of 1.02 at the experimental conditions of temperature, 80degC, and boric acid concentration, 0.2 M (mole/dm3). Enriched B-10 (92%) was obtained after the migration of 1149 m by a recyclic operation of ion exchange columns in a merry-go-round method. (author)

  1. Sulfonation Process and Desalination Effect of Polystyrene/PVDF Semi-Interpenetrating Polymer Network Cation Exchange Membrane

    Directory of Open Access Journals (Sweden)

    Yin-lin Lei

    2014-07-01

    Full Text Available With the classical sulfonation method of polystyrene-based strongly acidic cation exchange resins, polystyrene/polyvinylidene fluoride (PVDF alloy particles were sulfonated to obtain a cation exchange resin, which was then directly thermoformed to prepare a semi-interpenetrating polymer network (semi-IPN cation exchange membrane. The effects of the swelling agent, sulfonation time and temperature and the relative contents of polystyrene and divinylbenzene (DVB in the alloy particles on the feasibility of the membrane formation are discussed. The results indicate that a favorable sulfonation degree above 80% and a suitable ion exchange capacity of 1.5–2.4 mmol/g can be gained, with concentrated sulfuric acid as the sulfonation agent and 1,2-dichloroethane as the swelling agent. The running electrical resistance and desalination effect of the prepared cation exchange membrane were measured in a pilot-scale electrodialyser and not only obviously exceeded a commercial heterogeneous cation exchange membrane, but was also very close to a commercial homogenous membrane. In this way, the authors have combined the classical sulfonation method of polystyrene-based cation exchange resins with the traditional thermoforming manufacturing process of heterogeneous cation exchange membranes, to successfully develop a novel, low-price, but relatively high-performance polystyrene/PVDF cation exchange membrane with the semi-IPN structure.

  2. Impact of sediment-seawater cation exchange on Himalayan chemical weathering fluxes

    Science.gov (United States)

    Lupker, Maarten; France-Lanord, Christian; Lartiges, Bruno

    2016-08-01

    Continental-scale chemical weathering budgets are commonly assessed based on the flux of dissolved elements carried by large rivers to the oceans. However, the interaction between sediments and seawater in estuaries can lead to additional cation exchange fluxes that have been very poorly constrained so far. We constrained the magnitude of cation exchange fluxes from the Ganga-Brahmaputra river system based on cation exchange capacity (CEC) measurements of riverine sediments. CEC values of sediments are variable throughout the river water column as a result of hydrological sorting of minerals with depth that control grain sizes and surface area. The average CEC of the integrated sediment load of the Ganga-Brahmaputra is estimated ca. 6.5 meq 100 g-1. The cationic charge of sediments in the river is dominated by bivalent ions Ca2+ (76 %) and Mg2+ (16 %) followed by monovalent K+ (6 %) and Na+ (2 %), and the relative proportion of these ions is constant among all samples and both rivers. Assuming a total exchange of exchangeable Ca2+ for marine Na+ yields a maximal additional Ca2+ flux of 28 × 109 mol yr-1 of calcium to the ocean, which represents an increase of ca. 6 % of the actual river dissolved Ca2+ flux. In the more likely event that only a fraction of the adsorbed riverine Ca2+ is exchanged, not only for marine Na+ but also Mg2+ and K+, estuarine cation exchange for the Ganga-Brahmaputra is responsible for an additional Ca2+ flux of 23 × 109 mol yr-1, while ca. 27 × 109 mol yr-1 of Na+, 8 × 109 mol yr-1 of Mg2+ and 4 × 109 mol yr-1 of K+ are re-absorbed in the estuaries. This represents an additional riverine Ca2+ flux to the ocean of 5 % compared to the measured dissolved flux. About 15 % of the dissolved Na+ flux, 8 % of the dissolved K+ flux and 4 % of the Mg2+ are reabsorbed by the sediments in the estuaries. The impact of estuarine sediment-seawater cation exchange appears to be limited when evaluated in the context of the long-term carbon cycle and

  3. Differential enthalpy of cation exchange of alkaline metals on amorphous zirconium phosphate

    International Nuclear Information System (INIS)

    Work presents the results of calorimetric research of sorption process of alkaline metals cations on hydrogen form of amorphous zirconium phosphates. It is defined that the general regularities of passing of ion exchange reaction are the same for the samples of zirconium phosphate with different content of phosphor.

  4. Nongeminate Radiative Recombination of Free Charges in Cation-Exchanged PbS Quantum Dot Films

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Ashley R.; Beard, Matthew C.; Johnson, Justin C.

    2016-06-01

    Using photoluminescence (PL) spectroscopy we explore the radiative recombination pathways in PbS quantum dots (QDs) synthesized by two methods. We compare conventionally synthesized PbS from a PbO precursor to PbS synthesized using cation-exchange from CdS QDs. We show that strongly coupled films of PbS QDs from the cation-exchange luminesce with significant efficiency at room temperature. This is in stark contrast to conventional PbS QDs, which have exceedingly weak room temperature emission. Moreover, the power dependence of the emission is quadratic, indicating bimolecular radiative recombination that is reasonably competitive with trap-assisted recombination, a feature previously unreported in coupled PbS QD films. We interpret these results in terms of a greatly reduced defect concentration for cation-exchanged QDs that mitigates the influence of trap-assisted recombination. Cation-exchanged QDs have recently been employed in highly efficient and air-stable lead chalcogenide QD devices, and the reduced number of trap states inferred here may lead to improved current collection and higher open circuit voltage.

  5. Electrochemical ion exchanger in the water circuit to measure cation conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, Bernt; Ingemarsson, Rolf; Settervik, Gustav [Ringhals AB, Vaeroebacka (Sweden); Velin, Anna [Vattenfall Research and Development AB, Stockholm (Sweden)

    2011-03-15

    At Ringhals Nuclear Power Plant (NPP), more than four years of successful operation with a full-scale electrode ionization (EDI) unit for the recycling of steam generator blowdown gave the inspiration to modify and scale down this EDI process. As part of this project, the possibility of replacing the cation exchanger columns used for cation conductivity analysis with some small and integrated electrochemical ion exchange cells was explored. Monitoring the cation conductivity requires the use of a small cation resin column upstream of the conductivity probe and is one of the most important analyses at power plants. However, when operating with high alkaline treatment in the steam circuit, there is the disadvantage of rapid exhaustion of the resins, necessitating frequent replacement or regeneration. This causes interruptions in the monitoring and gives rise to a high workload for the maintenance staff. This paper reports on the optimization and testing of two different two-compartment electrochemical cells for possible replacement of the cation resin columns for analyzing cation conductivity in the secondary steam circuit at Ringhals NPP. Field tests during start-up conditions and more than four months of steady operation together with real and simulated tests for impurity influences indicate that an electrical ion exchange (ELIX) process could be successfully used to replace the resin columns in Ringhals while operating with high-pH all-volatile treatment (AVT) using hydrazine and ammonia. Installation of an ELIX system downstream of a particle filter and upstream of a small cation resin column will introduce additional safety and further reduce the maintenance and possible interruptions. Performance of the ELIX process together with other chemical additives (morpholine, ethanolamine, 3-methoxypropylamine, dimethylamine) and dispersants may be further evaluated to qualify the ELIX process as well as steam generator blowdown electrodeionization for wider use in

  6. Ion Exchange Separation of the Oxidation State of Vanadium.

    Science.gov (United States)

    Cornelius, Richard

    1980-01-01

    Describes an experiment that emphasizes the discrete nature of the different oxidation states of vanadium by the separation of ammonium metavanadate into all four species by ion exchange chromatography. (CS)

  7. Use of cationic polymers to reduce pathogen levels during dairy manure separation.

    Science.gov (United States)

    Liu, Zong; Carroll, Zachary S; Long, Sharon C; Gunasekaran, Sundaram; Runge, Troy

    2016-01-15

    Various separation technologies are used to deal with the enormous amounts of animal waste that large livestock operations generate. When the recycled waste stream is land applied, it is essential to lower the pathogen load to safeguard the health of livestock and humans. We investigated whether cationic polymers, used as a flocculent in the solid/liquid separation process, could reduce the pathogen indicator load in the animal waste stream. The effects of low charge density cationic polyacrylamide (CPAM) and high charge density cationic polydicyandiamide (PDCD) were investigated. Results demonstrated that CPAM was more effective than PDCD for manure coagulation and flocculation, while PDCD was more effective than CPAM in reducing the pathogen indicator loads. However, their combined use, CPAM followed by PDCD, resulted in both improved solids separation and pathogen indicator reduction. PMID:26513324

  8. Synthesis and characterization of a novel hybrid material as amphoteric ion exchanger for simultaneous removal of cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Brijesh, E-mail: brijeshshah27@gmail.com; Chudasama, Uma, E-mail: uvcres@gmail.com

    2014-07-15

    Highlights: • A novel hybrid exchanger ZrD (zirconium diethylene triamine) is synthesized for the first time. • Characterization and structure elucidation reveals that ZrD exhibits amphoteric character. • Amphoteric behaviour of ZrD is established by simultaneous removal of cations and anions. • Cations are exchanged in ZrD through chelation with nitrogen as coordinating sites. • ZrD can be regenerated and reused with not much decline in performance. - Abstract: A new hybrid chelating ion exchanger zirconium diethylene triamine (ZrD) has been synthesized by a simple sol–gel route using inexpensive and easily available chemicals. ZrD has been characterized for elemental analysis (ICP-AES, CHN analysis), TGA, FTIR, X-ray diffraction, SEM and EDX. Physical and ion exchange characteristics as well as chemical stability of the material in various media have been studied. Structural determination reveals that ZrD exhibits amphoteric character. Anion exchange capacity (AEC) for Cl{sup −}, Br{sup −}, Cr{sub 2}O{sub 7}{sup 2−}, F{sup −} and AsO{sub 4}{sup 3−} has been determined. Cations are exchanged through chelation where coordinating sites are offered by nitrogen atoms present in the amine groups of ZrD. Distribution coefficient K{sub d} for Co{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, Zn{sup 2+} (transition metal ions) and Hg{sup 2+}, Cd{sup 2+}, Pb{sup 2+} (heavy metal ions) has been evaluated by batch equilibration techniques in aqueous and various electrolyte media/concentrations. Based on α the separation factor, a few binary separations have been performed on a chromatographic column packed with ZrD. The amphoteric behaviour of ZrD has been demonstrated by simultaneous exchange of Cu{sup 2+} and Cl{sup −} in CuCl{sub 2}. A study on the regeneration and reuse of ZrD indicates that it is effective upto four cycles without much decline in performance.

  9. Studies on separation of boron isotopes by ion exchange

    International Nuclear Information System (INIS)

    Studies have been carried out for the enrichment of boron isotopes by the ion exchange method using various anion exchange resins available. The elementary separation factors and heights equivalent of theoretical plate were measured at different concentrations and flow rates. A number of experiments were performed to study the displacement of borate band on ion exchange columns. The problem of CO2 evolution during displacement was also studied and a solution was found. (author). 9 refs

  10. A Simple Apparatus for Fast Ion Exchange Separations

    International Nuclear Information System (INIS)

    An apparatus suitable for very fast ion exchange group separations in radiochemistry has been elaborated. The apparatus which consists of a system of glass tubes with pistons driven by the same force, allows the exact adjustment of influent solutions to a long series of ion-exchange columns. The practical application of the apparatus to the simultaneous separation of six groups of trace elements in the neutron activation analysis of biological material is described

  11. Competitive separation of di- vs. mono-valent cations in electrodialysis: effects of the boundary layer properties.

    Science.gov (United States)

    Kim, Younggy; Walker, W Shane; Lawler, Desmond F

    2012-05-01

    In electrodialysis desalination, the boundary layer near ion-exchange membranes is the limiting region for the overall rate of ionic separation due to concentration polarization over tens of micrometers in that layer. Under high current conditions, this sharp concentration gradient, creating substantial ionic diffusion, can drive a preferential separation for certain ions depending on their concentration and diffusivity in the solution. Thus, this study tested a hypothesis that the boundary layer affects the competitive transport between di- and mono-valent cations, which is known to be governed primarily by the partitioning with cation-exchange membranes. A laboratory-scale electrodialyzer was operated at steady state with a mixture of 10mM KCl and 10mM CaCl(2) at various flow rates. Increased flows increased the relative calcium transport. A two-dimensional model was built with analytical solutions of the Nernst-Planck equation. In the model, the boundary layer thickness was considered as a random variable defined with three statistical parameters: mean, standard deviation, and correlation coefficient between the thicknesses of the two boundary layers facing across a spacer. Model simulations with the Monte Carlo method found that a greater calcium separation was achieved with a smaller mean, greater standard deviation, or more negative correlation coefficient. The model and experimental results were compared for the cationic transport number as well as the current and potential relationship. The mean boundary layer thickness was found to decrease from 40 to less than 10 μm as the superficial water velocity increased from 1.06 to 4.24 cm/s. The standard deviation was greater than the mean thickness at slower water velocities and smaller at faster water velocities. PMID:22336628

  12. Chemical exchange equilibria in isotope separation. Part I : Evaluation of separation factors

    International Nuclear Information System (INIS)

    The theory of chemical exchange equilibria as applied to the isotope separation processes and the isotope effects on equilibrium constants of different exchange reactions has come a long way since its inception by Urey and Rittenberg. An attempt has been made to bring relevant information together and present a unified approach to isotopic chemical exchange equilibrium constant evaluation and its implications to separation processes. (auth.)

  13. Cation exchange resin immobilized bimetallic nickel-iron nanoparticles to facilitate their application in pollutants degradation.

    Science.gov (United States)

    Ni, Shou-Qing; Yang, Ning

    2014-04-15

    Nanoscale zerovalent iron (nZVI) usually suffers from reduction of reactivity by aggregation, difficulty of assembling, environmental release and health concerns. Furthermore, data are lacking on the effect of cheap nickel on debromination of decabromodiphenyl ether (DBDE) by immobilized nZVI in aqueous system. In this study, strong acid polystyrene cation-exchange resins with particle diameter from 0.4 to 0.6 mm were utilized as matrices to immobilize bimetallic nickel-iron nanoparticles in order to minimize aggregation and environmental leakage risks of nZVI and to enhance their reactivity. Elemental distribution mapping showed that iron particles distributed uniformly on the surface of the resin and nickel particles were dispersed homogeneously into Fe phase. The reaction rate of resin-bound nZVI is about 55% higher than that of dispersed nZVI. The immobilized bimetallic nanoparticles with 9.69% Ni had the highest debromination percent (96%) and reaction rate (0.493 1/h). The existence of Ni significantly improved the debromination rate, due to the surface coverage of catalytic metal on the reductive metal and the formation of a galvanic cell. The environmental dominant congeners, such as BDE 154, 153, 100, 99 and 47, were produced during the process. Outstanding reactive performance, along with magnetic separation assured that resin-bound bimetallic nickel-iron nanoparticles are promising material that can be utilized to remediate a wide variety of pollutants contaminated sites including polybrominated diphenyl ethers. PMID:24559714

  14. Comparison of Phosphoproteomic Separation Strategies Based on Strong Cation Exchange Chromatography-Isoelectric Focusing Techniques%基于强阳离子交换色谱与等电聚焦的磷酸化蛋白质组学分离策略比较

    Institute of Scientific and Technical Information of China (English)

    隋少卉; 董俊军; 王京兰; 蔡耘; 钱小红

    2012-01-01

    Efficient pre-purification steps for the enrichment of phosphorylated proteins or phos-phopeptides are necessary for better detection of phosphorylation sites in phosphoproteomic analysis. Currently, the most common first-dimensional separation technique used is strong cation exchange (SCX). A potential alternative to SCX-based separation is to use isoelectric focusing (IEF) as a first-dimensional separation technique, which has been demonstrated recently. In this study, we present a direct comparison between SCX and IEF based on IPG strips (IPG-IEF) for the phosphoproteomic separation. The comparison experiments discussed in this study utilized standard phosphoproteins and a real sample of HepG2 cell. Then the comparison of 18O labeling phosphopeptides' stability under immobilized pH gradient gel (IPG)-IEF with under SCX was made. Fractions from both technique (SCX and IPG-IEF) were analyzed using the High Mass Accuracy LTQ-FTICR-MS/MS. The results demonstrate that SCX-LTQ-FT and IPG-IEF-LTQ-FT are useful in the phosphopeptides enrichment analysis on a large scale. And SCX-LTQ-FT is relative superior to IPG-IEF-LTQ-FT, whereas the 18 O labeling phosphopeptides'stability under SCX-LTQ-FT is relatively poor with that under IPG-IEF-LTQ-FT.%比较分析了强阳离子交换(SCX)与等电聚焦(IPG-IEF)技术在磷酸化蛋白质组学中的应用.采用3种标准磷酸化蛋白对SCX与IPG-IEF两种技术对磷酸化肽段富集的有效性进行考察.以HepG2细胞为复杂样本,考察SCX与IPG-IEF在实际样本中的应用情况.对SCX与IPG-IEF技术在18O标记的磷酸化蛋白质组定量研究中的应用情况进行考察.蛋白鉴定采用高准确度、高灵敏度、高分辨率的LTQ-FTICR-MS/MS质谱仪.实验表明:SCX和IPG- IEF在大规模磷酸化肽段分离过程中均有效;在复杂样本中,SCX技术的分离效果优于IPG- IEF; IPG- IEF的重复性好于SCX;在磷酸化蛋白质组定量分析结果表明,IPG-IEF技术的稳定性优

  15. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals

    CERN Document Server

    Tu, Renyong; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; De Trizio, Luca; Manna, Liberato

    2016-01-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e. with coordination number 4), such as Cd2+ or Hg2+, yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd2+ and Hg2+ ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2- xTe particles could be more easily deformed to match the anion framework of t...

  16. Electrochemical ion exchanger in the water circuit to measure cation conductivity

    International Nuclear Information System (INIS)

    In Ringhals NPP, more than four years of successful operation with a full-scale EDI for the recycling of steam generator blow down (SGBD) gave the inspiration to modify and 'scale down' this EDI process. This with purpose to explore the possibilities to replace the cation exchanger columns used for cation conductivity analysis, with some small and integrated electrochemical ion-exchange cells. Monitoring the cation conductivity requires the use of a small cation resin column upstream of the conductivity probe and is one of the most important analyses at power plants. However, when operating with high alkaline treatment in the steam circuit, it's connected to the disadvantage of getting the resins rapidly exhausted, with needs to be frequently replaced or regenerated. This is causing interruptions in the monitoring and giving rise to high workload for the maintenance. This paper reports about some optimization and tests of two different two-compartment electrochemical cells for the possible replacements of cation resin columns when analyzing cation conductivity in the secondary steam circuit at Ringhals NPPs. Field tests during start up condition and more than four months of steady operation together with real and simulated test for impurity influences, indicates that a ELectrical Ion Echange process (ELIX) could be successfully used to replace the resin columns in Ringhals during operating with high pH-AVT (All Volatile Treatment), using hydrazine and ammonia. Installation of an ELIX-system downstream a particle filter and upstream of a small cation resin column, will introduce additional safety and further reduce the maintenance with possible interruptions. Performance of the ELIX-process together with other chemical additives (Morpholine, ETA, MPA, DMA) and dispersants, may be further evaluated to qualify the ELIX-process as well as SGBD-EDI for wider use in nuclear applications. (author)

  17. Selective separation of actinyl(V,VI) cations from aqueous solutions by Chelex-100

    Energy Technology Data Exchange (ETDEWEB)

    Kiliari, T.; Pashalidis, I. [Cyprus Univ., Nicosia (Cyprus). Chemistry Dept.

    2012-07-01

    Experimental studies on the selectivity of Chelex-100 resin for the separation of actinide cations at different oxidation states (III, IV, V and VI) from aqueous solution have shown that Chelex-100 presents increased selectivity for actinyl cations at near neutral pH (pH {proportional_to} 4.5). The effect of salinity on the chemical recovery indicates that the increased selectivity could be attributed to the formation of complexes with specific interactions and the pH area, in which the formation of the respective complexes is favored, indicates the occurrence of guest-host interactions. The specific interaction of Chelex-100 with actinyl cations could be of particular interest not only for the separation and preconcentration of uranium from natural waters prior its analysis but also for the recovery of uranium from seawater on a large scale. (orig.)

  18. Separation of organic ion exchange resins from sludge - engineering study

    International Nuclear Information System (INIS)

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation

  19. Separation of organic ion exchange resins from sludge -- engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.B.

    1998-08-25

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.

  20. Electronic phase separation in the pyrochlore double-exchange model

    OpenAIRE

    Motome, Yukitoshi; Furukawa, Nobuo

    2010-01-01

    Electronic phase separation and related inhomogeneity is ubiquitously seen in strongly-correlated systems. A typical example is found between ferromagnetic metal and antiferromagnetic insulator in CMR manganese oxides. Here we demonstrate that the geometrical frustration brings distinctive aspects into the phase separation phenomena. From Monte Carlo simulation and a simple energy comparison for the pyrochlore double-exchange model, we show that such phase separation takes place between ferro...

  1. Evaluation of chelation concentration and cation separation of actinides at ultra-trace levels in urine matrix

    International Nuclear Information System (INIS)

    The feasibility of measuring picogram levels of actinides in a urine matrix using ion chromatography coupled on-line to an inductively coupled plasma quadrupole mass spectrometer (IC-Q-ICPMS) was investigated. A chelation column for separation of matrix ions and preconcentration of the actinides was combined with a cation-exchange column for separation of the actinides. Sample preparation required simple addition of ammonium acetate to adjust the pH of the urine matrix. Spike solutions containing 232Th, 237Np, 238U, 239Pu, and 241Am were added to undiluted urine, diluted urine (1 : 9) and water. This approach enhanced the signal sensitivities of all the tested actinides over two orders of magnitude in the water matrix, while certain elements (especially Am) can still be effectively concentrated in undiluted urine. (author)

  2. Alternative separation of exchange and correlation energies in range-separated density-functional perturbation theory

    DEFF Research Database (Denmark)

    Cornaton, Y.; Stoyanova, A.; Jensen, Hans Jørgen Aagaard; Fromager, E.

    2013-01-01

    An alternative separation of short-range exchange and correlation energies is used in the framework of second-order range-separated density-functional perturbation theory. This alternative separation was initially proposed by Toulouse and relies on a long-range-interacting wave function instead o...

  3. Radiation stability of macro-porous and gel-type cation exchangers

    International Nuclear Information System (INIS)

    Macro-porous cation exchange resin Dianion CPK-08 and gel-type cation exchange resin Dowex 50WX8 were irradiated with γ-rays from 60Co, while soaked in distilled water, 0.5 M HNO3 or 4 M HNO3, and the ion-exchange properties, such as strong- and weak-acid capacities, moisture content and wet resin volume, were examined in relation to absorbed dose. There was no appreciable difference between the radiation stabilities of the two cation exchangers. Increase of HNO3 concentration reduced the loss of strong-acid capacity and increased the decross-linkage and the weak-acid capacity. Elution characteristics of 137Cs and 99Sr from columns packed with γ-irradiated resin were examined and the column distribution ratio of these radionuclides and the theoretical plate number were calculated. These values decreased with the increase of absorbed dose. Dianion CPK-08 was packed into a pressurized column and irradiated with γ-rays at a dose rate of 2x1O6 R/hr, while water was passed through the column at a constant flow rate. The greatest change in the resin properties was observed at an upper stream position from the position of the highest radiation dose of 2x106 R/hr. (T.G.)

  4. Exchange of interlayer cations in micaceous minerals. Progress report, August 1, 1974--July 31, 1975

    International Nuclear Information System (INIS)

    Information pertaining to the sorption and exchange of interlayer cations in micaceous minerals was developed along several lines. Cs sorption experiments with different minerals and particle sizes established the periods required for maximum sorption at different temperatures and downgraded the impact anticipated from a contraction of particle edges by Cs. Added interlayer Cs in even highly charged minerals (degraded muscovite) proved to be very exchangeable in air-dry, clay size particles. Heat treatments greatly retarded the exchange of this sorbed Cs and by doing so have circumvented the commonly observed small particle effects. Structural Fe in micas was shown to be susceptible to oxidation by various Br2 treatments but these treatments also removed a lot of K that must be accounted for in a determination of changes in interlayer K exchangeability. Changes in the rate of interlayer K exchange were induced in some micaceous minerals by adding H2O2 but not in others. Specific effects of heat treatments on dioctahedral and trioctahedral micas were examined in great detail. Interlayer cation exchange experiments with different concentrations of Na and Al have produced predictable results. (U.S.)

  5. Ionic liquid synergistic cation-exchange system for the selective extraction of lanthanum(III) using 2-thenoyltrifluoroacetone and 18-crown-6.

    Science.gov (United States)

    Hirayama, Naoki; Okamura, Hiroyuki; Kidani, Keiji; Imura, Hisanori

    2008-06-01

    A novel synergistic extraction system was investigated for the possible selective separation of light lanthanoids using an ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, as an extraction solvent and 2-thenoyltrifluoroacetone and 18-crown-6 as extractants. Trivalent lanthanum was efficiently extracted as a cationic ternary complex by the cation-exchange process, whereas europium and lutetium showed relatively low extractability without forming respective ternary complexes. This result is thought to originate in a size-fitting effect of 18-crown-6 to lanthanum and the unique nature of the ionic liquid as a chelate extraction solvent. PMID:18544855

  6. Effect of Simulated N Deposition on Soil Exchangeable Cations in Three Forest Types of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    LU Xian-Kai; MO Jiang-Ming; P.GUNDERSERN; ZHU Wei-Xing; ZHOU Guo-Yi; LI De-Jun; ZHANG Xu

    2009-01-01

    The effects of simulated nitrogen (N) deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen broadleaf forest (mature forest):control (0 kg N ha-1 year-1),low N (50 kg N ha-1 year-1),medium N (100 kg N ha-1 year-1) and high N (150 kg N ha-1 ycar-1),and only three treatments (i.e.,control,low N,medium N) were established for the pine and mixed forests.Nitrogen had been applied continuously for 26 months before the measurement.The mature forest responded more rapidly and intensively to N additions than the pine and mixed forests,and exhibited some significant negative symptoms,e.g.,soil acidification,Al mobilization and leaching of base cations from soil.The pine and mixed forests responded slowly to N additions and exhibited no significant response of soil cations.Response of soil exchangeable cations to N deposition varied in the forests of subtropical China,depending on soil N status and land-nse history.

  7. Cationic Covalent Organic Frameworks: A Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction.

    Science.gov (United States)

    Ma, Heping; Liu, Bailing; Li, Bin; Zhang, Liming; Li, Yang-Guang; Tan, Hua-Qiao; Zang, Hong-Ying; Zhu, Guangshan

    2016-05-11

    Mimicking proton conduction mechanism of Nafion to construct novel proton-conducting materials with low cost and high proton conductivity is of wide interest. Herein, we have designed and synthesized a cationic covalent organic framework with high thermal and chemical stability by combining a cationic monomer, ethidium bromide (EB) (3,8-diamino-5-ethyl-6-phenylphenanthridinium bromide), with 1,3,5-triformylphloroglucinol (TFP) in Schiff base reactions. This is the first time that the stable cationic crystalline frameworks allowed for the fabrication of a series of charged COFs (EB-COF:X, X = F, Cl, Br, I) through ion exchange processes. Exchange of the extra framework ions can finely modulate the COFs' porosity and pore sizes at nanoscale. More importantly, by introducing PW12O40(3-) into this porous cationic framework, we can greatly enhance the proton conductivity of ionic COF-based material. To the best of our knowledge, EB-COF:PW12 shows the best proton conductivity at room temperature among ever reported porous organic materials. PMID:27094048

  8. Enhanced separation of Compound Xueshuantong capsule using functionalized carbon nanotubes with cationic surfactant solutions in MEEKC.

    Science.gov (United States)

    Cao, Jun; Li, Ping; Chen, Jue; Tan, Ting; Dai, Han-Bin

    2013-01-01

    A novel additive of multi-walled carbon nanotubes (MWNTs) dispersed with cationic surfactants or mixed cationic/anionic surfactants was used for MEEKC separation of eight phenolic compounds, four glycosides, and one phenanthraquinone. In this context, several parameters affecting MEEKC separation were studied, including the dispersion agents of MWNTs, MWNTs content, oil type, SDS concentration, and the type and concentration of cosurfactant. Compared with conventional MEEKC, the addition of all types of MWNTs dispersions using single or mixed cationic surfactant solutions in running buffers was especially useful for improving the separation of solutes tested, as they influenced the partitioning between the oil droplets and aqueous phase due to the exceptional electrical properties and large surface areas of MWNTs. Use of cationic surfactant-coated MWNTs (6.4 μg/mL) as the additive in a microemulsion buffer (0.5% octanol, 2.8% SDS, 5.8% isopropanol, and 5 mM borate buffer) yielded complete resolution of 13 analytes. The proposed method has been successfully applied for the detection and quantification of the studied compounds in a complex matrix sample (Compound Xueshuantong capsule). PMID:23161282

  9. Gift exchange and the separation of ownership and control

    OpenAIRE

    Maximiano, S.; Sloof, R.; Sonnemans, J.

    2013-01-01

    Numerous gift exchange experiments have found a positive relationship between employers' wage offers and workers' effort levels. In (almost) all these experiments the employer both owns and controls the firm. Yet in reality many firms are characterized by the separation of ownership and control. In this paper we explore to what extent this affects the wage-effort relationship observed. We compare the standard bilateral gift exchange game between an owner-manager and a worker with two trilater...

  10. Effects of Experimental Conditions on Extraction Yield of Extracellular Polymeric Substances by Cation Exchange Resin

    OpenAIRE

    Jinwoo Cho; Hermanowicz, Slawomir W; Jin Hur

    2012-01-01

    Effects of experimental conditions on the yield of extracellular polymeric substances (EPSs) extraction by cation exchange resin (CER) were investigated using activated sludge flocs. The experimental variables included resin dose, extraction time, sample dilution, and storage time. An empirical model was proposed to describe the kinetics of extraction process. The extraction yield increases with the extraction time and CER dose until it reached the maximum amount of EPS extraction. The maximu...

  11. Cation-exchange membranes: comparison of homopolymer, block copolymer, and heterogeneous membranes

    Czech Academy of Sciences Publication Activity Database

    Schauer, Jan; Llanos, J.; Žitka, Jan; Hnát, J.; Bouzek, K.

    2012-01-01

    Roč. 124, SI 1 (2012), E66-E72. ISSN 0021-8995 R&D Projects: GA MŠk(CZ) 7E08005 EU Projects: European Commission(XE) 212903 - WELTEMP Institutional research plan: CEZ:AV0Z40500505 Keywords : cation-exchange membranes * poly(phenylene oxide) * poly(ether ketones) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.395, year: 2012

  12. Method of producing weakly acidic cation exchange resin particles charged with uranyl ions

    Energy Technology Data Exchange (ETDEWEB)

    Abdelmonem, N.; Ringel, H.; Zimmer, E.

    1981-07-21

    Weakly acidic cationic ion exchange resin particles are charged with uranyl ions by contacting the particles step wise with aqueous uranyl nitrate solution at higher uranium concentrations from stage to stage. An alkaline medium is added to the uranyl nitrate solution in each stage to increase the successive pH values of the uranyl nitrate solution contacting the particles in dependence upon the uranium concentration effective for maximum charging of the particles with uranyl ions.

  13. Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures

    Science.gov (United States)

    Allen, E. R.; Hossner, L. R.; Ming, D. W.; Henninger, D. L.

    1993-01-01

    Mixtures of zeolite and phosphate rock (PR) have the potential to provide slow-release fertilization of plants in synthetic soils by dissolution and ion-exchange reactions. This study was conducted to examine solubility and cation-exchange relationships in mixtures of PR and NH4- and K-saturated clinoptilolite (Cp). Batch-equilibration experiments were designed to investigate the effect of PR source, the proportion of exchangeable K and NH4, and the Cp to PR ratio on solution N, P, K, and Ca concentrations. The dissolution and cation-exchange reactions that occurred after mixing NH4- and K-saturated Cp with PR increased the solubility of the PR and simultaneously released NH4 and K into solution. The more reactive North Carolina (NC) PR rendered higher solution concentrations of NH4 and K when mixed with Cp than did Tennessee (TN) PR. Solution P concentrations for the Cp-NC PR mixture and the Cp-TN PR mixture were similar. Solution concentrations of N, P, K, and Ca and the ratios of these nutrients in solution varied predictably with the type of PR, the Cp/PR ratio, and the proportions of exchangeable K and NH4 on the Cp. Our research indicated that slow-release fertilization using Cp/PR media may provide adequate levels of N, P, and K to support plant growth. Solution Ca concentrations were lower than optimum for plant growth.

  14. Some investigations on the radiation stability of a strongly acidic cation exchange resin

    Science.gov (United States)

    Dessouki, A. M.; Zahran, A. H.; Rabie, A. M.; Amer, S. I.

    The radiation-chemical stability of Merck Cation Exchanger I, a strongly acidic sulphonated cation exchanger of the polymerization type based on styrene-divinylbenze (DVB) copolymers was investigated. The radiation stability of the resin was assessed from the change in exchange capacity, loss in weight, change in swelling behaviour and formation of new exchange groups. The loss in capacity was 44 and 32% for resin specimens in the H +-form irradiated to 1000 Mrad in air and in vacuum, respectively. The Na +-form of the exchanger showed high resistance to radiation and the loss in capacity did not exceed 7% at a dose of 1000 Mrad. The loss in capacity was accompanied by a loss in weight and a decrease in the degree of swelling of the irradiated resin. The formation of new functional groups of the carboxylic and phenolic types was confirmed. The amount of these group increases with the increase in the integral dose. The amount of sulphuric acid formed as a result of irradiating the resin in the dry and moist states was determined. An increase in the moisture content of the resin resulted in a marked decrease in its radiation stability.

  15. Exchangeable cation composition of the smectite-rich plate boundary fault at the Japan Trench

    Science.gov (United States)

    Kameda, Jun; Inaoi, Chisaki; Conin, Marianne

    2016-04-01

    To better understand physicochemical processes in smectite-rich fault zones, we examined exchangeable cation composition of samples from the slip zone of the 2011 Tohoku-oki earthquake (Mw9.0) recovered by the Integrated Ocean Drilling Program Expedition 343. Our chemical analyses revealed that the exchangeable Ca2+ and Mg2+ are enriched in the slip zone, while Na+ is depleted. K+ shows a complicated depth profile probably due to K fixation. Based on fluid chemistry data, we estimated apparent selectivity coefficients of exchange reactions in the ternary Ca2+-Mg2+-Na+ system. The results suggest that the Na+ to Mg2+ exchange reaction on smectite might have progressed in the slip zone. One explanation for this feature is local progress of the reaction triggered by coseismic thermogenesis during the earthquake. Considering that the frictional property of smectite gouge is dependent on the exchangeable cation composition, chemical processes as observed in this study are intimately linked to physical aspect of smectite-bearing faults.

  16. Separation of B-10 with weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    In the study of B-10 isotope separation with weakly basic anion exchanger, the sorption isotherms of boric acid on WA-21 weak-base anion exchange resin and the sorption band shapes as well as its migration velocities in a four-inch diameter ion exchange column, were studied. The isotherms show S-shapes with gentle slope at both low concentration and high concentration regions. In the band migration study, it has been found that these S-shaped isotherms affected the velocities of the peak maximum as the band migrated along the column. The velocities could be calculated with the simple solute movement equation. These results suggest that sorption of molecular species, rather than ion exchange of the counterions is the main process that occurs inside the pores of a weak-base ion exchange resin which is in contact with a very weak electrolytic solution, such as that of boric acid. (author)

  17. Cation Exchange in Dynamic 3D Porous Magnets: Improvement of the Physical Properties.

    Science.gov (United States)

    Grancha, Thais; Acosta, Alvaro; Cano, Joan; Ferrando-Soria, Jesús; Seoane, Beatriz; Gascon, Jorge; Pasán, Jorge; Armentano, Donatella; Pardo, Emilio

    2015-11-16

    We report two novel three-dimensional porous coordination polymers (PCPs) of formulas Li4{Mn4[Cu2(Me3mpba)2]3}·68H2O (2) and K4{Mn4[Cu2(Me3mpba)2]3}·69H2O (3) obtained-via alkali cation exchange in a single-crystal to single-crystal process-from the earlier reported anionic manganese(II)-copper(II) PCP of formula Na4{Mn4[Cu2(Me3mpba)2]3}·60H2O (1) [Me3mpba(4-) = N,N'-2,4,6-trimethyl-1,3-phenylenebis(oxamate)]. This postsynthetic process succeeds where the direct synthesis in solution from the corresponding building blocks fails and affords significantly more robust PCPs with enhanced magnetic properties [long-range 3D magnetic ordering temperatures for the dehydrated phases (1'-3') of 2.0 (1'), 12.0 (2'), and 20.0 K (3')]. Changes in the adsorptive properties upon postsynthetic exchange suggest that the nature, electrostatic properties, mobility, and location of the cations within the framework are crucial for the enhanced structural stability. Overall, these results further confirm the potential of postsynthetic methods (including cation exchange) to obtain PCPs with novel or enhanced physical properties while maintaining unaltered their open-framework structures. PMID:26492551

  18. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    Science.gov (United States)

    Binetti, Enrico; Striccoli, Marinella; Sibillano, Teresa; Giannini, Cinzia; Brescia, Rosaria; Falqui, Andrea; Comparelli, Roberto; Corricelli, Michela; Tommasi, Raffaele; Agostiano, Angela; Curri, M. Lucia

    2015-10-01

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700-850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices.

  19. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    KAUST Repository

    Binetti, Enrico

    2015-10-27

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices.

  20. Esterification of oleic acid with ethanol catalyzed by sulfonated cation exchange resin: Experimental and kinetic studies

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Esterification of oleic acid with ethanol was investigated in the presence of sulfonated cation exchange resin. • We studied kinetic model of the esterification of oleic acid with ethanol according to experimental data. • The proposed kinetic model can well predict oleic acid conversion. - Abstract: This paper investigated the effects of ethanol to oleic acid molar ratio, reaction temperature, catalyst loading, water content and catalyst recycling on sulfonated cation exchange resin in a stirred batch reactor under atmospheric pressure. When the esterification was carried out with an ethanol to oleic acid (42.4 g) molar ratio of 9:1, reflux of ethanol at 82 °C, 20 g of catalyst and 8 h of reaction time, the oleic acid conversion rate reached approximately 93%. A pseudo-homogeneous kinetic model for describing the esterification of oleic acid with ethanol by the sulfonated cation exchange resin was developed on the basis of laboratorial results. The kinetic model can well predict the oleic acid conversion

  1. Resonant indirect exchange via spatially separated two-dimensional channel

    International Nuclear Information System (INIS)

    We apply the resonant indirect exchange interaction theory to explain the ferromagnetic properties of the hybrid heterostructure consisting of a InGaAs-based quantum well (QW) sandwiched between GaAs barriers with spatially separated Mn δ-layer. The experimentally obtained dependence of the Curie temperature on the QW depth exhibits a peak related to the region of resonant indirect exchange. We suggest the theoretical explanation and a fit to this dependence as a result of the two contributions to ferromagnetism—the intralayer contribution and the resonant exchange contribution provided by the QW

  2. Resonant indirect exchange via spatially separated two-dimensional channel

    Energy Technology Data Exchange (ETDEWEB)

    Rozhansky, I. V., E-mail: rozhansky@gmail.com [Ioffe Institute, 194021 St. Petersburg (Russian Federation); Lappeenranta University of Technology, FI-53851 Lappeenranta (Finland); Peter the Great Saint-Petersburg Polytechnic University, 195251 St. Petersburg (Russian Federation); Krainov, I. V.; Averkiev, N. S. [Ioffe Institute, 194021 St. Petersburg (Russian Federation); Aronzon, B. A. [P.N. Lebedev Physical Institute, 119991 Moscow (Russian Federation); National Research Centre “Kurchatov Institute,” 123182 Moscow (Russian Federation); Davydov, A. B. [P.N. Lebedev Physical Institute, 119991 Moscow (Russian Federation); Kugel, K. I. [Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Tripathi, V. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Lähderanta, E. [Lappeenranta University of Technology, FI-53851 Lappeenranta (Finland)

    2015-06-22

    We apply the resonant indirect exchange interaction theory to explain the ferromagnetic properties of the hybrid heterostructure consisting of a InGaAs-based quantum well (QW) sandwiched between GaAs barriers with spatially separated Mn δ-layer. The experimentally obtained dependence of the Curie temperature on the QW depth exhibits a peak related to the region of resonant indirect exchange. We suggest the theoretical explanation and a fit to this dependence as a result of the two contributions to ferromagnetism—the intralayer contribution and the resonant exchange contribution provided by the QW.

  3. Improvement of the thermochemical water splitting IS process by an electrochemical cell using a cation exchange membrane

    International Nuclear Information System (INIS)

    One of the key reactions for efficient hydrogen production through the water splitting IS (Iodine-Sulfur) process is the Bunsen reaction (SO2 + I2 + 2H2O = H2SO4 + 2HI). The Bunsen reaction was examined by an electrochemical cell featuring a cation exchange membrane as the separator, using sulfuric acid dissolving sulfur dioxide as the anolyte hydriodic acid dissolving iodine as the catholyte. In galvanostatic electrolysis, molality of H2SO4 in the anolyte and that of HI in the catholyte were increased up to 17.8 mol kg-H2O-1 and 14.9 mol kg-H2O-1 at I2/HI=1, respectively. These concentrations were far higher than the reported ones that were obtained by the Bunsen reaction carried out in the presence of large amount of iodine (e.g. I2/HI=4). The optimal concentrations of anolyte and catholyte were discussed by changing only one parameter. I2/HI ratio had little effects on the required total voltage suggesting that lower I2 concentration is desired for the efficient operation. H2SO4 concentration was found to be lower than 16 mol kg-H2O2-1 for anolyte. One of the important parameter that should be corrected was water content of the cation exchange membrane during the experimental especially for the higher concentrations of anolyte and catholyte. (author)

  4. Probing the Complementarity of FAIMS and Strong Cation Exchange Chromatography in Shotgun Proteomics

    Science.gov (United States)

    Creese, Andrew J.; Shimwell, Neil J.; Larkins, Katherine P. B.; Heath, John K.; Cooper, Helen J.

    2013-03-01

    High field asymmetric waveform ion mobility spectrometry (FAIMS), also known as differential ion mobility spectrometry, coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS) offers benefits for the analysis of complex proteomics samples. Advantages include increased dynamic range, increased signal-to-noise, and reduced interference from ions of similar m/ z. FAIMS also separates isomers and positional variants. An alternative, and more established, method of reducing sample complexity is prefractionation by use of strong cation exchange chromatography. Here, we have compared SCX-LC-MS/MS with LC-FAIMS-MS/MS for the identification of peptides and proteins from whole cell lysates from the breast carcinoma SUM52 cell line. Two FAIMS approaches are considered: (1) multiple compensation voltages within a single LC-MS/MS analysis (internal stepping) and (2) repeat LC-MS/MS analyses at different and fixed compensation voltages (external stepping). We also consider the consequence of the fragmentation method (electron transfer dissociation or collision-induced dissociation) on the workflow performance. The external stepping approach resulted in a greater number of protein and peptide identifications than the internal stepping approach for both ETD and CID MS/MS, suggesting that this should be the method of choice for FAIMS proteomics experiments. The overlap in protein identifications from the SCX method and the external FAIMS method was ~25 % for both ETD and CID, and for peptides was less than 20 %. The lack of overlap between FAIMS and SCX highlights the complementarity of the two techniques. Charge state analysis of the peptide assignments showed that the FAIMS approach identified a much greater proportion of triply-charged ions.

  5. Synthesis and characterization of a new inorganic cation-exchanger-Zr(IV) tungstomolybdate: Analytical applications for metal content determination in real sample and synthetic mixture

    International Nuclear Information System (INIS)

    An amorphous sample of inorganic cation-exchanger Zr(IV) tungstomolybdate was prepared by mixing varying ratios of 0.1 M aqueous solution of sodium tungstate and 0.1 M aqueous solution of sodium molybdate into 0.1 M aqueous solution of zirconium oxychloride at pH 1. This cation-exchanger was found to have a good ion-exchange capacity (2.40 mequiv. g-1 for Na+), high thermal and chemical stability. A tentative structural formula was proposed on the basis of chemical composition, FTIR and thermogravimetric analysis. Distribution coefficients (K d) values of metal ions in various solvent systems were determined. Some important and analytically difficult quantitative binary separations viz. Ni(II)-Pb(II), Ni(II)-Zn(II), Ni(II)-Cd(II), Mg(II)-Al(III), etc. were achieved. The practical applicability of the cation-exchanger was demonstrated in the separation of Cu(II)-Zn(II) from a synthetic mixture as well as from real samples of pharmaceutical formulation and brass alloy

  6. CATION-EXCHANGE MEMBRANES WITH POLYANILINE SURFACE LAYER FOR WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Dinar Dilshatovich Fazullin

    2014-01-01

    Full Text Available Ion-exchange membranes are widely used in modern technologies, particularly in the field of water treatment and make it possible to considerably reduce expenses for wastewater treatment and ensure high degree of purification. Currently, perfluorinated sulfated proton-conducting membranes are often used, such as NAFION and its Russian analogue, MF-4SK based on co-polymerization product of a perfluorinated vinyl ether with tetrafluoroethylene. However, with development of the industry, materials with improved properties and lower cost are required. The aim is to obtain ion-exchange membranes for water treatment from metal ions and to study physico-chemical properties of obtained membranes. In this study, cation exchange composite membranes with modified polyaniline surface layer on nylon and PTFE substrate have been obtained. Changes in the structure of membranes were recorded using a microscope. Throughput capacity of the membranes was determined by passing a certain volume of distilled water through the membrane. The experiment intended to determine electivity of membranes was performed by passing a certain volume of metal salt solutions of a known concentration, after which the filtrate was collected. Concentrations of the studied metal ions in the original solution and in the filtrate were determined by the method of atomic adsorptive spectrometry with electro thermal atomization "Quantum Z.ETA". Prepared highly selective ion exchange membranes. Properties of modified membranes, such as selective permeability and ion-exchange capacity have been determined. The membranes feature high selectivity for heavy metal ions. Moisture-retaining power and swelling ability of the membranes have been studied. Selectivity of the membrane to heavy metal ions is between 70 and 99%. Ion-exchange capacity of the obtained nylon polyaniline membrane is not inferior to some commercially available cation-exchange membranes. Use of the modified membranes in the

  7. Ion exchange kinetics of alkaline earth metals on acrylamide zirconium(IV) phosphate cation exchanger

    International Nuclear Information System (INIS)

    The kinetics of Mg(II), Ca(II), Sr(II) and Ba(II) exchange with H(I) on acrylamide zirconium(IV) phosphate has been studied applying the Nernst-Planck equation. The rate of exchange is found to be particle diffusion controlled at a metal ion concentration ≥ 0.01M in aqueous medium. The energy and entropy of activation vary linearly with the ionic radii and mobilities. (author)

  8. Preliminary studies of the total cation exchange capacity of sediments from two North Atlantic study sites

    International Nuclear Information System (INIS)

    Initially four different methods of measuring total cation exchange capacity were compared. There were two chemical methods (ammonium saturation with displacement into seawater, and barium saturation followed by replacement with magnesium) and two radiochemical methods (sodium-22 and caesium-134 saturation). The barium-magnesium and sodium-22 methods were then applied to sediment samples from Core D10164Pound1K from the Nares Fracture Valley, and Core D10554Pound11K from the eastern flank of the Great Meteor Rise. The material at site 10164 is a pelagic clay whereas at site 10554 it is carbonate ooze. The total cation exchange capacities (T.C.E.C.) of samples from the two sites are similar when measured by the sodium-22 method, the mean for Core 10164 was 21.7 meq/100g and 24.4 meq/100g for Core 10554. However for Core 10554 the barium-magnesium method gives a mean of 42.8 meq/100g. The difference in T.C.E.C. measured by the two methods appears to be due to the high calcite content of core 10554 sediment. Measured exchange capacities are lower than in coastal sediments. In deep sea sediments organic matter either makes a very small contribution to the T.C.E.C. (core 10164) or actually blocks exchange sites (Core 10554). Amorphous oxides of iron and manganese contribute between 20 and 50% of the T.C.E.C. (author)

  9. Extra-framework cation release from heulandite-type rich tuffs on exchange with NH(4)(+).

    Science.gov (United States)

    Kantiranis, N; Sikalidis, K; Godelitsas, A; Squires, C; Papastergios, G; Filippidis, A

    2011-06-01

    The outgoing cations of Greek heulandite-rich tuff samples (heulandite type-III, 91wt.%, mica 4wt.%, feldspar 5wt. %, CEC 2.22meq/g) were analysed upon exchange with ammonium acetate using atomic absorption spectrometry (AAS). The kinetic curves of each cation were investigated over a total time of contact of 720h with sampling at frequent intervals. The materials were examined by powder X-ray diffraction, SEM-EDS, and AAS. The sorption ability was measured using the ammonium acetate saturation method. It was found that Ca(2+) presents an unexpected extra-framework release and a surprisingly high degree of exchange (90%). The exchange of Mg (57%) is also worthy of note whereas the behavior of K(+) showed an expected rapid initial release. The behavior of Na(+) must be similar. However, its lower concentration in the zeolitic material minimizes its overall significance somewhat. On the other hand, Ca(2+) and Mg(2+) release is kinetically much slower, compared to that of alkali metal ions, and this phenomenon indicates that different exchange energies are needed till final equilibrium. PMID:21296480

  10. Gift exchange and the separation of ownership and control

    NARCIS (Netherlands)

    S. Maximiano; R. Sloof; J. Sonnemans

    2006-01-01

    Numerous gift exchange experiments have found a positive relationship between employers' wage offers and workers' effort levels. In (almost) all these experiments the employer both owns and controls the firm. Yet in reality many firms are characterized by the separation of ownership and control. In

  11. Gift exchange and the separation of ownership and control

    NARCIS (Netherlands)

    S. Maximiano; R. Sloof; J. Sonnemans

    2013-01-01

    Numerous gift-exchange experiments have found a positive wage-effort relationship. In (almost) all these experiments the employer both owns and controls the firm. This paper explores to what extent the separation of ownership and control affects the wage-effort relationship. We compare the standard

  12. Tritium separation factors in distillation and chemical exchange processes

    International Nuclear Information System (INIS)

    The vapour pressures of different isotopic hydrogen, water and ammonia molecules have been calculated. These vapour pressures can be used to evaluate relative volatilities of different species for separation of tritium isotopes by distillation. The equilibrium constants for various exchange reactions involving different deuterated and tritiated species of hydrogen, water and ammonia molecules have also been calculated for different temperatures. (author)

  13. Separation of Ra/Ca by ion exchange

    International Nuclear Information System (INIS)

    The radium and the calcium belong to the same group in the periodic classification and as consequence both they present very similar chemical properties, that makes difficult its separation. Both elements are also frequently associate in the nature, the calcium is very abundant, the radium is not it and for that reason it is indispensable its separation to analyze to this last one. The alpha spectroscopy is very appropriate to analyze to the 226 Ra, however to achieve a good resolution of the spectra, the samples should contain small quantities of calcium. The purposes of this work were to know the chromatographic behavior of the alkaline-earthy cations: calcium, barium and radium and to apply these knowledge to the separation of the 226 Ra and its analysis by means of alpha spectroscopy. (Author)

  14. Effect of α-irradiation on the properties of the phosphate cation exchange resin KFP

    International Nuclear Information System (INIS)

    The effect of α-irradiation in a solution of 2 M nitric acid on the properties of the cation-exchange resins KFP-8 and KFP-16 in the range of doses of irradiation up to 5.5 x 188 rad was investigated. It was shown that irradiation leads to a loss of porosity, a decrease in the mechanical strength of the grains, and dissolution of the resin in nitric acid. The exchange capacity of the resin with respect to phosphate groups is decreased: however, new functional groups with low basicity appear, which leads to an increase in the total exchange capacity when the resin is irradiated. The distribution coefficients of fragment elements between the resin and the nitric acid solutions are changed

  15. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    Directory of Open Access Journals (Sweden)

    César A. C. Sequeira

    2012-07-01

    Full Text Available Direct borohydride fuel cells (DBFC, which operate on sodium borohydride (NaBH4 as the fuel, and hydrogen peroxide (H2O2 as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S and a cation-exchange membrane (CMI-7000S, are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC’s performance. Cell polarization, power density, stability, and durability tests are used in the membranes’ evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  16. Strongly reduced band gap in NiMn2O4 due to cation exchange

    International Nuclear Information System (INIS)

    NiMn2O4 is extensively used as a basis material for temperature sensors due to its negative temperature coefficient of resistance (NTCR), which is commonly attributed to the hopping mechanism involving coexisting octahedral-site Mn4+ and Mn3+. Using density-functional theory + Hubbard U calculations, we identify a ferrimagnetic inverse spinel phase as the collinear ground state of NiMn2O4. By a 12.5% cation exchange, a mixed phase with slightly higher energy can be constructed, accompanied by the formation of an impurity-like band in the original 1 eV band gap. This impurity-like band reduces the gap to 0.35 eV, suggesting a possible source of NTCR. - Highlights: • Density functional based calculations were used to study collinear phase of NiMn2O4. • The ground-state structure is a ferrimagnetic inverse spinel phase. • The tetrahedral and octahedral Mn cations have ferromagnetic interactions. • A 12.5% cation exchange introduces an impurity-like band in the original 1 eV gap. • The 0.35 eV gap suggests a source of negative temperature coefficient of resistance

  17. Erionite-Na upon heating: dehydration dynamics and exchangeable cations mobility

    Science.gov (United States)

    Ballirano, Paolo; Pacella, Alessandro

    2016-03-01

    Erionite is a fibrous zeolite significantly more tumorigenic than crocidolite asbestos upon inhalation. In recent years, several papers have been published aimed at characterizing from the crystal-chemical point of view erionite fibres. As their toxicity has been ascribed to Fe acquired within the human body, studies aimed at characterizing the iron topochemistry have also been published, suggesting a possible important role played by the ionic exchange properties and cations mobility of this zeolite on developing carcinogenicity. Here we report the analysis results of the thermal behaviour of erionite-Na, which has been found to deviate significantly from that of erionite-K. This result is in contrast with the current scientific view that differences in weighted ionic potential, Si/Al ratio and size of exchangeable cations result in significantly different thermal behaviours, all those parameters being nearly identical or very similar in both species. The different mobility of the extraframework cations observed in erionite samples with dissimilar chemistry is of particular interest within the frame of the hypothesis that their biological activity could depend, apart from surface interactions, also on bulk effects.

