WorldWideScience

Sample records for cation exchange capacity

  1. Determining the cation exchange capacity of montmorillonite by simultaneous thermal analysis method

    Science.gov (United States)

    Boeva, N. M.; Bocharnikova, Yu. I.; Belousov, P. E.; Zhigarev, V. V.

    2016-08-01

    A way of determining the cation exchange capacity of montmorillonite by simultaneous thermal analysis is developed using as an example the bentonites of the 10th Khutor deposit (Republic of Khakassia) and the Vodopadnyi area (Sakhalin Island). A correlation is established between the cation exchange capacity of smectite and its weight loss upon heating in the range of dehydration; the enthalpy of dehydration of montmorillonite; and the weight loss and the enthalpy of thermal dissociation of ethylene glycol contained in the interlayer space of the mineral's crystal structure. These data open up new possibilities for determining the cation exchange capacity of montmorillonite, the most important technological indicator of the natural clay nanomineral.

  2. Effect of Lanthanum Accumulation on Cation Exchange Capacity and Solution Composition of Red Soil

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Pot and adsorption-exchange experiments were carried out by collecting the soil samples from the surface layer (0~15 cm) of red soil at the Ecological Experiment Station of Red Soil, the Chinese Academy of Sciences, in Jiangxi Province of China. When concentration of the exogenous La3+ exceeded 400 mg kg-1, there was less non-exchangeable La3+ than exchangeable La3+ in the soil. Cation exchange capacity of the soil changed slightly with increasing concentration of the exogenous La3+ in both experiments. However, in the adsorption-exchange experiment, when concentration of the exogenous La3+ was higher than 300 mg kg-1, exchangeable basic cations decreased significantly, while exchangeable hydrogen and exchangeable aluminum increased significantly compared with the control treatments. The amounts of base cations (Ca2+, Mg2+, K+ and Na+) exchanged by La3+ in the supernatant solution increased with the concentration of the exogenous La3+, especially when concentration of the exogenous La3+ was higher than 50 mg kg-1.

  3. Preliminary studies of the total cation exchange capacity of sediments from two North Atlantic study sites

    International Nuclear Information System (INIS)

    Initially four different methods of measuring total cation exchange capacity were compared. There were two chemical methods (ammonium saturation with displacement into seawater, and barium saturation followed by replacement with magnesium) and two radiochemical methods (sodium-22 and caesium-134 saturation). The barium-magnesium and sodium-22 methods were then applied to sediment samples from Core D10164Pound1K from the Nares Fracture Valley, and Core D10554Pound11K from the eastern flank of the Great Meteor Rise. The material at site 10164 is a pelagic clay whereas at site 10554 it is carbonate ooze. The total cation exchange capacities (T.C.E.C.) of samples from the two sites are similar when measured by the sodium-22 method, the mean for Core 10164 was 21.7 meq/100g and 24.4 meq/100g for Core 10554. However for Core 10554 the barium-magnesium method gives a mean of 42.8 meq/100g. The difference in T.C.E.C. measured by the two methods appears to be due to the high calcite content of core 10554 sediment. Measured exchange capacities are lower than in coastal sediments. In deep sea sediments organic matter either makes a very small contribution to the T.C.E.C. (core 10164) or actually blocks exchange sites (Core 10554). Amorphous oxides of iron and manganese contribute between 20 and 50% of the T.C.E.C. (author)

  4. Reducing the Cation Exchange Capacity of Lithium Clay to Form Better Dispersed Polymer-Clay Nanocomposites

    Science.gov (United States)

    Liang, Maggie

    2004-01-01

    Polymer-clay nanocomposites have exhibited superior strength and thermo- oxidative properties as compared to pure polymers for use in air and space craft; however, there has often been difficulty completely dispersing the clay within the matrices of the polymer. In order to improve this process, the cation exchange capacity of lithium clay is first lowered using twenty-four hour heat treatments of no heat, 130 C, 150 C, or 170 C to fixate the lithium ions within the clay layers so that they are unexchangeable. Generally, higher temperatures have generated lower cation exchange capacities. An ion exchange involving dodecylamine, octadecylamine, or dimethyl benzidine (DMBZ) is then employed to actually expand the clay galleries. X-ray diffraction and transmission electron microscopy can be used to determine whether the clay has been successfully exfoliated. Finally, resins of DMBZ with clay are then pressed into disks for characterization using dynamic mechanical analyzer and oven- aging techniques in order to evaluate their glass transition, modulus strength, and thermal-oxidative stability in comparison to neat DMBZ. In the future, they may also be tested as composites for flexural and laminar shear strength.

  5. Radial variations in cation exchange capacity and base saturation rate in the wood of pedunculate oak and European beech

    Energy Technology Data Exchange (ETDEWEB)

    Herbauts, J.; Penninckx, V.; Gruber, W.; Meerts, P. [Universite Libre de Bruxelles, Laboratoire de genetique et d' ecologie vegetales, Brussels (Belgium)

    2002-10-01

    Visual observation of pedunculate oak trees and European beech trees in a mixed forest stand in the Belgian Ardennes revealed decreasing cation concentration profiles in wood. In order to determine whether these profiles are attributable to endogenous factors or to decreased availability of cations in the soil, radial profiles of water-soluble, exchangeable and total cations were investigated. Cation exchange capacity of wood was also determined. Results showed wood cation exchange capacity to decrease from pith to bark in European beech and from pith to outer heartwood in pedunculate oak. Decreasing profiles of exchangeable calcium and magnesium in peduncular oak and exchangeable calcium in European beech were found to be strongly constrained by cation exchange capacity, and thus not related to environmental change. Base cation saturation rate showed no consistent radial change in either species. It was concluded that the results did not provide convincing evidence to attribute the decrease in divalent cation concentration in pedunculate oak and European beech in this location to be due to atmospheric pollution. 42 refs., 1 tab., 4 figs.

  6. Preparation and characterization of high capacity, strong cation-exchange fiber based adsorbents.

    Science.gov (United States)

    Schwellenbach, Jan; Taft, Florian; Villain, Louis; Strube, Jochen

    2016-05-20

    Motivated by the demand for more economical capture and polishing steps in downstream processing of protein therapeutics, a novel strong cation-exchange chromatography stationary phase based on polyethylene terephthalate (PET) high surface area short-cut fibers is presented. The fiber surface is modified by grafting glycidyl methacrylate (GMA) via surface-initiated atom transfer radical polymerization (SI-ATRP) and a subsequent derivatization leading to sulfonic acid groups. The obtained cation-exchange fibers have been characterized and compared to commercially available resin and membrane based adsorbers. High volumetric static binding capacities for lysozyme (90mg/mL) and polyclonal human IgG (hIgG, 92mg/mL) were found, suggesting an efficient multi-layer binding within the grafted hydrogel layer. A packed bed of randomly orientated fibers has been tested for packing efficiency, permeability and chromatographic performance. High dynamic binding capacities for lysozyme (50mg/mL) and hIgG (54mg/mL) were found nearly independent of the bed-residence time, revealing a fast mass-transport mechanism. Height equivalent to a theoretical plate (HETP) values in the order of 0.1 cm and a peak asymmetry factor (AF) of 1.8 have been determined by tracer experiments. Additionally inverse size-exclusion chromatography (iSEC) revealed a bimodal structure within the fiber bed, consisting of larger transport channels, formed by the voidage between the fibers, and a hydrogel layer with porous properties. PMID:27106396

  7. The Cation Exchange Capacity of Fibrous Feedstuff and Its Nutritive Characteristics

    Institute of Scientific and Technical Information of China (English)

    XING Ting-xian

    2003-01-01

    Current researches on the nutritive characteristics of fibrous feedstuff through determining thefeedstuff cation exchange capacity (CEC) to evaluate its nutritive value at home and abroad were comprehen-sively discribed, and the methods of determining CEC value and the correlation between CEC value and chemi-cal compositions, pH value, and the effect of CEC value on the digestion kinetics in ruminants were also em-phatically introduced. The results of research showed that the CEC values of different feedstuff are different,closely correlated with nitrogen and acid detergent fibre (ADF) and lignin (LIG) content of the feedstuff. Atthe same time, there are markedly effect of CEC value in diet on the nutrients flow of digesta in the digestivetract of ruminants, the degradation rate and digestibility of nutrients in the rumen.

  8. Synthesis of high capacity cation exchangers from a low-grade Chinese natural zeolite

    International Nuclear Information System (INIS)

    The Chinese natural zeolite, in which clinoptilolite coexists with quartz was treated hydrothermally with NaOH solutions, either with or without fusion with NaOH powder as pretreatment. Zeolite Na-P, Na-Y and analcime were identified as the reacted products, depending on the reaction conditions such as NaOH concentration, reaction time and hydrothermal temperature. The products were identified by X-ray diffraction, and characterized by Fourier transform IR and ICP. With hydrothermal treatment after fusion of natural zeolite with NaOH, high purity of zeolite Na-Y and Na-P can be selectively formed, their cation exchange capacity (CEC) are 275 and 355 meq/100 g respectively, which are greatly higher than that of the natural zeolite (97 meq/100 g). Furthermore, the ammonium removal by the synthetic zeolite Na-P in aqueous solution was also studied. The equilibrium isotherms have been got and the influence of other cations present in water upon the ammonia uptake suggested an order of preference Ca2+ > K+ > Mg2+.

  9. Effects of Acetate on Cation Exchange Capacity of a Zn-Containing Montmorillonite : Physicochemical Significance and Metal Uptake

    NARCIS (Netherlands)

    Stathi, P.; Papadas, I. T.; Enotiadis, A.; Gengler, R. Y. N.; Gournis, D.; Rudolf, P.; Deligiannakis, Y.

    2009-01-01

    Fundamental properties such as cation exchange capacity (CEC), permanent charge, pH(PZC), and metal uptake of a Zn-containing montmorillonite are modified, in a predictable manner, by a mild chemical treatment using acetate. Acetate treatment allows a controllable increase of the CEC of montmorillon

  10. Adsorption of reovirus to clay minerals: effects of cation-exchange capacity, cation saturation, and surface area.

    OpenAIRE

    Lipson, S M; Stotzky, G

    1983-01-01

    The adsorption of reovirus to clay minerals has been reported by several investigators, but the mechanisms defining this association have been studied only minimally. The purpose of this investigation was to elucidate the mechanisms involved with this interaction. More reovirus type 3 was adsorbed, in both distilled and synthetic estuarine water, by low concentrations of montmorillonite than by comparable concentrations of kaolinite containing a mixed complement of cations on the exchange com...

  11. Short communication: Predicting cation exchange capacity from hygroscopic moisture in agricultural soils of Western Europe

    Directory of Open Access Journals (Sweden)

    José Torrent

    2015-12-01

    Full Text Available Soil cation exchange capacity (CEC depends on the extent and negative charge density of surfaces of soil mineral and organic components. Soil water sorption also depends on the extent of such surfaces, giving thus way to significant relationships between CEC and hygroscopic moisture (HM in many soils. In this work, we explored whether CEC could be accurately predicted from HM in agricultural soils of Mediterranean and humid temperate areas in Western Europe. For this purpose, we examined 243 soils across a wide variation range of their intrinsic properties. Soil CEC was determined using 1 M ammonium acetate at pH 7 and HM at an equilibrium air relative humidity (RH of 43% (HM43. Most of the variation of soil CEC was explained by HM43 through a linear function (CEC = 1.4 + 0.78HM43; R2 = 0.962; standard deviation = 2.30 cmolc/kg. Coefficients of the regression equation were similar for subgroups of soils differing in moisture regime, clay mineralogy, carbonate content and organic carbon content. Therefore, soil hygroscopic moisture measurements at a fixed RH level provided a simple, robust, inexpensive method for predicting soil CEC.

  12. A Sensitivity Analysis of ANN Pedotransfer Functions for spatial modeling of Soil Cation Exchange Capacity

    Directory of Open Access Journals (Sweden)

    A. KESHAVARZI

    2010-12-01

    Full Text Available The development of models simulating soil processes has increased rapidly in recent years. These models havebeen developed to improve the understanding of important soil processes and also to act as tools for evaluatingagricultural and environmental problems. In this research, an artificial neural network (ANN model was developed topredict of soil Cation Exchange Capacity (CEC which was called neural kriging (NK by easily measurablecharacteristics of clay and organic carbon. 134 soil samples were collected from different horizons of 34 soil profileslocated in the Ziaran region, Qazvin province, Iran. The data set was divided into two subsets for calibration (75% andtesting (25% of the model. In order to evaluate the model, root mean square error (RMSE and R2 were used. The valueof RMSE and R2 derived by ANN model were 0.04 and 0.97, respectively. The comparison of RMSE and R2 forvarious ANN models showed that the ANN model with three neurons in hidden layer gives better estimates of soilCEC. Sensitivity analysis was also conducted to investigate the effects of various explanatory parameters on the output.The results indicated that CEC variation was more sensitive to clay content than OC variable. For geostatisticalanalyzing, sampling was done with stratified random method and 34 soil samples from 0 to 15 cm depth were collectedwith auger within 34 locations. For comparing and evaluation of neural kriging and ordinary kriging methods, crossvalidation was used by statistical parameters of RMSE and correlation coefficient (r for test data set. The resultsshowed that neural kriging method has the higher correlation coefficient (0.96 and less RMSE (1.22 than ordinarykriging method in predicting and spatial mapping of soil CEC in unsampled areas.

  13. Spatial Variability of Soil Cation Exchange Capacity in Hilly Tea Plantation Soils Under Different Sampling Scales

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Studies on the spatial variability of the soil cation exchange capacity (CEC) were made to provide a theoretical basis for an ecological tea plantation and management of soil fertilizer in the tea plantation. Geostatistics were used to analyze the spatial variability of soil CEC in the tea plantation site on Mengding Mountain in Sichuan Province of China on two sampling scales. It was found that, (1) on the small scale, the soil CEC was intensively spatially correlative, the rate of nugget to sill was 18.84% and the spatially dependent range was 1 818 m, and structural factors were the main factors that affected the spatial variability of the soil CEC; (2) on the microscale, the soil CEC was also consumingly spatially dependent,and the rate of nugget to sill was 16.52%, the spatially dependent range was 311 m, and the main factors affecting the spatial variability were just the same as mentioned earlier. On the small scale, soil CEC had a stronger anisotropic structure on the slope aspect, and a weaker one on the lateral side. According to the ordinary Kriging method, the equivalence of soil CEC distributed along the lateral aspect of the slope from northeast to outhwest, and the soil CEC reduced as the elevation went down. On the microscale, the anisotropic structure was different from that measured on the small scale. It had a stronger anisotropic structure on the aspect that was near the aspect of the slope, and a weaker one near the lateral aspect of the slope. The soil CEC distributed along the lateral aspect of the slope and some distributed in the form of plots.From the top to the bottom of the slope, the soil CEC increased initially, and then reduced, and finally increased.

  14. Effect of efficient microorganisms on cation exchange capacity in acacia seedlings (Acacia melanoxylon) for soil recovery in Mondonedo, Cundinamarca

    International Nuclear Information System (INIS)

    We determined the effect of efficient microorganisms (EM) on the cation exchange capacity for soil recovery in the municipality of Mondonedo, Cundinamarca. A greenhouse unit was installed in order to maintain stable conditions. After harvesting, sifted and homogenization of the soil sample, initial physical and chemical analyses were made. For the experimental units we used Acacia melanoxylon seedlings from Zabrinsky. A completely randomized design was done with eight treatments and three repetitions. For the maintenance and monitoring of the seedlings behaviour, a frequency of irrigation of three times per week was found. The application of the EM was done during three months: in the first month, it was applied four times (once a week); during the second month, it was applied twice (biweekly), and during the third month there was only one application. Additionally, every 15 days morphological analyses were made (number of leaves, branches and stem diameter). In the end, soil samples were taken from each plant pot. In the laboratory we analysed the cation exchange capacity, alkali ion exchange, saturation alkali, relations between elements and plant tissue. These were done using an atomic absorption spectrophotometer. Statistical analyses consisted on multiple comparisons test and variance tests, in order to find whether or not treatments exhibited significant differences. In that way, the best alternative for improving environmental quality of eroded soils as the Zabrinsky desert is the efficient microorganisms in 5% doses in irrigation water. Additionally, the cation exchange capacity must be enhanced using organic fertilizers (compost, mulch and gallinaza) in one pound doses, and chemical fertilizers: electrolytic Mn (0.0002 g), Cu (0.0002 g), Zn (0.0001 g), URFOS 44 (166.66 g) and klip-boro (5 g).

  15. Test procedure for cation exchange chromatography

    International Nuclear Information System (INIS)

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction

  16. Cation exchange capacity (Qv) estimation in shaly sand reservoirs: case studies in the Junggar Basin, northwest China

    Science.gov (United States)

    Wang, Liang; Mao, Zhi-Qiang; Sun, Zhong-Chun; Luo, Xing-Ping; Deng, Ren-Shuang; Zhang, Ya-Hui; Ren, Bing

    2015-10-01

    Cation exchange capacity (Qv) is a key parameter in resistivity-based water saturation models of shaly sand reservoirs, and the accuracy of Qv calculation is crucial to the prediction of saturations of oil and gas. In this study, a theoretical expression of Qv in terms of shaly sand permeability (Kshaly-sand), total porosity (ϕt), and salinity of formation water (S) is deduced based on the capillary tube model and the physics volume model. Meanwhile, the classical Schlumberger-Doll research (SDR) model has been introduced to estimate Kshaly-sand. On this basis, a novel technique to estimate Qv from nuclear magnetic resonance (NMR) logs is proposed, and the corresponding model is also established, whose model parameters are calibrated by laboratory Qv and NMR measurements of 15 core samples from the Toutunhe formation of the Junggar Basin, northwest China. Based on the experimental data sets, this technique can be extended to reservoir conditions to estimate continuous Qv along the intervals. The processing results of field examples illustrate that the Qv calculated from field NMR logs are consistent with the analyzed results, with the absolute errors within the scope of  ±0.1 mmol cm-3 for the majority of core samples.

  17. Estimation of soil cation exchange capacity using Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS)

    Science.gov (United States)

    Emamgolizadeh, S.; Bateni, S. M.; Shahsavani, D.; Ashrafi, T.; Ghorbani, H.

    2015-10-01

    The soil cation exchange capacity (CEC) is one of the main soil chemical properties, which is required in various fields such as environmental and agricultural engineering as well as soil science. In situ measurement of CEC is time consuming and costly. Hence, numerous studies have used traditional regression-based techniques to estimate CEC from more easily measurable soil parameters (e.g., soil texture, organic matter (OM), and pH). However, these models may not be able to adequately capture the complex and highly nonlinear relationship between CEC and its influential soil variables. In this study, Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS) were employed to estimate CEC from more readily measurable soil physical and chemical variables (e.g., OM, clay, and pH) by developing functional relations. The GEP- and MARS-based functional relations were tested at two field sites in Iran. Results showed that GEP and MARS can provide reliable estimates of CEC. Also, it was found that the MARS model (with root-mean-square-error (RMSE) of 0.318 Cmol+ kg-1 and correlation coefficient (R2) of 0.864) generated slightly better results than the GEP model (with RMSE of 0.270 Cmol+ kg-1 and R2 of 0.807). The performance of GEP and MARS models was compared with two existing approaches, namely artificial neural network (ANN) and multiple linear regression (MLR). The comparison indicated that MARS and GEP outperformed the MLP model, but they did not perform as good as ANN. Finally, a sensitivity analysis was conducted to determine the most and the least influential variables affecting CEC. It was found that OM and pH have the most and least significant effect on CEC, respectively.

  18. Effects of Land Use Practices on the Organic Carbon Content, Cation Exchange Capacity and Aggregate Stability of Soils in the Catchment Zones

    OpenAIRE

    Mosayeb Heshmati; Arifin Abdu; Shamshuddin Jusop; Nik M. Majid

    2011-01-01

    Problem statement: Land use practice leads to changes in the physico-chemical properties of soils, such as Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC) and Soil Aggregate Stability (SAS) that cause soil erosion. Approach: Merek catchment, Iran suffers from land degradation due to poor land use practice. A study was carried out with the objectives: (i) to determine soil nutrient status in different agro-ecological zones in Merek catchment; and (ii) to evaluate the influence of lan...

  19. Ion exchange behaviour of polymeric zirconium cations

    International Nuclear Information System (INIS)

    Polymeric zirconium cations formed in weakly acid solutions (pH2) are taken up strongly into macroporous cation exchange resins, while uptake into normal cation exchange resins (pore diameter about 1 nm) is low. Macroporous cation exchange resins loaded with polymeric Zr cations are shown to function as ligand exchange sorbents. (Authors)

  20. Organometallic cation-exchanged phyllosilicates

    OpenAIRE

    Fleming, Shay

    1991-01-01

    Organotin (IV) complexes formed between 0 01 M dimethyltin dichloride solutions prepared at pH 2 6 and 4 0, and trimethyltin chloride prepared at pH 3 4, with Na- 119 montmori 1lonite clay have been characterised using Sn Mflssbauer spectroscopy, X-ray diffraction, thermogravimetric analysis and water sorption isotherms Following cation exchange, Mttssbauer spectroscopy identified two tin species in the dimethyltin (IV)-exchanged clay prepared at pH 2 6 A cis specie...

  1. Obtention of the cation exchange capacity of a natural kaolinite with radioactive tracers; Obtencion de la capacidad de intercambio cationico de una kaolinita natural con trazadores radioactivos

    Energy Technology Data Exchange (ETDEWEB)

    Uribe I, A.; Badillo A, V.E. [Universidad Autonoma de Zacatecas, 98000 Zacatecas (Mexico); Monroy G, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: Adrya81@hotmail.com

    2005-07-01

    One of the more used techniques for the elimination of the heavy metals present in water systems is to use adsorbent mineral phases like zeolites and clays, among others. The clays are able to exchange easily the fixed ions in the external surface of its crystals or well the ions present in the interlaminar spaces of the structures, for other existent ones in the encircling aqueous solutions for that the Cation exchange capacity (CIC) is defined as the sum of all the cations exchange that a mineral can possess independent to the physicochemical conditions. The CIC is equal to the measure of the total of negative charges of the mineral by mass of the solid (meq/g). In this investigation work, the value of the CIC equal to 2.5 meq/100 g is obtained, of a natural kaolinite from the State of Hidalgo studying the retention of the sodium in the kaolinite with the aid of the radioactive isotope {sup 24} Na and of the selective electrodes technique, making vary the pH value. So is experimentally demonstrated that the CIC is an intrinsic property of the mineral independent of the pH value of the solution and of the charges origin. (Author)

  2. Features definition exchange cations in sedimentary rocks.

    OpenAIRE

    Bilec'ka V.A.

    2008-01-01

    The research method of determination of exchange cations in calcareous sedimentary rocks of different extractants, the influence of the ratio between the solid and liquid phases on extrusion exchange cations.

  3. Features definition exchange cations in sedimentary rocks.

    Directory of Open Access Journals (Sweden)

    Bilec'ka V.A.

    2008-05-01

    Full Text Available The research method of determination of exchange cations in calcareous sedimentary rocks of different extractants, the influence of the ratio between the solid and liquid phases on extrusion exchange cations.

  4. Influência da matéria orgânica na capacidade de troca de cations do solo Cation-exchange capacity of the organic fraction of soils

    Directory of Open Access Journals (Sweden)

    F. da Costa Verdade

    1956-01-01

    . The cation-exchange capacity and other data on these soils show that the organic fraction must play an important role in the cation-exchange process. The study of the adsorptive capacity of the organic matter was done by destruction of the organic fraction of the soil by 12% hydrogen peroxide. For heavy textured soils the results show that the organic fraction most resistant to oxidation had a higher cation-exchange capacity than the portion first oxidized. For sandy soils all organic fractions had the same magnitude in the base adsorbing power. It was observed that the organic matter seems to inhibit the base-exchange capacity of the mineral fraction. Plotting the percentage of cation-exchange capacity of the organic fraction against the percentage of organic carbon in the soil, a curve is determined which shows the inhibition phenomenon. The results were rather scattered and the experiments are now being repeated to elucidate these observations. The organic cation-exchange capacity of soils in São Paulo is 30-40% for fine textured soils and 50-60% for sandy soils. Since most of the farming land in São Paulo belongs to the sandy soil group called Bauru, the problem of maintaining or increasing the fertility of these soils is dependent on their organic matter content.

  5. [Effects of biochar amendment on cropland soil bulk density, cation exchange capacity, and particulate organic matter content in the North China Plain].

    Science.gov (United States)

    Chen, Hong-Xia; Du, Zhang-Liu; Guo, Wei; Zhang, Qing-Zhong

    2011-11-01

    A 3-year field experiment with randomized block design was conducted to study the effects of biochar amendment on the soil bulk density, cation exchange capacity (CEC), and particulate organic matter C (POM-C) and N (POM-N) contents in a high-yielding cropland in the North China Plain. Four treatments were installed, i.e., chemical NPK (CK), chemical NPK plus 2250 kg x hm(-2) of biochar (C1), chemical NPK plus 4500 kg x hm(-2) of biochar (C2), and 750 kg x hm(-2) of biochar-based slow release fertilizer (CN). Comparing with CK, treatments C1 and C2 significantly decreased the bulk density of 0-7.5 cm soil layer by 4.5% and 6.0%, respectively, and the treatments with biochar amendment increased the CEC in 0-15 cm soil layer, with an increment of 24.5% in treatment C2. Biochar amendment also increased the C (POM-C) and N (POM-N) contents in 0-7.5 cm soil layer, e.g., the POM-C and N contents in treatment C1 and C2 were 250% and 85%, and 260% and 120% higher than those of the CK, respectively. After three years of biochar amendment, the soil had obvious improvement in its physical and chemical properties, and played more active roles in soil carbon sequestration and greenhouse gases emission reduction. PMID:22303671

  6. Acceptable levels of heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) in soils, depending on their clay and humus content and cation-exchange capacity

    NARCIS (Netherlands)

    Haan, de S.; Rethfeld, H.; Driel, van W.

    1985-01-01

    Three sandy soils differing in humus content and three clay soils differing in clay content were supplied with heavy metals to determine which loading rate of each single metal should be regarded as critical from the viewpoint of crop yield and metal content dependent on soil cation exchange capacit

  7. 襄阳市农田土壤阳离子交换量的测定及分析%Measurement and analysis of farmland soil cation exchange capacity in Xiangyang

    Institute of Scientific and Technical Information of China (English)

    赵翔

    2016-01-01

    Soil cation exchange capacity ( CEC) can reflect the level of soil fertility, fertilizer retention capacity and buffering capacity. Throughinvestigation, sampling and laboratory analysis of soil cation exchange capacity of 16 spot in Xiangyang city, we discovered that the CEC of Xiangyang soil are concentrated in the 15-20 cmol/kg , which belongs to the medium fertility soil. At the same time, through the determination of soil physiochemical indexes, such as the content of soil organic matter,PH value, we discovery that they are very good cor-relation to soil cation exchange capacity.%土壤阳离子交换量CEC能够综合反映土壤肥力水平、保肥能力和缓冲能力。通过对襄阳市16个点位农田土壤实地调查、采集及实验室分析测定土壤阳离子交换量,发现襄阳市农田土壤阳离子交换量多集中在15-20 cmol/kg,属于中等偏上保肥能力土壤,同时通过测定土壤有机质含量,PH值等土壤理化指标,发现与土壤阳离子交换量存在很好的相关性。

  8. Effects of nitrogen, calcium and cation exchange capacity on gum yield in Acacia senegal under plantation and savanna woodland conditions in northern Guinea savanna, Nigeria

    Directory of Open Access Journals (Sweden)

    Unanaonwi OE

    2011-08-01

    Full Text Available Several reports have indicated fertilizer application is not required for increased gum yield in Acacia senegal. This study investigated the relationships between soil properties and gum yield under plantation and savanna woodland conditions. Multi-stage sampling was used to demarcate a 900 ha plantation into 20 blocks of 45 ha, and a 300 ha savanna woodland into 10 blocks of 30 ha. Twenty sub-plots per site were randomly selected for yield assessment by tapping for gum collection, weighing, and recording yield figures in grams. Twelve soil pits were established for soil analysis. Data were analyzed using log-log correlation, and linear regressions. Plantation results showed nitrogen (r = 0.72 and Cation Exchange Capacity (r = 0.67 were positively correlated with yield, and calcium and yield were negatively correlated (r = -0.73. The plantation results indicated the coefficient of determination (R2 and standard error (SE were respectively 0.99 and 0.005 for nitrogen,0.79 and 0.024 for calcium, and 0.53 and 0.036 for CEC. Ninety-nine percent, 79%, and 53% of the variation in yield were explained by nitrogen, calcium and CEC, respectively. Under savanna woodland conditions, only nitrogen was positively correlated with yield (r = 0.65, and R2 and SE were respectively 0.70 and 0.014, with 70% of the variation in yield explained by nitrogen. Regression equations were subsequently developed to predict gum yield. Gum yield was correlated with soil chemical properties, and could be predicted based on nitrogen, calcium, and CEC values.

  9. Effect of polyamine reagents on exchange capacity in ion exchangers

    Science.gov (United States)

    Petrova, T. I.; Dyachenko, F. V.; Bogatyreva, Yu. V.; Borodastov, A. K.; Ershova, I. S.

    2016-05-01

    Effect of compounds involved in complex reagents is described using Helamin 906H reagent as an example. The working exchange capacity of KU-2-8chs cation exchanger in hydrogen form and Amberlite IRA 900Cl anion exchanger in OH form remained almost unchanged when they were used repeatedly to purify water that contained Helamin 906H reagent; in addition, this capacity was the same upon filtration of water that did not contain this reagent. Leakage of total organic carbon was observed earlier than that of calcium ions upon filtration of the solution through the cation exchanger layer. The test results obtained in industrial conditions indicated that using H-OH filters to purify turbine condensate enables the decrease of the concentration of organic and other impurities therein.

  10. Effects of Land Use Practices on the Organic Carbon Content, Cation Exchange Capacity and Aggregate Stability of Soils in the Catchment Zones

    Directory of Open Access Journals (Sweden)

    Mosayeb Heshmati

    2011-01-01

    Full Text Available Problem statement: Land use practice leads to changes in the physico-chemical properties of soils, such as Soil Organic Carbon (SOC, Cation Exchange Capacity (CEC and Soil Aggregate Stability (SAS that cause soil erosion. Approach: Merek catchment, Iran suffers from land degradation due to poor land use practice. A study was carried out with the objectives: (i to determine soil nutrient status in different agro-ecological zones in Merek catchment; and (ii to evaluate the influence of land use practices on SOC, CEC and SAS. Results: It was found that soil texture was silty and clay, while soil reaction was alkaline (pH was 7.75. The respective amount of carbonates was 32 and 36% in the top-soil and sub-soil respectively, indicating high level of alkalinity in the soils of the study area. The mean SAS of the surface soil layer for agriculture, rangeland and forest was 53, 61 and 64%, respectively with its mean in the topsoil of agriculture is significantly lower (P≤0.05 than the other zones. SOC level in the agriculture, rangeland and forest were 1.35, 1.56, 2.14 % in the topsoil and 1.03, 1.33 and 1.45%, in the subsoil of the respective areas. The results of t-test and ANOVA analyses showed that SOC means are significantly different from each other within soil depth and among agro-ecological zones. The CEC in the agriculture, rangeland and forest areas were 25.8, 24.6 and 35.1 cmolckg-1 for the top-soil and 31.1, 26.8 and 26.9 cmolckg-1 in the sub-soil, respectively. All the above changes are due to the negative effects of agricultural activities. Conclusion: Improper tillage practice (up-down the slope, conversion of the rangeland and forest to rain-fed areas, crop residue burning, over grazing and forest clearance contribute to reduction in SOC and SAS in the Merek catchment, Iran.

  11. Recovery of soil pH, cation-exchange capacity and the saturation of exchange sites from stemflow-induced soil acidification in three Swedish beech (Fagus sylvatica L.) forests

    International Nuclear Information System (INIS)

    Stemflow water acidifies the soil in beech stands impacted by atmospheric deposition. To investigate whether the soil recovers from acidification, stemflow was experimentally removed. A horizon material was sampled at a distance of 10-250 cm from the stems. Before the onset of the experiment, there were stemflow-induced gradients in the saturation of exchange sites with K+, H+ and Na+ that were larger near the stems, while the pHKCl, the cation-exchange capacity, and the saturation with Ca2+, Mg2+ and Mn2+ were smaller. After 8 yrs of recovery, the pHKCl and the saturation with Ca2+ and Mg2+ had increased close to the stems, while the saturation with Na+, H+, Mn2+ and Fe2+ and the C/N ratio had decreased. With some exceptions, e.g. base saturation, the recovery was not complete after 8 yrs. Soil far from stems had also changed similarly, probably because of the ongoing decrease in overall deposition in southern Sweden

  12. Forging Colloidal Nanostructures via Cation Exchange Reactions

    Science.gov (United States)

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  13. Multi-cycle recovery of lactoferrin and lactoperoxidase from crude whey using fimbriated high-capacity magnetic cation exchangers and a novel "rotor-stator" high-gradient magnetic separator.

    Science.gov (United States)

    Brown, Geoffrey N; Müller, Christine; Theodosiou, Eirini; Franzreb, Matthias; Thomas, Owen R T

    2013-06-01

    Cerium (IV) initiated "graft-from" polymerization reactions were employed to convert M-PVA magnetic particles into polyacrylic acid-fimbriated magnetic cation exchange supports displaying ultra-high binding capacity for basic target proteins. The modifications, which were performed at 25 mg and 2.5 g scales, delivered maximum binding capacities (Qmax ) for hen egg white lysozyme in excess of 320 mg g(-1) , combined with sub-micromolar dissociation constants (0.45-0.69 µm) and "tightness of binding" values greater than 49 L g(-1) . Two batches of polyacrylic acid-fimbriated magnetic cation exchangers were combined to form a 5 g pooled batch exhibiting Qmax values for lysozyme, lactoferrin, and lactoperoxidase of 404, 585, and 685 mg g(-1) , respectively. These magnetic cation exchangers were subsequently employed together with a newly designed "rotor-stator" type HGMF rig, in five sequential cycles of recovery of lactoferrin and lactoperoxidase from 2 L batches of a crude sweet bovine whey feedstock. Lactoferrin purification performance was observed to remain relatively constant from one HGMF cycle to the next over the five operating cycles, with yields between 40% and 49% combined with purification and concentration factors of 37- to 46-fold and 1.3- to 1.6-fold, respectively. The far superior multi-cycle HGMF performance seen here compared to that observed in our earlier studies can be directly attributed to the combined use of improved high capacity adsorbents and superior particle resuspension afforded by the new "rotor-stator" HGMS design.

  14. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chih-Jen [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, University of Wisconsin - Parkside, Kenosha, WI 53144 (United States); Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Jean, Jiin-Shuh; Liu, Chia-Chuan [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2010-11-15

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca{sup 2+} as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK{sub a2} (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d{sub 001}) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  15. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    International Nuclear Information System (INIS)

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca2+ as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pKa2 (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d001) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  16. EXCHANGE ADSORPTION EQUILIBRIA OF AMMONIUM ON CATION-VERMICULITE MINERALS

    Institute of Scientific and Technical Information of China (English)

    GUO Yaping; XIE Lianwu; WU Xiaofu

    2006-01-01

    Experiment was designed under different pH and temperature conditions to analysis the NH4+ exchange capacity of Na+-vermiculite, Ca2+-vermiculite and Mg2+-vermiculite clay minerals pre-treated using NaCl, CaCl2 and MgCl2 solutions respectively. The results indicated that the exchange reactions occurred most rapidly at the proceeding 80 minutes and approached to equilibrium by about 120 minutes. The exchange quantity of ammonium on the vermiculite (at initial ammonium concentration of 673mg/L ) varied with pH with a peak value of 28.36mg/g on Na+-vermiculite, 23.01mg/g on Ca2+-vermiculite, 20.14mg/g on Mg2+-vermiculite, 18.04mg/g on natural vermiculite at pH 7. The exchange and adsorption isotherm of NH4+ on cation-vermiculite can be described by Langmuir equation.

  17. Cobalt 60 cation exchange with mexican clays

    International Nuclear Information System (INIS)

    Mexican clays can be used to remove radioactive elements from contaminated aqueous solutions. Cation exchange experiments were performed with 60 Co radioactive solution. In the present work the effect of contact time on the sorption of Co 2+ was studied. The contact time in hydrated montmorillonite was from 5 to 120 minutes and in dehydrated montmorillonite 5 to 1400 minutes. The Co 2+ uptake value was, in hydrated montmorillonite, between 0.3 to 0.85 m eq/g and in dehydrated montmorillonite, between 0.6 to 1.40 m eq/g. The experiments were done in a pH 5.1 to 5.7 and normal conditions. XRD patterns were used to characterize the samples. The crystallinity was determined by X-ray Diffraction and it was maintained before and after the cation exchange. DTA thermo grams showed the temperatures of the lost humidity and crystallization water. Finally, was observed that dehydrated montmorillonite adsorb more cobalt than hydrated montmorillonite. (Author)

  18. Modeling cation exchange using EQ3/6

    International Nuclear Information System (INIS)

    Geochemical modeling codes must be able to predict solid-solution and ion-exchange behavior of zeolites and smectites in order to design and assess strategies for containing and cleaning up toxic and/or radioactive wastes. Cation-exchange and solid-solution models have been implemented in the EQ3/6 geochemical modeling package and used to predict the composition of clinoptilolite under a variety of conditions. Published free energies of cation exchange on clinoptilolite at 25 degrees C were combined with the calorimetric data for clinoptilolite to derive free energies of formation of the component end members of a solid solution in which mixing is allowed only on the exchange site. The solid-solution model and component end-member data were incorporated into EQ3/6 and its data base. An option to treat cation exchange independently of the solid-solution model was also developed and implemented in EQ3/6. This option allows the user to model mixed-phase exchangers, multisite exchangers, and systems in which the exchanger is not in overall equilibrium with the solution. Two open-quotes idealclose quotes cation-exchange conventions [Vanselow (mole fraction) and Gapon (equivalent fraction)] are currently implemented in the code. A description of the cation-exchange models and their implementation into EQ3/6 is presented, and the relationship between the exchange formalisms and the solid-solution models is discussed. The advantages and limitations of the models and currently available thermodynamic data are addressed by comparing cation-exchange compositions of clinoptilolites with (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; and (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff

  19. Microscopic Theory of Cation Exchange in CdSe Nanocrystals

    OpenAIRE

    Ott, Florian D.; Spiegel, Leo L.; Norris, David J.; Erwin, Steven C.

    2014-01-01

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We used density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key...

  20. Cátions trocáveis, capacidade de troca de cátions e saturação por bases em solos brasileiros adubados com composto de lixo urbano Exchangeable cations, cation exchange capacity and base saturation in Brazilian soils amended with urban waste compost

    Directory of Open Access Journals (Sweden)

    Cassio Hamilton Abreu Jr.

    2001-12-01

    +, and Na+, on cation exchangeable capacity (CEC, and on base saturation (BS% of 21 acid and 5 alkaline soils. The organic compost (collected at the São Matheus Plant Treatment, São Paulo, Brazil was applied with or without dolomitic lime and mineral fertilizers. For alkaline soils, lime was substituted by gypsum. The experiment was carried out on a split-plot, completely randomized block design with three replicates. The compost application increased the exchangeable content of potassium, calcium, magnesium, and sodium on average of 195%, 200%, 86%, and 1200%, respectively, and elevated the CEC by 42% in acid soils. Consequently the BS% was increased 39%. A lower, but significant, increase on CEC was observed in alkaline soils in response to the compost application. Average CEC and BS% increases were of 8.4% and 2%, respectively. The highest effects on the evaluated soil properties were verified for compost + fertilizer + lime and compost + fertilizer + gypsum applications in acid and alkaline soils, respectively. It is concluded that the use of urban waste compost in agricultural lands is viable only if its effects on chemical properties are properly monitored.

  1. Sulfonation Process and Desalination Effect of Polystyrene/PVDF Semi-Interpenetrating Polymer Network Cation Exchange Membrane

    Directory of Open Access Journals (Sweden)

    Yin-lin Lei

    2014-07-01

    Full Text Available With the classical sulfonation method of polystyrene-based strongly acidic cation exchange resins, polystyrene/polyvinylidene fluoride (PVDF alloy particles were sulfonated to obtain a cation exchange resin, which was then directly thermoformed to prepare a semi-interpenetrating polymer network (semi-IPN cation exchange membrane. The effects of the swelling agent, sulfonation time and temperature and the relative contents of polystyrene and divinylbenzene (DVB in the alloy particles on the feasibility of the membrane formation are discussed. The results indicate that a favorable sulfonation degree above 80% and a suitable ion exchange capacity of 1.5–2.4 mmol/g can be gained, with concentrated sulfuric acid as the sulfonation agent and 1,2-dichloroethane as the swelling agent. The running electrical resistance and desalination effect of the prepared cation exchange membrane were measured in a pilot-scale electrodialyser and not only obviously exceeded a commercial heterogeneous cation exchange membrane, but was also very close to a commercial homogenous membrane. In this way, the authors have combined the classical sulfonation method of polystyrene-based cation exchange resins with the traditional thermoforming manufacturing process of heterogeneous cation exchange membranes, to successfully develop a novel, low-price, but relatively high-performance polystyrene/PVDF cation exchange membrane with the semi-IPN structure.

  2. Synthetic crystalline calcium silicate hydrate (I): cation exchange and caesium selectivity

    International Nuclear Information System (INIS)

    Solid crystalline calcium silicate hydrate (I) synthesized from equimolar amounts of Ca and Si under hydrothermal conditions at 120 oC shows cation exchange properties towards divalent metal cations such as Ni, Cu, Cd, or Hg. It also exhibits caesium selectivity in the presence of Na+. The exchange capacity and selectivity of the solid can be increased by 10 and 28 %, respectively, upon substitution of 0.01 mol of the Ca2+ in its structure by Na+. The ability of metal cation uptake by the solid was found to obey the order Ni2+ > Hg2+ > Cu2+ > Cd2+. The different affinities of calcium silicate hydrate (I) towards these ions can be used for their separation from solutions and also in nuclear waste treatment. The mechanism of the exchange reaction is discussed. (author)

  3. Denatured Thermodynamics of Proteins in Weak Cation-exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    LI Rong; CHEN Guo-Liang

    2003-01-01

    The thermostability of some proteins in weak cation-exchange chromatography was investigated at 20-80 ℃. The results show that there is a fixed thermal denaturation transition temperature for each protein. The appearance of the thermal transition temperature indicates that the conformations of the proteins are destroyed seriously. The thermal behavior of the proteins in weak cation-exchange and hydrophobic interaction chromatographies were compared in a wide temperature range. It was found that the proteins have a higher thermostability in a weak cation-exchange chromatography system. The thermodynamic parameters(ΔH0, ΔS0) of those proteins were determined by means of Vant Hoff relationship(lnk-1/T). According to standard entropy change(ΔS0), the conformational change of the proteins was judged in the chromatographic process. The linear relationships between ΔH0 and ΔS0 can be used to evaluate "compensation temperature"(β) at the protein denaturation and identify the identity of the protein retention mechanism in weak cation-exchange chromatography.

  4. New cation-exchange membranes for hyperfiltration processes

    NARCIS (Netherlands)

    Velden, van der P.M.; Smolders, C.A.

    1977-01-01

    A new route for the preparation of cation exchange membranes from polystyrene-polyisoprene-polystyrene (SIS) block copolymers has been studied, using N-chlorosulfonyl isocyanate. At temperatures of 0° to 20°C, N-chlorosulfonyl isocyanate reacts readily with the olefin group in polyisoprenes, resulti

  5. Cation immobilization in pyrolyzed simulated spent ion exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Luca, Vittorio, E-mail: vluca@cnea.gov.ar [Programa Nacional de Gestion de Residuos Radiactivos, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Av. General, Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina); Bianchi, Hugo L. [Gerencia de Quimica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Av. General, Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina); ECyT, Universidad Nacional de General San Martin, Campus Miguelete, Ed. Tornavias, Martin de Irigoyen 3100, 1650 San Martin (Argentina); Conicet, Av. Rivadavia 1917, 1033 Buenos Aires (Argentina); Manzini, Alberto C. [Programa Nacional de Gestion de Residuos Radiactivos, Comision Nacional de Energia Atomica, Av. Del Libertador 8250, CP 1429, Ciudad Autonoma de Buenos Aires (Argentina)

    2012-05-15

    Significant quantities of spent ion exchange resins that are contaminated by an assortment of radioactive elements are produced by the nuclear industry each year. The baseline technology for the conditioning of these spent resins is encapsulation in ordinary Portland cement which has various shortcomings none the least of which is the relatively low loading of resin in the cement and the poor immobilization of highly mobile elements such as cesium. The present study was conducted with cationic resin samples (Lewatit S100) loaded with Cs{sup +}, Sr{sup 2+}, Co{sup 2+}, Ni{sup 2+} in roughly equimolar proportions at levels at or below 30% of the total cation exchange capacity. Low temperature thermal treatment of the resins was conducted in inert (Ar), or reducing (CH{sub 4}) gas atmospheres, or supercritical ethanol to convert the hydrated polymeric resin beads into carbonaceous materials that contained no water. This pyrolytic treatment resulted in at least a 50% volume reduction to give mechanically robust spherical materials. Scanning electron microscope investigations of cross-sections of the beads combined with energy dispersive analysis showed that initially all elements were uniformly distributed through the resin matrix but that at higher temperatures the distribution of Cs became inhomogeneous. Although Cs was found in the entire cross-section, a significant proportion of the Cs occurred within internal rings while a proportion migrated toward the outer surfaces to form a crustal deposit. Leaching experiments conducted in water at 25 Degree-Sign C showed that the divalent contaminant elements were very difficult to leach from the beads heated in inert atmospheres in the range 200-600 Degree-Sign C. Cumulative fractional loses of the order of 0.001 were observed for these divalent elements for temperatures below 500 Degree-Sign C. Regardless of the processing temperature, the cumulative fractional loss of Cs in water at 25 Degree-Sign C reached a plateau or

  6. Selective Facet Reactivity During Cation Exchange in Cadmium Sulfide Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Sadtler, Bryce; Demchenko, Denis; Zheng, Haimei; Hughes, Steven; Merkle, Maxwell; Dahmen, Ulrich; Wang, Lin-Wang; Alivisatos, A. Paul

    2008-12-18

    The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper I (Cu+) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu2S) grows inwards from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver I (Ag+) exchange in CdS nanorods where non-selective nucleation of silver sulfide (Ag2S) occurs. From interface formation energies calculated for several models of epitaxialconnections between CdS and Cu2S or Ag2S, we infer the relative stability of each interface during the nucleation and growth of Cu2S or Ag2S within the CdS nanorods. The epitaxial connections of Cu2S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. However, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.

  7. Prediction of soil organic matter and cation exchange capacity based on spectral similarity measuring%基于相似光谱匹配预测土壤有机质和阳离子交换量

    Institute of Scientific and Technical Information of China (English)

    魏昌龙; 赵玉国; 李德成; 张甘霖; 邬登巍; 陈吉科

    2014-01-01

    The potential of visible-near infrared (vis-NIR, 350~2500nm) laboratory spectroscopy for the estimation of soil properties has been previously demonstrated in the literature. Spectroscopy is rapid, inexpensive, and non-destructive. A single spectrum allows for the simultaneous characterization of various soil properties. The question that always arises when two samples are close in spectral space is whether they are close in terms of soil composition. This paper explores three different approaches to improving prediction accuracy. The first, called the SAM Approach, predicts soil properties via similar soil spectra using a spectral angle mapper (SAM). The second one, called the PLSR Approach, predicts soil properties using partial least-squares regression (PLSR). The third, called the SAM-PLSR Approach, first uses the SAM to choose similar soil spectra, which are then used as calibration samples for the PLSR. These tests were performed on a collection of 400 soil samples from 91 profiles from the Xuancheng region of the Anhui Province. Spectra data include reflectance (R), first derivatives of reflectance (FDR), and the logarithm of the inverse of the reflectance (Log(1/R)). The aims of the work were threefold: (1) to investigate the relationship between soil vis-NIR similarity and soil attribute similarity (soil organic matter (SOM) and cation exchange capacity (CEC)) using a spectral angle mapper (SAM);(2) to predict soil properties by PLSR with different calibration samples, which were independently validated;(3) to compare the accuracy of predictions from the SAM Approach, PLSR Approach, and SAM-PLSR Approach. This study showed that soil vis-NIR similarity reflected the similarity of SOM and CEC content, the SAM Approach can be directly used to predict the content of SOM (R2=0.78, RPD=2.17) and CEC (R2=0.82, RPD=2.41). The PLSR Approach obtained good prediction accuracy of SOM (R2=0.87, RPD=2.77) and CEC (R2=0.87, RPD=2.59). The SAM-PLSR Approach, which was

  8. Sulfonated polyvinyl chloride fibers for cation-exchange microextraction.

    Science.gov (United States)

    Xu, Li; Lee, Hian Kee

    2009-09-18

    Polyvinyl chloride (PVC) fiber was derivatized by concentrated sulfuric acid to yield sulfonated PVC (PVC-SO3H). The PVC-SO3H fiber had dual properties as a sorbent, based on cation-exchange and hydrophobicity. In the present study, the novel fiber was used directly as an individual device for extraction purposes in the cation-exchange microextraction of anaesthetics, followed by high-performance liquid chromatography-UV analysis. The results demonstrated that this PVC-SO3H fiber-based microextraction afforded convenient operation and cost-effective application to basic analytes. The limits of detection for four anaesthetics ranged from 1.2 to 6.0 ng/mL. No carryover (because of its disposable usage), and no loss of sorbent phase (which normally occurs in stir-bar sorptive extraction) during extraction were observed.

  9. Hydrogen and water vapor adsorption properties on cation-exchanged mordenite for use to a tritium recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori, E-mail: kawamura.yoshinori@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Edao, Yuki; Iwai, Yasunori; Hayashi, Takumi [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Yamanishi, Toshihiko [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan)

    2014-10-15

    Highlights: • Hydrogen and water vapor adsorption capacity of cation-exchanged mordenite (MOR) with transition metal ion was investigated. • Ag–MOR has indicated considerably large adsorption capacity of hydrogen at 77 K. • Amount of chemisorbed water on MOR is smaller than MS5A or active alumina. • These results contribute to design more effective tritium recovery system. - Abstract: Tritium recovery system using adsorption or catalytic isotope exchange has already been proposed for a solid breeding blanket system of a nuclear fusion reactor. Synthetic zeolite is often used as an adsorbent or a substrate of chemical exchange catalyst. And, it is well known that its property is changed easily by exchanging its cations. Synthetic mordenite is one of zeolites having fairly large silica/alumina ratio. There are many reports about hydrogen adsorption properties of cation-exchanged mordenite so far. And, the present authors also have reported that cation-exchanged mordenite with Ca ion (Ca–MOR) indicated fairly large hydrogen adsorption capacity at 77 K in comparison with Molecular Sieves 5A (MS5A). So, in this work, hydrogen adsorption properties of cation-exchanged mordenite with transition metal ion were investigated mainly. The cation-exchanged mordenite with Ag ion (Ag–MOR) has indicated considerably large hydrogen adsorption capacity in lower pressure range at 77 K in comparison with Ca–MOR. The discussion from the viewpoint of adsorption rate is still remaining, but more compact cryosorption column for tritium recovery system is possible to design if Ag–MOR is adopted.

  10. Impact of sediment-seawater cation exchange on Himalayan chemical weathering fluxes

    Science.gov (United States)

    Lupker, Maarten; France-Lanord, Christian; Lartiges, Bruno

    2016-08-01

    Continental-scale chemical weathering budgets are commonly assessed based on the flux of dissolved elements carried by large rivers to the oceans. However, the interaction between sediments and seawater in estuaries can lead to additional cation exchange fluxes that have been very poorly constrained so far. We constrained the magnitude of cation exchange fluxes from the Ganga-Brahmaputra river system based on cation exchange capacity (CEC) measurements of riverine sediments. CEC values of sediments are variable throughout the river water column as a result of hydrological sorting of minerals with depth that control grain sizes and surface area. The average CEC of the integrated sediment load of the Ganga-Brahmaputra is estimated ca. 6.5 meq 100 g-1. The cationic charge of sediments in the river is dominated by bivalent ions Ca2+ (76 %) and Mg2+ (16 %) followed by monovalent K+ (6 %) and Na+ (2 %), and the relative proportion of these ions is constant among all samples and both rivers. Assuming a total exchange of exchangeable Ca2+ for marine Na+ yields a maximal additional Ca2+ flux of 28 × 109 mol yr-1 of calcium to the ocean, which represents an increase of ca. 6 % of the actual river dissolved Ca2+ flux. In the more likely event that only a fraction of the adsorbed riverine Ca2+ is exchanged, not only for marine Na+ but also Mg2+ and K+, estuarine cation exchange for the Ganga-Brahmaputra is responsible for an additional Ca2+ flux of 23 × 109 mol yr-1, while ca. 27 × 109 mol yr-1 of Na+, 8 × 109 mol yr-1 of Mg2+ and 4 × 109 mol yr-1 of K+ are re-absorbed in the estuaries. This represents an additional riverine Ca2+ flux to the ocean of 5 % compared to the measured dissolved flux. About 15 % of the dissolved Na+ flux, 8 % of the dissolved K+ flux and 4 % of the Mg2+ are reabsorbed by the sediments in the estuaries. The impact of estuarine sediment-seawater cation exchange appears to be limited when evaluated in the context of the long-term carbon cycle and

  11. CATION-EXCHANGE MEMBRANES WITH POLYANILINE SURFACE LAYER FOR WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Dinar Dilshatovich Fazullin

    2014-01-01

    Full Text Available Ion-exchange membranes are widely used in modern technologies, particularly in the field of water treatment and make it possible to considerably reduce expenses for wastewater treatment and ensure high degree of purification. Currently, perfluorinated sulfated proton-conducting membranes are often used, such as NAFION and its Russian analogue, MF-4SK based on co-polymerization product of a perfluorinated vinyl ether with tetrafluoroethylene. However, with development of the industry, materials with improved properties and lower cost are required. The aim is to obtain ion-exchange membranes for water treatment from metal ions and to study physico-chemical properties of obtained membranes. In this study, cation exchange composite membranes with modified polyaniline surface layer on nylon and PTFE substrate have been obtained. Changes in the structure of membranes were recorded using a microscope. Throughput capacity of the membranes was determined by passing a certain volume of distilled water through the membrane. The experiment intended to determine electivity of membranes was performed by passing a certain volume of metal salt solutions of a known concentration, after which the filtrate was collected. Concentrations of the studied metal ions in the original solution and in the filtrate were determined by the method of atomic adsorptive spectrometry with electro thermal atomization "Quantum Z.ETA". Prepared highly selective ion exchange membranes. Properties of modified membranes, such as selective permeability and ion-exchange capacity have been determined. The membranes feature high selectivity for heavy metal ions. Moisture-retaining power and swelling ability of the membranes have been studied. Selectivity of the membrane to heavy metal ions is between 70 and 99%. Ion-exchange capacity of the obtained nylon polyaniline membrane is not inferior to some commercially available cation-exchange membranes. Use of the modified membranes in the

  12. Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites.

    Science.gov (United States)

    Pham, Trong D; Liu, Qingling; Lobo, Raul F

    2013-01-15

    Samples of high-silica SSZ-13, ion exchanged with protons and alkali-metal cations Li(+), Na(+), and K(+), were investigated using adsorption isotherms of CO(2) and N(2). The results show that Li-, Na-SSZ-13 have excellent CO(2) capacity at ambient temperature and pressure; in general, Li-SSZ-13 shows the highest capacity for N(2), CO(2) particularly in the low-pressure region. The effect of cation type and Si/Al ratio (6 and 12) on the adsorption properties was investigated through analysis of adsorption isotherms and heats of adsorption. The separation of CO(2) in a flue gas mixture was evaluated for these adsorbents in the pressure swing adsorption and vacuum pressure adsorption processes. PMID:23249267

  13. Exchangeable Cations in the Soils of Quercus Dominated Forests in Northeastern Austria

    Science.gov (United States)

    Yan, Shuai; Bruckman, Viktor J.; Glatzel, Gerhard

    2010-05-01

    In northeastern Austria there is a growing interest in increased utilisation of forest biomass for energy. This study focuses on soil properties and nutrient pool characteristics in deciduous forests in order to provide advice for forest management. We (i) quantified selected exchangeable cations in the soils of our study area and (ii) identified the effects of stand age, soil type, soil depth and soil pH on exchangeable cations and cation exchange capacity (CEC). Nine permanent Quercus petraea dominated plots on sandy, clayey cambisols and calcic chernozem were selected for our study. From each plot 18 soil samples were collected in a systematic grid by means of a soil corer with 70 mm diameter to a maximum depth of 60 cm. Soil pH, exchangeable mineral elements K, Ca, Mg, Na, Mn, Al, and Fe were determined in five geometric soil horizons. Statistical analysis showed that (i) forest age did not influence the exchangeable K content of the sandy soils; (ii) the exchangeable K content decreased with increasing stand age in clayey cambisols; (iii) exchangeable K, Na and Mg were higher in calcic chernozems and clayey cambisols (iv) exchangeable Fe was significantly higher in sandy forest soils except in the 60-80 years old stand; (v) exchangeable Fe was below detection limit in calcic chernozem soils. A comparison of exchangeable cations revealed that (i) Ca is the key element of base cations (ii) the content of base cations is strongly significantly higher in calcic chernozem soils (iii) calcic chernozem soils have the highest CEC. CEC ranged from 38 to 190 μmol/g in the entire research area. Base cations, acid cations and CEC differ with soil depth as followed (i) in sandy and clayey cambisols, CEC had a minimum in 20 cm depth and then increased with soil depth to 50 cm; (ii) CEC decreased steadily with soil depth in calcic chernozems. As expected, CEC is significantly positively correlated (Pearson correlation coefficient 0.661, Pground biomass nutrients, the rate

  14. Spontaneous Superlattice Formation in Nanorods through PartialCation Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Richard D.; Sadtler, Bryce; Demchenko, Denis O.; Erdonmez, Can K.; Wang, Lin-Wang; Alivisatos, A. Paul

    2007-03-14

    Lattice mismatch strains are widely known to controlnanoscale pattern formation in heteroepitaxy, but such effects have notbeen exploited in colloidal nanocrystal growth. We demonstrate acolloidal route to synthesizing CdS-Ag2S nanorod superlattices throughpartial cation exchange. Strain induces the spontaneous formation ofperiodic structures. Ab initio calculations of the interfacial energy andmodeling of strain energies show that these forces drive theself-organization. The nanorod superlattices exhibit high stabilityagainst ripening and phase mixing. These materials are tunablenear-infrared emitters with potential applications as nanometer-scaleoptoelectronic devices.

  15. Computer simulation of methanol exchange dynamics around cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Santanu; Dang, Liem X.

    2016-03-03

    In this paper, we present the first computer simulation of methanol exchange dynamics between the first and second solvation shells around different cations and anions. After water, methanol is the most frequently used solvent for ions. Methanol has different structural and dynamical properties than water, so its ion solvation process is different. To this end, we performed molecular dynamics simulations using polarizable potential models to describe methanol-methanol and ion-methanol interactions. In particular, we computed methanol exchange rates by employing the transition state theory, the Impey-Madden-McDonald method, the reactive flux approach, and the Grote-Hynes theory. We observed that methanol exchange occurs at a nanosecond time scale for Na+ and at a picosecond time scale for other ions. We also observed a trend in which, for like charges, the exchange rate is slower for smaller ions because they are more strongly bound to methanol. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.

  16. CO 2 adsorption in mono-, di- and trivalent cation-exchanged metal-organic frameworks: A molecular simulation study

    KAUST Repository

    Chen, Yifei

    2012-02-28

    A molecular simulation study is reported for CO 2 adsorption in rho zeolite-like metal-organic framework (rho-ZMOF) exchanged with a series of cations (Na +, K +, Rb +, Cs +, Mg 2+, Ca 2+, and Al 3+). The isosteric heat and Henry\\'s constant at infinite dilution increase monotonically with increasing charge-to-diameter ratio of cation (Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ < Al 3+). At low pressures, cations act as preferential adsorption sites for CO 2 and the capacity follows the charge-to-diameter ratio. However, the free volume of framework becomes predominant with increasing pressure and Mg-rho-ZMOF appears to possess the highest saturation capacity. The equilibrium locations of cations are observed to shift slightly upon CO 2 adsorption. Furthermore, the adsorption selectivity of CO 2/H 2 mixture increases as Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ ≈ Al 3+. At ambient conditions, the selectivity is in the range of 800-3000 and significantly higher than in other nanoporous materials. In the presence of 0.1% H 2O, the selectivity decreases drastically because of the competitive adsorption between H 2O and CO 2, and shows a similar value in all of the cation-exchanged rho-ZMOFs. This simulation study provides microscopic insight into the important role of cations in governing gas adsorption and separation, and suggests that the performance of ionic rho-ZMOF can be tailored by cations. © 2012 American Chemical Society.

  17. Avaliação da capacidade de troca de cátions em solos utilizando o método do tampão SMP Evaluation of the cation exchange capacity of soils utilizing the SMP buffer method

    Directory of Open Access Journals (Sweden)

    Otávio Antonio de Camargo

    1982-01-01

    Full Text Available Foram feitas as determinações da capacidade de troca de cations (CTC em amostras de solos pelos métodos do acetato de cálcio IN pH 7,0; acetato de amônio IN pH 7,0, e cloreto de bário tamponado com trietanolamina pH 8,2, sendo os resultados comparados com os obtidos utilizando o método do tampão SMP para determinar (H + Al mais a soma de bases, rotineiramente obtida em laboratório. As correlações entre os resultados de (H + Al, CTC e porcentagens de saturação em bases obtidas pelos diferentes métodos e pelo tampão SMP foram altas. Em vista disso e das vantagens operacionais que apresenta, o método do tampão SMP mostrou-se adequado para a avaliação da capacidade de troca de cations em determinações de rotina.The cation exchange capacity (CEO of soil determined by the methods of IN calcium acetate at pH 7.0, IN amonium acetate at pH 7.0 and triethanolamine buffered barium chloride at pH 8.2 were compared with results obtained by the SMP buffer method to determine (H + Al added to the sum of bases to calculate the CEC. The correlations between the results, obtained by the different methods, of (H + Al, CEC, and percent base saturation and the SMP were high. Due to this fact and the operational advantages, the SMP method showed to be adequate for CEC determination in routine analysis.

  18. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands

    Science.gov (United States)

    Fan, Zhaochuan; Lin, Li-Chiang; Buijs, Wim; Vlugt, Thijs J. H.; van Huis, Marijn A.

    2016-05-01

    Cation exchange is a powerful tool for the synthesis of nanostructures such as core-shell nanocrystals, however, the underlying mechanism is poorly understood. Interactions of cations with ligands and solvent molecules are systematically ignored in simulations. Here, we introduce the concept of pseudoligands to incorporate cation-ligand-solvent interactions in molecular dynamics. This leads to excellent agreement with experimental data on cation exchange of PbS nanocrystals, whereby Pb ions are partially replaced by Cd ions from solution. The temperature and the ligand-type control the exchange rate and equilibrium composition of cations in the nanocrystal. Our simulations reveal that Pb ions are kicked out by exchanged Cd interstitials and migrate through interstitial sites, aided by local relaxations at core-shell interfaces and point defects. We also predict that high-pressure conditions facilitate strongly enhanced cation exchange reactions at elevated temperatures. Our approach is easily extendable to other semiconductor compounds and to other families of nanocrystals.

  19. Enhanced DOC removal using anion and cation ion exchange resins.

    Science.gov (United States)

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. PMID:26624231

  20. Synthesis, characterization and ion exchange properties of zirconium(IV) tungstoiodophosphate, a new cation exchanger

    Indian Academy of Sciences (India)

    Weqar Ahmad Siddiqui; Shakeel Ahmad Khan

    2007-02-01

    Zirconium(IV) tungstoiodophosphate has been synthesized under a variety of conditions. The most chemically and thermally stable sample is prepared by adding a mixture of aqueous solutions of 0.5 mol L-1 sodium tungstate, potassium iodate and 1 mol L-1 orthophosphoric acid to aqueous solution of 0.1 mol L-1 zirconium(IV) oxychloride. Its ion exchange capacity for Na+ and K+ was found to be 2.20 and 2.35 meq g-1 dry exchanger, respectively. The material has been characterized on the basis of chemical composition, pH titration, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis. The effect on the exchange capacity of drying the exchanger at different temperatures has been studied. The analytical importance of the material has been established by quantitative separation of Pb2+ from other metal ions.

  1. Influence of Types and Charges of Exchangeable Cations on Ciprofloxacin Sorption by Montmorillonite

    Institute of Scientific and Technical Information of China (English)

    WU Qingfeng; LI Zhaohui; HONG Hanlie

    2012-01-01

    As one of the most important soil components,montmorillonite plays a vital role in transport and retention of organic pollutants in soils.Ciprofloxacin (CIP),an antibiotic of fluoroquiolones,has been frequently detected in water and soil environments due to its wide use in human and veterinary medicine.In this study,the adsorption of CIP onto different homoionic montmorillonite such as Na-,Ca- and Al-MMT was investigated,and the influence of types and charges of exchangeable cations in the interlayer of montmorillonite on CIP adsorption was evaluated.The results showed that different homoionic montmorillonite exhibited different sorption capacity of CIP.At pH 3,the sorption capacity of CIP decreased in the order Na-MMT > Ca-MMT > Al-MMT,following the lyotropic series.When solution pH increased to 11,the sorption capacity of CIP followed the order Ca-MMT > Al-MMT > Na-MMT.Accompanying CIP adsorption on Ca-MMT,a certain amount of Ca2+ was released into solution.Compared to pH 3,the lower Ca concentration in solution at pH 11 indicated that the adsorption of CIP on Ca-MMT at strong alkaline pH was no longer via cation exchange,and surface complexation or cation bridging might contribute to CIP adsorption.The adsorption of CIP on Na-and Ca-MMT at pH 3 and 11 resulted in the expansion of d-spacing,indicative of intercalation of CIP into the interlayer space of the montmorillonite.However,a decrease of d-spacing was observed when CIP adsorbed on Al-MMT at pH 11,which might be attributed to the dissolution of Al-CIP complex formed between CIP and Al3+ in the interlayer of montmorillonite.The results suggest that the types and charges of exchangeable cations in the interlayer of montmorillonite play an important role in CIP adsorption on montmorillonite.

  2. Sorption processes and XRD analysis of a natural zeolite exchanged with Pb2+, Cd2+ and Zn2+ cations

    International Nuclear Information System (INIS)

    In this study the Pb2+, Cd2+ and Zn2+ adsorption capacity of a natural zeolite was evaluated in batch tests at a constant pH of 5.5 by polluting this mineral with solutions containing increasing concentrations of the three cations to obtain adsorption isotherms. In addition X-ray powder diffraction (XRD) was used to investigate the changes of zeolite structure caused by the exchange with cations of different ionic radius. The zeolite adsorption capacity for the three cations was Zn > Pb > Cd. Moreover a sequential extraction procedure [H2O, 0.05 M Ca(NO3)2 and 0.02 M EDTA] was applied to zeolite samples used in the adsorption experiments to determine the chemical form of the cations bound to the sorbent. Using this approach it was shown that low concentrations of Pb2+, Cd2+ and Zn2+ were present as water-soluble and exchangeable fractions (27% of the Me adsorbed). The XRD pattern of zeolite, analysed according to the Rietveld method, showed that the main mineralogical phase involved in the adsorption process was clinoptilolite. Besides structure information showed that the incorporation of Pb2+, Cd2+ and Zn2+, into the zeolite frameworks changed slightly but appreciably the lattice parameters. XRD analysis also showed the occurrence of some isomorphic substitution phenomena where the Al3+ ions of the clinoptilolite framework were replaced by exchanged Pb2+ cations in the course of the ion exchange reaction. This mechanism was instead less evident in the patterns of the samples doped with Cd2+ and Zn2+ cations

  3. Simultaneous Isolation of Lactoferrin and Lactoperoxidase from Bovine Colostrum by SPEC 70 SLS Cation Exchange Resin

    Science.gov (United States)

    Liang, Yafei; Wang, Xuewan; Wu, Mianbin; Zhu, Wanping

    2011-01-01

    In this work, simultaneous isolation of lactoferrin (Lf) and lactoperoxidase (Lp) from defatted bovine colostrum by one-step cation exchange chromatography with SPEC 70 SLS ion-exchange resin was investigated. A RP-HPLC method for Lf and Lp determination was developed and optimized as the following conditions: detection wavelength of 220 nm, flow rate of 1 mL/min and acetonitrile concentration from 25% to 75% within 20 min. The adsorption process of Lf on SPEC 70 SLS resin was optimized using Lf standard as substrate. The maximum static binding capacity of SPEC 70 SLS resin was of 22.0 mg/g resin at 15 °C, pH 7.0 and adsorption time 3 h. The Lf adsorption process could be well described by the Langmuir adsorption isotherm model, with a maximum adsorption capacity of 21.73 mg/g resin at 15 °C. In batch fractionation of defatted colostrum, the binding capacities of SPEC 70 SLS resin for adsorbing Lf and Lp simultaneously under the abovementioned conditions were 7.60 and 6.89 mg/g resin, respectively, both of which were superior to those of CM Sepharose F.F. or SP Sepharose F.F. resins under the same conditions. As a result, SPEC 70 SLS resin was considered as a successful candidate for direct and economic purification of Lf and Lp from defatted colostrum. PMID:22016715

  4. Simultaneous isolation of lactoferrin and lactoperoxidase from bovine colostrum by SPEC 70 SLS cation exchange resin.

    Science.gov (United States)

    Liang, Yafei; Wang, Xuewan; Wu, Mianbin; Zhu, Wanping

    2011-09-01

    In this work, simultaneous isolation of lactoferrin (Lf) and lactoperoxidase (Lp) from defatted bovine colostrum by one-step cation exchange chromatography with SPEC 70 SLS ion-exchange resin was investigated. A RP-HPLC method for Lf and Lp determination was developed and optimized as the following conditions: detection wavelength of 220 nm, flow rate of 1 mL/min and acetonitrile concentration from 25% to 75% within 20 min. The adsorption process of Lf on SPEC 70 SLS resin was optimized using Lf standard as substrate. The maximum static binding capacity of SPEC 70 SLS resin was of 22.0 mg/g resin at 15 °C, pH 7.0 and adsorption time 3 h. The Lf adsorption process could be well described by the Langmuir adsorption isotherm model, with a maximum adsorption capacity of 21.73 mg/g resin at 15 °C. In batch fractionation of defatted colostrum, the binding capacities of SPEC 70 SLS resin for adsorbing Lf and Lp simultaneously under the abovementioned conditions were 7.60 and 6.89 mg/g resin, respectively, both of which were superior to those of CM Sepharose F.F. or SP Sepharose F.F. resins under the same conditions. As a result, SPEC 70 SLS resin was considered as a successful candidate for direct and economic purification of Lf and Lp from defatted colostrum.

  5. Simultaneous Isolation of Lactoferrin and Lactoperoxidase from Bovine Colostrum by SPEC 70 SLS Cation Exchange Resin

    Directory of Open Access Journals (Sweden)

    Mianbin Wu

    2011-09-01

    Full Text Available In this work, simultaneous isolation of lactoferrin (Lf and lactoperoxidase (Lp from defatted bovine colostrum by one-step cation exchange chromatography with SPEC 70 SLS ion-exchange resin was investigated. A RP-HPLC method for Lf and Lp determination was developed and optimized as the following conditions: detection wavelength of 220 nm, flow rate of 1 mL/min and acetonitrile concentration from 25% to 75% within 20 min. The adsorption process of Lf on SPEC 70 SLS resin was optimized using Lf standard as substrate. The maximum static binding capacity of SPEC 70 SLS resin was of 22.0 mg/g resin at 15 °С, pH 7.0 and adsorption time 3 h. The Lf adsorption process could be well described by the Langmuir adsorption isotherm model, with a maximum adsorption capacity of 21.73 mg/g resin at 15 °С. In batch fractionation of defatted colostrum, the binding capacities of SPEC 70 SLS resin for adsorbing Lf and Lp simultaneously under the abovementioned conditions were 7.60 and 6.89 mg/g resin, respectively, both of which were superior to those of CM Sepharose F.F. or SP Sepharose F.F. resins under the same conditions. As a result, SPEC 70 SLS resin was considered as a successful candidate for direct and economic purification of Lf and Lp from defatted colostrum.

  6. Adsorption of arsenate and arsenite from aqueous solutions by cerium-loaded cation exchange resin

    Institute of Scientific and Technical Information of China (English)

    HE Zongliang; TIAN Senlin; NING Ping

    2012-01-01

    The removal of arsenic from water and wastewater is obligatory.Resin is one of the most effective adsorbents for the removal of arsenic.In order to improve the adsorption capacity of resin,a new cerium-loaded cation exchange resin arsenic adsorbent was prepared by impregnating cerium into the cation exchange resin.Batch adsorption experiments under various conditions,such as time,temperature,pH and with coexisting ions were carried out to evaluate the adsorption characteristics of cerium-loaded resin in the removal of As(Ⅴ) and As(Ⅲ) from aqueous solutions.The results showed that the adsorption kinetics of As(Ⅴ) and As(Ⅲ) obeyed a pseudo second-order kinetic model and the adsorption rate constants were 0.3159 and 0.5215 g·mg-1·min-1,respectively.The adsorption of As(Ⅴ) followed the Freundlich adsorption isotherm model and the adsorption isotherm data for As(Ⅲ) fitted well to the Langmuir equation model.The adsorption capacities were 1.0278 mg/g for As(Ⅴ) and 2.5297 mg/g for As(Ⅲ).Both the adsorption of As(Ⅴ) and As(Ⅲ) were found to be pH sensitive and the optimum pH was found to be 5-6.Except for the phosphate ion,the coexisting anionics,such as nitrate,chlorate,sulphate and carbonate,showed no remarkable effect on AS(Ⅴ) and As(Ⅲ) adsorption.The desorption and regeneration study showed that the adsorption capacity of Ce-loaded resin for As(Ⅴ) and As(Ⅲ) could be restored to 97.80% and 69.61%,respectively,using 0.5 mol/L sodium hydroxide solution.

  7. Base cation deposition in Europe - Part II. Acid neutralization capacity and contribution to forest nutrition

    NARCIS (Netherlands)

    Draaijers, G.P.J.; Leeuwen, E.P. van; Jong, P.G.H. de; Erisman, J.W.

    1997-01-01

    An assessment was made of the capacity of base cations to neutralize acid deposition and of the contribution of base cation deposition to forest nutrition in Europe. In large parts of southern Europe more than 50% of the potential acid deposition was found counteracted by deposition of non-sea salt

  8. Cation exchange reactions controlling desorption of 90Sr 2+ from coarse-grained contaminated sediments at the Hanford site, Washington

    Science.gov (United States)

    McKinley, J. P.; Zachara, J. M.; Smith, S. C.; Liu, C.

    2007-01-01

    Nuclear waste that bore 90Sr 2+ was accidentally leaked into the vadose zone at the Hanford site, and was immobilized at relatively shallow depths in sediments containing little apparent clay or silt-sized components. Sr 2+, 90Sr 2+, Mg 2+, and Ca 2+ was desorbed and total inorganic carbon concentration was monitored during the equilibration of this sediment with varying concentrations of Na +, Ca 2+. A cation exchange model previously developed for similar sediments was applied to these results as a predictor of final solution compositions. The model included binary exchange reactions for the four operant cations and an equilibrium dissolution/precipitation reaction for calcite. The model successfully predicted the desorption data. The contaminated sediment was also examined using digital autoradiography, a sensitive tool for imaging the distribution of radioactivity. The exchanger phase containing 90Sr was found to consist of smectite formed from weathering of mesostasis glass in basaltic lithic fragments. These clasts are a significant component of Hanford formation sands. The relatively small but significant cation exchange capacity of these sediments was thus a consequence of reaction with physically sequestered clays in sediment that contained essentially no fine-grained material. The nature of this exchange component explained the relatively slow (scale of days) evolution of desorption solutions. The experimental and model results indicated that there is little risk of migration of 90Sr 2+ to the water table.

  9. Is the clay "exchange capacity" concept wholly applicable to pozzolans?

    Directory of Open Access Journals (Sweden)

    Talero, R.

    2004-12-01

    Full Text Available One of the most characteristic properties of clays is their "cation exchange capacity", otherwise known as their "exchange capacity ". The research reported in this article shows that for various reasons some natural and artificial pozzolans exhibit this property. Ion exchange is only partial in the latter however because contrary to clays, on hydration with Portland cement, pozzolans may he nearly entirely converted from their mainly vitreous and/or amorphous original state into a variety of new more or less crystalline compounds. For this purpose a total of 142 types of cement were tested in this study: 8 industrial and 134 laboratory cements, the latter prepared by mixing Portland cements with different proportions, by weight, of three natural and three artificial pozzolans. All these cements were analysed by the Frattini test, 7 and/or 28 days after mixing. Both [OH-] and [CaO] and the percentage content of Na+ and K+ expressed as Na2O and K2O, respectively, were determined in liquid phase. The cation concentration was only determined for the 45 blended cements most relevant to the objective of the study. Finally, the three natural pozzolans were analyzed by XRD to identify their mineral composition. The results obtained confirmed the working hypothesis. They also showed that the higher the content of Na+ and/or K+ the higher the likelihood of exchange capacity in the pozzolans. in this case primarily with Ca2+ Nonetheless, the very special mineral composition of certain pozzolans, with minerals such as zeolite and phillipsite, may likewise contribute to this capacity. In any event, due to the cation exchange between Na+/ K+ and Ca+ the blended cements involved met the Frattini test requirements more readily and had shorter setting times, especially: - where the Portland cement with which they were mixed was not highly

  10. Preparation of Medium Cation Exchange Stationary Phase of Polymeric Matrix and Their Chromatographic Properties

    Institute of Scientific and Technical Information of China (English)

    CHEN,Gang; GONG,Bo-Lin; BAI,Quan; GENG,Xin-Du

    2007-01-01

    Based on the monodisperse poly(glycidyl methacrylate-co-ethylenedimethacrylate) beads (PGMA/EDMA) with macropore as a medium, a new hydrophilic medium cation exchange (MCX) stationary phase for HPLC was synthesized by a new chemically modified method. The stationary phase was evaluated with the property of ion exchange, separability, reproducibility, hydrophilicity, effect of salt concentration, salt types, column loading and pH on the separation and retention of proteins in detail. It was found that it follows ion exchange chromatographic (IEC)retention mechanism. The measured bioactivity recovery for lysozyme was (96±5)%. The dynamic protein loading capacity of the synthesized MCX packings was 21.8 mg/g. Five proteins were almost completely separated within 6.0 min at a flow rate of 4 mL/min using the synthesized MCX resin. The MCX resin was also used for the rapid separation and purification of lysozyme from egg white with only one step. The purity and specific bioactivity of the purified lysozyme was found more than 95% and 70345 U/mg, respectively.

  11. Aspects of the super-equivalent sorption of glycine by cation exchanger KU-2-8

    Science.gov (United States)

    Khokhlova, O. N.; Khokhlov, V. Yu.; Trunaeva, E. S.; Nechaeva, L. S.

    2016-07-01

    The structure formed in a sorbent during the super-equivalent sorption of glycine by cation exchanger KU-2-8 is optimized via quantum chemical simulation. The differential thermodynamic characteristics of ion exchange and super-equivalent sorption in the studied system are calculated using a thermodynamic approach that allows us to describe the simultaneous exchange and super-equivalent sorption of compounds by ion-exchangers.

  12. Ion exchange capacities and surface areas of some major components and common fracture filling materials of igneous rocks

    International Nuclear Information System (INIS)

    Surface/mass ratios have been determined by the ethylene glycol method and the BET-method, and an- and cation exchange capacities vs pH have been measured by an isotopic dilution technique for some 30-35 pure minerals. These minerals, which are representative of major components and common accessory minerals, including fracture minerals, of crystalline rocks, have also been used in radionuclide sorption studies within the Swedish waste program. Generally, the anion exchange capacities are low (< 1 meq/kg) for all the minerals. The cation exchange capacities, which increase with pH, are < 1 meq/kg for the non-silicates with few exceptions, 1-10 meq/kg for most of the silicates except the phyllosilicates and ranging from 10 up to 800 meq/kg for clay minerals (e.g. montmorillonite) and some of the zeolites (e.g. stilbite). (authors)

  13. Separation of Clay Minerals from Host Sediments Using Cation Exchange Resins

    Institute of Scientific and Technical Information of China (English)

    I.S. Ismael; H.M. Baioumy

    2003-01-01

    Classic physical and chemical treatments applied to separating clay minerals from the host sediments are often difficult or aggressive for clay minerals. A technique using cation exchange resins (amberlite IRC-50H and amberlite IR-120) is used to separate clay minerals from the host sediments. The technique is based on the exchange of cations in the minerals that may be associated clay minerals in sediments,such as Ca and Mg from dolomite; Ca from calcite,gypsum and francolite with cations carried by resin radicals. The associated minerals such as gypsum,calcite,dolomite and francolite are removed in descending order. Separation of clay minerals using cation exchange resins is less aggressive than that by other classic treatments.The efficiency of amberlite IRC-50H in the removal of associated minerals is greater than that of amberlite IR-120.

  14. Ultrathin Sicopion Composite Cation-Exchange Membranes: Characteristics and Electrodialytic Performance following a Conditioning Procedure

    Directory of Open Access Journals (Sweden)

    Erik Ayala-Bribiesca

    2012-01-01

    Full Text Available The aim of this work was to investigate the properties of Sicopion membranes: an ultrathin (≈20 μm composite cation-exchange membrane (CEM made from sulphonated poly(ether-ether-ketone (SPEEK containing different levels of sulphonic-functionalized silica particles (SFSPs. Sicopion membranes were conditioned according to the French Normalization Association procedure, consisting in a series of acid and alkaline washes, and their electrodialytic characteristics were compared to an existent commercial food-grade membrane (CMX-SB. Electrical conductivity of Sicopion membranes was higher than that of CMX-SB membranes (9.92 versus 6.98 mS/cm, as well as their water content (34.0 versus 27.6%. As the SFSP level was reduced, the ion-exchange capacity (IEC of Sicopion membranes increased. Concerning their electrodialytic performances, Sicopion membranes presented a lower demineralization rate than CMX-SB membranes (35.9 versus 45.5%, due to an OH− leakage through the pores created by dislodging the SFSP particles during the conditioning procedure.

  15. Isolation of lactoperoxidase using different cation exchange resins by batch and column procedures.

    Science.gov (United States)

    Fweja, Leonard Wt; Lewis, Michael J; Grandison, Alistair S

    2010-08-01

    Lactoperoxidase (LP) was isolated from whey protein by cation-exchange using Carboxymethyl resin (CM-25C) and Sulphopropyl Toyopearl resin (SP-650C). Both batch and column procedures were employed and the adsorption capacities and extraction efficiencies were compared. The resin bed volume to whey volume ratios were 0.96:1.0 for CM-25C and 0.64:1.0 for SP-650 indicating higher adsorption capacity of SP-650 compared with CM-25C. The effluent LP activity depended on both the enzyme activity in the whey and the amount of whey loaded on the column within the saturation limits of the resin. The percentage recovery was high below the saturation point and fell off rapidly with over-saturation. While effective recovery was achieved with column extraction procedures, the recovery was poor in batch procedures. The whey-resin contact time had little impact on the enzyme adsorption. SDS PAGE and HPLC analyses were also carried out, the purity was examined and the proteins characterised in terms of molecular weights. Reversed phase HPLC provided clear distinction of the LP and lactoferrin (LF) peaks. The enzyme purity was higher in column effluents compared with batch effluents, judged on the basis of the clarity of the gel bands and the resolved peaks in HPLC chromatograms.

  16. Charge exchange of a polar molecule at its cation

    International Nuclear Information System (INIS)

    The Landau-Herring method is used to derive an analytic expression for the one-electron exchange interaction of a polar molecule with its positively charged ion, induced by a σ-electron. Analogously to the classical Van der Pole method, the exchange interaction potential is averaged over the rotational states of colliding particles. The resonant charge-transfer cross section is calculated, and the effect of the dipole moments of the core on the cross section is analyzed. It is shown that allowance for the dependence of the exchange potential on the orientation of the dipole moments relative to the molecular axis may change the dependence of the cross section on the velocity of colliding particles, which is typical of the resonant charge exchange, from the resonance to the quasi-resonance dependence.

  17. Reversible, Selective Trapping of Perchlorate from Water in Record Capacity by a Cationic Metal-Organic Framework.

    Science.gov (United States)

    Colinas, Ian R; Silva, Rachel C; Oliver, Scott R J

    2016-02-16

    We report the capture of ppm-level aqueous perchlorate in record capacity and kinetics via the complete anion exchange of a cationic metal-organic framework. Ambient conditions were used for both the synthesis of silver 4,4'-bipyridine nitrate (SBN) and the exchange, forming silver 4,4'-bipyridine perchlorate (SBP). The exchange was complete within 90 min, and the capacity was 354 mg/g, representing 99% removal. These values are greater than current anion exchangers such as the resins Amberlite IRA-400 (249 mg/g), Purolite A530E (104 mg/g), and layered double hydroxides (28 mg/g). Moreover, unlike resins and layered double hydroxides, SBN is fully reusable and displays 96% regeneration to SBN in nitrate solution, with new crystal formation allowing the indefinite cycling for perchlorate. We show seven cycles as proof of concept. Perchlorate contamination of water represents a serious health threat because it is a thyroid endocrine disruptor. This noncomplexing anionic pollutant is significantly mobile and environmentally persistent. Removal of other anionic pollutants from water such as chromate, pertechnetate, or arsenate may be possible by this methodology. PMID:26765213

  18. Synthesis and adsorption properties of the cation exchange forms of OFF-type zeolite

    Science.gov (United States)

    Gorshunova, K. K.; Travkina, O. S.; Kustov, L. M.; Kutepov, B. I.

    2016-03-01

    The possibility of the ion-exchange of Na+ and K+ cations contained in OFF-type zeolite for H+, Ni2+, Cu2+, Co2+, and La3+ cations is investigated. Chemical and phase compositions, the morphology of crystals, and the adsorption properties of synthesized samples are studied via X-ray fluorescence and X-ray diffraction analysis, IR spectroscopy, scanning electron microscopy, and adsorption measurements.

  19. Some extra-high capacity heat exchangers of special design

    International Nuclear Information System (INIS)

    Recent technical advances in developing high-capacity power generating equipment, in using new heat transfer media, in seawater desalination, and in chemical processing require the development of higher unit-capacity heat exchangers. Up-to-date solutions illustrating the progress made in the development of such heat exchangers is discussed and suggestions are made which may be of interest in this field. Specific heat transfer systems discussed include systems for air-cooled condensing power plants, multiple reheating cycles for steam turbines, and systems using liquid lead as the transfer medium. (U.S.)

  20. Time reversal and exchange symmetries of unitary gate capacities

    OpenAIRE

    Harrow, Aram W.; Shor, Peter W.

    2005-01-01

    Unitary gates are an interesting resource for quantum communication in part because they are always invertible and are intrinsically bidirectional. This paper explores these two symmetries: time-reversal and exchange of Alice and Bob. We will present examples of unitary gates that exhibit dramatic separations between forward and backward capacities (even when the back communication is assisted by free entanglement) and between entanglement-assisted and unassisted capacities, among many others...

  1. Sulfonated hydrocarbon graft architectures for cation exchange membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    A synthetic strategy to hydrocarbon graft architectures prepared from a commercial polysulfone and aimed as ion exchange membrane material is proposed. Polystyrene is grafted from a polysulfone macroinitiator by atom transfer radical polymerization, and subsequently sulfonated with acetyl sulfate...... to various degrees. Series of grafting densities and graft lengths are prepared, and membranes are solvent cast from DMSO. The membrane properties in aqueous environments are evaluated from their water swelling behavior, and their thermal properties and stability are investigated by thermogravimetric...

  2. Adsorption behavior and mechanism of cadmium on strong-acid cation exchange resin

    Institute of Scientific and Technical Information of China (English)

    WANG Fei; WANG Lian-jun; LI Jian-sheng; SUN Xiu-yun; HAN Wei-qing

    2009-01-01

    The adsorption behavior of Cd2+ on 001×7 strong-acid cation exchange resin was studied with the static adsorption method. The adsorption process was analyzed from thermodynamics and kinetics aspects. The influences of experimental parameters such as pH, temperature, initial concentration and adsorption rate were investigated. The experimental results show that in the studied concentration range, 001×7 resin has a good sorption ability for Cd2+, and the equilibrium adsorption data fit to Freundlich isotherms. The adsorption is an exothermic process which runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best adsorption condition is pH 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the desorption efficiency is over 98%. The maximal static saturated adsorption capacity is 355 mg/g (wet resin) at 293 K. The adsorption mechanism of Cd2+ on 001×7 resin was discussed based on IR spectra.

  3. A method for the production of weakly acidic cation exchange resins

    Science.gov (United States)

    Heller, H.; Werner, F.; Mitschker, A.; Diehl, H. V.; Schaefer, A.

    1991-12-01

    The invention relates to a nonpolluting method for the production of weakly acidic cation exchange resins by saponification of cross-linked acrylonitrile bead polymers, with an alkaline saponification agent at elevated temperature, according to which method the bead polymer and alkaline saponification agent are jointly added only at elevated temperature.

  4. Nongeminate Radiative Recombination of Free Charges in Cation-Exchanged PbS Quantum Dot Films

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Ashley R.; Beard, Matthew C.; Johnson, Justin C.

    2016-06-01

    Using photoluminescence (PL) spectroscopy we explore the radiative recombination pathways in PbS quantum dots (QDs) synthesized by two methods. We compare conventionally synthesized PbS from a PbO precursor to PbS synthesized using cation-exchange from CdS QDs. We show that strongly coupled films of PbS QDs from the cation-exchange luminesce with significant efficiency at room temperature. This is in stark contrast to conventional PbS QDs, which have exceedingly weak room temperature emission. Moreover, the power dependence of the emission is quadratic, indicating bimolecular radiative recombination that is reasonably competitive with trap-assisted recombination, a feature previously unreported in coupled PbS QD films. We interpret these results in terms of a greatly reduced defect concentration for cation-exchanged QDs that mitigates the influence of trap-assisted recombination. Cation-exchanged QDs have recently been employed in highly efficient and air-stable lead chalcogenide QD devices, and the reduced number of trap states inferred here may lead to improved current collection and higher open circuit voltage.

  5. Alkali recovery using PVA/SiO2 cation exchange membranes with different -COOH contents.

    Science.gov (United States)

    Hao, Jianwen; Gong, Ming; Wu, Yonghui; Wu, Cuiming; Luo, Jingyi; Xu, Tongwen

    2013-01-15

    By changing -COOH content in poly(acrylic acid-co-methacryloxypropyl trimethoxy silane (poly(AA-co-γ-MPS)), a series of PVA/SiO(2) cation exchange membranes are prepared from sol-gel process of poly(AA-co-γ-MPS) in presence of poly(vinyl alcohol) (PVA). The membranes have the initial decomposition temperature (IDT) values of 236-274 °C. The tensile strength (TS) ranges from 17.4 MPa to 44.4 MPa. The dimensional stability in length (DS-length) is in the range of 10%-25%, and the DS-area is in the range of 21%-56% in 65 °C water. The water content (W(R)) ranges from 61.2% to 81.7%, the ion exchange capacity (IEC) ranges from 1.69 mmol/g to 1.90 mmol/g. Effects of -COOH content on diffusion dialysis (DD) performance also are investigated for their potential applications. The membranes are tested for recovering NaOH from the mixture of NaOH/Na(2)WO(4) at 25 - 45 °C. The dialysis coefficients of NaOH (U(OH)) are in the range of 0.006-0.032 m/h, which are higher than those of the previous membranes (U(OH): 0.0015 m/h, at 25 °C). The selectivity (S) can reach up to 36.2. The DD performances have been correlated with the membrane structure, especially the continuous arrangement of -COOH in poly(AA-co-γ-MPS) chain.

  6. Electrochemical ion exchanger in the water circuit to measure cation conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, Bernt; Ingemarsson, Rolf; Settervik, Gustav [Ringhals AB, Vaeroebacka (Sweden); Velin, Anna [Vattenfall Research and Development AB, Stockholm (Sweden)

    2011-03-15

    At Ringhals Nuclear Power Plant (NPP), more than four years of successful operation with a full-scale electrode ionization (EDI) unit for the recycling of steam generator blowdown gave the inspiration to modify and scale down this EDI process. As part of this project, the possibility of replacing the cation exchanger columns used for cation conductivity analysis with some small and integrated electrochemical ion exchange cells was explored. Monitoring the cation conductivity requires the use of a small cation resin column upstream of the conductivity probe and is one of the most important analyses at power plants. However, when operating with high alkaline treatment in the steam circuit, there is the disadvantage of rapid exhaustion of the resins, necessitating frequent replacement or regeneration. This causes interruptions in the monitoring and gives rise to a high workload for the maintenance staff. This paper reports on the optimization and testing of two different two-compartment electrochemical cells for possible replacement of the cation resin columns for analyzing cation conductivity in the secondary steam circuit at Ringhals NPP. Field tests during start-up conditions and more than four months of steady operation together with real and simulated tests for impurity influences indicate that an electrical ion exchange (ELIX) process could be successfully used to replace the resin columns in Ringhals while operating with high-pH all-volatile treatment (AVT) using hydrazine and ammonia. Installation of an ELIX system downstream of a particle filter and upstream of a small cation resin column will introduce additional safety and further reduce the maintenance and possible interruptions. Performance of the ELIX process together with other chemical additives (morpholine, ethanolamine, 3-methoxypropylamine, dimethylamine) and dispersants may be further evaluated to qualify the ELIX process as well as steam generator blowdown electrodeionization for wider use in

  7. The Metal Cation Chelating Capacity of Astaxanthin. Does This Have Any Influence on Antiradical Activity?

    Directory of Open Access Journals (Sweden)

    Ana Martínez

    2012-01-01

    Full Text Available In this Density Functional Theory study, it became apparent that astaxanthin (ASTA may form metal ion complexes with metal cations such as Ca+2, Cu+2, Pb+2, Zn+2, Cd+2 and Hg+2. The presence of metal cations induces changes in the maximum absorption bands which are red shifted in all cases. Therefore, in the case of compounds where metal ions are interacting with ASTA, they are redder in color. Moreover, the antiradical capacity of some ASTA-metal cationic complexes was studied by assessing their vertical ionization energy and vertical electron affinity, reaching the conclusion that metal complexes are slightly better electron donors and better electron acceptors than ASTA.

  8. Purification of drinking water from radioactive contamination by final consumers by means of combined cation and anion exchangers

    International Nuclear Information System (INIS)

    It should be tried to develop an apparatus which makes it possible for the final consumer to purify the drinking water himself in the case of a radioactive contamination of the water. After thorough preliminary studies the most suitable kinds of exchange resins and the best arrangement for a combined cation and anion exchange resins and the best arrangement for a combined cation and anion exchange equipment were determined in inactive preliminary tests. Subsequent the useful capacity (NK) and the purifying factor (RF) were determined for the fission products 90Sr, 131I and 137Cs. The results were for 90Sr: NK = 30 1/2 x 0.5 l resin, RF >= 4.102, for 131I: NK = 32 1/2 x 0.5 l resin, RF = 3.7.102 and for 137Cs: NK > 35 1/2 x 0.5 l resin, RF >= 103. With 2 x 1 l resin the concentration of possible fission products in water can be reduced by 2 orders of magnitude ore more. A proposal for the construction of a household decontamination equipment for drinking water is made. The cost of production will be about A.S. 400,-- to 600,--. (author)

  9. Selective separation of sodium ions from a mixture with phenylalanine by Donnan dialysis with a profiled sulfogroup cation exchange membrane

    Science.gov (United States)

    Vasil'eva, V. I.; Goleva, E. A.

    2013-11-01

    The possibility of separating ions of metal from a mixture with ampholyte (an amino acid) by Donnan dialysis with an MK-40 sulfogroup cation exchange membrane is demonstrated. Conditions ensuring the selectivity and intensity of the mass transfer of sodium ions from a mixture with bipolar phenylalanine ions into a diffusate containing hydrochloric acid through a cation exchange membrane are found.

  10. Time reversal and exchange symmetries of unitary gate capacities

    CERN Document Server

    Harrow, A W; Harrow, Aram W.; Shor, Peter W.

    2005-01-01

    Unitary gates are an interesting resource for quantum communication in part because they are always invertible and are intrinsically bidirectional. This paper explores these two symmetries: time-reversal and exchange of Alice and Bob. We will present examples of unitary gates that exhibit dramatic separations between forward and backward capacities (even when the back communication is assisted by free entanglement) and between entanglement-assisted and unassisted capacities, among many others. Along the way, we will give a general time-reversal rule for relating the capacities of a unitary gate and its inverse that will explain why previous attempts at finding asymmetric capacities failed. Finally, we will see how the ability to erase quantum information and destroy entanglement can be a valuable resource for quantum communication.

  11. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals.

    Science.gov (United States)

    Tu, Renyong; Xie, Yi; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; Trizio, Luca De; Manna, Liberato

    2016-06-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e., with coordination number 4), such as Cd(2+) or Hg(2+), yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd(2+) and Hg(2+) ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2-xTe particles could be more easily deformed to match the anion framework of the metastable wurtzite structures. As hexagonal HgTe had never been reported to date, this represents another case of metastable new phases that can only be accessed by cation exchange. On the other hand, the exchanges involving octahedrally coordinated ions (i.e., with coordination number 6), such as Pb(2+) or Sn(2+), yielded rock-salt polycrystalline PbTe or SnTe nanocrystals with Cu2-xTe@PbTe or Cu2-xTe@SnTe core@shell architectures at the early stages of the exchange process. In this case, the octahedrally coordinated ions are probably too large to diffuse easily through the Cu2-xTe structure: their limited diffusion rate restricts their initial reaction to the surface of the nanocrystals, where cation exchange is initiated unselectively, leading to core@shell architectures. Interestingly, these heterostructures were found to be metastable as they evolved to stable Janus-like architectures if annealed at 200 °C under vacuum.

  12. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals.

    Science.gov (United States)

    Tu, Renyong; Xie, Yi; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; Trizio, Luca De; Manna, Liberato

    2016-06-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e., with coordination number 4), such as Cd(2+) or Hg(2+), yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd(2+) and Hg(2+) ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2-xTe particles could be more easily deformed to match the anion framework of the metastable wurtzite structures. As hexagonal HgTe had never been reported to date, this represents another case of metastable new phases that can only be accessed by cation exchange. On the other hand, the exchanges involving octahedrally coordinated ions (i.e., with coordination number 6), such as Pb(2+) or Sn(2+), yielded rock-salt polycrystalline PbTe or SnTe nanocrystals with Cu2-xTe@PbTe or Cu2-xTe@SnTe core@shell architectures at the early stages of the exchange process. In this case, the octahedrally coordinated ions are probably too large to diffuse easily through the Cu2-xTe structure: their limited diffusion rate restricts their initial reaction to the surface of the nanocrystals, where cation exchange is initiated unselectively, leading to core@shell architectures. Interestingly, these heterostructures were found to be metastable as they evolved to stable Janus-like architectures if annealed at 200 °C under vacuum. PMID:27177274

  13. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals

    CERN Document Server

    Tu, Renyong; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; De Trizio, Luca; Manna, Liberato

    2016-01-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e. with coordination number 4), such as Cd2+ or Hg2+, yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd2+ and Hg2+ ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2- xTe particles could be more easily deformed to match the anion framework of t...

  14. Effect of quinidine on cation exchange in cultured cells.

    Science.gov (United States)

    McCall, D

    1976-06-01

    The effects of quinidine on membrane ion exchange were examined using monolayer cultures of mammalian cells. Quinidine, in concentrations from 10(-6) to 10(-3) M, produced a prompt inhibition of the passive Na influx, dose-dependent along a sigmoid log dose-response curve. This effect was at a maximum for each concentration of the drug within 30 seconds of application. Passive Na influx (pmol/cm2/sec) decreased from 18.8 to 17.6 (P less than .05) and 10.5 (P less than .001) in the presence of 10(-6) and 10(-3) M quinidine, respectively. In the continued presence of quinidine, there was no further time-dependent effect on the Na influx, nor was there any tendency for the influx to recover. Washing the cells free of quinidine, however, resulted in a return of Na influx to control levels within 1 to 3 minutes. After 1 to 2 minute of quinidine treatment, coupled active Na efflux/K influx rapidly declined, reaching minimum values for each concentration between 2 to 4 minutes of drug treatment. Beyond that time, active Na/K fluxes again increased, but to values which remained significantly less than control, for up to 4 hours. Ten minutes of exposure to quinidine were required before any demonstrable effect on the passive K efflux could be recorded. In the presence of quinidine, there was reduced membrane turnover of both Na and K, but such that after a brief initial period (10 minutes or less) both ions were in flux equilibrium, explaining the absence of change in [Nai] and [Ki] in the presence of quinidine. Calculations of Ec1 indicated that, when present for 4 hours, quinidine did not change the Em in these cells although significant (P less than .001) reductions in apparent PNa and Pk values were recorded. The effect on PNa was much greater than that on Pk. The quinidine-induced flux changes occurred in a definite temporal sequence suggesting that they could all be explained on the basis of one direct initial action. This initial direct action, namely the prompt

  15. Determination of organoarsenic species in marine samples using gradient elution cation exchange HPLC-ICP-MS

    DEFF Research Database (Denmark)

    Sloth, Jens Jørgen; Larsen, Erik Huusfeldt; Julshamn, Kåre

    2003-01-01

    A method for the determination of arsenic species in marine samples using high performance liquid chromatography coupled to inductively coupled mass spectrometry (HPLC-ICP-MS) has been developed. Cation exchange HPLC with gradient elution using pyridine formate as the mobile phase was employed...... and dimethylarsinoylacetic acid, whereas the cationic arsenocholine ion and tetramethylarsonium ion were not affected. The accuracy of the method for DMA, AsB and TMAs was validated with the CRMs DORM-2 and BCR626 Tuna. The concentrations found for arsenobetaine, dimethylarsinic acid and tetramethylarsonium ion were within...

  16. Exchange of interlayer cations in micaceous minerals. Progress report, August 1, 1974--July 31, 1975

    International Nuclear Information System (INIS)

    Information pertaining to the sorption and exchange of interlayer cations in micaceous minerals was developed along several lines. Cs sorption experiments with different minerals and particle sizes established the periods required for maximum sorption at different temperatures and downgraded the impact anticipated from a contraction of particle edges by Cs. Added interlayer Cs in even highly charged minerals (degraded muscovite) proved to be very exchangeable in air-dry, clay size particles. Heat treatments greatly retarded the exchange of this sorbed Cs and by doing so have circumvented the commonly observed small particle effects. Structural Fe in micas was shown to be susceptible to oxidation by various Br2 treatments but these treatments also removed a lot of K that must be accounted for in a determination of changes in interlayer K exchangeability. Changes in the rate of interlayer K exchange were induced in some micaceous minerals by adding H2O2 but not in others. Specific effects of heat treatments on dioctahedral and trioctahedral micas were examined in great detail. Interlayer cation exchange experiments with different concentrations of Na and Al have produced predictable results. (U.S.)

  17. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water

    KAUST Repository

    Han, Sanyang

    2016-10-04

    Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad range of fields hinges upon the development of a robust synthetic protocol that provides rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large classes of such nanocrystals. By combining the process of cation exchange with energy migration, the luminescence properties of the nanocrystals can be easily tuned while preserving the size, morphology and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us to achieve upconversion luminescence in Ce3+ and Mn2+-activated hexagonal-phased nanocrystals, opening a gateway towards applications ranging from chemical sensing to anti-counterfeiting.

  18. Effect of Simulated N Deposition on Soil Exchangeable Cations in Three Forest Types of Subtropical China

    Institute of Scientific and Technical Information of China (English)

    LU Xian-Kai; MO Jiang-Ming; P.GUNDERSERN; ZHU Wei-Xing; ZHOU Guo-Yi; LI De-Jun; ZHANG Xu

    2009-01-01

    The effects of simulated nitrogen (N) deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen broadleaf forest (mature forest):control (0 kg N ha-1 year-1),low N (50 kg N ha-1 year-1),medium N (100 kg N ha-1 year-1) and high N (150 kg N ha-1 ycar-1),and only three treatments (i.e.,control,low N,medium N) were established for the pine and mixed forests.Nitrogen had been applied continuously for 26 months before the measurement.The mature forest responded more rapidly and intensively to N additions than the pine and mixed forests,and exhibited some significant negative symptoms,e.g.,soil acidification,Al mobilization and leaching of base cations from soil.The pine and mixed forests responded slowly to N additions and exhibited no significant response of soil cations.Response of soil exchangeable cations to N deposition varied in the forests of subtropical China,depending on soil N status and land-nse history.

  19. Synthesis and characterization of a novel hybrid nano composite cation exchanger poly-o-toluidine Sn(IV) tungstate: Its analytical applications as ion-selective electrode

    Science.gov (United States)

    Khan, Asif Ali; Shaheen, Shakeeba

    2013-02-01

    A novel organic-inorganic nano composite cation exchanger poly-o-toluidine Sn(IV) tungstate has been synthesized by incorporation of a polymer material into inorganic precipitate. The material is a class of hybrid ion-exchanger with good ion-exchange properties, reproducibility, stability and good selectivity for heavy metals. The physico-chemical properties of this nano composite material were characterized by using XRD, TGA, FTIR, SEM and TEM. The ion-exchange capacity, pH titrations, elution behavior and chemical stability were also carried out to study ion-exchange properties of the material. Distribution studies for various metal ions revealed that the nano composite is highly selective for Cd(II). An ion-selective membrane electrode was fabricated using this material for the determination of Cd(II) ions in solutions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations.

  20. Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures

    Science.gov (United States)

    Allen, E. R.; Hossner, L. R.; Ming, D. W.; Henninger, D. L.

    1993-01-01

    Mixtures of zeolite and phosphate rock (PR) have the potential to provide slow-release fertilization of plants in synthetic soils by dissolution and ion-exchange reactions. This study was conducted to examine solubility and cation-exchange relationships in mixtures of PR and NH4- and K-saturated clinoptilolite (Cp). Batch-equilibration experiments were designed to investigate the effect of PR source, the proportion of exchangeable K and NH4, and the Cp to PR ratio on solution N, P, K, and Ca concentrations. The dissolution and cation-exchange reactions that occurred after mixing NH4- and K-saturated Cp with PR increased the solubility of the PR and simultaneously released NH4 and K into solution. The more reactive North Carolina (NC) PR rendered higher solution concentrations of NH4 and K when mixed with Cp than did Tennessee (TN) PR. Solution P concentrations for the Cp-NC PR mixture and the Cp-TN PR mixture were similar. Solution concentrations of N, P, K, and Ca and the ratios of these nutrients in solution varied predictably with the type of PR, the Cp/PR ratio, and the proportions of exchangeable K and NH4 on the Cp. Our research indicated that slow-release fertilization using Cp/PR media may provide adequate levels of N, P, and K to support plant growth. Solution Ca concentrations were lower than optimum for plant growth.

  1. Mobilization of Roadside Soil Cation Pools by Exchange with Road Deicers

    Science.gov (United States)

    Rossi, R.; Bain, D.

    2014-12-01

    Over the past sixty years, road deicers (i.e., road salt) have been applied to roadways in high latitudes to improve traffic conditions in winter weather. However, the dissolution of road deicers in highway runoff create waters with high total dissolved solids (TDS), specifically high concentrations of sodium, which can mobilize soil metals via soil cation exchange reactions. While several studies have detailed the interactions of high TDS solutions and surface and ground waters, limited attention is paid to the impacts of high TDS solutions on near-road soils. Between 2013 and 2014, soil water samples were collected from a roadside transect of lysimeter nests in Pittsburgh, PA. Soil water samples were analyzed for metal concentrations and resulting data used to examine cation dynamics. Patterns in soil water calcium and magnesium concentrations follow patterns in soil water sodium concentrations. In our samples, the highest major cation concentrations are found at the deepest lysimeters, suggesting major cations are mobilized to, and potentially accumulate in, deeper soil horizons. Concentration peaks in the downslope soil waters lag concentration peaks at the near-road nest by two months, indicating that road salt plumes persist and migrate following the road salting season. Characterizing the interactions of high TDS solutions and roadside soil cation pools clarifies our understanding of metal dynamics in the roadside environment. A deeper understanding of these processes is necessary to effectively restore and manage watersheds as high TDS solutions (i.e., road deicing, hydraulic fracturing, and marginal irrigation water) increasingly influence ecosystem function.

  2. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange

    KAUST Repository

    Binetti, Enrico

    2015-10-27

    Colloidal semiconductor nanocrystals, with intense and sharp-line emission between red and near-infrared spectral regions, are of great interest for optoelectronic and bio-imaging applications. The growth of an inorganic passivation layer on nanocrystal surfaces is a common strategy to improve their chemical and optical stability and their photoluminescence quantum yield. In particular, cation exchange is a suitable approach for shell growth at the expense of the nanocrystal core size. Here, the cation exchange process is used to promote the formation of a CdS passivation layer on the surface of very small PbS nanocrystals (2.3 nm in diameter), blue shifting their optical spectra and yielding luminescent and stable nanostructures emitting in the range of 700–850 nm. Structural, morphological and compositional investigation confirms the nanocrystal size contraction after the cation-exchange process, while the PbS rock-salt crystalline phase is retained. Absorption and photoluminescence spectroscopy demonstrate the growth of a passivation layer with a decrease of the PbS core size, as inferred by the blue-shift of the excitonic peaks. The surface passivation strongly increases the photoluminescence intensity and the excited state lifetime. In addition, the nanocrystals reveal increased stability against oxidation over time. Thanks to their absorption and emission spectral range and the slow recombination dynamics, such highly luminescent nano-objects can find interesting applications in sensitized photovoltaic cells and light-emitting devices.

  3. Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing.