  18. Preparation of a Cation Exchanger from Cork Waste: Thermodynamic Study of the Ion Exchange Processes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An ion exchanger was prepared by sulfonation of cork-waste chars. The exchange properties of the resultant materialwere characterized using Na+, Ca2+ or Fe3+ aqueous solutions, The content of metal ions in the solutions weredetermined by atomic absorption spectrometry. On the basis of the results obtained, the chemical equilibrium andits thermodynamic aspects related to the ion exchange process were studied. It was found that equilibrium constantK varies by the order: Na+<Ca2+<Fe3+, its value increasing with increasing temperature, and that △H°>0 and△S°>0, with -△G° following the sequence: Ca2+>Na+>Fe3+,

  19. Transport of Zinc and Copper through Impregnated Cation-Exchange Membrane with 8-Hydroxyquinoline Using Electric Field

    International Nuclear Information System (INIS)

    The transport of Zn(II) and Cu(II) species across impregnated cation-exchange membrane with 8-hydroxy-quinoline in xylene was investigated. To accelerate the transport of ions, the effect of electric field was introduced. Certain parameters that affect the transport were studied. These parameters include; hydrochloric acid concentration in the feed solution, stripping solution concentration, voltage and 8-hydroxyquinoline concentration. The flux values of Zn(II) and Cu(II) were 3.7x10-9and 3.6x10-10g-eq.cm-2s-1, respectively. The separation of Zn(II) from Cu(II)was performed selectively by this technique and the use of electric field accelerated the ions transport

  20. Modification of cation-exchange properties of activated carbon by treatment with nitric acid

    International Nuclear Information System (INIS)

    The uptake of inorganic cations by high-surface-area activated carbon can be increased by an order of magnitude by controlled exposure to high concentrations of nitric acid at elevated temperatures. Distribution coefficients of cations are also increased. Oxidation treatment causes some loss in particle strength. Acid strength of the functional groups from the nitric acid treatment is greater than those of the starting material. Surface area measurements from small-angle neutron scattering indicate that the increase in effective ion-exchange capacity is not accompanied by gross changes in the structure of the material. 13C-NMR on solid samples suggests that the concentration of carboxyl and phenolic functional groups in the carbon is increased by the treatment

  1. Obtention of the cation exchange capacity of a natural kaolinite with radioactive tracers

    International Nuclear Information System (INIS)

    One of the more used techniques for the elimination of the heavy metals present in water systems is to use adsorbent mineral phases like zeolites and clays, among others. The clays are able to exchange easily the fixed ions in the external surface of its crystals or well the ions present in the interlaminar spaces of the structures, for other existent ones in the encircling aqueous solutions for that the Cation exchange capacity (CIC) is defined as the sum of all the cations exchange that a mineral can possess independent to the physicochemical conditions. The CIC is equal to the measure of the total of negative charges of the mineral by mass of the solid (meq/g). In this investigation work, the value of the CIC equal to 2.5 meq/100 g is obtained, of a natural kaolinite from the State of Hidalgo studying the retention of the sodium in the kaolinite with the aid of the radioactive isotope 24 Na and of the selective electrodes technique, making vary the pH value. So is experimentally demonstrated that the CIC is an intrinsic property of the mineral independent of the pH value of the solution and of the charges origin. (Author)

  2. Assessing the role of cation exchange in controlling groundwater chemistry during fluid mixing in fractured granite at Aespoe, Sweden

    International Nuclear Information System (INIS)

    Geochemical modeling was used to simulate the mixing of dilute shallow groundwater with deeper more saline groundwater in the fractured granite of the Redox Zone at the Aespoe underground Hard Rock Laboratory (HRL). Fluid mixing simulations were designed to assess the role that cation exchange plays in controlling the composition of fluids entering the HRL via fracture flow. Mixing simulations included provision for the effects of mineral precipitation and cation exchange on fluid composition. Because the predominant clay mineral observed in fractures in the Redox Zone has been identified as illite or mixed layer illite smectite, an exchanger with the properties of illite was used to simulate cation exchange. Cation exchange on illite was modeled using three exchange sites, a planar or basal plane site with properties similar to smectite, and two edge sites that have very high affinities for K, Rb, and Cs. Each site was assumed to obey an ideal Vanselow exchange model, and exchange energies for each site were taken from the literature. The predicted behaviors of Na, Ca, and Mg during mixing were similar to those reported in a previous study in which smectite was used as the model for the exchanger. The trace elements Cs and Rb were predicted to be strongly associated with the illite exchanger, and the predicted concentrations of Cs in fracture fill were in reasonable agreement with reported chemical analyses of exchangeable Cs in fracture fill. The results of the geochemical modeling suggest that Na, Ca, and Sr concentrations in the fluid phase may be controlled by cation exchange reactions that occur during mixing, but that Mg appears to behave conservatively. There is currently not enough data to make conclusions regarding the behavior of Cs and Rb

  3. On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution.

    Science.gov (United States)

    Prelot, Benedicte; Ayed, Imen; Marchandeau, Franck; Zajac, Jerzy

    2014-01-01

    Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25% of the "ideal" value in Effluent 1 and 50% in Effluent 2; a further decrease to about 15% was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60% of the ideal value in the two effluents for Amberlite® IRN77 and 75% for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition. PMID:24728575

  4. Observation of separate cation and anion electrophoretic mobilities in pure ionic liquids

    Science.gov (United States)

    Zhang, Zhiyang; Madsen, Louis A.

    2014-02-01

    Ionic liquids (ILs) continue to show relevance in many fields, from battery electrolytes, to carbon capture, to advanced separations. These highly ion-dense fluids present unique challenges in understanding their electrochemical properties due to deviations in behavior from existing electrolyte theories. Here we present a novel characterization of ILs using electrophoretic NMR (ENMR) to determine separate cation and anion mobilities. This method uses an applied electric field coincident with a pulsed magnetic field gradient to encode the E-field driven flow into NMR signals for cations (1H) and anions (19F). We describe the detailed design of these experiments, including quantitative analysis of artifact mitigation and necessary control experiments. We then explore mobilities and diffusion coefficients for two representative ILs: 1-ethyl-3-methyl imidazolium tetrafluoroborate ([C2mim][BF4]) and 1-ethyl-3-methyl imidazolium trifluoromethanesulfonate ([C2mim][TfO]). We further use the individual ion mobilities to calculate the bulk net conductivity, which closely agrees with bulk conductivity measurements obtained using impedance spectroscopy. These observations represent the first reliable measurements of cation and anion mobilities in pure ILs, with errors of ±7%. We discuss this advanced experimental methodology in detail, as well as implications of these sensitive measurements for understanding conduction mechanisms in ion-dense electrolytes.

  5. Refolding of Denatured/Reduced Lysozyme Using Weak-Cation Exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    Yan WANG; Bo Lin GONG; Xin Du GENG

    2003-01-01

    Oxidative refolding of the denatured/reduced lysozyme was investigated by using weak-cation exchange chromatography (WCX). The stationary phase of WCX binds to the reduced lysozyme and prevented it from forming intermolecular aggregates. At the same time urea and ammonium sulfate were added to the mobile phase to increase the elution strength for lysozyme. Ammonium sulfate can more stabilize the native protein than a common eluting agent, sodium chloride. Refolding of lysozyme by using this WCX is successfully. It was simply carried out to obtain a completely and correctly refolding of the denatured lysozyme at high concentration of 20.0 mg/mL.

  6. Study of the Fixation and Migration of Radioactive Cations in a Natural Ion Exchanger

    International Nuclear Information System (INIS)

    With a view to utilizing lignite as a natural ion exchanger in the treatment of radioactive waste, a study was made of its physical and physico-chemical properties with reference to ion exchange. The distribution of Sr90 and Cs137 ions in the presence of Ca, Na and H was first examined and the equilibrium constants calculated. The kinetics and fixation of ions were then studied, and various parameters required for the calculation of ion-exchange beds were established. Study of the complex phenomenon of radioactive ion migration in the soil was started by the separate investigation of each component ionic equilibrium. (author)

  7. Isotope separation by chemical exchange process: Final technical report

    International Nuclear Information System (INIS)

    The feasibility of a chemical exchange method for the separation of the isotopes of europium was demonstrated in the system EuCl2-EuCl3. The single stage separation factor, α, in this system is 1.001 or 1.0005 per mass unit. This value of α is comparable to the separation factors reported for the U4+ - U6 and U3+ - Y4+ systems. The separation of the ionic species was done by precipitation of the Eu2+ ions or by extraction of the Eu3+ ions with HDEHP. Conceptual schemes were developed for a countercurrent reflux cascades consisting of solvent extraction contractors. A regenerative electrocel, combining simultaneous europium reduction, europium oxidation with energy generation, and europium stripping from the organic phase is described. 32 refs., 22 figs., 6 tabs

  8. Anion-exchange separations of metal ions in thiocyanate media.

    Science.gov (United States)

    Fritz, J S; Kaminski, E E

    1971-05-01

    The analytical potential of a weak-base macroreticular anion-exchange resin for the quantitative separation of metal ions in thiocyanate media is investigated and demonstrated. Distribution data are given for the sorption of some 25 metal ions from aqueous mixtures of potassium thiocyanate (1.0M or less) and 0.5M hydrochloric acid. The magnitude of the distribution data suggests many possible separations, some of which were quantitatively performed by procedures which are fast, simple and require only mild conditions. Representative separations are removal of traces of iron(III) and copper(II) from water samples prior to the determination of water hardness (calcium and magnesium), separation of nickel(II) from vanadium(IV) and the separation of thorium(IV) from titanium(IV). Some multicomponent separations are the separation of rare earths(III) and thorium(IV) from scandium(III) and the separation of rare earths(III) from iron(III) and uranium(VI). PMID:18960914

  9. The role of temperature in ion exchange processes of separation and purification of substances and water treatment

    International Nuclear Information System (INIS)

    The influence of temperature on the equilibrium, dynamic properties on ion exchange separation and purification processes is discussed. For all of the studied cation exchangers (sulphonic, carboxylic, phosphonic) the selectivity towards divalent ions of the alkali earth and transition metals increases with temperature. The temperature effects for the polyacrylic and polymethacrylic resins have been found to be the most strong. The K values for the chelating resins depend on temperature very slightly in case of exchange of the alkali earth and alkali metals ions and decrease visibly with temperature in case of exchange of transition and alkali metals ions and decrease visibly with temperature in case of exchange of transition and alkali metals ions. Due to the different effects of temperature, cation exchangers become for some solution compositions more selective than the chelating resins at high temperature. Temperature affect the capacity of resins as well. The effect of the temperature on the shape and length of a sorption front is rather complex due to the temperature dependencies of mass transfer or diffusion coefficients, selectivity coefficients and of resin swelling. The increase of both mass transfer coefficients and selectivity coefficients stimulated by the temperature leads to the sharpening of the sorption front. The evolution of the separation processes by use of the temperature effects are considered as well as some problems of theory and experimentation. 2 figs., 5 refs

  10. Ion-exchange resin separation applied to activation analysis (1963)

    International Nuclear Information System (INIS)

    The separation techniques based on ion-exchange resins have been used, in this study, for carrying out activation analyses on about thirty impurities. A separation process has been developed so as to standardise these analyses and to render them execution a matter of routine. The reparation yields obtained are excellent and make it possible to carry out analyses on samples having a large activation cross-section ween working inside a reinforced fume-cupboard. This technique has been applied to the analysis of impurities in tantalum, iron, gallium, germanium, terphenyl, and tungsten. The extension of this process to other impurities and to other matrices is now being studied. (authors)

  11. Application of inorganic exchangers in fission product separation

    International Nuclear Information System (INIS)

    Synthetic ion exchangers ammonium phosphomolybdate/phosphotungstate (APW), polyantimonic acid (PA) and manganese dioxide have been investigated for separation of cesium, strontium and cerium respectively with a view to their use in fission product separation. Their breakthrough capacities and elution characteristics were determined using 137Cs, sup(85,89)Sr and 141Ce as tracers. Results indicate that : (1) Cs adsorbed on APW is easily eluted with 3M NH4NO3 at a temperature of 500C with an overall yield of 90% in about 10 column volumes, (2) strontium adsorbed on PA is completely eluted by 1M AgNo3 + 8M HNO3 at room temperature and (3) manganese sulphate (1 mg/ml) + 3M HNO3 elutes cerium adsorbed on manganese dioxide. Column characteristics (exchange capacity and flow rate) are not affected upto 6 cycles of sorption-elution. Based on these findings, a scheme of separation of fission products from waste solution is proposed. Pu uptake on PA is found to be governed by U/Pu ratio in the solution. The ratio > 104 inhibits the uptake. Pu on PA is eluted in 10 column volumes by 0.01M ascorbic acid +2M nitric acid. The exchange PA can be used over 20 cycles of sorption-elution. (M.G.B.)

  12. Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance.

    Science.gov (United States)

    Choi, Mi-Jin; Chae, Kyu-Jung; Ajayi, Folusho F; Kim, Kyoung-Yeol; Yu, Hye-Weon; Kim, Chang-Won; Kim, In S

    2011-01-01

    This study examines the effects of biofouling on the electrochemical properties of cation exchange membranes (CEMs), such as membrane electrical resistance (MER), specific proton conductivity (SC), and ion transport number (t(+)), in addition to on microbial fuel cell (MFC) performance. CEM biofouling using a 15.5 ± 4.6 μm biofilm was found to slightly increase the MER from 15.65 Ω cm(2) (fresh Nafion) to 19.1 Ω cm(2), whereas an increase of almost two times was achieved when the electrolyte was changed from deionized water to an anolyte containing a high cation concentration supporting bacterial growth. The simple physical cleaning of CEMs had little effect on the Coulombic efficiency (CE), whereas replacing a biofouled CEM with new one resulted in considerable increase of up to 59.3%, compared to 45.1% for a biofouled membrane. These results clearly suggest the internal resistance increase of MFC was mainly caused by the sulfonate functional groups of CEM being occupied with cations contained in the anolyte, rather than biofouling itself. PMID:20659795

  13. Gradient Elution Method for Successive Separation of Common Cations and Hydrophobic Amines using Suppressed Ion Chromatography

    International Nuclear Information System (INIS)

    In mixed waste the separation and sequential determination of alkali, alkaline earth metals mixed with hydrophobic amines represent a challenge analytical problem. The effect of a new mobile phase (amido-sulfonic acid, ASA) on the suppressed ion chromatographic separation of alkali, alkaline earth metals and hydrophobic amines on Dionex Ion Pac CS12A analytical column was investigated. The addition of surface modifier to the eluent appears to provide better interfacial compatibility between the mobile and stationary phase and facilitates the rapid equilibration of analytes. Incorporation of a very low concentration of the additive may also alters the stationary phase surface by creating a fine-tuning and improves the partition characteristics of the analytes. A dramatic and sufficient elution capability of ASA for sequential separation of the analytes was found and rational mechanisms for the separated analytes are proposed. ASA can act as ion-pairing agent resulting in the separation of a wide variety of amines. The new mobile phase (ASA) is proved to have more successful separation over methanesulfonic acid (MSA) even with eluent free solvent. The proposed method shows that a profound particular effect on the separation of aliphatic diamine (ethylenediamine) and organic amine (cyclohexylamine) was achieved in addition to all common cations and amines using isocratic elution of 18 mM of ASA without organic eluent modifier

  14. Influence of Types and Charges of Exchangeable Cations on Ciprofloxacin Sorption by Montmorillonite

    Institute of Scientific and Technical Information of China (English)

    WU Qingfeng; LI Zhaohui; HONG Hanlie

    2012-01-01

    As one of the most important soil components,montmorillonite plays a vital role in transport and retention of organic pollutants in soils.Ciprofloxacin (CIP),an antibiotic of fluoroquiolones,has been frequently detected in water and soil environments due to its wide use in human and veterinary medicine.In this study,the adsorption of CIP onto different homoionic montmorillonite such as Na-,Ca- and Al-MMT was investigated,and the influence of types and charges of exchangeable cations in the interlayer of montmorillonite on CIP adsorption was evaluated.The results showed that different homoionic montmorillonite exhibited different sorption capacity of CIP.At pH 3,the sorption capacity of CIP decreased in the order Na-MMT > Ca-MMT > Al-MMT,following the lyotropic series.When solution pH increased to 11,the sorption capacity of CIP followed the order Ca-MMT > Al-MMT > Na-MMT.Accompanying CIP adsorption on Ca-MMT,a certain amount of Ca2+ was released into solution.Compared to pH 3,the lower Ca concentration in solution at pH 11 indicated that the adsorption of CIP on Ca-MMT at strong alkaline pH was no longer via cation exchange,and surface complexation or cation bridging might contribute to CIP adsorption.The adsorption of CIP on Na-and Ca-MMT at pH 3 and 11 resulted in the expansion of d-spacing,indicative of intercalation of CIP into the interlayer space of the montmorillonite.However,a decrease of d-spacing was observed when CIP adsorbed on Al-MMT at pH 11,which might be attributed to the dissolution of Al-CIP complex formed between CIP and Al3+ in the interlayer of montmorillonite.The results suggest that the types and charges of exchangeable cations in the interlayer of montmorillonite play an important role in CIP adsorption on montmorillonite.

  15. Preparation and characterization of high capacity, strong cation-exchange fiber based adsorbents.

    Science.gov (United States)

    Schwellenbach, Jan; Taft, Florian; Villain, Louis; Strube, Jochen

    2016-05-20

    Motivated by the demand for more economical capture and polishing steps in downstream processing of protein therapeutics, a novel strong cation-exchange chromatography stationary phase based on polyethylene terephthalate (PET) high surface area short-cut fibers is presented. The fiber surface is modified by grafting glycidyl methacrylate (GMA) via surface-initiated atom transfer radical polymerization (SI-ATRP) and a subsequent derivatization leading to sulfonic acid groups. The obtained cation-exchange fibers have been characterized and compared to commercially available resin and membrane based adsorbers. High volumetric static binding capacities for lysozyme (90mg/mL) and polyclonal human IgG (hIgG, 92mg/mL) were found, suggesting an efficient multi-layer binding within the grafted hydrogel layer. A packed bed of randomly orientated fibers has been tested for packing efficiency, permeability and chromatographic performance. High dynamic binding capacities for lysozyme (50mg/mL) and hIgG (54mg/mL) were found nearly independent of the bed-residence time, revealing a fast mass-transport mechanism. Height equivalent to a theoretical plate (HETP) values in the order of 0.1 cm and a peak asymmetry factor (AF) of 1.8 have been determined by tracer experiments. Additionally inverse size-exclusion chromatography (iSEC) revealed a bimodal structure within the fiber bed, consisting of larger transport channels, formed by the voidage between the fibers, and a hydrogel layer with porous properties. PMID:27106396

  16. Purification of urokinase by combined cation exchanger and affinity chromatographic cartridges.

    Science.gov (United States)

    Hou, K C; Zaniewski, R

    1990-02-23

    Crude urokinase from human urine processed through foam flotation and ammonium sulfate precipitation containing 720 National Health Institute Committee on Thrombolytic Agents U/mg activity was purified by an SP cation exchanger followed by a zinc-chelated affinity chromatographic cartridge. The cartridges were of a radial-flow type formed by using acrylic and cellulose composite matrices. The high rigidity of the matrix structure permits fast flow of protein solutions (liters per minute) and thus allows processing of a large volume of crude urokinase under low operating pressures. A greater than six-fold increase in specific enzyme activity of urokinase was achieved by adsorbing and eluting 1 l of a 3 mg/ml crude urokinase solution on an SP cartridge. The eluent was further purified by passing through a zinc-chelated affinity cartridge to achieve greater than a eighteen-fold increase in urokinase specific activity. This report demonstrates the combined use of a cation exchanger with zinc-chelated chromatographic cartridges in purifying urokinase on a relatively large scale. The relationship between the amount of zinc chelated in the matrix to its effect on urokinase purification is also discussed. PMID:2329161

  17. Light-induced cation exchange for copper sulfide based CO2 reduction.

    Science.gov (United States)

    Manzi, Aurora; Simon, Thomas; Sonnleitner, Clemens; Döblinger, Markus; Wyrwich, Regina; Stern, Omar; Stolarczyk, Jacek K; Feldmann, Jochen

    2015-11-11

    Copper(I)-based catalysts, such as Cu2S, are considered to be very promising materials for photocatalytic CO2 reduction. A common synthesis route for Cu2S via cation exchange from CdS nanocrystals requires Cu(I) precursors, organic solvents, and neutral atmosphere, but these conditions are not compatible with in situ applications in photocatalysis. Here we propose a novel cation exchange reaction that takes advantage of the reducing potential of photoexcited electrons in the conduction band of CdS and proceeds with Cu(II) precursors in an aqueous environment and under aerobic conditions. We show that the synthesized Cu2S photocatalyst can be efficiently used for the reduction of CO2 to carbon monoxide and methane, achieving formation rates of 3.02 and 0.13 μmol h(-1) g(-1), respectively, and suppressing competing water reduction. The process opens new pathways for the preparation of new efficient photocatalysts from readily available nanostructured templates. PMID:26479775

  18. Effect of ionophores on the rate of intramolecular cation exchange in durosemiquinone ion pairs

    Science.gov (United States)

    Eastman, M. P.; Bruno, G. V.; Mcguyer, C. A.; Gutierrez, A. R.; Shannon, J. M.

    1979-01-01

    The effects of the ionophores 15-crown-5 (15C5), 18-crown-6 (18C6), dibenzo-18-crown-6 (DBC) and cryptand 222 (C222) on intramolecular cation exchange in ion pairs of the sodium salt of the durosemiquinone anion in benzene solution are investigated. Electron paramagnetic resonance spectra of the 18C6 and 15C5 complexes with durosemiquinone reduced by contact with a sodium mirror show an alternating line width which indicates that the sodium ion is being exchanged between equivalent sites near the oxygens of the semiquinone with activation energies of 8.7 and 6.0 kcal/mole and Arrhenius preexponential factors of 9 x 10 to the 12th/sec and 10 to the 12th/sec, respectively. Spectra obtained for the DBC complexes show no evidence of exchange, while those of C222 indicate rapid exchange. It is also noted that the hyperfine splitting constants measured do not change over the 50-K temperature interval studied.

  19. Quantification of melamine in human urine using cation-exchange based high performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Panuwet, Parinya; Nguyen, Johnny V; Wade, Erin L; D'Souza, Priya E; Ryan, P Barry; Barr, Dana Boyd

    2012-03-01

    Melamine and cyanuric acid have been implicated as adulterants in baby formula in China and pet foods in North America. In China, the effect of melamine or melamine-cyanuric acid adulteration lead to kidney stone development and acute renal failure in thousands of Chinese infants. A selective and sensitive analytical method was developed to measure melamine in human urine in order to evaluate the extent of potential health implications resulting from the consumption of these types of adulterated products in the general US population. This method involves extracting melamine from human urine using cation-exchange solid-phase extraction, chromatographically separating it from its urinary matrix co-extractants on a silica-based, strong-cation exchange analytical column using high performance liquid chromatography, and analysis using positive mode electrospray ionization tandem mass spectrometry. Quantification was performed using modified, matrix-based isotope dilution calibration covering the concentration range of 0.50-100 ng/mL. The limit of detection, calculated using replicates of blank and low level spiked samples, was 0.66 ng/mL and the relative standard deviations were between 6.89 and 14.9%. The relative recovery of melamine was 101-106%. This method was tested for viability by analyzing samples collected from the general US population. Melamine was detected in 76% of the samples tested, with a geometric mean of 2.37 ng/mL, indicating that this method is suitable for reliably detecting background exposures to melamine or other chemicals from which it can be derived. PMID:22309774

  20. Cu2Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange

    KAUST Repository

    Casu, Alberto

    2016-01-27

    Among the different synthesis approaches to colloidal nanocrystals a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, post-synthetic treatments, such as thermally activated solid state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu “acceptors” phases represented by rod- and wire- shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu2-xSe nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu “donor” and “acceptor” particles were not always in direct contact with each other, hence the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state, and helps to shed light on the intermediate steps involved in such reactions.

  1. The treatment of liquid radioactive waste containing Americium by using a cation exchange method

    International Nuclear Information System (INIS)

    A research in the treatment of a liquid radioactive waste containing americium has been done. The liquid radioactive waste used in this research was standard solution of U dan Ce with the initial activity of 100 ppm. The experimental investigation is aimed at a study of the effects of the waste pH, the column dimension of IR-120 cation exchanger which is expressed as L/D, the flow rate of a liquid waste and the influence of thiocyanate as a complex agent against the efficiency of a decontamination for uranium and cerium element. The experiment was done by passing downward the feed of uranium and cerium solution into an IR-120 type of cation exchanger with the L/D of 11.37. From the experimental parameters done in this research where the influence of waste pH was varied from 3 - 8, the geometric column (L/D) 11.37, the liquid flow rate was from 2.5 - 10 ml/m and the thiocyanate concentration was between 100 ppm-500 ppm can be concluded that the optimum operational condition for the ion exchange achieved were the waste pH for uranium = 4 and the waste pH for cerium = 6, the flow rate = 2.5 ml/men. From the given maximum value of DF for uranium = 24 (DE = 95.83%) and of DF for cerium = 40 (DE = 97.5%), it can also be concluded that this investigation is to be continued in order that the greater value of DF/DE can be achieved

  2. On the determination of exchangeable cations in acid forest soils. Zur Bestimmung austauschbarer Kationen in sauren Waldboeden

    Energy Technology Data Exchange (ETDEWEB)

    Matzner, E. (Goettingen Univ. (Germany, F.R.). Forschungszentrum Waldoekosysteme); Buerstinghaus, C. (Goettingen Univ. (Germany, F.R.). Inst. fuer Bodenkunde und Waldernaehrung)

    1990-12-01

    Different samples from acid forest soils were percolated with large amounts of H{sub 2}O. Significant amounts of anions, especially sulfate, were found in the percolates mainly accompanied by Na, K, Ca and Mg (M{sub b}-cations). The dissolution of Al-sulfates and subsequent exchange of M{sub b}-cations by Al as dominant mechanism is proposed. Thus the common method for determination of the cation exchange capacity (CEC) of acid forest soils, the percolation with NH{sub 4}Cl may overestimate the CEC. The overestimation may be related to the sulfate content of the soil and also influences the calculation of relative CEC proportions of individual cations. (orig.).

  3. Studies on ion exchange equilibria and kinetics. Pt. 5. UO22+-Na+-H+ ternary cation exchange kinetics

    International Nuclear Information System (INIS)

    The kinetics of particle-diffusion controlled ion exchange in the ternary system of cations UO22+-Na+-H+ - 001 * 7 strong acidic resin has been studied. In the [R-H+]/Na++UO22+) system, the change of the amount of Na+ in the resin phase with time showed a high peak. In the [R-Na+]/H++UO22+) system, the change of the amount of H+ in the resin phase with time also showed a high peak. In the [R2-UO22+]/(H++Na+) system, the change of the amount of H+ in the resin phase with time showed a merely small peak. This kinetic character of the ternary ion exchange system in the finite solution volume has been analyzed according to the Nerst-Planck equation, and on the whole, the trend of the experimental results is consistent with the resulting numerical solution of the set of Nerst-Planck equations. (author) 11 refs.; 9 figs.; 1 tab

  4. Salbutamol versus cation-exchange resin (kayexalate) for the treatment of nonoliguric hyperkalemia in preterm infants.

    Science.gov (United States)

    Yaseen, Hakam; Khalaf, Mona; Dana, Ahmed; Yaseen, Noha; Darwich, Maha

    2008-03-01

    Our objective was to compare the efficacy and safety of rectal cation-exchange resin (Kayexalate) versus salbutamol infusion for the treatment of nonoliguric hyperkalemia (NOHK) in preterm infants. Data of all neonates born with NOHK during the study period of 6 years and 8 months were recorded. Diagnostic criteria of NOHK included serum potassium (SK) concentration > or = 7 mmol/L during the first 72 hours of life with urine output > or = 1 mL/kg/hour. This before-after study was divided according to the date of admission; the first 15 patients were treated with Kayexalate enema 1 g/kg every 4 hours, and the remaining 30 patients were treated with intravenous salbutamol infusion as 4 mug/kg every 4 hours. Treatment discontinued when SK became < 6 mmol/L. SK was measured every 4 hours. Daily urine was collected. Fluid intake and output, serum electrolytes, urea, creatinine, and glucose concentrations were obtained in all infants every 12 hours. All infants were observed with a cardiorespiratory monitor and oxygen saturation and blood pressure measurements. Perinatal characteristics in both groups were comparable. Mean gestational age was 26 and 28 weeks for salbutamol and Kayexalate, respectively. The peak of SK ranged between 7 and 9.3 mmol/L in the Kayexalate group and between 7 and 8.7 mmol/L in the salbutamol group ( P = 0.64). At 12 hours of treatment, SK became normal in only 4 patients (26%) in the Kayexalate group compared with 18 patients (60%) in the salbutamol group ( P = 0.003). The number of doses of Kayexalate administration was significantly higher than the doses of salbutamol ( P = 0.003). No significant side effects were detected in the salbutamol-treated infants. In contrast, there were two cases of severe ventricular tachycardia and one case of intestinal obstruction in the cation-exchange resin group. We concluded that salbutamol infusion is more effective with faster action and safer than cation-exchange resin (Kayexalate) for the treatment of

  5. Degradation of functional group of cation exchange nuclear grade resin loaded with different metal ions due to gamma radiation exposure

    International Nuclear Information System (INIS)

    Ion exchange resins undergo degradation due to ionizing radiation while processing the radioactive water treatment. During this process, the cation resin used for this purpose gets loaded with various metal ions and presence of different metal ions in the resin may result into different degradation behaviors of functional group(s) (lowering the capacity). This work deals with the effect of few cations such as H+, Li+, Na+, Cs+ and Cu2+ on the degradation behavior of functional groups of strong acid cation resins exposed in different dose of 60Co gamma ray. Degradations were estimated by measuring the sulphate ion concentration in leach solution. (author)

  6. Effect of blastfurnace slag addition to Portland cement for cationic exchange resins encapsulation

    Directory of Open Access Journals (Sweden)

    Stefan L.

    2013-07-01

    Full Text Available In the nuclear industry, cement-based materials are extensively used to encapsulate spent ion exchange resins (IERs before their final disposal in a repository. It is well known that the cement has to be carefully selected to prevent any deleterious expansion of the solidified waste form, but the reasons for this possible expansion are not clearly established. This work aims at filling the gap. The swelling pressure of IERs is first investigated as a function of ions exchange and ionic strength. It is shown that pressures of a few tenths of MPa can be produced by decreases in the ionic strength of the bulk solution, or by ion exchanges (2Na+ instead of Ca2+, Na+ instead of K+. Then, the chemical evolution of cationic resins initially in the Na+ form is characterized in CEM I (Portland cement and CEM III (Portland cement + blastfurnace slag cements at early age and an explanation is proposed for the better stability of CEM III material.

  7. DecorporatinC facilities of cation-exchange resins with different characteristics on radioactive strontium

    International Nuclear Information System (INIS)

    Efficiency in promoting radiostrontium elimination from the body was studied comparatively for cation-exchange resins differing in type of exchanging moieties, mesh sizes, or extent of cross-linkage in the polymere molecule. The experiments were performed on rats receiving each an oral dose of 5 μCi or 85Sr in a 10 μCi/ml aqueous solution of strontium bichloride. The resins, suspended in sodium carboxymethyl cellulose solution, were administered either 10 or 30 minutes after radionuclide ingestion. From 2 hours to 72 hours after treatment, the animals were whole-body counted, and shortly thereafter their femur radioactivity was measured. All of the resin types tested were found to decrease strontium body burdens, with Amberlite IR-120 and Amberlite IRC-50 showing the most favourable effect. Tne efficiency of the resins did not appear to depend on the type of ion-exchange site. Similarly, no relation was observed with the amount of cross-linkage. It was the resins with minimum mesh sizes that proved more effective. (A.B.)

  8. Independent control of the shape and composition of ionic nanocrystals through sequential cation exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Joseph Matthew; Zheng, Haimei; Sadtler, Bryce; Alivisatos, A. Paul

    2009-07-06

    Size- and shape-controlled nanocrystal growth is intensely researched for applications including electro-optic, catalytic, and medical devices. Chemical transformations such as cation exchange overcome the limitation of traditional colloidal synthesis, where the nanocrystal shape often reflects the inherent symmetry of the underlying lattice. Here we show that nanocrystals, with established synthetic protocols for high monodispersity, can be templates for independent composition control. Specifically, controlled interconversion between wurtzite CdS, chalcocite Cu2S, and rock salt PbS occurs while preserving the anisotropic dimensions unique to the as-synthesized materials. Sequential exchange reactions between the three sulfide compositions are driven by the disparate solubilites of the metal ion exchange pair in specific coordinating molecules. Starting with CdS, highly anisotropic PbS nanorods are created, which serve as an important material for studying strong 2-dimensional quantum confinement, as well as for optoelectronic applications. Furthermore, interesting nanoheterostructures of CdS|PbS are obtained by precise control over ion insertion and removal.

  9. Density-dependent model for range separation in exchange functionals

    CERN Document Server

    Modrzejewski, Marcin; Szczęśniak, Małgorzata M

    2013-01-01

    Alignment of single-particle energies with ionization potentials is at the core of the tuned range-separated (RS) functionals. We achieve this goal in a one-step calculation without explicit ionization. The reciprocal of the optimally-tuned RS parameter is modeled by the average outer electron-exchange hole distance. The resulting functional has a non-local dependence on the density and requires only a computation of a one-electron integral on a grid. Numerical tests prove that the method conforms to Koopmans' theorem and provides physically-sound orbital gaps and CT excitations.

  10. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  11. Modeling of cesium sorption on biotite using cation exchange selectivity coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kylloenen, Jarkko; Hakanen, Martti; Harjula, Risto; Lehto, Jukka [Helsinki Univ. (Finland). Lab. of Radiochemistry; Lindberg, Antero [Geological Survey of Finland, Espoo (Finland); Vehkamaeki, Marko [Helsinki Univ. (Finland). Lab. of Inorganic Chemistry

    2014-07-01

    For the modeling of cesium sorption on biotite, samples of natural biotite separated from gneissic rocks were converted into monoionic potassium, sodium, and calcium forms, and sorption isotherms for Cs/K, Cs/Na and Cs/Ca exchange were determined at pH 6 and 8 in 10{sup -4}-10{sup -8} M Cs solutions. Selectivity coefficients for Cs/K, Cs/Na, and Cs/Ca ion exchange reactions were calculated from the isotherm data, using the Gaines-Thomas convention. At Cs loadings below 1% of the total ion exchange capacity, the overall selectivity coefficient for Cs/Ca exchange was approximately five and seven orders of magnitude higher than those for Cs/Na and Cs/K exchange, respectively. Based on the selectivity coefficients, the ion exchange isotherms were modeled with the U.S. Geological Survey PhreeqC program, assuming three different types of ion exchange site: sites on the basal planes on biotite crystal surfaces with 95% site abundance, probable interlayer sites on crystal edges [frayed edge sites (FESs)] (0.02%) and third-type sites (5%), the physical background of which is unclear. Of these three types, the FES sites were superior in Cs selectivity, while the planar sites exhibited the lowest selectivity, and the third-type sites had selectivity between these two. The functionality of the model was successfully verified by modeling the Cs sorption isotherms on crushed mica gneiss rock in saline groundwater. Determination of the exchangeable ions K, Na, Ca, and Cs on the basal plane and edge surfaces by scanning electron microscopy-energy-dispersive x-ray spectroscopy (SEM-EDX) supports the results of modeling: edge sites highly prefer Cs ions and also Ca and Na ions but not K ions.

  12. The Cation Exchange Capacity of Fibrous Feedstuff and Its Nutritive Characteristics

    Institute of Scientific and Technical Information of China (English)

    XING Ting-xian

    2003-01-01

    Current researches on the nutritive characteristics of fibrous feedstuff through determining thefeedstuff cation exchange capacity (CEC) to evaluate its nutritive value at home and abroad were comprehen-sively discribed, and the methods of determining CEC value and the correlation between CEC value and chemi-cal compositions, pH value, and the effect of CEC value on the digestion kinetics in ruminants were also em-phatically introduced. The results of research showed that the CEC values of different feedstuff are different,closely correlated with nitrogen and acid detergent fibre (ADF) and lignin (LIG) content of the feedstuff. Atthe same time, there are markedly effect of CEC value in diet on the nutrients flow of digesta in the digestivetract of ruminants, the degradation rate and digestibility of nutrients in the rumen.

  13. Complexation of americium(III) with humic acid by cation exchange and solvent extraction

    International Nuclear Information System (INIS)

    Complexation of Am(III) with humic acid was studied at various pHs in 0.1M NaClO4. The stability constants of the Am(III)-humate complexes were determined by a cation-exchange method. The values of logβ1 and logβ2 increased slightly with increases of pH from 4 to 6 and were found to be 6.9 and 11.6, respectively, at a pH of 5. Markedly larger values than these were obtained by a solvent extraction method. This discrepancy was also revealed by summarizing data from several literature sources. It is very likely that this can be ascribed to decreases in either humic acid and/or the extractant from the extraction system due to humate interactions at the aqueous-organic interface. (author)

  14. Potential sources of errors in cation-exchange chromatographic measurement of plasma taurine.

    Science.gov (United States)

    Connolly, B M; Goodman, H O

    1980-03-01

    We examined the potential sources of error in automated cation-exchange chromatographic quantitation of plasma taurine, both in sample preparation and in the analysis. Principal sources of error include: use of serum instead of plasma, which produces gross overestimates; use of tripotassium ethylenediaminetetraacetate (EDTA) as anticoagulant in systems involving ninhydrin detection (a ninhydrin-positive contaminant of EDTA emerges coincident with taurine); contamination with platelets; and placing volumes exceeding 20 microL on the cartridge used in the Technicon TSM Amino Acid Analyzer. We arrived at a simple technique in which we use EDTA as anticoagulant, micropore filtration to produce platelet-free plasma, and o-phthalaldehyde as the detection reagent for the sensitivity required to measure accurately the low concentration of taurine in plasma. PMID:6767571

  15. Electrochemical catalytic treatment of wastewater by metal ion supported on cation exchange resin

    International Nuclear Information System (INIS)

    The electrochemical oxidation of phenol in synthetic wastewater and paper mill wastewater catalyzed by metal ion supported on cation exchange resin in suspended bed electrolytic reactor with graphite electrode has been investigated. The catalyst was characterized by SEM and XPS spectra and the effects of pH, the different metal ion and NaCl on the efficiency of the electrochemical oxidation phenol process were also studied. It was found that the catalyst containing Fe3+ had the highest electrochemical catalytic activity for the electrochemical oxidation of phenol. When the initial concentration of phenol was 200 ppm, up to 90% chemical oxygen demand (COD) removal was obtained in 10 min. When the catalyst containing Fe3+ was used to the paper mill wastewater, it still showed high efficiency. The COD removal could get to 75% in 60 min

  16. Synthesis of Grafted Hydrogels as Mono-Divalent Cation Exchange and Drug Delivery

    International Nuclear Information System (INIS)

    ph-sensitive grafted poly vinyl alcohol-poly acrylic acid (PVA-PAA) hydrogels has been prepared by direct radiation grafting of acrylic acid (AA) onto PVA hydrogels. The grafting percent increase as the monomer concentration and irradiation dose increase. The maximum grafting yield was obtained at monomer concentration 50 % and irradiation dose 50 kGy. The swelling, thermogravimetric analysis, activation energy and scanning electron microscope of the grafted copolymer hydrogels were studied. The swelling of co-polymeric hydrogel was studied at different ph, and the gel demonstrate high swelling at ph 6.8. The de swelling of the swollen hydrogel in Ni2+ and Cu2+ cations solution was explained on the basis of mono-divalent cation exchange. The hydrogel was loaded by antihistaminic chlorphenamine maleate hydrochloride (CPM) as drug model. The release of (CPM) was faster in stimulated gastric fluid (SGF) of ph 1.1 than in stimulated intestinal fluid (SIF) of ph 6.8

  17. Synthesis of high capacity cation exchangers from a low-grade Chinese natural zeolite

    International Nuclear Information System (INIS)

    The Chinese natural zeolite, in which clinoptilolite coexists with quartz was treated hydrothermally with NaOH solutions, either with or without fusion with NaOH powder as pretreatment. Zeolite Na-P, Na-Y and analcime were identified as the reacted products, depending on the reaction conditions such as NaOH concentration, reaction time and hydrothermal temperature. The products were identified by X-ray diffraction, and characterized by Fourier transform IR and ICP. With hydrothermal treatment after fusion of natural zeolite with NaOH, high purity of zeolite Na-Y and Na-P can be selectively formed, their cation exchange capacity (CEC) are 275 and 355 meq/100 g respectively, which are greatly higher than that of the natural zeolite (97 meq/100 g). Furthermore, the ammonium removal by the synthetic zeolite Na-P in aqueous solution was also studied. The equilibrium isotherms have been got and the influence of other cations present in water upon the ammonia uptake suggested an order of preference Ca2+ > K+ > Mg2+.

  18. Design of Uranium Isotope Separation Plant by Chemical Exchange

    International Nuclear Information System (INIS)

    The methodology to design a solvent extraction plant for uranium isotope separation by chemical exchange is outlined. This process involves the calculator of the number of stages,the capacity of the plant,the flow rates,and reflux ration in banks of mixer settlers or pulse column used in such a plant. The feed is introduced at the middle of the plant,and the product is withdrawn at one end and the tailings at another. The redox reaction system selected is U(IV)-U(VI) and the equilibrium data of the 40% tri-n-octylamine (TOA) in benzene as the organic phase and 4 M HCI as the aqueous phase are used for the design of the real plant. The resulting analysis for the uranium isotope separation shows that more than 4000 number of stages are required and the reflux ratio is around 700 to produce only 1m3 of product containing 3% of U235 and 0,3% of U235 in the tailings. It is also known that the larger the isotope separation constant the smaller the number of stages needed. The method of design can be used for other systems where the isotope separation constants are more favorable

  19. Chemically modified polymeric resins for separation of cations, organic acids, and small polar moleculea by high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.B.

    1993-07-01

    This thesis is divided into 4 parts: a review, ion chromatography of metal cations on carboxylic resins, separation of hydrophilic organic acids and small polar compounds on macroporous resin columns, and use of eluent modifiers for liquid chromatographic separation of carboxylic acids using conductivity detection.

  20. Studies on rapid ion-exchange separation of the transplutonium elements with mineral acid-methanol mixed media

    International Nuclear Information System (INIS)

    In order to study properties of short-lived transplutonium nuclides synthesized by heavy-ion bombardment, three methods for rapid separation of tri-valent transplutonium elements by ion-exchange chromatography with mineral acid-methanol mixed media at elevated temperature were investigated. The first separation method was anion-exchange chromatography with nitric acid-methanol mixed media. The second method was anion-exchange choromatography with dilute hydrochloric acid-methanol mixed media. The third method was improved cation-exchange chromatography with single-column operation using the mixed media of hydrochloric acid and methanol. The separation methods developed were found applicable to studies on synthesis of the trans-plutonium nuclides, 250Fm (T1/2:30 min), 244,245,246Cf (T1/2:20 min, 46 min and 35.7 h, respectively) from the 16O + 238U and12C + 242Pu reactions, and on the decay property of 245Cf. Attempts to search for new actinide nuclides, such as 240U and neutron deficient nuclides of Am, Cm and Bk, were made by a quick purification. The separation system was also applied to the rapid and effective separation of Nd, Am and Cm from spent nuclear fuel samples, for burn-up determination. (J.P.N.) 242 refs

  1. Separation of zirconium from hafnium by ion exchange

    International Nuclear Information System (INIS)

    Zirconium and hafnium are two of the most important metals for the nuclear industry. Hafnium occurs in all zirconium ores usually in the range 2 - 3%. However, for the most nuclear industry applications, it is necessary to use a zirconium of extremely pure level. The current work consists in the separation of zirconium and hafnium by the ion exchange method in order to obtain a zirconium concentrate of high purity. The zirconium and hafnium liquors were produced from the leaching of the Zr(OH)4 and Hf(OH)4 with nitric acid for 24 hours. From these two liquors it was prepared one solution containing 7.5 x 10-2 mol L-1 of Zr and 5.8 x 10-3 mol L-1 of Hf with acidity of 1 M. Ion exchange experiments were carried out in batch with the resins Dowex 50WX4, Dowex 50WX8 100, Dowex 50WX8 50, Amberlite IR-120 and Marathon C at constant temperature 28 deg C. Other variables such as, acidity and agitation were kept constant. The data were adjusted to Langmuir equation in order to calculate the maximum loading capacity (qmax) of the resins, the distribution coefficient (Kd) for Zr and Hf and the separation factor (αHfZr ). The results of maximum loading capacity (qmax) for Zr and Hf, in mmol g-1, showed that the most suitable resins for columns experiments are: Dowex 50WX4 50 (qmax Zr = 2.21, Hf = 0.18), Dowex 50WX8 50 (qmax Zr = 1.89, Hf = 0.13) and Amberlite (qmax Zr = 1.64, Hf = 0.12). However, separations factors, αHfZr, showed that the resins are not selective. (author)

  2. Separation of zirconium from hafnium by ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Felipe, Elaine C.B.; Palhares, Hugo G.; Ladeira, Ana Claudia Q., E-mail: elainecfelipe@yahoo.com.br, E-mail: hugopalhares@gmail.com, E-mail: ana.ladeira@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Zirconium and hafnium are two of the most important metals for the nuclear industry. Hafnium occurs in all zirconium ores usually in the range 2 - 3%. However, for the most nuclear industry applications, it is necessary to use a zirconium of extremely pure level. The current work consists in the separation of zirconium and hafnium by the ion exchange method in order to obtain a zirconium concentrate of high purity. The zirconium and hafnium liquors were produced from the leaching of the Zr(OH){sub 4} and Hf(OH){sub 4} with nitric acid for 24 hours. From these two liquors it was prepared one solution containing 7.5 x 10{sup -2} mol L{sup -1} of Zr and 5.8 x 10{sup -3} mol L{sup -1} of Hf with acidity of 1 M. Ion exchange experiments were carried out in batch with the resins Dowex 50WX4, Dowex 50WX8 100, Dowex 50WX8 50, Amberlite IR-120 and Marathon C at constant temperature 28 deg C. Other variables such as, acidity and agitation were kept constant. The data were adjusted to Langmuir equation in order to calculate the maximum loading capacity (q{sub max}) of the resins, the distribution coefficient (K{sub d}) for Zr and Hf and the separation factor (α{sub Hf}{sup Zr} ). The results of maximum loading capacity (q{sub max}) for Zr and Hf, in mmol g{sup -}1, showed that the most suitable resins for columns experiments are: Dowex 50WX4 50 (q{sub max} Z{sub r} = 2.21, Hf = 0.18), Dowex 50WX8 50 (q{sub max} Zr = 1.89, Hf = 0.13) and Amberlite (q{sub max} Zr = 1.64, Hf = 0.12). However, separations factors, α{sub Hf}{sup Zr}, showed that the resins are not selective. (author)

  3. Quantification of unsaturated-zone alteration and cation exchange in zeolitized tuffs at Yucca Mountain, Nevada, USA

    Science.gov (United States)

    Vaniman, David T.; Chipera, Steve J.; Bish, David L.; Carey, J. William; Levy, Schön S.

    2001-10-01

    Zeolitized horizons in the unsaturated zone (UZ) at Yucca Mountain, Nevada, USA, are an important component in concepts for a high-level nuclear waste repository at this site. The use of combined quantitative X-ray diffraction and geochemical analysis allows measurement of the chemical changes that accompanied open-system zeolitization at Yucca Mountain. This approach also provides measures of the extent of chemical migration that has occurred in these horizons as a result of subsequent cation exchange. Mass-balance analysis of zeolitized horizons with extensive cation exchange (drill hole UZ-16) and with only minimal cation exchange (drill hole SD-9) shows that Al is essentially immobile. Although zeolitization occurred in an open system, the mass transfer of constituents other than water is relatively small in initial zeolitization, in contrast to the larger scales of cation exchange that can occur after zeolites have formed. Cation exchange in the clinoptilolite ± mordenite zeolitized horizons is seen in downward-diminishing concentration gradients of Ca, Mg, and Sr exchanged for Na and (to lesser extent) K. Comparison with data from drill hole SD-7, which has multiple zeolitized horizons above the water table, shows that the upper horizons accumulate Ca, Mg, and Sr to such an extent that transport of these elements to the deepest UZ zeolitized horizon can be blocked. Quantitative analysis of zeolite formation yields insight into processes that are implied from laboratory studies and modeling efforts but are otherwise unverified at the site. Such analysis also yields information not provided by or contradicted by some models of flow and transport. The results include the following: (1) evidence of effective downward flow through zeolitic horizons despite the low permeability of these horizons, (2) evidence that alkaline-earth elements accumulated by zeolites are mostly derived from eolian materials in surface soils, (3) validation of the very effective

  4. Ultrathin Sicopion Composite Cation-Exchange Membranes: Characteristics and Electrodialytic Performance following a Conditioning Procedure

    Directory of Open Access Journals (Sweden)

    Erik Ayala-Bribiesca

    2012-01-01

    Full Text Available The aim of this work was to investigate the properties of Sicopion membranes: an ultrathin (≈20 μm composite cation-exchange membrane (CEM made from sulphonated poly(ether-ether-ketone (SPEEK containing different levels of sulphonic-functionalized silica particles (SFSPs. Sicopion membranes were conditioned according to the French Normalization Association procedure, consisting in a series of acid and alkaline washes, and their electrodialytic characteristics were compared to an existent commercial food-grade membrane (CMX-SB. Electrical conductivity of Sicopion membranes was higher than that of CMX-SB membranes (9.92 versus 6.98 mS/cm, as well as their water content (34.0 versus 27.6%. As the SFSP level was reduced, the ion-exchange capacity (IEC of Sicopion membranes increased. Concerning their electrodialytic performances, Sicopion membranes presented a lower demineralization rate than CMX-SB membranes (35.9 versus 45.5%, due to an OH− leakage through the pores created by dislodging the SFSP particles during the conditioning procedure.

  5. Identification of a crucial histidine involved in metal transport activity in the Arabidopsis cation/H(+) exchanger CAX1

    Science.gov (United States)

    In plants, yeast and bacteria, cation/H(+) exchangers (CAXs), have been shown to translocate Ca(2+) and other metals. The best characterized of these related transporters is the plant vacuolar-localized CAX1. We used site-directed mutagenesis to assess the impact of altering the seven histidine re...

  6. SYNTHESIS OF 2—HYDROXYETHYL ACRYLATE BY USING STRONG ACIDIC CATION ION EXCHANGE RESIN AS CATALYST

    Institute of Scientific and Technical Information of China (English)

    GAODabin

    1992-01-01

    2-Hydroxyethyl acrylate is synthesized from acrylic acid and ethylene glycol under a simple and mild condition by using strong acidic cation ion exchange resin as a catalyst,which could be recycled as long as 10 times with high activation.

  7. Influence of monovalent alkaline metal cations on binder-free nano-zeolite X in para-xylene separation

    Institute of Scientific and Technical Information of China (English)

    Milad Rasouli; Nakisa Yaghobi; Hossein Atashi; Majid Rasouli

    2015-01-01

    The adsorption process was studied for separating para-xylene from xylene mixture on modified nano-zeolite X in a breakthrough system. Nano-zeolitic adsorbent with different ratios of SiO2/Al2O3 was synthesized through hydrothermal process and ion-exchanged with alkaline metal cations like lithium, sodium and potassium. The product was characterized by X-ray diffraction, scanning electron microscopy (SEM), nitrogen adsorption, transform electron microscopy (TEM) and in situ Fourier transform infrared (FTIR) spectroscopy. The influence of nano-zeolite water content and desorbent type on the selectivity of para-xylene toward other C8 aromatic isomers was studied. The optimization of adsorption process was also investigated under variable operation conditions. The isotherm for each isomer of C8 aromatics and the desorbents possess the adsorption characteristics of Langmuir type. The selectivity factor of para-xylene relative to each of meta-xylene, ortho-xylene and ethylben-zene under the optimum conditions obtained to be 5.36, 2.43 and 3.22, in the order given.