    Science.gov (United States)

    Rivest, Jessy B; Jain, Prashant K

    2013-01-01

    Cation exchange is an age-old technique for the chemical conversion of liquids or extended solids by place-exchanging the cations in an ionic material with a different set of cations. The technique is undergoing a major revival with the advent of high-quality nanocrystals: researchers are now able to overcome the limitations in bulk systems and fully exploit cation exchange for materials synthesis and discovery via rapid, low-temperature transformations in the solid state. In this tutorial review, we discuss cation exchange as a promising materials synthesis and discovery tool. Exchange on the nanoscale exhibits some unique attributes: rapid kinetics at room temperature (orders of magnitude faster than in the bulk) and the tuning of reactivity via control of nanocrystal size, shape, and surface faceting. These features make cation exchange a convenient tool for accessing nanocrystal compositions and morphologies for which conventional synthesis may not be established. A simple exchange reaction allows extension of nanochemistry to a larger part of the periodic table, beyond the typical gamut of II-VI, IV-VI, and III-V materials. Cation exchange transformations in nanocrystals can be topotactic and size- and shape-conserving, allowing nanocrystals synthesized by conventional methods to be used as templates for production of compositionally novel, multicomponent, or doped nanocrystals. Since phases and compositions resulting from an exchange reaction can be kinetically controlled, rather than governed by the phase diagram, nanocrystals of metastable and hitherto inaccessible compositions are attainable. Outside of materials synthesis, applications for cation exchange exist in water purification, chemical staining, and sensing. Since nanoscale cation exchange occurs rapidly at room temperature, it can be integrated with sensitive environments such as those in biological systems. Cation exchange is already allowing access to a variety of new materials and processes

  4. Changes of Soil Water, Organic Matter, and Exchangeable Cations Along a Forest Successional Gradient in Southern China

    Institute of Scientific and Technical Information of China (English)

    YAN Jun-Hua; ZHOU Guo-Yi; ZHANG De-Qiang; CHU Guo-Wei

    2007-01-01

    Information on the distribution patterns of soil water content (SWC), soil organic matter (SOM), and soil exchangeable cations (SEC) is important for managing forest ecosystems in a sustainable manner. This study investigated how SWC, SOM, and SEC were influenced in forests along a successional gradient, including a regional climax (monsoon evergreen broad-leaved forest, or MEBF), a transitional forest (coniferous and broad-leaved mixed forest, or MF), and a pioneer forest (coniferous Masson pine (Pinus massoniana) forest, or MPF) of the Dinghushan Biosphere Reserve in the subtropical region of southern China. SWC, SOM, and SEC excluding Ca2+ were found to increase in the soil during forest succession, being highest in the top soil layer (0 to 15 cm depth) except for Na+. The differences between soil layers were largest in MF. This finding also suggested that the nutrients were enriched in the topsoil when they became increasingly scarce in the soil. There were no significant differences (P = 0.05) among SWC, SOM, and SBC. A linear, positive correlation was found between SWC and SOM. The correlation between SOM and cation exchange capacity (CEC) was statistically significant, which agreed with the theory that the most important factor determining SEC is SOM. The ratio of K+ to Na+ in the topsoil was about a half of that in the plants of each forest. MF had the lowest exchangeable Ca2+ concentration among the three forests and Ca2+:K+ in MPF was two times higher than that in MF. Understanding the changes of SWC, SOM, and CEC during forest succession would be of great help in protecting all three forests in southern China.

  5. Preparation of a Cation Exchanger from Cork Waste: Thermodynamic Study of the Ion Exchange Processes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An ion exchanger was prepared by sulfonation of cork-waste chars. The exchange properties of the resultant materialwere characterized using Na+, Ca2+ or Fe3+ aqueous solutions, The content of metal ions in the solutions weredetermined by atomic absorption spectrometry. On the basis of the results obtained, the chemical equilibrium andits thermodynamic aspects related to the ion exchange process were studied. It was found that equilibrium constantK varies by the order: Na+<Ca2+<Fe3+, its value increasing with increasing temperature, and that △H°>0 and△S°>0, with -△G° following the sequence: Ca2+>Na+>Fe3+,

  6. Chabazite: stable cation-exchanger in hyper alkaline concrete pore water.

    Science.gov (United States)

    Van Tendeloo, Leen; Wangermez, Wauter; Kurttepeli, Mert; de Blochouse, Benny; Bals, Sara; Van Tendeloo, Gustaaf; Martens, Johan A; Maes, André; Kirschhock, Christine E A; Breynaert, Eric

    2015-02-17

    To avoid impact on the environment, facilities for permanent disposal of hazardous waste adopt multibarrier design schemes. As the primary barrier very often consists of cement-based materials, two distinct aspects are essential for the selection of suitable complementary barriers: (1) selective sorption of the contaminants in the repository and (2) long-term chemical stability in hyperalkaline concrete-derived media. A multidisciplinary approach combining experimental strategies from environmental chemistry and materials science is therefore essential to provide a reliable assessment of potential candidate materials. Chabazite is typically synthesized in 1 M KOH solutions but also crystallizes in simulated young cement pore water, a pH 13 aqueous solution mainly containing K(+) and Na(+) cations. Its formation and stability in this medium was evaluated as a function of temperature (60 and 85 °C) over a timeframe of more than 2 years and was also asessed from a mechanistic point of view. Chabazite demonstrates excellent cation-exchange properties in simulated young cement pore water. Comparison of its Cs(+) cation exchange properties at pH 8 and pH 13 unexpectedly demonstrated an increase of the KD with increasing pH. The combined results identify chabazite as a valid candidate for inclusion in engineered barriers for concrete-based waste disposal.

  7. Strongly reduced band gap in NiMn2O4 due to cation exchange

    International Nuclear Information System (INIS)

    NiMn2O4 is extensively used as a basis material for temperature sensors due to its negative temperature coefficient of resistance (NTCR), which is commonly attributed to the hopping mechanism involving coexisting octahedral-site Mn4+ and Mn3+. Using density-functional theory + Hubbard U calculations, we identify a ferrimagnetic inverse spinel phase as the collinear ground state of NiMn2O4. By a 12.5% cation exchange, a mixed phase with slightly higher energy can be constructed, accompanied by the formation of an impurity-like band in the original 1 eV band gap. This impurity-like band reduces the gap to 0.35 eV, suggesting a possible source of NTCR. - Highlights: • Density functional based calculations were used to study collinear phase of NiMn2O4. • The ground-state structure is a ferrimagnetic inverse spinel phase. • The tetrahedral and octahedral Mn cations have ferromagnetic interactions. • A 12.5% cation exchange introduces an impurity-like band in the original 1 eV gap. • The 0.35 eV gap suggests a source of negative temperature coefficient of resistance

  8. Synthesis and characterization of a new inorganic cation-exchanger-Zr(IV) tungstomolybdate: Analytical applications for metal content determination in real sample and synthetic mixture

    International Nuclear Information System (INIS)

    An amorphous sample of inorganic cation-exchanger Zr(IV) tungstomolybdate was prepared by mixing varying ratios of 0.1 M aqueous solution of sodium tungstate and 0.1 M aqueous solution of sodium molybdate into 0.1 M aqueous solution of zirconium oxychloride at pH 1. This cation-exchanger was found to have a good ion-exchange capacity (2.40 mequiv. g-1 for Na+), high thermal and chemical stability. A tentative structural formula was proposed on the basis of chemical composition, FTIR and thermogravimetric analysis. Distribution coefficients (K d) values of metal ions in various solvent systems were determined. Some important and analytically difficult quantitative binary separations viz. Ni(II)-Pb(II), Ni(II)-Zn(II), Ni(II)-Cd(II), Mg(II)-Al(III), etc. were achieved. The practical applicability of the cation-exchanger was demonstrated in the separation of Cu(II)-Zn(II) from a synthetic mixture as well as from real samples of pharmaceutical formulation and brass alloy

  9. Emerging roles of alkali cation/proton exchangers in organellar homeostasis

    Science.gov (United States)

    Orlowski, John; Grinstein, Sergio

    2016-01-01

    The regulated movement of monovalent cations such as H+, Li+, Na+ and K+ across biological membranes influences a myriad of cellular processes and is fundamental to all living organisms. This is accomplished by a multiplicity of ion channels, pumps and transporters. Our insight into their molecular, cellular and physiological diversity has increased greatly in the past few years with the advent of genome sequencing, genetic manipulation and sophisticated imaging techniques. One of the revelations from these studies is the emergence of novel alkali cation/protons exchangers that are present in endomembranes, where they function to regulate not only intraorganellar pH but also vesicular biogenesis, trafficking and other aspects of cellular homeostasis. PMID:17646094

  10. PREPARATION OF SA-Fe CATION EXCHANGE MEMBRANE AND IT'S APPLICATION IN ELECTRODIALYSIS FOR TREATING WASTEWATER

    Institute of Scientific and Technical Information of China (English)

    GENG Yamin; CHEN Zhen; ZHENG Xi; HUANG Xuehong; CHEN Riyao

    2006-01-01

    An insoluble SA-Fe membrane was prepared by being linked soluble sodium alginate with FeCl3. SEM was used to observe its surface structure. IR spectrum indicated that Fe3+ was linked with -COOH and -OH in SA membrane. As a cationic exchanging membrane in electrodialysis the membrane was applied in treating inorganic wastewater with high concentration of inorganic ammonia and azote. The results of experiment showed that it was well-selective to ammonia and azote. The percentage of the removal of ammonia and azote in wastewater was up to 80%.

  11. Refolding of Denatured/Reduced Lysozyme Using Weak-Cation Exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    Yan WANG; Bo Lin GONG; Xin Du GENG

    2003-01-01

    Oxidative refolding of the denatured/reduced lysozyme was investigated by using weak-cation exchange chromatography (WCX). The stationary phase of WCX binds to the reduced lysozyme and prevented it from forming intermolecular aggregates. At the same time urea and ammonium sulfate were added to the mobile phase to increase the elution strength for lysozyme. Ammonium sulfate can more stabilize the native protein than a common eluting agent, sodium chloride. Refolding of lysozyme by using this WCX is successfully. It was simply carried out to obtain a completely and correctly refolding of the denatured lysozyme at high concentration of 20.0 mg/mL.

  12. Advance chromatin extraction enhances performance and productivity of cation exchange chromatography-based capture of Immunoglobulin G monoclonal antibodies.

    Science.gov (United States)

    Nian, Rui; Gagnon, Pete

    2016-07-01

    The impact of host cell-derived chromatin was investigated on the performance and productivity of cation exchange chromatography as a method for capture-purification of an IgG monoclonal antibody. Cell culture supernatant was prepared for loading by titration to pH 6.0, dilution with water to a conductivity of 4mS/cm, then microfiltration to remove solids. DNA content was reduced 99% to 30ppm, histone host cell protein content by 76% to 6300ppm, non-histone host cell protein content by 15% to 321,000ppm, and aggregates from 33% to 15%. IgG recovery was 83%. An alternative preparation was performed, adding octanoic acid, allantoin, and electropositive particles to the harvest at pH 5.3, then removing solids. DNA content was reduced to<1 ppb, histones became undetectable, non-histones were reduced to 24,000ppm, and aggregates were reduced to 2.4%. IgG recovery was 95%. This treatment increased dynamic capacity (DBC) of cation exchange capture to 173g/L and enabled the column to reduce non-histone host proteins to 671ppm. Step recovery was 99%. A single multimodal polishing step further reduced them to 15ppm and aggregates to <0.1%. Overall process recovery was 89%. Productivity at feed stream IgG concentrations of 5-10g/L was roughly double the productivity of a same-size protein A column with a DBC of 55g/L. PMID:27247214

  13. Preparation of Weak Cation Exchange Packings Based on Monodisperse Poly (chloromethylstyrene-co-divinylbenzene) Particles and Its Chromatographic Properties

    Institute of Scientific and Technical Information of China (English)

    卫引茂; 陈强; 耿信笃

    2001-01-01

    Monodisperse poly ( chloromethylstyrene-co-divinylbenzene )particles were firstly prepared by a two-step swelling method.Based on this media, one kind of weak cation ion exchange packings was prepared. It was demonstrated that the prepared packings have comparative advantages for biopolymer separation with high column efficiency, low interstitial volume and low column backpressure, and have good resolution to proteins. The effects of salt concentration and pH of mobile phase on protein retentions were investigated. The properties of the weak cation ion exchange packings were evaluated by the unified retention model for mixed-mode interaction mechanison in ion exchange and hydrophobic interaction chromatography.

  14. Purification of urokinase by combined cation exchanger and affinity chromatographic cartridges.

    Science.gov (United States)

    Hou, K C; Zaniewski, R

    1990-02-23

    Crude urokinase from human urine processed through foam flotation and ammonium sulfate precipitation containing 720 National Health Institute Committee on Thrombolytic Agents U/mg activity was purified by an SP cation exchanger followed by a zinc-chelated affinity chromatographic cartridge. The cartridges were of a radial-flow type formed by using acrylic and cellulose composite matrices. The high rigidity of the matrix structure permits fast flow of protein solutions (liters per minute) and thus allows processing of a large volume of crude urokinase under low operating pressures. A greater than six-fold increase in specific enzyme activity of urokinase was achieved by adsorbing and eluting 1 l of a 3 mg/ml crude urokinase solution on an SP cartridge. The eluent was further purified by passing through a zinc-chelated affinity cartridge to achieve greater than a eighteen-fold increase in urokinase specific activity. This report demonstrates the combined use of a cation exchanger with zinc-chelated chromatographic cartridges in purifying urokinase on a relatively large scale. The relationship between the amount of zinc chelated in the matrix to its effect on urokinase purification is also discussed. PMID:2329161

  15. Effect of ionophores on the rate of intramolecular cation exchange in durosemiquinone ion pairs

    Science.gov (United States)

    Eastman, M. P.; Bruno, G. V.; Mcguyer, C. A.; Gutierrez, A. R.; Shannon, J. M.

    1979-01-01

    The effects of the ionophores 15-crown-5 (15C5), 18-crown-6 (18C6), dibenzo-18-crown-6 (DBC) and cryptand 222 (C222) on intramolecular cation exchange in ion pairs of the sodium salt of the durosemiquinone anion in benzene solution are investigated. Electron paramagnetic resonance spectra of the 18C6 and 15C5 complexes with durosemiquinone reduced by contact with a sodium mirror show an alternating line width which indicates that the sodium ion is being exchanged between equivalent sites near the oxygens of the semiquinone with activation energies of 8.7 and 6.0 kcal/mole and Arrhenius preexponential factors of 9 x 10 to the 12th/sec and 10 to the 12th/sec, respectively. Spectra obtained for the DBC complexes show no evidence of exchange, while those of C222 indicate rapid exchange. It is also noted that the hyperfine splitting constants measured do not change over the 50-K temperature interval studied.

  16. Morphologically Aligned Cation-Exchange Membranes by a Pulsed Electric Field for Reverse Electrodialysis.

    Science.gov (United States)

    Lee, Ju-Young; Kim, Jae-Hun; Lee, Ju-Hyuk; Kim, Seok; Moon, Seung-Hyeon

    2015-07-21

    A low-resistance ion-exchange membrane is essential to achieve the high-performance energy conversion or storage systems. The formation methods for low-resistance membranes are various; one of the methods is the ion channel alignment of an ion-exchange membrane under a direct current (DC) electric field. In this study, we suggest a more effective alignment method than the process with the DC electric field. First, an ion-exchange membrane was prepared under a pulsed electric field [alternating current (AC) mode] to enhance the effectiveness of the alignment. The membrane properties and the performance in reverse electrodialysis (RED) were then examined to assess the membrane resistance and ion selectivity. The results show that the membrane electrical resistance (MER) had a lower value of 0.86 Ω cm(2) for the AC membrane than 2.13 Ω cm(2) observed for the DC membrane and 4.30 Ω cm(2) observed for the pristine membrane. Furthermore, RED achieved 1.34 W/m(2) of maximum power density for the AC membrane, whereas that for the DC membrane was found to be 1.14 W/m(2) [a RED stack assembled with CMX, used as a commercial cation-exchange membrane (CEM), showed 1.07 W/m(2)]. Thereby, the novel preparation process for a remarkable low-resistance membrane with high ion selectivity was demonstrated.

  17. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    Directory of Open Access Journals (Sweden)

    César A. C. Sequeira

    2012-07-01

    Full Text Available Direct borohydride fuel cells (DBFC, which operate on sodium borohydride (NaBH4 as the fuel, and hydrogen peroxide (H2O2 as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S and a cation-exchange membrane (CMI-7000S, are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC’s performance. Cell polarization, power density, stability, and durability tests are used in the membranes’ evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  18. Cu2Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange

    KAUST Repository

    Casu, Alberto

    2016-01-27

    Among the different synthesis approaches to colloidal nanocrystals a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, post-synthetic treatments, such as thermally activated solid state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu “acceptors” phases represented by rod- and wire- shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu2-xSe nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu “donor” and “acceptor” particles were not always in direct contact with each other, hence the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state, and helps to shed light on the intermediate steps involved in such reactions.

  19. The treatment of liquid radioactive waste containing Americium by using a cation exchange method

    International Nuclear Information System (INIS)

    A research in the treatment of a liquid radioactive waste containing americium has been done. The liquid radioactive waste used in this research was standard solution of U dan Ce with the initial activity of 100 ppm. The experimental investigation is aimed at a study of the effects of the waste pH, the column dimension of IR-120 cation exchanger which is expressed as L/D, the flow rate of a liquid waste and the influence of thiocyanate as a complex agent against the efficiency of a decontamination for uranium and cerium element. The experiment was done by passing downward the feed of uranium and cerium solution into an IR-120 type of cation exchanger with the L/D of 11.37. From the experimental parameters done in this research where the influence of waste pH was varied from 3 - 8, the geometric column (L/D) 11.37, the liquid flow rate was from 2.5 - 10 ml/m and the thiocyanate concentration was between 100 ppm-500 ppm can be concluded that the optimum operational condition for the ion exchange achieved were the waste pH for uranium = 4 and the waste pH for cerium = 6, the flow rate = 2.5 ml/men. From the given maximum value of DF for uranium = 24 (DE = 95.83%) and of DF for cerium = 40 (DE = 97.5%), it can also be concluded that this investigation is to be continued in order that the greater value of DF/DE can be achieved

  20. Design of a fixed-bed ion-exchange process for the treatment of rinse waters generated in the galvanization process using Laminaria hyperborea as natural cation exchanger.

    Science.gov (United States)

    Mazur, Luciana P; Pozdniakova, Tatiana A; Mayer, Diego A; Boaventura, Rui A R; Vilar, Vítor J P

    2016-03-01

    In this study, the removal of zinc from galvanization wastewaters was performed in a fixed bed column packed with brown macro-algae Laminaria hyperborea, acting as a natural cation exchanger (resin). The rinse wastewater presents a zinc concentration between 9 and 22 mg/L, a high concentration of light metals (mainly Na and Ca), a high conductivity (0.5-1.5 mS/cm) and a low organic content (DOC = 7-15 mg C/L). The zinc speciation diagram showed that approximately 80% of zinc is in the form of Zn(2+) and ≅20% as ZnSO4, considering the effluent matrix. From all operational conditions tested for zinc uptake (17 bed height<27 cm, 4.5 < flow rate<18.2 BV/h, 0.8 < particle equivalent diameter<2.0 mm), the highest useful capacity (7.1 mg Zn/g algae) was obtained for D/dp = 31, L/D = 11, 9.1 BV/h, τ = 6.4 min, corresponding to a service capacity of 124 BV (endpoint of 2 mg Zn/L). Elution was faster and near to 100% effective using 10 BV of HCl (1 M, 3.0%, 363 g HCl/L of resin), for flow rates higher than 4.5 BV/h. Calcium chloride solution (0.1 M) was selected as the best regenerant, allowing the reuse of the natural resin for more than 3 saturation/elution/regeneration cycles. The best operation conditions were scaled-up and tested in a pre-pilot plant. The scale-up design of the cation exchange process was proposed for the treatment of 2.4 m(3)/day of galvanization wastewater, resulting in an estimated reactants cost of 2.44 €/m(3). PMID:26766159

  1. Independent control of the shape and composition of ionic nanocrystals through sequential cation exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Joseph Matthew; Zheng, Haimei; Sadtler, Bryce; Alivisatos, A. Paul

    2009-07-06

    Size- and shape-controlled nanocrystal growth is intensely researched for applications including electro-optic, catalytic, and medical devices. Chemical transformations such as cation exchange overcome the limitation of traditional colloidal synthesis, where the nanocrystal shape often reflects the inherent symmetry of the underlying lattice. Here we show that nanocrystals, with established synthetic protocols for high monodispersity, can be templates for independent composition control. Specifically, controlled interconversion between wurtzite CdS, chalcocite Cu2S, and rock salt PbS occurs while preserving the anisotropic dimensions unique to the as-synthesized materials. Sequential exchange reactions between the three sulfide compositions are driven by the disparate solubilites of the metal ion exchange pair in specific coordinating molecules. Starting with CdS, highly anisotropic PbS nanorods are created, which serve as an important material for studying strong 2-dimensional quantum confinement, as well as for optoelectronic applications. Furthermore, interesting nanoheterostructures of CdS|PbS are obtained by precise control over ion insertion and removal.

  2. Effect of blastfurnace slag addition to Portland cement for cationic exchange resins encapsulation

    Directory of Open Access Journals (Sweden)

    Stefan L.

    2013-07-01

    Full Text Available In the nuclear industry, cement-based materials are extensively used to encapsulate spent ion exchange resins (IERs before their final disposal in a repository. It is well known that the cement has to be carefully selected to prevent any deleterious expansion of the solidified waste form, but the reasons for this possible expansion are not clearly established. This work aims at filling the gap. The swelling pressure of IERs is first investigated as a function of ions exchange and ionic strength. It is shown that pressures of a few tenths of MPa can be produced by decreases in the ionic strength of the bulk solution, or by ion exchanges (2Na+ instead of Ca2+, Na+ instead of K+. Then, the chemical evolution of cationic resins initially in the Na+ form is characterized in CEM I (Portland cement and CEM III (Portland cement + blastfurnace slag cements at early age and an explanation is proposed for the better stability of CEM III material.

  3. Effect of cation exchange on the subsequent reactivity of lignite chars to steam. [108 references

    Energy Technology Data Exchange (ETDEWEB)

    Hippo, E. J.; Walker, Jr., P. L.

    1977-03-01

    The purpose of this investigation is to determine the role which cations in coal play in the subsequent reactivity of chars. It is hoped that this investigation will aid in an understanding of the catalytic nature of inorganic constituents in coal during its gasification. It was found that increased heat treatment temperature decreased reactivity. The decrease in reactivity was shown to be due, at least in part, to the changes in the nature of the cation with increased heat treatment temperature. Reactivity was found to be a linear function of the amount of Ca(++) exchange on the demineralized coal. The constant utilization factor over the wide range of loadings employed indicated that below 800/sup 0/C the calcium did not markedly sinter. Potassium, sodium, and calcium-containing chars were found to be much more reactive than the iron and magnesium-containing chars. However, the iron and magnesium containing chars were more reactive than chars produced from the demineralized coal. The iron char was highly active at first but the iron phase was quickly oxidized to a comparatively unreactive ..gamma..Fe/sub 2/O/sub 3/-Fe/sub 3/O/sub 4/ phase. The state of magnesium was found to be MgO. Sodium and calcium were equally active as catalysts but not as active as potassium.

  4. Quantification of unsaturated-zone alteration and cation exchange in zeolitized tuffs at Yucca Mountain, Nevada, USA

    Science.gov (United States)

    Vaniman, David T.; Chipera, Steve J.; Bish, David L.; Carey, J. William; Levy, Schön S.

    2001-10-01

    Zeolitized horizons in the unsaturated zone (UZ) at Yucca Mountain, Nevada, USA, are an important component in concepts for a high-level nuclear waste repository at this site. The use of combined quantitative X-ray diffraction and geochemical analysis allows measurement of the chemical changes that accompanied open-system zeolitization at Yucca Mountain. This approach also provides measures of the extent of chemical migration that has occurred in these horizons as a result of subsequent cation exchange. Mass-balance analysis of zeolitized horizons with extensive cation exchange (drill hole UZ-16) and with only minimal cation exchange (drill hole SD-9) shows that Al is essentially immobile. Although zeolitization occurred in an open system, the mass transfer of constituents other than water is relatively small in initial zeolitization, in contrast to the larger scales of cation exchange that can occur after zeolites have formed. Cation exchange in the clinoptilolite ± mordenite zeolitized horizons is seen in downward-diminishing concentration gradients of Ca, Mg, and Sr exchanged for Na and (to lesser extent) K. Comparison with data from drill hole SD-7, which has multiple zeolitized horizons above the water table, shows that the upper horizons accumulate Ca, Mg, and Sr to such an extent that transport of these elements to the deepest UZ zeolitized horizon can be blocked. Quantitative analysis of zeolite formation yields insight into processes that are implied from laboratory studies and modeling efforts but are otherwise unverified at the site. Such analysis also yields information not provided by or contradicted by some models of flow and transport. The results include the following: (1) evidence of effective downward flow through zeolitic horizons despite the low permeability of these horizons, (2) evidence that alkaline-earth elements accumulated by zeolites are mostly derived from eolian materials in surface soils, (3) validation of the very effective

  5. Surface modification of cation exchange membranes by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nemati, Mahsa; Hosseini, Sayed Mohsen; Bagheripour, Ehsan [Faculty of Engineering, Arak University, Arak (Iran, Islamic Republic of); Madaeni, Sayed Siavash [Faculty of Engineering, Razi University, Kermanshah (Iran, Islamic Republic of)

    2016-03-15

    Surface modification of polyvinylchloride based heterogeneous cation exchange membrane was performed by graft polymerization of PAA and PAA-co-PANI/MWCNTs nanoparticles. The ion exchange membranes were prepared by solution casting technique. Spectra analysis confirmed graft polymerization clearly. SEM images illustrated that graft polymerization covers the membranes by simple gel network entanglement. The membrane water content was decreased by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles on membrane surface. Membrane transport number and selectivity declined initially by PAA graft polymerization and then began to increase by utilizing of composite nanoparticles in modifier solution. The sodium and barium flux was improved sharply by PAA and PAAco- 0.01%wt PANI/MWCNTs graft polymerization on membrane surface and then decreased again by more increase of PANI/MWCNTs nanoparticles content ratio in modifier solution. The electrodialysis experiment results in laboratory scale showed higher dialytic rate in heavy metals removal for grafted-PAA and grafted-PAA-co-PANI/MWCNTs modified membrane compared to pristine one. Membrane areal electrical resistance was also decreased by introducing graft polymerization of PAA and PAA-co-PANI/MWCNTs NPs on membrane surface.

  6. Superparamagnetic cation-exchange adsorbents for bioproduct recovery from crude process liquors by high-gradient magnetic fishing

    DEFF Research Database (Denmark)

    Heebøll-Nielsen, Anders; Justesen, S.F.L; Hobley, Timothy John;

    2004-01-01

    Different routes were screened for the preparation of superparamagnetic cation-exchange adsorbents for the capture of proteins using high-gradient magnetic fishing. Starting from a polyglutaraldehyde-coated base particle, the most successful of these involved attachment of sulphite to oligomers...

  7. Identification of a crucial histidine involved in metal transport activity in the Arabidopsis cation/H(+) exchanger CAX1

    Science.gov (United States)

    In plants, yeast and bacteria, cation/H(+) exchangers (CAXs), have been shown to translocate Ca(2+) and other metals. The best characterized of these related transporters is the plant vacuolar-localized CAX1. We used site-directed mutagenesis to assess the impact of altering the seven histidine re...

  8. SYNTHESIS OF 2—HYDROXYETHYL ACRYLATE BY USING STRONG ACIDIC CATION ION EXCHANGE RESIN AS CATALYST

    Institute of Scientific and Technical Information of China (English)

    GAODabin

    1992-01-01

    2-Hydroxyethyl acrylate is synthesized from acrylic acid and ethylene glycol under a simple and mild condition by using strong acidic cation ion exchange resin as a catalyst,which could be recycled as long as 10 times with high activation.

  9. Copper removal and nickel for exchange cationic with a natural zeolite

    International Nuclear Information System (INIS)

    Natural zeolite clinoptilolite, was used to remove copper and nickel from waste waters of a galvanotechnical company. Exchange capacity determined for the zeolite after its transformation to homoionic sodium form, was 0.794 meq/g for copper and 0.447 meq/g for nickel. There were made batch and column experiments, reaching the last one a better approach to the equilibrium. From the degeneration essays, the sodical zeolite concentrates the copper in the waste waters to 23.5 up times the level found for the acid rinsing waters; it shows its potential use in treatment of these waste, because its effectiveness and low cost

  10. A study on equilibrium and kinetics of ion exchange of alkaline earth metals using an inorganic cation exchanger - zirconium titanium phosphate

    Indian Academy of Sciences (India)

    Amin Jignasa; Thakkar Rakesh; Chudasama Uma

    2006-03-01

    An advanced inorganic cation exchange material of the class of tetravalent metal acid (TMA) salt, zirconium titanium phosphate (ZTP), has been synthesized by a modified sol-gel technique. ZTP has been characterized by elemental analysis (ICP-AES), thermal analysis (TGA), FTIR and X-ray diffraction studies. The Nernst-Planck equation has been used to study the forward and reverse ion exchange kinetics of Mg (II), Ca (II), Sr (II) and Ba (II) with H (I) at four different temperatures. The mechanism of exchange is particle diffusion, as confirmed by the linear (dimensionless time parameter) vs (time) plots. The exchange process is thus controlled by the diffusion within the exchanger particles for the systems studied herein. Further, various kinetic parameters like self-diffusion coefficient (0), energy of activation () and entropy of activation (*) have been evaluated under conditions favouring a particle diffusion-controlled mechanism.

  11. Fractionation of whey proteins with high-capacity superparamagnetic ion-exchangers

    DEFF Research Database (Denmark)

    Heebøll-Nielsen, Anders; Justesen, Sune; Thomas, Owen R. T.

    2004-01-01

    was then contacted with the anion-exchanger. For both adsorbent classes of ion-exchanger, desorption selectivity was subsequently studied by sequentially increasing the concentration of NaCl in the elution buffer. In the initial cation-exchange step quantitative removal of lactoferrin (LF) and lactoperoxidase (LPO......) was achieved with some simultaneous binding of immunoglobulins (Ig). The immunoglobulins were separated from the other two proteins by desorbing with a low concentration of NaCl (=0.4 M), whereas lactoferrin and lactoperoxidase were co-eluted in significantly purer form, e.g. lactoperoxidase was purified 28...

  12. Influence of competing inorganic cations on the ion exchange equilibrium of the monovalent organic cation metoprolol on natural sediment.

    Science.gov (United States)

    Niedbala, Anne; Schaffer, Mario; Licha, Tobias; Nödler, Karsten; Börnick, Hilmar; Ruppert, Hans; Worch, Eckhard

    2013-02-01

    The aim of this study was to systematically investigate the influence of the mono- and divalent inorganic ions Na(+) and Ca(2+) on the sorption behavior of the monovalent organic cation metoprolol on a natural sandy sediment at pH=7. Isotherms for the beta-blocker metoprolol were obtained by sediment-water batch tests over a wide concentration range (1-100000 μg L(-1)). Concentrations of the competing inorganic ions were varied within freshwater relevant ranges. Data fitted well with the Freundlich sorption model and resulted in very similar Freundlich exponents (n=0.9), indicating slightly non-linear behavior. Results show that the influence of Ca(2+) compared to Na(+) is more pronounced. A logarithmic correlation between the Freundlich coefficient K(Fr) and the concentration or activity of the competing inorganic ions was found allowing the prediction of metoprolol sorption on the investigated sediment at different electrolyte concentrations. Additionally, the organic carbon of the sediment was completely removed for investigating the influence of organic matter on the sorption of metoprolol. The comparison between the experiments with and without organic carbon removal revealed no significant contribution of the organic carbon fraction (0.1%) to the sorption of metoprolol on the in this study investigated sediment. Results of this study will contribute to the development of predictive models for the transport of organic cations in the subsurface.

  13. Cationic Polymerization of 1,2-Epoxypropane by an Acid Exchanged Montmorillonite Clay in the Presence of Ethylene Glycol

    Directory of Open Access Journals (Sweden)

    Aïcha Hachemaoui

    2003-10-01

    Full Text Available Abstract: The polymerization of propylene oxide (PO catalysed by maghnite-H+ (mag-H+ in the presence of ethylene glycol was investigated. Mag-H+ is a montmorillonite silicate sheet clay was prepared through a straight forward proton exchange process. It was found that the cationic polymerization of PO was initiated by mag-H+ at 20 °C both in bulk and in solution. The effect of the amount of mag-H+ and solvent was studied. These results indicated the cationic nature of the polymerization A possible initiation pathway, via the transfer of protons from mag-H+ to the monomer, is proposed.

  14. Experimental Characterization and Modelization of Ion Exchange Kinetics for a Carboxylic Resin in Infinite Solution Volume Conditions. Application to Monovalent-Trivalent Cations Exchange

    International Nuclear Information System (INIS)

    This study is devoted to the characterization of ion exchange inside a microsphere of carboxylic resin. It aims at describing the kinetics of this exchange reaction which is known to be controlled by interdiffusion in the particle. The fractional attainment of equilibrium function of time depends on the concentration of the cations in the resin which can be modelled by the Nernst-Planck equation. A powerful approach for the numerical resolution of this equation is introduced in this paper. This modeling is based on the work of Helfferich but involves an implicit numerical scheme which reduces the computational cost. Knowing the diffusion coefficients of the cations in the resin and the radius of the spherical exchanger, the kinetics can be hence completely determined. When those diffusion parameters are missing, they can be deduced by fitting experimental data of fractional attainment of equilibrium. An efficient optimization tool coupled with the implicit resolution has been developed for this purpose. A monovalent/trivalent cation exchange had been experimentally characterized for a carboxylic resin. Diffusion coefficients and concentration profiles in the resin were then deduced through this new model. (authors)

  15. Strong cation exchange resin for improving physicochemical properties and sustaining release of ranitidine hydrochloride

    Directory of Open Access Journals (Sweden)

    Khan S

    2007-01-01

    Full Text Available In the present study strong cation exchange resin (Amberlite IRP69 was used to improve the physicochemical properties of ranitidine hydrochloride such as taste and bulk properties and to sustain dissolution rate. Drug-resin complexes were prepared using batch method. Drug loading was done under different processing conditions such as temperature, pH, drug-resin ratio, and drug concentration to get the optimum condition for resinate preparation. Resinate prepared under optimized condition was tested for taste, bulk properties and release rate. Degree of bitterness of ranitidine was found to reduce to zero after complexation with resin. Improvement in flow properties was also observed. Angle of repose for resinate was found to be 33.21 o as compared to 42.27 o for ranitidine HCl. Effect of dissolution medium and particle size on in vitro release of drug from resinate was also investigated. Resinate with drug to resin ratio of 2:3 and particle size> 90 µm showed about 90% of drug release within 12 h. The orodispersible tablet formulated from the resinate containing 10% croscarmellose sodium disintegrated within 35 sec in oral cavity and showed similar dissolution profile as the resinate. Tablets were found stable after stability studies with no change in dissolution profile.

  16. Relative activities of siloxane monomers toward the cation exchange resin-catalyst in the equilibration reactions

    Directory of Open Access Journals (Sweden)

    M. N. GOVEDARICA

    2001-07-01

    Full Text Available The relative activities of a number of siloxane monomers, both cyclic and linear, toward the cation exchange resin-equilibration catalyst were determined. The determination was based on the fact that when a particular siloxane compound is added to an arbitrarily chosen equilibrate, it takes part in the equilibration process, provoking certain viscosity changes of the reaction mixture. Taking these viscosity changes as a measure of activities, the following order was obtained: hexamethylcyclotrisiloxane > hexamethyldisiloxane > octamethylcyclotetrasiloxane > one linear all-methyl oligosiloxane of number average molecular weight of approximately 800 > decamethylcyclopentasiloxane. The results obtained by using the described viscosimetrical determination method were controlled by measuring the number average molecular weights of the reaction mixtures at the beginning and at the end of the equilibration process. The deviations of the experimentally measured from the calculated values were less than 20 %, as was found in one equilibration system. In most other systems the deviations were about 10 % which is a very good result which strengthens the validity of the applied determination method.

  17. Use of Cation Exchange Membrane in Soil Potassium Release and Wheat Response to Potassium

    Institute of Scientific and Technical Information of China (English)

    LIGUI-BAO; J.J.SCHOENAU; 等

    1995-01-01

    A pot experiment was conducted in the growth chamber on Saskatchewan soils with different texture to determine the K release status and wheat K demand.The relationship between K uptake and soil available K extracted by cation exchange membrane(CEM-K) and the effcet of K fertilizer on wheat growth and soil available K was also evaluated.Treatments of 0,60 and 120mg K/kg were applied to sandy,low and high K loamy and clay soils,The highest yields were acieved with the application of 120mg K/kg in sandy soil and 60 mg K/kg in other soils.On the whole,the clay soil contributed K more than other soils from slowly available fraction.Regression revealed a linear relationship between the soil available K extracted by NH4OAc(Ka) and CEM-K in suspensions(r=0.93).Results also showed that CEM-K in burial and in suspensions were different not only in the amount but also in correlation with Ka or K uptake.

  18. Mineral carbonation of gaseous carbon dioxide using a clay-hosted cation exchange reaction.

    Science.gov (United States)

    Kang, Il-Mo; Roh, Ki-Min

    2013-01-01

    The mineral carbonation method is still a challenge in practical application owing to: (1) slow reaction kinetics, (2) high reaction temperature, and (3) continuous mineral consumption. These constraints stem from the mode of supplying alkaline earth metals through mineral acidification and dissolution. Here, we attempt to mineralize gaseous carbon dioxide into calcium carbonate, using a cation exchange reaction of vermiculite (a species of expandable clay minerals). The mineralization is operated by draining NaCI solution through vermiculite powders and continuously dropping into the pool of NaOH solution with CO2 gas injected. The mineralization temperature is regulated here at 293 and 333 K for 15 min. As a result of characterization, using an X-ray powder diffractometer and a scanning electron microscopy, two types of pure CaCO3 polymorphs (vaterite and calcite) are identified as main reaction products. Their abundance and morphology are heavily dependent on the mineralization temperature. Noticeably, spindle-shaped vaterite, which is quite different from a typical vaterite morphology (polycrystalline spherulite), forms predominantly at 333 K (approximately 98 wt%).

  19. Cation- and anion-exchanges induce multiple distinct rearrangements within metallosupramolecular architectures.

    Science.gov (United States)

    Riddell, Imogen A; Ronson, Tanya K; Clegg, Jack K; Wood, Christopher S; Bilbeisi, Rana A; Nitschke, Jonathan R

    2014-07-01

    Different anionic templates act to give rise to four distinct Cd(II)-based architectures: a Cd2L3 helicate, a Cd8L12 distorted cuboid, a Cd10L15 pentagonal prism, and a Cd12L18 hexagonal prism, which respond to both anionic and cationic components. Interconversions between architectures are driven by the addition of anions that bind more strongly within a given product framework. The addition of Fe(II) prompted metal exchange and transformation to a Fe4L6 tetrahedron or a Fe10L15 pentagonal prism, depending on the anionic templates present. The equilibrium between the Cd12L18 prism and the Cd2L3 triple helicate displayed concentration dependence, with higher concentrations favoring the prism. The Cd12L18 structure serves as an intermediate en route to a hexafluoroarsenate-templated Cd10L15 complex, whereby the structural features of the hexagonal prism preorganize the system to form the structurally related pentagonal prism. In addition to the interconversion pathways investigated, we also report the single-crystal X-ray structure of bifluoride encapsulated within a Cd10L15 complex and report solution state data for J-coupling through a CH···F(-) hydrogen bond indicating the strength of these interactions in solution.

  20. Sorption of (226)Ra from oil effluents onto synthetic cation exchangers.

    Science.gov (United States)

    Al Attar, Lina; Safia, Bassam

    2013-07-30

    Increasing environmental awareness is being urged for the safe disposal of (226)Ra-contaminated production water generated in the oil industry. Birnessite, antimony silicate and their cationic derivatives were studied for the take-up of (226)Ra using the batch-type method under experimentally determined parameters, viz. contact time, solution-solid ratio and (226)Ra concentration. Data was expressed in terms of distribution coefficients. Sorption experiments were performed in different concentrations of nitric acid in order to speculate the mechanism of (226)Ra uptake. Variation in the magnitude of sorption efficiency of the materials in the presence of the major components of waste streams, i.e. Na(+), K(+) and Ca(2+), revealed that K(+) was the greatest competitor and Na(+) the least. The application of the materials to sorb (226)Ra from actual oil co-production water samples, collected from Der Ezzor and Al Fourat petroleum companies (DEZPC and AFPC), was interpreted in terms of the exchange properties of the materials and water characterisation. Of the parameters studied, the selectivity of materials was shown to be greatly dependent on the pH of wastewater to be treated. PMID:23623032

  1. A study on Sn4+ cation exchange natural zeolite treated at different temperatures

    International Nuclear Information System (INIS)

    The samples of Sn4+ zeolite are obtained by cation exchange between natural zeolite and SnCl4, and then treated at different temperatures (70 -1000 deg C). By using Moessbauer spectroscopy, X-ray diffraction and infra-red spectroscopy, the change of position of Sn4+ in the zeolite structure with the temperature is studied. The results show that the Sn4+ is situated in the main duct (channel) of the zeolite structure, but with the increase of the temperature the zeolite is dehydrated gradually, then the Sn4+ begins to move from the center of the duct to the walls of the duct, consequently, owing to the increase of the asymmetry of the electric field where the Sn4+ is situated, the quadruple splitting increase with the increase of the temperature. At the same time the SnO2 component increases with the increase of temperature. When heat-treatment temperature reached 1000 deg C the long range order structure of zeolite may be destroyed completely

  2. Effects of Experimental Conditions on Extraction Yield of Extracellular Polymeric Substances by Cation Exchange Resin

    Directory of Open Access Journals (Sweden)

    Jinwoo Cho

    2012-01-01

    Full Text Available Effects of experimental conditions on the yield of extracellular polymeric substances (EPSs extraction by cation exchange resin (CER were investigated using activated sludge flocs. The experimental variables included resin dose, extraction time, sample dilution, and storage time. An empirical model was proposed to describe the kinetics of extraction process. The extraction yield increases with the extraction time and CER dose until it reached the maximum amount of EPS extraction. The maximum yield of EPS was affected as well by the sample dilution, exhibiting a decreasing trend with increasing dilution factor. It was also found that the amount of EPS extracted from a raw sample depends on the storage time. Once EPS was extracted from the sample, however, the EPS keeps its original quantity under storage at 4°C. Based on the model, the maximum amount of EPS extraction and yield rate could be estimated for different conditions. Comparing the model parameters allows one to quantitatively compare the extraction efficiencies under various extracting conditions. Based on the results, we recommend the original sample should be diluted with the volume ratio of above 1 : 2 and a raw sample should be treated quickly to prevent the reduction of sample homogeneity and original integrity.

  3. Chemical and dimensional evolution of cationic ions exchange resins in cement pastes

    International Nuclear Information System (INIS)

    Ion exchange resins (IERs) are widely used by the nuclear industry to decontaminate radioactive effluents. After use they are usually encapsulated in cementitious materials. However, the solidified waste forms can exhibit a strong expansion, possibly leading to cracking. Its origin is not well understood as well as the conditions when it occurs.In this work, the interactions between cationic resins in the Na+ or Ca2+ form and tricalcium silicate (C3S), Portland cement (CEM I) or Blast furnace slag cement (CEM III/C) are investigated at an early age in order to gain a better understanding of the expansion process.The results show that during the hydration of a paste of C3S or CEM I containing IERs in the Na+ form, the resins exhibit a transient expansion of small magnitude due to the decrease in the osmotic pressure of the interstitial solution. This expansion, which occurs just after cement setting, is sufficient to damage the material which is poorly consolidated for several reasons: small hydration degree, precipitation of less cohesive sodium bearing C-S-H, heterogeneous microstructure with highly porous zones and lastly cleavable crystals of portlandite at the interface between resins and paste. This expansion can be prevented by performing a calcium pretreatment of the resins or by using a CEM III/C cement with a slower rate of hydration than that of Portland cement. (author)

  4. A cation exchange model to describe Cs + sorption at high ionic strength in subsurface sediments at Hanford site, USA

    Science.gov (United States)

    Liu, Chongxuan; Zachara, John M.; Smith, Steve C.

    2004-02-01

    A theoretical and experimental study of cation exchange in high ionic strength electrolytes was performed using pristine subsurface sediments from the U.S. Department of Energy Hanford site. These sediments are representative of the site contaminated sediments impacted by release of high level waste (HLW) solutions containing 137Cs + in NaNO 3 brine. The binary exchange behavior of Cs +-Na +, Cs +-K +, and Na +-K + was measured over a range in electrolyte concentration. Vanselow selectivity coefficients ( Kv) that were calculated from the experimental data using Pitzer model ion activity corrections for aqueous species showed monotonic increases with increasing electrolyte concentrations. The influence of electrolyte concentration was greater on the exchange of Na +-Cs + than K +-Cs +, an observation consistent with the differences in ion hydration energy of the exchanging cations. A previously developed two-site ion exchange model [Geochimica et Cosmochimica Acta 66 (2002) 193] was modified to include solvent (water) activity changes in the exchanger phase through application of the Gibbs-Duhem equation. This water activity-corrected model well described the ionic strength effect on binary Cs + exchange, and was extended to the ternary exchange system of Cs +-Na +-K + on the pristine sediment. The model was also used to predict 137Cs + distribution between sediment and aqueous phase ( Kd) beneath a leaked HLW tank in Hanfordd's S-SX tank using the analytical aqueous data from the field and the binary ion exchange coefficients for the pristine sediment. The Kd predictions closely followed the trend in the field data and were improved by consideration of water activity effects that were considerable in certain regions of the vadose zone plume.

  5. Modeling the competition between solid solution formation and cation exchange on the retardation of aqueous radium in an idealized bentonite column

    International Nuclear Information System (INIS)

    Clays and clay rocks are considered viable geotechnical barriers in radioactive waste disposal. One reason for this is the propensity for cation exchange reactions in clay minerals to retard the migration of radionuclides. Although another retardation mechanism, namely the incorporation of radionuclides into sulfate or carbonate solid solutions, has been known for a long time, only recently has it been examined systematically. In this work, we investigate the competitive effect of both mechanisms on the transport of radium (Ra) in the near-field of a low- and intermediate level nuclear waste repository. In our idealized geochemical model, numerical simulations show that barium (Ba) and strontium (Sr) needed for Ra sulfate solid solutions also partition to the cation exchange sites of montmorillonite (Mont), which is the major mineral constituent of bentonite that is used for tunnel backfill. At high Mont content, most Ra tends to attach to Mont, while incorporation of Ra in sulfate solid solutions is more important at low Monte content. To explore the effect of the Mont content on the transport of radium, a multi-component reactive transport model was developed and implemented in the scientific software OpenGeoSys-GEM. It was found that a decrease of fixation capacity due to low Mont content is compensated by the formation of solid solutions and that the migration distance of aqueous Ra is similar at different Mont/water ratios. (author)

  6. Fabrication, characterization and photocatalytic properties of Ag/AgI/BiOI heteronanostructures supported on rectorite via a cation-exchange method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yunfang [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Fang, Jianzhang, E-mail: fangjzh@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China); Lu, Shaoyou [Shenzhen Center for Disease Control and Prevention, Shenzhen 518055 (China); Wu, Yan; Chen, Dazhi; Huang, Liyan [Institute of Engineering Technology of Guangdong Province, Key Laboratory of Water Environmental Pollution Control of Guangdong Province, Guangzhou 510440 (China); Xu, Weicheng; Zhu, Ximiao [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Fang, Zhanqiang [School of Chemistry and Environment, South China Normal University, Guangzhou 510006, Guangdong (China); Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou 510006 (China)

    2015-04-15

    Highlights: • Ag/AgI/BiOI-rectorite was prepared by twice cation-exchange process. • Ag/AgI/BiOI-rectorite photocatalyst possessed SPR and adsorption capacity. • Ag/AgI/BiOI-rectorite exhibited highly photocatalytic activity. • Trapped holes and ·O{sub 2}{sup −} were formed active species in the photocatalytic system. - Abstract: In this work, a new plasmonic photocatalyst Ag/AgI/BiOI-rectorite was prepared via a cation exchange process. The photocatalyst had been characterized by X-ray powder diffraction (XRD), Raman spectra, nitrogen sorption (BET), field-emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity, which was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) under visible light irradiation, was enhanced significantly by loading Ag/AgI/BiOI nanoparticles onto rectorite. The photogenerated holes and superoxide radical (·O{sub 2}{sup −}) were both formed as active species for the photocatalytic reactions under visible light irradiation. The existence of metallic Ag particles, which possess the surface plasmon resonance effect, acted as an indispensable role in the photocatalytic reaction.

  7. Separation of matrine and oxymatrine from Sophora flavescens extract through cation exchange resin coupled with macroporous absorption resin

    Directory of Open Access Journals (Sweden)

    Chen Haohao

    2016-06-01

    Full Text Available A simple method for separation of matrine and oxymatrine from Sophora flavescens was developed with cation exchange resin coupled with macroporous resin. Based on the adsorption characteristics of matrine and oxymatrine, 001×732 cation exchange resin was used to absorb target alkaloids for removing most of the foreign matter, while BS-65 macroporous resin was chosen to purify these alkaloids. The result showed that the equilibrium adsorption data of matrine and oxymatrine on 001×732 resin and BS-65 resin at 30°C was fitted to Langmuir isotherm and Freundlich isotherm, respectively. The contents of matrine and oxymatrine were increased from 0.73% and 2.2% in the crude extract of the root of Sophora flavescens to 67.2% and 66.8% in the final eluent products with the recoveries of 90.3% and 86.9%, respectively.

  8. Preparation of decarboxylic-functionalized weak cation exchanger and application for simultaneous separation of alkali, alkaline earth and transition metals.

    Science.gov (United States)

    Peng, Yahui; Gan, Yihui; He, Chengxia; Yang, Bingcheng; Guo, Zhimou; Liang, Xinmiao

    2016-06-01

    A novel weak cation exchanger (WCX) with dicarboxyl groups functionalized has been developed by clicking mercaptosuccinic acid onto silica gel. The simple synthesis starts with modification of silica gel with triethoxyvinylsilane, followed by efficient coupling vinyl-bonded silica with mercaptosuccinic acid via a "thiol-ene" click reaction. The obtained WCX demonstrated good separation and high selectivity towards common metals. Simultaneous separation of 10 alkali, alkaline earth and transition metals was achieved within 12min. Ion exchange and complex mechanism dominates the separation process. Its utility was demonstrated for determination of metals in tap water. PMID:27130093

  9. Ergot alkaloids in rye flour determined by solid phase cation-exchange and high pressure liquid chromatography with fluorescence detection

    OpenAIRE

    Storm, Ida Drejer; Have Rasmussen, Peter; Strobel, Bjarne W.; Hansen, Hans Christian Bruun

    2008-01-01

    Abstract Ergot alkaloids (EAs) are mycotoxins which are unavoidable contaminants of cereal products, particularly rye. A method was compiled employing clean-up by cation-exchange solid phase extraction, separation by high-pressure liquid chromatography under alkaline conditions and fluorescence detection. It is capable of separating and quantifying both C8-isomers of ergocornine, a-ergocryptine, ergocristine, ergonovine, and ergotamine. The average recovery was 61?10 % with limits ...

  10. Separation of proteins by cation-exchange sequential injection chromatography using a polymeric monolithic column.

    Science.gov (United States)

    Masini, Jorge Cesar

    2016-02-01

    Since sequential injection chromatography (SIC) emerged in 2003, it has been used for separation of small molecules in diverse samples, but separations of high molar mass compounds such as proteins have not yet been described. In the present work a poly(glycidyl methacrylate-co-ethylene dimethacrylate) (GMA-co-EDMA) monolithic column was prepared by free radical polymerization inside a 2.1-mm-i.d. activated fused silica-lined stainless steel tubing and modified with iminodiacetic acid (IDA). The column was prepared from a mixture of 24% GMA, 16% EDMA, 20% cyclohexanol, and 40% 1-dodecanol (all% as w/w) containing 1% of azobisisobutyronitrile (AIBN) (in relation to monomers). Polymerization was done at 60 °C for 24 h. The polymer was modified with 1.0 M IDA (in 2 M Na2CO3, pH 10.5) at 80 °C for 16 h. Separation of myoglobin, ribonuclease A, cytochrome C, and lysozyme was achieved at pH 7.0 (20 mM KH2PO4/K2HPO4) using a salt gradient (NaCl). Myoglobin was not retained, and the other proteins were separated by a gradient of NaCl created inside the holding coil (4 m of 0.8-mm-i.d. PTFE tubing) by sequential aspiration of 750 and 700 μL of 0.2 and 0.1 M NaCl, respectively. As the flow was reversed toward the column (5 μL s(-1)) the interdispersion of these solutions created a reproducible gradient which separated the proteins in 10 min, with the following order of retention: ribonuclease A < cytochrome C < lysozyme. The elution order was consistent with a cation-exchange mechanism as the retention increased with the isoelectric points.

  11. Cation Exchange Resins and colonic perforation. What surgeons need to know

    Science.gov (United States)

    Rodríguez-Luna, María Rita; Fernández-Rivera, Enrique; Guarneros-Zárate, Joaquín E.; Tueme-Izaguirre, Jorge; Hernández-Méndez, José Roberto

    2015-01-01

    Introduction Since 1961 the use of Cation Exchange Resins has been the mainstream treatment for chronic hyperkalemia. For the past 25 years different kind of complications derived from its clinical use have been recognized, being the colonic necrosis the most feared and lethal of all. Presentation of case We report a case of a 72-year-old patient with chronic kidney disease, treated with calcium polystyrene sulfonate for hyperkalemia treatment who presented in the emergency department with constipation treated with hypertonic cathartics. With clinical deterioration 48 h later progressed with colonic necrosis requiring urgent laparotomy, sigmoidectomy and open abdomen management with subsequent rectal stump perforation and dead. The histopathology finding: calcium polystyrene sulfonate embedded in the mucosa, consistent with the cause of perforation. Discussion Lillemoe reported the first case series of five uremic patients with colonic perforation associated with the use of SPS in sorbitol in 1987 and in 2009 the FDA removed from the market the SPS containing 70% of sorbitol. The pathophysiologic change of CER goes from mucosal edema, ulcers, pseudomembranes, and the most severe case transmural necrosis. Up to present day, some authors have questioned the use of CER in the setting of lowering serum potassium. Despite its worldwide use in hyperkalemia settings, multiple studies have not demonstrated a significant potassium excretion by CER. Conclusion Despite the low incidence of colonic complication and lethal colonic necrosis associated with the CER clinical use, the general surgeon needs a high index of suspicion when dealing with patients treated with CER and abdominal pain. PMID:26439420

  12. Probing the Complementarity of FAIMS and Strong Cation Exchange Chromatography in Shotgun Proteomics

    Science.gov (United States)

    Creese, Andrew J.; Shimwell, Neil J.; Larkins, Katherine P. B.; Heath, John K.; Cooper, Helen J.

    2013-03-01

    High field asymmetric waveform ion mobility spectrometry (FAIMS), also known as differential ion mobility spectrometry, coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS) offers benefits for the analysis of complex proteomics samples. Advantages include increased dynamic range, increased signal-to-noise, and reduced interference from ions of similar m/ z. FAIMS also separates isomers and positional variants. An alternative, and more established, method of reducing sample complexity is prefractionation by use of strong cation exchange chromatography. Here, we have compared SCX-LC-MS/MS with LC-FAIMS-MS/MS for the identification of peptides and proteins from whole cell lysates from the breast carcinoma SUM52 cell line. Two FAIMS approaches are considered: (1) multiple compensation voltages within a single LC-MS/MS analysis (internal stepping) and (2) repeat LC-MS/MS analyses at different and fixed compensation voltages (external stepping). We also consider the consequence of the fragmentation method (electron transfer dissociation or collision-induced dissociation) on the workflow performance. The external stepping approach resulted in a greater number of protein and peptide identifications than the internal stepping approach for both ETD and CID MS/MS, suggesting that this should be the method of choice for FAIMS proteomics experiments. The overlap in protein identifications from the SCX method and the external FAIMS method was ~25 % for both ETD and CID, and for peptides was less than 20 %. The lack of overlap between FAIMS and SCX highlights the complementarity of the two techniques. Charge state analysis of the peptide assignments showed that the FAIMS approach identified a much greater proportion of triply-charged ions.