  8. Sorption processes and XRD analysis of a natural zeolite exchanged with Pb2+, Cd2+ and Zn2+ cations

    International Nuclear Information System (INIS)

    In this study the Pb2+, Cd2+ and Zn2+ adsorption capacity of a natural zeolite was evaluated in batch tests at a constant pH of 5.5 by polluting this mineral with solutions containing increasing concentrations of the three cations to obtain adsorption isotherms. In addition X-ray powder diffraction (XRD) was used to investigate the changes of zeolite structure caused by the exchange with cations of different ionic radius. The zeolite adsorption capacity for the three cations was Zn > Pb > Cd. Moreover a sequential extraction procedure [H2O, 0.05 M Ca(NO3)2 and 0.02 M EDTA] was applied to zeolite samples used in the adsorption experiments to determine the chemical form of the cations bound to the sorbent. Using this approach it was shown that low concentrations of Pb2+, Cd2+ and Zn2+ were present as water-soluble and exchangeable fractions (27% of the Me adsorbed). The XRD pattern of zeolite, analysed according to the Rietveld method, showed that the main mineralogical phase involved in the adsorption process was clinoptilolite. Besides structure information showed that the incorporation of Pb2+, Cd2+ and Zn2+, into the zeolite frameworks changed slightly but appreciably the lattice parameters. XRD analysis also showed the occurrence of some isomorphic substitution phenomena where the Al3+ ions of the clinoptilolite framework were replaced by exchanged Pb2+ cations in the course of the ion exchange reaction. This mechanism was instead less evident in the patterns of the samples doped with Cd2+ and Zn2+ cations

  9. Study on separation of Eu(II) from trivalent rare earths via electro-reduction and ion exchange

    International Nuclear Information System (INIS)

    Separation of Eu(II) from trivalent rare earths was carried out in 0.01 mol dm-3 hydrochloric acid medium. Eu(III) was selectively reduced to Eu(II) at glassy carbon cathode in flow type electrolyzer. For Eu(II) separation strong acid cation exchanger based on sulfonated polystyrene/DVB copolymer impregnated into porous silica beads was used. Breakthrough and chromatography curves were measured. Eu(II) exhibited lower affinity towards the sorbent than trivalent rare earths and therefore it was the first species to breakthrough the column. Excellent separation from middle rare earths was achieved while the separation from heavy rare earths was difficult. The back-oxidation of Eu(II) was a problem despite all the measures that were taken to prevent oxidation by dissolved oxygen and photo-oxidation

  10. Cation exchange reactions controlling desorption of 90Sr 2+ from coarse-grained contaminated sediments at the Hanford site, Washington

    Science.gov (United States)

    McKinley, J. P.; Zachara, J. M.; Smith, S. C.; Liu, C.

    2007-01-01

    Nuclear waste that bore 90Sr 2+ was accidentally leaked into the vadose zone at the Hanford site, and was immobilized at relatively shallow depths in sediments containing little apparent clay or silt-sized components. Sr 2+, 90Sr 2+, Mg 2+, and Ca 2+ was desorbed and total inorganic carbon concentration was monitored during the equilibration of this sediment with varying concentrations of Na +, Ca 2+. A cation exchange model previously developed for similar sediments was applied to these results as a predictor of final solution compositions. The model included binary exchange reactions for the four operant cations and an equilibrium dissolution/precipitation reaction for calcite. The model successfully predicted the desorption data. The contaminated sediment was also examined using digital autoradiography, a sensitive tool for imaging the distribution of radioactivity. The exchanger phase containing 90Sr was found to consist of smectite formed from weathering of mesostasis glass in basaltic lithic fragments. These clasts are a significant component of Hanford formation sands. The relatively small but significant cation exchange capacity of these sediments was thus a consequence of reaction with physically sequestered clays in sediment that contained essentially no fine-grained material. The nature of this exchange component explained the relatively slow (scale of days) evolution of desorption solutions. The experimental and model results indicated that there is little risk of migration of 90Sr 2+ to the water table.

  11. Bandgap tunable colloidal Cu-based ternary and quaternary chalcogenide nanosheets via partial cation exchange

    Science.gov (United States)

    Ramasamy, Parthiban; Kim, Miri; Ra, Hyun-Soo; Kim, Jinkwon; Lee, Jong-Soo

    2016-04-01

    Copper based ternary and quaternary semiconductor nanostructures are of great interest for the fabrication of low cost photovoltaics. Although well-developed syntheses are available for zero dimensional (0D) nanoparticles, colloidal synthesis of two dimensional (2D) nanosheets remains a big challenge. Here we report, for the first time, a simple and reproducible cation exchange approach for 2D colloidal Cu2GeSe3, Cu2ZnGeSe4 and their alloyed Cu2GeSxSe3-x, Cu2ZnGeSxSe4-x nanosheets using pre-synthesized Cu2xSe nanosheets as a template. A mechanism for the formation of Cu2-xSe nanosheets has been studied in detail. In situ oxidation of Cu+ ions to form a CuSe secondary phase facilitates the formation of Cu2-xSe NSs. The obtained ternary and quaternary nanosheets have average lateral size in micrometers and thickness less than 5 nm. This method is general and can be extended to produce other important ternary semiconductor nanosheets such as CuIn1-xGaxSe2. The optical band gap of these nanosheets is tuned from 1 to 1.48 eV, depending on their composition.Copper based ternary and quaternary semiconductor nanostructures are of great interest for the fabrication of low cost photovoltaics. Although well-developed syntheses are available for zero dimensional (0D) nanoparticles, colloidal synthesis of two dimensional (2D) nanosheets remains a big challenge. Here we report, for the first time, a simple and reproducible cation exchange approach for 2D colloidal Cu2GeSe3, Cu2ZnGeSe4 and their alloyed Cu2GeSxSe3-x, Cu2ZnGeSxSe4-x nanosheets using pre-synthesized Cu2xSe nanosheets as a template. A mechanism for the formation of Cu2-xSe nanosheets has been studied in detail. In situ oxidation of Cu+ ions to form a CuSe secondary phase facilitates the formation of Cu2-xSe NSs. The obtained ternary and quaternary nanosheets have average lateral size in micrometers and thickness less than 5 nm. This method is general and can be extended to produce other important ternary

  12. Effect of the Structure of Cations and Anions of Ionic Liquids on Separation of Aromatics from Hydrocarbon Mixtures

    Institute of Scientific and Technical Information of China (English)

    Liu Yansheng; Zhang Zhongxin; Zhang Guofu; Liu Zhichang; Hu Yufeng; Shi Quan; Ji Dejun

    2006-01-01

    The effects of the structure of typical cations and anions of ionic liquids on the separation of benzene and toluene from aromatic/paraffin mixtures were studied. The results showed that the corresponding separation factors were considerably larger than those of the traditional solvents (Benzene+Hexane+sulfolane), and that the ionic liquids could be used as novel solvents for the separation of aromatics from hydrocarbon mixtures. The key parameters governing the ability of ionic liquids for separating aromatics from hydrocarbon sources were investigated. It was found that the effectiveness of the ionic liquids, based on the same anion, changed in the cation order of [BIqu]+< [BPy]+< [BMIM]+. The selectivity of the ionic liquid toward aromatics decreased apparently with the increasing length of the substituted alkyl chain of its cationic head ring. The separation factors, based on the same cation, changed in the anion order of [Tf2N]-<[PF6]-<[BF4]-<[C2H5SO4]-. The solubilities of the aromatics were greater in the ionic liquids based on the former three anions than that in the ionic liquids involving [C2H5SO4]-.

  13. Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid-beta-cyclodextrin.

    Science.gov (United States)

    Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R

    2003-05-16

    In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression. PMID:12830884

  14. Recover of some rare earth elements from leach liquor of the Saghand uranium ore using combined precipitation and cation exchange methods

    International Nuclear Information System (INIS)

    In this research work, the recovery and separation of La(III), Ce(III), Sm(III), Dy(III) and Nd(III) from Saghand uranium ore have been studied by precipitation and ion-exchange chromatography methods using Dowex 50 W-X 8 cation exchanger. At first, some preliminary and preconcentration experiments such as comminution, sieve analysis, gravity table and electrostatic in preconcentration of lanthanides were performed. Then, acidic digesting and leaching procedure were used. The results of experiments showed that rare earth elements, along with interfering ions such as Al(III), Fe(III), Mg(II) and Mn(II) present in the leach liquor solution. The investigation of separation process by precipitation method revealed that precipitation and then fast separation using centrifugal technique had the best results in the elimination of interference elements. In order to separate the lanthanides and to obtain their elution curves, the chromatographic column containing Dowex 50 W-X 8 resin was employed. For efficient separation of lanthanides from interference elements the hydrochloric acid with concentration of two and six molar was used respectively. Recovery of lanthanides from the leach liquor solution was achieved more than 85%

  15. A study on equilibrium and kinetics of ion exchange of alkaline earth metals using an inorganic cation exchanger - zirconium titanium phosphate

    Indian Academy of Sciences (India)

    Amin Jignasa; Thakkar Rakesh; Chudasama Uma

    2006-03-01

    An advanced inorganic cation exchange material of the class of tetravalent metal acid (TMA) salt, zirconium titanium phosphate (ZTP), has been synthesized by a modified sol-gel technique. ZTP has been characterized by elemental analysis (ICP-AES), thermal analysis (TGA), FTIR and X-ray diffraction studies. The Nernst-Planck equation has been used to study the forward and reverse ion exchange kinetics of Mg (II), Ca (II), Sr (II) and Ba (II) with H (I) at four different temperatures. The mechanism of exchange is particle diffusion, as confirmed by the linear (dimensionless time parameter) vs (time) plots. The exchange process is thus controlled by the diffusion within the exchanger particles for the systems studied herein. Further, various kinetic parameters like self-diffusion coefficient (0), energy of activation () and entropy of activation (*) have been evaluated under conditions favouring a particle diffusion-controlled mechanism.

  16. Boron isotope separation by ion exchange chromatography using weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    Isotopic plateau displacement chromatography, a useful method for isotope separation is presented. The boric acid band formed in a column of weakly basic anion exchange resin Diaion WA21 can be eluted with pure water. In order to obtain good accumulation of the isotope effect, a series of experiments with different migration length were carried out. The boron-10 enriched part of the boric acid absorbed band was always preceded by the isotopic plateau part, in which the atomic fraction of boron-10 was maintained at its original value. The atomic fraction of boron-10 at the end of the chromatogram increased with migration length, and in the case of 256-m migration, boron-10 was enriched from its original atomic fraction of 19.84 to 91.00%, the separation factor S being constant irrespective of migration length: S = 1.0100 +- 0.0005. (author)

  17. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Science.gov (United States)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-07-01

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium.

  18. Use of type-II strong base anion exchange resins for ion exchange chromatographic separation of isotopes of boron

    International Nuclear Information System (INIS)

    The optimum conditions for the regeneration of strong base anion exchange resins of type-I and type-II were determined for cost - effective separation of isotopes of boron by ion exchange chromatography. The possibility of using unspent alkali content of the effluent was also exploited. Removal of carbonate impurity from rayon grade caustic lye (used as regenerant after dilution) and recycling of Ba(OH)2 was studied to avoid waste disposal problems. The determination of (i) ion exchange capacity of Duolite-162 resin for hydroxyl - chloride and hydroxyl - borate exchanges, (ii) isotopic exchange separation factor by batch method and (iii) effect of concentration of boric acid (in presence and absence of mannitol) on isotopic exchange separation factor to test the suitability of the type-II resin for this process are discussed. (author)

  19. Alternative separation of exchange and correlation energies in range-separated density-functional perturbation theory

    CERN Document Server

    Cornaton, Yann; Jensen, Hans Jørgen Aa; Fromager, Emmanuel

    2013-01-01

    An alternative separation of short-range exchange and correlation energies is used in the framework of second-order range-separated density-functional perturbation theory. This alternative separation was initially proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] and relies on a long-range interacting wavefunction instead of the non-interacting Kohn-Sham one. When second-order corrections to the density are neglected, the energy expression reduces to a range-separated double-hybrid (RSDH) type of functional, RSDHf, where "f" stands for "full-range integrals" as the regular full-range interaction appears explicitly in the energy expression when expanded in perturbation theory. In contrast to usual RSDH functionals, RSDHf describes the coupling between long- and short-range correlations as an orbital-dependent contribution. Calculations on the first four noble-gas dimers show that this coupling has a significant effect on the potential energy curves in the equilibrium region, improving the accurac...

  20. Sorption of (226)Ra from oil effluents onto synthetic cation exchangers.

    Science.gov (United States)

    Al Attar, Lina; Safia, Bassam

    2013-07-30

    Increasing environmental awareness is being urged for the safe disposal of (226)Ra-contaminated production water generated in the oil industry. Birnessite, antimony silicate and their cationic derivatives were studied for the take-up of (226)Ra using the batch-type method under experimentally determined parameters, viz. contact time, solution-solid ratio and (226)Ra concentration. Data was expressed in terms of distribution coefficients. Sorption experiments were performed in different concentrations of nitric acid in order to speculate the mechanism of (226)Ra uptake. Variation in the magnitude of sorption efficiency of the materials in the presence of the major components of waste streams, i.e. Na(+), K(+) and Ca(2+), revealed that K(+) was the greatest competitor and Na(+) the least. The application of the materials to sorb (226)Ra from actual oil co-production water samples, collected from Der Ezzor and Al Fourat petroleum companies (DEZPC and AFPC), was interpreted in terms of the exchange properties of the materials and water characterisation. Of the parameters studied, the selectivity of materials was shown to be greatly dependent on the pH of wastewater to be treated. PMID:23623032

  1. Use of Cation Exchange Membrane in Soil Potassium Release and Wheat Response to Potassium

    Institute of Scientific and Technical Information of China (English)

    LIGUI-BAO; J.J.SCHOENAU; 等

    1995-01-01

    A pot experiment was conducted in the growth chamber on Saskatchewan soils with different texture to determine the K release status and wheat K demand.The relationship between K uptake and soil available K extracted by cation exchange membrane(CEM-K) and the effcet of K fertilizer on wheat growth and soil available K was also evaluated.Treatments of 0,60 and 120mg K/kg were applied to sandy,low and high K loamy and clay soils,The highest yields were acieved with the application of 120mg K/kg in sandy soil and 60 mg K/kg in other soils.On the whole,the clay soil contributed K more than other soils from slowly available fraction.Regression revealed a linear relationship between the soil available K extracted by NH4OAc(Ka) and CEM-K in suspensions(r=0.93).Results also showed that CEM-K in burial and in suspensions were different not only in the amount but also in correlation with Ka or K uptake.

  2. Effects of Experimental Conditions on Extraction Yield of Extracellular Polymeric Substances by Cation Exchange Resin

    Directory of Open Access Journals (Sweden)

    Jinwoo Cho

    2012-01-01

    Full Text Available Effects of experimental conditions on the yield of extracellular polymeric substances (EPSs extraction by cation exchange resin (CER were investigated using activated sludge flocs. The experimental variables included resin dose, extraction time, sample dilution, and storage time. An empirical model was proposed to describe the kinetics of extraction process. The extraction yield increases with the extraction time and CER dose until it reached the maximum amount of EPS extraction. The maximum yield of EPS was affected as well by the sample dilution, exhibiting a decreasing trend with increasing dilution factor. It was also found that the amount of EPS extracted from a raw sample depends on the storage time. Once EPS was extracted from the sample, however, the EPS keeps its original quantity under storage at 4°C. Based on the model, the maximum amount of EPS extraction and yield rate could be estimated for different conditions. Comparing the model parameters allows one to quantitatively compare the extraction efficiencies under various extracting conditions. Based on the results, we recommend the original sample should be diluted with the volume ratio of above 1 : 2 and a raw sample should be treated quickly to prevent the reduction of sample homogeneity and original integrity.

  3. Adsorption behavior and mechanism of cadmium on strong-acid cation exchange resin

    Institute of Scientific and Technical Information of China (English)

    WANG Fei; WANG Lian-jun; LI Jian-sheng; SUN Xiu-yun; HAN Wei-qing

    2009-01-01

    The adsorption behavior of Cd2+ on 001×7 strong-acid cation exchange resin was studied with the static adsorption method. The adsorption process was analyzed from thermodynamics and kinetics aspects. The influences of experimental parameters such as pH, temperature, initial concentration and adsorption rate were investigated. The experimental results show that in the studied concentration range, 001×7 resin has a good sorption ability for Cd2+, and the equilibrium adsorption data fit to Freundlich isotherms. The adsorption is an exothermic process which runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best adsorption condition is pH 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the desorption efficiency is over 98%. The maximal static saturated adsorption capacity is 355 mg/g (wet resin) at 293 K. The adsorption mechanism of Cd2+ on 001×7 resin was discussed based on IR spectra.

  4. Effects of experimental conditions on extraction yield of extracellular polymeric substances by cation exchange resin.

    Science.gov (United States)

    Cho, Jinwoo; Hermanowicz, Slawomir W; Hur, Jin

    2012-01-01

    Effects of experimental conditions on the yield of extracellular polymeric substances (EPSs) extraction by cation exchange resin (CER) were investigated using activated sludge flocs. The experimental variables included resin dose, extraction time, sample dilution, and storage time. An empirical model was proposed to describe the kinetics of extraction process. The extraction yield increases with the extraction time and CER dose until it reached the maximum amount of EPS extraction. The maximum yield of EPS was affected as well by the sample dilution, exhibiting a decreasing trend with increasing dilution factor. It was also found that the amount of EPS extracted from a raw sample depends on the storage time. Once EPS was extracted from the sample, however, the EPS keeps its original quantity under storage at 4°C. Based on the model, the maximum amount of EPS extraction and yield rate could be estimated for different conditions. Comparing the model parameters allows one to quantitatively compare the extraction efficiencies under various extracting conditions. Based on the results, we recommend the original sample should be diluted with the volume ratio of above 1:2 and a raw sample should be treated quickly to prevent the reduction of sample homogeneity and original integrity. PMID:22919352

  5. Adsorption equilibrium and kinetics of monomer-dimer monoclonal antibody mixtures on a cation exchange resin.

    Science.gov (United States)

    Reck, Jason M; Pabst, Timothy M; Hunter, Alan K; Wang, Xiangyang; Carta, Giorgio

    2015-07-10

    Adsorption equilibrium and kinetics are determined for a monoclonal antibody (mAb) monomer and dimer species, individually and in mixtures, on a macroporous cation exchange resin both under the dilute limit of salt gradient elution chromatography and at high protein loads and low salt based on batch adsorption equilibrium and confocal laser scanning microscopy (CLSM) experiments. In the dilute limit and weak binding conditions, the dimer/monomer selectivity in 10mM phosphate at pH 7 varies between 8.7 and 2.3 decreasing with salt concentration in the range of 170-230mM NaCl. At high protein loads and strong binding conditions (0-60mM NaCl), the selectivity in the same buffer is near unity with no NaCl added, but increases gradually with salt concentration reaching high values between 2 and 15 with 60mM added NaCl. For these conditions, the two-component adsorption kinetics is controlled by pore diffusion and is predicted approximately by a dual shrinking core model using parameters based on single component equilibrium and kinetics measurements. PMID:26028510

  6. Relative activities of siloxane monomers toward the cation exchange resin-catalyst in the equilibration reactions

    Directory of Open Access Journals (Sweden)

    M. N. GOVEDARICA

    2001-07-01

    Full Text Available The relative activities of a number of siloxane monomers, both cyclic and linear, toward the cation exchange resin-equilibration catalyst were determined. The determination was based on the fact that when a particular siloxane compound is added to an arbitrarily chosen equilibrate, it takes part in the equilibration process, provoking certain viscosity changes of the reaction mixture. Taking these viscosity changes as a measure of activities, the following order was obtained: hexamethylcyclotrisiloxane > hexamethyldisiloxane > octamethylcyclotetrasiloxane > one linear all-methyl oligosiloxane of number average molecular weight of approximately 800 > decamethylcyclopentasiloxane. The results obtained by using the described viscosimetrical determination method were controlled by measuring the number average molecular weights of the reaction mixtures at the beginning and at the end of the equilibration process. The deviations of the experimentally measured from the calculated values were less than 20 %, as was found in one equilibration system. In most other systems the deviations were about 10 % which is a very good result which strengthens the validity of the applied determination method.

  7. Short communication: Predicting cation exchange capacity from hygroscopic moisture in agricultural soils of Western Europe

    Directory of Open Access Journals (Sweden)

    José Torrent

    2015-12-01

    Full Text Available Soil cation exchange capacity (CEC depends on the extent and negative charge density of surfaces of soil mineral and organic components. Soil water sorption also depends on the extent of such surfaces, giving thus way to significant relationships between CEC and hygroscopic moisture (HM in many soils. In this work, we explored whether CEC could be accurately predicted from HM in agricultural soils of Mediterranean and humid temperate areas in Western Europe. For this purpose, we examined 243 soils across a wide variation range of their intrinsic properties. Soil CEC was determined using 1 M ammonium acetate at pH 7 and HM at an equilibrium air relative humidity (RH of 43% (HM43. Most of the variation of soil CEC was explained by HM43 through a linear function (CEC = 1.4 + 0.78HM43; R2 = 0.962; standard deviation = 2.30 cmolc/kg. Coefficients of the regression equation were similar for subgroups of soils differing in moisture regime, clay mineralogy, carbonate content and organic carbon content. Therefore, soil hygroscopic moisture measurements at a fixed RH level provided a simple, robust, inexpensive method for predicting soil CEC.

  8. A study on Sn4+ cation exchange natural zeolite treated at different temperatures

    International Nuclear Information System (INIS)

    The samples of Sn4+ zeolite are obtained by cation exchange between natural zeolite and SnCl4, and then treated at different temperatures (70 -1000 deg C). By using Moessbauer spectroscopy, X-ray diffraction and infra-red spectroscopy, the change of position of Sn4+ in the zeolite structure with the temperature is studied. The results show that the Sn4+ is situated in the main duct (channel) of the zeolite structure, but with the increase of the temperature the zeolite is dehydrated gradually, then the Sn4+ begins to move from the center of the duct to the walls of the duct, consequently, owing to the increase of the asymmetry of the electric field where the Sn4+ is situated, the quadruple splitting increase with the increase of the temperature. At the same time the SnO2 component increases with the increase of temperature. When heat-treatment temperature reached 1000 deg C the long range order structure of zeolite may be destroyed completely

  9. Chemical and dimensional evolution of cationic ions exchange resins in cement pastes

    International Nuclear Information System (INIS)

    Ion exchange resins (IERs) are widely used by the nuclear industry to decontaminate radioactive effluents. After use they are usually encapsulated in cementitious materials. However, the solidified waste forms can exhibit a strong expansion, possibly leading to cracking. Its origin is not well understood as well as the conditions when it occurs.In this work, the interactions between cationic resins in the Na+ or Ca2+ form and tricalcium silicate (C3S), Portland cement (CEM I) or Blast furnace slag cement (CEM III/C) are investigated at an early age in order to gain a better understanding of the expansion process.The results show that during the hydration of a paste of C3S or CEM I containing IERs in the Na+ form, the resins exhibit a transient expansion of small magnitude due to the decrease in the osmotic pressure of the interstitial solution. This expansion, which occurs just after cement setting, is sufficient to damage the material which is poorly consolidated for several reasons: small hydration degree, precipitation of less cohesive sodium bearing C-S-H, heterogeneous microstructure with highly porous zones and lastly cleavable crystals of portlandite at the interface between resins and paste. This expansion can be prevented by performing a calcium pretreatment of the resins or by using a CEM III/C cement with a slower rate of hydration than that of Portland cement. (author)

  10. Strong cation exchange resin for improving physicochemical properties and sustaining release of ranitidine hydrochloride

    Directory of Open Access Journals (Sweden)

    Khan S

    2007-01-01

    Full Text Available In the present study strong cation exchange resin (Amberlite IRP69 was used to improve the physicochemical properties of ranitidine hydrochloride such as taste and bulk properties and to sustain dissolution rate. Drug-resin complexes were prepared using batch method. Drug loading was done under different processing conditions such as temperature, pH, drug-resin ratio, and drug concentration to get the optimum condition for resinate preparation. Resinate prepared under optimized condition was tested for taste, bulk properties and release rate. Degree of bitterness of ranitidine was found to reduce to zero after complexation with resin. Improvement in flow properties was also observed. Angle of repose for resinate was found to be 33.21 o as compared to 42.27 o for ranitidine HCl. Effect of dissolution medium and particle size on in vitro release of drug from resinate was also investigated. Resinate with drug to resin ratio of 2:3 and particle size> 90 µm showed about 90% of drug release within 12 h. The orodispersible tablet formulated from the resinate containing 10% croscarmellose sodium disintegrated within 35 sec in oral cavity and showed similar dissolution profile as the resinate. Tablets were found stable after stability studies with no change in dissolution profile.

  11. Experimental Characterization and Modelization of Ion Exchange Kinetics for a Carboxylic Resin in Infinite Solution Volume Conditions. Application to Monovalent-Trivalent Cations Exchange

    International Nuclear Information System (INIS)

    This study is devoted to the characterization of ion exchange inside a microsphere of carboxylic resin. It aims at describing the kinetics of this exchange reaction which is known to be controlled by interdiffusion in the particle. The fractional attainment of equilibrium function of time depends on the concentration of the cations in the resin which can be modelled by the Nernst-Planck equation. A powerful approach for the numerical resolution of this equation is introduced in this paper. This modeling is based on the work of Helfferich but involves an implicit numerical scheme which reduces the computational cost. Knowing the diffusion coefficients of the cations in the resin and the radius of the spherical exchanger, the kinetics can be hence completely determined. When those diffusion parameters are missing, they can be deduced by fitting experimental data of fractional attainment of equilibrium. An efficient optimization tool coupled with the implicit resolution has been developed for this purpose. A monovalent/trivalent cation exchange had been experimentally characterized for a carboxylic resin. Diffusion coefficients and concentration profiles in the resin were then deduced through this new model. (authors)

  12. A procedure for preferential trapping of cesium cations from aqueous solutions and their separation from other inorganic cations

    International Nuclear Information System (INIS)

    The title procedure is as follows. Deltahedral heteroborane anions are added to the aqueous solution containing cesium ions, precipitate (if any) is separated off, and the cesium salts involving the deltahedral heteroborane anions are trapped on activated carbon. The cobaltocarborane anion [3-Co-(1,2-C2B9H11)2] and/or its substitution derivatives are particularly well suited to this purpose. The process can find use in the separation of radionuclides present in waste solutions arising from spent nuclear fuel treatment. (P.A.). 1 fig

  13. Liquid anion-exchange separation of vanadium from malonate media

    International Nuclear Information System (INIS)

    Vanadium (IV) and (V) can be quantitatively extracted with 0.2 mol/l Amberlite LA-2 in xylene at pH 3.0 from 0.02 mol/l malonic acid, stripped with 0.5 mol/l hydrochloric acid, and determined spectrophotometrically. Five other liquid anion exchangers (Amberlite LA-1, Primene JM-T, Aliquat 336S, TOA and TIOA) were examined as possible extractants. The extraction of vanadium(IV) was found to be quantitative only with Amberlite LA-2, while that of vanadium(V) was quantitative with Amberlite LA-1 and LA-2, Primene JM-T and Aliquat 336S. Eight common solvents were tested as diluents; of these hexane, cyclohexane, benzene, and xylene were found to be satisfactory. Vanadium was separated from elements that do not form anionic complexes with malonic acid by selective extraction, from those that form weak complexes by washing the organic extract with water, and from metals that form strong malonato complexes by selective stripping with hydrochloric, nitric, or sulphuric acid. The method has been applied to the determination of vanadium in steel, coal fly ash and fuel oil. The precision of measurement is within ±5% and the detection limit of the method for vanadium is 0.5 mg/kg. (orig.)

  14. A cation exchange model to describe Cs + sorption at high ionic strength in subsurface sediments at Hanford site, USA

    Science.gov (United States)

    Liu, Chongxuan; Zachara, John M.; Smith, Steve C.

    2004-02-01

    A theoretical and experimental study of cation exchange in high ionic strength electrolytes was performed using pristine subsurface sediments from the U.S. Department of Energy Hanford site. These sediments are representative of the site contaminated sediments impacted by release of high level waste (HLW) solutions containing 137Cs + in NaNO 3 brine. The binary exchange behavior of Cs +-Na +, Cs +-K +, and Na +-K + was measured over a range in electrolyte concentration. Vanselow selectivity coefficients ( Kv) that were calculated from the experimental data using Pitzer model ion activity corrections for aqueous species showed monotonic increases with increasing electrolyte concentrations. The influence of electrolyte concentration was greater on the exchange of Na +-Cs + than K +-Cs +, an observation consistent with the differences in ion hydration energy of the exchanging cations. A previously developed two-site ion exchange model [Geochimica et Cosmochimica Acta 66 (2002) 193] was modified to include solvent (water) activity changes in the exchanger phase through application of the Gibbs-Duhem equation. This water activity-corrected model well described the ionic strength effect on binary Cs + exchange, and was extended to the ternary exchange system of Cs +-Na +-K + on the pristine sediment. The model was also used to predict 137Cs + distribution between sediment and aqueous phase ( Kd) beneath a leaked HLW tank in Hanfordd's S-SX tank using the analytical aqueous data from the field and the binary ion exchange coefficients for the pristine sediment. The Kd predictions closely followed the trend in the field data and were improved by consideration of water activity effects that were considerable in certain regions of the vadose zone plume.

  15. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    International Nuclear Information System (INIS)

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO2 adsorption performance. Highlights: ► Location of extraframework Sr2+ or Ba2+ cations was estimated by means of 1H and 23Na MAS NMR. ► Level of Sr2+ or Ba2+ ion exchange was limited by the presence of protons and sodium cations. ► Presence of ammonium cations in the supercages facilitated the exchange. ► Sr2+ and Ba2+ ion exchanged SAPOs are outstanding CO2 adsorbents.

  16. Cation exchanged Fe(II) and Sr compared to other divalent cations (Ca, Mg) in the bure Callovian-Oxfordian formation: Implications for porewater composition modelling

    International Nuclear Information System (INIS)

    Iron and Sr bearing phases were thoroughly investigated by means of spectrometric and microscopic techniques in Callovian-Oxfordian (COX) samples originating from the ANDRA Underground Research Laboratory (URL) in Bure (France). Strontium was found to be essentially associated with celestite, whereas Fe was found to be distributed over a wide range of mineral phases. Iron was mainly present as Fe(II) in the studied samples (∼93% from Moessbauer results). Most of the Fe(II) was found to be in pyrite, sideroplesite/ankerite and clay minerals. Iron(III), if present, was associated with clay minerals (probably illite, illite-smectite mixed layer minerals and chlorite). No Fe(III) oxy(hydro)xide could be detected in the samples. Strontianite was not observed either. Based on these observations, it is likely that the COX porewater is in equilibrium with the following carbonate minerals, calcite, dolomite and ankerite/sideroplesite, but not with strontianite. It is shown that this equilibrium information can be combined with clay cation exchange composition information in order to give direct estimates or constraints on the solubility products of the carbonate minerals dolomite, siderite and strontianite. As a consequence, an experimental method was developed to retrieve the cation exchanged Fe(II) in very well preserved COX samples. The very homogeneous cation exchange composition of the formation is completely in agreement with a homogeneous presence of calcite and dolomite minerals whose equilibrium reactions control part of the porewater composition. Amongst the broad range of values available for dolomite solubility products in thermodynamic databases, the value of log Kdolomite = -3.57 is the most appropriate for the one present in the COX formation. With regard to strontianite, it appears that the equilibrium constant tabulated in the Llnl database is not valid for natural clay systems. The value given by Busenberg et al. used by most of the other available

  17. The role of cation exchange in the sorption of cadmium, copper and lead by soils saturated with magnesium

    International Nuclear Information System (INIS)

    The displacement of Ca2+, Mg2+, K+ and Al3+ from the A and Bw or Bt horizons of two soils developed over serpentinized amphibolites when equilibrated in Cu2+, Cd2+ or Pb2+ solutions was determined, together with the concomitant sorption of the heavy metal. The contributions of Mg2+ to the effective cation exchange capacities of the A and Bt horizons of the Endoleptic Luvisol were 57% and 94%, respectively, and its contributions to those of the A and Bw horizons of the Mollic Cambisol were 70% and 77%, respectively. In all four horizons, cation exchange, chiefly with Mg2+ and Ca2+, was the process chiefly responsible for sorption of Cd2+, Cu2+ and Pb2+. Al3+ and K+ were hardly implicated, especially in the case of Cd2+.

  18. Uranium adsorption from the sulphuric acid leach liquor containing more chlorides with cation-exchange resin SL-406

    International Nuclear Information System (INIS)

    The feasibility of uranium adsorption was studied from the sulphuric acid leach liquor of a uranium ore containing more chlorides with cation-exchange resin SL-406. The influence of some factors on uranium adsorption was investigated. It was shown that the resin possesses better selectivity, stability and higher capacity. It can be effectively used to recovery uranium from leach liquors of uranium ores containing more chlorides

  19. Superparamagnetic cation-exchange adsorbents for bioproduct recovery from crude process liquors by high-gradient magnetic fishing

    DEFF Research Database (Denmark)

    Heebøll-Nielsen, Anders; Justesen, S.F.L; Hobley, Timothy John;

    2004-01-01

    Different routes were screened for the preparation of superparamagnetic cation-exchange adsorbents for the capture of proteins using high-gradient magnetic fishing. Starting from a polyglutaraldehyde-coated base particle, the most successful of these involved attachment of sulphite to oligomers of...... from sweet bovine whey. Subsequently, a high-gradient magnetic fishing process was constructed for the fractionation of whey, in which lactoperoxidase was purified 36-fold and concentrated 4.7-fold...

  20. Optimization of acidified oil esterification catalyzed by sulfonated cation exchange resin using response surface methodology

    International Nuclear Information System (INIS)

    Highlights: • As lipid source, acidified oil are from industrial wastes for renewable energy. • The predicted conversion rate of FFAs was 75.24% under the RSM optimized conditions. • The adsorption system was employed to remove the water produced to shift the equilibrium toward ethyl ester production. • Maximum conversion rate of 98.32% was obtained using adsorption system at optimum process parameters. • Compared with tradition methods, molecular sieve dehydration method improved the conversion rate by 23.08%. - Abstract: The esterification of acidified oil with ethanol catalyzed by sulfonated cation exchange resins (SCER) was optimized using the response surface methodology (RSM). The effects of the molar ratio of ethanol to acidified oil, reaction time and catalyst loading on the conversion rate of free fatty acids (FFAs) were investigated at the temperature of the boiling point of ethanol. Results showed that the highest conversion rate of 75.24% was obtained at the molar ratio of ethanol to acidified oil of 23.2, reaction time of 8.0 h and catalyst loading of 35.0 wt.%. Moreover, the conversion rate of FFAs was increased to 98.32% by using a water adsorption apparatus under the RSM optimized conditions. Scanning electronic microscopic–energy dispersive spectrometric (SEM–EDS), X-ray diffractometric (XRD) and thermogravimetric–derivative thermogravimetric (TG–DTG) analyses confirmed that the morphology of catalysts did not change much and the mechanical and thermal stabilities were still good after the reaction. Furthermore, SCER exhibited a high catalytic activity and stability after being reused for five successive times. The fuel properties of the biodiesel were comparable to that of ASTM, EN and GB biodiesel standard

  1. Cation exchange resins labeled with holmium-166 for treatment of liver malignancy

    International Nuclear Information System (INIS)

    The increasing interest in new therapeutic radiopharmaceuticals is prompting investigators to utilize isotopes with more focused capabilities for treating various tumors, reducing the negative effects on neighboring healthy cells. Local radionuclide therapy using radioactive microspheres is a promising therapy for non-operable group of patients suffering from liver malignancies. Many publications have shown the success of this technique. The emphasis in the present work is the resin-based microspheres labeled with 166Ho. The production of 166Ho is feasible in the IEA-R1 Reactor at IPEN-CNEN/SP, because it does not need high power and high neutron fluxes. Samples of Ho2O3 were irradiated in selected positions of the nuclear reactor IEA-R1 at IPEN/CNEN-SP. The neutron flux was 1.0 x1013 n.s-1.cm-2 for 1 hour. The dissolution of Ho2O3 was studied with different volumes of 0.1M HCl and also varying the heating temperature. The AG50W-X8 200-400 mesh and CM Sephadex C-25 cation exchange resins were labeled with 166Ho. The retention of 166Ho in the resins was studied and also its stability. The results of the dissolution experiments of Ho2O3 showed that there is a direct relation between the increasing volumes needed to dissolve higher masses, and also the positive effect of raising the temperature. The results show very good retention of 166Ho in both columns, even when high volumes of 0.1M HCl are passed through the column containing the resins and its good stability towards saline solution, PBS solution and glucose.Although the resins employed in this work did not have the right particle size (20-50μm), the chemical behavior showed the very good labeling of the resins with 166Ho, and its stability. (author)

  2. FACTORS AFFECT THE RELEASE OF PSEUDOEPHDRINE HYDROCHLORIDE FROM THE UNCOATED CATION EXCHANGE RESIN-BASED DRUG DELIVERY SYSTEM IN VITRO

    Institute of Scientific and Technical Information of China (English)

    LI Zhenhua; PI Hongqiong; HE Binglin

    2001-01-01

    In this paper, it was investigated that the effect of parameters such as the ionic strength,pH, counter-ion type of release medium, particle size, and cross linkage of cation exchange resin on the release of model drug pseudoephedrine hydrochloride (PE) from uncoated drug-resin complex.The drug-resin complex was prepared by the reaction of PE with strongly acidic cation exchange resin (001 ×4, 001 ×7, 001 ×14). The result showed that the loading of PE increased with the increase of temperatures. The release of PE from drug-resin complex at 37 ℃ was monitored in vitro.From the experiments, it was found that the release rate of PE depends on the pH, composition of the releasing media, increased at lower pH media or with increase of ionic strength of media. Moreover,the release rate of PE was inversely proportional to the cross-linkage and particle size of the cation exchange resin.

  3. Determination of some aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography with conductimetric detection on a weakly acidic cation-exchange resin column.

    Science.gov (United States)

    Ito, Kazuaki; Takayama, Yohichi; Ikedo, Mikaru; Mori, Masanobu; Taoda, Hiroshi; Xu, Qun; Hu, Wenzhi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2004-06-11

    The determination of seven aliphatic carboxylic acids, formic, acetic, propionic, isobutyric, n-butyric, isovaleric and n-valeric acids in anaerobic digestion process waters was examined using ion-exclusion chromatography with conductimetric detection. The analysis of these biologically important carboxylic acids is necessary as a measure for evaluating and controlling the process. The ion-exclusion chromatography system employed consisted of polymethacrylate-based weakly acidic cation-exchange resin columns (TSKgel OApak-A or TSKgel Super IC-A/C). weakly acidic eluent (benzoic acid), and conductimetric detection. Particle size and cation-exchange capacity were 5 microm and 0.1 meq./ml for TSKgel OApak-A and 3 microm and 0.2 meq./ml for TSKgel Super IC-A/C, respectively. A dilute eluent (1.0-2.0 mM) of benzoic acid was effective for the high resolution and highly conductimetric detection of the carboxylic acids. The good separation of isobutyric and n-butyric acids was performed using the TSKgel Super IC-A/C column (150 mm x 6.0 mm i.d. x 2). The simple and good chromatograms were obtained by the optimized ion-exclusion chromatography conditions for real samples from mesophilic anaerobic digestors, thus the aliphatic carboxylic acids were successfully determined without any interferences. PMID:15250416

  4. Electrodialysis-ion exchange for the separation of dissolved salts. Final report

    International Nuclear Information System (INIS)

    The program described in this report studies the suitability of electrodialysis-ion exchange (EDIX) to treat aqueous streams containing heavy metals and radioactive cations in a solution containing sodium and nitrates. The goal of the program was to produce a cation stream containing sodium, heavy metals, and radioactive cations; an anion stream of nitric acid free of heavy metals and radioactive cations; and a product stream that meets discharge criteria. The experimental results, described in detail, indicated that EDIX was not a suitable process for treating wastes containing metals that formed insoluble hydroxides in a basic solution; the metals precipitate in the catholyte and feed compartments, and in the cathode membrane. The test program was therefore terminated prior to completion of all planned activities. 2 refs., 22 figs., 8 tabs

  5. Differential effect of HOE642 on two separate monovalent cation transporters in the human red cell membrane

    DEFF Research Database (Denmark)

    Bernhardt, Ingolf; Weiss, Erwin; Robinson, Hannah C; Wilkins, Robert; Bennekou, Poul

    2007-01-01

    determinations showed that HOE642 exerted differential effects on the NSVDC channel and the K(+)(Na(+))/H(+) exchanger, confirming that the salt loss observed in low ionic strength solutions represents contributions from at least two independent ion transport pathways. The findings are discussed in the context......Residual K(+) fluxes in red blood cells can be stimulated in conditions of low ionic strength. Previous studies have identified both the non-selective, voltage-dependent cation (NSVDC) channel and the K(+)(Na(+))/H(+) exchanger as candidate pathways mediating this effect, although it is possible...... that these pathways represent different modes of operation of a single system. In the present study the effects of HOE642, recently characterised as an inhibitor of the K(+)(Na(+))/H(+) exchanger, on NSVDC has been determined to clarify this question. Radioisotope flux measurements and conductance...

  6. Efficient separations and processing crosscutting program 1996 technical exchange meeting. Proceedings

    International Nuclear Information System (INIS)

    This document contains summaries of technology development presented at the 1996 Efficient Separations and Processing Crosscutting Program Technical Exchange Meeting. This meeting is held annually to promote a free exchange of ideas among technology developers, potential users and other interested parties within the EM community. During this meeting the following many separation processes technologies were discussed such as ion exchange, membrane separation, vacuum distillation, selective sorption, and solvent extraction. Other topics discussed include: waste forms; testing or inorganic sorbents for radionuclide and heavy metal removal; selective crystallization; and electrochemical treatment of liquid wastes. This is the leading abstract, individual papers have been indexed separately for the databases

  7. Efficient separations and processing crosscutting program 1996 technical exchange meeting. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    This document contains summaries of technology development presented at the 1996 Efficient Separations and Processing Crosscutting Program Technical Exchange Meeting. This meeting is held annually to promote a free exchange of ideas among technology developers, potential users and other interested parties within the EM community. During this meeting the following many separation processes technologies were discussed such as ion exchange, membrane separation, vacuum distillation, selective sorption, and solvent extraction. Other topics discussed include: waste forms; testing or inorganic sorbents for radionuclide and heavy metal removal; selective crystallization; and electrochemical treatment of liquid wastes. This is the leading abstract, individual papers have been indexed separately for the databases.

  8. Effect of efficient microorganisms on cation exchange capacity in acacia seedlings (Acacia melanoxylon) for soil recovery in Mondonedo, Cundinamarca

    International Nuclear Information System (INIS)

    We determined the effect of efficient microorganisms (EM) on the cation exchange capacity for soil recovery in the municipality of Mondonedo, Cundinamarca. A greenhouse unit was installed in order to maintain stable conditions. After harvesting, sifted and homogenization of the soil sample, initial physical and chemical analyses were made. For the experimental units we used Acacia melanoxylon seedlings from Zabrinsky. A completely randomized design was done with eight treatments and three repetitions. For the maintenance and monitoring of the seedlings behaviour, a frequency of irrigation of three times per week was found. The application of the EM was done during three months: in the first month, it was applied four times (once a week); during the second month, it was applied twice (biweekly), and during the third month there was only one application. Additionally, every 15 days morphological analyses were made (number of leaves, branches and stem diameter). In the end, soil samples were taken from each plant pot. In the laboratory we analysed the cation exchange capacity, alkali ion exchange, saturation alkali, relations between elements and plant tissue. These were done using an atomic absorption spectrophotometer. Statistical analyses consisted on multiple comparisons test and variance tests, in order to find whether or not treatments exhibited significant differences. In that way, the best alternative for improving environmental quality of eroded soils as the Zabrinsky desert is the efficient microorganisms in 5% doses in irrigation water. Additionally, the cation exchange capacity must be enhanced using organic fertilizers (compost, mulch and gallinaza) in one pound doses, and chemical fertilizers: electrolytic Mn (0.0002 g), Cu (0.0002 g), Zn (0.0001 g), URFOS 44 (166.66 g) and klip-boro (5 g).

  9. Separation of boron isotopes by ion exchange chromatography: studies with Duolite-162, a type-II resin

    International Nuclear Information System (INIS)

    The selection of resin plays an important role in the process of separation of boron isotopes by ion exchange chromatography. The determination of (i) ion exchange capacity of Duolite-162 resin for hydroxyl - chloride exchange, (ii) hydroxyl - borate exchange, (iii) isotopic exchange separation factor by batch method and (iv) effect of concentration of boric acid on isotopic exchange separation factor to test the suitability of the above resin for this process are discussed in this report. (author)

  10. Effect of bore fluid composition on microstructure and performance of a microporous hollow fibre membrane as a cation-exchange substrate.

    Science.gov (United States)

    Lazar, R A; Mandal, I; Slater, N K H

    2015-05-15

    Micro-capillary film (MCF) membranes are effective platforms for bioseparations and viable alternatives to established packed bed and membrane substrates at the analytical and preparative chromatography scales. Single hollow fibre (HF) MCF membranes with varied microstructures were produced in order to evaluate the effect of the bore fluid composition used during hollow fibre extrusion on their structure and performance as cation-exchange adsorbers. Hollow fibres were fabricated from ethylene-vinyl alcohol (EVOH) copolymer through solution extrusion followed by nonsolvent induced phase separation (NIPS) using bore fluids of differing composition (100wt.% N-methyl-2-pyrrolidone (NMP), 100wt.% glycerol, 100wt.% water). All HFs displayed highly microporous and mesoporous microstructures, with distinct regions of pore size membrane performance as a result of inner surface porosity was established with a view to applying this parameter for the optimisation of multi-capillary MCF performance in future studies. PMID:25840664

  11. Use of Novel Reinforced Cation Exchange Membranes for Microbial Fuel Cells

    International Nuclear Information System (INIS)

    This work has been focused on the synthesis and characterization of different blended membranes SPEEK-35PVA (Water), SPEEK-35PVA (DMAc) prepared by casting and nanofiber-reinforced proton exchange membranes Nafion-PVA-15, Nafion-PVA-23 and SPEEK/PVA-PVB. The two first reinforced membranes were made up of Nafion® polymer deposited between polyvinyl alcohol (PVA) nanofibers. The last composite membrane is considered because the PVA is a hydrophilic polymer which forms homogeneous blends with SPEEK suitable to obtain high proton conductivity, while the hydrophobic PVB can produce blends in a phase separation morphology in which very low water uptake can be found. The synthesized membranes showed an outstanding stability, high proton conductivity, and enhanced mechanical and barrier properties. The membranes were characterized in single chamber microbial fuel cells (SCMFCs) using electrochemically enriched high sodic saline hybrid H-inocula (Geobacter metallireducen, Desulfurivibrio alkaliphilus, and Marinobacter adhaerens) as biocatalyst. The best performance was obtained with Nafion-PVA-15 membrane, which achieved a maximum power density of 1053 mW/m3 at a cell voltage of 340 mV and displayed the lowest total internal resistance (Rint ≈ 522 Ω). This result is in agreement with the low oxygen permeability and the moderate conductivity found in this kind of membranes. These results are encouraging towards obtaining high concentrated sodic saline model wastewater exploiting MFCs

  12. Investigation of Polyacrylate Anion-Exchangers for Separation of Rare Earth Element Complexes with EDTA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The rare earth complexes with EDTA, Ln(edta), show an unusual sequence of affinity for the anion-exchangers. The sorption and chromatographic separation of Y3+ for Nd3+ complexes with EDTA was studied by using the strongly basic gel and macroporous polyacrylate anion-exchangers, Amberlite IRA 458 and Amberlite 958, and the weakly basic gel polyacrylate anion-exchanger, Amberlite IRA-68. The investigations on sorption and separation of rare earth complexes with EDTA on the polyacrylate anion-exchangers applied mainly in the environment protection so far indicate that they can be applied in anionexchange separation of lanthanide complexes with aminopolycarboxylic acids. It was shown that the weakly basic polyacrylate gel anion-exchanger Amberlite IRA-68 is the most effective in purification of Y3+ from Nd3+ in comparison with the strongly basic anion-exchangers of this type.

  13. Purification of drinking water from radioactive contamination by final consumers by means of combined cation and anion exchangers

    International Nuclear Information System (INIS)

    It should be tried to develop an apparatus which makes it possible for the final consumer to purify the drinking water himself in the case of a radioactive contamination of the water. After thorough preliminary studies the most suitable kinds of exchange resins and the best arrangement for a combined cation and anion exchange resins and the best arrangement for a combined cation and anion exchange equipment were determined in inactive preliminary tests. Subsequent the useful capacity (NK) and the purifying factor (RF) were determined for the fission products 90Sr, 131I and 137Cs. The results were for 90Sr: NK = 30 1/2 x 0.5 l resin, RF >= 4.102, for 131I: NK = 32 1/2 x 0.5 l resin, RF = 3.7.102 and for 137Cs: NK > 35 1/2 x 0.5 l resin, RF >= 103. With 2 x 1 l resin the concentration of possible fission products in water can be reduced by 2 orders of magnitude ore more. A proposal for the construction of a household decontamination equipment for drinking water is made. The cost of production will be about A.S. 400,-- to 600,--. (author)

  14. Consistent effects of canopy vs. understory nitrogen addition on the soil exchangeable cations and microbial community in two contrasting forests.

    Science.gov (United States)

    Shi, Leilei; Zhang, Hongzhi; Liu, Tao; Zhang, Weixin; Shao, Yuanhu; Ha, Denglong; Li, Yuanqiu; Zhang, Chuangmao; Cai, Xi-An; Rao, Xingquan; Lin, Yongbiao; Zhou, Lixia; Zhao, Ping; Ye, Qing; Zou, Xiaoming; Fu, Shenglei

    2016-05-15

    Anthropogenic N deposition has been well documented to cause substantial impacts on the chemical and biological properties of forest soils. In most studies, however, atmospheric N deposition has been simulated by directly adding N to the forest floor. Such studies thus ignored the potentially significant effect of some key processes occurring in forest canopy (i.e., nitrogen retention) and may therefore have incorrectly assessed the effects of N deposition on soils. Here, we conducted an experiment that included both understory addition of N (UAN) and canopy addition of N (CAN) in two contrasting forests (temperate deciduous forest vs. subtropical evergreen forest). The goal was to determine whether the effects on soil exchangeable cations and microbial biomass differed between CAN and UAN. We found that N addition reduced pH, BS (base saturation) and exchangeable Ca and increased exchangeable Al significantly only at the temperate JGS site, and reduced the biomass of most soil microbial groups only at the subtropical SMT site. Except for soil exchangeable Mn, however, effects on soil chemical properties and soil microbial community did not significantly differ between CAN and UAN. Although biotic and abiotic soil characteristics differ significantly and the responses of both soil exchangeable cations and microbial biomass were different between the two study sites, we found no significant interactive effects between study site and N treatment approach on almost all soil properties involved in this study. In addition, N addition rate (25 vs. 50kgNha(-1)yr(-1)) did not show different effects on soil properties under both N addition approaches. These findings did not support previous prediction which expected that, by bypassing canopy effects (i.e., canopy retention and foliage fertilization), understory addition of N would overestimate the effects of N deposition on forest soil properties, at least for short time scale. PMID:26930308

  15. The elution of erbium from a cation exchanger bed by means of the N-hydroxyethyl-ethylene-diamine triacetic acid

    International Nuclear Information System (INIS)

    A physicochemical study of the phenomena resulting when erbium is eluted from a cation-exchanger bed at a steady by means of the N-hydroxyethyl-ethylene-diamine-triacetic acid (HEDTA) is made. Two different retaining beds are used, a hydrogen bed, in which no ammonium passes through, and a zinc bed, which leaks ammonium ion. Good agreement between experimental and calculated values by using the equations deduced for the concentrations of the main species has been achieved, with errors around 1-2% in most of the experiments. (Author) 69 refs

  16. Applications of Time-Resolved Synchrotron X-ray Diffraction to Cation Exchange, Crystal Growth and Biomineralization Reactions

    International Nuclear Information System (INIS)

    Advances in the design of environmental reaction cells and in the collection of X-ray diffraction data are transforming our ability to study mineral-fluid interactions. The resulting increase in time resolution now allows for the determination of rate laws for mineral reactions that are coupled to atomic-scale changes in crystal structure. Here we address the extension of time-resolved synchrotron diffraction techniques to four areas of critical importance to the cycling of metals in soils: (1) cation exchange; (2) biomineralization; (3) stable isotope fractionation during redox reactions; and (4) nucleation and growth of nanoscale oxyhydroxides.

  17. Application of silica hydrogel and silica gel comprising chromium(III) ions for synthesis of organo mineral cation exchangers

    International Nuclear Information System (INIS)

    Present article is devoted to application of silica hydrogel and silica gel comprising chromium(III) ions for synthesis of organo mineral cation exchangers. Thus, the polymerization of methacrylic acid on the surface of porous silica is studied. Porous sorbents are obtained by polymerizing of methacrylic acid in the medium of precipitated silica hydrogel treated by Cr(III) salts. The dependence of sorbents porosity on different factors, including conditions of hydrogel precipitation, its treatment by chromium salts, its ageing in the medium of methacrylic acid, quantity of methacrylic acid is studied as well.

  18. Waste separation and pretreatment using crystalline silicotitanate ion exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tadros, M.E.; Miller, J.E. [Sandia National Lab., Albuquerque, NM (United States); Anthony, R.G. [Texas A& M Univ., College Station, TX (United States)

    1997-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CSTs) has been developed jointly by Sandia National Laboratories and Texas A&M University to selectively remove Cs and other radionuclides from a wide spectrum of radioactive defense wastes. The CST exhibits high selectivity and affinity for Cs and Sr under a wide range of conditions. Tests show it can remove part-per-million concentrations of Cs{sup +} from highly alkaline, high-sodium simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. The materials exhibit ion exchange properties based on ionic size selectivity. Specifically, crystalline lattice spacing is controlled to be highly selective for Cs ions even in waste streams containing very high (5 to 10 M) concentrations of sodium. The CST technology is being demonstrated with actual waste at several DOE facilities. The use of inorganic ion exchangers. The inorganics are more resistant to chemical, thermal, and radiation degradation. Their high selectivities result in more efficient operations offering the possibility of a simple single-pass operation. In contrast, regenerable organic ion exchangers require additional processing equipment to handle the regeneration liquids and the eluant with the dissolved Cs.