  13. A new cation-exchange method for accurate field speciation of hexavalent chromium

    Science.gov (United States)

    Ball, J.W.; McCleskey, R.B.

    2003-01-01

    A new method for field speciation of Cr(VI) has been developed to meet present stringent regulatory standards and to overcome the limitations of existing methods. The method consists of passing a water sample through strong acid cation-exchange resin at the field site, where Cr(III) is retained while Cr(VI) passes into the effluent and is preserved for later determination. The method is simple, rapid, portable, and accurate, and makes use of readily available, inexpensive materials. Cr(VI) concentrations are determined later in the laboratory using any elemental analysis instrument sufficiently sensitive to measure the Cr(VI) concentrations of interest. The new method allows measurement of Cr(VI) concentrations as low as 0.05 ??g 1-1, storage of samples for at least several weeks prior to analysis, and use of readily available analytical instrumentation. Cr(VI) can be separated from Cr(III) between pH 2 and 11 at Cr(III)/Cr(VI) concentration ratios as high as 1000. The new method has demonstrated excellent comparability with two commonly used methods, the Hach Company direct colorimetric method and USEPA method 218.6. The new method is superior to the Hach direct colorimetric method owing to its relative sensitivity and simplicity. The new method is superior to USEPA method 218.6 in the presence of Fe(II) concentrations up to 1 mg 1-1 and Fe(III) concentrations up to 10 mg 1-1. Time stability of preserved samples is a significant advantage over the 24-h time constraint specified for USEPA method 218.6.

  14. FACTORS AFFECT THE RELEASE OF PSEUDOEPHDRINE HYDROCHLORIDE FROM THE UNCOATED CATION EXCHANGE RESIN-BASED DRUG DELIVERY SYSTEM IN VITRO

    Institute of Scientific and Technical Information of China (English)

    LI Zhenhua; PI Hongqiong; HE Binglin

    2001-01-01

    In this paper, it was investigated that the effect of parameters such as the ionic strength,pH, counter-ion type of release medium, particle size, and cross linkage of cation exchange resin on the release of model drug pseudoephedrine hydrochloride (PE) from uncoated drug-resin complex.The drug-resin complex was prepared by the reaction of PE with strongly acidic cation exchange resin (001 ×4, 001 ×7, 001 ×14). The result showed that the loading of PE increased with the increase of temperatures. The release of PE from drug-resin complex at 37 ℃ was monitored in vitro.From the experiments, it was found that the release rate of PE depends on the pH, composition of the releasing media, increased at lower pH media or with increase of ionic strength of media. Moreover,the release rate of PE was inversely proportional to the cross-linkage and particle size of the cation exchange resin.

  15. FACTORS AFFECT THE RELEASE OF PSEUDOEPHDRINE HYDROCHLORIDE FROM THE UNCOATED CATION EXCHANGE RESIN—BASED DRUG DELIVERY SYSTEM IN VITRO

    Institute of Scientific and Technical Information of China (English)

    LIZhenhua; PIHongqiong; 等

    2001-01-01

    In this paper,it was investigated that the effect of parameters such as the ionic strength,pH.counter-ion type of release medium,particle size.and cross linkage of cation exchange resin on the release of model drug pseudoephedrine hydrochloride(PE) from uncoated drug-resin complex.The drug-resin complex was pepared by the reaction of PE with strongly acidic cation exchange resin(001×4,001×7,001×14) .The result showed that the loading of PE increased with the increase of temperatures.The release of PE from drug-resin complex at 37℃ was monitored in vitro.From the experiments,it was found that the release rate of PE depends on the pH.comosition of the releasing media,increased at lower pH media or with increase of ionic strength of media.Moreover,the release rate of PE was inversely proportional to the cross-linkage and particle size of the cation exchange resin.

  16. Fractionation of whey proteins with high-capacity superparamagnetic ion-exchangers

    DEFF Research Database (Denmark)

    Heebøll-Nielsen, Anders; Justesen, S.F.L.; Thomas, Owen R. T.

    2004-01-01

    was then contacted with the anion-exchanger. For both adsorbent classes of ion-exchanger, desorption selectivity was subsequently studied by sequentially increasing the concentration of NaCl in the elution buffer. In the initial cation-exchange step quantitative removal of lactoferrin (LF) and lactoperoxidase (LPO......) was achieved with some simultaneous binding of immunoglobulins (1g). The immunoglobulins were separated from the other two proteins by desorbing with a low concentration of NaCl (less than or equal to0.4 M), whereas lactoferrin and lactoperoxidase were co-eluted in significantly purer form, e.......g. lactoperoxidase was purified 28-fold over the starting material, when the NaCl concentration was increased to 0.4-1 M. The anion-exchanger adsorbed beta-lactoglobulin (beta-LG) selectively allowing separation from the remaining protein....

  17. chemical studies and sorption behavior of some hazardous metal ions on polyacrylamide stannic (IV) molybdophosphate as 'organic - inorganic' composite cation - exchanger

    International Nuclear Information System (INIS)

    compsite materials formed by the combination of multivalent metal acid salts and organic polymers provide a new class of (organic-inorganic) hypride ion exchangers with better mechanical and granulometric properties, good ion-exchange capacity, higher chemical and radiation stabilites, reproducibility and selectivity for heavy metals. this material was characterized using X-ray (XRD and XRF), IR, TGA-DTA and total elemental analysis studies. on the basis of distribution studies, the material has been found to be highly selective for pb(II). thermodynamic parameters (i.e δG0, δ S0 and δH0) have also been calculated for the adsorption of Pb2+, Cs+, Fe3+, Cd2+, Cu+2, Zn2+, Co2+ and Eu3+ions on polyacrylamide Sn(IV) molybdophosphate showing that the overall adsorption process is spontaneous endothermic. the mechanism of diffusion of Fe3+, Co2+, Cu+2, Zn2+, Cd2+, Cs+, Pb2+ and Eu3+ in the H-form of polyacrylamide Sn(IV) molybdophosphate composite as cation exchanger was studied as a function of particle size, concentration of the exchanging ions, reaction temperature, dring temperature and pH. the exchange rate was controlled by particle diffusion mechanism as a limited batch techneque and is confirmed from straight lines of B versus 1/r2 polts. the values of diffusion coefficients, activation energy and entropy of activation were calculated and their significance was discussed. the data obtained have been comared with that reported for other organic and inorganic exchangers.

  18. Preparation of poly(glycidylmethacrylate-divinylbenzene) weak acid cation exchange stationary phases with succinic anhydride, phthalic anhydride, and maleic anhydride for ion chromatography.

    Science.gov (United States)

    Liu, Junwei; Wang, Yong; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2016-08-01

    In this work, poly(glycidylmethacrylate-divinylbenzene) microspheres were prepared and applied for the preparation of weak acid cation exchange stationary phases. Succinic anhydride, phthalic anhydride, and maleic anhydride were selected as carboxylation reagents to prepare three weak acid cation exchangers by direct chemical derivatization reaction without solvent or catalyst. The diameters and dispersity of the microspheres were characterized by scanning electron microscopy; the amount of accessible epoxy groups and mechanical stability were also measured. The weak acid cation exchangers were characterized by Fourier transform infrared spectroscopy; the content of carboxyl groups was measured by traditional acid base titration method. The chromatographic properties were characterized and compared by separating alkali, alkaline earth metal ions and ammonium and polar amines. The separation properties enhanced in the order of succinic anhydride, phthalic anhydride, and maleic anhydride modified poly(glycidylmethacrylate-divinylbenzene) cation exchangers. PMID:27288092

  19. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y. [McMaster University, Hamilton, ON (Canada); Mekky, W. [AMEC NSS, Power and Process America, Toronto (Canada)

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  20. An Investigation into the Effect of Cation-exchange on the Adsorption Performance of Indium-based Sodalite-ZMOF

    KAUST Repository

    Samin, Umer A.

    2016-04-13

    There is a pressing need for advanced solid-state materials that can be implemented in industrial gas separation processes to achieve separations with a significantly reduced energy input compared to what is typically required from current technologies. Although certain porous materials like zeolites bear some commercial significance for gas separation; their inherent lack of tunability limits the extent to which these materials may be exploited in industry. Zeolite-like Metal-Organic Frameworks (ZMOFs) are a sub-class of Metal-Organic Framework materials (MOFs) that show a structural semblance to zeolites while possessing the tunability advantages of MOF materials. ZMOFs which are topologically similar to certain zeolites can be functionalised and tuned in numerous ways to improve their gas separation properties. In this work, indium-based sod-ZMOF was tuned by cation-exchange and then characterised by different experimental tools such as single-crystal x-ray diffraction, elemental analysis and gas adsorption. It was found that various parameters like the choice of cation, the concentration of salt solution and the choice of solvent had a significant bearing on the cation-exchange of sod-ZMOF and its subsequent adsorption properties.

  1. Behavior of cationic, anionic and colloidal species of titanium, zirconium and thorium in presence of ion exchange resins

    International Nuclear Information System (INIS)

    The distribution of titanium, zirconium and thorium is aqueous and resin phases has been studied using strong cationic resin in the R-NH4 form. Solutions of the above elements in perchloric, nitric, hydrochloric and suphuric media were used. Each set of experiments was made by separately varying one of the five parameters - type of anion present, acidity of solution, temperature of percolation, age of solution and concentration of the element. It was found that, depending on the particular balance of these parameters, the elements investigated may be found in acidic solutions either as cationic, anionic or colloidal species. It is emphasized that the colloidal species of titanium, zirconium or thorium are not retained by the ion exchangers, and from this property a method for the separation and purification of the above elements has been outlined

  2. Consistent effects of canopy vs. understory nitrogen addition on the soil exchangeable cations and microbial community in two contrasting forests.

    Science.gov (United States)

    Shi, Leilei; Zhang, Hongzhi; Liu, Tao; Zhang, Weixin; Shao, Yuanhu; Ha, Denglong; Li, Yuanqiu; Zhang, Chuangmao; Cai, Xi-An; Rao, Xingquan; Lin, Yongbiao; Zhou, Lixia; Zhao, Ping; Ye, Qing; Zou, Xiaoming; Fu, Shenglei

    2016-05-15

    Anthropogenic N deposition has been well documented to cause substantial impacts on the chemical and biological properties of forest soils. In most studies, however, atmospheric N deposition has been simulated by directly adding N to the forest floor. Such studies thus ignored the potentially significant effect of some key processes occurring in forest canopy (i.e., nitrogen retention) and may therefore have incorrectly assessed the effects of N deposition on soils. Here, we conducted an experiment that included both understory addition of N (UAN) and canopy addition of N (CAN) in two contrasting forests (temperate deciduous forest vs. subtropical evergreen forest). The goal was to determine whether the effects on soil exchangeable cations and microbial biomass differed between CAN and UAN. We found that N addition reduced pH, BS (base saturation) and exchangeable Ca and increased exchangeable Al significantly only at the temperate JGS site, and reduced the biomass of most soil microbial groups only at the subtropical SMT site. Except for soil exchangeable Mn, however, effects on soil chemical properties and soil microbial community did not significantly differ between CAN and UAN. Although biotic and abiotic soil characteristics differ significantly and the responses of both soil exchangeable cations and microbial biomass were different between the two study sites, we found no significant interactive effects between study site and N treatment approach on almost all soil properties involved in this study. In addition, N addition rate (25 vs. 50kgNha(-1)yr(-1)) did not show different effects on soil properties under both N addition approaches. These findings did not support previous prediction which expected that, by bypassing canopy effects (i.e., canopy retention and foliage fertilization), understory addition of N would overestimate the effects of N deposition on forest soil properties, at least for short time scale. PMID:26930308

  3. Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity

    Institute of Scientific and Technical Information of China (English)

    Yan Cao; Yunxia Zhao; Fujiao Song; Qin Zhong

    2014-01-01

    Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-1(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11%increase in adsorption capacity at 298 K and 18 bar as compared with HKUST-1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles.

  4. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  5. The elution of erbium from a cation exchanger bed by means of the N-hydroxyethyl-ethylene-diamine triacetic acid

    International Nuclear Information System (INIS)

    A physicochemical study of the phenomena resulting when erbium is eluted from a cation-exchanger bed at a steady by means of the N-hydroxyethyl-ethylene-diamine-triacetic acid (HEDTA) is made. Two different retaining beds are used, a hydrogen bed, in which no ammonium passes through, and a zinc bed, which leaks ammonium ion. Good agreement between experimental and calculated values by using the equations deduced for the concentrations of the main species has been achieved, with errors around 1-2% in most of the experiments. (Author) 69 refs

  6. Applications of Time-Resolved Synchrotron X-ray Diffraction to Cation Exchange, Crystal Growth and Biomineralization Reactions

    International Nuclear Information System (INIS)

    Advances in the design of environmental reaction cells and in the collection of X-ray diffraction data are transforming our ability to study mineral-fluid interactions. The resulting increase in time resolution now allows for the determination of rate laws for mineral reactions that are coupled to atomic-scale changes in crystal structure. Here we address the extension of time-resolved synchrotron diffraction techniques to four areas of critical importance to the cycling of metals in soils: (1) cation exchange; (2) biomineralization; (3) stable isotope fractionation during redox reactions; and (4) nucleation and growth of nanoscale oxyhydroxides.

  7. Modification of Nafion Membranes by IL-Cation Exchange: Chemical Surface, Electrical and Interfacial Study

    Directory of Open Access Journals (Sweden)

    V. Romero

    2012-01-01

    A study of time evolution of the impedance curves measured in the system “IL aqueous solution/Nafion-112 membrane/IL aqueous solution” was also performed. This study allows us monitoring the electrical changes associated to the IL-cation incorporation in both the membrane and the membrane/IL solution interface, and it provides supplementary information on the characteristic of the Nafion/DTA+ hybrid material. Moreover, the results also show the significant effect of water on the electrical resistance of the Nafion-112/IL-cation-modified membrane.

  8. Sorption of tannin-C by soils affects soil cation exchange capacity

    Science.gov (United States)

    Some tannins, produced by plants, are able to sorb to soil, and thus influence soil organic matter and nutrient cycling. However, studies are needed that compare sorption of tannins to other related phenolic compounds, evaluate their effects across a broad range of soils, and determine if sorption ...

  9. Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr(HPO3S)2.

    Science.gov (United States)

    Zhang, Qingrui; Pan, Bingcai; Pan, Bingjun; Zhang, Weiming; Jia, Kun; Zhang, Quanxing

    2008-06-01

    A novel polymeric hybrid sorbent, namely ZrPS-001, was fabricated for enhanced sorption of heavy metal ions by impregnating Zr(HPO3S)2 (i.e., ZrPS) nanoparticles within a porous polymeric cation exchanger D-001. The immobilized negatively charged groups bound to the polymeric matrix D-001 would result in preconcentration and permeation enhancement of target metal ions prior to sequestration, and ZrPS nanoparticles are expected to sequester heavy metals selectively through an ion-exchange process. Highly effective sequestration of lead, cadmium, and zinc ions from aqueous solution can be achieved by ZrPS-001 even in the presence of competing calcium ion at concentration several orders of magnitude greater than the target species. The exhausted ZrPS-001 beads are amenable to regeneration with 6 M HCI solution for repeated use without any significant capacity loss. Fixed-bed column treatment of simulated waters containing heavy metals at high or trace levels was also performed. The content of heavy metals in treated effluent approached or met the WHO drinking water standard.

  10. Selective sorption of lead, cadmium and zinc ions by a polymeric cation exchanger containing nano-Zr(HPO3S)2.

    Science.gov (United States)

    Zhang, Qingrui; Pan, Bingcai; Pan, Bingjun; Zhang, Weiming; Jia, Kun; Zhang, Quanxing

    2008-06-01

    A novel polymeric hybrid sorbent, namely ZrPS-001, was fabricated for enhanced sorption of heavy metal ions by impregnating Zr(HPO3S)2 (i.e., ZrPS) nanoparticles within a porous polymeric cation exchanger D-001. The immobilized negatively charged groups bound to the polymeric matrix D-001 would result in preconcentration and permeation enhancement of target metal ions prior to sequestration, and ZrPS nanoparticles are expected to sequester heavy metals selectively through an ion-exchange process. Highly effective sequestration of lead, cadmium, and zinc ions from aqueous solution can be achieved by ZrPS-001 even in the presence of competing calcium ion at concentration several orders of magnitude greater than the target species. The exhausted ZrPS-001 beads are amenable to regeneration with 6 M HCI solution for repeated use without any significant capacity loss. Fixed-bed column treatment of simulated waters containing heavy metals at high or trace levels was also performed. The content of heavy metals in treated effluent approached or met the WHO drinking water standard. PMID:18589978

  11. Toward Separating Alpha-lactalbumin and Beta-lactoglobulin Proteins from Whey through Cation-exchange Adsorption

    Science.gov (United States)

    El-Sayed, Mayyada; Chase, Howard

    2009-05-01

    This paper describes the cation-exchange adsorption of the two major whey proteins, alpha-lactalbumin (ALA) and beta-lactoglobulin (BLG) with the purpose of establishing a process for isolating them from cow's milk whey. The single- and two-component adsorption of 1.5 mg/ml ALA and 3 mg/ml BLG to the cation-exchanger SP Sepharose FF at 20° C using 0.1 M acetate buffer of pH 3.7 was studied. Langmuir isotherm parameters were determined for the pure proteins. In two-component systems, BLG breakthrough curve exhibited an overshoot phenomenon that gave evidence for the presence of a competitive adsorption between the two proteins. Complete separation occurred and it was possible to obtain each of the two proteins in a pure form. The process was then applied to a whey concentrate mixture where incomplete separation took place. However, BLG was produced with 95% purity and a recovery of 80%, while ALA showed an 84% recovery with low purity.

  12. Uncertainties of Gaseous Oxidized Mercury Measurements Using KCl-Coated Denuders, Cation-Exchange Membranes, and Nylon Membranes: Humidity Influences.

    Science.gov (United States)

    Huang, Jiaoyan; Gustin, Mae Sexauer

    2015-05-19

    Quantifying the concentration of gaseous oxidized mercury (GOM) and identifying the chemical compounds in the atmosphere are important for developing accurate local, regional, and global biogeochemical cycles. The major hypothesis driving this work was that relative humidity affects collection of GOM on KCl-coated denuders and nylon membranes, both currently being applied to measure GOM. Using a laboratory manifold system and ambient air, GOM capture efficiency on 3 different collection surfaces, including KCl-coated denuders, nylon membranes, and cation-exchange membranes, was investigated at relative humidity ranging from 25 to 75%. Recovery of permeated HgBr2 on KCl-coated denuders declined by 4-60% during spikes of relative humidity (25 to 75%). When spikes were turned off GOM recoveries returned to 60 ± 19% of permeated levels. In some cases, KCl-coated denuders were gradually passivated over time after additional humidity was applied. In this study, GOM recovery on nylon membranes decreased with high humidity and ozone concentrations. However, additional humidity enhanced GOM recovery on cation-exchange membranes. In addition, reduction and oxidation of elemental mercury during experiments was observed. The findings in this study can help to explain field observations in previous studies. PMID:25877790

  13. Cation exchange applications of synthetic tobermorite for the immobilization and solidification of cesium and strontium in cement matrix

    Indian Academy of Sciences (India)

    O P Shrivastava; Rashmi Shrivastava

    2000-12-01

    Immobilization and solidification of hazardous cations like Cs137 and Sr90 are required while handling the radioactive waste of nuclear power plants. Efforts are on to find a fail proof method of safe disposal of nuclear wastes. In this context, various materials like borosilicate glass, zeolites, cements and synthetic rocks have been tried by several workers. This communication deals with the synthesis, characterization, cesium uptake capacity and leaching behaviour of synthetic alumina-substituted calcium silicate hydroxy hydrate, which are close to that obtained for the natural mineral, 11 Å tobermorite. The synthetic mineral show cation selectivity for Cs+ in presence of 500–1000 times concentrated solutions of Na+ , K+ , Mg2+, Ca2+ , Ba2+ and Sr2+. Although the ordinary portland cement (OPC) which is often used in waste management operations alone holds negligible amounts of Cs+ and Sr2+, the addition of alumina-substituted tobermorite to OPC enhances the retention power of cement matrix by drastically lowering the leach rate of cations.

  14. Effectiveness and humidification capacity investigation of liquid-to-air membrane energy exchanger under low heat capacity ratios at winter air conditions

    Science.gov (United States)

    Kassai, Miklos

    2015-06-01

    In this research, a novel small-scale single-panel liquid-to-air membrane energy exchanger has been used to numerically investigate the effect of given number of heat transfer units (4.5), different cold inlet air temperature (1.7, 5.0, 10.0 °C) and different low heat capacity ratio (0.4, 0.5, 0.6, 0.7, 0.8, 0.9) on the steady-state performance of the energy exchanger. This small-scale energy exchanger represents the full-scale prototypes well, saving manufacturing costs and time. Lithium chloride is used as a salt solution in the system and the steady-state total effectiveness of the exchanger is evaluated for winter inlet air conditions. The results show that total effectiveness of the energy exchanger decreases with heat capacity ratio in the mentioned range. Maximum numerical total effectiveness of 97% is achieved for the energy exchanger. Increasing the heat capacity ratio values on given inlet air temperature, the humidification capacity of energy exhanger is also investigated in this paper. The humidification performance increases with heat capacity ratio. The highest humidification performance (4.53 g/kg) can be reached when inlet air temperature is 1.7 °C, and heat capacity ratio is 1.0 in winter inlet air conditions in the range of low heat capacity ratio.

  15. 阳离子树脂净化铂族金属溶液的研究%Purification of Platinum Group Metals Solution by Cation Exchange

    Institute of Scientific and Technical Information of China (English)

    毕向光; 余建民; 杨金富; 贺洪亮; 李权

    2015-01-01

    研究了阳离子交换树脂净化含大量贱金属的铂族金属溶液的工艺条件,结果表明,在pH=1~1.5时001×7阳离子交换树脂吸附贱金属的次序为:Ni>Cu>Co>Fe;Fe、Ni、Co、Cu的穿透容量分别为(g/kg):0.13,1.25,0.42,0.87;饱和容量分别为(g/kg):0.32,6.65,2.33,4.72,合计为14.02 g/kg;贱金属的分离效率主要取决于贵贱金属浓度及交换柱的数量;吸附在树脂上的贱金属极易被6 mol/L HCl洗脱,所有贱金属的最大洗脱均发生在洗脱液体积与床体积之比为1.0/1.7处,当洗脱液体积为床体积的2.0倍时贱金属被完全洗脱。实验结果为离子交换分离贱金属净化铂族金属溶液的工业化应用提供了强有力的理论依据。%The platimum group metals ( PGMs) solution containing a large amount of base metals purified with cation exchange resin had been investigated. The results showed that the adsorption of base metals by 001 × 7 cation ion exchange resin at pH=1~1.5 was in the order of Ni>Cu>Co>Fe. From the tests, the breakthrough capacities ( g/kg) of Fe, Ni, Co and Cu were 0.13, 1.25, 0.42 and 0.87, respectively, while the saturated capacities ( g/kg) were 0.32, 6.65, 2.33 and 4.72, respectively and 14.02 g/kg in total. It is shown that the separation efficiency of the base metals depends largely on the concentrations of the precious and base metals, as well as the number of exchange columns. The base metals absorbed on the resin could be easily eluted by adding HCl solution at the amount of 6 mol/L, with the elution reaching the maximum as the eluent volume and bed volume at the ratio of 1.0/1.7 and completely finished as the eluent volume being 2. 0 times the bed volume. The experimental results can definitely provide a theoretical basis favorably for the industrial application of PGMs solution purified by cation exchange resin.

  16. Ionic Liquid Synergistic Cation-Exchange System for the Selective Extraction of Lanthanum(III) Using 2-Thenoyltrifluoroacetone and 18-Crown-6

    OpenAIRE

    Hirayama, Naoki; Okamura, Hiroyuki; Kidani, Keiji; Imura, Hisanori

    2008-01-01

    A novel synergistic extraction system was investigated for the possible selective separation of light lanthanoids using an ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, as an extraction solvent and 2-thenoyltrifluoroacetone and 18-crown-6 as extractants. Trivalent lanthanum was efficiently extracted as a cationic ternary complex by the cation-exchange process, whereas europium and lutetium showed relatively low extractability without forming respective ternary ...

  17. Selective cation exchange in the core region of Cu2-xSe/Cu2-xS core/shell nanocrystals.

    Science.gov (United States)

    Miszta, Karol; Gariano, Graziella; Brescia, Rosaria; Marras, Sergio; De Donato, Francesco; Ghosh, Sandeep; De Trizio, Luca; Manna, Liberato

    2015-09-30

    We studied cation exchange (CE) in core/shell Cu2-xSe/Cu2-xS nanorods with two cations, Ag(+) and Hg(2+), which are known to induce rapid exchange within metal chalcogenide nanocrystals (NCs) at room temperature. At the initial stage of the reaction, the guest ions diffused through the Cu2-xS shell and reached the Cu2-xSe core, replacing first Cu(+) ions within the latter region. These experiments prove that CE in copper chalcogenide NCs is facilitated by the high diffusivity of guest cations in the lattice, such that they can probe the whole host structure and identify the preferred regions where to initiate the exchange. For both guest ions, CE is thermodynamically driven as it aims for the formation of the chalcogen phase characterized by the lower solubility under the specific reaction conditions.

  18. Dowex anion exchanger-loaded-baker's yeast as bi-functionalized biosorbents for selective extraction of anionic and cationic mercury(II) species

    International Nuclear Information System (INIS)

    Dowex anion exchanger-immobilized-baker's yeast [Dae-yeast] were synthesized and potentially applied as environmental friendly biosorbents to evaluate the up-take process of anionic and cationic mercury(II) species as well as other metal ions. Optimization of mass ratio of Dowex anion exchanger versus yeast (1:1-1:10) in presence of various interacting buffer solutions (pH 4.0-9.0) was performed and evaluated. Surface modification of [Dae-yeast] was characterized by scanning electron microscopy (SEM) and infrared spectroscopy. The maximum metal biosorption capacity values of [Dae-yeast] towards mercury(II) were found in the range of 0.800-0.960, 0.840-0.950 and 0.730-0.900 mmol g-1 in presence of buffer solutions pH 2.0, 4.0 and 7.0, respectively. Three possible and different mechanisms are proposed to account for the biosorption of mercury and mercuric species under these three buffering conditions based on ion exchange, ion pair and chelation interaction processes. Factors affecting biosorption of mercury from aqueous medium including the pH effect of aqueous solutions (1.0-7.0), shaking time (1-30 min) and interfering ions were searched. The potential applications of modified biosorbents for selective biosorption and extraction of mercury from different real matrices including dental filling waste materials, industrial waste water samples and mercury lamp waste materials were also explored. The results denote to excellent percentage extraction values, from nitric acid as the dissolution solvent with a pH 2.0, as determined in the range of 90.77-97.91 ± 3.00-5.00%, 90.00-93.40 ± 4.00-5.00% and 92.31-100.00 ± 3.00-4.00% for the three tested samples, respectively.

  19. Ion chromatographic separation of inorganic ions using a combination of hydrophilic interaction chromatographic column and cation-exchange resin column

    Institute of Scientific and Technical Information of China (English)

    Kaori ARAI; Masanobu MORI; Takahiro HIRONAGA; Hideyuki ITABASHI; Kazuhiko TANAKA

    2012-01-01

    A combination of hydrophilic interaction chromatographic ( HILIC ) column and a weakly acidic cation-exchange resin (WCX) column was used for simultaneous separation of inorganic anions and cations by ion chromatography ( IC ).Firstly,the capability of HILIC column for the separation of analyte ions was evaluated under acidic eluent conditions.The columns used were SeQuant ZIC-HILIC (ZIC-HILIC) with a sulfobetainezwitterion stationary phase (ZIC-HILIC) and Acclaim HILIC-10 with a diol stationary phase (HILIC-10).When using tartaric acid as the eluent,the HILIC columns indicated strong retentions for anions,based on ion-pair interaction.Especially,HILIC-10 could strongly retain anions compared with ZIC-HILIC. The selectivity for analyte anions of HILIC-10 with 5 mmol/L tartaric acid eluent was in the order of I- > NO3- > Br- > Cl- >H2PO4-.However,since HILIC-10 could not separate analyte cations,a WCX column (TSKgel Super IC-A/C) was connected after the HILIC column in series.The combination column system of HILIC and WCX columns could successfully separate ten ions (Na+,NH4+,K+,Mg2+,Ca2+,H2PO4-,Cl-,Br-,NO3- and I-) with elution of 4 mmol/L tartaric acid plus 8 mmol/L 18-crown-6.The relative standard deviations (RSDs) of analyte ions by the system were in the ranges of 0.02% - 0.05% in retention times and 0.18% - 5.3% in peak areas through three-time successive injections.The limits of detection at signal-to-noise ratio of 3 were 0.24 - 0.30 μmol/L for the cations and 0.31 - 1.2 μmol/L for the anions.This system was applied for the simultaneous determination of the cations and the anions in a vegetable juice sample with satisfactory results.

  20. Membrane resistance: The effect of salinity gradients over a cation exchange membrane

    NARCIS (Netherlands)

    Galama, A.H.; Vermaas, D.A.; Veerman, J.; Saakes, M.; Rijnaarts, H.; Post, J.W.; Nijmeijer, K.

    2014-01-01

    Ion exchange membranes (IEMs) are used for selective transport of ions between two solutions. These solutions are often different in concentration or composition. The membrane resistance (R-M) is an important parameter affecting power consumption or power production in electrodialytic processes. In

  1. Membrane resistance : The effect of salinity gradients over a cation exchange membrane

    NARCIS (Netherlands)

    Galama, A. H.; Vermaas, D. A.; Veerman, J.; Saakes, M.; Rijnaarts, H. H. M.; Post, J. W.; Nijmeijer, K.

    2014-01-01

    Ion exchange membranes (IEMs) are used for selective transport of ions between two solutions. These solutions are often different in concentration or composition. The membrane resistance (R-M) is an important parameter affecting power consumption or power production in electrodialytic processes. In

  2. Colorimetric Humidity and Solvent Recognition Based on a Cation-Exchange Clay Mineral Incorporating Nickel(II)-Chelate Complexes.

    Science.gov (United States)

    Hosokawa, Hitoshi; Mochida, Tomoyuki

    2015-12-01

    Solvatochromic nickel(II) complexes with diketonato and diamine ligands were incorporated into a saponite clay by ion exchange, and their colorimetric humidity- and solvent-recognition properties were investigated. These powders exhibit color change from red to blue-green depending on humidity, and the detection range can be controlled by modifying the metal complex. The humidity response takes advantage of the humidity-dependent water content in clay and the coordination of water molecules to the metal complex in equilibrium. The addition of organic solvents to the powders causes a color change to occur, varying from red to blue-green depending on the donor number of the solvent, thereby enabling solvent recognition. In the clay, the affinity of less sterically hindered complexes to water or solvent molecules is decreased compared with that in solution because the cationic complexes interact with the anionic layers in the clay. Incorporating diethylene glycol into the materials produced thermochromic powders.

  3. Colorimetric Humidity and Solvent Recognition Based on a Cation-Exchange Clay Mineral Incorporating Nickel(II)-Chelate Complexes.

    Science.gov (United States)

    Hosokawa, Hitoshi; Mochida, Tomoyuki

    2015-12-01

    Solvatochromic nickel(II) complexes with diketonato and diamine ligands were incorporated into a saponite clay by ion exchange, and their colorimetric humidity- and solvent-recognition properties were investigated. These powders exhibit color change from red to blue-green depending on humidity, and the detection range can be controlled by modifying the metal complex. The humidity response takes advantage of the humidity-dependent water content in clay and the coordination of water molecules to the metal complex in equilibrium. The addition of organic solvents to the powders causes a color change to occur, varying from red to blue-green depending on the donor number of the solvent, thereby enabling solvent recognition. In the clay, the affinity of less sterically hindered complexes to water or solvent molecules is decreased compared with that in solution because the cationic complexes interact with the anionic layers in the clay. Incorporating diethylene glycol into the materials produced thermochromic powders. PMID:26542108

  4. Onset of size independent cationic exchange in nano-sized CoFe2O4 induced by electronic excitation

    International Nuclear Information System (INIS)

    Highlights: • Electronic excitation induced crystalline order in CoFe2O4. • No change of metallic valence state under dense electronic excitation. • Size independent control of cations in CoFe2O4. - Abstract: Present work investigates electronic excitation induced cationic exchange phenomena in nano-sized cobalt ferrites using Mössabaur and X-ray absorption spectroscopies. The electronic excitations were produced by irradiation of 100 MeV O+7 at different fluences ranging from 1 × 1011 to 1 × 1014 ions/cm2. Cubic spinel phase of cobalt ferrite remains preserved after irradiation. However, attributes of crystalline disorder were observed in irradiated materials. Crystallite size remain almost same for pristine and irradiated materials. X-ray absorption fine structure measurements show the preservation of valence state and spin state of metal ions under intense electronic excitation. These measurements also envisage bond breaking process induced by the electronic excitation. Mössbauer spectroscopic measurements also corroborate with the fine structure measurements that the valence state of Fe remains same after irradiation. Paramagnetic doublet which presents in the Mössabaur spectrum of pristine material disappears after irradiation, showing the evolution of irradiation induced magnetic ordering. Fe3+ ion increases with irradiation at octahedral site of spinel lattice. Magnetization of the material slightly increases after irradiation at the fluence of 5 × 1013 and 1 × 1014 ions/cm2

  5. Cation Exchange Strategy for the Encapsulation of a Photoactive CO-Releasing Organometallic Molecule into Anionic Porous Frameworks.

    Science.gov (United States)

    Carmona, Francisco J; Rojas, Sara; Sánchez, Purificación; Jeremias, Hélia; Marques, Ana R; Romão, Carlos C; Choquesillo-Lazarte, Duane; Navarro, Jorge A R; Maldonado, Carmen R; Barea, Elisa

    2016-07-01

    The encapsulation of the photoactive, nontoxic, water-soluble, and air-stable cationic CORM [Mn(tacn)(CO)3]Br (tacn = 1,4,7-triazacyclononane) in different inorganic porous matrixes, namely, the metalorganic framework bio-MOF-1, (NH2(CH3)2)2[Zn8(adeninate)4(BPDC)6]·8DMF·11H2O (BPDC = 4,4'-biphenyldicarboxylate), and the functionalized mesoporous silicas MCM-41-SO3H and SBA-15-SO3H, is achieved by a cation exchange strategy. The CO release from these loaded materials, under simulated physiological conditions, is triggered by visible light. The results show that the silica matrixes, which are unaltered under physiological conditions, slow the kinetics of CO release, allowing a more controlled CO supply. In contrast, bio-MOF-1 instability leads to the complete leaching of the CORM. Nevertheless, the degradation of the MOF matrix gives rise to an enhanced CO release rate, which is related to the presence of free adenine in the solution. PMID:27291890

  6. High-Capacity and Rapid Removal of Refractory NOM Using Nanoscale Anion Exchange Resin.

    Science.gov (United States)

    Johnson, Billy R; Eldred, Tim B; Nguyen, Andy T; Payne, William M; Schmidt, Emily E; Alansari, Amir Y; Amburgey, James E; Poler, Jordan C

    2016-07-20

    As human health concerns over disinfection byproducts (DBP) in drinking water increase, so does the need to develop new materials that remove them rapidly and at high capacity. Ion exchange (IEX) is an effective method for the removal of natural organic matter (NOM), especially anion exchange resins (AERs) with quaternary ammonium functional groups. However, capacity is limited in existing commercial resin materials because adsorbates can only interact with the outermost surface area, which makes these products inefficient on a mass basis. We have synthesized a novel "NanoResin" exploiting the enhanced NOM removal of the quaternary ammonium resin while utilizing the vast surface area of SWCNTs, which act as scaffolding for the resin. Our nanomaterials show increased adsorption capacity compared to commercially available adsorbents, in a fraction of the time. This NanoResin requires only about 10 s to reach ion-exchange equilibrium. Comparatively, commercial AERs only achieved partial removal after more than 30 min. High capacity adsorption of a low molecular weight (MW) surrogate has been measured. NOM removal was demonstrated in solutions of both low and high specific UV absorbance (SUVA) composition with these nanomaterials. Additionally, the NanoResin showed enhanced removal of a NOM concentrate sample taken from Myrtle Beach, SC, demonstrating NanoResin is an effective method of removal for refractory NOM in a natural aqueous environment. Synthesis and characterization of the polymers and nanomaterials are presented below. Adsorption capacity, adsorption kinetics, and the regeneration and reusability of these new materials for NOM removal are described. The open matrix microstructure precludes any intraparticle diffusion of adsorbates; thus, these nanomaterials act as a "contact resin". PMID:27348616

  7. The rapid identification of elution conditions for therapeutic antibodies from cation-exchange chromatography resins using high-throughput screening.

    Science.gov (United States)

    McDonald, Paul; Tran, Benjamin; Williams, Christopher R; Wong, Marc; Zhao, Ti; Kelley, Brian D; Lester, Philip

    2016-02-12

    Cation-exchange chromatography is widely used in the purification of therapeutic antibodies, wherein parameters such as elution pH and counterion concentration require optimization for individual antibodies across different chromatography resins. With a growing number of antibodies in clinical trials and the pressure to expedite process development, we developed and automated a high-throughput batch-binding screen to more efficiently optimize elution conditions for cation-exchange chromatography resins. The screen maps the binding behavior of antibodies and impurities as a function of pH and counterion concentration in terms of a partition coefficient (Kp). Using this approach, the binding behavior of a library of antibodies was assessed on Poros 50HS and SP Sepharose Fast Flow resins. The diversity in binding behavior between antibodies and across resins translated to the requirement of a variable counterion concentration to elute each antibody. This requirement can be met through the use of a gradient elution. However, a gradient of increasing counterion concentration spans the transition from binding to non-binding for impurities as well as the antibody, resulting in the elution of impurities within the antibody elution peak. Step elution conditions that selectively elute the antibody while retaining impurities on the resin can now be rapidly identified using our high-throughput approach. We demonstrate that by correlating antibody Kp to elution pool volume and yield on packed-bed columns and through the calculation of a separation factor, we can efficiently optimize step elution conditions that maximize impurity clearance and yield for each antibody. PMID:26803905

  8. Enhanced photocatalytic activity of chromium(VI) reduction and EDTA oxidization by photoelectrocatalysis combining cationic exchange membrane processes

    International Nuclear Information System (INIS)

    Highlights: ► Chromium(VI) reduction and EDTA oxidization were conducted by photoelectrocatalysis. ► Apply the concept of cationic exchange membrane to enhance the conversion efficiency. ► The optimum TiO2 loading of 1 g/L was observed at acidic pH with current density 4 mA/cm2. ► Transformation pathway of EDTA was determined from analyzed byproducts and molecular orbital package analysis. -- Abstract: A novel technology of photoelectrocatalysis (PEC) combining with cationic exchange membrane (CEM) was proposed for simultaneous reduction of chromium(VI) and oxidization of EDTA. The application of CEM was used to enhance the efficiency for prevention of the re-oxidation of reduced chromium with the electron–hole pairs. In this study, effects of current density, pH, TiO2 dosage, hydraulic retention time (HRT), light intensity and EDTA/Cr(VI) molar ratio were all investigated. The results showed that the optimum conversion efficiency occurred at 4 mA/cm2 with the presence of CEM. Higher conversion efficiencies were observed at lower pH due to the electrostatic attractions between positive charged Ti-OH2+, and negatively charged Cr(VI) and EDTA. The optimum TiO2 loading of 1 g/L was depended mainly on the acidic pH range, especially at higher HRT and irradiation intensity. In addition, higher EDTA/Cr(VI) molar ratio enhanced the reduction efficiency of Cr(VI), indicating EDTA plays the role of hole scavenger in this system. Moreover, incomplete EDTA decomposition contributes to the occurrence of intermediates, including nitrilotriacetic acid, iminodiacetic acid, glycine, oxamic acid, lyoxylic acid, oxalic acid, acetic acid and formic acid, as identified by GC/MS. Consequently, transformation pathway was determined from these analyzed byproducts and molecular orbital package analysis

  9. Quantification of melamine in human urine using cation-exchange based high performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Panuwet, Parinya; Nguyen, Johnny V; Wade, Erin L; D'Souza, Priya E; Ryan, P Barry; Barr, Dana Boyd

    2012-03-01

    Melamine and cyanuric acid have been implicated as adulterants in baby formula in China and pet foods in North America. In China, the effect of melamine or melamine-cyanuric acid adulteration lead to kidney stone development and acute renal failure in thousands of Chinese infants. A selective and sensitive analytical method was developed to measure melamine in human urine in order to evaluate the extent of potential health implications resulting from the consumption of these types of adulterated products in the general US population. This method involves extracting melamine from human urine using cation-exchange solid-phase extraction, chromatographically separating it from its urinary matrix co-extractants on a silica-based, strong-cation exchange analytical column using high performance liquid chromatography, and analysis using positive mode electrospray ionization tandem mass spectrometry. Quantification was performed using modified, matrix-based isotope dilution calibration covering the concentration range of 0.50-100 ng/mL. The limit of detection, calculated using replicates of blank and low level spiked samples, was 0.66 ng/mL and the relative standard deviations were between 6.89 and 14.9%. The relative recovery of melamine was 101-106%. This method was tested for viability by analyzing samples collected from the general US population. Melamine was detected in 76% of the samples tested, with a geometric mean of 2.37 ng/mL, indicating that this method is suitable for reliably detecting background exposures to melamine or other chemicals from which it can be derived. PMID:22309774

  10. On-line coupling of an ion chromatograph to the ICP-MS: Separations with a cation exchange chromatography column

    Energy Technology Data Exchange (ETDEWEB)

    Roellin, Stefan [Studsvik Nuclear AB, Nykoeping (Sweden)

    1999-12-01

    An ion chromatography system was coupled on-line to the ICP-MS. All separations were made with a cation exchange chromatography column. Fundamental laws about elution parameters affecting individual retention times and elution forms are explained by applying a proper ion exchange mechanism for the isocratic elution (separations with constant eluent concentration) of mono-, di-, tri-, and tetravalent cations and the actinide species MO{sub 2}{sup +} and MO{sub 2}{sup 2+}. A separation method with two eluents has been investigated to separate mono- from divalent ions in order to separate isobaric overlaps of Rb/Sr and Cs/Ba. The ions normally formed by actinides in aqueous solutions in the oxidation states III to VI are M{sup 3+}, M{sup 4+}, MO{sub 2}{sup +} and MO{sub 2}{sup 2+} respectively. Elution parameters were investigated to separate all four actinide species from each other in order to separate isobaric overlaps of the actinides Np, Pu, U and Am. A major question of concern over the possible release of actinides to the environment is the speciation of actinides within their four possible oxidation states. To check the possibility of speciation analysis with ion chromatography, a separation method was investigated to separate U{sup 4+} and UO{sub 2}{sup 2+} without changing the redox species composition during the separation. First results of Pu speciation analysis showed that Pu could be eluted as three different species. Pu(VI) was always eluting at the same time as Np(V). This was surprising as Pu(VI) is expected to have the same chemical characteristics as U(VI) and thus was expected to elute at the same time as U(VI)

  11. Enhanced photocatalytic activity of chromium(VI) reduction and EDTA oxidization by photoelectrocatalysis combining cationic exchange membrane processes

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hung-Te, E-mail: der11065@hotmail.com [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan (China); Chen, Shiao-Shing, E-mail: f10919@ntut.edu.tw [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan (China); Tang, Yi-Fang, E-mail: sweet39005@hotmail.com [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan (China); Hsi, Hsing-Cheng, E-mail: hchsi@ntut.edu.tw [Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 106, Taiwan (China)

    2013-03-15

    Highlights: ► Chromium(VI) reduction and EDTA oxidization were conducted by photoelectrocatalysis. ► Apply the concept of cationic exchange membrane to enhance the conversion efficiency. ► The optimum TiO{sub 2} loading of 1 g/L was observed at acidic pH with current density 4 mA/cm{sup 2}. ► Transformation pathway of EDTA was determined from analyzed byproducts and molecular orbital package analysis. -- Abstract: A novel technology of photoelectrocatalysis (PEC) combining with cationic exchange membrane (CEM) was proposed for simultaneous reduction of chromium(VI) and oxidization of EDTA. The application of CEM was used to enhance the efficiency for prevention of the re-oxidation of reduced chromium with the electron–hole pairs. In this study, effects of current density, pH, TiO{sub 2} dosage, hydraulic retention time (HRT), light intensity and EDTA/Cr(VI) molar ratio were all investigated. The results showed that the optimum conversion efficiency occurred at 4 mA/cm{sup 2} with the presence of CEM. Higher conversion efficiencies were observed at lower pH due to the electrostatic attractions between positive charged Ti-OH{sub 2}{sup +}, and negatively charged Cr(VI) and EDTA. The optimum TiO{sub 2} loading of 1 g/L was depended mainly on the acidic pH range, especially at higher HRT and irradiation intensity. In addition, higher EDTA/Cr(VI) molar ratio enhanced the reduction efficiency of Cr(VI), indicating EDTA plays the role of hole scavenger in this system. Moreover, incomplete EDTA decomposition contributes to the occurrence of intermediates, including nitrilotriacetic acid, iminodiacetic acid, glycine, oxamic acid, lyoxylic acid, oxalic acid, acetic acid and formic acid, as identified by GC/MS. Consequently, transformation pathway was determined from these analyzed byproducts and molecular orbital package analysis.

  12. Controlling electron beam-induced structure modifications and cation exchange in cadmium sulfide–copper sulfide heterostructured nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Haimei [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sadtler, Bryce; Habenicht, Carsten [Department of Chemistry, University of California, Berkeley, CA 94720 (United States); Freitag, Bert [FEI Company, P.O. Box 80066, KA 5600 Eindhoven (Netherlands); Alivisatos, A. Paul [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Chemistry, University of California, Berkeley, CA 94720 (United States); Kisielowski, Christian, E-mail: CFKisielowski@lbl.gov [National Center for Electron Microcopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Joint Center for Artificial Photosynthesis, Berkeley, CA 94720 (United States)

    2013-11-15

    The atomic structure and interfaces of CdS/Cu{sub 2}S heterostructured nanorods are investigated with the aberration-corrected TEAM 0.5 electron microscope operated at 80 kV and 300 kV applying in-line holography and complementary techniques. Cu{sub 2}S exhibits a low-chalcocite structure in pristine CdS/Cu{sub 2}S nanorods. Under electron beam irradiation the Cu{sub 2}S phase transforms into a high-chalcocite phase while the CdS phase maintains its wurtzite structure. Time-resolved experiments reveal that Cu{sup +}–Cd{sup 2+} cation exchange at the CdS/Cu{sub 2}S interfaces is stimulated by the electron beam and proceeds within an undisturbed and coherent sulfur sub-lattice. A variation of the electron beam current provides an efficient way to control and exploit such irreversible solid-state chemical processes that provide unique information about system dynamics at the atomic scale. Specifically, we show that the electron beam-induced copper–cadmium exchange is site specific and anisotropic. A resulting displacement of the CdS/Cu{sub 2}S interfaces caused by beam-induced cation interdiffusion equals within a factor of 3–10 previously reported Cu diffusion length measurements in heterostructured CdS/Cu{sub 2}S thin film solar cells with an activation energy of 0.96 eV. - Highlights: • Heterostructured nanorods were investigated at atomic resolution showing that they are free of extended defects. • Beam–sample interactions are controlled by current and voltage variations to provide pristine crystal structures. • Beam-induced migration of heterointerfaces are measured time-resolved and compared with Cu diffusion coefficients. • Beam–sample interaction overwrite possible signal improvements that can be expected by sample cooling.

  13. Physical characterization of the state of motion of the phenalenyl spin probe in cation-exchanged faujasite zeolite supercages with pulsed EPR

    Science.gov (United States)

    Doetschman, D. C.; Dwyer, D. W.; Fox, J. D.; Frederick, C. K.; Scull, S.; Thomas, G. D.; Utterback, S. G.; Wei, J.

    1994-08-01

    The molecular motion of the phenalenyl (PNL) spin probe in the supercages of cation-exchanged X and Y zeolites (faujasites) has been physically characterized by pulsed and continuous wave (CW) electron paramagnetic resonance (EPR). Both X and Y zeolites, whose cation sites were exchanged with the alkali metal ions, Li +, Na +, K +, Rb + and Cs + were examined. There is a good correspondence between the temperature dependences of the PNL electron spin phase memory time and the CW EPR spectra. Both display evidence of a thermal activation from a stationary, non-rotating molecular state to a low-temperature state of in-plane rotation (Das et al., Chem Phys. 143 (1990) 253). The rate of in-plane rotation is an activated process, with E* | / R=1289 |+- 35 K and 1462 ± 47 K in NaX and KX zeolites, respectively. The rotation appears to be about an axis along which the half-filled, non-bonding π orbital interacts with the exchanged cation in the supercage. Both CW and pulsed EPR also show a higher temperature activation from the in-plane rotating state to an effectively isoptropic state of rotation of PNL in which the PNL-cation bond is thought to be broken, with E* ⊥ / R=2050 ± 110 K, 1956 ± 46K, 1335 ± 97 K in LiX, NaX and KX zeolites, respectively. The strength of the PNL-cation bonding decreases with increasing cation atomic number as indicated by E* ⊥ and the peripheral repulsion (crowding) of PNL increases with cation size as indicated E* |. There are qualitative indications that the binding of PNL to the cations in the Y zeolite is stronger than in the X zeolite.

  14. Structure and resistance of concentration polar layer on cation exchange membrane-solution interface

    Institute of Scientific and Technical Information of China (English)

    SANG Shang-bin; HUANG Ke-long; LI Xiao-gang; WANG Xian

    2006-01-01

    Membrane/solution interface consists of a neutral concentration polar layer(CPL) and a charge layer(CL) under external electrical field, and the neutral CPL can be neglected under high frequency AC electrical field. The relationship of CL thickness e with electrolyte concentration C and fixed ion exchange sites density σ in membrane surface layer can be expressed as e=σ/C.According to this model, the thickness of the CL on Nafion1135 membrane/solution interface(ec) was calculated under different membrane surface charge quantity Q and variable electrolyte concentration C. The membrane/solution interface CL thickness(em) is obviously related with the membrane properties, and decreases dramatically in a higher electrolyte concentration, em values are 76.3nm and 110.3 nm respectively for Nafion1135 and PE01 ion exchange membrane in 0.05 mol/L H2SO4 solution, and em values for both membrane tend to 2 nm in 2 mol/L H2SO4 solution. For Nafion1135 membrane, the comparison of ec and em gives the result that CL thickness em obtained by resistance measurement fits well with the calculated CPL thickness ec while proton in CL transferred to membrane surface is 14.56 × l0-10 mol, which corresponds to the fixed exchange group number in a surface layer with a thickness τ=2 nm for Nafion1135 membrane.

  15. Increased selectivity for planar chromatography by ion exchange : cation chromatography on papers impregnated with titanium (IV) based inorganic ion exchangers in DMSO-HNO3 mobile phases

    International Nuclear Information System (INIS)

    Planar chromatography of thirty six metal ions on titanium(IV) phosphate, titanium(IV) tungstate and titanium(IV) molybdate impregnated papers in DMSO-HNO3 mobile phases has been carried out. The ion-exchange capacity of papers is determined and the effects of solvent composition, impregnation and pH on RF values are studied. For K+, Rb+ and Cs+, RF = KC1/2, where C is the nitric acid concentration. The movement of ions is explained on the basis of ion-exchange, adsorption and precipitation. Alberti and Torracca's view for the prediction of elution sequence from RF values has been checked. The sequence of adsorption of ions follows the order : titanium(IV) molybdate > titanium(IV) tungstate > titanium(IV) phosphate. Some of the analytically important separations are reported. (author)

  16. The removal of radioactive radium (Ra226) from chloride liquors by columnar ion exchange in the presence of calcium, magnesium and iron cations

    International Nuclear Information System (INIS)

    The purpose of this work was to study the feasibility of controlling the discharge of soluble Ra226, in the presence of Ca, Mg and Fe cations in synthetic chloride effluents, by adsorption on cation exchange resins to decrease Ra226-concentrations to federal environmental levels of 10 pCi Ra226/litre. Environmentally acceptable effluents were produced from synthetic chloride feed liquors containing 10 ppm Ca, 5 ppm Mg, 120 ppm Fe plus 20,000 pCi Ra226/litre. Environmentally acceptable effluents were not produced, by cation exchange, from a synthetic chloride liquor containing 490 ppm Ca, 97 ppm Mg, 720 ppm Fe in addition to 20,000 pCi Ra226/litre. The mass interference of the Ca + Mg + Fe cation concentrations in the feed liquor was in over-powering competition, for resin sites, with the Ra226-cations. To obtain realistic data, the adsorption process should be reexamined using a chloride liquor produced under optimal chloride leaching conditions of an Elliot Lake uranium ore. This would, in all probability, reveal other cations unavailable in the synthetic chloride liquors

  17. High-purity isolation of anthocyanins mixtures from fruits and vegetables--a novel solid-phase extraction method using mixed mode cation-exchange chromatography.

    Science.gov (United States)

    He, Jian; Giusti, M Monica

    2011-11-01

    Research on biological activity of anthocyanins requires the availability of high purity materials. However, current methods to isolate anthocyanins or anthocyanin mixtures are tedious and expensive or insufficient for complete isolation. We applied a novel cation-exchange/reversed-phase combination solid-phase extraction (SPE) technique, and optimized the use of water/organic buffer mobile phases to selectively separate anthocyanins. Crude extracts of various representative anthocyanin sources were purified with this technique and compared to 3 commonly used SPE techniques: C(18), HLB, and LH-20. Purified anthocyanin fractions were analyzed with high performance liquid chromatography (HPLC) coupled to photodiode array (PDA) and mass spectrometry (MS) detectors and by Fourier transform infrared (FT-IR) spectroscopy. The UV-visible chromatograms quantitatively demonstrated that our novel technique achieved significantly higher (Pmethod, for 11 of the 12 anthocyanin sources tested. Among them, eight were purified to greater than 99% purity (based on UV-visible chromatograms). The new method efficiently removed non-anthocyanin phenolics. MS and FT-IR results semi-quantitatively confirmed extensive reduction of impurities. Due to strong ionic interaction, our sorbent capacity was superior to others, resulting in the highest throughput and least use of organic solvents. This new methodology for isolation of anthocyanin mixtures drastically increased purity and efficiency while maintaining excellent recovery rate and low cost. The availability of high purity anthocyanin mixtures will facilitate anthocyanin studies and promote the application of anthocyanins in the food and nutraceutical industries. PMID:21968344

  18. Grafting glycidyl methacrylate to Sepharose gel for fabricating high-capacity protein anion exchangers.

    Science.gov (United States)

    Wang, Qianqian; Yu, Linling; Sun, Yan

    2016-04-22

    To develop ion exchangers of high protein adsorption capacity, we have herein introduced atom transfer radical polymerization (ATRP) method to graft glycidyl methacrylate (GMA) onto Sepharose FF gel. GMA-grafted Sepharose FF resins of four grafting densities and different grafting chain lengths were obtained by adjusting reaction conditions. The epoxy groups on the grafted chains were functionalized by modification with diethylamine (DEA), leading to the fabrication of Sepharose-based anion exchangers of 14 different grafting densities and/or grafting chain lengths. The resins were first characterized for the effects of grafting density, chain length and ionic strength on pore sizes by inverse size exclusion chromatography. Then, the resins were evaluated by adsorption equilibria of bovine serum albumin (BSA) as a function of ionic capacity (IC) (chain length) at individual grafting densities. It was observed that at each grafting density there was a specific IC value (chain length) that offered the maximum equilibrium capacity. Of the resins with maximum values at individual grafting densities, the resin of the second grafting density with an IC value of 330 mmol/L (denoted as FF-Br2-pG-D330) showed the highest capacity, 264 mg/mL, about two times higher than that of the traditional ungrafted resin Q Sepharose FF (137 mg/mL). This resin also showed the most favorable uptake kinetics among the resins of similar IC values but different grafting densities, or of the same grafting density but different IC values. Effects of ionic strength showed that the capacities of FF-Br2-pG-D330 were much higher than Q Sepharose FF at a wide range of NaCl concentrations (0-200 mmol/L), and the uptake rates of the two resins were similar in the ionic strength range. Therefore, the dynamic binding capacity values of BSA on FF-Br2-pG-D330 were much higher than Q Sepharose FF as demonstrated at different residence times and ionic strengths. Taken together, the research has proved the

  19. Disintegration and dissolution of spent radioactive cationic exchange resins using Fenton-like oxidation process

    International Nuclear Information System (INIS)

    Highlights: • The spent radioactive resins could be oxidized by Fenton-like process. • The influencing factors on resin oxidation were evaluated. • Chemical oxygen demand (COD) reduction rate was more than 99%. • SEM and Raman spectrum were used to analyze the resins morphological change. - Abstract: The treatment and disposal of the spent radioactive resins is essential for the sustainable development of the nuclear industry. In this paper, the disintegration and dissolution of spent cationic resins were studied by Fenton-like process. The influencing factors on resin dissolution, such as pH, temperature, type and concentration of catalysts were evaluated. The results showed that the spent resins could be effectively dissolved at pH < 1, [Fe2+] = 0.2 M and T = 97 ± 2 °C. Chemical oxygen demand (COD) reduction rate was more than 99%. The scanning electron microscopy and the Raman spectrum were used to observe the morphological changes of the spent resins during the dissolution process. Fenton-like oxidation is an efficient method for the volume reduction and stabilization of the spent resins before further immobilization

  20. Disintegration and dissolution of spent radioactive cationic exchange resins using Fenton-like oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Zhong; Xu, Lejin [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Wang, Jianlong, E-mail: wangjl@tsinghua.edu.cn [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084 (China)

    2015-09-15

    Highlights: • The spent radioactive resins could be oxidized by Fenton-like process. • The influencing factors on resin oxidation were evaluated. • Chemical oxygen demand (COD) reduction rate was more than 99%. • SEM and Raman spectrum were used to analyze the resins morphological change. - Abstract: The treatment and disposal of the spent radioactive resins is essential for the sustainable development of the nuclear industry. In this paper, the disintegration and dissolution of spent cationic resins were studied by Fenton-like process. The influencing factors on resin dissolution, such as pH, temperature, type and concentration of catalysts were evaluated. The results showed that the spent resins could be effectively dissolved at pH < 1, [Fe{sup 2+}] = 0.2 M and T = 97 ± 2 °C. Chemical oxygen demand (COD) reduction rate was more than 99%. The scanning electron microscopy and the Raman spectrum were used to observe the morphological changes of the spent resins during the dissolution process. Fenton-like oxidation is an efficient method for the volume reduction and stabilization of the spent resins before further immobilization.

  1. Ergot alkaloids in rye flour determined by solid-phase cation-exchange and high-pressure liquid chromatography with fluorescence detection

    DEFF Research Database (Denmark)

    Storm, Ida Marie Lindhardt Drejer; Rasmussen, Peter Have; Strobel, B.W.;

    2008-01-01

    Ergot alkaloids are mycotoxins that are undesirable contaminants of cereal products, particularly rye. A method was developed employing clean-up by cation-exchange solid-phase extraction, separation by high-performance liquid chromatography under alkaline conditions and fluorescence detection...

  2. 2-Acrylamido-2-methyl-1-propanesulfonic Acid Grafted Poly(vinylidene fluoride-co-hexafluoropropylene)-Based Acid-/Oxidative-Resistant Cation Exchange for Membrane Electrolysis.

    Science.gov (United States)

    Pandey, Ravi P; Das, Arindam K; Shahi, Vinod K

    2015-12-30

    For developing acid-/oxidative-resistant aliphatic-polymer-based cation-exchange membrane (CEM), macromolecular modification of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) was carried out by controlled chemical grafting of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS). To introduce the unsaturation suitable for chemical grafting, dehydrofluorination of commercially available PVDF-co-HFP was achieved under alkaline medium. Sulfonated copolymer (SCP) was prepared by the free radical copolymerization of dehydofluorinated PVDF-co-HFP (DHPVDF-co-HFP) and AMPS in the presence of free radical initiator. Prepared SCP-based CEMs were analyzed for their morphological characteristics, ion-exchange capacity (IEC), water uptake, conductivity, and stabilities (mechanical, chemical, and thermal) in comparison with state-of-art Nafion117 membrane. High bound water content avoids the membrane dehydration, and most optimal (SCP-1.33) membrane exhibited about ∼2.5-fold high bound water content in comparison with that of Nafion117 membrane. Bunsen reaction of iodine-sulfur (I-S) was successfully performed by direct-contact-mode membrane electrolysis in a two-compartment electrolytic cell using different SCP membranes. High current efficiency (83-99%) confirmed absence of any side reaction and 328.05 kJ mol-H2(-1) energy was required for to produce 1 mol of H2 by electrolytic cell with SCP-1.33 membrane. In spite of low conductivity for reported SCP membrane in comparison with that of Nafion117 membrane, SCP-1.33 membrane was assessed as suitable candidate for electrolysis because of its low-cost nature and excellent stabilities in highly acidic environment may be due to partial fluorinated segments in the membrane structure. PMID:26642107

  3. Analysis of statistical thermodynamic model for binary protein adsorption equilibria on cation exchange adsorbent

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiaopeng; SU Xueli; SUN Yan

    2007-01-01

    A study of nonlinear competitive adsorption equilibria of proteins is of fundamental importance in understanding the behavior of preparative chromatographic separation.This work describes the nonlinear binary protein adsorption equilibria on ion exchangers by the statistical thermodynamic (ST) model.The single-component and binary protein adsorption isotherms of bovine hemoglobin (Hb) and bovine serum albumin(BSA)on SP Sepharose FF were determined by batch adsorption experiments in 0.05 mol/L sodium acetate buffer at three pH values(4.5,5.0 and 5.5)and three NaCl concentrations(0.05,0.10 and 0.15 mol/L)at pH 5.0.The ST model was found to depict the effects of pH and ionic strength on the single-component equilibria well,with model parameters depending on the pH and ionic strength.Moreover,the ST model gave acceptable fitting to the binary adsorption data with the fltted singlecomponent model parameters,leading to the estimation of the binary ST model parameter.The effects of pH and ionic strength on the model parameters are reasonably interpreted by the electrostatic and thermodynamic theories.Results demonstrate the availability of the ST model for describing nonlinear competitive protein adsorption equilibria in the presence of two proteins.

  4. Use of Novel Reinforced Cation Exchange Membranes for Microbial Fuel Cells

    International Nuclear Information System (INIS)

    This work has been focused on the synthesis and characterization of different blended membranes SPEEK-35PVA (Water), SPEEK-35PVA (DMAc) prepared by casting and nanofiber-reinforced proton exchange membranes Nafion-PVA-15, Nafion-PVA-23 and SPEEK/PVA-PVB. The two first reinforced membranes were made up of Nafion® polymer deposited between polyvinyl alcohol (PVA) nanofibers. The last composite membrane is considered because the PVA is a hydrophilic polymer which forms homogeneous blends with SPEEK suitable to obtain high proton conductivity, while the hydrophobic PVB can produce blends in a phase separation morphology in which very low water uptake can be found. The synthesized membranes showed an outstanding stability, high proton conductivity, and enhanced mechanical and barrier properties. The membranes were characterized in single chamber microbial fuel cells (SCMFCs) using electrochemically enriched high sodic saline hybrid H-inocula (Geobacter metallireducen, Desulfurivibrio alkaliphilus, and Marinobacter adhaerens) as biocatalyst. The best performance was obtained with Nafion-PVA-15 membrane, which achieved a maximum power density of 1053 mW/m3 at a cell voltage of 340 mV and displayed the lowest total internal resistance (Rint ≈ 522 Ω). This result is in agreement with the low oxygen permeability and the moderate conductivity found in this kind of membranes. These results are encouraging towards obtaining high concentrated sodic saline model wastewater exploiting MFCs

  5. Modification of polyamide-CdS-CdSe composite material films with Ag using a cation–cation exchange reaction

    Energy Technology Data Exchange (ETDEWEB)

    Krylova, V.; Žalenkienė, S.; Dukstienė, N. [Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu st. 19, LT-50254, Kaunas (Lithuania); Baltrusaitis, J., E-mail: job314@lehigh.edu [Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 (United States)

    2015-10-01

    Highlights: • We investigated deposition of a mixed CdSe-CdS-Ag{sub 2}Se-Ag{sub 2}S on polyamide. • A single chalcogen precursor – K{sub 2}SeS{sub 2}O{sub 6} – was used. • AAS showed five- to ten-fold excess of chalcogens diffused into PA. • Addition of AgNO{sub 3} resulted in subsurface Ag{sub 2}Se–Ag{sub 2}S formation. - Abstract: Thin mixed CdSe-CdS-Ag{sub 2}Se-Ag{sub 2}S films were deposited on a polyamide 6 (PA) surface by successfully using a cation-exchange reaction between Cd{sup 2+} and Ag{sup +} to convert CdSe-CdS into Ag{sub 2}Se-Ag{sub 2}S. These were deposited using a K{sub 2}SeS{sub 2}O{sub 6} precursor solution at 60 °C followed by cadmium acetate (Cd(CH{sub 3}COO){sub 2}). An aqueous AgNO{sub 3} solution was used as the Ag source. XRD patterns showed a complex PA-Cd-S-Se-Ag film crystalline composition with CdS, CdSe, Ag{sub 2}S and Ag{sub 2}Se peaks. Calculated dislocation density ranged within 5–15 × 10{sup 13} lines·m{sup −2} indicating high quality atomic layers. Atomic Absorption Spectroscopy (AAS) showed five- to ten-fold excess of chalcogens to metals in the thin films formed. No chalcogenides were observed on the sample surface during XPS analysis after Ag exchange due to the desorption of CdS and CdSe layers, not diffused into the bulk of the polymer suggesting that silver chalcogenides were located subsurface, as opposed to the outermost layer, likely comprised of Ag{sub 2}O.

  6. Purification of Monoclonal Antibodies Using a Fiber Based Cation-Exchange Stationary Phase: Parameter Determination and Modeling

    Directory of Open Access Journals (Sweden)

    Jan Schwellenbach

    2016-10-01

    Full Text Available Monoclonal antibodies (mAb currently dominate the market for protein therapeutics. Because chromatography unit operations are critical for the purification of therapeutic proteins, the process integration of novel chromatographic stationary phases, driven by the demand for more economic process schemes, is a field of ongoing research. Within this study it was demonstrated that the description and prediction of mAb purification on a novel fiber based cation-exchange stationary phase can be achieved using a physico-chemical model. All relevant mass-transport phenomena during a bind and elute chromatographic cycle, namely convection, axial dispersion, boundary layer mass-transfer, and the salt dependent binding behavior in the fiber bed were described. This work highlights the combination of model adaption, simulation, and experimental parameter determination through separate measurements, correlations, or geometric considerations, independent from the chromatographic cycle. The salt dependent binding behavior of a purified mAb was determined by the measurement of adsorption isotherms using batch adsorption experiments. Utilizing a combination of size exclusion and protein A chromatography as analytic techniques, this approach can be extended to a cell culture broth, describing the salt dependent binding behavior of multiple components. Model testing and validation was performed with experimental bind and elute cycles using purified mAb as well as a clarified cell culture broth. A comparison between model calculations and experimental data showed a good agreement. The influence of the model parameters is discussed in detail.

  7. Proteomics-based, multivariate random forest method for prediction of protein separation behavior during cation-exchange chromatography.

    Science.gov (United States)

    Swanson, Ryan K; Xu, Ruo; Nettleton, Dan; Glatz, Charles E

    2012-08-01

    The most significant cost of recombinant protein production lies in the optimization of the downstream purification methods, mainly due to a lack of knowledge of the separation behavior of the host cell proteins (HCP). To reduce the effort required for purification process development, this work was aimed at modeling the separation behavior of a complex mixture of proteins in cation-exchange chromatography (CEX). With the emergence of molecular pharming as a viable option for the production of recombinant pharmaceutical proteins, the HCP mixture chosen was an extract of corn germ. Aqueous two phase system (ATPS) partitioning followed by two-dimensional electrophoresis (2DE) provided data on isoelectric point, molecular weight and surface hydrophobicity of the extract and step-elution fractions. A multivariate random forest (MVRF) method was then developed using the three characterization variables to predict the elution pattern of individual corn HCP. The MVRF method achieved an average root mean squared error (RMSE) value of 0.0406 (fraction of protein eluted in each CEX elution step) for all the proteins that were characterized, providing evidence for the effectiveness of both the characterization method and the analysis approach for protein purification applications. PMID:22748375

  8. Kinetics, thermodynamics and surface heterogeneity assessment of uranium(VI) adsorption onto cation exchange resin derived from a lignocellulosic residue

    International Nuclear Information System (INIS)

    A new cation exchange resin (PGTFS-COOH) having a carboxylate functional group at the chain end was prepared by grafting poly(hydroxyethylmethacrylate) onto tamarind fruit shell, TFS (a lignocellulosic residue) using potassium peroxydisulphate-sodium thiosulphate redox initiator, and in the presence of N,N'-methylenebisacrylamide (MBA) as a crosslinking agent, followed by functionalisation. The adsorbent was characterized with the help of FTIR, XRD, scanning electron micrographs (SEM), and potentiometric titrations. The kinetic and isotherm data, obtained at optimum pH value 6.0 at different temperatures could be fitted with pseudo-second-order equation and Sips isotherm model, respectively. An increase in temperature induces positive effect on the adsorption process. The calculated activation energy of adsorption (Ea, 18.67 kJ/mol) indicates that U(VI) adsorption was largely due to diffusion-controlled process. The values of adsorption enthalpy, Gibbs free energy, and entropy were calculated using thermodynamic function relationships. The decrease in adsorption enthalpy with increasing U(VI) uploading on the adsorbent, reflects the surface energetic heterogeneity of the adsorbent. The isosteric heat of adsorption was quantitatively correlated with the fractional loading for the U(VI) ions adsorption onto PGTFS-COOH. The results showed that the PGTFS-COOH possessed heterogeneous surface with sorption sites having different activities.

  9. Proteomics-based, multivariate random forest method for prediction of protein separation behavior during cation-exchange chromatography.

    Science.gov (United States)

    Swanson, Ryan K; Xu, Ruo; Nettleton, Dan; Glatz, Charles E

    2012-08-01

    The most significant cost of recombinant protein production lies in the optimization of the downstream purification methods, mainly due to a lack of knowledge of the separation behavior of the host cell proteins (HCP). To reduce the effort required for purification process development, this work was aimed at modeling the separation behavior of a complex mixture of proteins in cation-exchange chromatography (CEX). With the emergence of molecular pharming as a viable option for the production of recombinant pharmaceutical proteins, the HCP mixture chosen was an extract of corn germ. Aqueous two phase system (ATPS) partitioning followed by two-dimensional electrophoresis (2DE) provided data on isoelectric point, molecular weight and surface hydrophobicity of the extract and step-elution fractions. A multivariate random forest (MVRF) method was then developed using the three characterization variables to predict the elution pattern of individual corn HCP. The MVRF method achieved an average root mean squared error (RMSE) value of 0.0406 (fraction of protein eluted in each CEX elution step) for all the proteins that were characterized, providing evidence for the effectiveness of both the characterization method and the analysis approach for protein purification applications.

  10. Enhanced photocatalytic activity of chromium(VI) reduction and EDTA oxidization by photoelectrocatalysis combining cationic exchange membrane processes.

    Science.gov (United States)

    Hsu, Hung-Te; Chen, Shiao-Shing; Tang, Yi-Fang; Hsi, Hsing-Cheng

    2013-03-15

    A novel technology of photoelectrocatalysis (PEC) combining with cationic exchange membrane (CEM) was proposed for simultaneous reduction of chromium(VI) and oxidization of EDTA. The application of CEM was used to enhance the efficiency for prevention of the re-oxidation of reduced chromium with the electron-hole pairs. In this study, effects of current density, pH, TiO2 dosage, hydraulic retention time (HRT), light intensity and EDTA/Cr(VI) molar ratio were all investigated. The results showed that the optimum conversion efficiency occurred at 4mA/cm(2) with the presence of CEM. Higher conversion efficiencies were observed at lower pH due to the electrostatic attractions between positive charged TiOH2(+), and negatively charged Cr(VI) and EDTA. The optimum TiO2 loading of 1g/L was depended mainly on the acidic pH range, especially at higher HRT and irradiation intensity. In addition, higher EDTA/Cr(VI) molar ratio enhanced the reduction efficiency of Cr(VI), indicating EDTA plays the role of hole scavenger in this system. Moreover, incomplete EDTA decomposition contributes to the occurrence of intermediates, including nitrilotriacetic acid, iminodiacetic acid, glycine, oxamic acid, lyoxylic acid, oxalic acid, acetic acid and formic acid, as identified by GC/MS. Consequently, transformation pathway was determined from these analyzed byproducts and molecular orbital package analysis. PMID:23380448

  11. Determining the Heat Exchange Capacity of Underground Coal Mines in Ohio

    Science.gov (United States)

    Richardson, J. J.; Lopez, D. A.; Leftwich, T. E.; Wolfe, M. E.; Angle, M. P.; Fugitt, F. L.

    2013-12-01

    Conventionally, Ground Source Heat Pumps (GSHP) exploit either saturated bedrock/soils or large surface water bodies as the heat source/sink for the heating and cooling systems. In areas with flooded mines or large subsurface water bodies, it is possible to utilize the water within the voids as the heat source/sink in GSHPs. Utilizing the water within subsurface voids a heat exchanger instead of the traditional saturated bedrock/soils has the potential to be more efficient in heating and cooling applications. The water within the void space is a better thermal conductor than bedrock and soils. Additionally, it is possible that, in a saturated void the heat can be carried away from the exchange site at a greater rate, improving the potential for thermal exchange. This study is focused on characterizing the potential overall heat exchange capacity for flooded mine sites within Ohio. To achieve the overall potential exchange capacity, possible maximum and minimum mine water residence times, effective mine volumes, groundwater recharge rates, maximum and minimum possible linear groundwater velocity, groundwater flow direction, and average ambient mine temperatures were calculated using GIS software and groundwater recharge data from the United States Geological Survey, and characteristics of physical parameters for the mines from the Ohio Geological Survey. The potential linear mine water velocities were calculated by creating a theoretical cross sectional area in the direction of estimated groundwater flow with a respective length of the mine in the direction of groundwater flow and width of the coal bed thickness. It was assumed that all of water entering the mine void exited the through the cross sectional area. By dividing the volume of water entering the mine per year by the cross sectional area, the linear groundwater velocities were estimated. By using the specific heat of water at the estimated temperatures and the volumes of water within the mines, possible

  12. The partitioning of sulfur and chlorine between andesite melts and magmatic volatiles and the exchange coefficients of major cations

    Science.gov (United States)

    Zajacz, Zoltán; Candela, Philip A.; Piccoli, Philip M.; Sanchez-Valle, Carmen

    2012-07-01

    Andesite melts were equilibrated with an H-O-S-bearing volatile phase to determine the partition coefficients for S and Cl as a function of melt composition and oxygen fugacity. The experiments were conducted in rapid-quench MHC vessel assemblies at 200 MPa and 1000 °C, and over a range of imposed fO2 between NNO-1.2 and NNO+1.8. High fluid/melt mass ratios (∼15) were employed, allowing precise and accurate partition coefficients to be obtained by mass balance calculations. Chlorine exhibits Henrian behavior at ClO-0.5 activities typical for arc magmas, with D Cl volatile/melt = 1.36 ± 0.06 (1σ) below 0.2 wt.% Cl in the melt; at higher ClO-0.5 activities, D Cl volatile/melt increases linearly to 2.11 ± 0.02 at 1 wt.% Cl in the melt. In the volatile phase: FeCl2 ∼ NaCl > KCl ∼ HCl. The determination of cation exchange coefficients for major cations yielded: K K,Na volatile/melt = 1.23 ± 0.10 (1σ) and ∗K Fe,Na volatile/melt = D Fe volatile/melt / D Na volatile/melt = 1.08 ± 0.16 (1σ). Under these conditions, the concentration of HCl in the vapor is negatively correlated with the (Na + K)/(Al + Fe3+) ratio in the melt. Reduced sulfur (S2-) appears to obey Henry's law in andesite melt-volatile system at fH2S below pyrrhotite saturation. The partition coefficient for S at fO2 = NNO-0.5 correlates negatively with the FeO concentration in the melt, changing from 254 ± 25 at 4.0 wt.% FeO to 88 ± 6 at 7.5 wt.% FeO. Pyrrhotite saturation is reached when approximately 3.2 mol% S is present in the volatile phase at fO2 = NNO-0.5. At the sulfide/sulfate transition, the partition coefficient of S drops from 171 ± 23 to 21 ± 1 at a constant FeO content of ∼6 wt.% in the melt. At fO2 = NNO+1.8, anhydrite saturation is reached at ∼3.3 mol% S present in the volatile phase. Aqueous volatiles exsolving from intermediate to mafic magmas can efficiently extract S, and effect its transfer to sites of magmatic-hydrothermal ore deposit formation.

  13. Profile Distribution of Exchangeable Cations under No-till and Conventional Tillage in An Aquic Brown Soil%免耕与常规耕作潮棕壤交换性阳离子的剖面分布特征

    Institute of Scientific and Technical Information of China (English)

    孙良杰; 张晓珂; 梁文举

    2009-01-01

    The effects of tillage systems on exchangeable cations of different layers to a 1 m depth in an aquic brown soil were studied in a field experiment. The results showed that no-tillage, compared with conventional tillage, significantly increased soil pH and reduced electronic conductivity (EC) in the 0- 5 cm layer. Soil exchangeable K~+ was improved in no-tillage treatment,while exchangeable Na was declined. However, there was no significant effect of tillage practices on soil exchangeable Ca~(2+) , Mg~(2+) and cation exchange capacity. Correlation analysis showed that no significant correlations were observed between exchangeable K and soil nutrients, whereas exchangeable Na~+ , Ca~(2+) , Mg~(2+) , as well as cation exchange capacity had significant negative correlations with organic matter (OM) and total nitrogen (TN), respectively.%通过田间定位试验.研究了不同耕作方式对潮棕壤0-100 cm深度6个土层土壤交换性阳离子的影响.结果表明,与常规耕作相比,免耕使土壤表层pH显著增,.而电导率下降;同时,免耕增加了表层土壤可交换性K~+含量,降低了可交换性Na~+含量,但对可交换性Ca~(2+),Mg~(2+)和阳离子交换量没有产生显著影响.相关分析结果表明,可交换性K~+与土壤养分含量没有显著相关性,而可交换性Na~+,Ca~(2+),Mg~(2+)和阳离子交换量与有机质和全氮含量均呈负相关关系.

  14. Application of mixed-mode, solid-phase extraction in environmental and clinical chemistry. Combining hydrogen-bonding, cation-exchange and Van der Waals interactions

    Science.gov (United States)

    Mills, M.S.; Thurman, E.M.; Pedersen, M.J.

    1993-01-01

    Silica- and styrene-divinylbenzene-based mixed-mode resins that contain C8, C18 and sulphonated cation-exchange groups were compared for their efficiency in isolation of neutral triazine compounds from water and of the basic drug, benzoylecgonine, from urine. The triazine compounds were isolated by a combination of Van der Waals and hydrogen-bonding interactions, and benzoylecgonine was isolated by Van der Waals interactions and cation exchange. All analytes were eluted with a polar organic solvent contaning 2% ammonium hydroxide. Larger recoveries (95%) were achieved on copolymerized mixed-mode resins where C18 and sulfonic acid are in closer proximity than on 'blended' mixed-mode resins (60-70% recovery).

  15. Dynamics of the separation of amino acid and mineral salt in the stationary dialysis of solutions with an MK-40 profiled sulfo group cation exchange membrane

    Science.gov (United States)

    Vasil'eva, V. I.; Vorob'eva, E. A.

    2012-11-01

    The conjugated diffusion transport of amino acid and mineral salt through a profiled sulfo group cation exchange membrane that simulates the extraction of amino acid from wash waters of microbiological production containing mineral components not used in synthesis is studied. The competitive nature of the conjugation of flows resulting in a decrease in the rate of the mass transfer of components and their separation factor is established from a comparative analysis of experimental data on the diffusion transfer of phenylalanine and sodium chloride in the form of hydrogen from individual and mixed solutions through a profiled sulfo group cation exchange membrane. The range of concentrations and the ratio of components in solution corresponding to the effective separation of phenylalanine and sodium chloride are determined.

  16. Preliminary Analysis on Heat Removal Capacity of Passive Air-Water Combined Cooling Heat Exchanger Using MARS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung-Sin; Jeon, Seong-Su; Hong, Soon-Joon [FNC Tech, Yongin (Korea, Republic of); Bae, Sung-Won; Kwon, Tae-Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Current design requirement for working time of PAFS heat exchanger is about 8 hours. Thus, it is not satisfied with the required cooling capability for the long term SBO(Station Black-Out) situation that is required to over 72 hours cooling. Therefore PAFS is needed to change of design for 72 hours cooling. In order to acquirement of long terms cooling using PAFS, heat exchanger tube has to be submerged in water tank for long time. However, water in the tank is evaporated by transferred heat from heat exchanger tubes, so water level is gradually lowered as time goes on. The heat removal capacity of air cooling heat exchanger is core parameter that is used for decision of applicability on passive air-water combined cooling system using PAFS in long term cooling. In this study, the development of MARS input model and plant accident analysis are performed for the prediction of the heat removal capacity of air cooling heat exchanger. From analysis result, it is known that inflow air velocity is the decisive factor of the heat removal capacity and predicted air velocity is lower than required air velocity. But present heat transfer model and predicted air velocity have uncertainty. So, if changed design of PAFS that has over 4.6 kW heat removal capacity in each tube, this type heat exchanger can be applied to long term cooling of the nuclear power plant.

  17. Liquid-liquid extraction and separation of VIII group elements, especially ruthenium, by synergic combinations or aromatic polyimines and micellar cationic exchangers

    International Nuclear Information System (INIS)

    This thesis aims to characterize and to quantify the chemical equilibria involved in d-elements liquid-liquid extraction systems, especially elements belonging to the VIII group (Fe, Ni, Co, Ru, Rh, Pd, Pt). These systems are composed of synergic combination of aromatic polyimines and micellar cationic exchangers. Substitutions are first performed in aqueous acidic media by aromatic polyimines; then extractions are operated using micellic canionic exchangers. Chemical equilibria, selectivity effects, especially those due to ion-pair formations, kinetics, extractant behaviour are analysed and quantified

  18. 离子色谱分离法提纯异麦芽低聚糖%Purification of isomalto-oligosaccharide by cation exchange chromatography

    Institute of Scientific and Technical Information of China (English)

    姜守霞; 励雯波; 钟振声

    2003-01-01

    The purification of isomalto-oligsaccharide syrup using cation exchange resin was smdiied. The experiments showed that, when 35 ml raw material was used, the optimal purification result could be achieved on the resin column of 9 × 4000 mm with eluting rate 9 ml/min at 71℃ .The content of gluecose could be decreased whist the content of active components would be relatively increased.The purity of isomalto-oligsaccharide could be further increased by re-purification.

  19. Controllable conversion of plasmonic Cu2-xS nanoparticles to Au2S by cation exchange and electron beam induced transformation of Cu2-xS-Au2S core/shell nanostructures.

    Science.gov (United States)

    Wang, Xianliang; Liu, Xin; Zhu, Dewei; Swihart, Mark T

    2014-08-01

    Self-doped Cu2-xS nanocrystals (NCs) were converted into monodisperse Cu2-xS-Au2S NCs of tunable composition, including pure Au2S, by cation exchange. The near-infrared (NIR) localized surface plasmon resonance (LSPR) was dampened and red-shifted with increasing Au content. Cation exchange was accompanied by elimination of cation vacancies and a change in crystal structure. Partially exchanged Cu2-xS-Au2S core/shell structures evolved to dumbbell-like structures under electron irradiation in the transmission electron microscope (TEM).

  20. Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Benyoucef, A., E-mail: ghani29000@yahoo.fr [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Yahiaoui, A. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Quijada, C. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Pza Ferrandiz i Carbonel, E-03801 Alcoy, Alicante (Spain); Morallon, E. [Departamento de Quimica Fisica e Instituto Universitario de Materiales, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2013-02-25

    Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M-Na) and copper cation (M-Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M-Cu changes depending on the inorganic cation and the polymer intercalated in the M-Cu structure. TGA analyses reveal that polymer/M-Cu composites is less stable than M-Cu. The conductivity of the composites is found to be 10{sup 3} times higher than that for M-Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV-Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

  1. The effect of geometrical presentation of multimodal cation-exchange ligands on selective recognition of hydrophobic regions on protein surfaces.

    Science.gov (United States)

    Woo, James; Parimal, Siddharth; Brown, Matthew R; Heden, Ryan; Cramer, Steven M

    2015-09-18

    The effects of spatial organization of hydrophobic and charged moieties on multimodal (MM) cation-exchange ligands were examined by studying protein retention behavior on two commercial chromatographic media, Capto™ MMC and Nuvia™ cPrime™. Proteins with extended regions of surface-exposed aliphatic residues were found to have enhanced retention on the Capto MMC system as compared to the Nuvia cPrime resin. The results further indicated that while the Nuvia cPrime ligand had a strong preference for interactions with aromatic groups, the Capto MMC ligand appeared to interact with both aliphatic and aromatic clusters on the protein surfaces. These observations were formalized into a new set of protein surface property descriptors, which quantified the local distribution of electrostatic and hydrophobic potentials as well as distinguishing between aromatic and aliphatic properties. Using these descriptors, high-performing quantitative structure-activity relationship (QSAR) models (R(2)>0.88) were generated for both the Capto MMC and Nuvia cPrime datasets at pH 5 and pH 6. Descriptors of electrostatic properties were generally common across the four models; however both Capto MMC models included descriptors that quantified regions of aliphatic-based hydrophobicity in addition to aromatic descriptors. Retention was generally reduced by lowering the ligand densities on both MM resins. Notably, elution order was largely unaffected by the change in surface density, but smaller and more aliphatic proteins tended to be more affected by this drop in ligand density. This suggests that modulating the exposure, shape and density of the hydrophobic moieties in multimodal chromatographic systems can alter the preference for surface exposed aliphatic or aromatic residues, thus providing an additional dimension for modulating the selectivity of MM protein separation systems. PMID:26292626

  2. Cation exchange synthesis of uniform PbSe/PbS core/shell tetra-pods and their use as near-infrared photodetectors

    Science.gov (United States)

    Mishra, N.; Mukherjee, B.; Xing, G.; Chakrabortty, S.; Guchhait, A.; Lim, J. Y.

    2016-07-01

    In this work we explore the preparation of complex-shaped semiconductor nanostructures composed of different materials via a cationic exchange process in which the cations of the original semiconductor nanostructure are replaced by cations of different metals with preservation of the shape and the anionic framework of the nanocrystals. Utilizing this cation exchange method, we synthesized two new tetrapods for the first time: Cu2-xSe/Cu2-xS and PbSe/PbS, both prepared from CdSe/CdS tetrapods as `templates'. We also fabricated near-infrared (NIR) photodetectors with a very simple architecture comprising a PbSe/PbS tetrapod layer between two Au electrodes on a glass substrate. When illuminated by a NIR laser, these devices are capable of achieving a responsivity of 11.9 A W-1 without the use of ligand-exchange processes, thermal annealing or hybrid device architecture. Transient absorption spectroscopy was carried out on these PbSe/PbS tetrapods, the results of which suggest that the branched morphology contributes in part to device performance. Investigation of the charge dynamics of the PbSe/PbS tetrapods revealed an extremely long-lived exciton recombination lifetime of ~17 ms, which can result in enhanced photoconductive gain. Overall, these heterostructured tetrapods showcase simultaneously the importance of nanoparticle shape, band structure, and surface chemistry in the attainment of NIR photodetection.In this work we explore the preparation of complex-shaped semiconductor nanostructures composed of different materials via a cationic exchange process in which the cations of the original semiconductor nanostructure are replaced by cations of different metals with preservation of the shape and the anionic framework of the nanocrystals. Utilizing this cation exchange method, we synthesized two new tetrapods for the first time: Cu2-xSe/Cu2-xS and PbSe/PbS, both prepared from CdSe/CdS tetrapods as `templates'. We also fabricated near-infrared (NIR) photodetectors

  3. Retrofitting of heat exchanger networks involving streams with variable heat capacity: Application of single and multi-objective optimization

    International Nuclear Information System (INIS)

    Heat exchanger network (HEN) retrofitting improves the energy efficiency of the current process by reducing external utilities. In this work, HEN retrofitting involving streams having variable heat capacity is studied. For this, enthalpy values of a stream are fitted to a continuous cubic polynomial instead of a stepwise approach employed in the previous studies [1,2]. The former methodology is closer to reality as enthalpy or heat capacity changes gradually instead of step changes. Using the polynomial fitting formulation, single objective optimization (SOO) and multi-objective optimization (MOO) of a HEN retrofit problem are investigated. The results obtained show an improvement in the utility savings, and MOO provides many Pareto-optimal solutions to choose from. Also, Pareto-optimal solutions involving area addition in existing heat exchangers only (but no new exchangers and no structural modifications) are found and provided for comparison with those involving new exchangers and structural modifications as well. - Highlights: • HEN retrofitting involving streams with variable heat capacities is studied. • A continuous approach to handle variable heat capacity is proposed and tested. • Better and practical solutions are obtained for HEN retrofitting in process plants. • Pareto-optimal solutions provide many alternate choices for HEN retrofitting

  4. Performance Comparison Of Round Tubes Finned Heat Exchangers And Macro Micro-Channel Heat Exchangers In A Low Capacity Heat Pump

    OpenAIRE

    Zoughaib, A; Mortada, S; Khayat, F; Arzano-Daurelle, C; Teuillieres, C

    2014-01-01

    Micro-channel heat exchangers (MCHE) are used in automobile applications due to their low weight and high compactness. Those MCHE are just gaining interest in stationary application and they have a great potential for low heating capacity heat pumps to be installed in “passive houses” where the heating demand is 3 to 5 times lower than in the current new individual houses built in European countries. In this paper, a low capacity integrated air to air heat pump prototype is used to perform an...

  5. A cation exchange method for separation of 111In from inactive silver, copper, traces of iron and radioactive gallium and zinc isotopes

    International Nuclear Information System (INIS)

    111In was produced by the 109Ag(α, 2n)111In reaction. A simple radiochemical separation technique, using Dowex-50 cation exchange resin (with prior removal of copper bulk, if present), has been employed to separate radioindium from inactive contaminants like Ag, Cu, Fe and active contaminant like 67Ga and 65Zn. The radiochemical separation yield was 90-99%. The radionuclide purity of 111In was >99% at 60 h after EOB. The level of all the inactive contaminants was <5 μg/mL in the final product. (Author)

  6. Properties of solvated electrons, alkali anions and other species in metal solutions and kinetics of cation and electron exchange reactions. Final report

    International Nuclear Information System (INIS)

    The properties of solutions of alkali metals in amine solvents were studied by optical, ETR, NMR and electrochemical methods. Complexation of the alkali cations by crown ethers and cryptands permitted the preparation of concentrated solutions of alkali metals in amine and ether solvents. Extensive alkali metal NMR studies of the exchange of M+ with crown-ethers and cryptands and of the alkali metal anion, M-, were made. The first crystalline salt of an alkali metal anion, Na+ Cryptand [2.2.2]Na- was synthesized and characterized and led to the preparation of other alkali metal anion salts. This research provided the foundation for continuing studies of crystalline alkalide salts

  7. A comparative account of the wet oxidation of cation exchange resin with hydrogen peroxide using titanium, vanadium, and molybdenum doped MCM-41 as catalysts

    International Nuclear Information System (INIS)

    Ion exchange resins are widely used in the nuclear industry for treatment of radioactive waste as well as for the upgrading of heavy water used in the primary heat transport system and moderator system. Repeated usage of the resins calls for replacement and treatment before disposal. The present work involves the application of metal-doped MCM-41 material as a catalyst for the wet oxidation of cation exchange resins using hydrogen peroxide as an oxidizing agent. The sulfate produced from the exchangeable group of the resin reflects the extent of decomposition and the carbonate produced reflects the extent of oxidation of the ion exchange resin. Results indicate that the percentage decomposition and oxidation increase with the weight of the catalyst and the volume of the oxidant, i.e., hydrogen peroxide. As much as 0.5 g of the resin could be decomposed by 12 mL of 30% hydrogen peroxide to 98.7% and oxidized to 99.25% using molybdenum doped MCM-41. Vanadium doped and titanium doped MCM-41 required 14 to 16 mL for complete decomposition and 18 to 20 mL for complete oxidation of the ion exchange resin. (orig.)

  8. Rapid Preparation of Biosorbents with High Ion Exchange Capacity from Rice Straw and Bagasse for Removal of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Supitcha Rungrodnimitchai

    2014-01-01

    Full Text Available This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g and shorter reaction time (1.5–5.0 min than the phosphorylation by oil bath heating. Adsorption experiments towards Pb2+, Cd2+, and Cr3+ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L. The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax. As a result of Pb2+ sorption test, the modified rice straw (RH-NaOH 450W removed Pb2+ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin took 90 min for the same removal efficiency.

  9. Cation Exchange Combined with Kirkendall Effect in the Preparation of SnTe/CdTe and CdTe/SnTe Core/Shell Nanocrystals.

    Science.gov (United States)

    Jang, Youngjin; Yanover, Diana; Čapek, Richard Karel; Shapiro, Arthur; Grumbach, Nathan; Kauffmann, Yaron; Sashchiuk, Aldona; Lifshitz, Efrat

    2016-07-01

    Controlling the synthesis of narrow band gap semiconductor nanocrystals (NCs) with a high-quality surface is of prime importance for scientific and technological interests. This Letter presents facile solution-phase syntheses of SnTe NCs and their corresponding core/shell heterostructures. Here, we synthesized monodisperse and highly crystalline SnTe NCs by employing an inexpensive, nontoxic precursor, SnCl2, the reactivity of which was enhanced by adding a reducing agent, 1,2-hexadecanediol. Moreover, we developed a synthesis procedure for the formation of SnTe-based core/shell NCs by combining the cation exchange and the Kirkendall effect. The cation exchange of Sn(2+) by Cd(2+) at the surface allowed primarily the formation of SnTe/CdTe core/shell NCs. Further continuation of the reaction promoted an intensive diffusion of the Cd(2+) ions, which via the Kirkendall effect led to the formation of the inverted CdTe/SnTe core/shell NCs. PMID:27331900

  10. Phytochemical profile and ABTS cation radical scavenging, cupric reducing antioxidant capacity and anticholinesterase activities of endemic Ballota nigra L. subsp. anatolica P.H. Davis from Turkey

    Directory of Open Access Journals (Sweden)

    Abdulselam Ertaş

    2014-07-01

    Full Text Available Objective: To evaluate the chemical compositions and biological activities of an endemic Ballota nigra L. subsp. anatolica P.H. Davis. Methods: Essential oil and fatty acid composition were determined by GC/MS analysis. ABTS cation radical decolourisation and cupric reducing antioxidant capacity assays were carried out to indicate the antioxidant activity. The anticholinesterase potential of the extracts were determined by Ellman method. Results: The major compounds in the fatty acid composition of the petroleum ether extract were identified as palmitic (36.0% and linoleic acids (14.3%. The major components of essential oil were 1-hexacosanol (26.7%, germacrene-D (9.3% and caryophyllene oxide (9.3%. The water extract indicated higher ABTS cation radical scavenging activity than α-tocopherol and BHT, at 100 µg/ mL. The acetone extract showed 71.58 and 44.71% inhibitory activity against butyrylcholinesterase and acetylcholinesterase enzyme at 200 µg/mL, respectively. Conclusions: The water and acetone extracts of Ballota nigra subsp. anatolica can be investigated in terms of both phytochemical and biological aspects to find natural active compounds.

  11. Pulmonary Hypertension in Patients with Idiopathic Pulmonary Fibrosis – The Predictive Value of Exercise Capacity and Gas Exchange Efficiency

    OpenAIRE

    Gläser, Sven; Obst, Anne; Koch, Beate; Henkel, Beate; Grieger, Anita; Stephan B. Felix; Halank, Michael; Bruch, Leonhard; Bollmann, Tom; Warnke, Christian; Schäper, Christoph; Ewert, Ralf

    2013-01-01

    Exercise capacity and survival of patients with IPF is potentially impaired by pulmonary hypertension. This study aims to investigate diagnostic and prognostic properties of gas exchange during exercise and lung function in IPF patients with or without pulmonary hypertension. In a multicentre setting, patients with IPF underwent right heart catheterization, cardiopulmonary exercise and lung function testing during their initial evaluation. Mortality follow up was evaluated. Seventy-three of 1...

  12. Synthesis of Flexible Heat Exchanger Networks with Stream Splits Based on Rangers of Stream Supply Temperatures and Heat Capacity Flowrates

    Institute of Scientific and Technical Information of China (English)

    李志红; 罗行; 华贵; W.Roetzel

    2004-01-01

    A new superstructure model of heat exchanger networks (HEN) with stream splits based on rangers of streams supply temperatures and heat capacity flow rates is presented. The simultaneous optimal mathematical model of flexible HEN synthesis is established too. Firstly, the streams with rangers of supply temperatures and/or the streams with the rangers of heat capacity flow rates are pretreated; Secondly, several rules are proposed to establish the superstructure model of HEN with splits and the simultaneous optimal mathematical model of flexible HEN; Thirdly, the improving genetic algorithm is applied to solve the mathematical model established at the second step effectively, and the original optimal structure of HEN based on the maximum operation limiting condition can be obtained easily; Finally, the rules of heat exchange unit merged and the heat load of heat exchanger relaxed are presented, the flexible configuration of HEN satisfied the operation condition between the upper and down bounds of supply temperature and heat capacity flow rates can be obtained based on the original optimal structure of HEN by means of these rules. A case study demonstrates the method presented in this paper is effective

  13. Applying reactive models to column experiments to assess the hydrogeochemistry of seawater intrusion: Optimising ACUAINTRUSION and selecting cation exchange coefficients with PHREEQC

    Science.gov (United States)

    Boluda-Botella, N.; Valdes-Abellan, J.; Pedraza, R.

    2014-03-01

    Three sets of laboratory column experimental results concerning the hydrogeochemistry of seawater intrusion have been modelled using two codes: ACUAINTRUSION (Chemical Engineering Department, University of Alicante) and PHREEQC (U.S.G.S.). These reactive models utilise the hydrodynamic parameters determined using the ACUAINTRUSION TRANSPORT software and fit the chloride breakthrough curves perfectly. The ACUAINTRUSION code was improved, and the instabilities were studied relative to the discretisation. The relative square errors were obtained using different combinations of the spatial and temporal steps: the global error for the total experimental data and the partial error for each element. Good simulations for the three experiments were obtained using the ACUAINTRUSION software with slight variations in the selectivity coefficients for both sediments determined in batch experiments with fresh water. The cation exchange parameters included in ACUAINTRUSION are those reported by the Gapon convention with modified exponents for the Ca/Mg exchange. PHREEQC simulations performed using the Gains-Thomas convention were unsatisfactory, with the exchange coefficients from the database of PHREEQC (or range), but those determined with fresh water - natural sediment allowed only an approximation to be obtained. For the treated sediment, the adjusted exchange coefficients were determined to improve the simulation and are vastly different from those from the database of PHREEQC or batch experiment values; however, these values fall in an order similar to the others determined under dynamic conditions. Different cation concentrations were simulated using two different software packages; this disparity could be attributed to the defined selectivity coefficients that affect the gypsum equilibrium. Consequently, different calculated sulphate concentrations are obtained using each type of software; a smaller mismatch was predicted using ACUAINTRUSION. In general, the presented

  14. 阳离子交换树脂改性研究进展%Review on the development of cation exchange resin’s modification

    Institute of Scientific and Technical Information of China (English)

    陈桂; 向柏霖; 袁叶; 刘跃进

    2016-01-01

    强酸性阳离子交换树脂含有大量的强酸性基团,具有选择、交换、吸收和催化等功能,但其存在耐高温性能差、酸强度低等问题,故需要对其进行改性。改性的阳离子交换树脂广泛应用于水处理、有机合成、分离处理、环境保护及生物制药等领域。本文简要介绍了近年来强酸性阳离子交换树脂的改性方法,主要包含:金属离子改性(Al3+、Sn4+、Zn2+、Ti4+、Fe3+和 Fe2+、Ce4+和 Ga3+、Ni2+、Zr4+、Pd2+等)、磺化改性、巯基改性、胺化改性及其他类改性等方法;指出了其存在的问题,分析了改性阳离子交换树脂的未来发展方向,开发和研制具有耐高热和化学稳定性的树脂载体材料成为其研究的关键。除此之外,对树脂进行各种改性处理也是改善树脂综合性能、扩大其应用范围的重要方法。%Strong-acidic cation exchange resin contained a large number of strong acid groups,which renders it diversed functions of selection,exchange,absorption and catalysis,etc. But the inherent defects of poor high temperature resistance and low acid strength,make it obliged to be modified. Modified cation exchange resins have been widely used in water treatment,organic synthesis, separation and treatment,environmental protection and biological pharmaceutical,etc. The modification methods of strong-acid cation exchange resin were reviewed,mainly including: metal ion modification(Al3+、Sn4+、Zn2+、Ti4+、Fe3+ and Fe2+、Ce4+ and Ga3+、Ni2+、Zr4+、Pd2+,etc),sulfonation, thiol and amination modification,and other modifications,etc. The prospect of application of modified cation exchange resins was discussed.The key of the research was to prepare the resin support material with high heat resistance and chemical stability. In addition,the modification of resin was also an important method to improve its comprehensive performance and extend its applications.

  15. [Prone position: effect on gas exchange and functional capacity for exercise in patients with pulmonary hypertension].

    Science.gov (United States)

    Bastidas-L, Andrea Carolina; Colina-Chourio, José A; Guevara, Jesnel M; Nunez, Alexis

    2015-03-01

    The objective of this investigation was to evaluate gas exchange and cardiopulmonary functional behavior in patients with pulmonary hypertension (PH) before, during and after the change to a prone position. Thirty patients with PH and alterations in gas exchange were included in the study. Gas exchange measurements were performed in four stages: at the baseline supine position and after 30, 120 and 240 minutes in prone position. Also, the patients were evaluated by the six minutes walking test (6MWT) after 30 days in prone position during night's sleep. After four hours in prone position, all patients showed an increase of PaO2 and arterial saturation of oxygen (SaO2), with a decrease of intrapulmonary shunts, improving the gas exchange and therefore the physiological demand imposed by exercise in patients with PH. PMID:25920183

  16. Pulmonary hypertension in patients with idiopathic pulmonary fibrosis - the predictive value of exercise capacity and gas exchange efficiency.

    Directory of Open Access Journals (Sweden)

    Sven Gläser

    Full Text Available Exercise capacity and survival of patients with IPF is potentially impaired by pulmonary hypertension. This study aims to investigate diagnostic and prognostic properties of gas exchange during exercise and lung function in IPF patients with or without pulmonary hypertension. In a multicentre setting, patients with IPF underwent right heart catheterization, cardiopulmonary exercise and lung function testing during their initial evaluation. Mortality follow up was evaluated. Seventy-three of 135 patients [82 males; median age of 64 (56; 72 years] with IPF had pulmonary hypertension as assessed by right heart catheterization [median mean pulmonary arterial pressure 34 (27; 43 mmHg]. The presence of pulmonary hypertension was best predicted by gas exchange efficiency for carbon dioxide (cut off ≥152% predicted; area under the curve 0.94 and peak oxygen uptake (≤56% predicted; 0.83, followed by diffusing capacity. Resting lung volumes did not predict pulmonary hypertension. Survival was best predicted by the presence of pulmonary hypertension, followed by peak oxygen uptake [HR 0.96 (0.93; 0.98]. Pulmonary hypertension in IPF patients is best predicted by gas exchange efficiency during exercise and peak oxygen uptake. In addition to invasively measured pulmonary arterial pressure, oxygen uptake at peak exercise predicts survival in this patient population.

  17. Effect of bore fluid composition on microstructure and performance of a microporous hollow fibre membrane as a cation-exchange substrate.

    Science.gov (United States)

    Lazar, R A; Mandal, I; Slater, N K H

    2015-05-15

    Micro-capillary film (MCF) membranes are effective platforms for bioseparations and viable alternatives to established packed bed and membrane substrates at the analytical and preparative chromatography scales. Single hollow fibre (HF) MCF membranes with varied microstructures were produced in order to evaluate the effect of the bore fluid composition used during hollow fibre extrusion on their structure and performance as cation-exchange adsorbers. Hollow fibres were fabricated from ethylene-vinyl alcohol (EVOH) copolymer through solution extrusion followed by nonsolvent induced phase separation (NIPS) using bore fluids of differing composition (100wt.% N-methyl-2-pyrrolidone (NMP), 100wt.% glycerol, 100wt.% water). All HFs displayed highly microporous and mesoporous microstructures, with distinct regions of pore size membrane performance as a result of inner surface porosity was established with a view to applying this parameter for the optimisation of multi-capillary MCF performance in future studies. PMID:25840664

  18. Investigation of the swelling behavior of cationic exchange resins saturated with Na{sup +} ions in a C{sub 3}S paste

    Energy Technology Data Exchange (ETDEWEB)

    Lafond, E. [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Cau Dit Coumes, C., E-mail: celine.cau-dit-coumes@cea.fr [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Gauffinet, S. [UMR5209 Institut Carnot de Bourgogne, Université de Bourgogne Dijon, Faculté des Sciences Mirande, 9 Avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Chartier, D. [CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze cedex (France); Le Bescop, P. [CEA, DEN, DPC, SECR, F-91192 Gif-sur-Yvette (France); Stefan, L. [AREVA, Back End Business Group, Dismantling & Services, 1 place Jean Millier, 92084 Paris La Défense (France); Nonat, A. [UMR5209 Institut Carnot de Bourgogne, Université de Bourgogne Dijon, Faculté des Sciences Mirande, 9 Avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2015-03-15

    Ion exchange resins (IERs) are widely used by the nuclear industry to decontaminate radioactive effluents. Spent products are usually encapsulated in cementitious materials. However, the solidified waste form can exhibit strong expansion, possibly leading to cracking, if the appropriate binder is not used. In this work, the interactions between cationic resins in the Na{sup +} form and tricalcium silicate are investigated during the early stages of hydration in order to gain a better understanding of the expansion process. It is shown that the IERs exhibit a transient swelling of small magnitude due to the decrease in the osmotic pressure of the external solution. This expansion, which occurs just after setting, is sufficient to damage the material which is poorly consolidated for several reasons: low degree of hydration, precipitation of poorly cohesive sodium-bearing C–S–H, and very heterogeneous microstructure with zones of high porosity.

  19. A fast method for the determination of Sr-90 in liquid milk by solid phase extraction with cryptand 222 on cation exchange resin

    International Nuclear Information System (INIS)

    A method for determining the activity of Sr-90 in liquid milk samples that does not require the usual drying, ashing, acid leaching and precipitation procedures is described. Two solid phase extractants are used, namely: Cryptand 222 bound to a cation exchange resin, and Eichrome Industries' Sr.Spec Resin trademark. These are applied respectively to extract Sr-90 from the milk and to isolate it in a form suitable for measurement by low-level liquid scintillation counting. The results of analyses of 1 liter milk samples contaminated with a known activity of Sr-90 agreed well with the expected values. It was also found that Sr.Spec Resin trademark can be regenerated and re-used several times. As the method requires only minimal operator skill and time, many samples can be analyzed simultaneously. (orig.)

  20. Sequential Determination of Total Arsenic and Cadmium in Concentrated Cadmium Sulphate Solutions by Flow-Through Stripping Chronopotentiometry after Online Cation Exchanger Separation

    Directory of Open Access Journals (Sweden)

    Frantisek Cacho

    2012-01-01

    Full Text Available Flow-through stripping chronopotentiometry with a gold wire electrode was used for the determination of total arsenic and cadmium in cadmium sulphate solutions for cadmium production. The analysis is based on the online separation of arsenic as arsenate anion from cadmium cations by means of a cation exchanger. On measuring arsenate in the effluent, the trapped cadmium is eluted by sodium chloride solution and determined in a small segment of the effluent by making use of the same electrode. The elaborated protocol enables a full automatic measurement of both species in the same sample solution. The accuracy of the results was confirmed by atomic absorption spectrometry. The LOD and LOQ for Arsenic were found to be 0.9 μg dm-3 and 2.7 μg dm-3, respectively. A linear response range was observed in the concentration range of 1 to 300 μg dm-3 for sample volumes of 4 mL. The repeatability and reproducibility were found to be 2.9% and 5.2%, respectively. The linear response range for cadmium was found to be 0.5 to 60 g/L. The method was tested on samples from a cadmium production plant.

  1. Effect of temperature and pH value on cation exchange performance of a natural clay for selective (Cu2þ, Co2þ) removal:Equilibrium, sorption and kinetics

    Institute of Scientific and Technical Information of China (English)

    Ramzi Chalghaf; Walid Oueslati; Marwa Ammar; Hafsia Ben Rhaiem; Abdesslem Ben Haj Amara

    2013-01-01

    This work aims at investigating the strain effect, created by varying pH solution and continuous heating cycle, on the cation exchange process in the case of Na-rich montmorillonite sample in contact with bi-ionic solution with variable concentration, saturated respectively by Co2þ and Cu2þ cations. The ionic exchange process is characterized using XRD analysis obtained through the comparison of experimental XRD patterns with calculated ones, which allowed us to determine several structural parameters related to the nature, abundance, size, position and organization of exchangeable cation and water molecule in the interlamellar space along the cn axis. Indeed, the proposed theoretical models, for the stressed samples, show that the structure presents an interstratified hydration character and proves the coexistence of more than two ‘‘crystallite’’ specie in the structure. The perturbation types have an obvious effect on the selective exchange process for all stressed samples, where the interlayer space is characterized by the coexistence of more one exchangeable cation.