  19. Methylamine-hydrogen exchange. Part I - theoretical evaluation of separation factors

    International Nuclear Information System (INIS)

    The equilibrium constants and the deuterium separation factors for the methylamine-hydrogen exchange when all the species of these molecules are at equilibrium, have been calculated as function of temperature and deuterium concentrations in amine and hydrogen, using recent spectroscopic data. Wide range of temperature and deuterium concentrations have been covered. It has been observed that the separation factors for this system are higher than the corresponding fractionation factors for ammonia-hydrogen exchange. From the temperature dependence of these separation factors, the heat of reaction for the isotopic exchange between amine and hydrogen has been calculated. (author)

  20. Modification of Nafion Membranes by IL-Cation Exchange: Chemical Surface, Electrical and Interfacial Study

    Directory of Open Access Journals (Sweden)

    V. Romero

    2012-01-01

    A study of time evolution of the impedance curves measured in the system “IL aqueous solution/Nafion-112 membrane/IL aqueous solution” was also performed. This study allows us monitoring the electrical changes associated to the IL-cation incorporation in both the membrane and the membrane/IL solution interface, and it provides supplementary information on the characteristic of the Nafion/DTA+ hybrid material. Moreover, the results also show the significant effect of water on the electrical resistance of the Nafion-112/IL-cation-modified membrane.

  1. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  2. Separation of boron isotopes by ion exchange chromatography: studies on regeneration of strong base anion exchange resins

    International Nuclear Information System (INIS)

    The optimum conditions for the regeneration of strong base anion exchange resins of type-I and type-II were determined for cost-effective separation of isotopes of boron by ion exchange chromatography where the hydroxyl form of an anion exchange resin is equilibrated with boric acid solution containing mannitol as a complexing reagent. The possibility of using unspent alkali content of the effluent was also exploited. Removal of carbonate impurity from Rayon grade caustic lye (used as regenerant after dilution) and recycling of Ba(OH)2 was studied to avoid waste disposal problems. (author)

  3. Use of a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin column and propionic acid as an eluent in ion-exclusion/adsorption chromatography of aliphatic carboxylic acids and ethanol in food samples.

    Science.gov (United States)

    Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2011-01-01

    We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method. PMID:21558657

  4. Suitability of the methylene blue test for determination of cation exchange capacity of clay minerals related to ammonium acetate method

    Science.gov (United States)

    Milošević, Maja; Logar, Mihovil; Dojčinović, Biljana; Erić, Suzana

    2015-04-01

    Cation exchange capacity (CEC) represents one of the most important parameters of clay minerals which reflects their ability to exchange cations with liquid phases in near contact. Measurement of CEC is used for characterizing sample plasticity, adsorbing and swelling properties which later define their usage in industrial purposes. Several methods have been developed over the years for determination of layer charge, charge density, charge distribution, etc. and have been published in numerous papers (Czimerova et al., 2006; Yukselen and Kaya, 2008). The main goal of present study is comparison of suitability of more recent method - methylene blue test in regard to older method - ammonium acetate for determination of CEC. For this study, we selected one montmorillonite clay (Bogovina, Serbia) and two mainly kaolinite clays (Miličinica, Serbia). Chemicals used for CEC determinations were solution of methylene blue (MB)(14*10-6M/ml) and ammonium acetate (AA) solution (1M). The obtained results are showing generally lower values in case of MB method. The main difference is due to molecular aggregation of MB on the clay surface. AA method is highly sensitive to the presence of CaO. Release of Ca ion from the sample into the solution can limit the saturation of exchange sites by the ammonium ion. This is clearly visible in case of montmorillonite clay. Fe2+ and Mg ions are difficult to move by the ammonium ion because of their ion radius, but in case of MB molecule there is no such restriction in removing them from the exchange sites. MB solution, even in a low concentration (2*10-6M/ml), is showing preferable results in moving the ions from their positions which is already visible after adding a small quantity of solution (25cm3). Both MB-titration and MB-spot test yield similar results and are much simpler methods than AA and they also give other information such as specific surface area (external and internal) whereas AA method only provides information about

  5. The role of organic solvent radical cations in separations ligand degradation

    International Nuclear Information System (INIS)

    The dodecane radical cation reaction rate constant with CMPO was measured using ps electron pulse radiolysis/ absorption spectroscopy as k = (1.30 ± 0.11) x 1010 M-1s-1 in dodecane/0.10 M CH2Cl2 solution. No reactivity increase occurred when these solutions were pre-contacted with nitric acid, similar to the behavior observed for TODGA. To corroborate these kinetic data with steady-state radiolysis measurements, where acid pre-contacted CMPO showed significantly less degradation, it is proposed that the dodecane radical cation always reacts directly with TODGA, but for CMPO the charge-transfer occurs with the CMPO·HNO3 complex formed in the acid contacted solvent. (author)

  6. Fundamental studies on the ion-exchange separation of boron isotopes

    International Nuclear Information System (INIS)

    The single-stage separation factors for boron isotopes between an ion-exchange resin and an external solution were determined, using an ion-exchange breakthrough operation. The lighter isotope boron-10 was considerably enriched in the anion-exchange resin phase. The separation factor was very much influenced by the boric acid concentration in the external solution, but not as much influenced by the kind of the anion exchange resin used and operation temperature. The separation factor increased with a decrease in the boric acid concentration of external solution from 1.008 (0.501 mol/l) to 1.016 (0.010 mol/l). The value of the separation factors obtained experimentally were compared with those estimated on the basis of the theory of the two-phase distribution of isotopes. (auth.)

  7. Uncertainties of Gaseous Oxidized Mercury Measurements Using KCl-Coated Denuders, Cation-Exchange Membranes, and Nylon Membranes: Humidity Influences.

    Science.gov (United States)

    Huang, Jiaoyan; Gustin, Mae Sexauer

    2015-05-19

    Quantifying the concentration of gaseous oxidized mercury (GOM) and identifying the chemical compounds in the atmosphere are important for developing accurate local, regional, and global biogeochemical cycles. The major hypothesis driving this work was that relative humidity affects collection of GOM on KCl-coated denuders and nylon membranes, both currently being applied to measure GOM. Using a laboratory manifold system and ambient air, GOM capture efficiency on 3 different collection surfaces, including KCl-coated denuders, nylon membranes, and cation-exchange membranes, was investigated at relative humidity ranging from 25 to 75%. Recovery of permeated HgBr2 on KCl-coated denuders declined by 4-60% during spikes of relative humidity (25 to 75%). When spikes were turned off GOM recoveries returned to 60 ± 19% of permeated levels. In some cases, KCl-coated denuders were gradually passivated over time after additional humidity was applied. In this study, GOM recovery on nylon membranes decreased with high humidity and ozone concentrations. However, additional humidity enhanced GOM recovery on cation-exchange membranes. In addition, reduction and oxidation of elemental mercury during experiments was observed. The findings in this study can help to explain field observations in previous studies. PMID:25877790

  8. Separation of cadmium from not waters by ion exchange resins

    International Nuclear Information System (INIS)

    The relationship between the ion exchange reaction in a column and temperature was examined in the system cadmium-ion exchanger resin Lewatin S 1080. Cadmium was bound by 0.02 M NHO3 and then eluted by 2.0 M HCl. Working temperature was gradually increased from 273 to 333 K. Cadmium concentrations were determined by atomic absorption spectrometry. Thermostated columns were of our own construction. The distillation plate theory was applied for the same ion eluated at different temperatures. It was necessary to determine graphically the following parameters: cex, cmax, Vmax, and the width of elution band. These parameters obtained for elution curves were related to temperature. The elution curves were found to be temperature specific. Deviations from Gauss normal distribution are larger at higher temperatures. This value can be determined from the segment of the elution curve with the ordinate cmax/e. Consequently, we suggest the width of elution curve to be a measure of elution conditions at higher temperatures. (author). 19 refs, 1 fig., 1 tab

  9. Changes of Soil Water, Organic Matter, and Exchangeable Cations Along a Forest Successional Gradient in Southern China

    Institute of Scientific and Technical Information of China (English)

    YAN Jun-Hua; ZHOU Guo-Yi; ZHANG De-Qiang; CHU Guo-Wei

    2007-01-01

    Information on the distribution patterns of soil water content (SWC), soil organic matter (SOM), and soil exchangeable cations (SEC) is important for managing forest ecosystems in a sustainable manner. This study investigated how SWC, SOM, and SEC were influenced in forests along a successional gradient, including a regional climax (monsoon evergreen broad-leaved forest, or MEBF), a transitional forest (coniferous and broad-leaved mixed forest, or MF), and a pioneer forest (coniferous Masson pine (Pinus massoniana) forest, or MPF) of the Dinghushan Biosphere Reserve in the subtropical region of southern China. SWC, SOM, and SEC excluding Ca2+ were found to increase in the soil during forest succession, being highest in the top soil layer (0 to 15 cm depth) except for Na+. The differences between soil layers were largest in MF. This finding also suggested that the nutrients were enriched in the topsoil when they became increasingly scarce in the soil. There were no significant differences (P = 0.05) among SWC, SOM, and SBC. A linear, positive correlation was found between SWC and SOM. The correlation between SOM and cation exchange capacity (CEC) was statistically significant, which agreed with the theory that the most important factor determining SEC is SOM. The ratio of K+ to Na+ in the topsoil was about a half of that in the plants of each forest. MF had the lowest exchangeable Ca2+ concentration among the three forests and Ca2+:K+ in MPF was two times higher than that in MF. Understanding the changes of SWC, SOM, and CEC during forest succession would be of great help in protecting all three forests in southern China.

  10. Electrodialysis-ion exchange for the separation of dissolved salts

    International Nuclear Information System (INIS)

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. This report describes the process of electrodialysis-ion exchange (EDIX) for treating aqueous wastes streams consisting of nitrates, sodium, organics, heavy metals, and radioactive species

  11. Uranium isotope separation by continuous anion exchange chromatography

    International Nuclear Information System (INIS)

    This paper reports a process for producing nuclear quality Uranium 235 (U235) from a substantially impure feed stock containing a mixture of uranium isotopes, including U235, forming a stationary phase from an anion exchange resin in the annulus of a rotating annular chromatograph; feeding the feed stock to the stationary phase to load less than 10% of the stationary phase; injecting a mobile phase comprising an eluant selected from the group consisting of aqueous solutions of sulfates, chlorides, nitrates and carbonates into the stationary phase; continuously rotating the annular chromatograph; collecting the U235 isotope in substantially pure, enriched form from the stationary phase; precipitating the U235 isotope as ammonium diurante with ammonium hydroxide; and calcining the ammonium diuranate to produce uranium oxide rich in U235 suitable for nuclear applications requiring substantially pure U235

  12. Electrodialysis-ion exchange for the separation of dissolved salts

    Energy Technology Data Exchange (ETDEWEB)

    Baroch, C.J. [Wastren, Inc., Westminster, CO (United States); Grant, P.J. [Wastren, Inc., Hummelstown, PA (United States)

    1995-10-01

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. There is considerable interest in developing processes that remove or destroy the nitrate wastes. Electrodialysis-Ion Exchange (EDIX) is a possible process that should be more cost effective in treating aqueous waste steams. This report describes the EDIX process.

  13. Study of the distribution of charged species between solutions separated by an ion-exchange membrane - Application to the study of complexes

    International Nuclear Information System (INIS)

    When a cation is distributed between two solutions separated by a cation-exchange membrane in the ratio predicted by the Donnan theory, the establishment of ionic equilibrium is accompanied by secondary phenomena such as abnormal osmosis associated with ion-pair diffusion. The author has shown how these phenomena modify the equilibrium conditions and that it is difficult to predict quantitatively the distributions for analytic or separation purposes, if osmosis and ion-pair diffusion effects are not known exactly. However when the membrane separates two solutions of the same electrolyte, and of very similar concentrations, these difficulties disappear. Furthermore, under these conditions, the activity coefficients of the species present in each solution are equal. The advantage of these experimental conditions become apparent in the case of a method for studying complexes which has the characteristic of requiring no prior knowledge of the membrane exchange properties; normally such a requirement often limits the field of application of methods using granular exchangers. The possibilities of extending the use of this method are illustrated by the study of copper (II) sulfosalicylate complexes. (author)

  14. Heat exchangers with several heat exchanger matrices mounted in a common casing for separately conducted media

    International Nuclear Information System (INIS)

    The heat exchanger is suited for plants with a closed gas cycle such as, e. g., HTR with a helium turbine or drive units for vehicles. It contains heat exchanger matrices running parallel to each other and formed by the folds of a uniformly folded band and by walls covering the saddles of the folds. Two neighbouring matrices each are combined to form a heat exchanger unit and supported between supporting walls. The heat exchanger unit is not firmly connected with these supporting walls and therefore can easily to be inserted or dismounted. For sealing purposes, the fold saddles are contacting the supporting walls because of the high pressure of the meUWIdium, Ior the remaining seals between hp and lp-compartments labyrinth boxes being provided. (UWI)

  15. Multi-column step-gradient chromatography system for automated ion exchange separations

    International Nuclear Information System (INIS)

    A multi-column step-gradient chromatography system has been designed to perform automated sequential separations of radionuclides by ion exchange chromatography. The system consists of a digital programmer with automatic stream selection valve, two peristaltic pumps, ten columns, and a fraction collector. The automation allows complicated separations of radionuclides to be made with minimal analyst attention and allows for increased productivity and reduced cost of analyses. Results are reported for test separations on mixtures of radionuclides by the system

  16. Membrane resistance: The effect of salinity gradients over a cation exchange membrane

    NARCIS (Netherlands)

    Galama, A.H.; Vermaas, D.A.; Veerman, J.; Saakes, M.; Rijnaarts, H.; Post, J.W.; Nijmeijer, K.

    2014-01-01

    Ion exchange membranes (IEMs) are used for selective transport of ions between two solutions. These solutions are often different in concentration or composition. The membrane resistance (R-M) is an important parameter affecting power consumption or power production in electrodialytic processes. In

  17. Membrane resistance : The effect of salinity gradients over a cation exchange membrane

    NARCIS (Netherlands)

    Galama, A. H.; Vermaas, D. A.; Veerman, J.; Saakes, M.; Rijnaarts, H. H. M.; Post, J. W.; Nijmeijer, K.

    2014-01-01

    Ion exchange membranes (IEMs) are used for selective transport of ions between two solutions. These solutions are often different in concentration or composition. The membrane resistance (R-M) is an important parameter affecting power consumption or power production in electrodialytic processes. In

  18. Kinetics properties of cations absorption by ion exchangers on the base of antimonic acid

    International Nuclear Information System (INIS)

    This article is devoted to study of kinetics of sorption one- and two-charge elements by antimony-silicon sorbent. Kinetic studies are conducted at ph=0-5 and temperature interval 10-50 deg C. Data on X-ray analysis of ion exchangers is considered.

  19. Colorimetric Humidity and Solvent Recognition Based on a Cation-Exchange Clay Mineral Incorporating Nickel(II)-Chelate Complexes.

    Science.gov (United States)

    Hosokawa, Hitoshi; Mochida, Tomoyuki

    2015-12-01

    Solvatochromic nickel(II) complexes with diketonato and diamine ligands were incorporated into a saponite clay by ion exchange, and their colorimetric humidity- and solvent-recognition properties were investigated. These powders exhibit color change from red to blue-green depending on humidity, and the detection range can be controlled by modifying the metal complex. The humidity response takes advantage of the humidity-dependent water content in clay and the coordination of water molecules to the metal complex in equilibrium. The addition of organic solvents to the powders causes a color change to occur, varying from red to blue-green depending on the donor number of the solvent, thereby enabling solvent recognition. In the clay, the affinity of less sterically hindered complexes to water or solvent molecules is decreased compared with that in solution because the cationic complexes interact with the anionic layers in the clay. Incorporating diethylene glycol into the materials produced thermochromic powders. PMID:26542108

  20. On the swelling behavior of cationic exchange resins saturated with Na+ ions in a C3S paste

    International Nuclear Information System (INIS)

    Ion exchange resins (IERs) are widely used in the nuclear industry to decontaminate radioactive effluents. Spent resins are usually encapsulated in cementitious materials. However, the solidified waste form can exhibit strong expansion, possibly leading to cracking, if the appropriate binder is not used. In this work, the interactions between cationic resins in the Na+ form and tricalcium silicate are investigated during the early stages of hydration in order to gain a better understanding of the expansion process. It is shown that the IERs exhibit a transient swelling of small magnitude due to the decrease in the osmotic pressure of the external solution. This expansion, which occurs just after setting, is sufficient to damage the material which is poorly consolidated for several reasons: low degree of hydration, precipitation of poorly cohesive sodium-bearing C-S-H, and very heterogeneous microstructure with zones of high porosity. (authors)

  1. Onset of size independent cationic exchange in nano-sized CoFe2O4 induced by electronic excitation

    International Nuclear Information System (INIS)

    Highlights: • Electronic excitation induced crystalline order in CoFe2O4. • No change of metallic valence state under dense electronic excitation. • Size independent control of cations in CoFe2O4. - Abstract: Present work investigates electronic excitation induced cationic exchange phenomena in nano-sized cobalt ferrites using Mössabaur and X-ray absorption spectroscopies. The electronic excitations were produced by irradiation of 100 MeV O+7 at different fluences ranging from 1 × 1011 to 1 × 1014 ions/cm2. Cubic spinel phase of cobalt ferrite remains preserved after irradiation. However, attributes of crystalline disorder were observed in irradiated materials. Crystallite size remain almost same for pristine and irradiated materials. X-ray absorption fine structure measurements show the preservation of valence state and spin state of metal ions under intense electronic excitation. These measurements also envisage bond breaking process induced by the electronic excitation. Mössbauer spectroscopic measurements also corroborate with the fine structure measurements that the valence state of Fe remains same after irradiation. Paramagnetic doublet which presents in the Mössabaur spectrum of pristine material disappears after irradiation, showing the evolution of irradiation induced magnetic ordering. Fe3+ ion increases with irradiation at octahedral site of spinel lattice. Magnetization of the material slightly increases after irradiation at the fluence of 5 × 1013 and 1 × 1014 ions/cm2

  2. Cation Exchange Strategy for the Encapsulation of a Photoactive CO-Releasing Organometallic Molecule into Anionic Porous Frameworks.

    Science.gov (United States)

    Carmona, Francisco J; Rojas, Sara; Sánchez, Purificación; Jeremias, Hélia; Marques, Ana R; Romão, Carlos C; Choquesillo-Lazarte, Duane; Navarro, Jorge A R; Maldonado, Carmen R; Barea, Elisa

    2016-07-01

    The encapsulation of the photoactive, nontoxic, water-soluble, and air-stable cationic CORM [Mn(tacn)(CO)3]Br (tacn = 1,4,7-triazacyclononane) in different inorganic porous matrixes, namely, the metalorganic framework bio-MOF-1, (NH2(CH3)2)2[Zn8(adeninate)4(BPDC)6]·8DMF·11H2O (BPDC = 4,4'-biphenyldicarboxylate), and the functionalized mesoporous silicas MCM-41-SO3H and SBA-15-SO3H, is achieved by a cation exchange strategy. The CO release from these loaded materials, under simulated physiological conditions, is triggered by visible light. The results show that the silica matrixes, which are unaltered under physiological conditions, slow the kinetics of CO release, allowing a more controlled CO supply. In contrast, bio-MOF-1 instability leads to the complete leaching of the CORM. Nevertheless, the degradation of the MOF matrix gives rise to an enhanced CO release rate, which is related to the presence of free adenine in the solution. PMID:27291890

  3. Alternative separation of exchange and correlation energies in multi-configuration range-separated density-functional theory

    CERN Document Server

    Stoyanova, Alexandrina; Toulouse, Julien; Helgaker, Trygve; Fromager, Emmanuel

    2013-01-01

    The alternative separation of exchange and correlation energies proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] is explored in the context of multi-configuration range-separated density-functional theory. The new decomposition of the short-range exchange-correlation energy relies on the auxiliary long-range interacting wavefunction rather than the Kohn-Sham (KS) determinant. The advantage, relative to the traditional KS decomposition, is that the wavefunction part of the energy is now computed with the regular (fully-interacting) Hamiltonian. One potential drawback is that, because of double counting, the wavefunction used to compute the energy cannot be obtained by minimizing the energy expression with respect to the wavefunction parameters. The problem is overcome by using short-range optimized effective potentials (OEPs). The resulting combination of OEP techniques with wavefunction theory has been investigated in this work, at the Hartree-Fock (HF) and multi-configuration self-consistent-f...

  4. Comparison of Reactive Mercury Concentrations Measured Simultaneously Using KCl-coated Denuders, Nylon Membranes, and Cation Exchange Membranes

    Science.gov (United States)

    Gustin, M. S.; Huang, J.; Miller, M. B.; Weiss-Penzias, P. S.

    2012-12-01

    There is much debate about the chemistry of reactive gaseous and particle bound mercury (Hg) in the atmosphere, and the processes associated with formation. In addition, there are concerns regarding the interferences and calibration of the widely used Tekran® 2537/1130/1135 Hg measurement system. To investigate these we developed simple laboratory and field sampling systems designed to collect and analyze reactive Hg (Hg (II), Hg (I) and/or particle bound). A manifold system was applied in the laboratory, and in the field, in-series and -parallel membranes, flow controllers and pumps were utilized. Both systems actively collected reactive Hg using nylon membranes and cation exchange membranes alongside measurements made using the Tekran® system. The analytical system consisted of step wise 2.5 minute thermo-desorption and Hg quantification by cold vapor atomic fluorescence. In the laboratory, we compared the efficiency of these surfaces for collection of HgO, HgCl2, and HgBr2 when permeated into Hg and oxidant free air, and ambient filtered air. Other tests are ongoing. Thus far, results show concentrations measured by the cation exchange membrane were two-to-three fold greater than that measured by the nylon membranes, and three-to -four fold greater than that measured by the KCl-coated annual denuder. Thermo-desorption profiles obtained using nylon membranes show slightly different patterns associated with the reactive Hg compounds as permeated and tested. Field measurements were made at two locations in Reno, Nevada (a high traffic site and an agricultural area) and at Elkhorn Slough, California (marine site). Desorption profiles from nylon membrane differed by site and by time of year. Although the influence of aerosol on this measurement has not been explored, field results suggest different forms of reactive Hg were present in the atmosphere as a function of season and location.

  5. Advance chromatin extraction enhances performance and productivity of cation exchange chromatography-based capture of Immunoglobulin G monoclonal antibodies.

    Science.gov (United States)

    Nian, Rui; Gagnon, Pete

    2016-07-01

    The impact of host cell-derived chromatin was investigated on the performance and productivity of cation exchange chromatography as a method for capture-purification of an IgG monoclonal antibody. Cell culture supernatant was prepared for loading by titration to pH 6.0, dilution with water to a conductivity of 4mS/cm, then microfiltration to remove solids. DNA content was reduced 99% to 30ppm, histone host cell protein content by 76% to 6300ppm, non-histone host cell protein content by 15% to 321,000ppm, and aggregates from 33% to 15%. IgG recovery was 83%. An alternative preparation was performed, adding octanoic acid, allantoin, and electropositive particles to the harvest at pH 5.3, then removing solids. DNA content was reduced to<1 ppb, histones became undetectable, non-histones were reduced to 24,000ppm, and aggregates were reduced to 2.4%. IgG recovery was 95%. This treatment increased dynamic capacity (DBC) of cation exchange capture to 173g/L and enabled the column to reduce non-histone host proteins to 671ppm. Step recovery was 99%. A single multimodal polishing step further reduced them to 15ppm and aggregates to <0.1%. Overall process recovery was 89%. Productivity at feed stream IgG concentrations of 5-10g/L was roughly double the productivity of a same-size protein A column with a DBC of 55g/L. PMID:27247214

  6. Common Ion Effects In Zeoponic Substrates: Dissolution And Cation Exchange Variations Due to Additions of Calcite, Dolomite and Wollastonite

    Science.gov (United States)

    Beiersdorfer, R. E.; Ming, D. W.; Galindo, C., Jr.

    2003-01-01

    c1inoptilolite-rich tuff-hydroxyapatite mixture (zeoponic substrate) has the potential to serve as a synthetic soil-additive for plant growth. Essential plant macro-nutrients such as calcium, phosphorous, magnesium, ammonium and potassium are released into solution via dissolution of the hydroxyapatite and cation exchange on zeolite charged sites. Plant growth experiments resulting in low yield for wheat have been attributed to a Ca deficiency caused by a high degree of cation exchange by the zeolite. Batch-equilibration experiments were performed in order to determine if the Ca deficiency can be remedied by the addition of a second Ca-bearing, soluble, mineral such as calcite, dolomite or wollastonite. Variations in the amount of calcite, dolomite or wollastonite resulted in systematic changes in the concentrations of Ca and P. The addition of calcite, dolomite or wollastonite to the zeoponic substrate resulted in an exponential decrease in the phosphorous concentration in solution. The exponential rate of decay was greatest for calcite (5.60 wt. % -I), intermediate for wollastonite (2.85 wt.% -I) and least for dolomite (1.58 wt.% -I). Additions of the three minerals resulted in linear increases in the calcium concentration in solution. The rate of increase was greatest for calcite (3.64), intermediate for wollastonite (2.41) and least for dolomite (0.61). The observed changes in P and Ca concentration are consistent with the solubilities of calcite, dolomite and wollastonite and with changes expected from a common ion effect with Ca. Keywords: zeolite, zeoponics, common-ion effect, clinoptilolite, hydroxyapatite

  7. Enhanced photocatalytic activity of chromium(VI) reduction and EDTA oxidization by photoelectrocatalysis combining cationic exchange membrane processes

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hung-Te, E-mail: der11065@hotmail.com [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan (China); Chen, Shiao-Shing, E-mail: f10919@ntut.edu.tw [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan (China); Tang, Yi-Fang, E-mail: sweet39005@hotmail.com [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan (China); Hsi, Hsing-Cheng, E-mail: hchsi@ntut.edu.tw [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan (China)

    2013-03-15

    Highlights: ► Chromium(VI) reduction and EDTA oxidization were conducted by photoelectrocatalysis. ► Apply the concept of cationic exchange membrane to enhance the conversion efficiency. ► The optimum TiO{sub 2} loading of 1 g/L was observed at acidic pH with current density 4 mA/cm{sup 2}. ► Transformation pathway of EDTA was determined from analyzed byproducts and molecular orbital package analysis. -- Abstract: A novel technology of photoelectrocatalysis (PEC) combining with cationic exchange membrane (CEM) was proposed for simultaneous reduction of chromium(VI) and oxidization of EDTA. The application of CEM was used to enhance the efficiency for prevention of the re-oxidation of reduced chromium with the electron–hole pairs. In this study, effects of current density, pH, TiO{sub 2} dosage, hydraulic retention time (HRT), light intensity and EDTA/Cr(VI) molar ratio were all investigated. The results showed that the optimum conversion efficiency occurred at 4 mA/cm{sup 2} with the presence of CEM. Higher conversion efficiencies were observed at lower pH due to the electrostatic attractions between positive charged Ti-OH{sub 2}{sup +}, and negatively charged Cr(VI) and EDTA. The optimum TiO{sub 2} loading of 1 g/L was depended mainly on the acidic pH range, especially at higher HRT and irradiation intensity. In addition, higher EDTA/Cr(VI) molar ratio enhanced the reduction efficiency of Cr(VI), indicating EDTA plays the role of hole scavenger in this system. Moreover, incomplete EDTA decomposition contributes to the occurrence of intermediates, including nitrilotriacetic acid, iminodiacetic acid, glycine, oxamic acid, lyoxylic acid, oxalic acid, acetic acid and formic acid, as identified by GC/MS. Consequently, transformation pathway was determined from these analyzed byproducts and molecular orbital package analysis.

  8. Enhanced photocatalytic activity of chromium(VI) reduction and EDTA oxidization by photoelectrocatalysis combining cationic exchange membrane processes

    International Nuclear Information System (INIS)

    Highlights: ► Chromium(VI) reduction and EDTA oxidization were conducted by photoelectrocatalysis. ► Apply the concept of cationic exchange membrane to enhance the conversion efficiency. ► The optimum TiO2 loading of 1 g/L was observed at acidic pH with current density 4 mA/cm2. ► Transformation pathway of EDTA was determined from analyzed byproducts and molecular orbital package analysis. -- Abstract: A novel technology of photoelectrocatalysis (PEC) combining with cationic exchange membrane (CEM) was proposed for simultaneous reduction of chromium(VI) and oxidization of EDTA. The application of CEM was used to enhance the efficiency for prevention of the re-oxidation of reduced chromium with the electron–hole pairs. In this study, effects of current density, pH, TiO2 dosage, hydraulic retention time (HRT), light intensity and EDTA/Cr(VI) molar ratio were all investigated. The results showed that the optimum conversion efficiency occurred at 4 mA/cm2 with the presence of CEM. Higher conversion efficiencies were observed at lower pH due to the electrostatic attractions between positive charged Ti-OH2+, and negatively charged Cr(VI) and EDTA. The optimum TiO2 loading of 1 g/L was depended mainly on the acidic pH range, especially at higher HRT and irradiation intensity. In addition, higher EDTA/Cr(VI) molar ratio enhanced the reduction efficiency of Cr(VI), indicating EDTA plays the role of hole scavenger in this system. Moreover, incomplete EDTA decomposition contributes to the occurrence of intermediates, including nitrilotriacetic acid, iminodiacetic acid, glycine, oxamic acid, lyoxylic acid, oxalic acid, acetic acid and formic acid, as identified by GC/MS. Consequently, transformation pathway was determined from these analyzed byproducts and molecular orbital package analysis

  9. Use of potassium-form cation-exchange resin as a conductimetric enhancer in ion-exclusion chromatography of aliphatic carboxylic acids.

    Science.gov (United States)

    Iwata, Tomotaka; Mori, Masanobu; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2009-09-15

    In this study, a cation-exchange resin (CEX) of the K(+)-form, i.e., an enhancer resin, is used as a postcolumn conductimetric enhancer in the ion-exclusion chromatography of aliphatic carboxylic acids. The enhancer resin is filled in the switching valve of an ion chromatograph; this valve is usually used as a suppressor valve in ion-exchange chromatography. An aliphatic carboxylic acid (e.g., CH(3)COOH) separated by a weakly acidic CEX column of the H(+)-form converts into that of the K(+)-form (e.g., CH(3)COOK) by passing through the enhancer resin. In contrast, the background conductivity decreases because a strong acid (e.g., HNO(3)) with a higher conductimetric response in an eluent converts into a salt (e.g., KNO(3)) with a lower conductimetric response. Since the pH of the eluent containing the resin enhancer increases from 3.27 to 5.85, the enhancer accelerates the dissociations of analyte acids. Consequently, peak heights and peak areas of aliphatic carboxylic acids (e.g., acetic acid, propionic acid, butyric acid, and valeric acid) with the enhancer resin are 6.3-8.0 times higher and 7.2-9.2 times larger, respectively, than those without the enhancer resin. Calibrations of peak areas for injected analytes are linear in the concentration range of 0.01-1.0mM. The detection limits (signal-to-noise ratio=3) range from 0.10 microM to 0.39 microM in this system, as opposed to those in the range of 0.24-7.1 microM in the separation column alone. The developed system is successfully applied to the determination of aliphatic carboxylic acids in a chicken droppings sample. PMID:19615503

  10. Cation-exchanger fabric prepared by electron beam - induced graft copolymerization of binary monomer mixture

    International Nuclear Information System (INIS)

    Applying the electron-beam preirradiation method in air the sorption-active polypropylene fiber, containing sulfonic acid (R-SO3H) groups, was prepared by simultaneous graft copolymerization of sodium styrenesulfonate with acrylic acid in water solution. The effect of reaction conditions on the grafting yield and reaction mechanism was examined. It was found that the received CEF contains groups of strong acid (R-SO3H) and weak acid (R-COOH) in almost equal proportion. The ion-exchange properties of the CEF towards Cu(II) and Co(II) ions were investigated depending on the form of the CEF and a pH of the solution. It was shown that the utilization of the CEF in Na- form allows to make the best use of its ion-exchange capacity. (author)

  11. Structure and resistance of concentration polar layer on cation exchange membrane-solution interface

    Institute of Scientific and Technical Information of China (English)

    SANG Shang-bin; HUANG Ke-long; LI Xiao-gang; WANG Xian

    2006-01-01

    Membrane/solution interface consists of a neutral concentration polar layer(CPL) and a charge layer(CL) under external electrical field, and the neutral CPL can be neglected under high frequency AC electrical field. The relationship of CL thickness e with electrolyte concentration C and fixed ion exchange sites density σ in membrane surface layer can be expressed as e=σ/C.According to this model, the thickness of the CL on Nafion1135 membrane/solution interface(ec) was calculated under different membrane surface charge quantity Q and variable electrolyte concentration C. The membrane/solution interface CL thickness(em) is obviously related with the membrane properties, and decreases dramatically in a higher electrolyte concentration, em values are 76.3nm and 110.3 nm respectively for Nafion1135 and PE01 ion exchange membrane in 0.05 mol/L H2SO4 solution, and em values for both membrane tend to 2 nm in 2 mol/L H2SO4 solution. For Nafion1135 membrane, the comparison of ec and em gives the result that CL thickness em obtained by resistance measurement fits well with the calculated CPL thickness ec while proton in CL transferred to membrane surface is 14.56 × l0-10 mol, which corresponds to the fixed exchange group number in a surface layer with a thickness τ=2 nm for Nafion1135 membrane.

  12. Mathematical modeling of salt-gradient ion-exchange simulated moving bed chromatography for protein separations

    Institute of Scientific and Technical Information of China (English)

    卢建刚

    2004-01-01

    The salt-gradient operation mode used in ion-exchange simulated moving bed chromatography (SMBC) can improve the efficiency of protein separations. A detailed model that takes into account any kind of adsorption/ion-exchange equilibrium, salt gradient, size exclusion, mass transfer resistance, and port periodic switching mechanism, was developed to simulate the complex dynamics. The model predictions were verified by the experimental data on upward and downward gradients for protein separations reported in the literature. All design and operating parameters (number, configuration, length and diameter of columns, particle size, switching period, flow rates of feed, raffinate, desorbent and extract, protein concentrations in feed, different salt concentrations in desorbent and feed) can be chosen correctly by numerical simulation. This model can facilitate the design, operation, optimization, control and scale-up of salt-gradient ion-exchange SMBC for protein separations.

  13. Spin-electron acoustic soliton and exchange interaction in separate spin evolution quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-01-15

    Separate spin evolution quantum hydrodynamics is generalized to include the Coulomb exchange interaction, which is considered as interaction between the spin-down electrons being in quantum states occupied by one electron. The generalized model is applied to study the non-linear spin-electron acoustic waves. Existence of the spin-electron acoustic soliton is demonstrated. Contributions of concentration, spin polarization, and exchange interaction to the properties of the spin electron acoustic soliton are studied.

  14. Heat-Activated Effect of Exchange Coupling Between Two Ferromagnets Separated by an Amorphous Semiconducting Barrier

    Institute of Scientific and Technical Information of China (English)

    肖明文; 李正中; 许望

    2002-01-01

    We try to extend our previous zero-temperature tunnelling theory for the exchange coupling between two ferromagnets separated by an amorphous semiconducting barrier to the case of finite temperature. The result exhibits that the tunnelling electrons can absorb or emit phonons when they tunnel through the amorphous barrier at finite temperatures so that the interlayer exchange coupling is heat activated. This agrees with the experiments.

  15. Spin-electron acoustic soliton and exchange interaction in separate spin evolution quantum plasmas

    International Nuclear Information System (INIS)

    Separate spin evolution quantum hydrodynamics is generalized to include the Coulomb exchange interaction, which is considered as interaction between the spin-down electrons being in quantum states occupied by one electron. The generalized model is applied to study the non-linear spin-electron acoustic waves. Existence of the spin-electron acoustic soliton is demonstrated. Contributions of concentration, spin polarization, and exchange interaction to the properties of the spin electron acoustic soliton are studied

  16. Irradiation effects on the storage and disposal of radwaste containing organic ion-exchange media. [3 functional forms of resin - sulfonic acid cation exchanger, quarternary ammonium anion exchanger and mixed bed combination of the two

    Energy Technology Data Exchange (ETDEWEB)

    Swyler, K.J.; Dodge, C.J.; Dayal, R.

    1983-10-01

    Polystyrene-divinylbenzene (PS-DVB) based ion exchangers are commonly used in water demineralization or decontamination operations at nuclear facilities. Self-irradiation from sorbed radionuclides may affect the properties of radwaste containing these ion-exchange media. The effects of external irradiation on anion, cation, and mixed bed PS-DVB ion exchangers have been investigated under conditions relevant to radwaste storage and disposal. Three effects are emphasized in the present report: (1) release of acids, radionuclides or chemically aggressive species through radiolytic attack on the functional group, (2) radiolytic generation/uptake of corrosive or combustible gases, (3) effect of irradiation on solidification of resins in cement. Special consideration was placed on external variables such as radiation dose rate, resin chemical loading and moisture conditions, accessibility to atmospheric oxygen, and interactions in multicomponent systems. Such variables may affect the correspondence between laboratory results and field performance. 40 references, 24 figures, 28 tables.

  17. Determination of rare-earth elements in geological materials by ion-exchange chromatography separation and induction coupled plasma emission spectroscopy

    International Nuclear Information System (INIS)

    A methodology for the analysis of Rare-Earth elements in geological samples has been developed. Ion exchange chromatography for the separation and induction coupled plasma emission spectroscopy for the analysis have been used. The columns with cationic resin were calibrated with radioactive elements. With complexes matrices, the instrument's data must be corrected for the presence of majors elements (CEM) and for the interferences of the Rare-earth elements (CETR). The accuracy and precision are evaluated critically with respect to the convenience and efficiency of this methodology in the analysis of rare-Earth elements i geological samples. (author)

  18. Highly dispersive ion exchangers in the analytical chemistry of uranium, particularly regarding separation methods

    International Nuclear Information System (INIS)

    The reaction of water-insoluble polyvinyl pyrrolidon with uranium VI was investigated and a determination method for uranium was worked out in which the polyvinyl pyrrolidon was used as specific exchanger. Good separations of uranium from numerous transition metal ions were achieved here. The application of this exchanger for a fast and simple elution and determination method was of particular importance. A possible sorption mechanism was suggested based on the capacity curve of uranium with polyvinyl pyrrolidon and nitrogen and chloride content at maximum load. The sorption occurs by coordination of the carbonyl oxygen of single pyrrolidon rings with the protons of the complex acides and uranium. This assumption is supported by IR investigations. The sorbability of other inorganic acids was also investigated and possible structures were formulated for the sorption mechanism. In addition to this, ion exchangers were prepared based on cellulose by converting cellulose powder with aziridine and tris-1-aziridinyl-phosphine oxide. A polyethylene imine cellulose of high capacity was obtained in the conversion of cellulose powder with aziridine. This exchanger absorbs cobalt III very strongly. The exchanger loaded with cobalt III was used to separate the uranium as cyanato complex. The exchanger obtained in converting chlorated cellulose with tris-1-aziridinyl phosphine oxide also absorbs uranium VI very strongly. Thus a separation method of high specifity and selectivity was developed. (orig.)

  19. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y. [McMaster University, Hamilton, ON (Canada); Mekky, W. [AMEC NSS, Power and Process America, Toronto (Canada)

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  20. The removal of radioactive radium (Ra226) from chloride liquors by columnar ion exchange in the presence of calcium, magnesium and iron cations

    International Nuclear Information System (INIS)

    The purpose of this work was to study the feasibility of controlling the discharge of soluble Ra226, in the presence of Ca, Mg and Fe cations in synthetic chloride effluents, by adsorption on cation exchange resins to decrease Ra226-concentrations to federal environmental levels of 10 pCi Ra226/litre. Environmentally acceptable effluents were produced from synthetic chloride feed liquors containing 10 ppm Ca, 5 ppm Mg, 120 ppm Fe plus 20,000 pCi Ra226/litre. Environmentally acceptable effluents were not produced, by cation exchange, from a synthetic chloride liquor containing 490 ppm Ca, 97 ppm Mg, 720 ppm Fe in addition to 20,000 pCi Ra226/litre. The mass interference of the Ca + Mg + Fe cation concentrations in the feed liquor was in over-powering competition, for resin sites, with the Ra226-cations. To obtain realistic data, the adsorption process should be reexamined using a chloride liquor produced under optimal chloride leaching conditions of an Elliot Lake uranium ore. This would, in all probability, reveal other cations unavailable in the synthetic chloride liquors

  1. Synergistic extraction of transition metal cations from aqueous media by two separated organic phases

    International Nuclear Information System (INIS)

    We have therefore initiated novel approaches to the study of the mechanism of the synergistic extraction of metal ions by means of two separated organic phases, which are brought in contact with the same aqueous phase. The present work is concerned with the extraction of transition metals and actinides ions from nitric acid by chelating agents e.g., HTTA thenoyltrifluoroacetone in a diluent - the first organic phase, and by natural donor, e.g., TBP, tri-butyl phosphate in a diluent the second organic phase. The adduct formation was studied by means of spectrochemical and radiochemical methods. In the first approach the aqueous phase was attacked with both organic phases simultanously (the static or parallel extraction). In this method organic phase are separated one from the other. It was shown that even in the absence of mixing, synergism is observed under this experimental conditions. The results indicate, that adduct formation occurs in both organic phases. Nevertheless the enhanchment of extraction in the TBP phase is by far greater than that in the HTTA containing phase. This approach has one disadvatage, viz., the experiments are very time consuming, a typical experiment requiring over 10 days. In order to overcome this difficulty, the following experiments were carried out: the aqueous phase were first shaken with diluent containing an anionic ligand and the phases were allowed to separate. Then the aqueous solution were shaken with diluent containing a netural donor and the phase again were allowed to separate. The concentration of the metal ions in all the phases were determined. The experiments were repeated with an other diluent replacing the first diluent in one or both organic phases. In this way eight sequences of experiments were carried out for each concentration set chosen. The results thus point out that this experimental approach open new possibilities to investigate the mechanism and the kinetics of synergistic extraction processes. (author) the

  2. Purification of recombinant aprotinin produced in transgenic corn seed: separation from CTI utilizing ion-exchange chromatography

    Directory of Open Access Journals (Sweden)

    A. R. Azzoni

    2005-09-01

    Full Text Available Protein expression in transgenic plants is considered one of the most promising approaches for producing pharmaceutical proteins. As has happened with other recombinant protein production schemes, the downstream processing (dsp of these proteins produced in plants is key to the technical and economic success of large-scale applications. Since dsp of proteins produced transgenically in plants has not been extensively studied, it is necessary to broaden the investigation in this field in order to more precisely evaluate the commercial feasibility of this route of expression. In this work, we studied the substitution of an IMAC chromatographic step, described in previous work (Azzoni et al., 2002, with ion-exchange chromatography on SP Sepharose Fast Flow resin as the second step in the purification of recombinant aprotinin from transgenic maize seed. The main goal of this second purification step is to separate the recombinant aprotinin from the native corn trypsin inhibitor. Analysis of the adsorption isotherms determined at 25°C under different conditions allowed selection of 0.020 M Tris pH 8.5 as the adsorption buffer. The cation-exchange chromatographic process produced a high-purity aprotinin that was more than ten times more concentrated than that generated using an IMAC step.

  3. Separation of hydrogen isotopes by exchange reaction between water and hydrogen using hydrophobic platinum catalyst

    International Nuclear Information System (INIS)

    The case of utilizing exchange reaction and distillation has been found very frequently in practical scale in the separation process of hydrogen isotopes such as heavy water and deuterium. Distillation consumes a large quantity of energy, but it is a promising method in future because of the stability and simplicity of the process utilizing phase equilibrium. In the exchange reaction method, there are four excellent reactions involving the exchange reaction between gas and liquid, and in the practical process, counter flow gas-liquid contact towers are used. In this case, single temperature exchange method and double temperature exchange method are conceivable. In order to prevent the condensation of water molecules on active platinum surface, the catalyst has been made hydrophobic. The evaluation of catalyst activity and its basic theory, the lowering of catalyst activity and the effect of regeneration, the rate of exchange reaction and activation energy, and overall mass transfer coefficient are discussed. The performance of hydrogen isotope separation in a counter flow type exchange tower is represented by two factors in gas and liquid phase reactions, and to improve the performance, the transfer at gas-liquid interface must be accelerated, (Kako, I.)

  4. Copper removal and nickel for exchange cationic with a natural zeolite

    International Nuclear Information System (INIS)

    Natural zeolite clinoptilolite, was used to remove copper and nickel from waste waters of a galvanotechnical company. Exchange capacity determined for the zeolite after its transformation to homoionic sodium form, was 0.794 meq/g for copper and 0.447 meq/g for nickel. There were made batch and column experiments, reaching the last one a better approach to the equilibrium. From the degeneration essays, the sodical zeolite concentrates the copper in the waste waters to 23.5 up times the level found for the acid rinsing waters; it shows its potential use in treatment of these waste, because its effectiveness and low cost

  5. Disintegration and dissolution of spent radioactive cationic exchange resins using Fenton-like oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Zhong; Xu, Lejin [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Wang, Jianlong, E-mail: wangjl@tsinghua.edu.cn [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084 (China)

    2015-09-15

    Highlights: • The spent radioactive resins could be oxidized by Fenton-like process. • The influencing factors on resin oxidation were evaluated. • Chemical oxygen demand (COD) reduction rate was more than 99%. • SEM and Raman spectrum were used to analyze the resins morphological change. - Abstract: The treatment and disposal of the spent radioactive resins is essential for the sustainable development of the nuclear industry. In this paper, the disintegration and dissolution of spent cationic resins were studied by Fenton-like process. The influencing factors on resin dissolution, such as pH, temperature, type and concentration of catalysts were evaluated. The results showed that the spent resins could be effectively dissolved at pH < 1, [Fe{sup 2+}] = 0.2 M and T = 97 ± 2 °C. Chemical oxygen demand (COD) reduction rate was more than 99%. The scanning electron microscopy and the Raman spectrum were used to observe the morphological changes of the spent resins during the dissolution process. Fenton-like oxidation is an efficient method for the volume reduction and stabilization of the spent resins before further immobilization.

  6. Disintegration and dissolution of spent radioactive cationic exchange resins using Fenton-like oxidation process

    International Nuclear Information System (INIS)

    Highlights: • The spent radioactive resins could be oxidized by Fenton-like process. • The influencing factors on resin oxidation were evaluated. • Chemical oxygen demand (COD) reduction rate was more than 99%. • SEM and Raman spectrum were used to analyze the resins morphological change. - Abstract: The treatment and disposal of the spent radioactive resins is essential for the sustainable development of the nuclear industry. In this paper, the disintegration and dissolution of spent cationic resins were studied by Fenton-like process. The influencing factors on resin dissolution, such as pH, temperature, type and concentration of catalysts were evaluated. The results showed that the spent resins could be effectively dissolved at pH < 1, [Fe2+] = 0.2 M and T = 97 ± 2 °C. Chemical oxygen demand (COD) reduction rate was more than 99%. The scanning electron microscopy and the Raman spectrum were used to observe the morphological changes of the spent resins during the dissolution process. Fenton-like oxidation is an efficient method for the volume reduction and stabilization of the spent resins before further immobilization

  7. Comparing Nafion and ceramic separators used in electrochemical purification of spent chromium plating solutions: cationic impurity removal and transport.

    Science.gov (United States)

    Huang, Kuo-Lin; Holsen, Thomas M; Chou, Tse-Chuan; Selman, J Robert

    2003-05-01

    This study focuses on the electrolytic regeneration of spent chromium plating solutions. These solutions contain a significant amount of chromium and a lesser amount of other heavy metals, which makes them a significant environmental concern and an obvious target for recycling and reuse. The type of separator used is extremely critical to the performance of the process because they are the major resistance in the transport-related impurity (Cu(II), Ni(II), and Fe(III)) removals from contaminated chromic acid solutions. A Nafion 117 membrane and a ceramic diaphragm separator traditionally used in the industry were tested for comparison. It was found that the mobilities of Cu(II) and Ni(II) were similar and higher than that of Fe(III) using both separators. The mobility of each cation was smaller in the Nafion membrane than in the ceramic diaphragm. The measured conductivity of the ceramic diaphragm was slightly higher than that of Nafion membrane. However, the Nafion membrane was much thinner than the ceramic diaphragm resulting in the system using the Nafion membrane having higher impurity removal rates than the system using the ceramic diaphragm. The removal rates were approximately equal for Cu(II) and Ni(II) and lowest for Fe(III). Both current and initial concentration affected the removal rates of the impurities. Modeling results indicated that a system using a Nafion separator and a small catholyte/anolyte volume ratio was better than a system using a ceramic separator for removing impurities from concentrated plating solutions if the impurities transported into the catholyte are deposited or precipitated. PMID:12775076

  8. Selective separation of beta-lactoglobulin from sweet whey using CGAs generated from the cationic surfactant CTAB.

    Science.gov (United States)

    Fuda, Elisabeth; Bhatia, Divesh; Pyle, D L; Jauregi, Paula

    2005-06-01

    The selective separation of whey proteins was studied using colloidal gas aphrons generated from the cationic surfactant cetyl trimethyl ammonium bromide (CTAB). From the titration curves obtained by zeta potential measurements of individual whey proteins, it was expected to selectively adsorb the major whey proteins, i.e., bovine serum albumin, alpha-lactalbumin, and beta-lactoglobulin to the aphrons and elute the remaining proteins (lactoferrin and lactoperoxidase) in the liquid phase. A number of process parameters including pH, ionic strength, and mass ratio of surfactant to protein (M(CTAB)/M(TP)) were varied in order to evaluate their effect on protein separation. Under optimum conditions (2 mmol/l CTAB, M(CTAB)/M(TP) = 0.26-0.35, pH 8, and ionic strength = 0.018 mol/l), 80-90% beta-lactoglobulin was removed from the liquid phase as a precipitate, while about 75% lactoferrin and lactoperoxidase, 80% bovine serum albumin, 95% immunoglobulin, and 65% alpha-lactalbumin were recovered in the liquid fraction. Mechanistic studies using zeta potential measurements and fluorescence spectroscopy proved that electrostatic interactions modulate only partially the selectivity of protein separation, as proteins with similar surface charges do not separate to the same extent between the two phases. The selectivity of recovery of beta-lactoglobulin probably occurs in two steps: the first being the selective interaction of the protein with opposite-charged surfactant molecules by means of electrostatic interactions, which leads to denaturation of the protein and subsequent formation and precipitation of the CTAB-beta-lactoglobulin complex. This is followed by the separation of CTAB-beta-lactoglobulin aggregates from the bulk liquid by flotation in the aphron phase. In this way, CGAs act as carriers which facilitate the removal of protein precipitate. PMID:15816026

  9. Increased selectivity for planar chromatography by ion exchange : cation chromatography on papers impregnated with titanium (IV) based inorganic ion exchangers in DMSO-HNO3 mobile phases

    International Nuclear Information System (INIS)

    Planar chromatography of thirty six metal ions on titanium(IV) phosphate, titanium(IV) tungstate and titanium(IV) molybdate impregnated papers in DMSO-HNO3 mobile phases has been carried out. The ion-exchange capacity of papers is determined and the effects of solvent composition, impregnation and pH on RF values are studied. For K+, Rb+ and Cs+, RF = KC1/2, where C is the nitric acid concentration. The movement of ions is explained on the basis of ion-exchange, adsorption and precipitation. Alberti and Torracca's view for the prediction of elution sequence from RF values has been checked. The sequence of adsorption of ions follows the order : titanium(IV) molybdate > titanium(IV) tungstate > titanium(IV) phosphate. Some of the analytically important separations are reported. (author)

  10. Partial exchange of the Li+, Na+ and K+ alkaline cations in the HNi(PO4).H2O layered compound

    International Nuclear Information System (INIS)

    The exchange of the Li+(1), Na+(2) and K+(3) alkaline cations in the layered HNi(PO4).H2O was carried out starting from a methanolic solution containing the Li(OH).H2O hydroxide for (1) and the M(OH) (M=Na and K) hydroxides together with the (C6H13NH2)0.75HNiPO4.H2O phases for (2) and (3). The compounds are stable until, approximately, 280oC for (1) and 400 deg. C for phases (2) and (3), respectively. The IR spectra show the bands belonging to the water molecule and the (PO4)3- oxoanion. The diffuse reflectance spectra indicate the existence of Ni(II), d8, cations in slightly distorted octahedral geometry. The calculated Dq and Racah (B and C) parameters have a mean value of Dq=765, B=905 and C=3895cm-1, respectively, in accordance with the values obtained habitually for this octahedral Ni(II) cation. The study of the exchange process performed by X-ray powder diffraction indicates that the exchange of the Li+ cation in the lamellar HNi(PO4).H2O phase is the minor rapid reaction, whereas the exchange of the Na+ and K+ cations needs the presence of the intermediate (C6H13NH2)0.75HNiPO4.H2O intercalate in order to obtain the required product with the sodium and potassium ions. The Scanning electronic microscopy (SEM) images show a mean size of particle of 5μm. The Li+ exchanged compound exhibits small ionic conductivity (Ωcm-1 is in the 10-8-10-9 range) probably restrained by the methanol solvent. Magnetic measurements carried out from 5K to room temperature indicate antiferromagnetic coupling as the major interaction in the three phases. Notwithstanding the Li and K phases show a weak ferromagnetism at low temperatures

  11. High-purity isolation of anthocyanins mixtures from fruits and vegetables--a novel solid-phase extraction method using mixed mode cation-exchange chromatography.