  2. Hydrogeochemical evolution of confined groundwater in northeastern Osaka Basin, Japan: estimation of confined groundwater flux based on a cation exchange mass balance method

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Masaru [Department of Geosystem Sciences, College of Humanities and Sciences, Nihon University, Setagaya-ku, Tokyo 156-8550 (Japan)]. E-mail: yamanaka@chs.nihon-u.ac.jp; Nakano, Takanori [Research Institute for Humanity and Nature, Kamigyo-ku, Kyoto 602-0878 (Japan); Tase, Norio [Institute of Geoscience, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan)

    2005-02-01

    A confined aquifer system has developed in argillaceous marine and freshwater sediments of Pliocene-Holocene age in the northeastern Osaka Basin (NEOB) in central Japan. The shallow groundwater (<100 m) in the system is recharged in a northern hilly to mountainous area with dominantly Ca-HCO{sub 3} type water, which changes as it flows toward the SW to Mg-HCO{sub 3} type and then to Na-HCO{sub 3} type water. Comparison of the chemical and Sr isotopic compositions of the groundwater with those of the bulk and exchangeable components of the underground sediments indicates that elements leached from the sediments contribute negligibly to the NEOB aquifer system. Moreover, model calculations show that contributions of paleo-seawater in the deep horizon and of river water at the surface are not major factors of chemical change of the groundwater. Instead, the zonal pattern of the HCO{sub 3}-dominant groundwater is caused by the loss of Ca{sup 2+} from the water as it is exchanged for Mg{sup 2+} in clays, followed by loss of Mg + Ca as they are exchanged for Na + K in clays between the Ca-HCO{sub 3} type recharge water and the exchangeable cations in the clay layers, which were initially enriched in Na{sup +}. Part of this process was reproduced in a chromatographic experiment in which Na type water with high {sup 87}Sr/{sup 86}Sr was obtained from Mg type water with low {sup 87}Sr/{sup 86}Sr by passing it through marine clay packed in a column. The flux of recharge water into the confined aquifer system according to this chromatographic model is estimated to be 0.99 mm/day, which is compatible with the average recharge flux to unconfined groundwater in Japan (1 mm/day)

  3. Flooding tolerance of Carex species. II. Root gas-exchange capacity

    NARCIS (Netherlands)

    Moog, PR; Bruggemann, W

    1998-01-01

    Root CO2 and O-2 gas exchange were measured in young Carer extensa Good. (flooding sensitive), C. remota L. and C. pseudocyperus L. (both flooding tolerant) plants, precultured either aerobically or anaerobically. Temperature changes form 21 to II degrees C had small effects on root CO2 release from

  4. Preparation and characterization of electrically conducting polypyrrole Sn(IV phosphate cation-exchanger and its application as Mn(II ion selective membrane electrode

    Directory of Open Access Journals (Sweden)

    A.A. Khan

    2011-10-01

    Full Text Available Polypyrrole Sn(IV phosphate, an organic–inorganic composite cation-exchanger was synthesized via sol-gel mixing of an organic polymer, polypyrrole, into the matrices of the inorganic precipitate of Sn(IV phosphate. The physico-chemical properties of the material were determined using Atomic Absorption Spectrometry (AAS, CHN elemental analysis (inductively coupled plasma mass spectrometry, ICP-MS, UV–VIS spectrophotometry, FTIR (Fourier Transform Infra-Red, SEM (Scanning Electron Microscopy, TGA–DTA (Thermogravimetric Analysis–Differential Thermal Analysis, and XRD (X-ray diffraction. Ion-exchange behavior was observed to characterize the material. On the basis of distribution studies, the material was found to be highly selective for toxic heavy metal ion Mn2+. Due to its selective nature, the material was used as an electroactive component for the construction of an ion-selective membrane electrode. The proposed electrode shows fairly good discrimination of mercury ion over several other inorganic ions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations for Mn(II in water.

  5. Modelling of cation concentrations in the outflow of NaNO3 percolation experiments through Boom Clay cores

    International Nuclear Information System (INIS)

    A laboratory percolation experiment was performed to study the effect of a NaNO3 plume on the Boom Clay. In this experiment, Boom Clay cores were consecutively percolated with Boom Clay pore water and Boom Clay pore water to which NaNO3 was added. The concentration of NaNO3 in the pore water was increased stepwise (0.1, 0.5, and 1 M NaNO3). The concentrations of Na, K, Ca, Mg and Sr in the eluted water were measured. After every switch of the NaNO3 concentration, the concentration profiles of K, Ca, Mg, and Sr showed a sharp rise, followed by a slow decrease. It was hypothesised that the cation elution curves are mainly determined by cation exchange processes. Reactive coupled transport modelling with the PHREEQC-2 code was used to describe the experimentally observed elution curves for the cations. Solute transport and water-clay interaction mechanisms, namely cation exchange, were accounted for in the model. Cation exchange parameters (cation exchange capacity and selectivity coefficients) previously determined on non-perturbed Boom Clay (De Craen et al., 2004) were used. A sensitivity analysis was performed to assess the influence of these parameter values on the goodness of the model to describe the experimental data. The model could fairly well describe the experimentally observed cation concentrations in the eluted water, confirming that cation exchange is indeed the dominant mechanism regulating the cation elution in the percolation experiments. (authors)

  6. Use of Cation Exchange Resins for Production of U{sub 3}O{sub 8} Suitable for the Al-U{sub 3}O{sub 8} Powder Metallurgy Process

    Energy Technology Data Exchange (ETDEWEB)

    Mosley, W.C.

    2001-09-17

    This report describes the production of U{sub 3}O{sub 8} powders from three types of cation exchange resins: Dowex 50W, a strong acid, sulfonate resin; AG MP-50, a macroporous form of sulfonate resin; and Bio-Rex 70, a weak acid, carboxylic resin.

  7. Squalamine, a novel cationic steroid, specifically inhibits the brush-border Na+/H+ exchanger isoform NHE3.

    Science.gov (United States)

    Akhter, S; Nath, S K; Tse, C M; Williams, J; Zasloff, M; Donowitz, M

    1999-01-01

    Squalamine, an endogenous molecule found in the liver and other tissues of Squalus acanthias, has antibiotic properties and causes changes in endothelial cell shape. The latter suggested that its potential targets might include transport proteins that control cell volume or cell shape. The effect of purified squalamine was examined on cloned Na+/H+ exchanger isoforms NHE1, NHE2, and NHE3 stably transfected in PS120 fibroblasts. Squalamine (1-h pretreatment) decreased the maximal velocity of rabbit NHE3 in a concentration-dependent manner (13, 47, and 57% inhibition with 3, 5, and 7 micrograms/ml, respectively) and also increased K'[H+]i. Squalamine did not affect rabbit NHE1 or NHE2 function. The inhibitory effect of squalamine was 1) time dependent, with no effect of immediate addition and maximum effect with 1 h of exposure, and 2) fully reversible. Squalamine pretreatment of the ileum for 60 min inhibited brush-border membrane vesicle Na+/H+ activity by 51%. Further investigation into the mechanism of squalamine's effects showed that squalamine required the COOH-terminal 76 amino acids of NHE3. Squalamine had no cytotoxic effect at the concentrations studied, as indicated by monitoring lactate dehydrogenase release. These results indicate that squalamine 1) is a specific inhibitor of the brush-border NHE isoform NHE3 and not NHE1 or NHE2, 2) acts in a nontoxic and fully reversible manner, and 3) has a delayed effect, indicating that it may influence brush-border Na+/H+ exchanger function indirectly, through an intracellular signaling pathway or by acting as an intracellular modulator. PMID:9886929

  8. Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites.

    Science.gov (United States)

    Paolucci, Christopher; Parekh, Atish A; Khurana, Ishant; Di Iorio, John R; Li, Hui; Albarracin Caballero, Jonatan D; Shih, Arthur J; Anggara, Trunojoyo; Delgass, W Nicholas; Miller, Jeffrey T; Ribeiro, Fabio H; Gounder, Rajamani; Schneider, William F

    2016-05-11

    The relationships among the macroscopic compositional parameters of a Cu-exchanged SSZ-13 zeolite catalyst, the types and numbers of Cu active sites, and activity for the selective catalytic reduction (SCR) of NOx with NH3 are established through experimental interrogation and computational analysis of materials across the catalyst composition space. Density functional theory, stochastic models, and experimental characterizations demonstrate that within the synthesis protocols applied here and across Si:Al ratios, the volumetric density of six-membered-rings (6MR) containing two Al (2Al sites) is consistent with a random Al siting in the SSZ-13 lattice subject to Löwenstein's rule. Further, exchanged Cu(II) ions first populate these 2Al sites before populating remaining unpaired, or 1Al, sites as Cu(II)OH. These sites are distinguished and enumerated ex situ through vibrational and X-ray absorption spectroscopies (XAS) and chemical titrations. In situ and operando XAS follow Cu oxidation state and coordination environment as a function of environmental conditions including low-temperature (473 K) SCR catalysis and are rationalized through first-principles thermodynamics and ab initio molecular dynamics. Experiment and theory together reveal that the Cu sites respond sensitively to exposure conditions, and in particular that Cu species are solvated and mobilized by NH3 under SCR conditions. While Cu sites are spectroscopically and chemically distinct away from these conditions, they exhibit similar turnover rates, apparent activation energies and apparent reaction orders at the SCR conditions, even on zeolite frameworks other than SSZ13. PMID:27070199

  9. Onset of size independent cationic exchange in nano-sized CoFe{sub 2}O{sub 4} induced by electronic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Hemaunt [Department of Physics, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 (India); Singh, Jitendra Pal, E-mail: jitendra_singh2029@rediffmail.com [Advanced Analysis Canter, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Srivastava, R.C.; Negi, P.; Agrawal, H.M. [Department of Physics, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 (India); Asokan, Kandasami [Materials Science Division, Inter University Accelerator Centre, New Delhi 110067 (India); Won, Sung Ok [Advanced Analysis Canter, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Chae, Keun Hwa, E-mail: khchae@kist.re.kr [Advanced Analysis Canter, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2015-10-05

    Highlights: • Electronic excitation induced crystalline order in CoFe{sub 2}O{sub 4}. • No change of metallic valence state under dense electronic excitation. • Size independent control of cations in CoFe{sub 2}O{sub 4}. - Abstract: Present work investigates electronic excitation induced cationic exchange phenomena in nano-sized cobalt ferrites using Mössabaur and X-ray absorption spectroscopies. The electronic excitations were produced by irradiation of 100 MeV O{sup +7} at different fluences ranging from 1 × 10{sup 11} to 1 × 10{sup 14} ions/cm{sup 2}. Cubic spinel phase of cobalt ferrite remains preserved after irradiation. However, attributes of crystalline disorder were observed in irradiated materials. Crystallite size remain almost same for pristine and irradiated materials. X-ray absorption fine structure measurements show the preservation of valence state and spin state of metal ions under intense electronic excitation. These measurements also envisage bond breaking process induced by the electronic excitation. Mössbauer spectroscopic measurements also corroborate with the fine structure measurements that the valence state of Fe remains same after irradiation. Paramagnetic doublet which presents in the Mössabaur spectrum of pristine material disappears after irradiation, showing the evolution of irradiation induced magnetic ordering. Fe{sup 3+} ion increases with irradiation at octahedral site of spinel lattice. Magnetization of the material slightly increases after irradiation at the fluence of 5 × 10{sup 13} and 1 × 10{sup 14} ions/cm{sup 2}.

  10. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine

    Science.gov (United States)

    Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao

    2013-04-01

    Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.

  11. Influence of cation substitution and activator site exchange on the photoluminescence properties of Eu3+-doped quaternary pyrochlore oxides.

    Science.gov (United States)

    Mahesh, S K; Rao, P Prabhakar; Thomas, Mariyam; Francis, T Linda; Koshy, Peter

    2013-12-01

    Stannate-based pyrochlore-type red phosphors CaGd(1-x)SnNbO7:xEu(3+), Ca(1-y)Sr(y)Gd(1-x)SnNbO7:xEu(3+), and Ca(0.8-x)Sr0.2GdSnNbO(7+δ): xEu(3+) were prepared via conventional solid-state method. Influence of cation substitution and activator site control on the photoluminescence properties of these phosphors are elucidated using powder X-ray diffraction, Rietveld analysis, Raman spectrum analysis, and photoluminescence excitation and emission spectra. The Eu(3+) luminescence in quaternary pyrochlore lattice exemplifies as a very good structural probe for the detection of short-range disorder in the lattice, which otherwise is not detected by normal powder X-ray diffraction technique. The Eu(3+) emission due to magnetic dipole transition ((5)D0-(7)F1 MD) is modified with the increase in europium concentration in the quaternary pyrochlore red phosphors. (5)D0-(7)F1 MD transition splitting is not observable for low Eu(3+) doping because of the short-range disorder in the pyrochlore lattice. Appearance of narrow peaks in Raman spectra confirms that short-range disorder in the crystal lattice disappears with progressive europium doping. By using Sr as a network modifier ion in place of Ca we were able to increase the f-f transition intensities and europium quenching concentration. The influence of effective positive charge of the central Eu(3+) ions when it replaces a metal ion having lower oxidation state such as Ca(2+) was also investigated. The relative intensities of A1g (∼500 cm(-1)) and F2g (∼330 cm(-1)) Raman vibrational modes get inverted when Eu(3+) ions replaces Ca(2+) ions instead of Gd(3+) as trivalent europium ions can attract the electron cloud of oxygen ions strongly in comparison with divalent calcium ions. The influence of positive charge effect of Eu(3+) in Ca0.7Sr0.2GdSnNbO7+δ:0.1Eu(3+) phosphor is greatly strengthened the charge transfer band and (7)F0-(5)L6 transition intensities than that of the Ca0.8Sr0.2Gd0.9SnNbO7:0.1Eu(3+) phosphor. Our

  12. Synthesis, characterization and analytical application of nano-composite cation-exchange material, poly-o-toluidine Ce(IV) phosphate: Its application in making Cd(II) ion selective membrane electrode

    Science.gov (United States)

    Khan, Asif Ali; Akhtar, Tabassum

    2011-03-01

    An organic-inorganic composite, poly-o-toluidine Ce(IV) phosphate was chemically synthesized by mixing ortho-toluidine into the gel of Ce(IV) phosphate in different mixing volume ratios. Effect of eluant concentration, elution behavior and pH-titration studies were carried out to understand the ion-exchange capabilities. The physico-chemical properties of the material were determined using AAS, CHN elemental analysis, UV-VIS spectrophotometry, FTIR, SEM/EDX, TGA-DTA, TEM (Transmission electron microscopy), XRD and SEM studies. The distribution studies revealed that the cation-exchange material is highly selective for Cd(II). Due to selective nature of the cation-exchanger, ion selective membrane electrode was fabricated for the determination of Cd(ІІ) ions in solutions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations.

  13. Forest-soil response to acid and salt additions of sulfate. 2. Aluminum and base cations

    International Nuclear Information System (INIS)

    Reconstructed spodosol and intact alfisol soil columns were used to examine the effects of 52 weeks of additions of various simulated throughfall solutions on base cation, Al, acid neutralizing capacity, and pH levels in soil leachates. The work illustrates the importance of soil cation exchange (especially in the forest floor), anion concentrations, and pCO2 levels in controlling the leachate chemistry in response to acidic and 'seasalt' deposition events

  14. PLUTONIUM LOADING CAPACITY OF REILLEX HPQ ANION EXCHANGE COLUMN - AFS-2 PLUTONIUM FLOWSHEET FOR MOX

    Energy Technology Data Exchange (ETDEWEB)

    Kyser, E.; King, W.; O' Rourke, P.

    2012-07-26

    Radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the dependence of column loading performance on the feed composition in the H-Canyon dissolution process for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). These loading experiments show that a representative feed solution containing {approx}5 g Pu/L can be loaded onto Reillex{trademark} HPQ resin from solutions containing 8 M total nitrate and 0.1 M KF provided that the F is complexed with Al to an [Al]/[F] molar ratio range of 1.5-2.0. Lower concentrations of total nitrate and [Al]/[F] molar ratios may still have acceptable performance but were not tested in this study. Loading and washing Pu losses should be relatively low (<1%) for resin loading of up to 60 g Pu/L. Loading above 60 g Pu/L resin is possible, but Pu wash losses will increase such that 10-20% of the additional Pu fed may not be retained by the resin as the resin loading approaches 80 g Pu/L resin.

  15. Water-Chemistry Evolution and Modeling of Radionuclide Sorption and Cation Exchange during Inundation of Frenchman Flat Playa

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald; Cablk, Mary; LeFebre, Karen; Fenstermaker, Lynn; Decker, David

    2013-08-01

    dioxide and calcite; dissolution of sodium chloride, gypsum, and composite volcanic glass; and precipitation of composite clay and quartz represented changes in water as it disappeared from the playa. This modeling provided an understanding of the water-soil geochemical environment, which was then used to evaluate the potential mobility of residual radionuclides into the playa soils by water. Because there is no information on the chemical forms of anthropogenic radionuclides in Frenchman Flat playa soil, it was assumed that soil radionuclides go into solution when the playa is inundated. In mobility modeling, a select group of radionuclides were allowed to sorb onto, or exchange with, playa soil minerals to evaluate the likelihood that the radionuclides would be removed from water during playa inundation. Radionuclide mobility modeling suggested that there would be minimal sorption or exchange of several important radionuclides (uranium, cesium, and technetium) with playa minerals such that they may be mobile in water when the playa is inundated and could infiltrate into the subsurface. Mobility modeling also showed that plutonium may be much less mobile because of sorption onto calcite, but the amount of reactive surface area of playa soil calcite is highly uncertain. Plutonium is also known to sorb onto colloidal particles suspended in water, suspended colloidal particles will move with the water, providing a mechanism to redistribute plutonium when Frenchman Flat playa is inundated. Water chemistry, stable isotopes, and geochemical modeling showed that residual radionuclides in Frenchman Flat playa soils could be mobilized in water when the playa is inundated with precipitation. Also, there is potential for these radionuclides to infiltrate into the subsurface with water. As a result of the information obtained both during this study and the conclusions drawn from it, additional data collection, investigation, and modeling are recommended. Specifically: sampling the

  16. Cation exchange-based post-processing of 68Ga-eluate: A comparison of three solvent systems for labelling of DOTATOC, NO2APBP and DATAm

    International Nuclear Information System (INIS)

    Interest in 68Ga has led to a number of innovations for its provision suitable for clinical application. Several post-processing methods are available to reduce eluate volume and remove metal trace impurities. In this work three cation exchange resin based post-processing methods (acetone, ethanol and NaCl) have been compared, using three model precursors (DOTATOC, NO2APBP and DATAm), in terms of labelling yield and reproducibility. The acetone and ethanol based methods provided greater reproducibility and yields that makes subsequent purification unnecessary. - Highlights: • Comparison of different 68Ga post-processing methods through the labelling of DOTATOC, NO2APBP and DATAm. • Comparison in terms of radiochemical yield, reproducibility and radiolysis. • Ethanol and acetone post-processed 68Ga facilitated the highest yields and reproducibility. • Ethanol post-processed 68Ga resulted in the lowest degree of radiolysis of 68Ga-DOTATOC. • Experimenting with different post-processing methods is an important optimisation step. • Ethanol-post processed 68Ga is suitable for clinical application

  17. Selective and Accurate Determination Method of Propofol in Human Plasma by Mixed-Mode Cation Exchange Cartridge and GC-MS.

    Science.gov (United States)

    Pyo, Jae Sung

    2016-01-01

    A gas chromatography-mass spectrometry (GC-MS) method for the determination of propofol in human plasma has been developed and validated. Propofol was extracted from human plasma by using mixed-mode cation exchange/reversed-phase (MCX) cartridges. As propofol easily volatilizes during concentration, 100% methanol was injected directly into GC-MS to elute propofol. Despite avoiding concentration process of the eluted solution, lower limit of quantization (LLOQ) of propofol was 25 ng/mL. The validated method exhibited good linearity (R (2) = 0.9989) with accuracy and precision -5.8%~11.7% and 3.7%~11.6%, respectively. The other validation parameters, recovery and matrix effect, ranged from 96.6% to 99.4% and 95.3% to 101.4%, respectively. Propofol standard was quantified to evaluate possible loss due to the concentration processes, nitrogen gas and centrifugal vacuum. These two concentration processes resulted in notable decrease in the quantity of propofol, signifying avoiding any concentration processes during propofol quantification. Also, to confirm suitability of the developed method, authentic human plasma samples were analyzed. The selective assay method using MCX cartridge and GC-MS facilitated quantification of propofol in plasma sample accurately by preventing any losses due to the concentration processes. PMID:27597928

  18. Isolation of cross-linked peptides by diagonal strong cation exchange chromatography for protein complex topology studies by peptide fragment fingerprinting from large sequence databases.

    Science.gov (United States)

    Buncherd, Hansuk; Roseboom, Winfried; Ghavim, Behrad; Du, Weina; de Koning, Leo J; de Koster, Chris G; de Jong, Luitzen

    2014-06-27

    Knowledge of spatial proximity of amino acid residues obtained by chemical cross-linking and mass spectrometric analysis provides information about protein folding, protein-protein interactions and topology of macromolecular assemblies. We show that the use of bis(succinimidyl)-3-azidomethyl glutarate as a cross-linker provides a solution for two major analytical problems of cross-link mapping by peptide fragment fingerprinting (PFF) from complex sequence databases, i.e., low abundance of protease-generated target peptides and lack of knowledge of the masses of linked peptides. Tris(carboxyethyl)phosphine (TCEP) reduces the azido group in cross-linked peptides to an amine group in competition with cleavage of an amide bond formed in the cross-link reaction. TCEP-induced reaction products were separated by diagonal strong cation exchange (SCX) from unmodified peptides. The relation between the sum of the masses of the cleavage products and the mass of the parent cross-linked peptide enables determination of the masses of candidate linked peptides. By reversed phase LC-MS/MS analysis of secondary SCX fractions, we identified several intraprotein and interprotein cross-links in a HeLa cell nuclear extract, aided by software tools supporting PFF from the entire human sequence database. The data provide new information about interacting protein domains, among others from assemblies involved in splicing.

  19. Synthesis and characterization of a new cation exchanger-zirconium(IV)iodotungstate: Separation and determination of metal ion contents of synthetic mixtures, pharmaceutical preparations and standard reference material

    International Nuclear Information System (INIS)

    Samples of zirconium(IV)iodotungstate have been synthesized under varying mixing order and ratios of aqueous solution of potassium iodate, sodium tungstate and zirconium oxychloride at pH 1. A tentative formula was proposed on the basis of chemical composition, FTIR and thermogravimetric studies. The material shows a capacity of 0.68 meq g-1 (for K+) which can be retained up to 200 deg. C. pH titration data reveal its monofunctional behavior. The distribution coefficient values of metal ions have been determined in various solvent systems. A number of important and analytically difficult quantitative separations of metal ions have been achieved using columns packed with this exchanger. In order to demonstrate practical utility of this material, Hg2+ and Pb2+ have been selectively separated and determined in the synthetic mixtures. Assay of Al3+ and Mg2+ in commercial tablets and analysis of lead in the standard reference material have also been attempted.

  20. Utilizing full-exchange capacity of zeolites by alkaline leaching: Preparation of Fe-ZSM5 and application in N2O decomposition

    OpenAIRE

    Melian-Cabrera, [No Value; Espinosa, S.; Linden, B. van der; Kapteijn, F.; Moulijn, JA; Melián-Cabrera, I.; Linden, B. v/d; Groen, J.C.

    2006-01-01

    Utilization of the full exchange capacity of zeolites has been achieved by shortening diffusional lengths on a mild alkaline leaching treatment. Iron was fully incorporated by liquid-phase, ion exchange on ZSM5 without the formation of Fe-oxides, leading to improved activity in the N2O-exchange decomposition reaction. It is demonstrated that the large crystal size of the zeolite dominates the Fe-III-process. The crystallinity of the ZSM5 zeolite can be tuned down by postsynthesis modification...

  1. A novel approach to measure elemental concentrations in cation exchange resins using XRF-scanning technique, and its potential in water pollution studies

    Science.gov (United States)

    Huang, Jyh-Jaan; Lin, Sheng-Chi; Löwemark, Ludvig; Liou, Ya-Hsuan; Chang, Queenie; Chang, Tsun-Kuo; Wei, Kuo-Yen; Croudace, Ian W.

    2016-04-01

    X-ray fluorescence (XRF) core-scanning is a fast, and convenient technique to assess elemental variations for a wide variety of research topics. However, the XRF scanning counts are often considered a semi-quantitative measurement due to possible absorption or scattering caused by down core variability in physical properties. To overcome this problem and extend the applications of XRF-scanning to water pollution studies, we propose to use cation exchange resin (IR-120) as an "elemental carrier", and to analyze the resins using the Itrax-XRF core scanner. The use of resin minimizes the matrix effects during the measurements, and can be employed in the field in great numbers due to its low price. Therefore, the fast, and non-destructive XRF-scanning technique can provide a quick and economical method to analyze environmental pollution via absorption in the resin. Five standard resin samples were scanned by the Itrax-XRF core scanner at different exposure times (1 s, 5 s, 15 s, 30 s, 100 s) to allow the comparisons of scanning counts with the absolute concentrations. The regression lines and correlation coefficients of elements that are generally used in pollution studies (Ca, Ti, Cr, Ni, Cu, Zn, and Pb) were examined for the different exposure times. The result shows that within the test range (from few ppm to thousands ppm), the correlation coefficients are all higher than 0.97, even at the shortest exposure time (1 s). Therefore, we propose to use this method in the field to monitor for example sewage disposal events. The low price of resin, and fast, multi elements and precise XRF-scanning technique provide a viable, cost- and time-effective approach that allows large sample numbers to be processed. In this way, the properties and sources of wastewater pollution can be traced for the purpose of environmental monitoring and environmental forensics.

  2. CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.

    Science.gov (United States)

    Baliardini, Cecilia; Meyer, Claire-Lise; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2015-09-01

    Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri × Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Metal ATPase4 as the major genetic determinant for Cd tolerance. However, although necessary, Heavy Metal ATPase4 alone is not sufficient for determining this trait. After fine mapping, a gene encoding a calcium(2+)/hydrogen(+) antiporter, cation/hydrogen(+) exchanger1 (CAX1), was identified as a candidate gene for the second QTL of Cd tolerance in A. halleri. Backcross population1 individuals displaying the A. halleri allele for the CAX1 locus exhibited significantly higher CAX1 expression levels compared with the ones with the A. lyrata allele, and a positive correlation between CAX1 expression and Cd tolerance was observed. Here, we show that this QTL is conditional and that it is only detectable at low external Ca concentration. CAX1 expression in both roots and shoots was higher in A. halleri than in the close Cd-sensitive relative species A. lyrata and Arabidopsis thaliana. Moreover, CAX1 loss of function in A. thaliana led to higher Cd sensitivity at low concentration of Ca, higher sensitivity to methylviologen, and stronger accumulation of reactive oxygen species after Cd treatment. Overall, this study identifies a unique genetic determinant of Cd tolerance in the metal hyperaccumulator A. halleri and offers a new twist for the function of CAX1 in plants. PMID:26162428

  3. CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.1[OPEN

    Science.gov (United States)

    Baliardini, Cecilia; Meyer, Claire-Lise; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2015-01-01

    Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri × Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Metal ATPase4 as the major genetic determinant for Cd tolerance. However, although necessary, Heavy Metal ATPase4 alone is not sufficient for determining this trait. After fine mapping, a gene encoding a calcium2+/hydrogen+ antiporter, cation/hydrogen+ exchanger1 (CAX1), was identified as a candidate gene for the second QTL of Cd tolerance in A. halleri. Backcross population1 individuals displaying the A. halleri allele for the CAX1 locus exhibited significantly higher CAX1 expression levels compared with the ones with the A. lyrata allele, and a positive correlation between CAX1 expression and Cd tolerance was observed. Here, we show that this QTL is conditional and that it is only detectable at low external Ca concentration. CAX1 expression in both roots and shoots was higher in A. halleri than in the close Cd-sensitive relative species A. lyrata and Arabidopsis thaliana. Moreover, CAX1 loss of function in A. thaliana led to higher Cd sensitivity at low concentration of Ca, higher sensitivity to methylviologen, and stronger accumulation of reactive oxygen species after Cd treatment. Overall, this study identifies a unique genetic determinant of Cd tolerance in the metal hyperaccumulator A. halleri and offers a new twist for the function of CAX1 in plants. PMID:26162428

  4. Chemical studies on polyaniline titanotungstate as a new composite cation exchanger and its analytical applications for removal of cesium from aqueous solutions

    International Nuclear Information System (INIS)

    Polyaniline titanotungstate has been synthesized by incorporation of organic polymer polyaniline into the inorganic precipitate of titanotungstate. This material was characterized using IR, X-Ray, SEM and DTA-TGA analysis. The influences of initial concentration of metal ions, particle size and temperature have been reported. The material stability was investigated in water, acids, alkaline solutions, and at high temperature up to 850 degree C. Ion-exchange capacity and distribution coefficients (Kd) for ten metal ions have been determined. It was found that the polyaniline titanotungstate has high affinity and high selectivity for Cs+. The material has high separation for Cs+ ion from other metal ions. The comparison of composite (PATiW) and inorganic material (TiW) was studied and indicated that the composite material is better than the inorganic one in selectivity of Cs+. Thermodynamic parameter of Cs+ exchange process, such as changes in Gibbs free energy (δGo), enthalpy (δHo), and entropy (δSo) have been calculated. It was found that numerical value of δG decrease with an increase in temperature,indicating that the sorption reaction of adsorbent was spontaneous and more favorable at higher temperature. The positive value of δHo corresponds to the endothermic nature of sorption processes and suggested that chemisorptions were the predominant mechanism. A comparison of kinetic models applied to the sorption rate data of Cs+ was evaluated for the pseudo first-order, pseudo second-order, homogeneous particle diffusion, shell model and intraparticle diffusion models. The results showed that Cs+ is sorption onto PATiW and TiW with particle diffusion mechanism. Self diffusion coefficient (Di), Activation energy (Ea) and entropy (δS*) of activation were also computed from thelinearized form of Arrhenius equation. Column studies in acid and alkaline solutions were studied. A kinetic study for removal cesium from milk was investigated.

  5. Mercury(II) removal from aqueous solutions and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery

    International Nuclear Information System (INIS)

    A new adsorbent (PGCP-COOH) having carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto coconut coir pith, CP (a coir industry-based lignocellulosic residue), using potassium peroxydisulphate as an initiator and in the presence of N,N'-methylenebisacrylamide as a cross-linking agent. The adsorbent was characterized with the help of infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and potentiometric titrations. The ability of PGCP-COOH to remove Hg(II) from aqueous solutions was assessed using batch adsorption technique under kinetic and equilibrium conditions. Adsorbent exhibits very high adsorption potential for Hg(II) and more than 99.0% removal was achieved in the pH range 5.5-8.0. Adsorption process was found to follow first-order-reversible kinetics. An increase of ionic strength of the medium caused a decrease in metal removal, indicating the occurrence of outer-sphere surface complex mechanism. The equilibrium data were fitted well by the Freundlich isotherm model (R2 = 0.99; χ2 1.81). The removal efficiency was tested using chlor-alkali industry wastewater. Adsorption isotherm experiments were also conducted for comparison using a commercial carboxylate-functionalized ion exchanger, Ceralite IRC-50. Regeneration experiments were tried for four cycles and results indicate a capacity loss of <9.0%

  6. 阳离子交换树脂催化水解大豆糖蜜的研究%Hydrolysis of soy molasses catalyzed by cation exchange resin

    Institute of Scientific and Technical Information of China (English)

    郭紫光; 张永忠

    2011-01-01

    Strong acid styrene cation exchange resin was used to catalyze the hydrolysis of soy molasses.Through single factor and orthogonal experiments, the best conditions were determined as follows: ratio of liquid to solid 3: 1, time 120 min, temperature 60 ℃, concentration of substrate 0.2 g/mL. After hydrolysis under the optimum conditions, the ratio of reducing sugar to total sugar was 0.91, reducing sugar yield was 36.85% and reducing sugar content reached 368.46 mg/g, which was 4. 4 times higher than that before hydrolysis ( 83.93 mg/g). When the molasses was hydrolyzed at the optimal conditions, the reducing sugar yield of the resin catalysis method was almost the same with that of the acid catalysis method, but the resin method avoided the high temperature and low pH, and the resin method had the advantages of easy operation and less wastewater emissions.%采用强酸性苯乙烯系阳离子交换树脂催化水解大豆糖蜜.通过单因素及正交试验得到优化条件为:水解时间120 min,水解温度60℃,液固比3:1,底物质量浓度0.2 g/mL.水解后还原糖与总糖比率达到0.91,还原糖得率为36.85%,还原糖含量达到368.46 mg/g,比水解前的83.93 mg/g提高了3.4倍.与传统酸催化法对比得知,分别在最优条件下水解大豆糖蜜,还原糖得率相差无几,但树脂法避免了高温,pH低,操作简便,废水排放量减少.

  7. 阳离子交换树脂催化合成富马酸二丁酯%Synthesis of dibutyl fumarate on cation exchange resin

    Institute of Scientific and Technical Information of China (English)

    申红; 丁斌; 郝凤岭; 刘艳杰

    2011-01-01

    以阳离子交换树脂(NKC-9)为催化剂、富马酸单甲酯和正丁醇为原料合成富马酸二丁酯,考察了原料配比、催化剂用量、反应时间和甲苯用量等因素对反应的影响以及催化剂的重复使用性能.最佳反应工艺条件为:n(正丁醇):n(富马酸单甲酯)=3.0∶1、w(NKC -9)=6.0%、反应温度不高于120℃、w(甲苯)=49.5%、反应时间2.5h.结果表明,在该条件下富马酸单甲酯的转化率为98.1%;催化剂经重复使用6次后,富马酸单甲酯的转化率为96.9%.阳离子交换树脂(NKC -9)具有催化活性高、稳定性好、无环境污染等优点.%Synthesis of dibutyl fumarate from monomethyl fumarate and n-butyl alcohol on cation exchange resin catalyst(NKC-9) was studied. Effects of reaction conditions,such as mole ratio of n-butyl alcohol to monomethyl fumarate,catalyst content,toluene content,and reaction time,and the reusability of the catalyst were investigated. Optimum reaction conditions were obtained, which were:n(n-butyl alcohol) : n(monomethyl fumarate) =3. 0 : 1,catalyst content 6. 0%(relative to total mass of monomethyl fumarate and n-butyl alcohol), react ion temperature ≤ 120 ℃, toluene content 49. 5%(relative to total mass of monomethyl fumarate and n-butyl alcohol), reaction time 2. 5 h. The results showed that conversion of monomethyl fumarate could reach 98. L%,and activity of catalyst was still kept at 96. 9% after being used 6 times. NKC-9 has many advantages,such as high activity,good stability and pollution-free to the environment.

  8. Tandem anion and cation exchange solid phase extraction for the enrichment of micropollutants and their transformation products from ozonation in a wastewater treatment plant.

    Science.gov (United States)

    Deeb, Ahmad A; Schmidt, Torsten C

    2016-06-01

    The presence of organic micropollutants and their transformation products (TPs) from biotic and abiotic processes in aquatic environments is receiving intense public and scientific attention. Yet a suitable sample preparation method that would enable extraction and enrichment of a wide range of such compounds from water is missing. The focus of this paper was to develop an enhanced solid phase extraction (SPE) protocol which enabled isolation of parent compounds and low molecular weight transformation products (that are produced after treatment of water with ozone) from different water matrices. Ten SPE sorbents were evaluated with regard to their ability to extract acidic, neutral, and basic compounds from water at several pH values. Highest recoveries (91-99 %) for all analytes in pure water were obtained by combining strong anion and cation exchangers of two manufacturers in a tandem mode without pH adjustment. Tandem Oasis (MAX+MCX) was finally applied to extract the spiked analytes from tap water, surface water, and several wastewater samples. The efficiency of the used SPE procedure was examined using an optimized liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method using multiple reaction monitoring (MRM) mode. The occurrence of some of the investigated TPs in environmental water matrices was proven for the first time in this study. Method quantification limits (MQLs) for all compounds ranged from 3.7 to 15.3 ng/L in all matrices. Recoveries (%RE) were between 90 and 110 %. Intraday and interday precision, expressed as relative standard deviation, varied from 0.7 to 5.9 % and 1.8 to 10.3 %, respectively. Matrix effect (%ME) evaluation demonstrated that even complex sample matrices did not show significant ion suppression or enhancement. The applicability of the method was shown during two sampling campaigns at Ruhr river and a wastewater treatment plant (WWTP) equipped with an ozonation step after regular

  9. Cesium exchange reaction on natural and modified clinoptilolite zeolites

    International Nuclear Information System (INIS)

    Cesium cation exchange reaction with K, Na, Ca and Mg ions on natural and modified clinoptilolite has been studied. Batch cation-exchange experiments were performed by placing 0.5 g of clinoptilolite into 10 ml or 20 ml of 1 x 10-3M CsCl solution for differing times. Two type deposits of clinoptilolite zeolites from, Nizny Hrabovec (NH), Slovakia and Metaxades (MX), Greece were used for ion-exchange study. The distribution coefficient (Kd) and sorption capacity (Γ) were evaluated. For the determination of K, Na, Ca and Mg isotachophoresis method, the most common cations in exchange reaction was used. Cesium sorption was studied using 137Cs tracer and measured by γ-spectrometry. (author)

  10. New inorganic (an)ion exchangers with a higher affinity for arsenate and a competitive removal capacity towards fluoride, bromate, bromide, selenate, selenite, arsenite and borate

    KAUST Repository

    Chubar, Natalia

    2011-12-01

    Highly selective materials and effective technologies are needed to meet the increasingly stronger drinking water standards for targeted ionic species. Inorganic ion exchangers based on individual and mixed-metal hydrous oxides (or mixed adsorbents that contain inorganic ion exchangers in their composition) are adsorptive materials that are capable of lowering the concentrations of anionic contaminants, such as H 2AsO 4 -, H 3AsO 3, F -, Br -, BrO 3 -, HSeO 4 -, HSeO 3 - and H 3BO 3, to 10 μg/L or less. To achieve a higher selectivity towards arsenate, a new ion exchanger based on Mg-Al hydrous oxides was developed by a novel, cost-effective and environmentally friendly synthesis method via a non-traditional (alkoxide-free) sol-gel approach. The exceptional adsorptive capacity of the Mg-Al hydrous oxides towards H 2AsO 4 - (up to 200 mg[As]/gdw) is due to the high affinity of this sorbent towards arsenate (steep equilibrium isotherms) and its fast adsorption kinetics. Because of the mesoporous (as determined by N 2 adsorption and SEM) and layered (as determined by XRD and FTIR) structure of the ion-exchange material as well as the abundance of anion exchange sites (as determined by XPS and potentiometric titration) on its surface the material demonstrated very competitive (or very high) removal capacity towards other targeted anions, including fluoride, bromide, bromate, selenate, selenite, and borate. © 2011 IWA Publishing.

  11. Influence of anodic surface treatment of activated carbon on adsorption and ion exchange properties

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J.; Kim, K.D.

    1999-10-01

    The effect of anodic surface treatment of activated carbon on adsorption and ion exchange characteristics was investigated in the condition of 35 wt% NaOH electrolyte for 60 s. The acid and base values were determined by a titration technique, and surface and pore structures were studied in terms of BET volumetric measurement with N{sub 2} adsorption. The ion exchange capacity of the anodized activated carbons was characterized by a dry weight capacity technique. It was observed that an increase in current intensity leads to an increase in the surface functional groups of activated carbons, resulting in increasing pH, acid-base values, and anion-cation exchange capacities, without significant change of surface and pore structures (i.e., specific surface area, total pore volume, micropore volume, and average pore diameter). Also, anodically treated activated carbons are more effectively evaluated on the base value or cation exchange capacity than on the oppose properties in this electrolytic system.

  12. The elution of erbium from a cation exchanger bed by means of the N-hydroxyethyl-ethylene-diamine triacetic acid; Mecanismo de la elucion del erbio en un cambiador cationico con el acido n-hidroxietil-etilen-diamono-triacetico

    Energy Technology Data Exchange (ETDEWEB)

    Amer Amezaga, S.

    1963-07-01

    A physicochemical study of the phenomena resulting when erbium is eluted from a cation-exchanger bed at a steady by means of the N-hydroxyethyl-ethylene-diamine-triacetic acid (HEDTA) is made. Two different retaining beds are used, a hydrogen bed, in which no ammonium passes through, and a zinc bed, which leaks ammonium ion. Good agreement between experimental and calculated values by using the equations deduced for the concentrations of the main species has been achieved, with errors around 1-2% in most of the experiments. (Author) 69 refs.

  13. Simultaneous determination of iodide and iodate in povidone iodine solution by ion chromatography with homemade and exchange capacity controllable columns and column-switching technique.

    Science.gov (United States)

    Huang, Zhongping; Zhu, Zuoyi; Subhani, Qamar; Yan, Wenwu; Guo, Weiqiang; Zhu, Yan

    2012-08-17

    A simple ion chromatographic method for simultaneous detection of iodide and iodate in a single running was proposed, with columns packed with homemade functionalized polystyrene-divinylbenzene (PS-DVB) resins and column-switching technique. Homemade resins were functionalized with controllable amounts of quaternary ammonium groups. The low-capacity anion-exchange column and high-capacity anion-exchange column were prepared, due to the resins having different exchange capacities. With this method, iodide and iodate in povidone iodine solution were detected simultaneously in a short time with iodide being eluted off first. A series of standard solutions consisting of target anions of various concentrations from 0.01 mg/L to 100 mg/L were analyzed. Each anion exhibited satisfactory linearity, with correlation coefficient r ≥ 0.9990. The detection limits (LODs) for iodide and iodate obtained by injecting 100 μL of sample were 5.66 and 14.83 μg/L (S/N=3), respectively. A spiking study was performed with satisfactory recoveries between 101.2% and 100.6% for iodide and iodate. PMID:22771256

  14. A Novel Ion-exchange Method for the Synthesis of Nano-SnO/micro-C Hybrid Structure as High Capacity Anode Material in Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    Zhi Tan; Zhenhua Sun; Qi Guo; Haihua Wang; Dangsheng Su

    2013-01-01

    A novel and simple ion-exchange method was developed for the synthesis of nano-SnO/micro-C hybrid structure.The structure of the as prepared nano-SnO/micro-C was directly revealed by scanning electron microscopy (SEM)and transmission electron microscopy (TEM).SnO particles with the size about 25 nm were well confined in amorphous carbon microparticles.Carbon matrix in micrometer scale not only acts as a protective buffer for the SnO nanoparticles during the battery cycling processes,but also avoids the shortcomings of nanostructures,such as low tap density and potential safety threats.Electrochemical behaviors of the nano-SnO/micro-C were tested as anode material in lithium ion batteries.The initial reversible capacity is 508 mA h g-1,and the reversible capacity after 60 cycles is 511 mA h g-1,indicating good capacity retention ability.

  15. Catalytic Synthesis of N - Butyl Lactate by Strongly Acidic Cationic Exchange Resin%强酸性阳离子交换树脂催化合成乳酸正丁酯

    Institute of Scientific and Technical Information of China (English)

    熊文高; 俞善信

    2001-01-01

    N - butyl lactate was synthesized from lactic acid and n - butyl alcohol in the presence of strongly acidic cationic exchange resin. The yield of the ester can reach 99. 3% under mole ratio of lactic acid and n - butyl alcohol was 0. 1: 0.2, the amount of strongly acidic cationic exchange resin was 0. 5 g, refluxing and water seprating for 100 min. The reusability of the catalyst was studied.%在强酸性阳离子交换树脂存在下,由乳酸和正丁醇合成了乳酸正丁酯。当乳酸和正丁醇的摩尔比为1:2,强酸性阳离子交换树脂的用量0.5 g,回流分水100min时酯收率达99.3%。同时,研究了催化剂的重复使用性能。

  16. Actual cation exchange capacity of agricultural soils and its relationship with pH and content of organic carbon and clay

    NARCIS (Netherlands)

    Erp, van P.J.; Houba, V.J.G.; Beusichem, van M.L.

    2001-01-01

    For the set up of a multinutrient 0.01 M calcium chloride (CaCl2) soil testing program a conversion from conventional soil testing programs to a CaCl2 program has been proposed in literature. Such conversion should be based on the relationship between test values of the conventional method and the C

  17. Retention of tannin-C is associated with decreased soluble-N and increased cation exchange capacity in a broad range of soils

    Science.gov (United States)

    Phenolic plant compounds, called tannins, can be retained by soil and affect nutrient cycling but have been studied in only a few soils. Soils (0-10 cm) from locations across the United States and Canada were treated with water (Control) or solutions containing procyanidin, catechin, tannic acid, ß-...

  18. Effect of soil disturbance on pedotransfer function development for field capacity

    NARCIS (Netherlands)

    Bell, M.A.; Keulen, van H.

    1996-01-01

    The increasing use of simulation models for design and analysis of land use management options has meant an increased need for detailed soil data. When such data are not available, pedotransfer functions (PTFs) can be used to estimate soil properties such as cation exchange capacity (CEC) and field

  19. Exchange of lyotropic series cations by micaceous vermiculite and its weathering products determined by electron microscopy and radiochemical analysis. Final technical report, June 1, 1965-October 31, 1978

    International Nuclear Information System (INIS)

    Micaceous vermiculite was found to be ubiquitous in soils, sediments, and aerosol mineral dusts and to adsorb fission product ions, particularly 137Cs+ and 90Sr2+. Crystallographic wedge zones (imaged by ultramicrotomy and electron microscopy) in micaceous vermiculite effected tight fixation of Cs+. Lowering of mica layer charge occurred in local areas, electronoscopically imaged by use of blister-swelling cations. Nuclear fission particle tracks of U enhanced translayer diffusion of elements, measured mica layer charge and age. Iron-aluminum hydrous oxide coatings adsorbed divalent cations of the alkaline earth, transition, and heavy metal elements from trace concentrations in the presence of 1 M NaNO3. Global deposition of dust by rainfall accounted for the wide distribution of Cs-fixing micaceous vermiculite in soils. Origin of the dust was traced through a method developed for isolation of fine quartz silt (1 to 10 μm diameter). Mass spectrometry of its 18O/16O isotopic ratios showed distinctly higher (delta18O = 17 to 22%0) and lower (delta18O = 9 to 15%0) ranges in the Northern and Southern Hemispheres, respectively. This difference was traced to the relative proportions of quartz from low-temperature authigenic (chert) vs igneous-metamorphic origin in the respective latitudes, hinging on trans-equatorial continental drift

  20. Huntingtin regulates Ca(2+) chemotaxis and K(+)-facilitated cAMP chemotaxis, in conjunction with the monovalent cation/H(+) exchanger Nhe1, in a model developmental system: insights into its possible role in Huntington׳s disease.

    Science.gov (United States)

    Wessels, Deborah; Lusche, Daniel F; Scherer, Amanda; Kuhl, Spencer; Myre, Michael A; Soll, David R

    2014-10-01

    Huntington׳s disease is a neurodegenerative disorder, attributable to an expanded trinucleotide repeat in the coding region of the human HTT gene, which encodes the protein huntingtin. These mutations lead to huntingtin fragment inclusions in the striatum of the brain. However, the exact function of normal huntingtin and the defect causing the disease remain obscure. Because there are indications that huntingtin plays a role in Ca(2+) homeostasis, we studied the deletion mutant of the HTT ortholog in the model developmental system Dictyostelium discoideum, in which Ca(2+) plays a role in receptor-regulated behavior related to the aggregation process that leads to multicellular morphogenesis. The D. discoideum htt(-)-mutant failed to undergo both K(+)-facilitated chemotaxis in spatial gradients of the major chemoattractant cAMP, and chemotaxis up a spatial gradient of Ca(2+), but behaved normally in Ca(2+)-facilitated cAMP chemotaxis and Ca(2+)-dependent flow-directed motility. This was the same phenotypic profile of the null mutant of Nhel, a monovalent cation/H(+)exchanger. The htt(-)-mutant also failed to orient correctly during natural aggregation, as was the case for the Nhel mutant. Moreover, in a K(+)-based buffer the normal localization of actin was similarly defective in both htt(-) and nhe1(-) cells in a K(+)-based buffer, and the normal localization of Nhe1 was disrupted in the htt(-) mutant. These observations demonstrate that Htt and Nhel play roles in the same specific cation-facilitated behaviors and that Nhel localization is directly or indirectly regulated by Htt. Similar cation-dependent behaviors and a similar relationship between Htt and Nhe1 have not been reported for mammalian neurons and deserves investigation, especially as it may relate to Huntington׳s disease. PMID:25149514

  1. Mechanism of Electrochemical Catalytic Treatment of Phenol Wastewater Catalyzed by Metal Ion Supported on Cation Exchange Resin%苯酚水在离子交换树脂电化学降解中的机理研究

    Institute of Scientific and Technical Information of China (English)

    王莹; 侯党社; 韩莉萍

    2011-01-01

    The electrochemical oxidation of phenol in synthetic wastewater catalyzed by metal ion supported on cation exchange resin has been investigated.It was found that in the process of the phenol oxidation, hydroxyl radicals and Fe were all attribute to the phenol oxidation.%本文以负载金属的离子交换树脂为催化剂,采用电化学降解的方法研究了苯酚水的降解机理.研究表明苯酚水在离子交换树脂电化学降解中可能是由羟基自由基、金属氧化物、金属离子、电絮凝等协同作用下进行降解.

  2. Fluphenazine hydrochloride radical cation assay: A new, rapid and precise method to determine in vitro total antioxidant capacity of fruit extracts

    Institute of Scientific and Technical Information of China (English)

    Muhammad Nadeem Asghar; Qadeer Alam; Sharoon Augusten

    2012-01-01

    A new procedure based on generation and subsequent reduction of orange-colored fluphenazine hydrochloride radical (FPH·+)is presented for the screening of total antioxidant capacity (TAC) of various fruit matrices.The FPH·+ was obtained by mixing fluphenazine hydrochloride with persulfate (final concentration 2 mmol/L and 0.05 mmmol/L,respectively) in 3 mol/L H2SO4 with constant shaking for 5 min.The solution formed showed maximum absorption as 0.8 ± 0.02 at 500 nm in first-order derivative spectrum.The percent inhibition of the solution increased linearly on addition of increasing mounts of standard antioxidants i.e.,ascorbic acid etc.The TACs of sample citrus juices were calculated in terms of ascorbic acid equivalents (AAEs) by comparing their inhibition curves with that of ascorbic acid.Comparison of AAE values of different commercial orange juices using the newly developed FPH·+ assay and the well-known ABTS/K2S2O8 and DMPD/FeCl3 assays indicated the precision and comparable sensitivity of the method.The proposed procedure is quick,economical,and more precise and gives results comparable to contemporary assays.

  3. Long-term effects of high nitrogen loads on cation and carbon riverine export in agricultural catchments.

    Science.gov (United States)

    Aquilina, Luc; Poszwa, Anne; Walter, Christian; Vergnaud, Virginie; Pierson-Wickmann, Anne-Catherine; Ruiz, Laurent

    2012-09-01

    The intensification of agriculture in recent decades has resulted in extremely high nitrogen inputs to ecosystems. One effect has been H(+) release through NH(4)(+) oxidation in soils, which increases rock weathering and leads to acidification processes such as base-cation leaching from the soil exchange complex. This study investigated the evolution of cation concentrations over the past 50 years in rivers from the Armorican crystalline shield (Brittany, western France). On a regional scale, acidification has resulted in increased base-cation riverine exports (Ca(2+), Mg(2+), Na(+), K(+)) correlated with the increased NO(3)(-) concentration. The estimated cation increase is 0.7 mmol(+)/L for Ca(2+) + Mg(2+) and 0.85 mmol(+)/L for total cations. According to mass balance, cation loss represents >30% of the base-cation exchange capacity of soils. Long-term acidification thus contributes to a decline in soil productivity. Estimates of the total organic nitrogen annually produced worldwide indicate that acidification may also constitute an additional carbon source in crystalline catchments if compensated by liming practices.

  4. Cation exchange for mercury and cadmium of xanthated, sulfonated, activated and non-treated subbituminous coal, commercial activated carbon and commercial synthetic resin:effect of pre-oxidation on xanthation of subbituminous coal

    Institute of Scientific and Technical Information of China (English)

    Lewis M. Gomez; Fredy Colpas-Castillo; Roberto Fernandez-Maestre

    2014-01-01

    A subbituminous coal was oxidized with air at 150 ?C on a fixed bed for 4 h and xanthated with carbon disulfide in a basic solution, at 30 or 5–10 ?C. This xanthated coal was evaluated for the removal of Hg2? and Cd2? from 7,000 mg/L aqueous solutions; metal concentrations were determined by atomic absorption spectrometry. The ion exchange of the xanthated coal was compared against those of the original subbituminous coal, a sulfonated subbituminous coal, activated carbon, commercial activated carbon, and commercial synthetic resin. The commercial synthetic resin showed the highest exchange capacity (concentration factor 98%) followed by the xanthated coal (concentration factor 96%). The retention of cadmium on the sulfonated subbituminous coal was lower (exchange capacity 0.56 meq/g) than that of xanthated coals (1.85 ± 0.09 meq/g). Our xanthated coal showed a better Cd2? removal (81%against 15%) than a non preoxidized 40-h-xanthated coal, which shows that oxidation of coal increased the amount of oxygenated groups which enhanced xanthation.

  5. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  6. Extremely slow cation exchange processes in Li4SiO4 probed directly by two-time 7Li stimulated-echo nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Lithium self-diffusion in the low-temperature modification of polycrystalline lithium ortho-silicate Li4SiO4 is investigated by 7Li two-time stimulated echo NMR spectroscopy. Extremely slow Li exchange processes were directly monitored between 300 and 433 K by recording spin-alignment echoes as a function of mixing time varying over six decades from 10-5 to 10 s. In the investigated temperature range the hopping correlation functions show biexponential behaviour. Whereas the first decay step reflects directly Li jumps between electrically different sites, the second one is simply induced by the decay of alignment order due to quadrupolar relaxation. The echo decay rates τ-1 (101 s-1≤τ-1≤104 s-1), which can be identified with Li jump rates, show Arrhenius behaviour with an activation energy of 0.53(1) eV. The directly measured jump rates are in good agreement with those obtained recently by one- and two-dimensional 6Li exchange MAS NMR reported in the literature

  7. Optimal dynamic capacity allocation of HVDC interconnections for cross-border exchange of balancing services in presence of uncertainty

    DEFF Research Database (Denmark)

    Delikaraoglou, Stefanos; Pinson, Pierre; Eriksson, Robert;

    2015-01-01

    markets. Against this benchmark we compare two deterministic market designs with varying degrees of coordination between the reserve capacity and energy services, both followed by a real-time mechanism. Our study reveals the inefficiency of deterministic approaches as the shares of wind power increase......The deployment of large shares of stochastic renewable energy, e.g., wind power, may bring important economic and environmental benefits to the power system. Nonetheless, their efficient integration depends on the ability of the power system to cope with their inherent variability...... of the power system depends both on the technical parameters of its components, i.e., generators and transmission infrastructure, as well as on the operational practices that make optimal use of the available assets. This work focuses on alternative market designs that enable sharing of cross-border balancing...

  8. The ion-exchange capacity and Cs, Sr leachability of natural clinoptilolites at 200--300 C and PH{sub 2}O{sub sat}

    Energy Technology Data Exchange (ETDEWEB)

    Redkin, A.F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of the Geology of Ore Deposits; Hemley, J.J.; Doughten, M.W.; Cygan, G.L. [Geological Survey, Reston, VA (United States)

    1995-12-31

    Clinoptilolites of three US clinoptilolite-rich tuff deposits, with different alkali and alkaline earth element mole ratios, were used for experimental investigation. The runs on stability and sorption ability were carried out in water and 0.3 molal chloride solution, using individual minerals and using assemblages containing microcline and analcime at 200 to 300 C and PH{sub 2}O{sub sat} water (duration of one month and two weeks). The clinoptilolites showed different behavior, unrelated to exchange capacity, when run under similar conditions. It was also found that Cs-bearing clinoptilolites contained 12--14 wt.% Cs after runs in 0.1mNaCl+0.1mKCl+ 0.1mCsCl, whereas Sr-bearing clinoptilolite contained about 3--5% Sr in 0.1mNaCl+0.1mKCl+0.05mSrCl{sub 2}. The compositional trend showed some linear variation between Sr and Cs content and Si/Al mole ratio up to Si/Al=5.0. Thermal investigation showed that (Na-K)rich clinoptilolite completely decomposes at 325 C, (Na-Mg) rich at 350 C and (Ca-Mg) rich at 375 C in runs of 2 weeks duration in pure water. Na-analcimes associated with clinoptilolites have low Cs and Sr adsorption capacity relative to the clinoptilolites. Na-Sr -bearing analcimes have an inverse dependence of Sr/(Sr+Na+K) mole ratio with Si/Al in the reaction of heterovalent exchange in analcime, where Na and Si replace Sr and Al. Thermodynamic calculation was done for the solubility of Cs and Sr-bearing clinoptilolites at 300 C, PH{sub 2}O{sub sat}. It was established that under some conditions Sr leachability from Sr-bearing clinoptilolite is insignificant whereas Cs-bearing clinoptilolite leachability is considerably higher.