    Science.gov (United States)

    He, Jian; Giusti, M Monica

    2011-11-01

    Research on biological activity of anthocyanins requires the availability of high purity materials. However, current methods to isolate anthocyanins or anthocyanin mixtures are tedious and expensive or insufficient for complete isolation. We applied a novel cation-exchange/reversed-phase combination solid-phase extraction (SPE) technique, and optimized the use of water/organic buffer mobile phases to selectively separate anthocyanins. Crude extracts of various representative anthocyanin sources were purified with this technique and compared to 3 commonly used SPE techniques: C(18), HLB, and LH-20. Purified anthocyanin fractions were analyzed with high performance liquid chromatography (HPLC) coupled to photodiode array (PDA) and mass spectrometry (MS) detectors and by Fourier transform infrared (FT-IR) spectroscopy. The UV-visible chromatograms quantitatively demonstrated that our novel technique achieved significantly higher (Pmethod, for 11 of the 12 anthocyanin sources tested. Among them, eight were purified to greater than 99% purity (based on UV-visible chromatograms). The new method efficiently removed non-anthocyanin phenolics. MS and FT-IR results semi-quantitatively confirmed extensive reduction of impurities. Due to strong ionic interaction, our sorbent capacity was superior to others, resulting in the highest throughput and least use of organic solvents. This new methodology for isolation of anthocyanin mixtures drastically increased purity and efficiency while maintaining excellent recovery rate and low cost. The availability of high purity anthocyanin mixtures will facilitate anthocyanin studies and promote the application of anthocyanins in the food and nutraceutical industries. PMID:21968344

  12. Synthetic inorganic ion exchangers. XVI. Electrochromatographic separations of metal ions on zirconium tungstate-impregnated paper

    International Nuclear Information System (INIS)

    The electrochromatographic behavior of 25 metal ions on zirconium tungstate-impregnated papers is described. Six background electrolytes were used. On the basis of the differential mobilities of metal ions which depend on the ion-exchange properties of zirconium tungstate and the nature of complex formation with the electrolytes, some important binary and ternary separations have been achieved

  13. Post-transfusion purpura treated with plasma exchange by haemonetics cell separator. A case report

    DEFF Research Database (Denmark)

    Laursen, B; Morling, N; Rosenkvist, J; Sørensen, H; Thyme, S

    1978-01-01

    A case of post-transfusion purpura in a 61-year-old, multiparous female with a platelet alloantibody (anti-Zwa) in her serum is reported. The patient was successfully treated with plasma exchange by means of a Haemonetics 30 cell separator and corticosteroids. Compared with other therapeutic meas...

  14. Synthesis of Anomeric Methyl Fructofuranosides and Their Separation on an Ion-Exchange Resin

    Science.gov (United States)

    Nurminen, Erkki; Poijarvi, Paivi; Koskua, Katja; Hovinen, Jari

    2007-01-01

    Treatment of d-fructose with methanol in the presence of acid as a catalyst gives a mixture of methyl-[beta]-d-fructopyranoside, methyl-[alpha]-D-fructofuranoside, and methyl-[beta]-d-fructofuranoside, which were separated on an ion exchange column and characterized polarimetrically.

  15. Separation of the rare earths by anion-exchange in the presence of lactic acid

    Science.gov (United States)

    Faris, J. P.

    1969-01-01

    Investigation of adsorption of rare earths and a few other elements to an anion-exchange resin from mixed solvents containing lactic acid shows that the lanthanides are absorbed more strongly than from the alpha-hydroxyisobutryric acid system, but with less separation between adjacent members of the series.

  16. Separation of selected stable isotopes by liquid-phase thermal diffusion and by chemical exchange

    International Nuclear Information System (INIS)

    Useful applications of enriched stable nuclides are unduly restricted by high cost and limited availability. Recent research on liquid phase thermal diffusion (LTD) has resulted in practical processes for separating 34S, 35Cl, and 37Cl in significant quantities (100 to 500 g/yr) at costs much lower than those associated with the electromagnetic (Calutron) process. The separation of the isotopes of bromine by LTD is now in progress and 79Br is being produced in relatively simple equivalent at a rate on the order of 0.5 g/day. The results of recent measurements show that the isotopes of Zn can be separated by LTD of zinc alkyls. The isotopes of calcium can be separated by LTD and by chemical exchange. The LTD process is based on the use of aqueous Ca(NO3)2 as a working fluid. The chemical exchange method involves isotopically selective exchange between an aqueous phase containing a calcium salt and an organic phase containing calcium in the form of a complex with a macrocyclic ligand. The LTD method is suitable for high enrichments at low through-puts; whereas, the chemical exchange techniques is appropriate for lower enrichments at much higher production rates. Current research is directed toward reducing these concepts to practical processes

  17. Separation of Ra/Ca by ion exchange; Separacion de Ra/Ca por intercambio ionico

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe, J.L.; Jimenez R, M.; Flores M, J

    1991-04-15

    The radium and the calcium belong to the same group in the periodic classification and as consequence both they present very similar chemical properties, that makes difficult its separation. Both elements are also frequently associate in the nature, the calcium is very abundant, the radium is not it and for that reason it is indispensable its separation to analyze to this last one. The alpha spectroscopy is very appropriate to analyze to the {sup 226} Ra, however to achieve a good resolution of the spectra, the samples should contain small quantities of calcium. The purposes of this work were to know the chromatographic behavior of the alkaline-earthy cations: calcium, barium and radium and to apply these knowledge to the separation of the {sup 226} Ra and its analysis by means of alpha spectroscopy. (Author)

  18. Lithium-sodium separation by ion-exchange. Particular study of a pulsed column

    International Nuclear Information System (INIS)

    A study is made of the operational conditions and constraints in the case of a moving-bed ion-exchange column subjected to pulses. The example chosen to illustrate its application concerns the lithium-sodium separation in a hydroxide medium (LiOH, NaOH). In the first part, the physico-chemical characteristics of the exchange and the kinetic characteristics of the exchange-reaction are considered. In the second part, the operation of the pulsed column is studied. Using the results obtained in the first part, the conditions required for study state operation are determined. When this is obtained, it is possible to calculate the height equivalent of the theoretical plate (HETP) of the installation. A study is also made of 'sliding', a phenomenon peculiar to pulsed columns. The results obtained show that it is possible, using laboratory tests, to determine the characteristics and the operational condition of a moving-bed ion-exchange column. (author)

  19. Reversible Dissociation and Ligand-Glutathione Exchange Reaction in Binuclear Cationic Tetranitrosyl Iron Complex with Penicillamine

    Directory of Open Access Journals (Sweden)

    Lidia Syrtsova

    2014-01-01

    Full Text Available This paper describes a comparative study of the decomposition of two nitrosyl iron complexes (NICs with penicillamine thiolic ligands [Fe2(SC5H11NO22(NO4]SO4·5H2O (I and glutathione- (GSH- ligands [Fe2(SC10H17N3O62(NO4]SO4·2H2O (II, which spontaneously evolve to NO in aqueous medium. NO formation was measured by a sensor electrode and by spectrophotometric methods by measuring the formation of a hemoglobin- (Hb- NO complex. The NO evolution reaction rate from (I  k1 = (4.6 ± 0.1·10−3 s−1 and the elimination rate constant of the penicillamine ligand k2 = (1.8 ± 0.2·10−3 s−1 at 25°C in 0.05 M phosphate buffer,  pH 7.0, was calculated using kinetic modeling based on the experimental data. Both reactions are reversible. Spectrophotometry and mass-spectrometry methods have firmly shown that the penicillamine ligand is exchanged for GS− during decomposition of 1.5·10−4 M (I in the presence of 10−3 M GSH, with 76% yield in 24 h. As has been established, such behaviour is caused by the resistance of (II to decomposition due to the higher affinity of iron to GSH in the complex. The discovered reaction may impede S-glutathionylation of the essential enzyme systems in the presence of (I and is important for metabolism of NIC, connected with its antitumor activity.

  20. Formation of environmentally persistent free radical (EPFR) in iron(III) cation-exchanged smectite clay.

    Science.gov (United States)

    Nwosu, Ugwumsinachi G; Roy, Amitava; dela Cruz, Albert Leo N; Dellinger, Barry; Cook, Robert

    2016-01-01

    Environmentally persistent free radicals (EPFRs) have been found at a number of Superfund sites, with EPFRs being formed via a proposed redox process at ambient environmental conditions. The possibility of such a redox process taking place at ambient environmental conditions is studied utilizing a surrogate soil system of phenol and iron(III)-exchanged calcium montmorillonite clay, Fe(III)CaM. Sorption of phenol by the Fe(III)CaM is demonstrated by Fourier-transformed infra-red (FT-IR) spectroscopy, as evidenced by the peaks between 1345 cm(-1) and 1595 cm(-1), and at lower frequencies between 694 cm(-1) and 806 cm(-1), as well as X-ray diffraction (XRD) spectroscopy, as shown by an increase in interlayer spacing within Fe(III)CaM. The formation and characterization of the EPFRs is determined by electron paramagnetic resonance (EPR) spectroscopy, showing phenoxyl-type radical with a g-factor of 2.0034 and ΔHP-P of 6.1 G at an average concentration of 7.5 × 10(17) spins per g. EPFRs lifetime data are indicative of oxygen and water molecules being responsible for EPFR decay. The change in the oxidation state of the iron redox center is studied by X-ray absorption near-edge structure (XANES) spectroscopy, showing that 23% of the Fe(III) is reduced to Fe(II). X-ray photoemission spectroscopy (XPS) results confirm the XANES results. These findings, when combined with the EPFR concentration data, demonstrate that the stoichiometry of the EPFR formation under the conditions of this study is 1.5 × 10(-2) spins per Fe(II) atom. PMID:26647158

  1. Application of hydrous ceria for the uptake of several cations and in the separation of carrier-free 99mTc and 95Nb from 99Mo and 95Zr respectively

    International Nuclear Information System (INIS)

    Hydrous ceria of suitable column quality has been prepared by precipitation with ammonia from a solution of ceric sulphate in hot dil. H2SO4, and subsequent drying at 70degC. The composition of the material has been ascertained by TGA to be CeO2.2.2H2O. The IEC (ion exchange capacity) value is found to be 0.25 meq/g. Uptake of 20 tracer cations has been studied on this exchanger. The data show that sup(55+59)Fe, 99Y, rare earth isotopes, 95Zr, 125Sb, 99Mo and 185W are adsorbed in the exchanger in an appreciable manner. Radiochemical separations of 99mTc and 95Nb respectively from 99Mo and 95Zr have been carried out by using a very simple chemical procedure over the columns of freshly prepared ceria material. γ-Ray spectra of the separated 99mTc and 95Nb show that the products are of high radionuclidic purity. Overall separation procedures are quick and give quantitative yield. (author). 21 refs., 3 figs., 1 tab

  2. Modification of polyamide-CdS-CdSe composite material films with Ag using a cation–cation exchange reaction

    International Nuclear Information System (INIS)

    Highlights: • We investigated deposition of a mixed CdSe-CdS-Ag2Se-Ag2S on polyamide. • A single chalcogen precursor – K2SeS2O6 – was used. • AAS showed five- to ten-fold excess of chalcogens diffused into PA. • Addition of AgNO3 resulted in subsurface Ag2Se–Ag2S formation. - Abstract: Thin mixed CdSe-CdS-Ag2Se-Ag2S films were deposited on a polyamide 6 (PA) surface by successfully using a cation-exchange reaction between Cd2+ and Ag+ to convert CdSe-CdS into Ag2Se-Ag2S. These were deposited using a K2SeS2O6 precursor solution at 60 °C followed by cadmium acetate (Cd(CH3COO)2). An aqueous AgNO3 solution was used as the Ag source. XRD patterns showed a complex PA-Cd-S-Se-Ag film crystalline composition with CdS, CdSe, Ag2S and Ag2Se peaks. Calculated dislocation density ranged within 5–15 × 1013 lines·m−2 indicating high quality atomic layers. Atomic Absorption Spectroscopy (AAS) showed five- to ten-fold excess of chalcogens to metals in the thin films formed. No chalcogenides were observed on the sample surface during XPS analysis after Ag exchange due to the desorption of CdS and CdSe layers, not diffused into the bulk of the polymer suggesting that silver chalcogenides were located subsurface, as opposed to the outermost layer, likely comprised of Ag2O

  3. Modification of polyamide-CdS-CdSe composite material films with Ag using a cation–cation exchange reaction

    Energy Technology Data Exchange (ETDEWEB)

    Krylova, V.; Žalenkienė, S.; Dukstienė, N. [Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu st. 19, LT-50254, Kaunas (Lithuania); Baltrusaitis, J., E-mail: job314@lehigh.edu [Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 (United States)

    2015-10-01

    Highlights: • We investigated deposition of a mixed CdSe-CdS-Ag{sub 2}Se-Ag{sub 2}S on polyamide. • A single chalcogen precursor – K{sub 2}SeS{sub 2}O{sub 6} – was used. • AAS showed five- to ten-fold excess of chalcogens diffused into PA. • Addition of AgNO{sub 3} resulted in subsurface Ag{sub 2}Se–Ag{sub 2}S formation. - Abstract: Thin mixed CdSe-CdS-Ag{sub 2}Se-Ag{sub 2}S films were deposited on a polyamide 6 (PA) surface by successfully using a cation-exchange reaction between Cd{sup 2+} and Ag{sup +} to convert CdSe-CdS into Ag{sub 2}Se-Ag{sub 2}S. These were deposited using a K{sub 2}SeS{sub 2}O{sub 6} precursor solution at 60 °C followed by cadmium acetate (Cd(CH{sub 3}COO){sub 2}). An aqueous AgNO{sub 3} solution was used as the Ag source. XRD patterns showed a complex PA-Cd-S-Se-Ag film crystalline composition with CdS, CdSe, Ag{sub 2}S and Ag{sub 2}Se peaks. Calculated dislocation density ranged within 5–15 × 10{sup 13} lines·m{sup −2} indicating high quality atomic layers. Atomic Absorption Spectroscopy (AAS) showed five- to ten-fold excess of chalcogens to metals in the thin films formed. No chalcogenides were observed on the sample surface during XPS analysis after Ag exchange due to the desorption of CdS and CdSe layers, not diffused into the bulk of the polymer suggesting that silver chalcogenides were located subsurface, as opposed to the outermost layer, likely comprised of Ag{sub 2}O.

  4. Synthesis and characterization of a novel hybrid nano composite cation exchanger poly-o-toluidine Sn(IV) tungstate: Its analytical applications as ion-selective electrode

    Science.gov (United States)

    Khan, Asif Ali; Shaheen, Shakeeba

    2013-02-01

    A novel organic-inorganic nano composite cation exchanger poly-o-toluidine Sn(IV) tungstate has been synthesized by incorporation of a polymer material into inorganic precipitate. The material is a class of hybrid ion-exchanger with good ion-exchange properties, reproducibility, stability and good selectivity for heavy metals. The physico-chemical properties of this nano composite material were characterized by using XRD, TGA, FTIR, SEM and TEM. The ion-exchange capacity, pH titrations, elution behavior and chemical stability were also carried out to study ion-exchange properties of the material. Distribution studies for various metal ions revealed that the nano composite is highly selective for Cd(II). An ion-selective membrane electrode was fabricated using this material for the determination of Cd(II) ions in solutions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations.

  5. HTGR fuel development: loading of uranium on carboxylic acid cation-exchange resins using solvent extraction of nitrate

    International Nuclear Information System (INIS)

    The reference fuel kernel for recycle of 233U to HTGR's (High-Temperature Gas-Cooled Reactors) is prepared by loading carboxylic acid cation-exchange resins with uranium and carbonizing at controlled conditions. The purified 233UO2(NO3)2 solution from a fuel reprocessing plant contains excess HNO3 (NO3-/U ratio of approximately 2.2). The reference flowsheet for a 233U recycle fuel facility at Oak Ridge uses solvent extraction of nitrate by a 0.3 M secondary amine in a hydrocarbon diluent to prepare acid-deficient uranyl nitrate. This nitrate extraction, along with resin loading and amine regeneration steps, was demonstrated in 14 runs. No significant operating difficulties were encountered. The process is controlled via in-line pH measurements for the acid-deficient uranyl nitrate solutions. Information was developed on pH values for uranyl nitrate solution vs NO3-/U mole ratios, resin loading kinetics, resin drying requirements, and other resin loading process parameters. Calculations made to estimate the capacities of equipment that is geometrically safe with respect to control of nuclear criticality indicate 100 kg/day or more of uranium for single nitrate extraction lines with one continuous resin loading contactor or four batch loading contactors. (auth)

  6. A continuous process for biodiesel production in a fixed bed reactor packed with cation-exchange resin as heterogeneous catalyst.

    Science.gov (United States)

    Feng, Yaohui; Zhang, Aiqing; Li, Jianxin; He, Benqiao

    2011-02-01

    Continuous esterification of free fatty acids (FFA) from acidified oil with methanol was carried out with NKC-9 cation-exchange resin in a fixed bed reactor with an internal diameter of 25 mm and a height of 450 mm to produce biodiesel. The results showed that the FFA conversion increased with increases in methanol/oil mass ratio, reaction temperature and catalyst bed height, whereas decreased with increases in initial water content in feedstock and feed flow rate. The FFA conversion kept over 98.0% during 500 h of continuous esterification processes under 2.8:1 methanol to oleic acid mass ratio, 44.0 cm catalyst bed height, 0.62 ml/min feed flow rate and 65°C reaction temperature, showing a much high conversion and operational stability. Furthermore, the loss of sulfonic acid groups from NKC-9 resin into the production was not found during continuous esterification. In sum, NKC-9 resin shows the potential commercial applications to esterification of FFA. PMID:21078550

  7. Enhanced photocatalytic activity of chromium(VI) reduction and EDTA oxidization by photoelectrocatalysis combining cationic exchange membrane processes.

    Science.gov (United States)

    Hsu, Hung-Te; Chen, Shiao-Shing; Tang, Yi-Fang; Hsi, Hsing-Cheng

    2013-03-15

    A novel technology of photoelectrocatalysis (PEC) combining with cationic exchange membrane (CEM) was proposed for simultaneous reduction of chromium(VI) and oxidization of EDTA. The application of CEM was used to enhance the efficiency for prevention of the re-oxidation of reduced chromium with the electron-hole pairs. In this study, effects of current density, pH, TiO2 dosage, hydraulic retention time (HRT), light intensity and EDTA/Cr(VI) molar ratio were all investigated. The results showed that the optimum conversion efficiency occurred at 4mA/cm(2) with the presence of CEM. Higher conversion efficiencies were observed at lower pH due to the electrostatic attractions between positive charged TiOH2(+), and negatively charged Cr(VI) and EDTA. The optimum TiO2 loading of 1g/L was depended mainly on the acidic pH range, especially at higher HRT and irradiation intensity. In addition, higher EDTA/Cr(VI) molar ratio enhanced the reduction efficiency of Cr(VI), indicating EDTA plays the role of hole scavenger in this system. Moreover, incomplete EDTA decomposition contributes to the occurrence of intermediates, including nitrilotriacetic acid, iminodiacetic acid, glycine, oxamic acid, lyoxylic acid, oxalic acid, acetic acid and formic acid, as identified by GC/MS. Consequently, transformation pathway was determined from these analyzed byproducts and molecular orbital package analysis. PMID:23380448

  8. Kinetics, thermodynamics and surface heterogeneity assessment of uranium(VI) adsorption onto cation exchange resin derived from a lignocellulosic residue

    International Nuclear Information System (INIS)

    A new cation exchange resin (PGTFS-COOH) having a carboxylate functional group at the chain end was prepared by grafting poly(hydroxyethylmethacrylate) onto tamarind fruit shell, TFS (a lignocellulosic residue) using potassium peroxydisulphate-sodium thiosulphate redox initiator, and in the presence of N,N'-methylenebisacrylamide (MBA) as a crosslinking agent, followed by functionalisation. The adsorbent was characterized with the help of FTIR, XRD, scanning electron micrographs (SEM), and potentiometric titrations. The kinetic and isotherm data, obtained at optimum pH value 6.0 at different temperatures could be fitted with pseudo-second-order equation and Sips isotherm model, respectively. An increase in temperature induces positive effect on the adsorption process. The calculated activation energy of adsorption (Ea, 18.67 kJ/mol) indicates that U(VI) adsorption was largely due to diffusion-controlled process. The values of adsorption enthalpy, Gibbs free energy, and entropy were calculated using thermodynamic function relationships. The decrease in adsorption enthalpy with increasing U(VI) uploading on the adsorbent, reflects the surface energetic heterogeneity of the adsorbent. The isosteric heat of adsorption was quantitatively correlated with the fractional loading for the U(VI) ions adsorption onto PGTFS-COOH. The results showed that the PGTFS-COOH possessed heterogeneous surface with sorption sites having different activities.

  9. Cation exchange capacity (Qv) estimation in shaly sand reservoirs: case studies in the Junggar Basin, northwest China

    Science.gov (United States)

    Wang, Liang; Mao, Zhi-Qiang; Sun, Zhong-Chun; Luo, Xing-Ping; Deng, Ren-Shuang; Zhang, Ya-Hui; Ren, Bing

    2015-10-01

    Cation exchange capacity (Qv) is a key parameter in resistivity-based water saturation models of shaly sand reservoirs, and the accuracy of Qv calculation is crucial to the prediction of saturations of oil and gas. In this study, a theoretical expression of Qv in terms of shaly sand permeability (Kshaly-sand), total porosity (ϕt), and salinity of formation water (S) is deduced based on the capillary tube model and the physics volume model. Meanwhile, the classical Schlumberger-Doll research (SDR) model has been introduced to estimate Kshaly-sand. On this basis, a novel technique to estimate Qv from nuclear magnetic resonance (NMR) logs is proposed, and the corresponding model is also established, whose model parameters are calibrated by laboratory Qv and NMR measurements of 15 core samples from the Toutunhe formation of the Junggar Basin, northwest China. Based on the experimental data sets, this technique can be extended to reservoir conditions to estimate continuous Qv along the intervals. The processing results of field examples illustrate that the Qv calculated from field NMR logs are consistent with the analyzed results, with the absolute errors within the scope of  ±0.1 mmol cm-3 for the majority of core samples.

  10. Separation of bivalent anti-T cell immunotoxin from Pichia pastoris glycoproteins by borate anion exchange.

    Science.gov (United States)

    Woo, Jung Hee; Neville, David M

    2003-08-01

    A major problem encountered in the large-scale purification of the bivalent anti-T cell immunotoxin, A-dmDT390-bisFv(G4S), from Pichia pastoris supernatants was the presence of host glycoproteins exhibiting similar charge, size, and hydrophobicity characteristics. We overcame this problem by employing borate anion exchange chromatography. The borate anion has an affinity for carbohydrates and imparts negative charges to these structures. We found that at a concentration of sodium borate between 50 and 100 mM, the nonglycosylated immunotoxin did not bind to Poros 50 HQ anion exchanger resin, but glycoproteins, including aggregates related to the immunotoxin, did. By using this property of the immunotoxin in the presence of sodium borate, we successfully developed a 3-step purification procedure: (i) Butyl-650M hydrophobic interaction chromatography, (ii) Poros 50 HQ anion exchange chromatography in the presence of borate, and (iii) HiTrap Q anion exchange chromatography. The final preparation exhibited a purity of greater than 98% and a yield of greater than 50% from the supernatant. Previously, boronic acid resins have been used to separate glycoproteins from proteins. However, combining borate anion with conventional anion exchange resins accomplishes the separation of the immunotoxin from glycoproteins and eliminates the need to evaluate nonstandard resins with respect to good manufacturing practice guidelines. PMID:12951782

  11. Boron isotope separation by ion exchange chromatography using weakly basic anion exchange resin

    International Nuclear Information System (INIS)

    Influences of operating temperatures and concentrations of feed boric acid solutions were examined on the above titled process over the ranges of 25 - 70 0C and 0.1 - 1.6 mol/dm3 (M), respectively. The ideal displacement chromatography with a very sharp-cut boundary of the boric acid adsorption band was realized at higher temperatures and lower boric acid concentrations within the experimental conditions. The isotope separation coefficient epsilon was found to decrease with increases in either temperature or the boric acid concentration. The observed values of epsilon at 25 0C were 0.013, 0.012 and 0.011 corresponding to feed boric acid concentrations of 0.1 M, 0.4 M and 0.8 M, respectively. The epsilon's at 70 0C were 0.0097 (0.1 M), 0.0086 (0.4 M), 0.0083 (0.8 M) and 0.0073 (1.6 M). A temperature of 40 0C and 0.4 M of boric acid concentration was considered the optimum operating condition for the production of enriched 10B. (author)

  12. On separation of exchange term from the coefficient of the magnetoelectromechanical coupling

    Indian Academy of Sciences (India)

    ZAKHARENKO A A

    2016-06-01

    The purpose of this analysis is to introduce the separated exchange coefficient and to graphically investigate it. This coefficient, depending on the electromagnetic constant plus two coefficients of the electromechanical and magnetomechanical couplings, form the coefficient of magnetoelectromechanical coupling (CMEMC), a very important characteristic used for analysingmagnetoelectroelastic smart (composite) materials. It was analytically and graphically demonstrated that the CMEMC can have a minimum due to the minimum of the exchange coefficient at a certain value of the electromagnetic constant. For graphical investigation, the frequently used transverselyisotropic (6$mm$) composite materials such as BaTiO$_3$–CoFe$_2$O$_4$ and PZT–5H–Terfenol–D are exploited.

  13. Extraordinary waves in two dimensional electron gas with separate spin evolution and Coulomb exchange interaction

    CERN Document Server

    Andreev, Pavel A

    2016-01-01

    Hydrodynamics analysis of waves in two-dimensional degenerate electron gas with the account of separate spin evolution is presented. The transverse electric field is included along with the longitudinal electric field. The Coulomb exchange interaction is included in the analysis. In contrast with the three-dimensional plasma-like mediums the contribution of the transverse electric field is small. We show the decrease of frequency of both the extraordinary (Langmuir) wave and the spin-electron acoustic wave due to the exchange interaction. Moreover, spin-electron acoustic wave has negative dispersion at the relatively large spin-polarization. Corresponding dispersion dependencies are presented and analyzed.

  14. Intensification of heat and mass transfer by ultrasound: application to heat exchangers and membrane separation processes.

    Science.gov (United States)

    Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E

    2015-07-01

    This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions. PMID:25216897

  15. Phase separation and exchange bias effect in Ca doped EuCrO3

    International Nuclear Information System (INIS)

    The rare-earth chromites have attracted increasing interests in recent years, as a member of a few single-phase multiferroic materials. We studied the structure and magnetic property of a series of Ca-doped EuCrO3 samples by using X-ray powder diffraction and Physical Property Measurement System. Phase separation, rotation of magnetization in M(T) curve and exchange bias effect have been identified. The Eu0.7Ca0.3CrO3 polycrystalline sample may be intrinsically phase-separated, with Cr3+-rich, Cr4+-rich canted antiferromagnetic regions surrounded by spin glass-like frustrated phase, resulting in several magnetic features including: (1) a broad and slow increase of M(T) curve with the decrease of temperature; (2) rotation of magnetization with increasing cooling field; (3) exchange bias and glassy magnetism. The rotation of magnetization is ascribed to the rotation of the moment of Cr4+-rich regions, arising from the competition between exchange coupling energy and magnetostatic energy. The exchange bias effect suggests the formation of weak ferromagnetic unidirectional anisotropy during field cooling, due to the exchange coupling among weak ferromagnetic domains and surrounding spin glass-like regions. This result helps understanding the interaction among different magnetic domains and phases in a complex system. - Highlights: • Exchange bias effect and glassy magnetism were observed in Eu0.7Ca0.3CrO3. • Rotation of the moments of Cr4+-rich regions result in the rotation of magnetization in M(T) curve. • Spin glass-like regions contribute to the observed exchange bias effect

  16. Phase separation and exchange bias effect in Ca doped EuCrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Dongmei, E-mail: dmdeng@shu.edu.cn [Department of Physics and Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Wang, Xingyu; Zheng, Jiashun; Qian, Xiaolong [Department of Physics and Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Yu, Dehong; Sun, Dehui [Bragg Institute, Australian Nuclear Science and Technology Organization, Kirrawee DC, NSW 2232 (Australia); Jing, Chao [Department of Physics and Materials Genome Institute, Shanghai University, Shanghai 200444 (China); Lu, Bo [Analysis and Measurement Center and Laboratory for Microstructures of Shanghai University, Shanghai 200444 (China); Kang, Baojuan; Cao, Shixun; Zhang, Jincang [Department of Physics and Materials Genome Institute, Shanghai University, Shanghai 200444 (China)

    2015-12-01

    The rare-earth chromites have attracted increasing interests in recent years, as a member of a few single-phase multiferroic materials. We studied the structure and magnetic property of a series of Ca-doped EuCrO{sub 3} samples by using X-ray powder diffraction and Physical Property Measurement System. Phase separation, rotation of magnetization in M(T) curve and exchange bias effect have been identified. The Eu{sub 0.7}Ca{sub 0.3}CrO{sub 3} polycrystalline sample may be intrinsically phase-separated, with Cr{sup 3+}-rich, Cr{sup 4+}-rich canted antiferromagnetic regions surrounded by spin glass-like frustrated phase, resulting in several magnetic features including: (1) a broad and slow increase of M(T) curve with the decrease of temperature; (2) rotation of magnetization with increasing cooling field; (3) exchange bias and glassy magnetism. The rotation of magnetization is ascribed to the rotation of the moment of Cr{sup 4+}-rich regions, arising from the competition between exchange coupling energy and magnetostatic energy. The exchange bias effect suggests the formation of weak ferromagnetic unidirectional anisotropy during field cooling, due to the exchange coupling among weak ferromagnetic domains and surrounding spin glass-like regions. This result helps understanding the interaction among different magnetic domains and phases in a complex system. - Highlights: • Exchange bias effect and glassy magnetism were observed in Eu{sub 0.7}Ca{sub 0.3}CrO{sub 3}. • Rotation of the moments of Cr{sup 4+}-rich regions result in the rotation of magnetization in M(T) curve. • Spin glass-like regions contribute to the observed exchange bias effect.

  17. Direct separation of 67Ga citrate from zinc and copper target materials by an ion exchange

    International Nuclear Information System (INIS)

    The separation of 67Ga from zinc and copper target materials using an anion- f:exchanger (Dowex21K) and 0.1 M citrate buffer at pH 6 is described. The gallium-67 was separated in citrate solution and can be directly used for medical applications. Gallium-67 with a half-life of 78.3 h and gamma-rays with energies of 93, 185 and 300 keV is a cyclotron produced radioisotope for which a considerable demand exists. 67Ga is frequently produced through proton or deuteron bombardment of natural or enriched Zn targets (Helus and Maier-Borst, 1973). It is usually separated from Zn by ion exchange chromatography (Helus and Maier-Borst, 1973; van der Walt and Strelow, 1983) or by liquid extraction Helus and Maier-Borst, 1973; Hupf and Beaver, 1970). The isotope is usually supplied in citrate solution which is widely used as 67Ga Gallium citrate which is a well-established radiopharmaceutical for imaging soft tissue tumors and abscesses. Several routes for large scale production of 67Ga and the development of medical applications have been reported (Silvester and Thakur, 1970; Dahl and Tilbury, 1972; Steyn and Meyer,1973; Vlatkovic et al., 1975; Neirinckx, 1976; Thakur, 1977). Various attempts were carried out to separate gallium-67 by using different ion exchange methods (Strelow et al., 1971; Das and Ramamoorthy, 1995; Boothe et al.,1991) through the labelling of citrate by using 67Ga was carried out for medical applications

  18. On flotation separation of oxo-anions of transition metals by the use of fine-emulsified solutions of cationic collector in non-polar liquids

    International Nuclear Information System (INIS)

    Experimentally shown is a principle possibility of flotation separation of oxo-anions of transition metals by the use of fine-emulsified solutions of cationic collector in non-polar liquids. Ammonium vanadate and sodium tuno.state solutions have been the objects of study. Hexadezilamine has been used as collector. The collector has been introduced in the form of hexadecylamine emulsions in n-decane, in tetrachloromethane or alcohol. Optimum pH value ranges are determined for separation processes

  19. Application of ion associates of 2,3,7-trihydroxyfluorones with cetyl pyridinium cations for flotation separation of rare element ions

    International Nuclear Information System (INIS)

    It was suggested to use ionic associates of salicylfluorone with cetyl pyridinium cations as high-effective collector for flotation separation of Nb(5), Ta(5), Zr(4), Hf(4), Mo(6), W(6) ions. The optimal condition for flotation of Nb, Zr, Hf, Mo, W complexes is the following: pH 1-8; Ta-pH 0-8; separation degree equals 80-94%

  20. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo-Hidalgo, Ana G. [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico); Dugar, Sneha; Fu, Riqiang [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Hernandez-Maldonado, Arturo J., E-mail: arturoj.hernandez@upr.edu [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico)

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  1. Determination of metallic impurities in uranium through anion exchange separation and neutron activation analysis

    International Nuclear Information System (INIS)

    The separation of metals from uranium by anionic exchange was studied. The behaviour of ions in Dowex 1x8 in HNO3, H2SO4, HC1, HCL-HF, and NH3 media and Dowex 2x8 in H2SO4 medium were investigated. Methods for the separation of Na, Mg, Al, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Zr, Ag, Cd, Cs, Ba, La, Ce, Nd, Sm, Eu, Tb, Yb, La, Hf and Th were developed. For Mo, partial separation was obtained. Separation schemes for the neutron activation analysis of metallic impurities in uranium are proposed. The detection limits are given. The results for the elements Al, Cr, Mn, Co, Ni, Cu, V and Fe determined from the IAEA reference samples SR-54/64 are compared with recommended values

  2. Process for the separation and recovery of molybdenum and uranium from leach solution using ion exchange

    International Nuclear Information System (INIS)

    This invention provides a process for the recovery of uranium from a pregnant lixiviant containing molybdenum as the primary contaminant using a two-stage ion-exchange recovery process. In the first stage, a strong base anionic quaternary amine resin is employed to adsorb uranium and molybdenum values from the pregnant lixiviant. The uranium and molybdenum values are then eluted from the resin with a suitable eluant such as a salt solution which may contain carbonate or bicarbonate. In the second stage of the process, the pregnant eluate containing uranium and molybdenum is passed through a secondary column containing a weak acid cationic resin in its hydrogen form wherein the uranium values are adsorbed. The resin is then treated with an acid eluant to recover the uranium values. Finally the pregnant eluate containing uranium free of molybdenum is treated to precipitate uranium as yellow cake

  3. Separation of metal ions by anion exchange in mixtures of hydrochloric acid and hydrofluoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Faris, J.P.

    1978-12-01

    Distribution coefficients were determined for the adsorption of more than 40 elements on anion-exchange resins from mixtures of HCl (0.1 to 12M) and HF (0.1-8M). Two resins, Dowex 1 x 10, 200 to 400 mesh and Dowex 1 x 4, 100 to 200 mesh, were used. Distribution coefficients were also determined for the adsorption of many elements on both resins from 0.1 to 12M HCl and 0.1 to 12M HF. Anion exchange in the presence of HF was found useful for separating impurities from various materials for their subsequent determination, and specific procedures used in our spectrochemical laboratory for this purpose are outlined. The results of a literature search on the use of anion exchange in hydrofluoric acid and fluoride-containing media are presented in an extensive bibliography. 404 references, 9 tables.

  4. Separation of metal ions by anion exchange in mixtures of hydrochloric acid and hydrofluoric acid

    International Nuclear Information System (INIS)

    Distribution coefficients were determined for the adsorption of more than 40 elements on anion-exchange resins from mixtures of HCl (0.1 to 12M) and HF (0.1-8M). Two resins, Dowex 1 x 10, 200 to 400 mesh and Dowex 1 x 4, 100 to 200 mesh, were used. Distribution coefficients were also determined for the adsorption of many elements on both resins from 0.1 to 12M HCl and 0.1 to 12M HF. Anion exchange in the presence of HF was found useful for separating impurities from various materials for their subsequent determination, and specific procedures used in our spectrochemical laboratory for this purpose are outlined. The results of a literature search on the use of anion exchange in hydrofluoric acid and fluoride-containing media are presented in an extensive bibliography. 404 references, 9 tables

  5. Separation of Rare Earth Elements from Monazite Ore Decomposition Process by Ion Exchange Column

    International Nuclear Information System (INIS)

    Separation of rare earth elements from monazite ore decomposition process was studied by using ion exchange columns filled with Dowex 50 WX8 resin. Mixed rare earth chloride from monazite composed of La, Ce, Pr, Nd, Y, Sm, Gd and Dy was adsorbed by resin in the column and 0.015 M EDTA was used to elute adsorbed rare earth elements through columns of Cu+2 adsorbed resin at linear flow rate of 0.636 and 0.212 cm/min. It was found that rare earth elements were eluted respectively by their atomic weight from heavy to light elements except Y which are Dy, Y, Gd, Sm, Nd, Pr, Ce and La. Ion exchange column has shown a potential method in separation and purification of individual rare earth elements

  6. A study of an ion-exchange process for separation of strontium and yttrium

    International Nuclear Information System (INIS)

    A study has been carried out to determine optimum conditions for the separation of strontium and yttrium by ion-exchange. The parameters of interest for such separation such as the dimensions of the ion-exchange columns, flow rates through the columns and pH values of the solutions, which affect the overall yield in the process, have been investigated. Application of this method for routine quantitative determinations of Sr-90 in environmental samples, particularly the wet-ashed biological materials has also been studied. The method, although a rapid and convenient one has not been found to yield consistent results probably due to the requirement of stringent analytical controls during the process. (author)

  7. Application of mixed-mode, solid-phase extraction in environmental and clinical chemistry. Combining hydrogen-bonding, cation-exchange and Van der Waals interactions

    Science.gov (United States)

    Mills, M.S.; Thurman, E.M.; Pedersen, M.J.

    1993-01-01

    Silica- and styrene-divinylbenzene-based mixed-mode resins that contain C8, C18 and sulphonated cation-exchange groups were compared for their efficiency in isolation of neutral triazine compounds from water and of the basic drug, benzoylecgonine, from urine. The triazine compounds were isolated by a combination of Van der Waals and hydrogen-bonding interactions, and benzoylecgonine was isolated by Van der Waals interactions and cation exchange. All analytes were eluted with a polar organic solvent contaning 2% ammonium hydroxide. Larger recoveries (95%) were achieved on copolymerized mixed-mode resins where C18 and sulfonic acid are in closer proximity than on 'blended' mixed-mode resins (60-70% recovery).

  8. 离子色谱分离法提纯异麦芽低聚糖%Purification of isomalto-oligosaccharide by cation exchange chromatography

    Institute of Scientific and Technical Information of China (English)

    姜守霞; 励雯波; 钟振声

    2003-01-01

    The purification of isomalto-oligsaccharide syrup using cation exchange resin was smdiied. The experiments showed that, when 35 ml raw material was used, the optimal purification result could be achieved on the resin column of 9 × 4000 mm with eluting rate 9 ml/min at 71℃ .The content of gluecose could be decreased whist the content of active components would be relatively increased.The purity of isomalto-oligsaccharide could be further increased by re-purification.

  9. Effects of Land Use Practices on the Organic Carbon Content, Cation Exchange Capacity and Aggregate Stability of Soils in the Catchment Zones

    OpenAIRE

    Mosayeb Heshmati; Arifin Abdu; Shamshuddin Jusop; Nik M. Majid

    2011-01-01

    Problem statement: Land use practice leads to changes in the physico-chemical properties of soils, such as Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC) and Soil Aggregate Stability (SAS) that cause soil erosion. Approach: Merek catchment, Iran suffers from land degradation due to poor land use practice. A study was carried out with the objectives: (i) to determine soil nutrient status in different agro-ecological zones in Merek catchment; and (ii) to evaluate the influence of lan...

  10. Thermodynamics of the extraction of scandium(III) by the liquid cation exchangers dinonylnaphthalenesulfonic acid and bis(2-ethylhexyl) phosphoric acid

    International Nuclear Information System (INIS)

    The thermodynamic functions for the extraction of Sc3+ by liquid cation exchangers HD and HDEHP are determined radiometrically by the temperature coefficient method. The role of the diluent dielectric constant on the extraction of Sc3+ by HD is also studied. The thermodynamic parameters determined indicated that the free energy variation for the extraction of Sc3+ by HD is mainly determined by the entropic terms arising from the hydration-dehydration process of the exchanged ions. In the case of HDEHP as extractant, the free energy variations are determined mainly by the entalpic terms of the system. (author)

  11. Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite

    International Nuclear Information System (INIS)

    Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M–Na) and copper cation (M–Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M–Cu changes depending on the inorganic cation and the polymer intercalated in the M–Cu structure. TGA analyses reveal that polymer/M–Cu composites is less stable than M–Cu. The conductivity of the composites is found to be 103 times higher than that for M–Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV–Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

  12. Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Benyoucef, A., E-mail: ghani29000@yahoo.fr [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Yahiaoui, A. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Quijada, C. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Pza Ferrandiz i Carbonel, E-03801 Alcoy, Alicante (Spain); Morallon, E. [Departamento de Quimica Fisica e Instituto Universitario de Materiales, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2013-02-25

    Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M-Na) and copper cation (M-Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M-Cu changes depending on the inorganic cation and the polymer intercalated in the M-Cu structure. TGA analyses reveal that polymer/M-Cu composites is less stable than M-Cu. The conductivity of the composites is found to be 10{sup 3} times higher than that for M-Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV-Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

  13. studies on the use of organic and inorganic ion exchangers for separation of indium(III) from cadmium(II) using analytical methods

    International Nuclear Information System (INIS)

    Organic and inorganic ion exchangers have many applications not only in the industrial, environmental and the nuclear fields but also in the separation of metal ions. This may be returned to its high measured capacity, high selectivity for some metal ions, low solubility, high chemical radiation stability and easy to use.Indium and cadmium are produced from cyclotron target where the solvent extraction represents an ordinary method for separation of indium and cadmium from its target. In the present work, More than chromatographic columns were successfully used for the separation and recovery of indium(III) and cadmium(II) ions from di-component system in aqueous solution using organic and inorganic ion exchangers. The work was carried out in three main parts;1- In the first part, the commercial resin (Dowex50w-x8) was used for the separation of indium from cadmium. The effect of pH, the weight of resin, and equilibrium time on the sorption process of both metal ions were determined. It was found that the adsorption percentage was more than 99% at pH 4 (as optimum pH value) using batch experiment. The results show that indium was first extracted while cadmium is slightly extracted at this pH value. The recovery of indium and cadmium is about 98% using hydrochloric acid as best eluent. The ion exchange/complexing properties of Dowex50w-x8 resin containing various substituted groups towards indium and cadmium cations were investigated.2- In the second part, Zn(II)polymethacrylates, and poly (acrylamide-acrylic acid), as synthetic organic ion exchangers were prepared by gamma irradiation polymerization technique of the corresponding monomer at 30 kGy. The obtained organic resins were mixed with indium ions to determine its capacity in aqueous solutions using batch experiment.

  14. Estimation of soil cation exchange capacity using Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS)

    Science.gov (United States)

    Emamgolizadeh, S.; Bateni, S. M.; Shahsavani, D.; Ashrafi, T.; Ghorbani, H.

    2015-10-01

    The soil cation exchange capacity (CEC) is one of the main soil chemical properties, which is required in various fields such as environmental and agricultural engineering as well as soil science. In situ measurement of CEC is time consuming and costly. Hence, numerous studies have used traditional regression-based techniques to estimate CEC from more easily measurable soil parameters (e.g., soil texture, organic matter (OM), and pH). However, these models may not be able to adequately capture the complex and highly nonlinear relationship between CEC and its influential soil variables. In this study, Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS) were employed to estimate CEC from more readily measurable soil physical and chemical variables (e.g., OM, clay, and pH) by developing functional relations. The GEP- and MARS-based functional relations were tested at two field sites in Iran. Results showed that GEP and MARS can provide reliable estimates of CEC. Also, it was found that the MARS model (with root-mean-square-error (RMSE) of 0.318 Cmol+ kg-1 and correlation coefficient (R2) of 0.864) generated slightly better results than the GEP model (with RMSE of 0.270 Cmol+ kg-1 and R2 of 0.807). The performance of GEP and MARS models was compared with two existing approaches, namely artificial neural network (ANN) and multiple linear regression (MLR). The comparison indicated that MARS and GEP outperformed the MLP model, but they did not perform as good as ANN. Finally, a sensitivity analysis was conducted to determine the most and the least influential variables affecting CEC. It was found that OM and pH have the most and least significant effect on CEC, respectively.

  15. Separation and immobilization of Sr and Cs contained in acidic media by using inorganic ion-exchangers. Literature survey

    International Nuclear Information System (INIS)

    The present study deals with the survey of inorganic ion-exchangers suitable for separation and immobilization of Sr and Cs contained in acidic high-level liquid waste. The stabilities of published waste forms and their preparation processes were evaluated from the standpoint of conversion of exchangers containing Sr and Cs into appropriate waste forms. The essential results are below. (1) For separation and immobilization of Cs, crystalline silicotitanate seems to be the most promising exchanger. Insoluble ferrocyanides and phosphates are not suitable for immobilization without additives. Mordenite is inexpensive and commercially available but it would dissolve in highly acidic media. (2) For selective separation of Sr, there is no promising exchanger up to now. It is necessary either to modify separation condition or to synthesize a novel exchanger. (3) Soluble salts, glasses and ceramics are proposed as a storage or disposal form of separated Sr and Cs. Ceramics sintered by hot-pressing are favorable waste forms of inorganic ion-exchangers but their leachabilities and thermal conductivities are largely influenced by qualities of products. Crystallinity of a sintered exchanger depends on its composition. Exchanges of low Cs contents are often converted into amorphous materials whose chemical stabilities depend on solubilities of components of exchangers. (4) A new exchanger to be synthesized is crystalline and selective toward Sr and Cs. One meq/g is enough for Sr and Cs capacities, which are restricted by thermal and transmutation effects. Composition of the exchanger should be selected from the point of a scenario of separation and disposal. The solubilities of SiO2, TiO2, ZrO2, Nb2O5 and Ta2O5 are low in acidic media and those of Al2O3, TiO2 and ZrO2, in disposal circumstances. (5) Future works are optimization of separation scheme including development of exchangers, simplification of solidification step and cost-benefit analysis. (author)

  16. Development of composite ion exchanger for separation of cesium from high level liquid waste

    International Nuclear Information System (INIS)

    137Cs (t1/2 = 30 years) is one of the major radioisotope present in high level liquid waste (HLLW) generated during the reprocessing of nuclear fuel. Separation of 137Cs from HLLW results in reduction of personal radiation exposure during the conditioning, transportation, storage and disposal. In addition, 137Cs has enormous application as a radiation source in food preservation, sterilization of medical products, brachytherapy, blood irradiation, hygienization of sewage sludge etc. Ammonium molybdophosphate (AMP), an inorganic ion exchanger, has high selectivity and high exchange capacity for Cs. It exits as microcrystalline powder which is not amenable for column operation. ALIX is a composite material in which AMP is physically blended with inert polymeric substrate to improve its column property, exchange kinetics and increase its mechanical strength. The observed excellent properties of the composite are attributed to its engineered structure which is formed during its production. SEM analysis of ALIX shows that AMP crystals embedded in the cavities are not covered by the polymer which greatly enhances its availability for cesium exchange. The highly porous structure of the composite having 49% void volume facilitates faster kinetics of exchange of Cs from the aqueous phase and increased rate of reaction with alkali required during its dissolution

  17. Experimental Findings On Minor Actinide And Lanthanide Separations Using Ion Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D. T.; Shehee, T. C.; Clearfield, A.

    2013-09-17

    This project seeks to determine if inorganic or hybrid inorganic ion-exchange materials can be exploited to provide effective americium and curium separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of the tested ion-exchange materials for actinide and lanthanide ions. During FY13, experimental work focused in the following areas: (1) investigating methods to oxidize americium in dilute nitric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium and (2) synthesis, characterization and testing of ion-exchange materials. Ion-exchange materials tested included alkali titanates, alkali titanosilicates, carbon nanotubes and group(IV) metal phosphonates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of Am(III). Experimental findings indicated that Pu(IV) is oxidized to Pu(VI) by peroxydisulfate, but there are no indications that the presence of plutonium affects the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used. Tests also explored the influence of nitrite on the oxidation of Am(III). Given the formation of Am(V) and Am(VI) in the presence of nitrite, it appears that nitrite is not a strong deterrent to the oxidation of Am(III), but may be limiting Am(VI) by quickly reducing Am(VI) to Am(V). Interestingly, additional absorbance peaks were observed in the UV-Vis spectra at 524 and 544 nm in both nitric acid and perchloric acid solutions when the peroxydisulfate was added as a solution. These peaks have not been previously observed and do not correspond to the expected peak locations for oxidized americium in solution. Additional studies are in progress to identify these unknown peaks. Three titanosilicate ion exchangers were synthesized using a microwave-accelerated reaction system (MARS�) and determined to have high

  18. Proceedings of the efficient separations and processing crosscutting program 1997 technical exchange meeting

    International Nuclear Information System (INIS)

    This document contains summaries of technology development presented at the 1997 Efficient Separations and Processing Crosscutting Program (ESP-CP) Technical Exchange Meeting (TEM), held January 28-30, 1997, in Gaithersburg, Maryland. The ESP-CP is sponsored by the U.S. Department of Energy's Office of Environmental Management (DOE/EM), Office of Science and Technology. The ESP-CP TEM is held annually to: (1) Present current technology development activities funded by the ESP-CP. Developers of ESP-CP-funded technologies describe the problems and needs addressed by their technologies; the technical approach, accomplishments, and resolution of issues; the strategy and schedule for commercialization; and evolving potential applications. Representatives from DOE/EM's Focus Areas also present their technology needs. (2) Promote the exchange of technical information among those developing new separations technologies, those responsible for providing new separations technologies to meet DOE/EM needs, and those who need or will potentially make use of such technologies. (3) Familiarize the ESP-CP Technical Review Team with the FY 1997 program and solicit reviewers' views on the program as a whole. This meeting is not a program review of the individual tasks, but instead focuses on the technical aspects and implementation of ESP-CP-sponsored technology or data. This document also contains a list of ESP-CP-sponsored publications, presentations, and patents. Separate abstracts have been indexed into the energy database for contributions to this proceedings

  19. New Anion-Exchange Resins for Improved Separations of Nuclear Materials

    International Nuclear Information System (INIS)

    Improved separations of nuclear materials will have a significant impact upon a broad range of DOE activities. DOE-EM Focus Areas and Crosscutting Programs have identified improved methods for the extraction and recovery of radioactive metal ions from process, waste, and environmental waters as critical needs for the coming years. We propose to develop multifunctional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. Our new ion-exchange resins interface the field of ion-specific chelating ligands with robust, commercial ion-exchange technology to provide materials which exhibit superior selectivity and kinetics of sorption and desorption. The following Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new material: Efficient Separations and Processing - radionuclide removal from aqueous phases; Plutonium - Pu, Am or total alpha removal to meet regulatory requirement s before discharge to the environment; Plumes - U and Tc in groundwater, U, Pu, Am, and Tc in soils; Mixed Waste - radionuclide partitioning; High-Level Tank Waste - actinide and Tc removal from supernatants and/or sludges. The basic scientific issues which need to be addressed are actinide complex speciation along with modeling of metal complex/functional site interactions in order to determine optimal binding-site characteristics. Synthesis of multifunctionalized extractants and ion-exchange materials that implement key features of the optimized binding site, and testing of these materials, will provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The long-range implications of this research, however, go far beyond the nuclear complex. This new methodology of ''facilitated uptake'' could revolutionize ion-exchange technology

  20. Separation of carrier-free 90Y from 90Sr by ion exchange chromatography

    International Nuclear Information System (INIS)

    Separation of carrier free 90Y from fission product 90Sr by column chromatography was investigated using composite inorganic ion exchanger poly antimonic acid (PAA), which was developed in house. The optimum conditions of separation were obtained by studying the distribution coefficients for 90Y from different acid solutions (HNO3, HCl and H2SO4) in concentration range of 0.001 - 3 M on the sorbent. The results indicated that after loading 90S/90Y equilibrium solution, pure carrier free 90Y was obtained from the column using 1 M HNO3 solutions as eluent. The radiochemical purity of the separated 90Y was confirmed by studying its decay curve. (author)

  1. The selective separation of Cs and Sr ion on the inorganic ion-exchanger zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hun Hwee; Min, Byeog Heon [Hoseo University, Taegu (Korea)

    1998-04-01

    This study shows the selective separation of Cs and Sr ion on the inorganic ion-exchanger zeolites such as clinoptilolite, Y-type CBV760, CBV780 and A-type 3A. The selective separation of Cs and Sr on these zeolites was examined using batch and continuous column experiments. For the selective separation of Cs and Sr from a synthetic wastewater, adsorption rate of Cs increased in the order, clinoptilolite> 3A>> CBV760> CBV780, adsorption rate of Sr increased in the other, 3A>> clinoptilolite> CBV760> CBV780. For the clinoptilolite, the adsorption rate of Cs reached about 96 {approx} 98% within 3h. The adsorption rate of Sr on 3A reached about 99% within 3h. (author). 40 refs., 27 figs., 4 tabs.

  2. Cation exchange synthesis of uniform PbSe/PbS core/shell tetra-pods and their use as near-infrared photodetectors

    Science.gov (United States)

    Mishra, N.; Mukherjee, B.; Xing, G.; Chakrabortty, S.; Guchhait, A.; Lim, J. Y.

    2016-07-01

    In this work we explore the preparation of complex-shaped semiconductor nanostructures composed of different materials via a cationic exchange process in which the cations of the original semiconductor nanostructure are replaced by cations of different metals with preservation of the shape and the anionic framework of the nanocrystals. Utilizing this cation exchange method, we synthesized two new tetrapods for the first time: Cu2-xSe/Cu2-xS and PbSe/PbS, both prepared from CdSe/CdS tetrapods as `templates'. We also fabricated near-infrared (NIR) photodetectors with a very simple architecture comprising a PbSe/PbS tetrapod layer between two Au electrodes on a glass substrate. When illuminated by a NIR laser, these devices are capable of achieving a responsivity of 11.9 A W-1 without the use of ligand-exchange processes, thermal annealing or hybrid device architecture. Transient absorption spectroscopy was carried out on these PbSe/PbS tetrapods, the results of which suggest that the branched morphology contributes in part to device performance. Investigation of the charge dynamics of the PbSe/PbS tetrapods revealed an extremely long-lived exciton recombination lifetime of ~17 ms, which can result in enhanced photoconductive gain. Overall, these heterostructured tetrapods showcase simultaneously the importance of nanoparticle shape, band structure, and surface chemistry in the attainment of NIR photodetection.In this work we explore the preparation of complex-shaped semiconductor nanostructures composed of different materials via a cationic exchange process in which the cations of the original semiconductor nanostructure are replaced by cations of different metals with preservation of the shape and the anionic framework of the nanocrystals. Utilizing this cation exchange method, we synthesized two new tetrapods for the first time: Cu2-xSe/Cu2-xS and PbSe/PbS, both prepared from CdSe/CdS tetrapods as `templates'. We also fabricated near-infrared (NIR) photodetectors

  3. Lessons learned from the Febex in situ test: modifications at cation exchange positions by effect of a thermo-hydraulic gradient and the bentonite pore water

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Compacted bentonites are considered as a backfill and sealing material in most high-level radioactive waste disposal (HLW) concepts because of its physico-chemical properties. One of these properties arises from the electrical charge on the clay mineral surfaces, which affects the bentonite capacity for interacting with water and solutes. The total electrical charge distribution in clay particles is centred in two surface functional groups that give rise to different reactivities: a) aluminol and silanol edge surface hydroxyl groups, where the surface complexation processes occur; and 2) siloxane di-trigonal cavities or siloxane surfaces, where the exchange reactions take place. The excess of negative charge (CEC parameter) has important repercussions in degree of swelling, hydration, rheological properties, acid/base properties and adsorption/retention of cations in clays. In the last years, the accurate determination of the CEC and the concentration of cations at exchange positions have been one of the main problems tackled, and a lot of procedures and methods are found in the literature. This is because the CEC depends on the measurement conditions: pH, ionic strength, solid to liquid ratio, temperature and dielectric constant of the medium. The standard method by using NH4OAC 1 M at pH 7 and 25 C has a lot of drawbacks. For this reason, there are other methods based on: a) extracting solutions at pH 8.2 for limiting the dissolution of carbonates; b) organic solvents less polar than water limiting dissolution of sulfates also; and c) solutions with cations of high affinity (Cs, Co(NO3)63+ or Ag-Thiourea saturated in calcite). In the FEBEX project, different methods were used for analysing the CEC and cation concentration at exchange sites in different laboratory tests. These include tests with bentonite at as received or natural conditions and bentonite subjected to heating and hydration in thermo

  4. Automation of Extraction Chromatograhic and Ion Exchange Separations for Radiochemical Analysis and Monitoring

    International Nuclear Information System (INIS)

    Radiochemical analysis, complete with the separation of radionuclides of interest from the sample matrix and from other interfering radionuclides, is often an essential step in the determination of the radiochemical composition of a nuclear sample or process stream. Although some radionuclides can be determined nondestructively by gamma spectroscopy, where the gamma rays penetrate significant distances in condensed media and the gamma ray energies are diagnostic for specific radionuclides, other radionuclides that may be of interest emit only alpha or beta particles. For these, samples must be taken for destructive analysis and radiochemical separations are required. For process monitoring purposes, the radiochemical separation and detection methods must be rapid so that the results will be timely. These results could be obtained by laboratory analysis or by radiochemical process analyzers operating on-line or at-site. In either case, there is a need for automated radiochemical analysis methods to provide speed, throughput, safety, and consistent analytical protocols. Classical methods of separation used during the development of nuclear technologies, namely manual precipitations, solvent extractions, and ion exchange, are slow and labor intensive. Fortunately, the convergence of digital instrumentation for preprogrammed fluid manipulation and the development of new separation materials for column-based isolation of radionuclides has enabled the development of automated radiochemical analysis methodology. The primary means for separating radionuclides in solution are liquid-liquid extraction and ion exchange. These processes are well known and have been reviewed in the past.1 Ion exchange is readily employed in column formats. Liquid-liquid extraction can also be implemented on column formats using solvent-impregnated resins as extraction chromatographic materials. The organic liquid extractant is immobilized in the pores of a microporous polymer material. Under

  5. Effects of Polar Organic Solvent on Separation of Y(edta)-/Nd(edta)- Complexes on Polyacrylic Anion Exchangers

    Institute of Scientific and Technical Information of China (English)

    Halina Hubicka; Dorota Kolodynska

    2005-01-01

    The use of polar organic solvents for the separations of rare earth elements (Ⅲ) is effective especially for their extensive separations despite the solubility limitations. The study shows that polyacrylate anion exchangers, particularly the weakly basic, gel anion exchanger Amberlite IRA 68, can be applied to the separation of rare earth complexes with EDTA in H2O-methanol and H2O-ethanol systems. In most cases the determined distribution coefficients of Ln3+ complexes with EDTA in mixed media like water-methanol on polyacrylate anion exchangers are larger than those in pure water media.

  6. Chemical separation of Mo and W from terrestrial and extraterrestrial samples via anion exchange chromatography.

    Science.gov (United States)

    Nagai, Yuichiro; Yokoyama, Tetsuya

    2014-05-20

    A new two-stage chemical separation method was established using an anion exchange resin, Eichrom 1 × 8, to separate Mo and W from four natural rock samples. First, the distribution coefficients of nine elements (Ti, Fe, Zn, Zr, Nb, Mo, Hf, Ta, and W) under various chemical conditions were determined using HCl, HNO3, and HF. On the basis of the obtained distribution coefficients, a new technique for the two-stage chemical separation of Mo and W, along with the group separation of Ti-Zr-Hf, was developed as follows: 0.4 M HCl-0.5 M HF (major elements), 9 M HCl-0.05 M HF (Ti-Zr-Hf), 9 M HCl-1 M HF (W), and 6 M HNO3-3 M HF (Mo). After the chemical procedure, Nb remaining in the W fraction was separated using 9 M HCl-3 M HF. On the other hand, Nb and Zn remaining in the Mo fraction were removed using 2 M HF and 6 M HCl-0.1 M HF. The performance of this technique was evaluated by separating these elements from two terrestrial and two extraterrestrial samples. The recovery yields for Mo, W, Zr, and Hf were nearly 100% for all of the examined samples. The total contents of the Zr, Hf, W, and Mo in the blanks used for the chemical separation procedure were 582, 9, 29, and 396 pg, respectively. Therefore, our new separation technique can be widely used in various fields of geochemistry, cosmochemistry, and environmental sciences and particularly for multi-isotope analysis of these elements from a single sample with significant internal isotope heterogeneities. PMID:24801276

  7. Isotopic exchange reactions. Kinetics and efficiency of the reactors using them in isotopic separation

    International Nuclear Information System (INIS)

    In the first part, some definitions and the thermodynamic and kinetic isotopic effect concepts are recalled. In the second part the kinetic laws are established, in homogeneous and heterogeneous medium (one component being on occasions present in both phases), without and with isotopic effects. Emphasis is put on application to separation of isotopes, the separation factor α being close to 1, one isotope being in large excess with respect to the other one. Isotopic transfer is then given by: J = Ka (x - y/α) where x and y are the (isotopic) mole fractions in both phases, Ka may be either the rate of exchange or a transfer coefficient which can be considered as the 'same in both ways' if α-1 is small compared to the relative error on the measure of Ka. The third part is devoted to isotopic exchange reactors. Relationships between their efficiency and kinetics are established in some simple cases: plug cocurrent flow reactors, perfectly mixed reactors, countercurrent reactors without axial mixing. We treat only cases where α and the up flow to down flow ratio is close to 1 so that Murphee efficiency approximately overall efficiency (discrete stage contactors). HTU (phase 1) approximately HTU (phase 2) approximately HETP (columns). In a fourth part, an expression of the isotopic separative power of reactors is proposed and discussed

  8. Treatment of spent ion exchange resin with oxidative decomposition in supercritical water and activity separation

    International Nuclear Information System (INIS)

    A treatment system of spent ion exchange resin with oxidative decomposition was developed. The system consisted of the volume deduction process by oxidative decomposition of organic compounds in supercritical water and the separation process of radioactive materials from the decomposition solution. The features of the process are summarized as followings: (1) decrease of treatment cost by separation of the high level beta and gamma wastes and the low level radioactive wastes, (2) the large volume reduction rate is obtained by decomposition more than 99% organic compounds and the high level beta and gamma wastes without organic compounds becomes the stable wastes for a long period, (3) the high level beta and gamma wastes reacts cement to produce solid without sulfate and (4) simple constitution of system is easily operated for high radioactive ray. It was shown in the experiments that the spent ion exchange resins were decomposed perfectly in supercritical water in a short time and that the radioactive materials were separated from the solution by coprecipitation and adsorption with iron ion. The volume of solid wastes buried under the ground by this method is one twentieth of that by the direct solidification with cement. (S.Y.)

  9. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  10. Ion exchange separations of nitrosyl complexes of ruthenium in hydrochlorid-acid

    International Nuclear Information System (INIS)

    Elutions of nitrosyl ruthenium chloro complexes on an ion exchange resin are performed using HCl as the eluent. At least 6 different species are shown to be present, in experiments carried out at low temperature (-100C). An explanation is suggested for this phenomenon in terms of possible stereoisomerism. At elevated temperature equillibrium between these complexes is rapid, and a separation is shown to be feasible between Ru and several, if not all, fission products in a mixture, requiring not more than 21/2 hrs. (orig.)

  11. MPF-1 Microprocessor System for Separation of Rare Earth by Ion Exchanger Process

    International Nuclear Information System (INIS)

    A mechanical automatic sample changer apparatus for separation of rare earth with ion exchange with controlled by MPF-1 microprocessor has been designed and constructed. Automatisation is performed by controlling two stepper motor to regulated the moving of sample changer (circular plate shape) accurately according to the time interval set up.To control motor steppers need Z80-PI0, current driver and Z-80 machine language.From the testing to the angle of moving sample changer made by the stepper motor from 0 0-360 0(for 25 tube sample holder) show the linearity to the expected value with the optimum delay time around 50 milliseconds

  12. Influência da matéria orgânica na capacidade de troca de cations do solo Cation-exchange capacity of the organic fraction of soils

    Directory of Open Access Journals (Sweden)

    F. da Costa Verdade

    1956-01-01

    . The cation-exchange capacity and other data on these soils show that the organic fraction must play an important role in the cation-exchange process. The study of the adsorptive capacity of the organic matter was done by destruction of the organic fraction of the soil by 12% hydrogen peroxide. For heavy textured soils the results show that the organic fraction most resistant to oxidation had a higher cation-exchange capacity than the portion first oxidized. For sandy soils all organic fractions had the same magnitude in the base adsorbing power. It was observed that the organic matter seems to inhibit the base-exchange capacity of the mineral fraction. Plotting the percentage of cation-exchange capacity of the organic fraction against the percentage of organic carbon in the soil, a curve is determined which shows the inhibition phenomenon. The results were rather scattered and the experiments are now being repeated to elucidate these observations. The organic cation-exchange capacity of soils in São Paulo is 30-40% for fine textured soils and 50-60% for sandy soils. Since most of the farming land in São Paulo belongs to the sandy soil group called Bauru, the problem of maintaining or increasing the fertility of these soils is dependent on their organic matter content.

  13. New separation techniques of cesium by redox type ion exchange materials

    International Nuclear Information System (INIS)

    RIECS method, new cesium separation method, was developed in which a porous strong base anionic exchanger with copper ferrocyanide (CuFC) and inhibitor were used. Cesium could be separated from the high concentration nitric solution. By developing new impregnation method, large amount of CuFC was impregnated into the micropolar porous resin and silica gel pores. KFC adhered to outside of pores was recovered. Good complex with CuFC was prepared by use of copper chloride in ethyl alcohol solution. The adsorption ratio of cesium increased radically to 80% level in the very small range of hydrazine concentration 1.7 to 2.4x10-4M. The adsorption-desorption ratio of cesium did not decrease by repeating it seven times. The glassificated materials decreased large amount of γ-ray unless increase of volume could be produced by built RIECS method in the high level waste processing system. (S.Y.)

  14. Ion exchange chromatographic separation and MS analysis of isotopes of boron

    International Nuclear Information System (INIS)

    Using electrochemical techniques of pH-metry and conductimetry, the choice of a suitable complexing reagent was made amongst ethylene glycol, propylene glycol, dextrose and mannitol for cost-effective separation of isotopes of boron by ion exchange chromatography. Quantitative relationships between pH and concentration; pKa and concentration of each of these complexing reagents were determined by least square polynomial curve fitting and an attempt was made to determine the formation constants of mannitol-borate complex. The results of experiments carried out for selection; regeneration of a resin; separation factor determinations using batch as well as column techniques and monitoring of band movements using these electrochemical techniques are discussed. (author)

  15. Obtention of the cation exchange capacity of a natural kaolinite with radioactive tracers; Obtencion de la capacidad de intercambio cationico de una kaolinita natural con trazadores radioactivos

    Energy Technology Data Exchange (ETDEWEB)

    Uribe I, A.; Badillo A, V.E. [Universidad Autonoma de Zacatecas, 98000 Zacatecas (Mexico); Monroy G, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: Adrya81@hotmail.com

    2005-07-01

    One of the more used techniques for the elimination of the heavy metals present in water systems is to use adsorbent mineral phases like zeolites and clays, among others. The clays are able to exchange easily the fixed ions in the external surface of its crystals or well the ions present in the interlaminar spaces of the structures, for other existent ones in the encircling aqueous solutions for that the Cation exchange capacity (CIC) is defined as the sum of all the cations exchange that a mineral can possess independent to the physicochemical conditions. The CIC is equal to the measure of the total of negative charges of the mineral by mass of the solid (meq/g). In this investigation work, the value of the CIC equal to 2.5 meq/100 g is obtained, of a natural kaolinite from the State of Hidalgo studying the retention of the sodium in the kaolinite with the aid of the radioactive isotope {sup 24} Na and of the selective electrodes technique, making vary the pH value. So is experimentally demonstrated that the CIC is an intrinsic property of the mineral independent of the pH value of the solution and of the charges origin. (Author)

  16. Use of new tandem cation/anion exchange system with clinical-scale generators provides high specific volume solutions of technetium-99m and rhenium-188

    International Nuclear Information System (INIS)

    In this paper we describe the first application of our simple and inexpensive post-elution tandem cation/anion exchange column system which is based on generator elution with salts of weak acids such as ammonium acetate instead of saline solution to provide very high specific volume solutions of technetium-99m and rhenium-188 from clinical-scale molybdenum-99/technetium-99m generator prepared from low specific activity (n,y) molybdenum-99, and tungsten-188/rhenium-188 generators, respectively. Initial passage of the bolus through a strong cation exchange cartridge converts the ammonium acetate to acetic acid which is essentially not ionized at the acidic pH, allowing specific subsequent amine-type (QMA SepPak TM) anion exchange cartridge column trapping of the microscopic levels of the pertechnetate or perrhenate. Subsequent elution of the anion cartridge with a small volume (500 mCi/mL) from the alumina-based tungsten-188/rhenium-188 generator. (author)

  17. Separation of 15N by chemical exchange in NO, NO2 - HNO3 system under pressure

    International Nuclear Information System (INIS)

    The basic isotopic exchange reaction is responsible for the separation of 15N in the Nitrox system that between gaseous nitrogen oxides and aqueous nitric acid with a single stage separation factor α = 1.055 for 10M nitric acid, at 25 deg C and atmospheric pressure takes place. In order to know what happens in 15N separation at higher pressure, when the isotopic transport between two phases is improved, a stainless steel laboratory experimental plant with a 1000 mm long x 18 mm i.d. column, packed with triangular wire springs 1.8 x 1.8 x 0.2 mm2, was utilised. At 1.5 atm (absolute), and 2.36 ml x cm-2 x min-1 flow rate HETP was 7% smaller than at atmospheric pressure and 1.5 times smaller flow rate. HETP at 3.14 ml x cm-2 x min-1 flow rate and 1.8 atm is practically equal with that obtained at atmospheric pressure and 2 times smaller flow rate. The operation of the 15N separation plant at 1.8 atm (absolute), instead of atmospheric pressure, will permit doubling of the 10M nitric acid flow rate and of 15N production of the given column. (author)

  18. Efficient Separation of Lanthanides Using Poly (Styrene-Divinyl Benzene) Aminated Anion Exchanger

    International Nuclear Information System (INIS)

    New chromatographic method was developed for the determination and separation of lanthanides using AS4A anionic column. The behavior of the column towards lanthanides was studied through many parameters, From the data obtained it is found that, affinity of the column toward investigated ions increase by increasing eluent concentration and it decrease retention factors. With the two investigated eluent (oxalic and citric acids), elution order for lanthanide elements was obtained in their atomic number from La to Lu. Retention times and retention orders obtained at these conditions clearly show that, lanthanides in AS4A are displaced according to anion exchange mechanism. More over separation of lanthanides using AS4A was studied using isocratic and gradient elution programs. Light and the first intermediate lanthanide elements were separated successfully by applying a gradient program containing 70% oxalic acid (100 mM) and 30% water. The problem of separation for heavy and the last intermediate lanthanide elements was solved using 100 mM alpha hydroxy isobutyric acid (α-HIBA)

  19. Separation of cesium from acid ILW-Purex solutions by sorption on inorganic ion exchangers

    International Nuclear Information System (INIS)

    The separation of cesium by use of the inorganic ion exchanger ammonium molybdatophosphate from nitric acid solutions of intermediate level waste (ILW) from reprocessing of spent fuel elements according to the PUREX PROCESS has been demonstrated. Other inorganic exchange materials have shown high sorption values only for certain pH ranges: ammonium hexacyano cobaltous ferrate (pH 12, 35 g Cs/kg), potassium hexacyano nickel ferrate (pH 10, 30 g Cs/kg), zirconium phosphate (pH 7, 100 g Cs/kg), titanium phosphate (pH 7, 15 g Cs/kg), antimony pentoxide (pH 2, 30 g Cs/kg) and titanium oxide (pH 7, 1 g Cs/kg). Except for high salt loading of 3.6 M NaNO3, a significant loss of capacities usually occurs; this does not allow the use of these exchangers. However, ammonium molybdatophosphate shows excellent performance with high salt loadings and in a broad pH-range from pH 9 to conc. HNO3 with a breakthrough-capacity of 60 g Cs/kg. (orig.)

  20. Adsorption equilibrium of fructose, glucose and sucrose for cationic resins in the sodium and potassium form

    OpenAIRE

    Nobre, Clarisse; Santos, M. J.; Dominguez, Ana; Torres, Duarte; Peres, António M.; Rocha, Isabel; Ferreira, Eugénio C.; Rodrigues, Lígia R.; Teixeira, José A.

    2009-01-01

    Separation of glucose from mixtures of fructose and sucrose in molasses is a major challenge in industrial sugar chromatographic separations. The efficiency of a chromatographic process is largely dependent on the adsorbent used. Sulfonated poly(styrene-co-divinylbenzene) (PS-DVB) ion exchange resins are the most frequently used for sugars separation, generally in a cationic form. The cation will complex with the hydroxyl group of the sugar leading to a selective adsorption accord...

  1. Properties of solvated electrons, alkali anions and other species in metal solutions and kinetics of cation and electron exchange reactions. Final report

    International Nuclear Information System (INIS)

    The properties of solutions of alkali metals in amine solvents were studied by optical, ETR, NMR and electrochemical methods. Complexation of the alkali cations by crown ethers and cryptands permitted the preparation of concentrated solutions of alkali metals in amine and ether solvents. Extensive alkali metal NMR studies of the exchange of M+ with crown-ethers and cryptands and of the alkali metal anion, M-, were made. The first crystalline salt of an alkali metal anion, Na+ Cryptand [2.2.2]Na- was synthesized and characterized and led to the preparation of other alkali metal anion salts. This research provided the foundation for continuing studies of crystalline alkalide salts

  2. Studies on the removal of trace amounts of 137Cs and 90Sr from low level effluents using PSS type cation exchanger

    International Nuclear Information System (INIS)

    Usability of commercial polystyrene sulphonate cation exchanger, for the removal of trace concentrations of 137Cs and 90Sr from low level effluent stream generated from nuclear installations is studied. Batch sorption experiments are carried out under different experimental conditions from 137Cs and 90Sr spiked aqueous solutions of varied pH to evaluate and establish suitable operating parameters for the removal of the two most potentially mobile radionuclides. Results show that the resin can be used for the sorption of these radionuclide from spent fuel pond as well as from waste streams containing low concentrations of salt. (author)

  3. A comparative account of the wet oxidation of cation exchange resin with hydrogen peroxide using titanium, vanadium, and molybdenum doped MCM-41 as catalysts

    International Nuclear Information System (INIS)

    Ion exchange resins are widely used in the nuclear industry for treatment of radioactive waste as well as for the upgrading of heavy water used in the primary heat transport system and moderator system. Repeated usage of the resins calls for replacement and treatment before disposal. The present work involves the application of metal-doped MCM-41 material as a catalyst for the wet oxidation of cation exchange resins using hydrogen peroxide as an oxidizing agent. The sulfate produced from the exchangeable group of the resin reflects the extent of decomposition and the carbonate produced reflects the extent of oxidation of the ion exchange resin. Results indicate that the percentage decomposition and oxidation increase with the weight of the catalyst and the volume of the oxidant, i.e., hydrogen peroxide. As much as 0.5 g of the resin could be decomposed by 12 mL of 30% hydrogen peroxide to 98.7% and oxidized to 99.25% using molybdenum doped MCM-41. Vanadium doped and titanium doped MCM-41 required 14 to 16 mL for complete decomposition and 18 to 20 mL for complete oxidation of the ion exchange resin. (orig.)

  4. New ion exchangers and solvent extractants for pre-analysis separation of actinides. Annual report, June 1982-May 1983

    International Nuclear Information System (INIS)

    Prior to radiochemical determination of actinide elements such as uranium, neptunium and plutonium, an ion exchange or solvent extraction method is often employed to separate these from themselves and other interfering elements. In order to improve the separation efficiency and reduce time, cost, and liquid waste of analytical separation methods, new and better ion exchangers and solvent extractants are under evaluation. New microreticular and macroreticular anion exchange resins and bifunctional organophosphorus solvent extractants have been evaluated for uranium, neptunium and plutonium separations. Previous work comparing numerous anion exchange resins has shown the macroreticular Amberlite IRA-938 resin as having the highest actinide capacity and best elution kinetics. Recent studies have confirmed the resin has advantages over others for Pu-U separations. Work at Rocky Flats on bifunctional organophosphorus solvent extractants for the recovery and purification of actinides has led to the identification of several new separation systems applicable for radiochemical analysis. Dihexyl-N,N-diethylcarbamoylmethylphosphonate (DHDECMP), its dibutyl analog DBDECMP, and DHDECMP-tributylphosphate (TBP) using liquid-liquid or extraction chromatography techniques are applicable for plutonium-americium and plutonium separations. Both DHDECMP and DBDECMP extract actinides strongly, extract lanthanides, iron, gallium, molybdenum, titanium, vanadium, zirconium partially, and do not extract most other elements from 5 to 7M nitric acid. With the DHDECMP-TBP and DBDECMP-TBP systems, synergistic effects have been observed for both plutonium and americium. The chemistry and application for pre-analysis separations of these solvent extraction systems are described. 11 references, 9 figures, 7 tables

  5. A versatile reversed phase-strong cation exchange-reversed phase (RP-SCX-RP) multidimensional liquid chromatography platform for qualitative and quantitative shotgun proteomics.

    Science.gov (United States)

    Law, Henry C H; Kong, Ricky P W; Szeto, Samuel S W; Zhao, Yun; Zhang, Zaijun; Wang, Yuqiang; Li, Guohui; Quan, Quan; Lee, Simon M Y; Lam, Herman C; Chu, Ivan K

    2015-02-21

    An automatable, robust, high-performance online multidimensional liquid chromatography (MDLC) platform comprising of pH 10 reversed-phase (RP), strong cation exchange (SCX), and pH 2 RP separation stages has been integrated into a modified commercial off-the-shelf LC instrument with a simple rewiring, enabling accelerated routine qualitative and quantitative proteomics analyses. This system has been redesigned with a dual-trap column configuration to improve the throughput by greatly decreasing the system idle time. The performance of this new design has been benchmarked through analysis of the total lysate of S. cerevisiae, in comparison with that of the former tailor-made system featuring more complicated components; the total run time per "load-and-go" LC/MS analysis was approximately 24 h, with minimal idle time and no labor-intensive steps. This platform features high-resolution fractionations, ease of use and a high degree of user programmability in the first two chromatographic dimensions, allowing flexible and effective sampling with (RP-SCX-RP) or without (RP-RP) the inclusion of SCX sub-fractionation; good proteome coverage and reproducibility was demonstrated through the analyses of bacterial, cell culture, and monkey brain tissue proteomes. The viability of the 3D RP-SCX-RP has been proven in proteome-wide studies of STO fibroblasts and yeast tryptic digests, resulting in extended proteome and protein coverages with high reproducibility-in particular, discovering extra-hydrophilic peptides-at the expense of the acquisition time. The identified inventory of the rat pheochromocytoma PC12 cell proteome-a total of 6345 proteins and 97 309 unique peptides is the most comprehensive dataset to date-provides an example of the value of the 3D RP-SCX-RP. The use of orthogonal chromatographic dimensions in the 3D RP-SCX-RP also circumvents the issues of isobaric interference of mass-tagging background contaminations, while significantly improving the accuracy of

  6. Radionuclide separations in the nuclear fuel cycle development and application of micro and meso porous inorganic ion-exchangers

    International Nuclear Information System (INIS)

    Full text: Full text: From the mining of uranium-containing ores to the reprocessing of spent nuclear fuel, separations technologies play a crucial role in determining the efficiency and viability of the nuclear fuel cycle. With respect to proposed Advanced Nuclear Fuel Cycles (ANFC), the integral role of separations is no different with solvent extraction and pyroelectrometalurgical processing dominating efforts to develop a sustainable and publicly acceptable roadmap for nuclear power in the next 100 years. An often forgotten or overlooked separation technology is ion-exchange, more specifically, inorganic ion-exchangers. This is despite the fact that these materials offer the potential advantages of process simplicity; exceptional selectivity against high background concentrations of competing ions; and the possibility of a simple immobilization route for the separated radionculides. ANSTO's principal interest in inorganic ion-exchange materials in recent years has been the development of an inorganic ion-exchanger for the pretreatment of acidic legacy 9 Mo production waste to simultaneously remove radiogenic cesium and strontium. Radiogenic cesium and strontium comprise the majority of activity in such waste and may offer increased ease in the downstream processing to immobilise this waste in a Synroc wasteform. With the reliance on separations technologies in all current ANFC concepts, and the recent admission of ANSTO to the European Commissions EUROPART project, the development of new inorganic ion-exchangers has also expanded within our group. This presentation will provide a background of the fundamentals of inorganic and composite inorganic-organic ion-exchange materials followed by specific discussion of some selected inorganic and composite ion-exchange materials being developed and studied at ANSTO. The detailed structural and ion-exchange chemistry of these materials will be discussed and note made of how such materials could benefit any of the

  7. Separation and immobilization of Sr and Cs contained in acidic media by using inorganic ion-exchangers. Literature survey

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Isao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-07-01

    The present study deals with the survey of inorganic ion-exchangers suitable for separation and immobilization of Sr and Cs contained in acidic high-level liquid waste. The stabilities of published waste forms and their preparation processes were evaluated from the standpoint of conversion of exchangers containing Sr and Cs into appropriate waste forms. The essential results are below. (1) For separation and immobilization of Cs, crystalline silicotitanate seems to be the most promising exchanger. Insoluble ferrocyanides and phosphates are not suitable for immobilization without additives. Mordenite is inexpensive and commercially available but it would dissolve in highly acidic media. (2) For selective separation of Sr, there is no promising exchanger up to now. It is necessary either to modify separation condition or to synthesize a novel exchanger. (3) Soluble salts, glasses and ceramics are proposed as a storage or disposal form of separated Sr and Cs. Ceramics sintered by hot-pressing are favorable waste forms of inorganic ion-exchangers but their leachabilities and thermal conductivities are largely influenced by qualities of products. Crystallinity of a sintered exchanger depends on its composition. Exchanges of low Cs contents are often converted into amorphous materials whose chemical stabilities depend on solubilities of components of exchangers. (4) A new exchanger to be synthesized is crystalline and selective toward Sr and Cs. One meq/g is enough for Sr and Cs capacities, which are restricted by thermal and transmutation effects. Composition of the exchanger should be selected from the point of a scenario of separation and disposal. The solubilities of SiO{sub 2}, TiO{sub 2}, ZrO{sub 2}, Nb{sub 2}O{sub 5} and Ta{sub 2}O{sub 5} are low in acidic media and those of Al{sub 2}O{sub 3}, TiO{sub 2} and ZrO{sub 2}, in disposal circumstances. (5) Future works are optimization of separation scheme including development of exchangers, simplification of

  8. Separation of rare earth elements using Ln-EDTA eluent in an anion exchanger

    International Nuclear Information System (INIS)

    Chloride form anion exchange resin was used to separate one of the elements from the rare earth mixture using respectable Ln-EDTA eluent. Sm3+, La3+ or Ce4+ complexed with EDTA was passed through the resin column and eluted with an Sm-EDTA solution as an eluent. Here all the rare earth element ions except Sm3+ were passed. Adsorbed Sm3+ in resin was eluted with 1.0 M HCl solution. If La-EDTA solution as an eluent was used to separate lanthanum ions, lanthanum ions were eluted together with other rare earth elements. When Ce-EDTA solution was also used for separation of Ce4+, it was eluted in the region of other rare earth elements. In the case of Sm-EDTA elution, the elution mechanism was as follows: Absorption: RCl + Ln-Y- ↔ RLnY + Cl-, Sm-EDTA elution: RLnY + Sm-Y- ↔ RSmY + Ln-Y-, HCl elution: RSmY + HCl ↔ RCl + Sm-Y-. (author)

  9. Rapid chiral separation and impurity determination of levofloxacin by ligand-exchange chromatography

    International Nuclear Information System (INIS)

    A sensitive, simple, and accurate method for determination of levofloxacin and its (R)-enantiomer was developed to determine the chiral impurity of levofloxacin in Cravit Tablets material by ligand-exchange high performance liquid chromatography. The effects of different kinds of ligands, concentration of ligands in mobile phase, organic modifier, pH of mobile phase, and temperature on enantioseparation were investigated and evaluated. Chiral separation was performed on a conventional C18 column, where the mobile phase consisted of a methanol-water solution (containing10 mmol L-1 L-leucine and 5 mmol L-1 copper sulfate) (88:12, v/v) and its flow-rate was set at 1.0 mL min-1. The conventional C18 column offers baseline separation of two enantiomers with a resolution of 2.4 in less than 20 min. Thermodynamic data (ΔΔH and ΔΔS) obtained by Van't Hoff plots revealed the chiral separation is an enthalpy-controlled process. The standard curves showed excellent linearity over the concentration range from 0.5 to 400 mg L-1 for levofloxacin and its (R)-enantiomer. The linear correlation equations are: y = 1.33 x 105 x + 6297 (r = 0.9991) and y = 1.34 x 105 x + 3565 (r = 0.9997), respectively. The relative standard deviation (RSD) of the method was below 2.3% (n = 3)

  10. Potential Modulated Intercalation of Alkali Cations into Metal Hexacyanoferrate Coated Electrodes

    International Nuclear Information System (INIS)

    Nickel hexacyanoferrate is a polynuclear inorganic ion intercalation material that loads (intercalates) and elutes (deintercalates) alkali cations from its structure when electrochemically reduced and oxidized, respectively. Nickel hexacyanoferrrate (NiHCF) is known to preferentially intercalate cesium over all other alkali cations, thus providing a basis for a separation scheme that can tackle DOE's radiocesium contamination problem. This program studied fundamental issues in alkalization intercalation and deintercalation in nickel hexacyanoferrate compounds, with the goal of (1) quantifying the ion exchange selectivity properties from cation mixtures, (2) enhancing ion exchange capacities, and (3) and understanding the electrochemically-switched ion exchange process (ESIX)

  11. Separation of phenolic acids from natural plant extracts using molecularly imprinted anion-exchange polymer confined ionic liquids.

    Science.gov (United States)

    Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-04-01

    Polymer-confined ionic liquids were used for the separation of phenolic acids from natural plant extract by utilizing an anion-exchange mechanism. They were synthesized using molecular imprinting technique to reduce non-directional ion-ion interactions during anion-exchange and other interactions with interference substances that could decrease selectivity. A suitable sorbent for phenolic acid separation could be identified based on the adsorption behaviors of phenolic acids on different polymer-confined ionic liquids. Thus, the developed ionic liquid-based molecularly imprinted anion-exchange polymer (IMAP) achieved high recovery rates by solid-phase extraction of phenolic acids from Salicornia herbacea L. extract: 90.1% for protocatechuic acid, 95.5% for ferulic acid and 96.6% for caffeic acid. Moreover, the phenolic acids were separable from each other by repeated solid phase extraction cycles. The proposed method could be used to separate other phenolic acids or organic acids from complex samples. PMID:21903215

  12. Conception and estimation of new zirconium/hafnium separation process: nano-filtration-complexation, solvent extraction and ions-exchangers

    International Nuclear Information System (INIS)

    High purity zirconium is used as fuel cladding material in nuclear power plant. Zirconium does not absorb much neutrons, contrary to hafnium. These elements coexist in nature (3% hafnium in zircon). So they must be separated. This Ph.D. deal with the separation of zirconium from hafnium by using different techniques. In nano-filtration-complexation, zirconium/hafnium nitrates mixture is separated by using amino-carboxylate ligands through nano-filtration membranes. In solvent extraction, zirconium is extracted in high hydrochloric acid concentration media. Zirconium/hafnium separation is studied by using ion-exchangers resins in batch-wise and elution from ion-exchangers resins. Liquid-liquid and solid-liquid Systems characterization is carried out with the aim of modelling. Free hafnium zirconium and free zirconium hafnium are obtained by solvent extraction and ion exchangers. (author)

  13. Separation of iron-55 from manganese cyclotron target material on a 2% cross-linked anion exchanger in hydrochloric acid

    International Nuclear Information System (INIS)

    A simple method is presented for the separation of iron-55 from manganese cyclotron targets. Anion exchange chromatography with 9.0 M hydrochloric acid on a 2% cross-linked resin provides separation not only from large amounts of manganese but also from copper and zinc impurities. Separations are sharp and quantitative and less than 1 μg of manganese remains with the iron-55 when 2 g have been present originally. (author)

  14. Simultaneous determination of sub μg·g-1 levels of nine impurities in high purity iron by horizontal cation exchange resin mini-column and ICP-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Inductively coupled plasma-atomic emission spectrometry (ICP-AES) has been applied to the simultaneous determination of trace impurities in high purity iron after simultaneous separation. Sub μg·g-1 levels of Ca, Cd, Co, Cu, Mg, Mn, Ni, Pb and Zn in high purity iron which had been dissolved in hydrofluoric acid and hydrogen peroxide were separated from the iron matrix using a horizontal cation exchange resin mini-column. Flow rates and flow directions of solutions through the mini-column were controlled by a peristaltic pump. Adsorbed elements on the resin mini-column were rapidly eluted using a reverse flow of the eluant against the flow for the adsorption. The eluted elements were determined by ICP-AES using an internal standard method and good results were obtained. A 100-fold enrichment of analytes was obtained with this preconcentration system using 1 g of the sample in comparison with an ordinary sample solution in which 0.5 g of the sample was dissolved in 100 cm3 without separation. (author)

  15. Fabrication, characterization and photocatalytic properties of Ag/AgI/BiOI heteronanostructures supported on rectorite via a cation-exchange method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yunfang [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Fang, Jianzhang, E-mail: fangjzh@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China); Lu, Shaoyou [Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Wu, Yan; Chen, Dazhi; Huang, Liyan [Institute of Engineering Technology of Guangdong Province, Key Laboratory of Water Environmental Pollution Control of Guangdong Province, Guangzhou 510440 (China); Xu, Weicheng; Zhu, Ximiao [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Fang, Zhanqiang [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China)

    2015-04-15

    Highlights: • Ag/AgI/BiOI-rectorite was prepared by twice cation-exchange process. • Ag/AgI/BiOI-rectorite photocatalyst possessed SPR and adsorption capacity. • Ag/AgI/BiOI-rectorite exhibited highly photocatalytic activity. • Trapped holes and ·O{sub 2}{sup −} were formed active species in the photocatalytic system. - Abstract: In this work, a new plasmonic photocatalyst Ag/AgI/BiOI-rectorite was prepared via a cation exchange process. The photocatalyst had been characterized by X-ray powder diffraction (XRD), Raman spectra, nitrogen sorption (BET), field-emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity, which was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) under visible light irradiation, was enhanced significantly by loading Ag/AgI/BiOI nanoparticles onto rectorite. The photogenerated holes and superoxide radical (·O{sub 2}{sup −}) were both formed as active species for the photocatalytic reactions under visible light irradiation. The existence of metallic Ag particles, which possess the surface plasmon resonance effect, acted as an indispensable role in the photocatalytic reaction.

  16. Superconductivity of 132 K in HgBa2Ca2Cu3O8+δ thin films fabricated using a cation exchange method

    International Nuclear Information System (INIS)

    A cation exchange method was applied to convert epitaxial TlBa2Ca2Cu3O8 (Tl-1223) and Tl2Ba2Ca2Cu3O10 (Tl-2223) precursor superconducting thin films to epitaxial HgBa2Ca2Cu3O8+δ (Hg-1223) films on LaAlO3 (001) substrates. While the conversion of Tl-1223 to Hg-1223 was partially successful, high-quality epitaxial Hg-1223 films were obtained from Tl-2223 precursor films. A critical transition temperature Tc of up to 132 K has been demonstrated for the Hg-1223 films, which is close to the optimal value of 135 K reported on Hg-1223 bulk samples. The critical current density Jc of the Hg-1223 films was up to 0.25 MA cm−2 at 77 K and self-field. This work represents the first success in achieving the highest-Tc epitaxial Hg-1223 films using the cation exchange method, which are promising candidates for device applications with operational temperatures significantly above the temperature of liquid nitrogen. (paper)

  17. Modeling the competition between solid solution formation and cation exchange on the retardation of aqueous radium in an idealized bentonite column

    International Nuclear Information System (INIS)

    Clays and clay rocks are considered viable geotechnical barriers in radioactive waste disposal. One reason for this is the propensity for cation exchange reactions in clay minerals to retard the migration of radionuclides. Although another retardation mechanism, namely the incorporation of radionuclides into sulfate or carbonate solid solutions, has been known for a long time, only recently has it been examined systematically. In this work, we investigate the competitive effect of both mechanisms on the transport of radium (Ra) in the near-field of a low- and intermediate level nuclear waste repository. In our idealized geochemical model, numerical simulations show that barium (Ba) and strontium (Sr) needed for Ra sulfate solid solutions also partition to the cation exchange sites of montmorillonite (Mont), which is the major mineral constituent of bentonite that is used for tunnel backfill. At high Mont content, most Ra tends to attach to Mont, while incorporation of Ra in sulfate solid solutions is more important at low Monte content. To explore the effect of the Mont content on the transport of radium, a multi-component reactive transport model was developed and implemented in the scientific software OpenGeoSys-GEM. It was found that a decrease of fixation capacity due to low Mont content is compensated by the formation of solid solutions and that the migration distance of aqueous Ra is similar at different Mont/water ratios. (author)

  18. Cation Exchange Combined with Kirkendall Effect in the Preparation of SnTe/CdTe and CdTe/SnTe Core/Shell Nanocrystals.

    Science.gov (United States)

    Jang, Youngjin; Yanover, Diana; Čapek, Richard Karel; Shapiro, Arthur; Grumbach, Nathan; Kauffmann, Yaron; Sashchiuk, Aldona; Lifshitz, Efrat

    2016-07-01

    Controlling the synthesis of narrow band gap semiconductor nanocrystals (NCs) with a high-quality surface is of prime importance for scientific and technological interests. This Letter presents facile solution-phase syntheses of SnTe NCs and their corresponding core/shell heterostructures. Here, we synthesized monodisperse and highly crystalline SnTe NCs by employing an inexpensive, nontoxic precursor, SnCl2, the reactivity of which was enhanced by adding a reducing agent, 1,2-hexadecanediol. Moreover, we developed a synthesis procedure for the formation of SnTe-based core/shell NCs by combining the cation exchange and the Kirkendall effect. The cation exchange of Sn(2+) by Cd(2+) at the surface allowed primarily the formation of SnTe/CdTe core/shell NCs. Further continuation of the reaction promoted an intensive diffusion of the Cd(2+) ions, which via the Kirkendall effect led to the formation of the inverted CdTe/SnTe core/shell NCs. PMID:27331900

  19. Fabrication, characterization and photocatalytic properties of Ag/AgI/BiOI heteronanostructures supported on rectorite via a cation-exchange method

    International Nuclear Information System (INIS)

    Highlights: • Ag/AgI/BiOI-rectorite was prepared by twice cation-exchange process. • Ag/AgI/BiOI-rectorite photocatalyst possessed SPR and adsorption capacity. • Ag/AgI/BiOI-rectorite exhibited highly photocatalytic activity. • Trapped holes and ·O2− were formed active species in the photocatalytic system. - Abstract: In this work, a new plasmonic photocatalyst Ag/AgI/BiOI-rectorite was prepared via a cation exchange process. The photocatalyst had been characterized by X-ray powder diffraction (XRD), Raman spectra, nitrogen sorption (BET), field-emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity, which was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) under visible light irradiation, was enhanced significantly by loading Ag/AgI/BiOI nanoparticles onto rectorite. The photogenerated holes and superoxide radical (·O2−) were both formed as active species for the photocatalytic reactions under visible light irradiation. The existence of metallic Ag particles, which possess the surface plasmon resonance effect, acted as an indispensable role in the photocatalytic reaction

  20. Catalytic spectrophotometric determination of cerium by ion exchange separation coupled to a flow injection system

    International Nuclear Information System (INIS)

    A flow injection method is described intended for the determination of cerium based on its catalytic effect on the oxidation of gallocyanine by peroxydisulfate in acidic media. The proposed flow injection manifold incorporates a ion exchange separation system in the carrier stream. The decolorisation of gallocyanine due to its oxidation was used to monitor the reaction by spectrophotometry at 524 nm. The variables which affected the reaction rate were fully investigated. By this method cerium(4) can be determined in the range of 0.30-10.0 μg with a limit of detection of 0.25 μg. The relative standard deviation for ten replicate determinations of 1.0 μg of cerium(4) was 1.8 %

  1. Materials for Electroactive Ion-Exchange (EaIX) Separations of Pertechnetate Ion

    Energy Technology Data Exchange (ETDEWEB)

    Stender, Matthias; Hubler, Timothy L.; Alhoshan, Mansour; Smyrl, William H.

    2004-03-29

    Many contaminants of interest to the U.S. Department of Energy (DOE) exist as anions (e.g. chromate, pertechnetate and nitrate). The objective of this study is to develop Electroactive Ion-Exchange (EaIX) materials. Such materials can be used to separate pertechnetate ion from radioactive wastes located at DOE sites while limiting the amount of secondary wastes generated. We have developed a synthetic strategy to prepare vinyl-bipyridyl and -terpyridyl ligands which allow incorporation of ion-selective architectures with a polymerizable handle. Fe complexes formed with these ligands provide the working core of the electroactive polymers. The polymers can be directly used as materials for EaIX or they can be incorporated into porous composite materials that are then used for EaIX.

  2. Standard practice for The separation of americium from plutonium by ion exchange

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice describes the use of an ion exchange technique to separate plutonium from solutions containing low concentrations of americium prior to measurement of the 241Am by gamma counting. 1.2 This practice covers the removal of plutonium, but not all the other radioactive isotopes that may interfere in the determination of 241Am. 1.3 This practice can be used when 241Am is to be determined in samples in which the plutonium is in the form of metal, oxide, or other solid provided that the solid is appropriately sampled and dissolved (See Test Methods C758, C759, and C1168). 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  3. Evaluation of anion exchange resins for plutonium-uranium separations in nitric acid

    International Nuclear Information System (INIS)

    Pellicular, macroreticular and microreticular (gel type) anion exchange resins were compared for separation of plutonium from nitric acid solutions of mixed plutonium-uranium. All the macroreticular resins were 20 to 50 mesh beads. Dowex 1-X4 gel resin was 50 to 80 mesh beads. The resins were held in glass columns with coarse glass frits at the bottom of the columns. The top of the columns contained 50 ml reservoirs. The flow rates were controlled at 4 cm3.min-1.cm-2. One-centimeter bore columns with 15-cm resin bed heights were used for the plutonium elution and breakthrough capacity experiments, whereas 1.7 cm bore columns with 20 cm bed heights were used for the uranium washing experiments. As Pellionex SAX (pellicular resin) and Amberlite IRA-93 (weak base macroreticular anion exchange resin) were found to have better uranium washing and plutonium eluating characteristics than any of the resins tested. However, the capacity of the pellicular resin was much lower than that of the other resins. (T.G.)

  4. Separation of boron isotopes in anion exchange resin column. Isotopic enrichment of 10 B

    International Nuclear Information System (INIS)

    The separation of boron isotopes (10 B and 11 B) was carried out by isotopic exchange reaction between boric acid in solution and borate/poly borate anions adsorbed on an ammonium quaternary (Dowex 1 X 8 and 2 X 8) anion exchange resin packed in columns. Each resin column had 100 cm length and 1.4 cm in diameter. The columns were connected in series during displacement of boric bands. The enrichment line used pressure ranging from 2.5 to 3.0 Kg f.cm-2. N2 gas was used as in inert atmosphere in order to prevent C O2 formation. Enrichments in 10 B of 43% were obtained using Dowex 1 X 8 resin, 0.1 eq.L-1 H3 B O3 solution and band displacement of 1,876 cm. With Dowex 2 X 8 the enrichment was 40% with 1,330 cm of band displacement and 0.1 eq. L-1 H3 B O3. The boron isotopes were analysed, as methyl borate, by mass spectrometry. (author). 13 refs, 5 figs, 2 tabs

  5. Proceedings of the Efficient Separations and Processing Cross-Cutting Program Annual Technical Exchange Meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This document contains summaries of technology development presented at the 1995 Efficient Separations and Processing Cross-Cutting Program (ESP) Annual Technical Exchange Meeting. The ESP is sponsored by the US Department of Energy`s Office of Environmental Management (EM), Office of Technology Development. The meeting is held annually to promote a free exchange of ideas among technology developers, potential users (for example, EM focus areas), and other interested parties within EM. During this meeting, developers of ESP-funded technologies describe the problems and needs addressed by their technologies; the technical approach, accomplishments, and resolution of issues; the strategy and schedule for commercialization; and evolving potential applications. Presenters are asked to address the following areas: Target waste management problem, waste stream, or data need; scientific background and technical approach; technical accomplishments and resolution of technical issues; schedule and strategy for commercializing and implementing the technology or acquiring needed data; potential alternate applications of the technology or data, including outside of DOE/EM. The meeting is not a program review of the individual tasks or subtasks; but instead focuses on the technical aspects and implementation of ESP-sponsored technology or data. The meeting is also attended by members of the ESP Technical Review Team, who have the opportunity at that time to review the ESP as a whole.

  6. Proceedings of the Efficient Separations and Processing Cross-Cutting Program Annual Technical Exchange Meeting

    International Nuclear Information System (INIS)

    This document contains summaries of technology development presented at the 1995 Efficient Separations and Processing Cross-Cutting Program (ESP) Annual Technical Exchange Meeting. The ESP is sponsored by the US Department of Energy's Office of Environmental Management (EM), Office of Technology Development. The meeting is held annually to promote a free exchange of ideas among technology developers, potential users (for example, EM focus areas), and other interested parties within EM. During this meeting, developers of ESP-funded technologies describe the problems and needs addressed by their technologies; the technical approach, accomplishments, and resolution of issues; the strategy and schedule for commercialization; and evolving potential applications. Presenters are asked to address the following areas: Target waste management problem, waste stream, or data need; scientific background and technical approach; technical accomplishments and resolution of technical issues; schedule and strategy for commercializing and implementing the technology or acquiring needed data; potential alternate applications of the technology or data, including outside of DOE/EM. The meeting is not a program review of the individual tasks or subtasks; but instead focuses on the technical aspects and implementation of ESP-sponsored technology or data. The meeting is also attended by members of the ESP Technical Review Team, who have the opportunity at that time to review the ESP as a whole

  7. A comparative study on textural characterization: cation-exchange and sorption properties of crystalline alpha-zirconium(IV), tin(IV), and titanium(IV) phosphates.

    Science.gov (United States)

    Parida, K M; Sahu, B B; Das, D P

    2004-02-15

    Tetravalent metal phosphates (M=Zr, Ti, and Sn) were prepared and characterized by XRD, surface properties, and TG-DTA. The cation exchange and sorption behavior of these metal phosphates toward transition metal ions such as Cu(2+), Co(2+), and Ni(2+) have been studied comparatively as a function of temperature and concentration. The adsorption process was found to increases with increase in temperature and concentration. The selectivity order for alpha-titanium and alpha-tin phosphates is Cu(2+)>Co(2+)>Ni(2+), whereas for alpha-zirconium phosphate it is Cu(2+)>Ni(2+)>Co(2+). The ion exchange capacity of alpha-titanium phosphate is greater than those of other phosphates, which is explained on the basis of the surface behavior, disorderness of the system, degree of hydrolysis of incoming guest adsorbate metal ions, and structural steric hindrance of the exchangers during adsorption and sorption. The distribution coefficient, Gibbs free energy, enthalpy, and entropy values indicate that the ion-exchange processes are spontaneous. PMID:14697711

  8. The Selective Separation of Anions and Cations in Nuclear Waste Using Commercially Available Molecular Recognition Technology (MRT) Products

    Energy Technology Data Exchange (ETDEWEB)

    Izatt, S. R.; Bruening, R. L.; Krakowiak, K. E.; Izatt, R. M.

    2003-02-25

    This paper describes the use of some of IBC's SuperLig{reg_sign}, MacroLig{reg_sign}, and AnaLig{reg_sign} molecular recognition technology products to effectively and selectively separate and recover cesium, technetium, strontium, and radium from radioactive waste solutions. Distinct advantages are given over conventional separation techniques. Separations are described and results given for the target ions over chemically similar ions often present at much higher concentrations. The separations are performed in solutions of either high or low pH and usually containing high concentrations of salts. Other separations involving components of radioactive and mixed waste are noted.

  9. chemical studies and sorption behavior of some hazardous metal ions on polyacrylamide stannic (IV) molybdophosphate as 'organic - inorganic' composite cation - exchanger

    International Nuclear Information System (INIS)

    compsite materials formed by the combination of multivalent metal acid salts and organic polymers provide a new class of (organic-inorganic) hypride ion exchangers with better mechanical and granulometric properties, good ion-exchange capacity, higher chemical and radiation stabilites, reproducibility and selectivity for heavy metals. this material was characterized using X-ray (XRD and XRF), IR, TGA-DTA and total elemental analysis studies. on the basis of distribution studies, the material has been found to be highly selective for pb(II). thermodynamic parameters (i.e δG0, δ S0 and δH0) have also been calculated for the adsorption of Pb2+, Cs+, Fe3+, Cd2+, Cu+2, Zn2+, Co2+ and Eu3+ions on polyacrylamide Sn(IV) molybdophosphate showing that the overall adsorption process is spontaneous endothermic. the mechanism of diffusion of Fe3+, Co2+, Cu+2, Zn2+, Cd2+, Cs+, Pb2+ and Eu3+ in the H-form of polyacrylamide Sn(IV) molybdophosphate composite as cation exchanger was studied as a function of particle size, concentration of the exchanging ions, reaction temperature, dring temperature and pH. the exchange rate was controlled by particle diffusion mechanism as a limited batch techneque and is confirmed from straight lines of B versus 1/r2 polts. the values of diffusion coefficients, activation energy and entropy of activation were calculated and their significance was discussed. the data obtained have been comared with that reported for other organic and inorganic exchangers.