  9. 航空煤油在不同价态金属离子交换介孔材料上的深度吸附脱硫%Deep desulfurization of jet fuel by adsorption over mesoporous materials exchanged with different metal cations

    Institute of Scientific and Technical Information of China (English)

    邱国欢; 孟祥瑞; 王玉和

    2013-01-01

    Three adsorbents were prepared by exchanging Ag+, Ni2+ and Ce3+ onto the aluminized large-pore-size SBA-15 (SBA-15-L). Desulfurization of model jet fuel containing 0.015(wt)% S were carried out using fixed-bed reactor. The results showed that the jet fuel can be desulfurized to 0.000l(wt)%. The sulfur capacity of Ag/Al-SBA-15-L was stronger than that of Ni/Al-SBA-15-L and Ce/Al-SBA-15-L L ICP-AES results exhibited that the loadings of Ag+ on the sorbent were 13 and 65 times as large as that of Ni2+ and Ce3+. The experiments of desulfurization illustrated that the ratios of adsorbed sulfur per Ag+, Ni2+ and Ce3+ cation were 0.027, 0.570 and 0.752 at adsorption saturation. And then, it was showed that the inherent sulfur capacity of these metal cations followed the order: Ce3+ > Ni2+> Ag+.%采用离子交换法,将不同价态的金属离子Ag+,Ni2+,Ce3+交换到铝化的大孔径SBA-15介孔材料(SBA-15-L)上,制备了吸附剂Ag/Al-SBA-15-L,Ni/Al-SBA-15-L,Ce/Al-SBA-15-L.脱硫实验表明,所制备的吸附剂可将硫含量为0.015(wt)%的模拟航空煤油,脱硫至硫含量低于0.0001 (wt)%,并且Ag/Al-SBA-15-L的吸附脱硫能力强于Ni/Al-SBA-15-L和Ce/Al-SBA-15.通过ICP-AES分析表明,在铝化的大孔SBA-15上,Ag+的交换量分别是Ni2+和Ce3+的13和65倍.达到吸附饱和时,每个活性中心离子Ag+、Ni2+、Ce3+上可分别吸附0.027,0.570,0.752个硫原子,即金属离子固有的吸附脱硫能力为Ce3+> Ni2+> Ag+.

  10. Diffusion capacity of the lung for carbon monoxide - A potential marker of impaired gas exchange or of systemic deconditioning in chronic obstructive lung disease?

    Science.gov (United States)

    Weinreich, Ulla Møller; Thomsen, Lars Pilegaard; Brock, Christina; Karbing, Dan Stieper; Rees, Stephen Edward

    2015-11-01

    Gas exchange impairment is primarily caused by ventilation-perfusion mismatch in chronic obstructive pulmonary disease (COPD), where diffusing capacity of the lungs for carbon monoxide (DLCO) remains the clinical measure. This study investigates whether DLCO: (1) can predict respiratory impairment in COPD, that is, changes in oxygen and carbon dioxide (CO2); (2) is associated with combined risk assessment score for COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) score); and (3) is associated with blood glucose and body mass index (BMI). Fifty patients were included retrospectively. DLCO; arterial blood gas at inspired oxygen (FiO2) = 0.21; oxygen saturation (SpO2) at FiO2 = 0.21 (SpO2 (21)) and FiO2 = 0.15 (SpO2 (15)) were registered. Difference between arterial and end-tidal CO2 (ΔCO2) was calculated. COPD severity was stratified according to GOLD score. The association between DLCO, SpO2, ΔCO2, GOLD score, blood glucose, and BMI was investigated. Multiple regression showed association between DLCO and GOLD score, BMI, and glucose level (R (2) = 0.6, p < 0.0001). Linear and multiple regression showed an association between DLCO and SpO2 (21) (R (2) = 0.3, p = 0.001 and p = 0.03, respectively) without contribution from SpO2 (15) or ΔCO2. A stronger association between DLCO and GOLD score than between DLCO and SpO2 could indicate that DLCO is more descriptive of systemic deconditioning than gas exchange in COPD patients. However, further larger studies are needed. A weaker association is seen between DLCO and SpO2 (21) without contribution from SpO2 (15) and ΔCO2. This could indicate that DLCO is more descriptive of systemic deconditioning than gas exchange in COPD patients. However, further larger studies are needed.

  11. Bulk derivatization and cation exchange restricted access media-based trap-and-elute liquid chromatography–mass spectrometry method for determination of trace estrogens in serum

    International Nuclear Information System (INIS)

    Highlights: • Analysis of estrogens in small volume samples at low parts-per-trillion concentration. • Charged bulk derivatization facilitates on-line ion exchange sample preparation. • On-line WCX restricted access media traps analytes, but not proteins and lipids. • Complete preparation and LC–MS/MS analysis completed in 30 min/sample. - Abstract: Estrone (E1), estradiols (α/β-E2), and estriol (E3) are four major metabolically active estrogens exerting strong biological activities at very low circulating concentrations. This paper reports a sensitive and efficient method with automated, on-line clean-up and detection to determine trace estrogens in a small volume of serum samples using liquid chromatography–electrospray ionization–tandem mass spectrometry directly, without off-line liquid–liquid or solid-phase extraction pretreatments. Serum aliquots (charcoal stripped fetal bovine serum, 100 μL) were spiked with four estrogen standards and their corresponding isotope-labeled internal standards, then bulk derivatized with 2-fluoro-1-methyl-pyridium p-toluenesulfonate (2-FMP) to establish the calibration curves and perform method validation. Calibration was established in the concentration ranges of 5–1000 pg mL−1, and demonstrated good linearity of R2 from 0.9944 to 0.9997 for the four derivatized estrogens. The lower detection limits obtained were 3–7 pg mL−1. Good accuracy and precision in the range of 86–112% and 2.3–11.9%, respectively, were observed for the quality control (QC) samples at low, medium, and high concentration levels. The stability tests showed that the derivatized serum samples were stable 8 h after derivatization at room temperature and at least to 48 h if stored at −20 °C. The method was applied to measure trace estrogens in real human and bovine serum samples, and three of four estrogen compounds studied were observed and quantified

  12. Hydrogen adsorption over Zeolite-like MOF materials modified by ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, G.; Botas, J.A.; Orcajo, M.G. [Department of Chemical and Energy Technology, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Sanchez-Sanchez, M. [Instituto de Catalisis y Petroleoquimica, CSIC, C/Marie Curie 2, 28049 Madrid (Spain)

    2010-09-15

    Novel porous Zeolite-like metal-organic framework (ZMOF) materials with Rho and Sod topologies are promising adsorbents for hydrogen storage due to their high surface area and, more importantly, to their capacity of being ion-exchanged, potentially changing their affinity for hydrogen. In this work, we have successfully synthesized both Rho and SodZMOF materials, optimizing experimental conditions for scaling-up the procedure already published to produce grams of material. The resultant materials were alkaline-cation-exchanged, widely characterized and finally tested as hydrogen adsorbents. RhoZMOF is converted into an amorphous phase during some of the ion-exchange processes, whereas SodZMOF, whose ion-exchange capacity has not been investigated so far, always maintains its topology for any tested exchange cation and conditions. Additionally, thermogravimetric analyses and thermal treatments followed by in-situ powder X-ray diffraction analysis have evidenced a significantly higher thermal stability of both as-prepared and ion-exchanged SodZMOF materials in comparison to their Rho-structured homologues. Moreover, the thermal stability of the cation-exchanged ZMOF samples improves when methanol is the ion-exchange solvent rather than the reported ethanol-water mixture. Nitrogen and hydrogen adsorption isotherms at 77 K suggested that alkali-exchanged materials have lower affinity for hydrogen than the as-prepared samples compensated by imidazolium ion; however, due to the smaller size of Na{sup +} or Li{sup +} cations, their lower affinity is easily compensated by the inherent increase in surface area and pore volume as exchange degree increases. (author)

  13. Bulk derivatization and cation exchange restricted access media-based trap-and-elute liquid chromatography–mass spectrometry method for determination of trace estrogens in serum

    Energy Technology Data Exchange (ETDEWEB)

    Beinhauer, Jana [Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc (Czech Republic); Centre of the Region Haná for Biotechnological and Agricultural Research - Department of Protein Biochemistry and Proteomics, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc (Czech Republic); Bian, Liangqiao [Shimadzu Center for Advanced Analytical Chemistry, The University of Texas at Arlington, Arlington, TX (United States); Shimadzu Institute for Research Technologies, The University of Texas at Arlington, Arlington, TX (United States); Fan, Hui [Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX (United States); Šebela, Marek [Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc (Czech Republic); Centre of the Region Haná for Biotechnological and Agricultural Research - Department of Protein Biochemistry and Proteomics, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc (Czech Republic); Kukula, Maciej [Shimadzu Center for Advanced Analytical Chemistry, The University of Texas at Arlington, Arlington, TX (United States); Shimadzu Institute for Research Technologies, The University of Texas at Arlington, Arlington, TX (United States); Barrera, Jose A. [Shimadzu Institute for Research Technologies, The University of Texas at Arlington, Arlington, TX (United States); and others

    2015-02-09

    Highlights: • Analysis of estrogens in small volume samples at low parts-per-trillion concentration. • Charged bulk derivatization facilitates on-line ion exchange sample preparation. • On-line WCX restricted access media traps analytes, but not proteins and lipids. • Complete preparation and LC–MS/MS analysis completed in 30 min/sample. - Abstract: Estrone (E1), estradiols (α/β-E2), and estriol (E3) are four major metabolically active estrogens exerting strong biological activities at very low circulating concentrations. This paper reports a sensitive and efficient method with automated, on-line clean-up and detection to determine trace estrogens in a small volume of serum samples using liquid chromatography–electrospray ionization–tandem mass spectrometry directly, without off-line liquid–liquid or solid-phase extraction pretreatments. Serum aliquots (charcoal stripped fetal bovine serum, 100 μL) were spiked with four estrogen standards and their corresponding isotope-labeled internal standards, then bulk derivatized with 2-fluoro-1-methyl-pyridium p-toluenesulfonate (2-FMP) to establish the calibration curves and perform method validation. Calibration was established in the concentration ranges of 5–1000 pg mL{sup −1}, and demonstrated good linearity of R{sup 2} from 0.9944 to 0.9997 for the four derivatized estrogens. The lower detection limits obtained were 3–7 pg mL{sup −1}. Good accuracy and precision in the range of 86–112% and 2.3–11.9%, respectively, were observed for the quality control (QC) samples at low, medium, and high concentration levels. The stability tests showed that the derivatized serum samples were stable 8 h after derivatization at room temperature and at least to 48 h if stored at −20 °C. The method was applied to measure trace estrogens in real human and bovine serum samples, and three of four estrogen compounds studied were observed and quantified.

  14. Simultaneous determination of sub μg·g-1 levels of nine impurities in high purity iron by horizontal cation exchange resin mini-column and ICP-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Inductively coupled plasma-atomic emission spectrometry (ICP-AES) has been applied to the simultaneous determination of trace impurities in high purity iron after simultaneous separation. Sub μg·g-1 levels of Ca, Cd, Co, Cu, Mg, Mn, Ni, Pb and Zn in high purity iron which had been dissolved in hydrofluoric acid and hydrogen peroxide were separated from the iron matrix using a horizontal cation exchange resin mini-column. Flow rates and flow directions of solutions through the mini-column were controlled by a peristaltic pump. Adsorbed elements on the resin mini-column were rapidly eluted using a reverse flow of the eluant against the flow for the adsorption. The eluted elements were determined by ICP-AES using an internal standard method and good results were obtained. A 100-fold enrichment of analytes was obtained with this preconcentration system using 1 g of the sample in comparison with an ordinary sample solution in which 0.5 g of the sample was dissolved in 100 cm3 without separation. (author)

  15. Nearly 1000 Protein Identifications from 50 ng of Xenopus laevis Zygote Homogenate Using Online Sample Preparation on a Strong Cation Exchange Monolith Based Microreactor Coupled with Capillary Zone Electrophoresis.

    Science.gov (United States)

    Zhang, Zhenbin; Sun, Liangliang; Zhu, Guijie; Cox, Olivia F; Huber, Paul W; Dovichi, Norman J

    2016-01-01

    A sulfonate-silica hybrid strong cation exchange monolith microreactor was synthesized and coupled to a linear polyacrylamide coated capillary for online sample preparation and capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) bottom-up proteomic analysis. The protein sample was loaded onto the microreactor in an acidic buffer. After online reduction, alkylation, and digestion with trypsin, the digests were eluted with 200 mM ammonium bicarbonate at pH 8.2 for CZE-MS/MS analysis using 1 M acetic acid as the background electrolyte. This combination of basic elution and acidic background electrolytes results in both sample stacking and formation of a dynamic pH junction. 369 protein groups and 1274 peptides were identified from 50 ng of Xenopus laevis zygote homogenate, which is comparable with an offline sample preparation method, but the time required for sample preparation was decreased from over 24 h to less than 40 min. Dramatically improved performance was produced by coupling the reactor to a longer separation capillary (∼100 cm) and a Q Exactive HF mass spectrometer. 975 protein groups and 3749 peptides were identified from 50 ng of Xenopus protein using the online sample preparation method. PMID:26670623

  16. Reversed phase and cation exchange liquid chromatography with spectrophotometric and elemental/molecular mass spectrometric detection for S-adenosyl methionine/S-adenosyl homocysteine ratios as methylation index in cell cultures of ovarian cancer.

    Science.gov (United States)

    Iglesias González, T; Cinti, M; Montes-Bayón, M; Fernández de la Campa, M R; Blanco-González, E

    2015-05-01

    S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are essential compounds in the carbon metabolic cycle that have clinical implications in a broad range of disease conditions. The measurement of the ratio SAM/SAH also called methylation index, has become a way of monitoring the DNA methylation of a cell which is an epigenetic event with important clinical implications in diagnosis; therefore the development of suitable methods to accurately quantify these compounds is mandatory. This work illustrates the comparison of three independent methods for the determination of the methylation index, all of them based on the chromatographic separation of the two species (SAM and SAH) using either ion-pairing reversed phase or cation exchange chromatography. The species detection was conducted using either molecular absorption spectrophotometry (HPLC-UV) or mass spectrometry with electrospray (ESI-MS/MS) as ionization source or inductively coupled plasma (DF-ICP-MS) by monitoring the S-atom contained in both analytes. The analytical performance characteristics of the three methods were critically compared obtaining best features for the combination of reversed phase HPLC with ESI-MS in the MRM mode. In this case, detection limits of about 0.5ngmL(-1) for both targeted analytes permitted the application of the designed strategy to evaluate the effect of cisplatin on the changes of the methylation index among epithelial ovarian cancer cell lines sensitive (A2780) and resistant (A2780CIS) to this drug after exposition to cisplatin.

  17. Changes in the Vibrational Spectra of Zeolites Due to Sorption of Heavy Metal Cations

    Science.gov (United States)

    Król, M.; Mozgawa, W.; Barczyk, K.; Bajda, T.; Kozanecki, M.

    2013-11-01

    This work presents the results of spectroscopic (MIR and Raman) studies of zeolite structures after immobilization of heavy metal cations from aqueous solutions. The sorption of Ag+, Cu2+, Cd2+, Pb2+, Zn2+, and Cr3+ ions has been conducted on zeolites belonging to different structural groups, i.e., sodium forms of natural chabazite, mordenite, ferrierite, and clinoptilolite, as well as on synthetic zeolite Y. Systematic changes in intensities and positions of the bands corresponding to the characteristic ring vibrations have been observed in the measured spectra. The most visible changes are observed in the FT-IR spectra of the samples in the range of 850-450 cm-1, and in the Raman spectra in the range of 600-250 cm-1. Depending on the zeolite structure, the bands, which can be regarded as a kind of indicator of ion exchange, were indentifi ed. For example, in the case of IR spectra, these bands are at 766, 703, 648, 578, and 506 cm-1 for zeolite Y, at 733 and 560 cm-1 for mordenite, at 675 cm-1 for clinoptilolite, etc. The degree of changes depends on both the type of cation and its concentration in the initial solution. This is connected with the way of binding of metal ions to the zeolite aluminosilicate framework, i.e., a proportion of the ion exchange and chemisorption in the process. Cations mainly undergoing ion exchange, such as Cd2+ or Pb2+, have the greatest impact on the character of the spectra. On the other hand, Cr3+ ions practically do not modify the spectra of zeolites. Results of IR and Raman spectroscopic studies have been compared with those obtained by atomic absorption spectroscopy (AAS), from which the proportion of ion exchange to chemisorption in the process and the effective cation exchange capacity of the individual samples have been estimated.

  18. Dynamics of tundra ecosystems and their potential response to energy research development. Soil chemical aspects of plant nutrition in alpine tundra at Eagle Summit, Alaska. II. Exchange chemistry of mineral and organic soils from Eagle Summit, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, L.

    1983-02-15

    Some aspects of the nutrient status of an arctic organic soil and an arctic mineral soil are described and contrasted with emphasis on soil properties which may be important in the availability of nutrients to plants. Field conditions related to the exchange chemistry of calcium, magnesium, and potassium, pH dependency of cation exchange capacity, exchange isotherms, and soil buffering power for pH, calcium, magnesium and potassium are discussed.

  19. 强酸性阳离子交换树脂催化合成乙酰水杨酸的研究%Synthesis of acetylsalicylic acid using strong-acidic cation-exchange resin as catalyst

    Institute of Scientific and Technical Information of China (English)

    赵志刚; 谢志融; 陈靠山

    2012-01-01

    目的:探讨001×7强酸性阳离子交换树脂催化合成乙酰水杨酸的方法和最佳工艺.方法:通过正交试验探讨了乙酸酐与水杨酸的摩尔比、反应时间、催化剂用量和反应温度对乙酰水杨酸产率的影响,并探讨催化剂的催化能力与使用次数的关系.结果:乙酸酐与水杨酸的摩尔比为3:1、催化剂用量为水杨酸质量的14.50%、反应时间120 min、反应温度60 ℃时,乙酰水杨酸产率最高,为77.93%.结论:001×7强酸性苯乙烯系阳离子交换树脂对酯化反应催化效果好,副反应少,对环境污染小,能重复使用,值得大力推广.%Objective:To optimize the technology of synthesizing acetylsalicylic acid using 001 × 7 strong-acidic cation-exchange resin as catalyst . Methods : Orthogonal experiment was performed to examine the effect of molar ratio of reactants,reaction time, dosage of catalyst, and reaction temperature on the yield of product as well as the efficiency and frequencies of the resin recycled and shifted on the synthesis. Results :The optimal reaction conditions were 3:1 (the ratio of acetic anhydride to salicylic acid,n:n),in a dosage of the resin 14. 50% of salicylic acid,for the reaction time of 120 min at temperature of 60 ℃ , which led to a yield of 77.93 % . Conclusion: 001 × 7 strong-acidic cat ion-exchange resin works well on esterification reaction as a environmentally friendly catalyst and is worthy of wider use, for it has efficient activity, less adverse reaction and recyclable advantages.

  20. Cationic ruthenium alkylidene catalysts bearing phosphine ligands

    OpenAIRE

    Endo, Koji; Grubbs, Robert H.

    2016-01-01

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bear-ing bulky phosphine ligands. Simple ligand exchange using silver(I) salts of non-coordinating or weakly coordinating anions pro-vided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported...

  1. Development and evaluation of a new sorption model for organic cations in soil: contributions from organic matter and clay minerals.

    Science.gov (United States)

    Droge, Steven T J; Goss, Kai-Uwe

    2013-12-17

    This study evaluates a newly proposed cation-exchange model that defines the sorption of organic cations to soil as a summed contribution of sorption to organic matter (OM) and sorption to phyllosilicate clay minerals. Sorption to OM is normalized to the fraction organic carbon (fOC), and sorption to clay is normalized to the estimated cation-exchange capacity attributed to clay minerals (CECCLAY). Sorption affinity is specified to a fixed medium composition, with correction factors for other electrolyte concentrations. The model applies measured sorption coefficients to one reference OM material and one clay mineral. If measured values are absent, then empirical relationships are available on the basis of molecular volume and amine type in combination with corrective increments for specific polar moieties. The model is tested using new sorption data generated at pH 6 for two Eurosoils, one enriched in clay and the other, OM, using 29 strong bases (pKa > 8). Using experimental data on reference materials for all tested compounds, model predictions for the two soils differed on average by only -0.1 ± 0.4 log units from measured sorption affinities. Within the chemical applicability domain, the model can also be applied successfully to various reported soil sorption data for organic cations. Particularly for clayish soils, the model shows that sorption of organic cations to clay minerals accounts for more than 90% of the overall affinity.

  2. Estimated times to exhaustion and power outputs at the gas exchange threshold, physical working capacity at the rating of perceived exertion threshold, and respiratory compensation point.

    Science.gov (United States)

    Bergstrom, Haley C; Housh, Terry J; Zuniga, Jorge M; Camic, Clayton L; Traylor, Daniel A; Schmidt, Richard J; Johnson, Glen O

    2012-10-01

    The purposes of this study were to compare the power outputs and estimated times to exhaustion (T(lim)) at the gas exchange threshold (GET), physical working capacity at the rating of perceived exertion threshold (PWC(RPE)), and respiratory compensation point (RCP). Three male and 5 female subjects (mean ± SD: age, 22.4 ± 2.8 years) performed an incremental test to exhaustion on an electronically braked cycle ergometer to determine peak oxygen consumption rate, GET, and RCP. The PWC(RPE) was determined from ratings of perceived exertion data recorded during 3 continuous workbouts to exhaustion. The estimated T(lim) values for each subject at GET, PWC(RPE), and RCP were determined from power curve analyses (T(lim) = ax(b)). The results indicated that the PWC(RPE) (176 ± 55 W) was not significantly different from RCP (181 ± 54 W); however, GET (155 ± 42 W) was significantly less than PWC(RPE) and RCP. The estimated T(lim) for the GET (26.1 ± 9.8 min) was significantly greater than PWC(RPE) (14.6 ± 5.6 min) and RCP (11.2 ± 3.1 min). The PWC(RPE) occurred at a mean power output that was 13.5% greater than the GET and, therefore, it is likely that the perception of effort is not driven by the same mechanism that underlies the GET (i.e., lactate buffering). Furthermore, the PWC(RPE) and RCP were not significantly different and, therefore, these thresholds may be associated with the same mechanisms of fatigue, such as increased levels of interstitial and (or) arterial [K⁺]. PMID:22716291

  3. Preparation and characterization of spermine-exchanged montmorillonite and interaction with the herbicide fluometuron

    OpenAIRE

    Gámiz, B.; Celis, R.; Hermosín, M. C.; Cornejo, J.; Johnston, C. T.

    2012-01-01

    We studied the interaction between the naturally occurring polycation spermine (SPERM) and Na-exchanged SWy-2 Wyoming montmorillonite (Na-SWy-2 Mt) and between spermine-exchanged montmorillonite (Mt-SPERM) and the herbicide fluometuron. Mt-SPERM with spermine contents ranging between 0 and 1.2 times the cation exchange capacity (CEC) of Na-SWy-2 were studied by XRD, FTIR and TGA analysis. Spermine was intercalated stoichiometrically into Na-SWy-2 up to the CEC of the clay mineral, resulting i...

  4. Investigation of using Zeolite A and P synthesized from Iranian natural clinoptilolite for removal of heavy cations from simulated wastes

    International Nuclear Information System (INIS)

    Various methods have been used for the the removal o f heavy metal cations from mineral and industrial wastes. This research deals with the use of synthetic zeolites A and P synthesized from natural clinoptilolite for the removal process because of their superiority to ones. Ion exchange capacity of natural and synthetic samples was determined, then, the effects of some parameters such as temperature, time, and acidity on sorption were investigated as well as continues sorption. The sorption of lead cations was much better than that of other cations with the use of the synthetic samples and the rise in temperature and in pH has no significant effect. Sorption of this cations on the column was good. The results of cadmium sorption was promising and increasing the temperature increased the sorption and decreasing the pH decreased it. The sorption of zinc was rationally good; however it was less than previous cations, and increased with increasing the temperature. The results of nickel sorption in comparison with other cation, at high concentration was not promising. However, the results, at low concentration were good. Temperature had strong effect on nickel sorption

  5. Studies on Natural CXN Zeolite:Modification, Framework De-alumination and lon-exchange

    Institute of Scientific and Technical Information of China (English)

    LONG,Ying-Cai(龙英才); XIA,Xiao-Hui(夏晓慧); YANG,Bo(杨波); ZHANG,Ling-Mei(张玲妹); ZHOU,Wei-Zheng(周伟正); GAO,Zhi-Long(曹智龙); LI,Cai-Yun(李彩云)

    2004-01-01

    A natural CXN zeolite (stilbite, type code-STI) discovered in China was modified with NH4+ exchange by using ammonium salt and calcinations (procedure Ⅰ), or with NH4+ exchange followed by treatment with acid (procedure Ⅱ). The coordination state of Si and Al atoms in the framework, the property of ion exchange, and the adsorption of the H-STI zeolite samples prepared by different modification procedure were investigated with XRD,EDX, 29Si and 27Al MAS NMR, Ag+ ion exchange and N2 adsorption. The results of the investigations indicate that different procedure of the modification made variety on the distribution of the framework Si atoms and Al atoms,the content of non-framework aluminum, and the blocking channels and the shielding effect to the positions of the exchangeable cations. The H-STI zeolite prepared by the procedure Ⅱ possesses high ion exchange capacity, open and perfect pore system, and high thermal stability.

  6. Experimental and density functional theory study of the adsorption of N2O onion-exchanged ZSM-5: Part II.The adsorption of N2O on main-group ion-exchanged ZSM-5

    Institute of Scientific and Technical Information of China (English)

    Bo Zhang; Yongan Lu; Hong He; Jianguo Wang; Changbin Zhang; Yunbo Yu; Li Xue

    2011-01-01

    The adsorption and desorption of N2O on main-group ion-exchanged ZSM-5 was studied using temperature-programmed desorption (TPD) and density functional theory (DFT) calculations.TPD experiments were carried out to determine the desorbed temperature Tmax corresponding to the maximum mass intensity of N2O desorption peak and adsorption capacity of N2O on metal-ion-exchanged ZSM5s.The results indicated that Tmax followed a sequence of Ba2+ > Ca2+ > Cs+ > K+ > Na+ > Mg2+and the amount of adsorbed N2O on main-group metal cation followed a sequence of Ba2+ > Mg2+ > Ca2+ > Na+ > K+ > Cs+.The DFT calculations were performed to obtain the adsorption energy (Eads), which represents the strength of the interaction between metal cations and the N-end or O-end of N2O.The calculation results showed that the N-end of the N2O molecule was favorably adsorbed on ion-exchanged ZSM-5, except for Cs-ZSM-5.For alkali metal cations, the Eads of N2O on cations followed the order which was the same to that of Tmax: Cs+ > K+ > Na+.The calculated and experimental results consistently showed that the adsorption performances of alkaline-earth metal cations were better than those of alkali metal cations.

  7. Hidrólise parcial da superfície do polyethylene terephthalate (PET: transformando um rejeito em um material de troca catiônica para aplicação ambiental Partial hydrolysis of pet surface: transforming a plastic waste into a material with cationic exchange properties for environmental application

    Directory of Open Access Journals (Sweden)

    Marcelo G. Rosmaninho

    2009-01-01

    Full Text Available In this work it is proposed a simple and versatile undergraduate chemical experiment in polymer and environmental technology based on the process of polyethylene terephthalate (PET hydrolysis. Polyethylene terephthalate from post-consume bottles is submitted to a controlled partial hydrolysis which allows the students to follow the reaction by a simple procedure. The students can explore the reaction kinetics, the effect of catalysts and the exposed polyethylene terephthalate surface area on the hydrolysis reaction. The second and innovative part of this experiment is the technological and environmental application of the hydrolyzed polyethylene terephthalate as a material with cation exchange properties. The surface hydrolyzed polyethylene terephthalate can be used as adsorbent for cationic contaminants.

  8. Chromatographic separation of inorganic ions on thin layers of titanium phosphate ion-exchanger.

    Science.gov (United States)

    Ghoulipour, Vanik; Safari, Moharram

    2014-12-01

    The chromatographic behavior of 30 inorganic cations has been studied on thin layers of titanium phosphate ion-exchanger using several aqueous, organic and mixed mobile phases. The separation of one ion from several other ions and also ternary and binary separations have been developed. Some important analytical separations are reported. The effect of pH of the mobile phase on retention factor (Rf) values of the cations in the presence of complex-forming anion along with the separation power of the ion-exchanger were studied. This ion-exchanger exhibits high sorption capacity and varying selectivity towards metal ions and makes it a suitable stationaiy phase in thin layer chromatography.

  9. Chromatographic separation of inorganic ions on thin layers of titanium phosphate ion-exchanger

    Institute of Scientific and Technical Information of China (English)

    Vanik GHOULIPOUR; Moharram SAFARI

    2014-01-01

    The chromatographic behavior of 30 inorganic cations has been studied on thin layers of titanium phosphate ion-exchanger using several aqueous,organic and mixed mobile phases. The separation of one ion from several other ions and also ternary and binary separations have been developed. Some important analytical separations are reported. The effect of pH of the mobile phase on retention factor(Rf)values of the cations in the presence of complex-forming anion along with the separation power of the ion-exchanger were studied. This ion-exchanger exhibits high sorption capacity and varying selectivity towards metal ions and makes it a suitable stationary phase in thin layer chromatography.

  10. Prepared polymethacrylate-based monoliths for the separation of cations by non-suppressed capillary ion chromatography.

    Science.gov (United States)

    Li, Jing; Zhu, Yan

    2014-01-01

    This paper describes a novel analytical system for non-suppressed capillary ion chromatography. Methacrylate monolithic columns were prepared from silanized fused-silica capillaries of 320 µm i.d. by in situ polymerization of glycidyl methacrylate and ethylene dimethacrylate in the presence of 1,4-butanediol, 1-propanol and water as the porogen solvents. The introduction of cation-exchange sites was achieved by sulfonating the matrix with sodium sulfite to produce total cation-exchange capacities in the range of 45-105 μequiv/mL for a 25 cm column. The conditions (concentrations of sodium sulfite solution, reacting time and modified flow rate) of sulfonation were optimized. The hydrodynamic and chromatographic performances were estimated. Coupled with a conductivity detector, a capillary ion chromatography system was set up with the prepared column. Finally, the resultant column was used for the separations of five common univalent cations (Li(+), Na(+), NH4(+), K(+) and Cs(+)) using methanesulfonic acid as the eluent and four divalent cations (Mg(2+), Ca(2+), Sr(2+) and Ba(2+)) by non-suppressed capillary ion chromatography; the chromatographic parameters were further researched.

  11. Cation locations and dislocations in zeolites

    Science.gov (United States)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  12. Declines in Soil pH due to Anthropogenic Nitrogen Inputs Alter Buffering and Exchange Reactions in Tropical Forest Soils

    Science.gov (United States)

    Lohse, K. A.

    2003-12-01

    Anthropogenic nitrogen (N) inputs may alter tropical soil buffering and exchange reactions that have important implications for nutrient cycling, forest productivity, and downstream ecosystems. In contrast to relatively young temperate soils that are typically buffered from N inputs by base cation reactions, aluminum reactions may serve to buffer highly weathered tropical soils and result in immediate increases in aluminum mobility and toxicity. Increased nitrate losses due to chronic N inputs may also deplete residual base cations in already weathered base cation-poor soils, further acidify soils, and thereby reduce nitrate mobility through pH-dependent anion exchange reactions. To test these hypotheses, I determined soil pH and cation and anion exchange capacity (CEC and AEC) and measured base cation and aluminum soil solution losses following first-time and long-term experimental N additions from two Hawaiian tropical forest soils, a 300 year old Andisol and a 4.1 million year old Oxisol. I found that elevated base cation losses accompanied increased nitrate losses after first time N additions to the young Andisol whereas immediate and large aluminum losses were associated with increased nitrate losses from the Oxisol. In the long-term, base cation and aluminum losses increased in proportion to nitrate losses. Long-term N additions at both sites resulted in significant declines in soil pH, decreased CEC and increased AEC. These results suggest that even chronic N inputs resulting in small but elevated nitrate losses may deplete residual base cations, increase mobility and toxicity of aluminum, and potentially lead to declines in forest productivity and acidification of downstream ecosystems. These findings also suggest that AEC may provide a long-term mechanism to delay nitrate losses in tropical forests with significant variable charge that are experiencing chronic anthropogenic N inputs.

  13. Cátions trocáveis, capacidade de troca de cátions e saturação por bases em solos brasileiros adubados com composto de lixo urbano Exchangeable cations, cation exchange capacity and base saturation in Brazilian soils amended with urban waste compost

    OpenAIRE

    Cassio Hamilton Abreu Jr.; Takashi Muraoka; Fernando Carvalho Oliveira

    2001-01-01

    O uso agrícola do composto de lixo, como fertilizante orgânico, além de melhorar as propriedades do solo, representa uma alternativa importante para gestão de resíduos sólidos domiciliares. Foram estudados os efeitos da aplicação do composto de lixo, proveniente da cidade de São Paulo (Usina de compostagem São Matheus), na dose de 30 g dm-3 (60 t ha-1), na presença e ausência de calcário dolomítico e adubos minerais, sobre os teores de cátions trocáveis (K+, Ca2+, Mg2+ e Na+); a capacidade de...

  14. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    Science.gov (United States)

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  15. Synthesis and chemical modification of polymeric resins for the treatment of cations and aromatic hydrocarbons in produced oily water; Sintese de modificacao quimica de resina polimerica e aplicacao na remocao de cations e hidrocarbonetos aromaticos presentes em agua produzida

    Energy Technology Data Exchange (ETDEWEB)

    Aversa, Thiago M.; Rodrigues, Monique F.; Vieira, Helida V.P.; Queiros, Yure G.C.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Lab. de Macromoleculas e Coloides na Industria do Petroleo, Rio de Janeiro, RJ (Brazil)], e-mail: thiagoaversa@ima.ufrj.br

    2011-07-01

    The use of chemically modified resins in oily water treatment process is not very developed yet. Because of this, this work suggests to study the styrene and divinylbenzene sulfonation effect on oil and grease, aniline and calcium removal from the water. The aniline, oils and greases belong to a class of toxic organic compounds, with the Brazilian maximum limits established for disposal in CONAMA 393/2007, while the calcium ions belong to the group of cations of alkaline earth metals which improve hardness to the water, may cause fouling as carbonates and sulfates form. By using sulfonated resins in oily water treatment it is possible to remove not only oils and greases but also calcium and aniline. These kinds of polar compounds are removed because of the cation exchange capacity of resin. (author)

  16. Neomycin-loaded poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials.

    Science.gov (United States)

    Nitanan, Todsapon; Akkaramongkolporn, Prasert; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2013-05-01

    In this study, poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) blended with polyvinyl alcohol (PVA) was electrospun and then subjected to thermal crosslinking to produce PSSA-MA/PVA ion exchange nanofiber mats. The cationic drug neomycin (0.001, 0.01, and 0.1%, w/v) was loaded onto the cationic exchange fibers. The amount of neomycin loaded and released and the cytotoxicity of the fiber mats were analyzed. In vivo wound healing tests were also performed in Wistar rats. The results indicated that the diameters of the fibers were on the nanoscale (250 ± 21 nm). The ion exchange capacity (IEC) value and the percentage of water uptake were 2.19 ± 0.1 mequiv./g-dry fibers and 268 ± 15%, respectively. The loading capacity was increased upon increasing the neomycin concentration. An initial concentration of 0.1% (w/v) neomycin (F3) showed the highest loading capacity (65.7 mg/g-dry fibers). The neomycin-loaded nanofiber mats demonstrated satisfactory antibacterial activity against both Gram-positive and Gram-negative bacteria, and an in vivo wound healing test revealed that these mats performed better than gauze and blank nanofiber mats in decreasing acute wound size during the first week after tissue damage. In conclusion, the antibacterial neomycin-loaded PSSA-MA/PVA cationic exchange nanofiber mats have the potential for use as wound dressing materials.

  17. Research on Purification Process of Vindoline and Catharanthine from Catharanthus roseus by Means of Cation Exchange Resin%阳离子交换树脂纯化长春花中文多灵和长春质碱的工艺优选

    Institute of Scientific and Technical Information of China (English)

    柏道鸣; 周广涛; 代龙

    2012-01-01

    Objective: To select the optimum purifying process of Vindoline and Catharanthine from Catharanthus roseus by means of cation exchange resin. Method: The purifying process of Vindoline and Catharanthine from Catharanthus roseus was performed by cation exchange resin of LSD-001 type, with the solvent of ammonia water, the mixture of ammonia water and ethanol, acid water, the mixture of acid water and ethanol, the mixture of sodium chloride and ethanol, and the content of two alkaloids were determined to choose the optimal technological parameters. Result: The ideal concentration of solvent was: with 80% ethanol ( containing 1% sodium chloride ) eluent elution, two alkaloids eluting attained the highest rate. Conclusion : The purification process has well effect.It can be used for purifying Vindoline and Catharanthine from Catharanthus roseus by means of cation exchange resin.%目的:考察阳离子交换树脂不同洗脱溶剂纯化长春花中文多灵和长春质碱的效果,优选最佳工艺条件.方法:采用LSD-001大孔型阳离子交换树脂对长春花中文多灵和长春质碱进行纯化,以两种生物碱含量为指标,考察以氨水、氨性乙醇、酸水、酸性乙醇、盐醇为洗脱剂纯化两种生物碱的效果.结果:经过优选,离子交换树脂的最佳洗脱条件为:以80%乙醇(含1%氯化钠)洗脱剂洗脱时,两种生物碱的洗脱率最高.结论:优选得到的工艺纯化长春花中文多灵和长春质碱效果好,节省溶剂,工艺简单,可用于长春花中两种生物碱的分离纯化.

  18. Effects of humic acid-based buffer + cation on chemical characteristics of saline soils and maize growth

    Directory of Open Access Journals (Sweden)

    W. Mindari

    2014-10-01

    Full Text Available Humic acid is believed to maintain the stability of the soil reaction, adsorption / fixation / chelate of cation, thereby increasing the availability of water and plant nutrients. On the other hand, the dynamics of saline soil cation is strongly influenced by the change of seasons that disrupt water and plant nutrients uptake. This experiment was aimed to examine the characteristics of the humic acid from compost, coal, and peat and its function in the adsorption of K+ and NH4+ cations, thus increasing the availability of nutrients and of maize growth. Eighteen treatments consisted of three humic acid sources (compost, peat and coal, two cation additives (K+ and NH4+, and three doses of humic acid-based buffer (10, 20, and 30 g / 3kg, were arranged in a factorial completely randomized with three replicates. The treatments were evaluated against changes in pH, electric conductivity (EC, cation exchange capacity (CEC, chlorophyll content, plant dry weight and plant height. The results showed that the addition of K+ and NH4+ affected pH, CEC, K+, NH4+, and water content of the buffer. Application of humic acid-based buffer significantly decreased soil pH from > 7 to about 6.3, decreased soil EC to 0.9 mS / cm, and increased exchangeable Na from 0.40 to 0.56 me / 100g soil, Ca from 15.57 to 20.21 me/100 g soil, Mg from 1.76 to 6.52 me/100 g soil, and K from 0.05-0.51 me / 100g soil. Plant growth (plant height, chlorophyll content, leaf area, and stem weight at 35 days after planting increased with increasing dose of humic acid. The dose of 2.0g peat humic acid + NH4+ / 3 kg of soil or 30g peat humic acid + K+ / 3 kg of oil gave the best results of maize growth.

  19. Electromechanical performance and other characteristics of IPMCs fabricated with various commercially available ion exchange membranes

    International Nuclear Information System (INIS)

    Ionic polymer–metal composites (IPMCs) are considered as some of the favorable candidates to be used as biomimetic actuators and sensors in an aqueous environment. Amongst all components that compose an IPMC, the ion exchange membrane is where hydrated cations migrate when an electric field is applied across the membrane and it eventually produces the deformation of the IPMC. Nafion® is the most commonly used ion exchange membrane. Many studies have been conducted on IPMCs made with Nafion®. In this study, three other commercially available ion exchange membranes were used to fabricate IPMCs and their performance as actuators was compared with IPMCs made with Nafion® membrane. Their potential for use in IPMC actuators was investigated by conducting various characterizations such as water uptake, ion exchange capacity, morphology, thermal property, blocking force and bending displacement. (paper)

  20. Effect of interlayer cations of montmorillonite on the biodegradation and adsorption of crude oil polycyclic aromatic compounds.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Manning, David A C; Fialips, Claire I

    2014-09-01

    Cation exchange capacity, surface acidity and specific surface area are surface properties of clay minerals that make them act as catalysts or supports in most biogeochemical processes hence making them play important roles in environmental control. However, the role of homoionic clay minerals during the biodegradation of polycyclic aromatic compounds is not well reported. In this study, the effect of interlayer cations of montmorillonites in the removal of some crude oil polycyclic aromatic compounds during biodegradation was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The homoionic montmorillonites were prepared via cation exchange reactions by treating the unmodified montmorillonite with the relevant metallic chloride. The study indicated that potassium-montmorillonite and zinc-montmorillonite did not enhance the biodegradation of the polycyclic aromatic hydrocarbons whereas calcium-montmorillonite, and ferric-montmorillonite enhanced their biodegradation significantly. Adsorption of polycyclic aromatic hydrocarbons was significant during biodegradation with potassium- and zinc-montmorillonite where there was about 45% removal of the polycyclic aromatic compounds by adsorption in the experimental microcosm containing 5:1 ratio (w/w) of clay to oil.

  1. Determination of Zeolite Cation Exchange Capacity by Automatic Titrator%自动滴定仪用于沸石阳离子交换容量测定的方法

    Institute of Scientific and Technical Information of China (English)

    蒲思川; 冯启明

    2008-01-01

    以甲醛法为基础,采用自动滴定仪电位滴定法测定沸石的阳离子交换容量,与pH计指示法、酸碱指示剂法相比,仪器灵敏度高、操作简单,使测定结果具有更高的准确度和更好的重复性.

  2. Drivers of Tree Species Effects on Phosphorus and Cation Cycling in Plantations at La Selva Biological Station, Costa Rica

    Science.gov (United States)

    Russell, A. E.

    2014-12-01

    Fast-growing trees in secondary forests and plantations in the humid tropics play an important role in the atmospheric CO2 balance owing to their high rates of carbon sequestration. Because plants require nutrients to sustain high CO2 uptake, differences among tree species in traits related to nutrient uptake, retention and recycling could influence ecosystem-scale carbon cycling. A better understanding of the relationships among plant traits, nutrient and carbon cycling will thus improve ecosystem- to global scale modeling of effects of vegetation change on carbon cycling. In an experimental setting in which state factors were similar among four species of tropical trees situated on an Oxisol in replicated, 25-yr-old, mono-dominant plantations, I evaluated various drivers of aboveground storage of phosphorus (P) and cations, measuring nutrient fluxes in litterfall and fine-root growth and storage in biomass and soil to 1-m depth. Because fine roots increase the capacity to scavenge nutrients already on exchange sites within the soil environment, I hypothesized that P and cation uptake would be correlated directly with fine-root growth. The four tree species in this experiment, Hieronyma alchorneoides, Pentaclethra macroloba, Virola koschnyi, and Vochysia guatemalensis differed significantly in net cation uptake over the first 25 years of growth (P = 0.013, Ca; P >0.0001, Mg, Mn, K, Al, Fe, and Sr). For all cations, aboveground tree biomass was highly correlated with fine-root ingrowth length, with P values >0.0001 for all cations except Ca (P = 0.013). In contrast for P, differences among species were only marginally significant (P = 0.062). Similarly, P in aboveground tree biomass was marginally correlated with fine-root ingrowth (P = 0.068). Neither cation nor P uptake was correlated with measures of available P and cations, organic or total P in surface soil. For P, the less significant correlation with fine-root growth suggests that some other mechanism, such

  3. Composition of exchangeable bases and acidity in soils of the Crimean Mountains

    Science.gov (United States)

    Kostenko, I. V.

    2015-08-01

    Acid forest and mountainous meadow soils of the Crimean Mountains were studied. The amount of hydrogen and aluminum ions extracted from these soils depended on the pH of extracting agents. The maximum values of the soil acidity were obtained upon the extraction with a strongly alkaline solution of sodium acetate in 0.05 N NaOH. The application of this extractant made it possible to determine the total exchange acidity, the total amount of extractable aluminum, and the total cation exchange capacity of the soils after the extraction of all the acidic components from them. The values of these characteristics were significantly higher than the values of the potential acidity and cation exchange capacity obtained by the routine analytical methods. Hydrogen predominated among the acidic components of the exchange acidity in the humus horizons, whereas aluminum predominated among them in the underlying mineral horizons. Hydrothermic conditions and the character of vegetation and parent materials were the major factors affecting the relationships between bases and acidic components in the soil adsorption complex.

  4. Influence of the ionic liquid cation on the solvent extraction of trivalent rare-earth ions by mixtures of Cyanex 923 and ionic liquids.

    Science.gov (United States)

    Rout, Alok; Binnemans, Koen

    2015-01-21

    Trivalent rare-earth ions were extracted from nitric acid medium by the neutral phosphine oxide extractant Cyanex 923 into ionic liquid phases containing the bis(trifluoromethylsulfonyl)imide anion. Five different cations were considered: 1-butyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, methyltributylammonium, methyltrioctylammonium and trihexyl(tetradecyl)phosphonium. The extraction behavior of neodymium(iii) was investigated as a function of various parameters: pH, extractant concentration, concentration of the neodymium(iii) ion in the aqueous feed and concentration of the salting-out agent. The loading capacity of the ionic liquid phase was studied. The extraction efficiency increased with increasing pH of the aqueous feed solution. The extraction occurred for all ionic liquids via an ion-exchange mechanism and the extraction efficiency could be related to the solubility of the ionic liquid cation in the aqueous phase: high distribution ratios for hydrophilic cations and low ones for hydrophobic cations. Addition of nitrate ions to the aqueous phase resulted in an increase in extraction efficiency for ionic liquids with hydrophobic cations due to extraction of neutral complexes. Neodymium(iii) could be stripped from the ionic liquid phase by 0.5-1.0 M nitric acid solutions and the extracting phase could be reused. The extractability of other rare earths present in the mixture was compared for the five ionic liquids.

  5. Role of extracellular cations in cell motility, polarity, and chemotaxis

    Directory of Open Access Journals (Sweden)

    Soll D

    2011-04-01

    Full Text Available David R Soll1, Deborah Wessels1, Daniel F Lusche1, Spencer Kuhl1, Amanda Scherer1, Shawna Grimm1,21Monoclonal Antibody Research Institute, Developmental Studies, Hybridoma Bank, Department of Biology, University of Iowa, Iowa City; 2Mercy Medical Center, Surgical Residency Program, Des Moines, Iowa, USAAbstract: The concentration of cations in the aqueous environment of free living organisms and cells within the human body influence motility, shape, and chemotaxis. The role of extracellular cations is usually perceived to be the source for intracellular cations in the process of homeostasis. The role of surface molecules that interact with extracellular cations is believed to be that of channels, transporters, and exchangers. However, the role of Ca2+ as a signal and chemoattractant and the discovery of the Ca2+ receptor have demonstrated that extracellular cations can function as signals at the cell surface, and the plasma membrane molecules they interact with can function as bona fide receptors that activate coupled signal transduction pathways, associated molecules in the plasma membrane, or the cytoskeleton. With this perspective in mind, we have reviewed the cationic composition of aqueous environments of free living cells and cells that move in multicellular organisms, most notably humans, the range of molecules interacting with cations at the cell surface, the concept of a cell surface cation receptor, and the roles extracellular cations and plasma membrane proteins that interact with them play in the regulation of motility, shape, and chemotaxis. Hopefully, the perspective of this review will increase awareness of the roles extracellular cations play and the possibility that many of the plasma membrane proteins that interact with them could also play roles as receptors.Keywords: extracellular cations, chemotaxis, transporters, calcium, receptors

  6. Thermodynamic Modeling of Sulfide Capacity of Na2O-Containing Oxide Melts

    Science.gov (United States)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho

    2016-10-01

    Thermodynamic modeling of the sulfide dissolution in the Na2O-FetO-CaO-MgO-MnO-Al2O3-SiO2 multicomponent slags was performed to investigate the desulfurization of hot metal using Na2O-containing fluxes. The dissolution behavior of sulfur in the melts was modeled using the modified quasi-chemical model in the quadruplet approximation. This model can take into account the short-range ordering and the reciprocal exchange reaction of cations and anions in oxy-sulfide slags. Experimental sulfide capacity data were well predicted from the model with only three model parameters.

  7. Zebrafish ("Danio rerio") endomembrane antiporter similar to a yeast cation/H(+) transporter is required for neural crest development

    Science.gov (United States)

    CAtion/H (+) eXchangers (CAXs) are integral membrane proteins that transport Ca (2+) or other cations by exchange with protons. While several yeast and plant CAX proteins have been characterized, no functional analysis of a vertebrate CAX homologue has yet been reported. In this study, we further ch...

  8. Simultaneous determination of NH4+, NO2- and NO3- by ion-exclusion/anion-exchange chromatography on a strongly basic anion-exchange resin with basic eluent%Simultaneous determination of NH4+,NO2- and NO3- by ion-exclusion/anion-exchange chromatography on a strongly basic anion-exchange resin with basic eluent

    Institute of Scientific and Technical Information of China (English)

    Masanobu MORI; Takahiro HIRONAGA; Hideyuki ITABASHI; Nobutake NAKATANI; Daisuke KOZAKI; Kazuhiko TANAKA

    2012-01-01

    Ion-exclusion/anion-exchange chromatography (IEC/AEC) on a combination of a strongly basic anion-exchange resin in the OH--form with basic eluent has been developed.The separation mechanism is based on the ion-exclusion/penetration effect for cations and the anion-exchange effect for anions to anion-exchange resin phase.This system is useful for simultaneous separation and determination of ammonium ion ( NH4+ ),nitrite ion (NO2-),and nitrate ion (NO3-) in water samples.The resolution of analyte ions can be manipulated by changing the concentration of base in eluent on a polystyrene-divinylbenzene based strongly basic anion-exchange resin column.In this study,several separation columns,which consisted of different particle sizes,different functional groups and different anion-exchange capacities,were compared.As the results,the separation column with the smaller anion-exchange capacity (TSKgel Super IC-Anion) showed well-resolved separation of cations and anions,In the optimization of the basic eluent,lithium hydroxide (LiOH) was used as the eluent and the optimal concentration was concluded to be 2 mmol/L,considering the resolution of analyte ions and the whole retention times.In the optimal conditions,the relative standard deviations of the peak areas and the retention times of NH4+,NO2-,and NO3- ranged 1.28% - 3.57% and 0.54% - 1.55%,respectively.The limits of detection at signal-to-noise of 3 were 4.10 μmol/L for NH4+,1.87 μmol/L for NO2- and 2.83 μmol/L for NO3-.

  9. New data on Cu-exchanged phillipsite: a multi-methodological study

    Science.gov (United States)

    Gatta, G. Diego; Cappelletti, Piergiulio; de'Gennaro, Bruno; Rotiroti, Nicola; Langella, Alessio

    2015-10-01

    The cation exchange capacity of a natural phillipsite-rich sample from the Neapolitan Yellow Tuff, Southern Italy (treated in order to obtain a 95 wt% zeolite-rich sample composed mainly of phillipsite and minor chabazite) for Cu was evaluated using the batch exchange method. The sample had previously been exchanged into its monocationic form (Na), and then used for the equilibrium studies of the exchange reaction 2Na+ ⇆ Cu2+. Reversibility ion exchange tests were performed. The isotherm displays an evident hysteresis loop. Interestingly, the final Cu-exchanged polycrystalline material was green-bluish. Natural, Na- and Cu-exchanged forms were analyzed by X-ray powder diffraction, and the Cu-phillipsite was also investigated by transmission electron microscopy (TEM). Structure refinement of Cu-phillipsite was performed by the Rietveld method using synchrotron data, and it indicates a small, but significant, fraction of Cu sharing with Na two-three independent extra-framework sites. The TEM experiment shows sub-spherical nano-clusters of crystalline species (with average size of 5 nm) lying on the surfaces of zeolite crystals or dispersed in the amorphous fraction, with electron diffraction patterns corresponding to those of CuO (tenorite-like structure) and Cu(OH)2 (spertiniite-like structure). X-ray and TEM investigations show that Cu is mainly concentrated in different species (crystalline or amorphous) within the sample, not only in phillipsite. The experimental findings based on X-ray and TEM investigations, along with the hysteresis loop of the ion exchange tests, are discussed and some general considerations about the mechanisms of exchange reactions involving divalent cations with high hydration energy are provided.

  10. Development of a Waste Water Regenerative System - Using Sphagnum Moss Ion-exchange

    Science.gov (United States)

    McKeon, M.; Wheeler, R.; Leahy, Jj

    The use of inexpensive, light weight and regenerative systems in an enclosed environment is of great importance to sustained existence in such habitats as the International Space Station, Moon or even Mars. Many systems exist which utilise various synthetic ion exchangers to complete the process of waste water clean-up. These systems do have a very good exchange rate for cations but a very low exchange rate for anions. They also have a maximum capacity before they need regeneration. This research proposes a natural alternative to these synthetic ion-exchangers that utilises one of natures greatest ion-exchangers, that of Sphagnum Moss. Sphagna can be predominantly found in the nutrient poor environment of Raised Bogs, a type of isolated wetland with characteristic low pH and little interaction with the surrounding water table. All nutrients come from precipitation. The sphagna have developed as the bog's sponges, soaking up all available nutrients (both cation & anion) from the precipitation and eventually distributing them to the surrounding flora and fauna, through the water. The goal of this research is to use this ability in the processing of waste water from systems similar to isolated microgravity environments, to produce clean water for reuse in these environments. The nutrients taken up by the sphagna will also be utilised as a growth medium for cultivar growth, such as those selected for hydroponics' systems.

  11. Treatment of Spent ion-Exchange Resins from NPP by Supercritical Water Oxidation (SCWO) Process

    International Nuclear Information System (INIS)

    The spent cationic exchange resins and anionic exchange resins were separated from mixed spent exchange resins by a fluidized bed gravimetric separator. The separated resins were identified by an elemental analysis and thermogravimetric analysis. The each test sample was prepared by diluting the slurry made by wet ball milling the cationic exchange resins and the anionic exchange resins separated as a spherical granular form for 24 hours. The resulting test samples showed a slurry form of less than 75 μm of particle size and 25,000 ppm of CODcr. The decomposition conditions of each test samples from a thermal power plant were obtained with a lab-scale(reactor volume: 220 mL) supercritical water oxidation (SCWO) facility. Then pilot plant(reactor volume : 24 L) tests were performed with the test samples from a thermal power plant and a nuclear power plant successively. Based on the optimal decomposition conditions and the operation experiences by lab-scale facility and the pilot plant, a commercial plant(capacity: 150 kg/h) can be installed in a nuclear power plant was designed.