  10. Cation exchange applications of synthetic tobermorite for the immobilization and solidification of cesium and strontium in cement matrix

    Indian Academy of Sciences (India)

    O P Shrivastava; Rashmi Shrivastava

    2000-12-01

    Immobilization and solidification of hazardous cations like Cs137 and Sr90 are required while handling the radioactive waste of nuclear power plants. Efforts are on to find a fail proof method of safe disposal of nuclear wastes. In this context, various materials like borosilicate glass, zeolites, cements and synthetic rocks have been tried by several workers. This communication deals with the synthesis, characterization, cesium uptake capacity and leaching behaviour of synthetic alumina-substituted calcium silicate hydroxy hydrate, which are close to that obtained for the natural mineral, 11 Å tobermorite. The synthetic mineral show cation selectivity for Cs+ in presence of 500–1000 times concentrated solutions of Na+ , K+ , Mg2+, Ca2+ , Ba2+ and Sr2+. Although the ordinary portland cement (OPC) which is often used in waste management operations alone holds negligible amounts of Cs+ and Sr2+, the addition of alumina-substituted tobermorite to OPC enhances the retention power of cement matrix by drastically lowering the leach rate of cations.

  11. SEPARATION AND PURIFICATION OF LIGNIN BY MEANS OF ION EXCHANGE PROCESS

    Institute of Scientific and Technical Information of China (English)

    XUHede; LIANGHao; 等

    1993-01-01

    The effect of resin structure on desalination of lignin solution was investigated,the optimal structure of resin is as follows;cross linking degree as 4%,ratio of cationogen to anionogen is near 1.with such resin the desalination of lignin was produced very well because the resin has both molecule sieving and ion retardation properties.The sulfonation degress of lignin and total salt content of lignin solution were determinred with ion exchange technique,the relative error less than 1%.The salt content of small molecule in the lignin solution was calculated from sulfonation degree of lignin and total salt.Among gel and macroporous resins the best separation of lignin from reducing sugar was achieved with interpenetrating sulfonated resin 2×1.5×1.The separation of lignin with interpenetrating resin was carried out simultaneously with fractionation of lignin,the effect of fractionation with macroporous sulfonated resin is better than that with interpenetrating resin,but the former has a definite sorption of lignin which decreased the recovery of lignin.

  12. Separation of Fluoride Ions in an Electrolytic Cell by Using an AnionExchange Membrane

    International Nuclear Information System (INIS)

    Separation of fluoride ions in an electrolytic cell with an anionexchange membrane which is so-called an electrodialysis process has beenperformed. The experiment have been taken place in room temperature in anelectrolytic cell made by plexiglas consisted on anode and cathode chambersseparated by an anion exchange membrane in dimension of 4 x 4 cm. The carbonand stainless steel are applied as an anode and platinum as s' cathode. Theanolyte is a HNO3 0.3 M solution, while a solution of NaF 0.3 M, and amixture of NaF 0.3 M containing uranyl nitrate solution for separating offluoride ions and uranium are used as a catholyte. The distance between theelectrode and the membrane is 1.5 cm and this distance is kept constant. Theparameters observed are the current voltage, cathode applied, and uraniumconcentration. For the solution without uranium, the results show that thefluoride ions transferred are around 50 % using carbon as a cathode for 3hours and the voltage of 10 volts, while for SS as a cathode are around 93 %.For the solution containing uranium, the fluoride ions transferred are around78 % for 3.5 hours and the uranium ions remain in the catholyte in which mostof them are as 8 yellow deposit of Na2U2O7 on the cathode surface andothers are as a white precipitate of NaUF5 on the bottom of the cathodechamber. (author)

  13. Fundamental study of practical separation of boron isotopes by means of anion exchange resin, (1)

    International Nuclear Information System (INIS)

    Separation of boron isotopes was carried out using a weak base anion exchange column (in free base form). After boric acid solution was passed through the column, the boric acid band formed on the column was eluted with pure water. The authors discuss the effects on boron isotope separation caused by variations of the concentration of feed solution charged to the column, of the amount of boric acid charged and of the flow rate of feed and eluent solutions. Results were as follows: (1) As the concentration of boric acid charged to the column increased and the amount of boric acid charged became large, the amount of enriched 10B(D sup(γ)) increased. (2) The optimum flow rate was 10 -- 20 ml/cm2.hr. (3) The atomic fraction of 10B in the plateau region of the isotope enrichment curve was nearly 0.190, compared with 0.198 for the feed solution. (4) In cases where the boric acid concentration in the effluent never exceeded 0.3 mol/l, no significant tailling was observed at the end of the chromatographic band. (auth.)

  14. Fixation and separation of the elements thorium and uranium using anion exchange resins in nitrate solution

    International Nuclear Information System (INIS)

    The exchange of thorium and uranium between a strong base anion resin and a mixed water + ethanol solvent containing nitrate ions is studied. It is assumed that in the resin the thorium and uranium are fixed in the form of the complexes Th(NO3)62- and UO2(NO3)42- in solution these elements are present in the form of complexes having the general formula: Th(NO3)6-nn-2 and UO2(NO3)4-nn-2 It has been possible to deduce a law for the changes in the partition functions of thorium and uranium as a function of the concentrations of the various species in solution and of the complexing ion NO3. From this has been deduced the optimum operational conditions for separating a mixture of these two elements. Finally, in these conditions, the influence of a few interfering ions has been studied: Ba, Bi, Ce, La, Mo, Pb, Zr. The method proposed can be used either as a preparation, or for the dosage of thorium by a quantitative separation. (author)

  15. Separation and determination of alditols and sugars by high-pH anion-exchange chromatography with pulsed amperometric detection

    DEFF Research Database (Denmark)

    Andersen, Rikke; Sørensen, A.

    Carbohydrates such as alditols (polyols or sugar alcohols), monosaccharides and disaccharides are separated as anions by anion-exchange chromatography with a sodium hydroxide eluent, MA1 CarboPac column and pulsed amperometric detection. We report a high-pH anion-exchange chromatographic-pulsed a......Carbohydrates such as alditols (polyols or sugar alcohols), monosaccharides and disaccharides are separated as anions by anion-exchange chromatography with a sodium hydroxide eluent, MA1 CarboPac column and pulsed amperometric detection. We report a high-pH anion-exchange chromatographic......-pulsed amperometric detection (HPAEC-PAD) method that determines all the polyols used as food additives in food products and the most commonly found mono- and disaccharides on a routine basis. The linearity, repeatability, internal reproducibility and accuracy are described. The applicability of the method has been...

  16. Photoexcitation and ionization in carbon dioxide - Theoretical studies in the separated-channel static-exchange approximation

    Science.gov (United States)

    Padial, N.; Csanak, G.; Mckoy, B. V.; Langhoff, P. W.

    1981-01-01

    Vertical-electronic static-exchange photoexcitation and ionization cross sections are reported which provide a first approximation to the complete dipole spectrum of CO2. Separated-channel static-exchange calculations of vertical-electronic transition energies and oscillator strengths, and Stieltjes-Chebyshev moment methods were used in the development. Detailed comparisons were made of the static-exchange excitation and ionization spectra with photoabsorption, electron-impact excitation, and quantum-defect estimates of discrete transition energies and intensities, and with partial-channel photoionization cross sections obtained from fluorescence measurements and from tunable-source and (e, 2e) photoelectron spectroscopy. Results show that the separate-channel static-exchange approximation is generally satisfactory in CO2.

  17. Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation.

    Science.gov (United States)

    Yap, R K L; Whittaker, M; Diao, M; Stuetz, R M; Jefferson, B; Bulmus, V; Peirson, W L; Nguyen, A V; Henderson, R K

    2014-09-15

    Dissolved air flotation (DAF), an effective treatment method for clarifying algae/cyanobacteria-laden water, is highly dependent on coagulation-flocculation. Treatment of algae can be problematic due to unpredictable coagulant demand during blooms. To eliminate the need for coagulation-flocculation, the use of commercial polymers or surfactants to alter bubble charge in DAF has shown potential, termed the PosiDAF process. When using surfactants, poor removal was obtained but good bubble adherence was observed. Conversely, when using polymers, effective cell removal was obtained, attributed to polymer bridging, but polymers did not adhere well to the bubble surface, resulting in a cationic clarified effluent that was indicative of high polymer concentrations. In order to combine the attributes of both polymers (bridging ability) and surfactants (hydrophobicity), in this study, a commercially-available cationic polymer, poly(dimethylaminoethyl methacrylate) (polyDMAEMA), was functionalised with hydrophobic pendant groups of various carbon chain lengths to improve adherence of polymer to a bubble surface. Its performance in PosiDAF was contrasted against commercially-available poly(diallyl dimethyl ammonium chloride) (polyDADMAC). All synthesised polymers used for bubble surface modification were found to produce positively charged bubbles. When applying these cationic micro-bubbles in PosiDAF, in the absence of coagulation-flocculation, cell removals in excess of 90% were obtained, reaching a maximum of 99% cell removal and thus demonstrating process viability. Of the synthesised polymers, the polymer containing the largest hydrophobic functionality resulted in highly anionic treated effluent, suggesting stronger adherence of polymers to bubble surfaces and reduced residual polymer concentrations. PMID:24934266

  18. Physico-Chemical Study of the Separation of Calcium Isotopes by Chemical Exchange Between Amalgam and Salt Solutions

    International Nuclear Information System (INIS)

    In a preliminary study of the isotopic exchange between Ca amalgam and aqueous or organic solutions of Ca salts, the main parameters governing the feasibility of a separation process based on these systems such as separation factor, exchange kinetics, rate of decomposition of the amalgam were investigated. The separation factor between 40Ca and 46Ca was found to be of the order of 1.02. The rate of the exchange reaction is rather low for aqueous solutions, extremely low for organic solutions. The amalgam seems not to be attacked by dimethyl-formamide solutions; but it is rapidly decomposed by aqueous solutions of Ca halides. This decomposition is slow in the case of aqueous solutions of calcium formate and still slower for Ca(OH)2; however, except in particular conditions, the observed rate is often much higher, owing to interfering reactions between amalgam and water vapor contained in H2 bubbles. (authors)

  19. Separation of rare earths in nitric acid medium by a novel silica-based pyridinium anion exchange resin

    International Nuclear Information System (INIS)

    To separate rare earths in nitric acid medium by anion exchange process, a novel silica-based macro-reticular anion exchange resin (SiPyR-N4) with pyridinium as functional group has been synthesized. It was found that the SiPyR-N4 resin exhibits a quite strong adsorption for some rare earths especially the light rare earth elements such as La, Ce, Pr, Nd and Pm whose distribution coefficients onto SiPyR-N4 reach 10-25 dm3/kg-resin, which are much higher than the reported values for these elements with conventional anion exchange resins. The results from the column experiments show that the rare earths can be separated into the three groups: light, moderate and heavy rare earths and, a perfect separation between La-Pr group and Sm-Gd group can be achieved

  20. Separation of seven arsenic species by ion-pair and ion-exchange high performance liquid chromatography

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, Sven Hedegaard

    1992-01-01

    Arsenite, arsenate, monomethylarsonate, dimethylarsinate, arsenobetaine, arsenocholine and the tetramethylarsonium ion were subjected to ion-exchange and ion-pair reversed phase HPLC. The ion exchange method was superior in selectivity and time of analysis for the arsenic anions. The ammonium ion...... used for the ion-pair method only resulted in separation of some of the anionic arsenic compounds. Flame atomic absorption spectrometry was used for on-line arsenic-specific detection....

  1. Rapid chiral separation and impurity determination of levofloxacin by ligand-exchange chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hongyuan [Center for Advanced Bioseparation Technology, Department of Chemical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Row, Kyung Ho [Center for Advanced Bioseparation Technology, Department of Chemical Engineering, Inha University, Incheon 402-751 (Korea, Republic of)]. E-mail: rowkho@inha.ac.kr

    2007-02-12

    A sensitive, simple, and accurate method for determination of levofloxacin and its (R)-enantiomer was developed to determine the chiral impurity of levofloxacin in Cravit Tablets material by ligand-exchange high performance liquid chromatography. The effects of different kinds of ligands, concentration of ligands in mobile phase, organic modifier, pH of mobile phase, and temperature on enantioseparation were investigated and evaluated. Chiral separation was performed on a conventional C{sub 18} column, where the mobile phase consisted of a methanol-water solution (containing10 mmol L{sup -1} L-leucine and 5 mmol L{sup -1} copper sulfate) (88:12, v/v) and its flow-rate was set at 1.0 mL min{sup -1}. The conventional C{sub 18} column offers baseline separation of two enantiomers with a resolution of 2.4 in less than 20 min. Thermodynamic data ({delta}{delta}H and {delta}{delta}S) obtained by Van't Hoff plots revealed the chiral separation is an enthalpy-controlled process. The standard curves showed excellent linearity over the concentration range from 0.5 to 400 mg L{sup -1} for levofloxacin and its (R)-enantiomer. The linear correlation equations are: y = 1.33 x 10{sup 5} x + 6297 (r = 0.9991) and y = 1.34 x 10{sup 5} x + 3565 (r = 0.9997), respectively. The relative standard deviation (RSD) of the method was below 2.3% (n = 3)

  2. Dynamic separation of Szilard-Chalmers reaction products applied to the trioxalatochromium ion adsorbed on anionic exchange resin

    International Nuclear Information System (INIS)

    A method of dynamic elution of recoiled 51Cr+3, formed by the Szilard-Chalmers reaction during the irradiation of trioxalatochromium ion adsorbed on anionic exchange resin is presented. The influence of some factors on the separation yield of chromium-51, such as: composition, concentration and flow rate of eluent, mesh size of the resin and irradiation time are studied. The results are compardd with those obtained by the static method, in which the recoiled atom is separated from the target after irradiation. Because of the high separation yield of chromium-51, the method of dynamic separation is proposed for routine production of this elemnt, with high specific activities. (author)

  3. Thermodynamics of ion exchange of trivalent Cosup(III) or Crsup(III) complex with cerium(III) ions on cation exchange resin

    International Nuclear Information System (INIS)

    The thermodynamic values of ion exchange of [M(B)sub(n)(H2O)sub(6-n)]3+ [M = Cosup(III) or Crsup(III), B = NH3, (ethylenediamine = en)/2, (1,3-diaminopropane = tn)/2, (1,2-diaminopropane = pn)/2 or urea, 0 =3+ ions on Dowex 50W resin of 2,8 or 16% divinylbenzene (DVB) content were determined from selectivity coefficient and heat of exchange measurements at 250C. Further, the equivalent volumes of [M(B)sub(n)(H2O)sub(6-n)]3+-form resins of 2% DVB content were measured. The heat and entropy of exchange were negative for the preferential uptake of [MB6]3+ by Ce3+-form resin of 2% DVB content and they vary significantly with the ligand, B. The sequence of their values is given. From the entropy of exchange on 2% DVB resin, it seems that the interaction between the complex ion and water depends on the surface charge density of complex ion. Further, the heat of exchange on 2% DVB resin and the equivalent volume of resin are explained in terms of the interaction between the complex ion and water. (author)

  4. Self-Assembly of Nanostructured, Complex, Multi-cation Films via Spontaneous Phase Separation and Strain-driven Ordering

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Amit [ORNL; Wee, Sung Hun [ORNL; Stocks, George Malcolm [ORNL; Zuev, Yuri L [ORNL; More, Karren Leslie [ORNL; Meng, Jianyong [ORNL; Zhong, Jianxin [ORNL

    2013-01-01

    Spontaneous self-assembly of a multi-cation nanophase in another multi-cation matrix phase is a promising bottom-up approach to fabricate novel, nanocomposite structures for a range of applications. In an effort to understand the mechanisms for such self-assembly, we report on complimentary experimental and theoretical studies to first understand and then control or guide the self-assembly of insulating BaZrO3 (BZO) nanodots within REBa2Cu3O7- (RE=rare earth elements including Y, REBCO) superconducting films. It was determined that the strain field developed around BZO nanodots embedded in REBCO matrix is a key driving force dictating the self-assembly of BZO nanodots along REBCO c-axis. The size selection and spatial ordering of BZO self-assembly were simulated using thermodynamic and kinetic models. The BZO self-assembly was controllable by tuning the interphase strain field. REBCO superconducting films with BZO defects arrays self-assembled to align in both vertical (REBCO c-axis) and horizontal (REBCO ab-planes) directions, resulted in the maximized pinning and Jc performance for all field angles with smaller angular Jc anisotropy. The work has broad implications for fabrication of controlled self-assembled nanostructures for a range of applications via strain-tuning.

  5. Preparation and characterization of zirconium phosphate ion exchanger samples with respect to the separation of highly active actinoid elements

    International Nuclear Information System (INIS)

    Inorganic ion exchangers are of growing interest in connection with separation processes of α-radiators of high specific activity, or with high gamma doses, because they have a considerably higher radiation resistance at their disposal compared to the commonly used organic ion exchangers. In opposition to their use, however, are the worse properties regarding capacity, chemical resistivity, exchange rate and reproducibility of the ion exchange bed. In the present work, an attempt has been made to influence the properties of a typical representative of this group, zirconium phosphate (ZP), by systematic changing of the preparation parameters in such a manner that a sufficient capacity is obtained regarding tri-valent ions. In addition, information is to be gathered in order to clarify the connection between exchanger property and structure of the ZP. (orig./LH)

  6. Separation of oil-in-water emulsions by microbubble treatment and the effect of adding coagulant or cationic surfactant on removal efficiency.

    Science.gov (United States)

    Van Le, Tuan; Imai, Tsuyoshi; Higuchi, Takaya; Doi, Ryosuke; Teeka, Jantima; Xiaofeng, Sun; Teerakun, Mullika

    2012-01-01

    This study examined the efficiencies of microbubble (MB) treatment, MB treatment with polyaluminium chloride (PAC) as a coagulant, and MB treatment with cetyltrimethylammonium chloride (CTAC) as a cationic surfactant in the separation of emulsified oil (EO) by modified column flotation. Batch mode experiments were conducted by synthesizing emulsified palm oil (dflotation time: 30 min), MB treatment with PAC (50 mg L(-1)) and that with CTAC (0.5 mg L(-1)) showed equally high EO removal efficiencies of 92 and 89%, respectively. This result is of significant relevance to studies focusing on the development of economical and high-efficiency flotation systems. Furthermore, the effect of pH was investigated by varying the sample pH from 3 to 8, which showed that the EO separation efficiency of MB alone increased drastically from slightly alkaline to acidic condition. PMID:22797232

  7. Experimental Investigation on Heat Exchange and Separation Performance of an Annular Structured Internal Heat-integrated Distillation Column☆

    Institute of Scientific and Technical Information of China (English)

    Lianghua Xu; Dawei Chen; Binghai Yan; Xigang Yuan⁎

    2014-01-01

    In this paper heat exchange coefficient and separation efficiency of an annular structured internal heat-integrated distil ation column (HIDiC) were experimental y measured. About 50%heat of the inner column could be transferred to the outer column. The overall heat exchange coefficient decreased with an increase in pressure ratio of the inner column and the outer column, but was little affected by the F-factor. The increase of the pressure ratio decreased obviously the separation efficiency of the outer column but had little effect on that of the inner column.

  8. Applying reactive models to column experiments to assess the hydrogeochemistry of seawater intrusion: Optimising ACUAINTRUSION and selecting cation exchange coefficients with PHREEQC

    Science.gov (United States)

    Boluda-Botella, N.; Valdes-Abellan, J.; Pedraza, R.

    2014-03-01

    Three sets of laboratory column experimental results concerning the hydrogeochemistry of seawater intrusion have been modelled using two codes: ACUAINTRUSION (Chemical Engineering Department, University of Alicante) and PHREEQC (U.S.G.S.). These reactive models utilise the hydrodynamic parameters determined using the ACUAINTRUSION TRANSPORT software and fit the chloride breakthrough curves perfectly. The ACUAINTRUSION code was improved, and the instabilities were studied relative to the discretisation. The relative square errors were obtained using different combinations of the spatial and temporal steps: the global error for the total experimental data and the partial error for each element. Good simulations for the three experiments were obtained using the ACUAINTRUSION software with slight variations in the selectivity coefficients for both sediments determined in batch experiments with fresh water. The cation exchange parameters included in ACUAINTRUSION are those reported by the Gapon convention with modified exponents for the Ca/Mg exchange. PHREEQC simulations performed using the Gains-Thomas convention were unsatisfactory, with the exchange coefficients from the database of PHREEQC (or range), but those determined with fresh water - natural sediment allowed only an approximation to be obtained. For the treated sediment, the adjusted exchange coefficients were determined to improve the simulation and are vastly different from those from the database of PHREEQC or batch experiment values; however, these values fall in an order similar to the others determined under dynamic conditions. Different cation concentrations were simulated using two different software packages; this disparity could be attributed to the defined selectivity coefficients that affect the gypsum equilibrium. Consequently, different calculated sulphate concentrations are obtained using each type of software; a smaller mismatch was predicted using ACUAINTRUSION. In general, the presented

  9. Investigation of the swelling behavior of cationic exchange resins saturated with Na{sup +} ions in a C{sub 3}S paste

    Energy Technology Data Exchange (ETDEWEB)

    Lafond, E. [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Cau Dit Coumes, C., E-mail: celine.cau-dit-coumes@cea.fr [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Gauffinet, S. [UMR5209 Institut Carnot de Bourgogne, Université de Bourgogne Dijon, Faculté des Sciences Mirande, 9 Avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Chartier, D. [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Le Bescop, P. [CEA, DEN, DPC, SECR, F-91192 Gif-sur-Yvette (France); Stefan, L. [AREVA, Back End Business Group, Dismantling & Services, 1 place Jean Millier, 92084 Paris La Défense (France); Nonat, A. [UMR5209 Institut Carnot de Bourgogne, Université de Bourgogne Dijon, Faculté des Sciences Mirande, 9 Avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2015-03-15

    Ion exchange resins (IERs) are widely used by the nuclear industry to decontaminate radioactive effluents. Spent products are usually encapsulated in cementitious materials. However, the solidified waste form can exhibit strong expansion, possibly leading to cracking, if the appropriate binder is not used. In this work, the interactions between cationic resins in the Na{sup +} form and tricalcium silicate are investigated during the early stages of hydration in order to gain a better understanding of the expansion process. It is shown that the IERs exhibit a transient swelling of small magnitude due to the decrease in the osmotic pressure of the external solution. This expansion, which occurs just after setting, is sufficient to damage the material which is poorly consolidated for several reasons: low degree of hydration, precipitation of poorly cohesive sodium-bearing C–S–H, and very heterogeneous microstructure with zones of high porosity.

  10. A fast method for the determination of Sr-90 in liquid milk by solid phase extraction with cryptand 222 on cation exchange resin

    International Nuclear Information System (INIS)

    A method for determining the activity of Sr-90 in liquid milk samples that does not require the usual drying, ashing, acid leaching and precipitation procedures is described. Two solid phase extractants are used, namely: Cryptand 222 bound to a cation exchange resin, and Eichrome Industries' Sr.Spec Resin trademark. These are applied respectively to extract Sr-90 from the milk and to isolate it in a form suitable for measurement by low-level liquid scintillation counting. The results of analyses of 1 liter milk samples contaminated with a known activity of Sr-90 agreed well with the expected values. It was also found that Sr.Spec Resin trademark can be regenerated and re-used several times. As the method requires only minimal operator skill and time, many samples can be analyzed simultaneously. (orig.)

  11. Review of the thermal stability and cation exchange properties of the zeolite minerals clinoptilolite, mordenite, and analcime; applications to radioactive waste isolation in silicic tuff

    International Nuclear Information System (INIS)

    Silicic tuffs of the southern Great Basin and basalts of the Columbia River Plateau are under investigation as potential host rocks for high- and intermediate-level radioactive wastes. Nonwelded and partially welded tuffs may contain major amounts (> 50%) of the zeolite minerals clinoptilolite, mordenite, and analcime. Densely welded tuffs and some basalt flows may contain clinoptilolite as fracture filling that limits the permeability of these rocks. The cation exchange properties of these zeolite minerals allow them to pose a formidable natural barrier to the migration of cationic species of various radionuclides in aqueous solutions. However, these minerals are unstable at elevated temperatures and at low water-vapor pressures and may break down either by reversible dehydration or by irreversible mineralogical reactions. All the breakdown reactions occurring at increased temperature involve a net volume reduction and evolution of fluids. Thus, they may provide a pathway (shrinkage fractures) and a driving force (fluid pressure) for release of radionuclides to the biosphere. These reactions may be avoided by keeping zeolite-bearing horizons saturated with water and below about 850C. This may restrict allowable gross thermal loadings in waste repositories in volcanic rocks

  12. Synthesis of Capsule-like Porous Hollow Nanonickel Cobalt Sulfides via Cation Exchange Based on the Kirkendall Effect for High-Performance Supercapacitors.

    Science.gov (United States)

    Tang, Yongfu; Chen, Shunji; Mu, Shichun; Chen, Teng; Qiao, Yuqing; Yu, Shengxue; Gao, Faming

    2016-04-20

    To construct a suitable three-dimensional structure for ionic transport on the surface of the active materials for a supercapacitor, porous hollow nickel cobalt sulfides are successfully synthesized via a facile and efficient cation-exchange reaction in a hydrothermal process involving the Kirkendall effect with γ-MnS nanorods as a sacrificial template. The formation mechanism of the hollow nickel cobalt sulfides is carefully illustrated via the tuning reaction time and reaction temperature during the cation-exchange process. Due to the ingenious porous hollow structure that offers a high surface area for electrochemical reaction and suitable paths for ionic transport, porous hollow nickel cobalt sulfide electrodes exhibit high electrochemical performance. The Ni1.77Co1.23S4 electrode delivers a high specific capacity of 224.5 mAh g(-1) at a current density of 0.25 A g(-1) and a high capacity retention of 87.0% at 10 A g(-1). An all-solid-state asymmetric supercapacitor, assembled with a Ni1.77Co1.23S4 electrode as the positive electrode and a homemade activated carbon electrode as the negative electrode (denoted as NCS//HMC), exhibits a high energy density of 42.7 Wh kg(-1) at a power density of 190.8 W kg(-1) and even 29.4 Wh kg(-1) at 3.6 kW kg(-1). The fully charged as-prepared asymmetric supercapacitor can light up a light emitting diode (LED) indicator for more than 1 h, indicating promising practical applications of the hollow nickel cobalt sulfides and the NCS//HMC asymmetric supercapacitor. PMID:27031254

  13. Protein Folding-How and Why: By Hydrogen Exchange, Fragment Separation, and Mass Spectrometry.

    Science.gov (United States)

    Englander, S Walter; Mayne, Leland; Kan, Zhong-Yuan; Hu, Wenbing

    2016-07-01

    Advanced hydrogen exchange (HX) methodology can now determine the structure of protein folding intermediates and their progression in folding pathways. Key developments over time include the HX pulse labeling method with nuclear magnetic resonance analysis, the fragment separation method, the addition to it of mass spectrometric (MS) analysis, and recent improvements in the HX MS technique and data analysis. Also, the discovery of protein foldons and their role supplies an essential interpretive link. Recent work using HX pulse labeling with MS analysis finds that a number of proteins fold by stepping through a reproducible sequence of native-like intermediates in an ordered pathway. The stepwise nature of the pathway is dictated by the cooperative foldon unit construction of the protein. The pathway order is determined by a sequential stabilization principle; prior native-like structure guides the formation of adjacent native-like structure. This view does not match the funneled energy landscape paradigm of a very large number of folding tracks, which was framed before foldons were known and is more appropriate for the unguided residue-level search to surmount an initial kinetic barrier rather than for the overall unfolded-state to native-state folding pathway. PMID:27145881

  14. Fundamental study of practical separation of boron isotopes by means of anion exchange resin, (2)

    International Nuclear Information System (INIS)

    As we reported earlier, a boric acid band formed in a column of weak base anion exchange resin Diaion WA21 can be eluted with pure water, resulting in good isotope fractionation. In the present research, we carried out various experiments using this process in order to find the necessary conditions for producing a displacement chromatogram at the end of the boric acid band, where 10B is enriched. Suitable conditions were found to be as follows: the concentration of boric acid was 0.1 mol/l, the operating temperature was 400C and the flow rate was 20 ml/hr.cm2. Under these conditions, four experimental runs having different migration lengths (1, 2, 4, 8 m) were carried out by a new method which we named ''Isotopic Plateau Holding Displacement Chromatography''. In these experiments, the enriched part of band was always preceded by the isotopic plateau part, in which the atomic fraction of 10B was maintained at its original value. The results of these experiments carried out by this method showed that the concentration of 10B at the end of the chromatogram increased with the migration length, and in the case of 8 m migration, 10B was enriched from an original value of 19.84 to 33.26%. The separation factor S was found to be constant, 1.0097+-0.0002, irrespective of migration length. (auth.)

  15. A two-layer ONIOM study of thiophene cracking catalyzed by proton- and cation-exchanged FAU zeolite.

    Science.gov (United States)

    Sun, Yingxin; Mao, Xinfeng; Pei, Supeng

    2016-02-01

    A two-layer ONIOM study on the hydrodesulfurization mechanism of thiophene in H-FAU and M-FAU (M = Li(+), Na(+), and K(+)) has been carried out. The calculated results reveal that in H-FAU, for a unimolecular mechanism, the rate-determining step is hydrogenation of alkoxide intermediate. The assistance of H2O and H2S molecules does not reduce the difficulty of the C-S bond cracking step more effectively. A bimolecular hydrodesulfurization mechanism is more favorable due to the lower activation barriers. The rate-determining step is the formation of 2-methylthiophene, not the C-S bond cracking of thiophene. Moreover, the ring opening of thiophene is much easier to occur than the desulfurization step. A careful analysis of energetics indicates that H2S, propene, and methyl thiophene are the major products for the hydrodesulfurization process of thiophene over H-FAU zeolite, in good agreement with experimental findings. In M-FAU zeolites, both unimolecular and bimolecular cracking processes are difficult to occur because of the high energy barriers. Compared to the case on H-FAU, the metal cations on M-FAU increase the difficulty of occurrence of bimolecular polymerization and subsequent C-S bond cracking steps. Graphical abstract Hydrodesulfurization process of thiophene can take place in H-FAU zeolite. Two different mechanisms, unimolecular and bimolecular ones, have been proposed and evaluated in detail. The bimolecular mechanism is more favorable due to lower activation barrier as described in the picture above. Our calculated data indicate that H2S, propene, and methylthiophene are the major products, in good agreement with experimental observations. The effect of metal cations on the reaction mechanism is also investigated in this work. PMID:26841976

  16. Preparation and characterization of electrically conducting polypyrrole Sn(IV phosphate cation-exchanger and its application as Mn(II ion selective membrane electrode

    Directory of Open Access Journals (Sweden)

    A.A. Khan

    2011-10-01

    Full Text Available Polypyrrole Sn(IV phosphate, an organic–inorganic composite cation-exchanger was synthesized via sol-gel mixing of an organic polymer, polypyrrole, into the matrices of the inorganic precipitate of Sn(IV phosphate. The physico-chemical properties of the material were determined using Atomic Absorption Spectrometry (AAS, CHN elemental analysis (inductively coupled plasma mass spectrometry, ICP-MS, UV–VIS spectrophotometry, FTIR (Fourier Transform Infra-Red, SEM (Scanning Electron Microscopy, TGA–DTA (Thermogravimetric Analysis–Differential Thermal Analysis, and XRD (X-ray diffraction. Ion-exchange behavior was observed to characterize the material. On the basis of distribution studies, the material was found to be highly selective for toxic heavy metal ion Mn2+. Due to its selective nature, the material was used as an electroactive component for the construction of an ion-selective membrane electrode. The proposed electrode shows fairly good discrimination of mercury ion over several other inorganic ions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations for Mn(II in water.

  17. Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr(HPO3S)2.

    Science.gov (United States)

    Zhang, Qingrui; Pan, Bingcai; Pan, Bingjun; Zhang, Weiming; Jia, Kun; Zhang, Quanxing

    2008-06-01

    A novel polymeric hybrid sorbent, namely ZrPS-001, was fabricated for enhanced sorption of heavy metal ions by impregnating Zr(HPO3S)2 (i.e., ZrPS) nanoparticles within a porous polymeric cation exchanger D-001. The immobilized negatively charged groups bound to the polymeric matrix D-001 would result in preconcentration and permeation enhancement of target metal ions prior to sequestration, and ZrPS nanoparticles are expected to sequester heavy metals selectively through an ion-exchange process. Highly effective sequestration of lead, cadmium, and zinc ions from aqueous solution can be achieved by ZrPS-001 even in the presence of competing calcium ion at concentration several orders of magnitude greater than the target species. The exhausted ZrPS-001 beads are amenable to regeneration with 6 M HCI solution for repeated use without any significant capacity loss. Fixed-bed column treatment of simulated waters containing heavy metals at high or trace levels was also performed. The content of heavy metals in treated effluent approached or met the WHO drinking water standard. PMID:18589978

  18. 2,4-Difluoro anisole. A promising complexing agent for boron isotopes separation by chemical exchange reaction and distillation

    International Nuclear Information System (INIS)

    Although methods of boron isotopes separation were intensively pursued about 60 years, the chemical exchange distillation is the only method that has been applied in industrial scale production of 10B. The present anisole BF3 system suffers from the drawbacks like high melting point, relatively low separation coefficient and instability under reaction conditions, which demand a continuous search for more effective and efficient donors for boron isotope separation. A series of fluoro-substituted anisole derivatives were screened in this paper, among which 2,4-difluoro anisole exhibited good properties compared with anisole. Studies on the boron trifluoride and 2,4-difluoro anisole adduct, its thermodynamic and physical properties related to large-scale isotopic separation is reported. The results showed that 2,4-difluoro anisole is better than anisole in separation coefficient, freezing point and stability under pyrolysis conditions, which suggest a further detailed investigations on boron trifluoride and 2,4-difluoro anisole adduct. (author)

  19. Effect of major cation water composition on the ion exchange of Np(V) on montmorillonite: NpO2+–Na+–K+–Ca2+–Mg2+ selectivity coefficients

    International Nuclear Information System (INIS)

    Highlights: • Determined Np(V)-montmorillonite ion exchange constant, applicable in a wide range of conditions. • Developed a model for Np(V) ion exchange which can be readily applied in thermodynamic databases. • Identified solution conditions at which Np(V) ion exchange will play a significant role. - Abstract: Np(V) sorption was examined in pH 4.5 colloidal suspensions of nominally homoionic montmorillonite (Na-, K-, Ca- and Mg-montmorillonite). Ionic exchange on permanent charge sites was studied as a function of ionic strength (0.1, 0.01 and 0.001 M) and background electrolyte (NaCl, KCl, CaCl2 and MgCl2). An ion exchange model was developed using the FIT4FD program, which considered all experimental data simultaneously: Np sorption data, major cation composition of the electrolyte and associated uncertainties. The model was developed to be consistent with the ion exchange selectivity coefficients between the major cations reported in the literature and led to the following recommended selectivity coefficients for Np(V) ion exchange according to the Vanselow convention: log(NpO2+Na+KV)=-0.20,log(NpO2+K+KV)=-0.46,log(NpO2+Ca2+KV)=-0.57,log (NpO2+Mg2+KV)=-0.57. Both the experimental data and the estimated selectivity coefficients in this study are consistent with the limited Np(V) ion exchange and sorption data reported in the literature. The results indicate that, as expected, low ionic strengths favor Np(V) sorption when ion exchange is the main sorption mechanism (i.e. acidic to neutral pHs) and that the divalent cations Ca2+ and Mg2+ may be important in limiting Np(V) ionic exchange on montmorillonite

  20. Cationic polyelectrolyte induced separation of some inorganic contaminants and their mixture (zirconium silicate, kaolin, K-feldspar, zinc oxide) as well as of the paraffin oil from water.

    Science.gov (United States)

    Ghimici, Luminita

    2016-03-15

    The flocculation efficiency of a cationic polyelectrolyte with quaternary ammonium salt groups in the backbone, namely PCA5 was evaluated on zirconium silicate (kreutzonit), kaolin, K- feldspar and zinc oxide (ZnO) suspensions prepared either with each pollutant or with their mixture. The effect of several parameters such as settling time, polymer dose and the pollutant type on the separation efficacy was evaluated and followed by optical density and zeta potential measurements. Except for ZnO, the interactions between PCA5 and suspended particles led to low residual turbidity values (around 4% for kreutzonit, 5% for kaolin and 8% for K-feldspar) as well as to the reduction of flocs settling time (from 1200 min to 30 min and 120 min in case of kaolinit and K-feldspar, respectively), that meant a high efficiency in their separation. The negative value of the zeta potential and flocs size measurements, at the optimum polymer dose, point to contribution from charge patch mechanism for the particles flocculation. A good efficiency of PCA5 in separation of paraffin oil (a minimum residual turbidity of 9.8%) has been also found. PMID:26716571

  1. Ion-exchange as a mode of cation transfer into room-temperature ionic liquids containing crown ethers : implications for the 'greenness' of ionic liquids as diluents in liquid-liquid extraction

    International Nuclear Information System (INIS)

    The transfer of strontium ion from acidic nitrate media into a series of 1-alkyl-3-methylimidazolium-based room-temperature ionic liquids containing dicyclohexano-18-crown-6 is shown to proceed via cation-exchange, in contrast to conventional solvents such as alkan-1-ols, in which extraction of a strontium nitrato-crown ether complex is observed.

  2. Use of Cation Exchange Resins for Production of U{sub 3}O{sub 8} Suitable for the Al-U{sub 3}O{sub 8} Powder Metallurgy Process

    Energy Technology Data Exchange (ETDEWEB)

    Mosley, W.C.

    2001-09-17

    This report describes the production of U{sub 3}O{sub 8} powders from three types of cation exchange resins: Dowex 50W, a strong acid, sulfonate resin; AG MP-50, a macroporous form of sulfonate resin; and Bio-Rex 70, a weak acid, carboxylic resin.

  3. Reillex/trademark/ HPQ: A new, macroporous polyvinylpyridine resin for separating plutonium using nitrate anion exchange

    International Nuclear Information System (INIS)

    Anion exchange in nitric acid is the major aqueous process used to recover and purify plutonium from impure scrap materials. Most strong-base anion exchange resins incorporate a styrene-divinylbenzene copolymer. A newly available, macroporous anion exchange resin based on a copolymer of 1-methyl-4-vinylpyridine and divinylbenzene has been evaluated. Comparative data for Pu(IV) sorption kinetics and capacity are presented for this new resin and two other commonly used anion exchange resins. The new resin offers high capacity and rapid sorption kinetics for Pu(IV) from nitric acid, as well as greater stability to chemical and radiolytic degradation. 8 refs., 12 figs

  4. Dowex anion exchanger-loaded-baker's yeast as bi-functionalized biosorbents for selective extraction of anionic and cationic mercury(II) species

    International Nuclear Information System (INIS)

    Dowex anion exchanger-immobilized-baker's yeast [Dae-yeast] were synthesized and potentially applied as environmental friendly biosorbents to evaluate the up-take process of anionic and cationic mercury(II) species as well as other metal ions. Optimization of mass ratio of Dowex anion exchanger versus yeast (1:1-1:10) in presence of various interacting buffer solutions (pH 4.0-9.0) was performed and evaluated. Surface modification of [Dae-yeast] was characterized by scanning electron microscopy (SEM) and infrared spectroscopy. The maximum metal biosorption capacity values of [Dae-yeast] towards mercury(II) were found in the range of 0.800-0.960, 0.840-0.950 and 0.730-0.900 mmol g-1 in presence of buffer solutions pH 2.0, 4.0 and 7.0, respectively. Three possible and different mechanisms are proposed to account for the biosorption of mercury and mercuric species under these three buffering conditions based on ion exchange, ion pair and chelation interaction processes. Factors affecting biosorption of mercury from aqueous medium including the pH effect of aqueous solutions (1.0-7.0), shaking time (1-30 min) and interfering ions were searched. The potential applications of modified biosorbents for selective biosorption and extraction of mercury from different real matrices including dental filling waste materials, industrial waste water samples and mercury lamp waste materials were also explored. The results denote to excellent percentage extraction values, from nitric acid as the dissolution solvent with a pH 2.0, as determined in the range of 90.77-97.91 ± 3.00-5.00%, 90.00-93.40 ± 4.00-5.00% and 92.31-100.00 ± 3.00-4.00% for the three tested samples, respectively.

  5. Separation of Fe (III) ions from acidic leach liquor of metasummatite Saghand ore by anion exchange resins

    International Nuclear Information System (INIS)

    Ferric ions in dilute acidic leach liquor of uranium ore of Saghand were separated by anion exchange resins. In this research, a simulated solution similar to the actual leach liquor of Saghand was prepared. The simulated solution which was containing chloride and ferric ions. rare earth elements, and some other impurities was treated by different types of Dowex anion exchange resins for ferric ions removal. It appeared that hydrochloric acidic concentration, resin types and particle sizes have a great impact on ferric ions adsorption. Dowex 1 X 4 (200-400 mesh) has the best adsorption of 91% in simulated solution and 79% in actual leach liquor of uranium ore of Saghand respectively

  6. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    OpenAIRE

    Sequeira, César A. C.; Santos, Diogo M. F.; Morais, Ana L.; Biljana Šljukić

    2012-01-01

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both a...

  7. Squalamine, a novel cationic steroid, specifically inhibits the brush-border Na+/H+ exchanger isoform NHE3.

    Science.gov (United States)

    Akhter, S; Nath, S K; Tse, C M; Williams, J; Zasloff, M; Donowitz, M

    1999-01-01

    Squalamine, an endogenous molecule found in the liver and other tissues of Squalus acanthias, has antibiotic properties and causes changes in endothelial cell shape. The latter suggested that its potential targets might include transport proteins that control cell volume or cell shape. The effect of purified squalamine was examined on cloned Na+/H+ exchanger isoforms NHE1, NHE2, and NHE3 stably transfected in PS120 fibroblasts. Squalamine (1-h pretreatment) decreased the maximal velocity of rabbit NHE3 in a concentration-dependent manner (13, 47, and 57% inhibition with 3, 5, and 7 micrograms/ml, respectively) and also increased K'[H+]i. Squalamine did not affect rabbit NHE1 or NHE2 function. The inhibitory effect of squalamine was 1) time dependent, with no effect of immediate addition and maximum effect with 1 h of exposure, and 2) fully reversible. Squalamine pretreatment of the ileum for 60 min inhibited brush-border membrane vesicle Na+/H+ activity by 51%. Further investigation into the mechanism of squalamine's effects showed that squalamine required the COOH-terminal 76 amino acids of NHE3. Squalamine had no cytotoxic effect at the concentrations studied, as indicated by monitoring lactate dehydrogenase release. These results indicate that squalamine 1) is a specific inhibitor of the brush-border NHE isoform NHE3 and not NHE1 or NHE2, 2) acts in a nontoxic and fully reversible manner, and 3) has a delayed effect, indicating that it may influence brush-border Na+/H+ exchanger function indirectly, through an intracellular signaling pathway or by acting as an intracellular modulator. PMID:9886929

  8. Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites.

    Science.gov (United States)

    Paolucci, Christopher; Parekh, Atish A; Khurana, Ishant; Di Iorio, John R; Li, Hui; Albarracin Caballero, Jonatan D; Shih, Arthur J; Anggara, Trunojoyo; Delgass, W Nicholas; Miller, Jeffrey T; Ribeiro, Fabio H; Gounder, Rajamani; Schneider, William F

    2016-05-11

    The relationships among the macroscopic compositional parameters of a Cu-exchanged SSZ-13 zeolite catalyst, the types and numbers of Cu active sites, and activity for the selective catalytic reduction (SCR) of NOx with NH3 are established through experimental interrogation and computational analysis of materials across the catalyst composition space. Density functional theory, stochastic models, and experimental characterizations demonstrate that within the synthesis protocols applied here and across Si:Al ratios, the volumetric density of six-membered-rings (6MR) containing two Al (2Al sites) is consistent with a random Al siting in the SSZ-13 lattice subject to Löwenstein's rule. Further, exchanged Cu(II) ions first populate these 2Al sites before populating remaining unpaired, or 1Al, sites as Cu(II)OH. These sites are distinguished and enumerated ex situ through vibrational and X-ray absorption spectroscopies (XAS) and chemical titrations. In situ and operando XAS follow Cu oxidation state and coordination environment as a function of environmental conditions including low-temperature (473 K) SCR catalysis and are rationalized through first-principles thermodynamics and ab initio molecular dynamics. Experiment and theory together reveal that the Cu sites respond sensitively to exposure conditions, and in particular that Cu species are solvated and mobilized by NH3 under SCR conditions. While Cu sites are spectroscopically and chemically distinct away from these conditions, they exhibit similar turnover rates, apparent activation energies and apparent reaction orders at the SCR conditions, even on zeolite frameworks other than SSZ13. PMID:27070199

  9. High-capacity, selective solid sequestrants for innovative chemical separation: Inorganic ion exchange approach

    International Nuclear Information System (INIS)

    The approach of this task is to develop high-capacity, selective solid inorganic ion exchangers for the recovery of cesium and strontium from nuclear alkaline and acid wastes. To achieve this goal, Pacific Northwest Laboratories (PNL) is collaborating with industry and university participants to develop high capacity, selective, solid ion exchangers for the removal of specific contaminants from nuclear waste streams

  10. Cation locations and dislocations in zeolites

    Science.gov (United States)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  11. Onset of size independent cationic exchange in nano-sized CoFe{sub 2}O{sub 4} induced by electronic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Hemaunt [Department of Physics, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 (India); Singh, Jitendra Pal, E-mail: jitendra_singh2029@rediffmail.com [Advanced Analysis Canter, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Srivastava, R.C.; Negi, P.; Agrawal, H.M. [Department of Physics, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 (India); Asokan, Kandasami [Materials Science Division, Inter University Accelerator Centre, New Delhi 110067 (India); Won, Sung Ok [Advanced Analysis Canter, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Chae, Keun Hwa, E-mail: khchae@kist.re.kr [Advanced Analysis Canter, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2015-10-05

    Highlights: • Electronic excitation induced crystalline order in CoFe{sub 2}O{sub 4}. • No change of metallic valence state under dense electronic excitation. • Size independent control of cations in CoFe{sub 2}O{sub 4}. - Abstract: Present work investigates electronic excitation induced cationic exchange phenomena in nano-sized cobalt ferrites using Mössabaur and X-ray absorption spectroscopies. The electronic excitations were produced by irradiation of 100 MeV O{sup +7} at different fluences ranging from 1 × 10{sup 11} to 1 × 10{sup 14} ions/cm{sup 2}. Cubic spinel phase of cobalt ferrite remains preserved after irradiation. However, attributes of crystalline disorder were observed in irradiated materials. Crystallite size remain almost same for pristine and irradiated materials. X-ray absorption fine structure measurements show the preservation of valence state and spin state of metal ions under intense electronic excitation. These measurements also envisage bond breaking process induced by the electronic excitation. Mössbauer spectroscopic measurements also corroborate with the fine structure measurements that the valence state of Fe remains same after irradiation. Paramagnetic doublet which presents in the Mössabaur spectrum of pristine material disappears after irradiation, showing the evolution of irradiation induced magnetic ordering. Fe{sup 3+} ion increases with irradiation at octahedral site of spinel lattice. Magnetization of the material slightly increases after irradiation at the fluence of 5 × 10{sup 13} and 1 × 10{sup 14} ions/cm{sup 2}.

  12. Nearly 1000 Protein Identifications from 50 ng of Xenopus laevis Zygote Homogenate Using Online Sample Preparation on a Strong Cation Exchange Monolith Based Microreactor Coupled with Capillary Zone Electrophoresis.

    Science.gov (United States)

    Zhang, Zhenbin; Sun, Liangliang; Zhu, Guijie; Cox, Olivia F; Huber, Paul W; Dovichi, Norman J

    2016-01-01

    A sulfonate-silica hybrid strong cation exchange monolith microreactor was synthesized and coupled to a linear polyacrylamide coated capillary for online sample preparation and capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) bottom-up proteomic analysis. The protein sample was loaded onto the microreactor in an acidic buffer. After online reduction, alkylation, and digestion with trypsin, the digests were eluted with 200 mM ammonium bicarbonate at pH 8.2 for CZE-MS/MS analysis using 1 M acetic acid as the background electrolyte. This combination of basic elution and acidic background electrolytes results in both sample stacking and formation of a dynamic pH junction. 369 protein groups and 1274 peptides were identified from 50 ng of Xenopus laevis zygote homogenate, which is comparable with an offline sample preparation method, but the time required for sample preparation was decreased from over 24 h to less than 40 min. Dramatically improved performance was produced by coupling the reactor to a longer separation capillary (∼100 cm) and a Q Exactive HF mass spectrometer. 975 protein groups and 3749 peptides were identified from 50 ng of Xenopus protein using the online sample preparation method. PMID:26670623

  13. Research on separation and extraction technology of the light element isotopes by the chemical exchange process

    International Nuclear Information System (INIS)

    It was clarified that the separation coefficient became 1.036, and succeeded in the development of the new, efficient lithium separator (Sodium Super-Ionic Conductor: NASICON) which is the elution liquid in the acid processed phosphate system for the lithium isotope separation technology. NASICON can be used in the column for the isotope separation, repeatedly if the nitric acid is used for the elution liquid and the hydroxide lithium or the acetic acid lithium solution as an adsorption solution of the lithium. Furthermore, the separation coefficient of 1.029 was obtained using the glucamine resin of the ester system for the boron isotope separation technology. (H. Katsuta)

  14. Influence of cation substitution and activator site exchange on the photoluminescence properties of Eu3+-doped quaternary pyrochlore oxides.

    Science.gov (United States)

    Mahesh, S K; Rao, P Prabhakar; Thomas, Mariyam; Francis, T Linda; Koshy, Peter

    2013-12-01

    Stannate-based pyrochlore-type red phosphors CaGd(1-x)SnNbO7:xEu(3+), Ca(1-y)Sr(y)Gd(1-x)SnNbO7:xEu(3+), and Ca(0.8-x)Sr0.2GdSnNbO(7+δ): xEu(3+) were prepared via conventional solid-state method. Influence of cation substitution and activator site control on the photoluminescence properties of these phosphors are elucidated using powder X-ray diffraction, Rietveld analysis, Raman spectrum analysis, and photoluminescence excitation and emission spectra. The Eu(3+) luminescence in quaternary pyrochlore lattice exemplifies as a very good structural probe for the detection of short-range disorder in the lattice, which otherwise is not detected by normal powder X-ray diffraction technique. The Eu(3+) emission due to magnetic dipole transition ((5)D0-(7)F1 MD) is modified with the increase in europium concentration in the quaternary pyrochlore red phosphors. (5)D0-(7)F1 MD transition splitting is not observable for low Eu(3+) doping because of the short-range disorder in the pyrochlore lattice. Appearance of narrow peaks in Raman spectra confirms that short-range disorder in the crystal lattice disappears with progressive europium doping. By using Sr as a network modifier ion in place of Ca we were able to increase the f-f transition intensities and europium quenching concentration. The influence of effective positive charge of the central Eu(3+) ions when it replaces a metal ion having lower oxidation state such as Ca(2+) was also investigated. The relative intensities of A1g (∼500 cm(-1)) and F2g (∼330 cm(-1)) Raman vibrational modes get inverted when Eu(3+) ions replaces Ca(2+) ions instead of Gd(3+) as trivalent europium ions can attract the electron cloud of oxygen ions strongly in comparison with divalent calcium ions. The influence of positive charge effect of Eu(3+) in Ca0.7Sr0.2GdSnNbO7+δ:0.1Eu(3+) phosphor is greatly strengthened the charge transfer band and (7)F0-(5)L6 transition intensities than that of the Ca0.8Sr0.2Gd0.9SnNbO7:0.1Eu(3+) phosphor. Our

  15. Lanthanide N,N'-piperazine-bis(methylenephosphonates) (Ln=La, Ce, Nd) that display flexible frameworks, reversible hydration and cation exchange

    International Nuclear Information System (INIS)

    Hydrothermal syntheses of lanthanide bisphosphonate metal organic frameworks comprising the light lanthanides lanthanum, cerium and neodymium and N,N'-piperazine bis(methylenephosphonic acid) (H2L(1) and its 2-methyl and 2,5-dimethyl derivatives (H2L(2) and H2L(3)) gives three new structure types. At elevated starting pH (ca. 5 and above) syntheses give 'type I' materials with all metals and acids of the study (MLnLxH2O, M=Na, K, Cs; Ln=La, Ce, Nd; x∼4: KCeL(1).4H2O, C2/c, a=23.5864(2) A, b=12.1186(2) A, c=5.6613(2) A, β=93.040(2)o). The framework of structure type I shows considerable flexibility as the ligand is changed, due mainly to rotation around the -N-CH2- bond of the linker in response to steric considerations. Type I materials demonstrate cation exchange and dehydration and rehydration behaviour. Upon dehydration of KCeL.4H2O, the space group changes to P21/n, a=21.8361(12) A, b=9.3519(4) A, c=5.5629(3) A, β=96.560(4)o, as a result of a change of the piperazine ring from chair to boat configuration. When syntheses are performed at lower pH, two other structure types crystallise. With the 'non-methyl' ligand 1, type II materials result (LnL(1)H2L(1).4.5H2O: Ln=La, P-1, a=5.7630(13) A, b=10.213(2) A, c=11.649(2) A, α=84.242(2)o, β=89.051(2)o, γ=82.876(2)o) in which one half of the ligands coordinate via the piperazine nitrogen atoms. With the 2-methyl ligand, structure type III crystallises (LnHL(2).4H2O: Ln=Nd, Ce, P21/c, a=5.7540(9) A, b=14.1259(18) A, c=21.156(5) A, β=90.14(2)o) due to unfavourable steric interactions of the methyl group in structure type II. - Graphical abstract: The lanthanides La, Ce and Nd give a family of metal organic frameworks based on N,N'-piperazinebismethylenephosphonate ligands: these display reversible dehydration, structural flexibility and cation exchange.

  16. The effect of degradation products of strong acidic cation exchange resins on radionuclide speciation: A case study with Ni2+

    International Nuclear Information System (INIS)

    Radiolytic degradation experiments with acidic ion-exchange resins revealed oxalate and an unidentified ligand X to be the most strongly complexing ligands of the degradation products. The influence of these ligands on the Ni speciation in groundwater and cement pore water of a repository is assessed. A complete and reliable thermodynamic database is built for this case study. Missing stability constants are estimated by chemical reasoning. Subsequent sensitivity analyses show whether these species are important or not. The backdoor approach used in this study addresses the following question: What concentrations must the ligand have to significantly influence the Ni speciation? In the case of oxalate, the concentration necessary to complex 90% Ni will never be exceeded within the repository or in its environment due to precipitation of Ca-oxalate solids. Thus, a negative effect of oxalate on Ni speciation and sorption need not be considered in safety assessments. In the case of ligand X, calculations demonstrate that Ni speciation is highly dependent on geochemical conditions and is occasionally ambiguous due to uncertainties in estimated stability constants. Hints are given to deal with these ambiguities in future safety assessment, and further experimental investigations are proposed to decrease uncertainties when necessary

  17. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO2+) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO2+; therefore, cation-cation complexes indicate something unique about AnO2+ cations compared to actinide cations in general. The first cation-cation complex, NpO2+·UO22+, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO2+ species, the cation-cation complexes of NpO2+ have been studied most extensively while the other actinides have not. The only PuO2+ cation-cation complexes that have been studied are with Fe3+ and Cr3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO2+·UO22+, NpO2+·Th4+, PuO2+·UO22+, and PuO2+·Th4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M-1

  18. The separation of 65Zn from 113Sn and 207Bi radioisotopes by amalgam exchange and electro-analytical methods

    International Nuclear Information System (INIS)

    In this study, by using amalgam-exchange and electro-analytical methods, the separation of 65Zn radioisotope from a solution containing either one or both of the 113Sn and 207Bi radioisotopes were investigated. The radioisotopes were drawn into Zn-amalgam from the solution at first, and then 65Zn was recovered from the amalgam through back-electrolysis. No detectable contamination was observed and the recovery efficiency was found to be around 75%. (author)

  19. Evaluation of the determination of iodine in drinking well water by neutron activation analysis and separation by isotope exchange

    International Nuclear Information System (INIS)

    The determination of total iodine in drinking and well water by neutron activation analysis and separation of 128I(T=25.0 min) by isotope exchange has been examined at the 5-15 ng.ml-1 level. Using the Lazy Suzan of a Triga Mark-II reactor, the capacity is ≤5 samples per hour at a precision of 15-20% per aliquot and no apparent systematic bias. (author) 6 refs.; 1 tab

  20. Separation of boron isotopes at chemical isotopic exchange between, boron trifluoride and its complex with anisole in multitube mass-exchange column

    International Nuclear Information System (INIS)

    The results are given on continuous counterflow two-phase process of boron isotopes 10B and 11B separation at chemical isotopic exchange between gaseous BF3 and its liquid complex with anisole, the process is realized in the module of three packed columns with parallel operation; each of the columns in its bottom part is connected with the others by the common unit of flow reversal (desorber), has the diameter of 78 mm, height of 46.5 m, and is filled with wire spiral-prismatic pack with 3.5·3.5·0.2 mm element

  1. Recovery of soil pH, cation-exchange capacity and the saturation of exchange sites from stemflow-induced soil acidification in three Swedish beech (Fagus sylvatica L.) forests

    International Nuclear Information System (INIS)

    Stemflow water acidifies the soil in beech stands impacted by atmospheric deposition. To investigate whether the soil recovers from acidification, stemflow was experimentally removed. A horizon material was sampled at a distance of 10-250 cm from the stems. Before the onset of the experiment, there were stemflow-induced gradients in the saturation of exchange sites with K+, H+ and Na+ that were larger near the stems, while the pHKCl, the cation-exchange capacity, and the saturation with Ca2+, Mg2+ and Mn2+ were smaller. After 8 yrs of recovery, the pHKCl and the saturation with Ca2+ and Mg2+ had increased close to the stems, while the saturation with Na+, H+, Mn2+ and Fe2+ and the C/N ratio had decreased. With some exceptions, e.g. base saturation, the recovery was not complete after 8 yrs. Soil far from stems had also changed similarly, probably because of the ongoing decrease in overall deposition in southern Sweden

  2. Membrane filtration of the liquid fraction from a solid-liquid separator for swine manure using a cationic polymer as flocculating agent.

    Science.gov (United States)

    Masse, L; Mondor, M; Dubreuil, J

    2013-01-01

    The liquid fraction from a solid-liquid separator for swine manure, which used a cationic polymer to promote particle flocculation, was processed by one nanofiltration and two reverse osmosis spiral-wound membranes. Eight different liquid fraction batches (750 to 1750 L) were concentrated at volumetric concentration ratios (VCRs, initial to final volumes) ranging from 2.3 to 4.2. Membrane fouling intensity was highly variable, as water flux recovery after concentration cycles ranged from 13% to 88%. The most severe fouling was caused by a liquid fraction that had relatively low suspended solids (SS) (774 mg/L) and was concentrated at a low VCR of 2.6. Raw manure collected the same day also contained low SS, suggesting that fewer sites were available for polymer adsorption and thus more polymer remained in the liquid. However, because of the high opacity of the samples, residual polymer could not be detected in any feed or concentrate samples. Fouling was not totally irreversible as over 97% of membrane flux could be recovered by cleaning with acidic and alkaline solutions. Further tests with spiked liquid fractions indicated that fouling due to residual polymer in solution started to occur at a polymer concentration of 3 and 11 mg/L in initial and concentrated effluents, respectively. If a cationic polymer is used to pretreat manure, the amount of added polymer would have to be closely related to SS content as opposed to manure volume, in order to leave very little residual polymer in solution. PMID:23837317

  3. Separating cesium 137 from liquid radioactive wastes by using inorganic exchangers using static and dynamic procedures at various concentration of nitric acid and sodium nitrate

    International Nuclear Information System (INIS)

    Cesium 137 was separated from liquid wastes by ion exchange using ammonium molybdenum phosphate, potassium hexa cyano cobalt ferrate, zirconium hydro phosphate and antimony penta oxy hydrate ion exchangers. The investigation was done by static and dynamic procedures. In static procedure required time for reaching the system to equilibrium or ion exchange completion, the measurement of each exchanger, the effect of nitric acid and concentration of sodium nitrate on the capacity of ion exchangers was investigated. Also in dynamic procedure nitric acid and sodium nitrate concentration ratio on the power of and thereof the capacity of each ion exchanger was determined

  4. 2-Acrylamido-2-methyl-1-propanesulfonic Acid Grafted Poly(vinylidene fluoride-co-hexafluoropropylene)-Based Acid-/Oxidative-Resistant Cation Exchange for Membrane Electrolysis.

    Science.gov (United States)

    Pandey, Ravi P; Das, Arindam K; Shahi, Vinod K

    2015-12-30

    For developing acid-/oxidative-resistant aliphatic-polymer-based cation-exchange membrane (CEM), macromolecular modification of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) was carried out by controlled chemical grafting of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS). To introduce the unsaturation suitable for chemical grafting, dehydrofluorination of commercially available PVDF-co-HFP was achieved under alkaline medium. Sulfonated copolymer (SCP) was prepared by the free radical copolymerization of dehydofluorinated PVDF-co-HFP (DHPVDF-co-HFP) and AMPS in the presence of free radical initiator. Prepared SCP-based CEMs were analyzed for their morphological characteristics, ion-exchange capacity (IEC), water uptake, conductivity, and stabilities (mechanical, chemical, and thermal) in comparison with state-of-art Nafion117 membrane. High bound water content avoids the membrane dehydration, and most optimal (SCP-1.33) membrane exhibited about ∼2.5-fold high bound water content in comparison with that of Nafion117 membrane. Bunsen reaction of iodine-sulfur (I-S) was successfully performed by direct-contact-mode membrane electrolysis in a two-compartment electrolytic cell using different SCP membranes. High current efficiency (83-99%) confirmed absence of any side reaction and 328.05 kJ mol-H2(-1) energy was required for to produce 1 mol of H2 by electrolytic cell with SCP-1.33 membrane. In spite of low conductivity for reported SCP membrane in comparison with that of Nafion117 membrane, SCP-1.33 membrane was assessed as suitable candidate for electrolysis because of its low-cost nature and excellent stabilities in highly acidic environment may be due to partial fluorinated segments in the membrane structure. PMID:26642107

  5. Water-Chemistry Evolution and Modeling of Radionuclide Sorption and Cation Exchange during Inundation of Frenchman Flat Playa

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald; Cablk, Mary; LeFebre, Karen; Fenstermaker, Lynn; Decker, David

    2013-08-01

    dioxide and calcite; dissolution of sodium chloride, gypsum, and composite volcanic glass; and precipitation of composite clay and quartz represented changes in water as it disappeared from the playa. This modeling provided an understanding of the water-soil geochemical environment, which was then used to evaluate the potential mobility of residual radionuclides into the playa soils by water. Because there is no information on the chemical forms of anthropogenic radionuclides in Frenchman Flat playa soil, it was assumed that soil radionuclides go into solution when the playa is inundated. In mobility modeling, a select group of radionuclides were allowed to sorb onto, or exchange with, playa soil minerals to evaluate the likelihood that the radionuclides would be removed from water during playa inundation. Radionuclide mobility modeling suggested that there would be minimal sorption or exchange of several important radionuclides (uranium, cesium, and technetium) with playa minerals such that they may be mobile in water when the playa is inundated and could infiltrate into the subsurface. Mobility modeling also showed that plutonium may be much less mobile because of sorption onto calcite, but the amount of reactive surface area of playa soil calcite is highly uncertain. Plutonium is also known to sorb onto colloidal particles suspended in water, suspended colloidal particles will move with the water, providing a mechanism to redistribute plutonium when Frenchman Flat playa is inundated. Water chemistry, stable isotopes, and geochemical modeling showed that residual radionuclides in Frenchman Flat playa soils could be mobilized in water when the playa is inundated with precipitation. Also, there is potential for these radionuclides to infiltrate into the subsurface with water. As a result of the information obtained both during this study and the conclusions drawn from it, additional data collection, investigation, and modeling are recommended. Specifically: sampling the

  6. [Effects of biochar amendment on cropland soil bulk density, cation exchange capacity, and particulate organic matter content in the North China Plain].

    Science.gov (United States)

    Chen, Hong-Xia; Du, Zhang-Liu; Guo, Wei; Zhang, Qing-Zhong

    2011-11-01

    A 3-year field experiment with randomized block design was conducted to study the effects of biochar amendment on the soil bulk density, cation exchange capacity (CEC), and particulate organic matter C (POM-C) and N (POM-N) contents in a high-yielding cropland in the North China Plain. Four treatments were installed, i.e., chemical NPK (CK), chemical NPK plus 2250 kg x hm(-2) of biochar (C1), chemical NPK plus 4500 kg x hm(-2) of biochar (C2), and 750 kg x hm(-2) of biochar-based slow release fertilizer (CN). Comparing with CK, treatments C1 and C2 significantly decreased the bulk density of 0-7.5 cm soil layer by 4.5% and 6.0%, respectively, and the treatments with biochar amendment increased the CEC in 0-15 cm soil layer, with an increment of 24.5% in treatment C2. Biochar amendment also increased the C (POM-C) and N (POM-N) contents in 0-7.5 cm soil layer, e.g., the POM-C and N contents in treatment C1 and C2 were 250% and 85%, and 260% and 120% higher than those of the CK, respectively. After three years of biochar amendment, the soil had obvious improvement in its physical and chemical properties, and played more active roles in soil carbon sequestration and greenhouse gases emission reduction. PMID:22303671

  7. Cation exchange-based post-processing of 68Ga-eluate: A comparison of three solvent systems for labelling of DOTATOC, NO2APBP and DATAm

    International Nuclear Information System (INIS)

    Interest in 68Ga has led to a number of innovations for its provision suitable for clinical application. Several post-processing methods are available to reduce eluate volume and remove metal trace impurities. In this work three cation exchange resin based post-processing methods (acetone, ethanol and NaCl) have been compared, using three model precursors (DOTATOC, NO2APBP and DATAm), in terms of labelling yield and reproducibility. The acetone and ethanol based methods provided greater reproducibility and yields that makes subsequent purification unnecessary. - Highlights: • Comparison of different 68Ga post-processing methods through the labelling of DOTATOC, NO2APBP and DATAm. • Comparison in terms of radiochemical yield, reproducibility and radiolysis. • Ethanol and acetone post-processed 68Ga facilitated the highest yields and reproducibility. • Ethanol post-processed 68Ga resulted in the lowest degree of radiolysis of 68Ga-DOTATOC. • Experimenting with different post-processing methods is an important optimisation step. • Ethanol-post processed 68Ga is suitable for clinical application

  8. Separation of stable isotopes of alkali and alkaline earth metals in chemical exchange systems with crown ethers

    International Nuclear Information System (INIS)

    Chemical isotope exchange in two-phase water - organic systems Men+ (water) - MeLn+ (org), where Me = Li, Ca, K, Mg; L = crown ethers with 5 to 6 oxygen atoms in macrocyclic ring; org = CHCl3, CH2Cl2 has been studied. The process of isotope separation has been realized by extraction chromatography. The chromatographic column contained a fixed aqueous phase. The organic solution of metal complex with crown ether was eluted through the column. On contact with the fixed aqueous phase in the course of chromatography, metal salt reextraction occurred and interphase isotope exchange between aqueous and organic phases resulted. Isotope separation factors in these systems were in the range of: 1.0032 - 1.020 (6Li/7Li), 1.0016 - 1.0038 (40Ca/44Ca), 1.0007 - 1.0011 (39K/41K), 1.0014 - 1.0044 (24Mg/26Mg). The theoretical model has been proposed to interpret the high separation factors in crown ether extraction systems. According to this model, the potential in such systems has a very flat bottom. This type of potential results in weakening the force field and decreasing of β-factor (i.e., (s/s')f) in spite of comparatively high energy of complexation. This model can interpret both high separation factors and their strong dependence on the type of crown ether. (author)

  9. Production of {sup 61}Cu using natural cobalt target and its separation using ascorbic acid and common anion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujata Saha; Chattopadhyay, Sankha; Barua, Luna [Radiopharmaceuticals Laboratory, Board of Radiation and Isotope Technology (BRIT), Variable Energy Cyclotron Centre (VECC), Kolkata 700064 (India); Das, Malay Kanti, E-mail: mkdas@vecc.gov.in [Radiopharmaceuticals Laboratory, Board of Radiation and Isotope Technology (BRIT), Variable Energy Cyclotron Centre (VECC), Kolkata 700064 (India)

    2012-02-15

    {sup 61}Cu was produced by {sup nat}Co({alpha}, xn){sup 61}Cu reaction. {sup 61}Cu production yield was 89.5 MBq/{mu}Ah (2.42 mCi/{mu}Ah) at the end of irradiation (EOI). A simple radiochemical separation method using anion exchange resin and ascorbic acid has been employed to separate the product radionuclide from inactive target material and co-produced non-isotopic impurities. The radiochemical separation yield was about 90%. Radiochemical purity of {sup 61}Cu was >99% 1 h after EOI. Final product was suitable for making complex with N{sub 2}S{sub 2} type of ligands. - Highlights: Black-Right-Pointing-Pointer High purity, no-carrier added {sup 61}Cu produced from natural cobalt target. Black-Right-Pointing-Pointer {sup 61}Cu separated from impurities using anion exchange resin and ascorbic acid. Black-Right-Pointing-Pointer {sup 61}Cu preparation was successfully used to label N{sub 2}S{sub 2}-type of ligand.

  10. New anion-exchange resins for improved separations of nuclear materials. Mid-year progress report

    International Nuclear Information System (INIS)

    'The authors are developing multi-functional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. The new ion-exchange resins interface the rapidly developing field of ion-specific chelating ligands with robust, commercial ion exchange technology. The overall objective of the research is to develop a predictive capability which allows the facile design and implementation of multi-functionalized anion exchange materials which selectively sorb metal complexes of interest from targeted process, waste, and environmental streams. The basic scientific issues addressed are actinide complex speciation along with modeling of the metal complex/functional site interactions in order to determine optimal binding-site characteristics. Their approach uses a thorough determination of the chemical species both in solution and as bound to the resin to determine the characteristics of resin active sites which can actively facilitate specific metal-complex sorption to the resin. The first year milestones were designed to allow us to build off of their extensive expertise with plutonium in nitrate solutions prior to investigating other, less familiar systems. While the principle investigators have successfully developed actinide chelators and ion-exchange materials in the past, the authors were fully aware that integration of this two fields would be challenging, rewarding and, at times, highly frustrating. Relatively small differences in the substrate (cross-linkage, impurities), the active sites (percent substitution, physical accessibility), the actinide solution (oxidation state changes, purity) and the analytical procedures (low detection limits) can produce inconsistent sorption behavior which is difficult to interpret. The potential paybacks for success, however, are enormous. They feel that they have learned a great deal about how to control these numerous variables to produce consistent, reliable analysis of

  11. Evaluation of ALIX as an ion exchanger for selective separation of Cs from acidic solution

    International Nuclear Information System (INIS)

    ALIX (Advance Lipophilic Ion Exchanger) is an ammonium molybdophosphate (AMP) based composite material in which AMP is encapsulated in egg box structure formed by hydrophobic polymeric inert substrate. This structure brings the high porosity and mechanical strength. ALIX is loaded with 80% (w/w) of AMP. Studies were carried out to understand the effect of void volume on distribution coefficient of Cs (KdCs). It was found that void volume does not influence the concentration of Cs. Maximum exchange capacity of Cs (CEC) was found to be 0.63 meq/gm. (author)

  12. Sodium titanium silicate as ion exchanger: synthesis, characterization and application in separation of 90Y from 90Sr

    International Nuclear Information System (INIS)

    Full text: Solid phase extraction is a well-established sample pretreatment technique in pharmaceutical and environmental, biomedical and environmental field because it demands less organic solvents and can remove interferences and preconcentrates the objective simultaneously. There are considerable interests in developing new selective sorbents for extracting and isolating components from complicated matrices, and also for the separation of short-lived radio-nuclides from radionuclide generators in an inexpensive method. Many successful studies of site-specific monoclonal antibody labeling involving 90Y have been applied in radioimmuno-therapy. A newly designed and well characterized inorganic ion exchanger, sodium titanium silicate (Na2TiSiO5, H2O) has been employed in the separation of carrier free 90Y from its parent 90Sr from an equilibrium mixture at pH 7.0. The absorbed daughter was recovered by 1.0% EDTA solution as eluting agent successfully. The decay curve of the eluate and the Feather analysis confirmed the presence of carrier free 90Y. This material is quite stable up to 600 deg C. The study of the radiation stability of the exchanger by checking the crystallinity of the material by XRD spectra showed that the exchanger is stable up to a total dose of 64 KGy

  13. Isotope separation of carbon-13 by counter-current column with exchange reaction between carbon dioxide and carbamic acid

    International Nuclear Information System (INIS)

    The isotope separation performance of carbon-13 with exchange reaction between CO2 and carbamic acid was studied and some factors for the counter-current column were studied for improving the overall performance. The working fluid for the experiments was a solution of DNBA, (C4H9)2NH, and n-octane mixture. The rate-controlling step of 13C transfer at temperatures higher than 10 deg C was the exchange reaction between carbamic acid and CO2 dissolved by physical absorption. The capacity coefficient of 13C transfer between gas and liquid in the counter-current column was successfully related to the product of three factors: the concentration of carbamic acid, the concentration of CO2 dissolved by physical absorption and the liquid holdup of the column. The liquid holdup was also an important factor. As the holdup increased, the isotope exchange rate and the overall separation factor of the column increased. However, the transient time to equilibrium was much longer. (author)

  14. Cationic flotation for separating U-bearing phosphorite mineral from uraniferous phosphatic sandstone deposit of Gebel Qatrani, Western desert of Egypt

    International Nuclear Information System (INIS)

    Uraniferous phosphatic sandstone is one of the important radioactive oligocene deposits of Gebel Qatrani, Western desert of Egypt, which is assayed 72,36% SiO2, 9.85% P2O5 and 0.091% of oU. Attrition scrubbing process was utilized to assist in the mild of libration of uraniferous phosphorite locked grains of the crushed oversize fraction (+48 mesh). Cationic flotation using AEROMINE 3037 of American Cynamide Company, diluted with kerosene in ratio 1,2 (wt/wt), and 2.5mg/50g pine oil as frothier were used for separating U-bearing phosphorite as hydrophilic mineral from the associated siliceous gangue minerals at pH 6.5. A proposed flowsheet was designed for production of a high grade uraniferous phosphorite concentrate assaying 32.01% P2O5, 0.39% eU and 5.65% SiO2 with an overall recovery of 71.98%

  15. Kinetics study on separation of cadmium from tellurium in acidic solution media using ion-exchange resins

    International Nuclear Information System (INIS)

    The feasibility of using ion-exchange resins to separate cadmium from tellurium in acidic solutions of the two metals was investigated. We studied the competitive adsorption of cadmium and tellurium in such resins under varying acid strengths and contact time. We found that low sulfuric acid strength (i.e., 0.5 M) was most effective in removing cadmium from solutions. Different ion-exchange resins were tested for their affinity for cadmium and tellurium ions. In the selected systems, the ion-exchange rate of cadmium was rapid in the first 20 min, and reached equilibrium within 2 h. The Lagergren first-order model described the kinetic data with high coefficient of determination and correlation values. At room temperatures the ion-exchange for cadmium onto the resin followed the Freundlich isotherm model. The maximum removal of cadmium obtained from batch studies using resin A was 91%. Column studies with the same resin showed a removal of cadmium of 99.99% or higher

  16. Separation of mono- and di-PEGylate of exenatide and resolution of positional isomers of mono-PEGylates by preparative ion exchange chromatography.

    Science.gov (United States)

    Nguyen, Ngoc-Thanh Thi; Lee, Jae Sun; Yun, Soi; Lee, E K

    2016-07-29

    Exenatide is a synthetic version of the 39-mer peptide of Exendin-4, which is an FDA-approved therapeutic against Type II diabetes mellitus. However, exenatide has a very short in-serum half-life and PEGylation have been performed to improve its in-serum stability. PEGylation often yields multivalent binding to non-specific residues, and the desired species should be carefully separated by chromatographies. In this study, we first devised an aqueous-phase, two-step PEGylation process. This consists of thiolation of Lys 12 and 27 residues followed by attachment of PEG-maleimide (10kD) to thiol groups. This process yields various species: mono-PEGylates with positional isomers, di-PEGylate, and other higher MW substances. A prep-grade cationic exchange chromatography (HiTrap SP) at pH 3.0 partially separated mono- and di-PEGylates based on the molar ratio of conjugated PEG and peptide and thus molecular weight of the conjugates. To further investigate the chromatographic separation of positional isomers of mono-PEGylates, we prepared two kinds of exenatide analogs by point mutation; K12C and K27C. Each analog was mono-PEGylated with very high yield (>95%). When a mixture of the two positional isomers of mono-PEGylates was applied to HiTrap SP chromatography, K12C-PEGylate and K27C-PEGylate eluted separately at 0.22M and 0.33M NaCl, respectively. When the proportions of acid and its conjugate base of the amino acid residues adjacent to the PEGylation site at pH 3.0 were analyzed, K27C-PEGylate shows stronger positive charge than K12C-PEGylate, and we propose the residence time difference between the two mono-PEGylates could be due to the charge difference. ELISA result shows that the immuno-binding activity of both analogs and their mono-PEGylates are well maintained. Furthermore, both mono-PEGylates of the analogs show higher than 50-fold improved anti-trypsin stability. We expect that mono-PEGylates of the exenatide analogs are alternatives to the conventional C40

  17. Contribution to the study of rare earth separation by ion exchange, using ammonium lactate

    International Nuclear Information System (INIS)

    Using the technique of chromatography on a column of Dowex 50 resin, heated to 87 deg. C, we have studied the separation of rare earths (from holmium to praseodymium) which may be produced with the cyclotron by heavy ions, α or protons. From an ammonium lactate solution M at pH 5, separations are carried out by varying the dilution as a function of the quantity of the target rare earth and of its position during elution. When weighable quantities of the rare earth (more than 5 mg) appear towards the end of the elution, the separation is little affected this case approaches that of a tracer mixture of rare earths; if on the other hand weighable quantities of the rare earth are washed through at the beginning of the chromatogram, the dilution must be adjusted in order to obtain a good separation. (author)

  18. Separation and recovery of materials by adsorption and ion exchange. Abtrennung und Rueckgewinnung von Stoffen durch Adsorption und Ionenaustausch

    Energy Technology Data Exchange (ETDEWEB)

    Cornel, P. (Lurgi GmbH, Frankfurt am Main (Germany). Lab. fuer Adsorptionstechnik)

    1991-10-01

    Activated carbons are capble of removing dissolved organics from waste water. They can be used in granular or powdered form, instead of, before, during, or after biological treatment or in water recirculation systems. Usually the adsorbed organics cannot be recovered. Granular activated carbon can be regenerated by thermal reactivation. The use of other adsorbents such as adsorption resins is limited to special cases. Ionic compounds can be removed by ion exchange media. The most common of these are synthetic ion exchange resins. They are used for the treatment of rinse water and pickling effluent. Gold, silver, copper, mercury, chromate, etc. can often be recovered. The degree of separation achieved and the amount of regenerant required - which should be minimized for ecological and economic reasons - depend on process parameters and design. (orig.).

  19. Separation of europium, cobalt and zinc on zirconium tungstate ion exchanger

    International Nuclear Information System (INIS)

    Amorphous zirconium tungstate inorganic ion-exchanger has been prepared under optimum conditions and characterized by IR, X-ray and thermal analysis. Surface area and capacity are determined. It has characteristic IR absorption peaks at 3242, 1628, 955, 868 and 432 cm-1 and is thermally stable up to 450 deg C. Its surface area was 16 m2/g with an exchange capacity of 0.541 meq/g. The sorption of radioactive europium from different media at ambient temperature by the zirconium tungstate (ZW) exchanger has been studied. The aim was to optimize the conditions for sorbing Eu from radioactive waste and cleaned the ZW from for recycling. The effect of contact time, metal concentration, pH and temperature has been measured. Percentual uptake of Eu(III) reaches 95% for HCl at pH 4 and increases with temperature indicating an endothermic sorption process. Uptake of Zn(II) and Co(II) on ZW from acetic acid was found to be 42% and 24% for cobalt and zinc, respectively. Desorption after saturation and the effect of other radioactive ions on the percentual uptake of Eu on ZW were investigated. A solution of 3M HCl releases 90%, 25% and 13% of the loaded Eu(III), Co(II) and Zn(II), respectively. (author)

  20. Changes of mineralogical-chemical composition, cation exchange capacity, and phosphate immobilization capacity during the hydrothermal conversion process of coal fly ash into zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Deyi Wu; Yanming Sui; Xuechu Chen; Shengbing He; Xinze Wang; Hainan Kong [Shanghai Jiao Tong University, Shanghai (China). School of Environmental Science and Engineering

    2008-08-15

    In the search for a technique to augment the nutrient removal capacity of zeolite synthesized from fly ash (ZFA), the present study investigated the changes of mineralogical-chemical composition, cation exchange capacity (CEC), and phosphate immobilization capacity (PIC) during the synthesis process. The ZFAs were obtained as a function of temperature (40-120{sup o}C), liquid/solid ratio (1-18 ml/g), NaOH concentration (0.5-4 mol/L) and reaction time (2-72 h). The formation of low-silica zeolites (P1, hydroxysodalite, and chabazite) and the stability of mullite were observed, causing a marked decrease in SiO{sub 2} content but roughly no change in Al{sub 2}O{sub 3} content during the synthesis process. The decrease in K{sub 2}O, MgO content and the insignificant change in Fe{sub 2}O{sub 3} and TiO{sub 2} content were related to the solubility of the oxides while the increase in Na{sub 2}O and CaO was due to the increase in CEC. A high CEC was achieved under a high temperature, a high liquid/solid ratio, a long reaction time, and an appropriate NaOH concentration (2 mol/L), while a maximum PIC was achieved under relatively mild synthesis conditions instead (e.g., a reasonably short reaction time 10 h). This discrepancy was explained by the fact that different controlling factors/components in ZFA are responsible for CEC (content and kind of zeolite) and PIC (Ca component, specific surface area, and dissociated Fe{sub 2}O{sub 3} and Al{sub 2}O{sub 3}). 20 refs., 4 figs., 2 tabs.

  1. A novel approach to measure elemental concentrations in cation exchange resins using XRF-scanning technique, and its potential in water pollution studies

    Science.gov (United States)

    Huang, Jyh-Jaan; Lin, Sheng-Chi; Löwemark, Ludvig; Liou, Ya-Hsuan; Chang, Queenie; Chang, Tsun-Kuo; Wei, Kuo-Yen; Croudace, Ian W.

    2016-04-01

    X-ray fluorescence (XRF) core-scanning is a fast, and convenient technique to assess elemental variations for a wide variety of research topics. However, the XRF scanning counts are often considered a semi-quantitative measurement due to possible absorption or scattering caused by down core variability in physical properties. To overcome this problem and extend the applications of XRF-scanning to water pollution studies, we propose to use cation exchange resin (IR-120) as an "elemental carrier", and to analyze the resins using the Itrax-XRF core scanner. The use of resin minimizes the matrix effects during the measurements, and can be employed in the field in great numbers due to its low price. Therefore, the fast, and non-destructive XRF-scanning technique can provide a quick and economical method to analyze environmental pollution via absorption in the resin. Five standard resin samples were scanned by the Itrax-XRF core scanner at different exposure times (1 s, 5 s, 15 s, 30 s, 100 s) to allow the comparisons of scanning counts with the absolute concentrations. The regression lines and correlation coefficients of elements that are generally used in pollution studies (Ca, Ti, Cr, Ni, Cu, Zn, and Pb) were examined for the different exposure times. The result shows that within the test range (from few ppm to thousands ppm), the correlation coefficients are all higher than 0.97, even at the shortest exposure time (1 s). Therefore, we propose to use this method in the field to monitor for example sewage disposal events. The low price of resin, and fast, multi elements and precise XRF-scanning technique provide a viable, cost- and time-effective approach that allows large sample numbers to be processed. In this way, the properties and sources of wastewater pollution can be traced for the purpose of environmental monitoring and environmental forensics.

  2. CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.

    Science.gov (United States)

    Baliardini, Cecilia; Meyer, Claire-Lise; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2015-09-01

    Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri × Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Metal ATPase4 as the major genetic determinant for Cd tolerance. However, although necessary, Heavy Metal ATPase4 alone is not sufficient for determining this trait. After fine mapping, a gene encoding a calcium(2+)/hydrogen(+) antiporter, cation/hydrogen(+) exchanger1 (CAX1), was identified as a candidate gene for the second QTL of Cd tolerance in A. halleri. Backcross population1 individuals displaying the A. halleri allele for the CAX1 locus exhibited significantly higher CAX1 expression levels compared with the ones with the A. lyrata allele, and a positive correlation between CAX1 expression and Cd tolerance was observed. Here, we show that this QTL is conditional and that it is only detectable at low external Ca concentration. CAX1 expression in both roots and shoots was higher in A. halleri than in the close Cd-sensitive relative species A. lyrata and Arabidopsis thaliana. Moreover, CAX1 loss of function in A. thaliana led to higher Cd sensitivity at low concentration of Ca, higher sensitivity to methylviologen, and stronger accumulation of reactive oxygen species after Cd treatment. Overall, this study identifies a unique genetic determinant of Cd tolerance in the metal hyperaccumulator A. halleri and offers a new twist for the function of CAX1 in plants. PMID:26162428

  3. CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.1[OPEN

    Science.gov (United States)

    Baliardini, Cecilia; Meyer, Claire-Lise; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2015-01-01

    Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri × Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Metal ATPase4 as the major genetic determinant for Cd tolerance. However, although necessary, Heavy Metal ATPase4 alone is not sufficient for determining this trait. After fine mapping, a gene encoding a calcium2+/hydrogen+ antiporter, cation/hydrogen+ exchanger1 (CAX1), was identified as a candidate gene for the second QTL of Cd tolerance in A. halleri. Backcross population1 individuals displaying the A. halleri allele for the CAX1 locus exhibited significantly higher CAX1 expression levels compared with the ones with the A. lyrata allele, and a positive correlation between CAX1 expression and Cd tolerance was observed. Here, we show that this QTL is conditional and that it is only detectable at low external Ca concentration. CAX1 expression in both roots and shoots was higher in A. halleri than in the close Cd-sensitive relative species A. lyrata and Arabidopsis thaliana. Moreover, CAX1 loss of function in A. thaliana led to higher Cd sensitivity at low concentration of Ca, higher sensitivity to methylviologen, and stronger accumulation of reactive oxygen species after Cd treatment. Overall, this study identifies a unique genetic determinant of Cd tolerance in the metal hyperaccumulator A. halleri and offers a new twist for the function of CAX1 in plants. PMID:26162428

  4. Functionalized alkynyl-chlorogermanes: hydrometallation, Ge-Cl bond activation, Ge-H bond formation and chlorine-tert-butyl exchange via a transient germyl cation.

    Science.gov (United States)

    Honacker, Christian; Qu, Zheng-Wang; Tannert, Jens; Layh, Marcus; Hepp, Alexander; Grimme, Stefan; Uhl, Werner

    2016-04-14

    Treatment of alkynyl-arylchlorogermanes ArylnGe(Cl)(C[triple bond, length as m-dash]C-(t)Bu)3-n (n = 1, 2) with HM(t)Bu2 (M = Al, Ga) yielded mixed Al or Ga alkenyl-alkynylchlorogermanes via hydrometallation reactions. Intramolecular interactions between the Lewis-basic Cl atoms and the Lewis-acidic Al or Ga atoms afforded MCGeCl heterocycles. The endocyclic M-Cl distances were significantly lengthened compared to the starting compounds and indicated Ge-Cl bond activation. Dual hydrometallation succeeded only with HGa(t)Bu2. One Ga atom of the product was involved in a Ga-Cl bond, while the second one had an interaction to a C-H bond of a phenyl group. In two cases treatment of chlorogermanes with two equivalents of HAl(t)Bu2 resulted in hydroalumination of one alkynyl group and formation of unprecedented Ge-H functionalized germanes, Aryl-Ge(H)(C[triple bond, length as m-dash]C-(t)Bu)[C(Al(t)Bu2)[double bond, length as m-dash]C(H)-(t)Bu] (Aryl = mesityl, triisopropylphenyl). The Al atoms of these compounds interacted with the α-C atoms of the alkynyl groups. Ph(Cl)Ge(C[triple bond, length as m-dash]C-(t)Bu)[C(Al(t)Bu2}[double bond, length as m-dash]C(H)-(t)Bu] reacted in an unusual Cl/(t)Bu exchange to yield the tert-butylgermane Ph((t)Bu)Ge(C[triple bond, length as m-dash]C-(t)Bu)[C{Al((t)Bu)(Cl)}[double bond, length as m-dash]C(H)-(t)Bu]. Quantum chemical calculations suggested the formation of a germyl cation as a transient intermediate. PMID:26610394

  5. 襄阳市农田土壤阳离子交换量的测定及分析%Measurement and analysis of farmland soil cation exchange capacity in Xiangyang

    Institute of Scientific and Technical Information of China (English)

    赵翔

    2016-01-01

    Soil cation exchange capacity ( CEC) can reflect the level of soil fertility, fertilizer retention capacity and buffering capacity. Throughinvestigation, sampling and laboratory analysis of soil cation exchange capacity of 16 spot in Xiangyang city, we discovered that the CEC of Xiangyang soil are concentrated in the 15-20 cmol/kg , which belongs to the medium fertility soil. At the same time, through the determination of soil physiochemical indexes, such as the content of soil organic matter,PH value, we discovery that they are very good cor-relation to soil cation exchange capacity.%土壤阳离子交换量CEC能够综合反映土壤肥力水平、保肥能力和缓冲能力。通过对襄阳市16个点位农田土壤实地调查、采集及实验室分析测定土壤阳离子交换量,发现襄阳市农田土壤阳离子交换量多集中在15-20 cmol/kg,属于中等偏上保肥能力土壤,同时通过测定土壤有机质含量,PH值等土壤理化指标,发现与土壤阳离子交换量存在很好的相关性。

  6. 非水毛细管电泳分离碱金属、碱土金属和铵离子的机理研究%Investigation on Mechanism for Separation of Alkali, Alkaline Metal and Ammonium Cations in Nonaqueous Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    刘红霞; 宋鹃梅; 张书胜; MACKA Miroslav; HADDAD Paul R

    2004-01-01

    Capillary electrophoresis ( CE ) has rapidly gained great interests among researchers in many different fields. One of these areas is the separation of small ions such as inorganic cations, anions, and low Mr organic molecules However, as the separation of ions

  7. Separation and sampling technique of light element isotopes by chemical exchange process

    International Nuclear Information System (INIS)

    Lithium and boron isotope separation technique were studied. Granulation of lithium isotope separation agent was carried out by cure covering in solution. Separation of lithium isotope was stepped up by ammonium carbonate used as elusion agent. Styrene and ester resin derived three kinds of agents such as 2-amino-1, 3-propanediol (1, 3-PD), 2-amino-2-methyl-1, 3-propanediol (Me-1,3-PD) and tris(2-hydroxyethyl)amine (Tris) were used as absorbent.The ester resin with Tris showed larger amount of adsorption (1.4 mmol/g) than other resins. However, all resins with agent indicated more large adsorption volume of boron than the objective value (0.5 mmol/g). Large isotope shift was shown by the unsymmetrical vibration mode of lithium ion on the basis of quantum chemical calculation of isotope effect on dehydration of hydrated lithium ion. (S.Y.)

  8. Separation and purification of 106Ru from effluent streams of ion exchange cycle used for Pu purification in PUREX process

    International Nuclear Information System (INIS)

    Present paper describes the separation and purification of extracted fraction of Ru using separation techniques namely solvent extraction and extraction chromatography. The feed solution used is ion exchange effluent solution collected from Plant that contained 106Ru activity of ∼ 100 mCi/L level along with 95Nb (∼ 0.29 mCi/L) and Pu (∼ 1.5mg/L) at 7.1 M HNO3. In the initial step, the feed solution is contacted ice with 30% TBP in n-dodecane at organic to aqueous phase ratio of 2:1. The raffinate from this step shows that the free acidity of the solution is reduced from 7.1 to 4.2 M without loosing the Ru activity in the feed

  9. Analytical applications of a liquid anion-exchanger for the separation of uranium(IV) in malonate solution.

    Science.gov (United States)

    Dalvi, M B; Khopkar, S M

    1978-10-01

    Uranium was quantitatively extracted with 4% Amberlite LA-1 in xylene at pH 2.5-4.0 from 0.001 M malonic acid. It was stripped from the organic phase with 0.01 M sodium hydroxide and determined spectrophotometrically at 530 nm as its complex with 4-(2-pyridylazo) resorcinol. Of various liquid anion-exchangers tested, Amberlite LA-1 was found to be best. Uranium was separated from alkali and alkaline earth metal ions, thallium(I), iron(II), silver, arsenic(III) and tin(IV) by selective extraction, and from zinc, cadmium, nickel, copper(II), cobalt(II), chromium(III), aluminium, iron(III), lead, bismuth, antimony(III) and yttrium by selective stripping. The separation from scandium, zirconium, thorium and vanadium(V) was done by exploiting differences in the stability of chloro-complexes. PMID:18962334

  10. An improved ion-exchange separation of rare-earth elements for spectrographic analysis

    International Nuclear Information System (INIS)

    Rare-earth elements are separated from scandium and base metals by adsorption onto anion resin BIORAD AG1-X8 in the nitrate form from a mixture of 5 per cent 7M nitric acid and 95 per cent methanol. The yttrium subgroup is eluted with a mixture of 45 per cent 7M nitric acid and 55 per cent methanol, followed by elution of the cerium subgroup with 8M nitric acid. This separation facilitates the determination of the traces of the heavier yttrium subgroup of rare-earth elements

  11. Effect of alcohols on separation behavior of rare earth elements using benzimidazole-type anion-exchange resin in nitric acid solutions

    International Nuclear Information System (INIS)

    Chromatographic separation experiments of trivalent rare earth elements were performed using benzimidazole type anion-exchange resin in nitric/alcohol mixed solvent systems at room temperature. As a result, it was found those trivalent rare earth elements are able to be separated mutually in a 20% HNO3 and 80% MeOH mixed solvent. Based on these results, we systematically examined using various alcohols to make clear the role of alcohols in anion-exchange reactions at various temperatures. (author)

  12. Separation of plutonium on the anion exchanger BIO-RAD 1-X2 and its application to radiochemical analysis

    International Nuclear Information System (INIS)

    The element Pu (Z = 94) is a member of the actinide series of the elements (Z = 89 -103). The actinides have similar chemical properties and are also similar to the lanthanides (Z = 57 -71). Sixteen isotopes of Pu have been synthesized, all of which are radioactive. The Pu present in the environment originates from the atmospheric nuclear tests from 1950 to 1963, which produced the so-called 'global fallout'. As a result, 6.5 · 1015 Bq 239Pu (2.8 tons), 4.4 · 1015 Bq 240Pu (0.52 tons), and 3.7 · 104 Bq 241Pu (0.04 tons) were dispersed over the world. A contribution also to the global fallout was the ignition of the satellite SWAP 9A in the atmosphere in 1964, equipped with a battery powered by 6.3 · 1014 Bq (1 kg) of 238Pu. In addition to these sources, nuclear reactors, reprocessing plants and radioactive waste facilities may contribute with their emissions to increase locally the Pu concentration in their environment. In the PSI laboratory, we are confronted with the determination of traces of 238Pu, 239Pu and 240Pu in environmental and biological materials. Because of the low quantity of Pu in the analyzed samples, which is usually below 100 mBq, it is mandatory to separate the Pu from all other accompanying elements. The separated Pu is then measured by alpha spectrometry. In this work, the anion exchanger BIO-RAD AG 1 is extensively used for the separation of Pu from different matrices. This exchanger is superior when only Pu is determined in the sample. In addition, it is also very suitable when other actinides, such as Am and Cm, are also determined. No preconcentration step is necessary for the Pu separation. The resins introduced by the company Eichrom Industries in the 90's, which allow the separation of the actinides from the major environmental elements and from each other, requires relatively small volumes of sample solution. This report describes the extensive utilization of the classical anion exchanger BIO-RAD 1-X2 in 8 molar nitric acid for the

  13. Direct determination of seleno-amino acids in biological tissues by anion-exchange separation and electrochemical detection.

    Science.gov (United States)

    Cavalli, S; Cardellicchio, N

    1995-07-01

    Several studies have described the determination of selenium in protein extracts from tissues of marine or terrestrial animals, but have not identified the different chemical forms of selenium that are present. Selenium may be present as seleno-amino acids. Selenocysteine, for example, is a normal component of glutathione peroxidase, an antioxidant enzyme which may behave like other antioxidants, such as vitamin E, protecting tissues against methylmercury toxicity. The present study illustrates a method for the characterization of seleno-amino acids, such as selenocysteine and selenomethionine, in proteins extracted from the liver of marine mammals. The mechanism of detoxification of methylmercury, which involves seleno-compounds, is identified. The analytical determination was carried out using high-performance anion-exchange chromatography coupled with integrated pulsed amperometric detection (HPAEC-IPAD). This method allows the direct determination of underivatized amino acids, eliminating the procedure of pre- or postcolumn derivatization. The chromatographic separation was carried out on an anion-exchange column using a quaternary gradient elution. In order to optimize this method, interferences of amino acids and the influence of pH and ionic strength on the separation and electrochemical detection were studied. The IPAD response for the direct detection of amino acids is optimum at pH > 11. The detection limit (S/N = 3) for selenocysteine was found to be 450 micrograms/l. The application of this method for the identification of seleno-amino acids in protein hydrolysates is also shown. PMID:7640774

  14. Ion-Exchange Separation of Calcium and Strontium and its Application to Strontium-90 Determination in Milk

    International Nuclear Information System (INIS)

    Ion-exchange technique has been used for the successful separation of calcium and strontium in milk ash. Initially the technique was tested using a solution containing approximately the same amount of calcium and strontium as in 5 g of milk ash. This solution was spiked with 45Ca and 90Sr. A known amount of milk ash sample was also spiked to provide a control. Milk ash was dissolved in nitric acid and the alkaline earth elements were precipitated in their carbonate form which in turn were dissolved in hydrochloric acid and passed through a column of Zeo-Carb 225 x 8,200 mesh at pH 2.5. Calcium and strontium were eluted with ammonium lactate at room temperature. Determination of strontium eluted by ammonium lactate is a lengthy and difficult procedure because the organic complex must be evaporated and ashed carefully. To avoid this difficulty, strontium elution with hydrochloric acid was tried and found to be both effective and convenient. On the other hand, ammonium lactate elution has the advantage that small changes in pH do not appreciably affect the elution. In both cases the distance between the elution curves for calcium and strontium was found to be quite large, thus enabling a quantitative separation. With hydrochloric acid, however, the distance is larger and the strontium elution curve is sharper, requiring a smaller volume of eluant. Strontium yields are satisfactory and there is good agreement between the ion-exchange method developed here and the method of fuming nitric acid. The ion-exchange technique avoids many of the difficulties of the conventional method of fuming nitric acid. The amount of work and chemicals required are considerably reduced in the new procedure. (author)

  15. Separation of 54Mn from Irradiated Natural Fe2O3 Using Anion Exchange Resin

    International Nuclear Information System (INIS)

    Preparation of radioisotope from natural target has an advantage namely the production is cheaper, but the produced radioisotope may content radionuclidic impurities. Preparation of 54Mn from irradiated natural Fe2O3 has a problem due to 59Fe impurity. The separation of 54Mn from irradiated natural Fe2O3 has been carried out by means of solving irradiated target using HCl and dowex resin 1 x 8 Cl form. The separation of 54Mn from irradiated natural Fe2O3 showed a good result by 8 N HCl concentration and 90 minute contact time and efficiency was 7.55 % 54Mn and 94.13 % for 59Fe. (author)

  16. Separations on a cellulose exchanger with salicylic acid as functional group

    International Nuclear Information System (INIS)

    The use of a cellulose compound containing salicylic acid as functional group (capacity 0.6 mequ./g) for different problems is described. The seperations Fe3+/Cu2+ and Cu2+/Ni2+ in aqueous solutions are achieved smoothly at pH 2 and 2.5 resp. In organic solvents (pyridine) copper ions are separated from copper complexes as shown by the examples Cu2+/[Cu(mnt)2]2- (mnt = maleonitril-1,2-dithiolate) and Cu2+/dibenzo[b.i.][5.9.14.18]tetraazacyclotetradecene-copper [Cu(chel)]. The complex [Cu(mnt)2]2- can be labelled with Cu-64 on a separation column, whereas [Cu-(chel)] is substition inert. (orig.)

  17. Extensive separations (CLEAN) processing strategy compared to TRUEX strategy and sludge wash ion exchange

    International Nuclear Information System (INIS)

    Numerous pretreatment flowsheets have been proposed for processing the radioactive wastes in Hanford's 177 underground storage tanks. The CLEAN Option is examined along with two other flowsheet alternatives to quantify the trade-off of greater capital equipment and operating costs for aggressive separations with the reduced waste disposal costs and decreased environmental/health risks. The effect on the volume of HLW glass product and radiotoxicity of the LLW glass or grout product is predicted with current assumptions about waste characteristics and separations processes using a mass balance model. The prediction is made on three principal processing options: washing of tank wastes with removal of cesium and technetium from the supernatant, with washed solids routed directly to the glass (referred to as the Sludge Wash C processing strategy); the previous steps plus dissolution of the solids and removal of transuranic (TRU) elements, uranium, and strontium using solvent extraction processes (referred to as the Transuranic Extraction Option C (TRUEX-C) processing strategy); and an aggressive yet feasible processing strategy for separating the waste components to meet several main goals or objectives (referred to as the CLEAN Option processing strategy), such as the LLW is required to meet the US Nuclear Regulatory Commission Class A limits; concentrations of technetium, iodine, and uranium are reduced as low as reasonably achievable; and HLW will be contained within 1,000 borosilicate glass canisters that meet current Hanford Waste Vitrification Plant glass specifications

  18. Extensive separations (CLEAN) processing strategy compared to TRUEX strategy and sludge wash ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, B.J.; Jansen, G.; Zimmerman, B.D.; Seeman, S.E. [Westinghouse Hanford Co., Richland, WA (United States); Lauerhass, L.; Hoza, M. [Pacific Northwest Lab., Richland, WA (United States)

    1994-08-01

    Numerous pretreatment flowsheets have been proposed for processing the radioactive wastes in Hanford`s 177 underground storage tanks. The CLEAN Option is examined along with two other flowsheet alternatives to quantify the trade-off of greater capital equipment and operating costs for aggressive separations with the reduced waste disposal costs and decreased environmental/health risks. The effect on the volume of HLW glass product and radiotoxicity of the LLW glass or grout product is predicted with current assumptions about waste characteristics and separations processes using a mass balance model. The prediction is made on three principal processing options: washing of tank wastes with removal of cesium and technetium from the supernatant, with washed solids routed directly to the glass (referred to as the Sludge Wash C processing strategy); the previous steps plus dissolution of the solids and removal of transuranic (TRU) elements, uranium, and strontium using solvent extraction processes (referred to as the Transuranic Extraction Option C (TRUEX-C) processing strategy); and an aggressive yet feasible processing strategy for separating the waste components to meet several main goals or objectives (referred to as the CLEAN Option processing strategy), such as the LLW is required to meet the US Nuclear Regulatory Commission Class A limits; concentrations of technetium, iodine, and uranium are reduced as low as reasonably achievable; and HLW will be contained within 1,000 borosilicate glass canisters that meet current Hanford Waste Vitrification Plant glass specifications.

  19. Chemical studies on polyaniline titanotungstate as a new composite cation exchanger and its analytical applications for removal of cesium from aqueous solutions

    International Nuclear Information System (INIS)

    Polyaniline titanotungstate has been synthesized by incorporation of organic polymer polyaniline into the inorganic precipitate of titanotungstate. This material was characterized using IR, X-Ray, SEM and DTA-TGA analysis. The influences of initial concentration of metal ions, particle size and temperature have been reported. The material stability was investigated in water, acids, alkaline solutions, and at high temperature up to 850 degree C. Ion-exchange capacity and distribution coefficients (Kd) for ten metal ions have been determined. It was found that the polyaniline titanotungstate has high affinity and high selectivity for Cs+. The material has high separation for Cs+ ion from other metal ions. The comparison of composite (PATiW) and inorganic material (TiW) was studied and indicated that the composite material is better than the inorganic one in selectivity of Cs+. Thermodynamic parameter of Cs+ exchange process, such as changes in Gibbs free energy (δGo), enthalpy (δHo), and entropy (δSo) have been calculated. It was found that numerical value of δG decrease with an increase in temperature,indicating that the sorption reaction of adsorbent was spontaneous and more favorable at higher temperature. The positive value of δHo corresponds to the endothermic nature of sorption processes and suggested that chemisorptions were the predominant mechanism. A comparison of kinetic models applied to the sorption rate data of Cs+ was evaluated for the pseudo first-order, pseudo second-order, homogeneous particle diffusion, shell model and intraparticle diffusion models. The results showed that Cs+ is sorption onto PATiW and TiW with particle diffusion mechanism. Self diffusion coefficient (Di), Activation energy (Ea) and entropy (δS*) of activation were also computed from thelinearized form of Arrhenius equation. Column studies in acid and alkaline solutions were studied. A kinetic study for removal cesium from milk was investigated.

  20. Effects of Land Use Practices on the Organic Carbon Content, Cation Exchange Capacity and Aggregate Stability of Soils in the Catchment Zones

    Directory of Open Access Journals (Sweden)

    Mosayeb Heshmati

    2011-01-01

    Full Text Available Problem statement: Land use practice leads to changes in the physico-chemical properties of soils, such as Soil Organic Carbon (SOC, Cation Exchange Capacity (CEC and Soil Aggregate Stability (SAS that cause soil erosion. Approach: Merek catchment, Iran suffers from land degradation due to poor land use practice. A study was carried out with the objectives: (i to determine soil nutrient status in different agro-ecological zones in Merek catchment; and (ii to evaluate the influence of land use practices on SOC, CEC and SAS. Results: It was found that soil texture was silty and clay, while soil reaction was alkaline (pH was 7.75. The respective amount of carbonates was 32 and 36% in the top-soil and sub-soil respectively, indicating high level of alkalinity in the soils of the study area. The mean SAS of the surface soil layer for agriculture, rangeland and forest was 53, 61 and 64%, respectively with its mean in the topsoil of agriculture is significantly lower (P≤0.05 than the other zones. SOC level in the agriculture, rangeland and forest were 1.35, 1.56, 2.14 % in the topsoil and 1.03, 1.33 and 1.45%, in the subsoil of the respective areas. The results of t-test and ANOVA analyses showed that SOC means are significantly different from each other within soil depth and among agro-ecological zones. The CEC in the agriculture, rangeland and forest areas were 25.8, 24.6 and 35.1 cmolckg-1 for the top-soil and 31.1, 26.8 and 26.9 cmolckg-1 in the sub-soil, respectively. All the above changes are due to the negative effects of agricultural activities. Conclusion: Improper tillage practice (up-down the slope, conversion of the rangeland and forest to rain-fed areas, crop residue burning, over grazing and forest clearance contribute to reduction in SOC and SAS in the Merek catchment, Iran.