  12. Combining material characterization with single and multi-oxyanion adsorption for mechanistic study of chromate removal by cationic hydrogel

    Institute of Scientific and Technical Information of China (English)

    Irene M. C. Lo; Ke Yin; Samuel C. N. Tang

    2011-01-01

    Cationic hydrogel with magnetic property was synthesized via radical polymerization and its removal capacity of chromate from contaminated water was found to be 200 mg/g.Using Fourier transform infrared spectroscopy (FT-IR) study, the mechanism of chromate removal by hydrogel was found to be non-specific adsorption, mainly due to ion exchange, as evidenced by the positively charged functional group, trimethyl ammonium -N+(CH3)3.in the monomer.Verifications were accordingly determined by testing different oxyanion adsorption onto the hydrogel.The results of the chromate adsorption experiments illustrated that the amount of chromate adsorbed was nearly equal to that of the chloride released from the hydrogel, which is part of the evidence for ion exchange.Single and multi-oxyanion adsorption experiments were also performed, and it was demonstrated that ion removal was species independent, but charge dependent, another characteristic of the ion exchange process.It was found that the same Langmuir model can be applied to best fit the findings of single and multi-oxyanion adsorption, which further indicates the mechanism of chromate removal is attributed to ion exchange.In view of the above, the background anions compete for adsorption sites with chromate,evidenced by inhibitive chromate removal in the presence of background electrolytes in the batch studies, further echoing the ion exchange mechanism.

  13. Two different cationic positions in Cu-SSZ-13?

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ja Hun; Zhu, Haiyang; Lee, Jong H.; Peden, Charles HF; Szanyi, Janos

    2012-04-18

    H2-TPR and FTIR were used to characterize the Cu ions present in Cu-SSZ-13 zeolite at different ion exchange levels. The results obtained are consistent with the presence of Cu ions in two distinct cationic positions of the SSZ-13 framework.

  14. Two different cationic positions in Cu-SSZ-13?

    Science.gov (United States)

    Hun Kwak, Ja; Zhu, Haiyang; Lee, Jong H; Peden, Charles H F; Szanyi, János

    2012-05-16

    H(2)-TPR and FTIR were used to characterize the nature of the Cu ions present in the Cu-SSZ-13 zeolite at different ion exchange levels. The results obtained are consistent with the presence of Cu ions at two distinct cationic positions in the SSZ-13 framework. PMID:22473309

  15. Competitive Effects of 2+ and 3+ Cations on DNA Compaction

    CERN Document Server

    Tongu, C; Yoshikawa, Y; Zinchenko, A A; Chen, N; Yoshikawa, K

    2016-01-01

    By using single-DNA observation with fluorescence microscopy, we observed the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA with 166 kbp). It was found that divalent cations, such as Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. These experimental observations are inconsistent with the well-established Debye-Huckel scheme regarding the shielding effect of counter ions, which is given as the additivity of contributions of cations with different valences. We interpreted the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counter ions before and after the folding transition of DNA. For the compaction with SPD(3+), we considered the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly-charged polyelectrolyte, double-st...

  16. 阳离子交换法制备稳定的近红外区核/壳型PbS/CdS量子点%Utilizing Cation Exchange Method to Produce Core/Shell PbS/CdS Quantum Dots with Stable Infrared Emission

    Institute of Scientific and Technical Information of China (English)

    李谦; 张腾; 古宏伟; 丁发柱; 屈飞; 彭星煜; 王洪艳; 吴战鹏

    2013-01-01

    硫化铅量子点(PbS QDs)的光氧化稳定性差是其应用于太阳能电池等领域的主要限制因素之一.采用阳离子交换法在合成的PbS量子点表面包裹一层具有更稳定、更大禁带宽度的硫化镉(CdS)壳层,制备出稳定的核/壳型PbS/CdS量子点;同时,研究了反应温度和反应时间对阳离子交换过程的影响规律.通过透射电子显微镜和高分辨透射电子显微镜(TEM/HRTEM)、X射线衍射仪(XRD)、吸收光谱和荧光光谱考察了所制备PbS/CdS量子点的结构、光学特性和光氧化稳定性,结果表明:阳离子交换过程中,离子交换反应程度有限、仅发生在量子点的表面层,但极薄的CdS壳层已能有效钝化PbS量子点的表面缺陷、显著提高其光氧化稳定性.%PbS quantum dots (QDs) have enormous potential for applications ranging from tunable infrared lasers to solar cells due to their efficient emission over a large spectral range in the infrared.Especially,multiple exciton generation has been observed in PbS QDs,which makes PbS QDs have great potential for high-efficiency solar cells.However,these applications have been limited by instability in emission quantum yield and peak position on exposure to ambient conditions.An effective strategy to improve PbS QDs' stability is overgrowth with a shell of a more stable semiconductor,such as CdS,resulting in core/shell PbS/CdS QDs.The PbS/CdS QDs were fabricated in a two-step method.In the first step,PbS QDs with a 4.8 nm diameter were prepared by using organic metal.Second,PbS/CdS QDs with 3.8 nm PbS core and 0.5 nm CdS shell were fabricated by exposing PbS QDs in Cd2+ solution for 24 h at 65 ℃.In this article,cation exchange method was adopted to moderate reaction temperature in a low temperature,so that Ostwald ripening in high temperature was avoided.The results of transmission electron microscopy (TEM) and high resolution TEM showed that PbS QDs were sphere and in a cubic cystal without obvious

  17. A single pump cycling-column-switching technique coupled with homemade high exchange capacity columns for the determination of iodate in iodized edible salt by ion chromatography with UV detection.

    Science.gov (United States)

    Huang, Zhongping; Subhani, Qamar; Zhu, Zuoyi; Guo, Weiqiang; Zhu, Yan

    2013-08-15

    A single pump cycling-column-switching technique has been developed for the iodate analysis in edible salt. Homemade high exchange capacity columns were adopted for the separation of iodate and chloride. Iodate could be retained and concentrated in a homemade concentrator column after eluents passing through the suppressor. With UV detection, iodate exhibited satisfactory linearity in the range of 0.1-10.0 mg/L with a correlation coefficient of 0.9996. The detection limit (LOD) was 45.53 μg/L, based on the signal-to-noise ratio of 3 (S/N=3) and a 100 μL injection volume. Relative standard deviations (RSDs) for retention time, peak area and peak height were all less than 2.1%. Recoveries of added iodate were in the range of 98.4-101.6% for the spiked samples. The quantitative determination of iodate in edible salt was accomplished by this column-switching technique, without any pretreatment and interference. The results on six samples were statistically compared with results determined by conventional titrimetric method. PMID:23561090

  18. Carrying Capacity

    DEFF Research Database (Denmark)

    Schroll, Henning; Andersen, Jan; Kjærgård, Bente

    2012-01-01

    carrying capacity (SCC) and assimilative carrying capacity (ACC). The act mandates that the latter two aspects must be taken into consideration in the local spatial plans. The present study aimed at developing a background for a national guideline for carrying capacity in Indonesian provinces and districts...... carrying capacity (ACC). The act mandates that the latter two aspects must be taken into consideration in the local spatial plans. The present study aimed at developing a background for a national guideline for carrying capacity in Indonesian provinces and districts/cities. Four different sectors (water...

  19. Gas-phase folding and unfolding of cytochrome c cations.

    OpenAIRE

    Wood, T D; Chorush, R A; Wampler, F M; Little, D P; O'Connor, P B; McLafferty, F. W.

    1995-01-01

    Water is thought to play a dominant role in protein folding, yet gaseous multiply protonated proteins from which the water has been completely removed show hydrogen/deuterium (H/D) exchange behavior similar to that used to identify conformations in solution. Indicative of the gas-phase accessibility to D2O, multiply-charged (6+ to 17+) cytochrome c cations exchange at six (or more) distinct levels of 64 to 173 out of 198 exchangeable H atoms, with the 132 H level found at charge values 8+ to ...

  20. Ion exchange synthesis and thermal characteristics of some $[\\text{N}^{+}_{2222}]$ based ionic liquids

    Indian Academy of Sciences (India)

    Vasishta D Bhatt; Kuldip Gohil

    2013-11-01

    Eight salts were obtained by reacting tetraethylammonium cation $[\\text{N}^{+}_{2222}]$ with inorganic anions like BF$^{-}_{4}$, NO$^{-}_{3}$, NO$^{-}_{2}$, SCN-, BrO$^{-}_{3}$, IO$^{-}_{3}$, PF$^{-}_{6}$ and HCO$^{-}_{3}$ using ion exchange method. These ionic liquids (ILs) were characterized using thermal methods, infrared spectroscopy and densitometry. Thermophysical properties such as density, coefficient of volume expansion, heat of fusion, heat capacity and thermal energy storage capacity were determined. Thermal conductivity of the samples was determined both in solid and liquid phases. Owing to high values of thermal energy storage capacity coupled with handsome liquid phase thermal conductivity, ILs under investigation were recommended as materials for thermal energy storage (TES) as well as heat transfer applications.

  1. Sorption of organic cations to phyllosilicate clay minerals: CEC-normalization, salt dependency, and the role of electrostatic and hydrophobic effects.

    Science.gov (United States)

    Droge, Steven T J; Goss, Kai-Uwe

    2013-12-17

    Sorption to the phyllosilicate clay minerals Illite, kaolinite, and bentonite has been studied for a wide variety of organic cations using a flow-through method with fully aqueous medium as the eluent. Linear isotherms were observed at concentrations below 10% of the cation-exchange capacity (CEC) for Illite and kaolinite and below 1 mmol/kg (clays was strongly influenced by the electrolyte composition of the eluent but with a consistent trend for a diverse set of compounds on all clays, thus allowing for empirical correction factors. When sorption affinities for a given compound to a given clay are normalized to the CEC of the clay, the differences in sorption affinities between clays are reduced to less than 0.5 log units for most compounds. Although CEC-normalized sorption of quaternary ammonium compounds to clay was up to 10-fold higher than CEC-normalized sorption to soil organic matter, CEC-normalized sorption for most compounds was comparable between clays and soil organic matter. The clay fraction is thus a potentially relevant sorption phase for organic cations in many soils. The sorption data for organic cations to clay showed several regular trends with molecular structure but also showed quite a few systematic effects that we cannot explain. A model on the basis of the molecular size and charge density at the ionized nitrogen is used here as a tool to obtain benchmark values that elucidate the effect of specific polar moieties on the sorption affinity.

  2. A lanthanide complex for metal encapsulations and anion exchanges.

    Science.gov (United States)

    Sun, Yan-Qiong; Wan, Fang; Li, Xin-Xiong; Lin, Jian; Wu, Tao; Zheng, Shou-Tian; Bu, Xianhui

    2016-08-01

    A cationic lanthanide metalloligand with 3 dangling carboxylate groups on its periphery co-assembles with nitrate into a porous thermochromic solid responsive to both external cations and anions, owing to the presence of exchangeable NO3(-) as well as cation cavities arising from cooperative orientation of free carboxylate groups. An especially interesting feature is the structural memory effect during crystallization exhibited by the metalloligand, even after dissolution and binding to secondary cations (Cu(2+), Cd(2+)…). Moreover, the porous solid can undergo ion-exchange with various anions, leading to tunable thermochromic temperature and color range. PMID:27463609

  3. Influence of organic matter type and medium composition on the sorption affinity of C12-benzalkonium cation.

    Science.gov (United States)

    Chen, Yi; Hermens, Joop L M; Droge, Steven T J

    2013-08-01

    We used the 7-μm polyacrylate ion-exchange SPME fibers to investigate C12-benzalkonium sorption to 10 mg/L natural organic matter at concentrations well below the cation-exchange capacity. C12-BAC sorption at constant medium conditions differed within 0.4 log units for two humic acids (Aldrich, Leonardite) and peat (Sphagnum, Pahokee), with similar nonlinear sorption isotherms (KF ∼ 0.8). Sorption to the SPME fibers and Aldrich humic acid (AHA) was reduced at both low pH and high electrolyte concentration, and reduced more strongly by Ca²⁺ compared with Na⁺ at similar concentrations. Sorption isotherms for AHA (5-50-500 mM Na⁺, pH 6) was modeled successfully by the NICA-Donnan approach, resulting in an intrinsic sorption coefficient of 5.35 (Caq = 1 nM). The NICA-Donnan model further explained the stronger specific binding of Ca²⁺ compared to Na⁺ by differences in Boltzmann factors. This study provides relevant information to interpret bioavailability of quaternary ammonium compounds, and possibly for other organic cations. PMID:23676325

  4. Copper cation removal in an electrokinetic cell containing zeolite.

    Science.gov (United States)

    Elsayed-Ali, Omar H; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E

    2011-01-30

    Zeolites are used in environmental remediation of soil or water to immobilize or remove toxic materials by cation exchange. An experiment was conducted to test the use a low electric field to direct the toxic cations towards the zeolite. An electrokinetic cell was constructed using carbon electrodes. Synthetic Linde Type A (LTA) zeolite was placed in the cell. Copper(II) chloride dissolved in water was used as a contaminant. The Cu(2+) concentration was measured for ten hours with and without an applied electric field. The removal of the Cu(2+) ions was accelerated by the applied field in the first two hours. For longer time, the electric field did not improve the removal rate of the Cu(2+) ions. The presence of zeolite and applied electric field complicates the chemistry near the cathode and causes precipitation of Cu(2+) ions as copper oxide on the surface of the zeolite. With increased electric field the zeolite farther away from the cathode had little cation exchange due to the higher drift velocity of the Cu(2+) ions. The results also show that, in the LTA Zeolite A pellets, the cation exchange of Cu is limited to a shell of several tens of micrometers. PMID:21109348

  5. Continuous elimination of Pb{sup 2+}, Cu{sup 2+}, Zn{sup 2+}, H{sup +} and NH{sub 4}{sup +} from acidic waters by ionic exchange on natural zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Benjamin [E.T.S. Ingenieros de Minas, Universidad Politecnica de Madrid, Rios Rosas 21, 28003 Madrid (Spain); Canoira, Laureano, E-mail: laureano.canoira.lopez@upm.es [E.T.S. Ingenieros de Minas, Universidad Politecnica de Madrid, Rios Rosas 21, 28003 Madrid (Spain); Morante, Fernando, E-mail: fmorante@espol.edu.ec [Instituto de Ciencias Quimicas y Ambientales, Escuela Superior Politecnica del Litoral, P.O. Box 09-01-5863, Guayaquil (Ecuador); Martinez-Bedia, Jose M.; Vinagre, Carlos; Garcia-Gonzalez, Jeronimo-Emilio [E.T.S. Ingenieros de Minas, Universidad Politecnica de Madrid, Rios Rosas 21, 28003 Madrid (Spain); Elsen, Jan, E-mail: jan.elsen@geo.kuleuven.be [Physico-Chemische Geologie, Katholieke Universiteit Leuven, Celestijnenlaan 200E, B-3001, Heverlee (Belgium); Alcantara, Ramon [E.T.S. Ingenieros de Minas, Universidad Politecnica de Madrid, Rios Rosas 21, 28003 Madrid (Spain)

    2009-07-30

    A study of breakthrough curves for cations usually found in acid mine drainage (Pb{sup 2+}, Cu{sup 2+}, Zn{sup 2+} and H{sup +}) and municipal wastewater (NH{sub 4}{sup +}) have been conducted on some natural zeolitic tuffs. The zeolitic tuffs used in this study are: three zeolitic tuffs from Cayo Formation, Guayaquil (Ecuador), characterized by X-ray diffraction as clinoptilolite (sample CLI-1) and heulandite (samples HEU-1 and HEU-2)-rich tuffs, and two zeolitic tuffs from Parnaiba Basin, Belem do Para (Brazil), characterized as stilbite-rich tuffs (samples STI-1 and STI-2). The clinoptilolite sample CLI-1 shows an exceedingly good exchange capacities for Pb{sup 2+} and NH{sub 4}{sup +} as received, and also a very high exchange capacity for Cu{sup 2+} and Zn{sup 2+} when conditioned with 2 M sodium chloride, with much higher values than those reported in the literature for other clinioptilolite ores. A general order of effective cation exchange capacity could be inferred from breakthrough curves on these zeolitic tuffs: CLI-1>HEU-2>HEU-1>STI-2 Since it is true for most of the cations studied.

  6. Bitstream - Capacity Building for Innovation : Final report

    OpenAIRE

    Söderström, Mikael; Hedestig, Ulf; Fallmyr, Terje; Ellingsen, Kjell; Hegerholm, Hallstein; Klæboe, Geir-Tore

    2014-01-01

    The main objective of the Bitstream project was to create a transnational platform for capacity building and exchange of experiences in the area of innovative business development. This includes capacity building for staff in the public sector in Norway and Sweden. The project deliverables has been to accomplish A virtual and physical transnational platform for capacity building that includes a cross-border exchange of experiences, research and developments in innovative business development....

  7. 1,2,3-Triazolium-Based Poly(2,6-Dimethyl Phenylene Oxide) Copolymers as Anion Exchange Membranes.

    Science.gov (United States)

    Liu, Lei; He, Shuqing; Zhang, Shufang; Zhang, Min; Guiver, Michael D; Li, Nanwen

    2016-02-01

    Anion exchange membranes (AEMs) based on 1,2,3-triazolium (TAM) were prepared from commercial poly(2,6-dimethyl phenylene oxide) (PPO) via "click chemistry" and subsequent N-alkylation. Flexible and tough membranes with various ion exchange capacities (IECs) were obtained by casting the polymers from NMP solutions. Although the resulting TAM-functionalized PPOs (PPO-TAM) membranes exhibited incomplete ion exchange in 1 M NaOH or NaHCO3 for 24 h even at elevated temperature, the highest hydroxide conductivities of the membranes were above 20 mS/cm at room temperature, which is comparable to many reported AEMs. Alkaline stability tests indicate that the PPO-TAM membranes showed a better alkaline stability than that of membranes containing imidazolium groups in 1 M NaOH at 80 °C, but still require further improvements in long-term stability for alkaline fuel cell application. An investigation of alkaline stability of model compounds demonstrated the instability of TAM cations under alkaline conditions could contribute to the deprotonation of benzylic methylene, C4 and C5 position on the triazolium ring. These results suggests that the alkaline stability of 1,2,3-triazolium cation could be improved by the introduction of substituents at the C4, C5 positions and benzylic methylene, and also provide insight and directions for organic cation designs for AEM application by the facile synthetic strategy of "click chemistry". PMID:26820176

  8. Catalysis using hydrous metal oxide ion exchangers

    Science.gov (United States)

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  9. Catalysis using hydrous metal oxide ion exchanges

    Science.gov (United States)

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  10. Biosorption of radiocesium by deinococcus radiodurans influenced by cations

    International Nuclear Information System (INIS)

    Deinococcus radiodurans has a strong ability to withstand high doses of radiation, which makes it as an ideal candidate for bioremediation of sites contaminated with radionuclides and toxic chemicals. However, no data is available on whether D. radiodurans has a specific sorption capacity to radiocesium for bioremediation purpose. The radiocesium biosorption capacity of live cells of D. radiodurans in the presence of other interfering cations was investigated. The maximum biosorption capacity of radiocesium by D. radiodurans in equilibrium state was about 2,100 kBq/kg (fresh weight basis). Among the tested monovalent cations, NH4+ had the strongest antagonism on 134Cs biosorption for D. radiodurans. However, this antagonism could only be observed at a concentration as high as 100 mmol/L. Divalent cations, such as Ca2+ and Pb2+ could reduced the biosorption of radiocesium by D. radiodurans. Al3+ and Cr3+ were cytotoxic to D. radiodurans cells, the growth of D. radiodurans cells was inhibited when the concentrations of these cations were greater than 1 mmol/L. (authors)

  11. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    Science.gov (United States)

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-). PMID:22818952

  12. Cation exchange and adsorption on clays and clay minerals

    OpenAIRE

    Ammann, Lars

    2003-01-01

    The specific surface area of a clay mineral comprises the external and internal surface area and, finally, the surface area which is exposed to the solution (Chap. 6.1). The aim of this study was to correlate adsorption data of common clays with these specific surface areas.

  13. Mercury release from deforested soils triggered by base cation enrichment.

    Science.gov (United States)

    Farella, N; Lucotte, M; Davidson, R; Daigle, S

    2006-09-01

    The Brazilian Amazon has experienced considerable colonization in the last few decades. Family agriculture based on slash-and-burn enables millions of people to live in that region. However, the poor nutrient content of most Amazonian soils requires cation-rich ashes from the burning of the vegetation biomass for cultivation to be successful, which leads to forest ecosystem degradation, soil erosion and mercury contamination. While recent studies have suggested that mercury present in soils was transferred towards rivers upon deforestation, little is known about the dynamics between agricultural land-use and mercury leaching. In this context, the present study proposes an explanation that illustrates how agricultural land-use triggers mercury loss from soils. This explanation lies in the competition between base cations and mercury in soils which are characterized by a low adsorption capacity. Since these soils are naturally very poor in base cations, the burning of the forest biomass suddenly brings high quantities of base cations to soils, destabilizing the previous equilibrium amongst cations. Base cation enrichment triggers mobility in soil cations, rapidly dislocating mercury atoms. This conclusion comes from principal component analyses illustrating that agricultural land-use was associated with base cation enrichment and mercury depletion. The overall conclusions highlight a pernicious cycle: while soil nutrient enrichment actually occurs through biomass burning, although on a temporary basis, there is a loss in Hg content, which is leached to rivers, entering the aquatic chain, and posing a potential health threat to local populations. Data presented here reflects three decades of deforestation activities, but little is known about the long-term impact of such a disequilibrium. These findings may have repercussions on our understanding of the complex dynamics of deforestation and agriculture worldwide. PMID:16781764

  14. Morphology of sulfonated polyimide ionomers from ESR spectra of paramagnetic transition metal cations and nitroxide spin probes

    International Nuclear Information System (INIS)

    We present a study of sulfonated polyimide block ionomer membranes (SPIs) in the dry state, and swollen by water, methanol, ethanol, and dioxane. The ionomers are based on a naphthalenic dianhydride, and differ in the ionic exchange capacity and the type of diamine in the hydrophobic block. The ionomers were studied by electron spin resonance (ESR) spectroscopy of the paramagnetic transition metal cations Cu+ and VO2+, and of two nitroxide spin probes. The results indicated the existence of separate hydrophobic and hydrophilic domains in the dry and in the swollen membranes. Water clusters with a diameter + or K+. The irreversible increase of the signal intensity upon heating of the dry membranes above 360 K suggests the formation of reactive intermediates that may be involved in ionomer degradation processes. (author)

  15. 基于温度和热容流率同时变化的有分流换热网络弹性设计的研究%Synthesis of Flexible Heat Exchanger Networks with Stream Splits Based on Rangers of Stream Supply Temperatures and Heat Capacity Flowrates

    Institute of Scientific and Technical Information of China (English)

    李志红; 罗行; 华贲; W.Roetzel

    2004-01-01

    A new superstructure model of heat exchanger networks (HEN) with stream splits based on rangers of streams supply temperatures and heat capacity flow rates is presented. The simultaneous optimal mathematical model of flexible HEN synthesis is established too. Firstly, the streams with rangers of supply temperatures and/or the streams with the rangers of heat capacity flow rates are pretreated; Secondly, several rules are proposed to establish the superstructure model of HEN with splits and the simultaneous optimal mathematical model of flexible HEN; Thirdly, the improving genetic algorithm is applied to solve the mathematical model established at the second step effectively, and the original optimal structure of HEN based on the maximum operation limiting condition can be obtained easily; Finally, the rules of heat exchange unit merged and the heat load of heat exchanger relaxed are presented, the flexible configuration of HEN satisfied the operation condition between the upper and down bounds of supply temperature and heat capacity flow rates can be obtained based on the original optimal structure of HEN by means of these rules. A case study demonstrates the method presented in this paper is effective

  16. Experimental research on heat transfer in a coupled heat exchanger

    OpenAIRE

    Liu Yin; Ma Jing; Zhou Guang-Hui; Guan Ren-Bo

    2013-01-01

    The heat exchanger is a devise used for transferring thermal energy between two or more different temperatures. The widespreadly used heat exchanger can only achieve heat exchange between two substances. In this paper, a coupled heat exchanger is proposed, which includes a finned heat exchanger and a double pipe heat exchanger, for multiple heat exchange simultaneously. An experiment is conducted, showing that the average heating capacity increases more tha...

  17. Metal cations inserted in vanadium-oxide nanotubes

    International Nuclear Information System (INIS)

    Vanadium-oxide nanotubes (VO x-NTs) consist of nanosize cylinders of thin, easily bent vanadyl (VO x) wall chains, which are open at both ends. Surfactant molecules (e.g. C12H27N) can be easily trapped in the interior of the nanotube walls. The structure of as-synthesized VO x-NTs are observed to collapse to an amorphous vanadium oxide at temperatures greater than 250 deg, C. This happens, even under a protective atmosphere. This property makes the VO x-NTs unusable as a catalyst at temperatures between 400-500 deg, C, which is the temperature range where many applications would exist. In order to increase the thermal stability of VO x-NTs several exchange reactions have been used to modify the original nanotubes. In these reactions metallic cations (Cd2+, Co2+, Mn2+ or Zn2+) were introduced. It was observed that that the morphology of the nanotubes remained unchanged after the exchange reactions were performed. In order to characterize the exchanged VO x-NTs the following analytic techniques were used: scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared, particle-induced X-ray emission and Rutherford backscattering spectrometry. The results showed that the VO x-NTs exchanged with metallic cations have preserved their tubular morphology. However, it has not been possible to fully perform a 100% efficient exchange reaction

  18. Adsorption separation of carbon dioxide, methane, and nitrogen on Hβ and Na-exchanged β-zeolite

    Institute of Scientific and Technical Information of China (English)

    Xiaoliang Xu; Xingxiang Zhao; Linbing Sun; Xiaoqin Liu

    2008-01-01

    Adsorption isotherms of carbon dioxide (CO2), methane (CH4), and nitrogen (N2) on Hβ and sodium exchanged β-zeolite (Naβ) were volumetrically measured at 273 and 303 K. The results show that all isotherms were of Brunauer type Ⅰ and well correlated with Langmuir-Freundlich model. After sodium ions exchange, the adsorption amounts of three adsorbates increased, while the increase magnitude of CO2 adsorption capacity was much higher than that of CH4 and N2. The selectivities of CO2 over CH4 and CO2 over N2 enhanced after sodium exchange. Also, the initial heat of adsorption data implied a stronger interaction of CO2 molecules with Na+ ions in Naβ. These results can be attributed to the larger electrostatic interaction of CO2 with extraframework cations in zeolites. However, Naβ showed a decrease in the selectivity of CH4 over N2, which can be ascribed to the moderate affinity of N2 with Naβ. The variation of isosteric heats of adsorption as a function of loading indicates that the adsorption of CO2 in Naβ presents an energetically heterogeneous profile. On the contrary, the adsorption of CH4 was found to be essentially homogeneous, which suggests the dispersion interaction between CH4 and lattice oxygen atoms, and such interaction does not depend on the exchangeable cations of zeolite.

  19. Test procedure for anion exchange chromatography

    International Nuclear Information System (INIS)

    Plutonium from stored nitrate solutions will be sorbed onto anion exchange resins and converted to storable plutonium dioxide. Useful information will be simultaneously gained on the thermal stability and ion exchange capacity of four commercially available anion exchange resins over several years and under severe degradative conditions. This information will prove useful in predicting the safe and efficient lifetimes of these resins

  20. Liquid-solid extraction of cationic metals by cationic amphiphiles

    International Nuclear Information System (INIS)

    In the field of selective separation for recycling of spent nuclear fuel, liquid-liquid extraction processes are widely used (PUREX, DIAMEX..) in industrial scale. In order to guarantee a sustainable nuclear energy for the forthcoming generations, alternative reprocessing techniques are under development. One of them bases on the studies from Heckmann et al in the 80's and consists in selectively precipitating actinides from aqueous waste solutions by cationic surfactants (liquid-solid extraction). This technique has some interesting advantages over liquid-liquid extraction techniques, because several steps are omitted like stripping or solvent washing. Moreover, the amount of waste is decreased considerably, since no contaminated organic solvent is produced. In this thesis, we have carried out a physico-chemical study to understand the specific interactions between the metallic cations with the cationic surfactant. First, we have analysed the specific effect of the different counter-ions (Cl-, NO3-, C2O42-) and then the effect of alkaline cations on the structural properties of the surfactant aggregation in varying thermodynamical conditions. Finally, different multivalent cations (Cu2+, Zn2+, UO22+, Fe3+, Nd3+, Eu3+, Th4+) were considered; we have concluded that depending on the anionic complex of these metals formed in acidic media, we can observe either an adsorption at the micellar interface or not. This adsorption has a large influence of the surfactant aggregation properties and determines the limits of the application in term of ionic strength, temperature and surfactant concentration. (author)

  1. Exchange Equilibria on the Surface of Ionic Crystals

    International Nuclear Information System (INIS)

    New experimental data obtained by tracer techniques are presented and discussed. The number of exchanging cations and anions per unit area on the surface of BaSO4 and SrSO4 was measured for equivalent particles, cationic particles and anionic particles. Equivalent particles obtained by washing the precipitates thoroughly with water showed constant ratios of exchanging cations and anions per unit area of the surface. For cationic particles and anionic particles obtained by treatmeni of the precipitates with solutions containing barium ions or sulphate ions respectively, the ratio of the numbers of exchanging cations and anions was changed to higher values (cationic particles) or to lower values (anionic particles). From the values obtained the number of potential determining ions on the surface was determined. In the case of SrSO4 the numbers of exchanging cations and anions per unit area of the surface were measured as a function of temperature. They were found to decrease rapidly below 40°C in water solutions. This is explained by the immobilization of the water molecules on special points of the surface (in cracks for instance) proceeding gradually on approaching the freezing point. In agreement with this explanation the immobilization starts at lower temperatures for water-methanol mixtures. The exchange equilibria between different cations have been measured on the surface of the alkaline earth carbonates and sulphates and on the surface of the alkali tetraphenylborates. The equilibrium constants for these heterogeneous exchange reactions are discussed. In general these equilibria show the same trend as the solubilities. Barium ions, for instance, are enriched on the surface of strontium sulphate. The ratio of the solubilities, however, is no measure for these equilibria. The exchange equilibria on the surface of the alkaline earth sulphates show ''ideal'' behaviour; they are independent of the lattice parameters. (author)

  2. Probing Capacity

    CERN Document Server

    Asnani, Himanshu; Weissman, Tsachy

    2010-01-01

    We consider the problem of optimal probing of states of a channel by transmitter and receiver for maximizing rate of reliable communication. The channel is discrete memoryless (DMC) with i.i.d. states. The encoder takes probing actions dependent on the message. It then uses the state information obtained from probing causally or non-causally to generate channel input symbols. The decoder may also take channel probing actions as a function of the observed channel output and use the channel state information thus acquired, along with the channel output, to estimate the message. We refer to the maximum achievable rate for reliable communication for such systems as the 'Probing Capacity'. We characterize this capacity when the encoder and decoder actions are cost constrained. To motivate the problem, we begin by characterizing the trade-off between the capacity and fraction of channel states the encoder is allowed to observe, while the decoder is aware of channel states. In this setting of 'to observe or not to o...

  3. 阳离子交换树脂催化制备纳米纤维素晶体的谱学性能与流变行为%Spectrum and Rheological Properties of Nanocellulose Crystal Prepared with Cation Exchange Resin

    Institute of Scientific and Technical Information of China (English)

    唐丽荣; 黄彪; 戴达松; 欧文; 李涛; 周东东; 陈学榕

    2011-01-01

    采用强酸型阳离子交换树脂在超声波辅助作用下制备了纳米纤维素晶体(NCC).采用场发射环境扫描电子显微镜(ESEM-FEG)、场发射透射电子显微镜(HR-TEM)、X射线粉末衍射仪(XRD)、傅利叶红外光谱仪(FT-IR)和转子式流变仪对所制备NCC的形貌、谱学和流变学行为进行了研究.结果表明,所制备NCC为近球形,颗粒尺寸约为25nm~50nm,样品属于纤维素Ⅰ型,结晶度为84.26%,晶粒平均由6个晶胞组成.由FT-IR分析可知,NCC仍具有纤维素的基本化学结构.NCC胶体为剪切变稀的假塑性流体,随着温度的升高,其黏度逐渐减小,并最终趋于平缓,结果表明NCC胶体具有较好的稳定性.%Nanocellulose crystal (NCC) was prepared by ultrasonic-assisted hydrolysis with strong acidic cation exchange resin. The size and morphology, crystal structure, spectrum properties and rheological behavior of nanocellulose crystal were investigated by field emission gun environment scanning electron microscopes (ESEM-FEG), field emission transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry(FT-IR) and rotor rheometer. The results indicate that the nanocellulose crystal is spherical and the size is about 25 nm~50 nm. The samples have the crystalline cellulose I structure, the crystallinity is 84.26% , and the grain is composed of 6 unit crystal cell. Moreover, the results of FT-IR show that NCC still has the basic chemical structure of cellulose. NCC is the shear thinned pseudoplastic fluid. Futhermore, as the temperature increases, its viscosity decreases, and gradually tends to flat, the results indicate that the samples enjoy nice stability.

  4. 基于阳离子交换-反相混合分离模式的液相色谱-质谱联用检测河豚毒素新方法%Determination of tetrodotoxin using a cation exchange-reverse phase liquid chromatography-mass spectrometric method

    Institute of Scientific and Technical Information of China (English)

    刘希; 陈佳; 刘勤; 郭磊; 毛军文; 谢剑炜

    2012-01-01

    Objective To establish a highly sensitive method suitable for detection of intoxicated biomedical samples with regard to tetrodotoxin ,one of the most toxic non-proteins as well as a hydrophilic small biotoxin . Methods A novel method for detection of tetrodotoxin in human blood plasma by liquid chromatography -time of flight/mass spectrometry ( LC-TOF/MS) technique was established using a cation exchange -reverse phase separation mode. The LC-MS analysis and extraction conditions were systematically optimized. Results For the tetrodotoxin standard sample , the linear calibration curve ranged from 0.1 to 50 mg/L and the limit of detection ( LOD) was 0.01 mg/L. For the tetrodotoxin exposed human plasma sample, the linear calibration curve ranged from 0.5 to 10 mg/L and the LOD was 0.25 mg/L, respectively. Conclusion Such an LC-TOF/MS established for the detection of tetrodotoxin is highly specific and sensitive , and it can be feasible for the detection of tetrodotoxin at mg/L level in puffer fish biosamples.%目的 建立一种可用于检测中毒生物医学样品中小分子生物毒素--河豚毒素的高灵敏度分析方法.方法 选用阳离子交换-反相混合色谱柱,针对河豚毒素亲水性强的特点,建立了一种新型的液相色谱-飞行时间质谱方法对人血浆中河豚毒素进行检测,优化了液相色谱-质谱条件,考察了血浆中河豚毒素的提取方法.结果 对于参考品溶液,河豚毒素的线性范围为0.1~50 mg/L,检测限为0.01 mg/L;对于染毒人血浆样品,河豚毒素的线性范围为0.5~10 mg/L,检测限为0.25 mg/L.结论 所建立的液相色谱-飞行时间质谱方法专属性强、灵敏度高,可适用于实际测定河豚鱼头样品中 mg/L水平的河豚毒素.

  5. Cationic speciation in nonaqueous media

    International Nuclear Information System (INIS)

    Electronic spectra of solutions of d transition elements in the superacids HF, H2SO4, HSO3F, and CF3SO3H and in chloroaluminate melts indicate that in acidic monaqueous media the elements are present as solvated cations, whereas in basic media the speciation is anionic, the same situation as in aqueous solutions. Further, in very highly acidic media, cations in very low oxidation states are stable (e.g., Ti2+), but these disproportionate on addition of base to the system. In this paper spectra, where available, of U, Np, and Pu in oxidation states III and IV in aqueous media, in protonic superacids, and in chloroaluminates are presented to postulate cationic speciation of these early actinides in highly acidic media

  6. Capacity Building

    International Nuclear Information System (INIS)

    Outcomes & Recommendations: • Significant increase needed in the nuclear workforce both to replace soon-to-retire current generation and to staff large numbers of new units planned • Key message, was the importance of an integrated approach to workforce development. • IAEA and other International Organisations were asked to continue to work on Knowledge Management, Networks and E&T activities • IAEA requested to conduct Global Survey of HR needs – survey initiated but only 50% of operating countries (30% of capacity) took part, so results inconclusive

  7. A high-performance "sweeper" for toxic cationic herbicides: an anionic metal-organic framework with a tetrapodal cage.

    Science.gov (United States)

    Jia, Yan-Yuan; Zhang, Ying-Hui; Xu, Jian; Feng, Rui; Zhang, Ming-Shi; Bu, Xian-He

    2015-12-21

    This communication reports a novel metal-organic framework exhibiting an excellent performance in adsorbing small toxic cationic herbicides, i.e. methyl viologen and diquat, with large adsorption capacities and ultratrace residue levels. To the best of our knowledge, this is the first example of high-performance MOFs trapping toxic cationic herbicides. PMID:26468513

  8. THERMODYNAMICS OF ION-EXCHANGED NATURAL CLINOPTILOLITE

    Science.gov (United States)

    Natural clinoptilolite from Castle Creek, Idaho, and its cation-exchanged variants (Na-Cpt, NaK-Cpt, K-Cpt, and Ca-Cpt) were studied by high-temperature calorimetry. The hydration enthalpy for all clinoptilolites is about -30 kJ/mol H2O (liquid water reference state) at 25 C. T...

  9. Phosphate removal and recovery from water using nanocomposite of immobilized magnetite nanoparticles on cationic polymer.

    Science.gov (United States)

    Abo Markeb, Ahmad; Alonso, Amanda; Dorado, Antonio David; Sánchez, Antoni; Font, Xavier

    2016-08-01

    A novel nanocomposite (NC) based on magnetite nanoparticles (Fe3O4-NPs) immobilized on the surface of a cationic exchange polymer, C100, using a modification of the co-precipitation method was developed to obtain magnetic NCs for phosphate removal and recovery from water. High-resolution transmission electron microscopy-energy-dispersive spectroscopy, scanning electron microscopy , X-ray diffraction, and inductively coupled plasma optical emission spectrometry were used to characterize the NCs. Continuous adsorption process by the so-called breakthrough curves was used to determine the adsorption capacity of the Fe3O4-based NC. The adsorption capacity conditions were studied under different conditions (pH, phosphate concentration, and concentration of nanoparticles). The optimum concentration of iron in the NC for phosphate removal was 23.59 mgFe/gNC. The sorption isotherms of this material were performed at pH 5 and 7. Taking into account the real application of this novel material in real water, the experiments were performed at pH 7, achieving an adsorption capacity higher than 4.9 mgPO4-P/gNC. Moreover, Freundlich, Langmuir, and a combination of them fit the experimental data and were used for interpreting the influence of pH on the sorption and the adsorption mechanism for this novel material. Furthermore, regeneration and reusability of the NC were tested, obtaining 97.5% recovery of phosphate for the first cycle, and at least seven cycles of adsorption-desorption were carried out with more than 40% of recovery. Thus, this work described a novel magnetic nanoadsorbent with properties for phosphate recovery in wastewater. PMID:26849360

  10. Bifunctional Crosslinking Agents Enhance Anion Exchange Membrane Efficacy for Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Wang, Wenpin; Xu, Min; Wang, Shubo; Xie, Xiaofeng; Lv, Yafei; Ramani, Vijay K

    2014-06-01

    A series of cross-linked fluorinated poly (aryl ether oxadiazole) membranes (FPAEOM) derivatized with imidazolium groups were prepared. Poly (N-vinylimidazole) (PVI) was used as the bifunctional cross-linking agent to: a) lower vanadium permeability, b) enhance dimensional stability, and c) concomitantly provide added ion exchange capacity in the resultant anion exchange membranes. At a molar ratio of PVI to FPAEOM of 1.5, the resultant membrane (FPAEOM-1.5 PVI) had an ion exchange capacity of 2.2 meq g-1, a vanadium permeability of 6.8×10-7 cm2 min-1, a water uptake of 68 wt.%, and an ionic conductivity of 22.0 mS cm-1, all at 25°C. Single cells prepared with the FPAEOM-1.5 PVI membrane exhibited a higher coulombic efficiency (> 92%) and energy efficiency (> 86%) after 40 test cycles in vanadium redox flow battery. The imidazolium cation showed high chemical stability in highly acidic and oxidizing vanadium solution as opposed to poor stability in alkaline solutions. Based on our DFT studies, this was attributed to the lower HOMO energy (-7.265 eV) of the HSO4- ion (compared to the OH- ion; -5.496 eV) and the larger HOMO-LUMO energy gap (6.394 eV) of dimethylimidazolium bisulfate ([DMIM] [HSO4]) as compared to [DMIM] [OH] (5.387 eV).

  11. Bifunctional Crosslinking Agents Enhance Anion Exchange Membrane Efficacy for Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Wang, Wenpin; Xu, Min; Wang, Shubo; Xie, Xiaofeng; Lv, Yafei; Ramani, Vijay K

    2014-06-01

    A series of cross-linked fluorinated poly (aryl ether oxadiazole) membranes (FPAEOM) derivatized with imidazolium groups were prepared. Poly (N-vinylimidazole) (PVI) was used as the bifunctional cross-linking agent to: a) lower vanadium permeability, b) enhance dimensional stability, and c) concomitantly provide added ion exchange capacity in the resultant anion exchange membranes. At a molar ratio of PVI to FPAEOM of 1.5, the resultant membrane (FPAEOM-1.5 PVI) had an ion exchange capacity of 2.2 meq g-1, a vanadium permeability of 6.8×10-7 cm2 min-1, a water uptake of 68 wt.%, and an ionic conductivity of 22.0 mS cm-1, all at 25°C. Single cells prepared with the FPAEOM-1.5 PVI membrane exhibited a higher coulombic efficiency (> 92%) and energy efficiency (> 86%) after 40 test cycles in vanadium redox flow battery. The imidazolium cation showed high chemical stability in highly acidic and oxidizing vanadium solution as opposed to poor stability in alkaline solutions. Based on our DFT studies, this was attributed to the lower HOMO energy (-7.265 eV) of the HSO4- ion (compared to the OH- ion; -5.496 eV) and the larger HOMO-LUMO energy gap (6.394 eV) of dimethylimidazolium bisulfate ([DMIM] [HSO4]) as compared to [DMIM] [OH] (5.387 eV). PMID:24884171

  12. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.

  13. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    CHENG JiaGao; LUO XiaoMin; YAN XiuHua; LI Zhong; TANG Yun; JIANG HuaLiang; ZHU WeiLiang

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system, which has been viewed as a new kind of binding force, as being compared with the classical interac-tions (e.g. hydrogen bonding, electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper, we present an overview of the typi-cal cation-π interactions in biological systems, the experimental and theoretical investigations on cation-π interactions, as well as the research results on cation-π interactions in our group.

  14. Cationic Organic/Inorganic Hybrids and Their Swelling Properties

    Institute of Scientific and Technical Information of China (English)

    E. S. Dragan; L. Ghimici; M. Cazacu

    2005-01-01

    @@ 1Introduction Specific properties of poly(dimethylsiloxanes), such as low glass transition temperature, low surface energy, good insulating properties, biological and chemical inertness, high diffusion coefficient of gases, make them very attractive for practical applications in the daily life. However, there is a great interest last time in the preparation of ionic organic/inorganic materials with new properties for new applications. Quaternary ammonium salt(QAS) groups included in siloxane copolymers could induce new interesting properties such as:permanent fungicidal and bactericidal properties, which make them very attractive as materials for sanitary applications, improved selectivity coefficients of the gas-separation membranes, ion-exchange properties and so forth. So far, QAS groups have been located in the side chain[1,2]. Our interest was focused on the preparation of some novel cationic polysiloxane copolymers containing QAS groups of both integral type and pendent type[3,4]. Our objectives for the present study concern the synthesis of some cationic organic/siloxane hybrid materials with swelling properties controlled by both the nature of cationic organic component and the ratio between the organic and inorganic counterparts. Such cationic hybrid materials could be of interest for the preparation of new stimuli-responsive hydrogels[5,6].

  15. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes.

    Science.gov (United States)

    Takaya, C A; Fletcher, L A; Singh, S; Anyikude, K U; Ross, A B

    2016-02-01

    The potential for biochar and hydrochar to adsorb phosphate and ammonium is important for understanding the influence of these materials when added to soils, compost or other high nutrient containing environments. The influence of physicochemical properties such as mineral content, surface functionality, pH and cation exchange capacity has been investigated for a range of biochars and hydrochars produced from waste-derived biomass feedstocks. Hydrochars produced from hydrothermal carbonisation at 250 °C have been compared to low and high temperature pyrolysis chars produced at 400-450 °C and 600-650 °C respectively for oak wood, presscake from anaerobic digestate (AD), treated municipal waste and greenhouse waste. In spite of differences in char physicochemical properties and processing conditions, PO4-P and NH4-N sorption capacities ranged from about 0 to 30 mg g(-1) and 105.8-146.4 mg g(-1) respectively. Chars with high surface areas did not possess better ammonium adsorption capacities than low surface area chars, which suggests that surface area is not the most important factor influencing char ammonium adsorption capacity, while char calcium and magnesium contents may influence phosphate adsorption. Desorption experiments only released a small fraction of adsorbed ammonium or phosphate (<5 mg g(-1) and a maximum of 8.5 mg g(-1) respectively). PMID:26702555

  16. Chemical Surface, Thermal and Electrical Characterization of Nafion Membranes Doped with IL-Cations

    Directory of Open Access Journals (Sweden)

    María del Valle Martínez de Yuso

    2014-04-01

    Full Text Available Surface and bulk changes in a Nafion membrane as a result of IL-cation doping (1-butyl-3-methylimidazolium tetrafluoroborate or BMIM+BF4 and phenyltrimethylammonium chloride or TMPA+Cl− were studied by X-ray photoelectron spectroscopy (XPS, contact angle, differential scanning calorimetry (DSC and impedance spectroscopy (IS measurements performed with dry samples after 24 h in contact with the IL-cations BMIM+ and TMPA+. IL-cations were selected due to their similar molecular weight and molar volume but different shape, which could facilitate/obstruct the cation incorporation in the Nafion membrane structure by proton/cation exchange mechanism. The surface coverage of the Nafion membrane by the IL-cations was confirmed by XPS analysis and contact angle, while the results obtained by the other two techniques (DSC and IS seem to indicate differences in thermal and electrical behaviour depending on the doping-cation, being less resistive the Nafion/BMIM+ membrane. For that reason, determination of the ion transport number was obtained for this membrane by measuring the membrane or concentration potential with the samples in contact with HCl solutions at different concentrations. The comparison of these results with those obtained for the original Nafion membrane provides information on the effect of IL-cation BMIM+ on the transport of H+ across wet Nafion/BMIM+ doped membranes.

  17. Electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, M.A. [Pacific Northwest National Lab., Richland, WA (United States); Schwartz, D.T.; Genders, D.

    1997-10-01

    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  18. Thermodynamics of the first and second proton dissociations from aqueous L-aspartic acid and L-glutamic acid at temperatures from (278.15 to 393.15) K and at the pressure 0.35 MPa: Apparent molar heat capacities and apparent molar volumes of zwitterionic, protonated cationic, and deprotonated anionic forms at molalities from (0.002 to 1.0) mol . kg{sup -1}

    Energy Technology Data Exchange (ETDEWEB)

    Ziemer, S.P. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700 (United States); Woolley, E.M. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700 (United States)]. E-mail: earl_woolley@byu.edu

    2007-04-15

    We have measured the densities of aqueous solutions of L-aspartic acid, L-glutamic acid, and equimolal solutions of these two amino acids with HCl and with NaOH at temperatures 278.15 {<=} T/K {<=} 368.15, at molalities 0.002 {<=} m/mol . kg{sup -1} {<=} 1.0 as solubity of the solutes allowed, and at p = 0.35 MPa using a vibrating tube densimeter. We have also measured the heat capacities of these solutions at 278.15 {<=} T/K {<=} 393.15 and at the same m and p using a twin fixed-cell differential temperature-scanning calorimeter. We used the densities to calculate apparent molar volumes V {sub {phi}} and the heat capacities to calculate apparent molar heat capacities C {sub p,{phi}} for these solutions. We used our results and values from the literature for V {sub {phi}}(T, m) and C {sub p,{phi}}(T, m) for HCl(aq), NaOH(aq), and NaCl(aq) and the molar heat capacity change {delta}{sub r} C {sub p,m}(T, m) for ionization of water to calculate parameters for {delta}{sub r} C {sub p,m}(T, m) for the first two proton dissociations from each of the protonated aqueous cationic amino acids. We used Young's Rule and integrated these results iteratively to account for the effects of equilibrium speciation and chemical relaxation on V {sub {phi}}(T, m) and C {sub p,{phi}}(T, m). This procedure gave parameters for V {sub {phi}}(T, m) and C {sub p,{phi}}(T, m) for L-aspartinium and L-glutaminium chlorides and for monosodium L-aspartate and L-glutamate which modeled our observed results within experimental uncertainties. We report values for {delta}{sub r} C {sub p,m}, {delta}{sub r} H {sub m}, pQ {sub a}, {delta}{sub r} S {sub m}, and {delta}{sub r} V {sub m} for the first and second proton dissociations from protonated aqueous L-aspartic acid and L-glutamic acid as functions of T and m.

  19. Preparation and characterization of zirconium (IV) molybdo tungsto vanado silicate as a novel inorganic ion exchanger in sorption of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Zonoz, F. Mohammadi [Faculty of Chemistry, Damghan University of Basic Science, Damghan (Iran, Islamic Republic of); Ahmadi, S.J., E-mail: sjahmadi@aeoi.org.ir [Nuclear Science and Technology Research Institute, Nuclear Science Research School, P.O. Box 11365/8486, Tehran (Iran, Islamic Republic of); Nosrati, S. Attar [Faculty of Chemistry, Damghan University of Basic Science, Damghan (Iran, Islamic Republic of); Nuclear Science and Technology Research Institute, Nuclear Science Research School, P.O. Box 11365/8486, Tehran (Iran, Islamic Republic of); Maragheh, M. Ghannadi [Nuclear Science and Technology Research Institute, Nuclear Science Research School, P.O. Box 11365/8486, Tehran (Iran, Islamic Republic of)

    2009-09-30

    A new mixed metal heteropoly anion-based cation exchanger Zr(IV) molybdo tungsto vanado silicate (ZMTVS) was prepared under varying conditions. The material was characterized by FTIR, X-ray diffraction, TGA-DTA and SEM techniques. Its ion exchange capacity (IEC) for K{sup +} was found to be 0.86 meq g{sup -1}. Distribution coefficients (K{sub d}) values for 10 metal ions and three radioisotopes were determined. On the basis of K{sub d} values, two important and analytically difficult quantitative binary separations viz. Ni(II)-Co(II) and Ni(II)-Pb(II) were achieved on its column. Decontamination of aqueous nuclear waste solution was also studied.

  20. Divergent responses of soil buffering capacity to long-term N deposition in three typical tropical forests with different land-use history.

    Science.gov (United States)

    Lu, Xiankai; Mao, Qinggong; Mo, Jiangming; Gilliam, Frank S; Zhou, Guoyi; Luo, Yiqi; Zhang, Wei; Huang, Juan

    2015-04-01

    Elevated anthropogenic nitrogen (N) deposition has become an important driver of soil acidification at both regional and global scales. It remains unclear, however, how long-term N deposition affects soil buffering capacity in tropical forest ecosystems and in ecosystems of contrasting land-use history. Here, we expand on a long-term N deposition experiment in three tropical forests that vary in land-use history (primary, secondary, and planted forests) in Southern China, with N addition as NH4NO3 of 0, 50, 100, and 150 kg N ha(-1) yr(-1), respectively. Results showed that all three forests were acid-sensitive ecosystems with poor soil buffering capacity, while the primary forest had higher base saturation and cation exchange capacity than others. However, long-term N addition significantly accelerated soil acidification and decreased soil buffering capacity in the primary forest, but not in the degraded secondary and planted forests. We suggest that ecosystem N status, influenced by different land-use history, is primarily responsible for these divergent responses. N-rich primary forests may be more sensitive to external N inputs than others with low N status, and should be given more attention under global changes in the future, because lack of nutrient cations is irreversible. PMID:25741588

  1. Divergent responses of soil buffering capacity to long-term N deposition in three typical tropical forests with different land-use history.

    Science.gov (United States)

    Lu, Xiankai; Mao, Qinggong; Mo, Jiangming; Gilliam, Frank S; Zhou, Guoyi; Luo, Yiqi; Zhang, Wei; Huang, Juan

    2015-04-01

    Elevated anthropogenic nitrogen (N) deposition has become an important driver of soil acidification at both regional and global scales. It remains unclear, however, how long-term N deposition affects soil buffering capacity in tropical forest ecosystems and in ecosystems of contrasting land-use history. Here, we expand on a long-term N deposition experiment in three tropical forests that vary in land-use history (primary, secondary, and planted forests) in Southern China, with N addition as NH4NO3 of 0, 50, 100, and 150 kg N ha(-1) yr(-1), respectively. Results showed that all three forests were acid-sensitive ecosystems with poor soil buffering capacity, while the primary forest had higher base saturation and cation exchange capacity than others. However, long-term N addition significantly accelerated soil acidification and decreased soil buffering capacity in the primary forest, but not in the degraded secondary and planted forests. We suggest that ecosystem N status, influenced by different land-use history, is primarily responsible for these divergent responses. N-rich primary forests may be more sensitive to external N inputs than others with low N status, and should be given more attention under global changes in the future, because lack of nutrient cations is irreversible.

  2. Tripodal Receptors for Cation and Anion Sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman,; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  3. Heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Craig, L.B.; Farma, A.J.

    1987-01-06

    This invention concerns a heat exchanger as used in a space heater, of the type in which hot exhaust gases transfer heat to water or the like flowing through a helical heat exchange coil. A significant improvement to the efficiency of the heat exchange occurring between the air and water is achieved by using a conduit for the water having external helical fluting such that the hot gases circulate along two paths, rather than only one. A preferred embodiment of such a heat exchanger includes a porous combustion element for producing radiant heat from a combustible gas, surrounded by a helical coil for effectively transferring the heat in the exhaust gas, flowing radially from the combustion element, to the water flowing through the coil. 4 figs.

  4. Comparison of Phosphoproteomic Separation Strategies Based on Strong Cation Exchange Chromatography-Isoelectric Focusing Techniques%基于强阳离子交换色谱与等电聚焦的磷酸化蛋白质组学分离策略比较

    Institute of Scientific and Technical Information of China (English)

    隋少卉; 董俊军; 王京兰; 蔡耘; 钱小红

    2012-01-01

    Efficient pre-purification steps for the enrichment of phosphorylated proteins or phos-phopeptides are necessary for better detection of phosphorylation sites in phosphoproteomic analysis. Currently, the most common first-dimensional separation technique used is strong cation exchange (SCX). A potential alternative to SCX-based separation is to use isoelectric focusing (IEF) as a first-dimensional separation technique, which has been demonstrated recently. In this study, we present a direct comparison between SCX and IEF based on IPG strips (IPG-IEF) for the phosphoproteomic separation. The comparison experiments discussed in this study utilized standard phosphoproteins and a real sample of HepG2 cell. Then the comparison of 18O labeling phosphopeptides' stability under immobilized pH gradient gel (IPG)-IEF with under SCX was made. Fractions from both technique (SCX and IPG-IEF) were analyzed using the High Mass Accuracy LTQ-FTICR-MS/MS. The results demonstrate that SCX-LTQ-FT and IPG-IEF-LTQ-FT are useful in the phosphopeptides enrichment analysis on a large scale. And SCX-LTQ-FT is relative superior to IPG-IEF-LTQ-FT, whereas the 18 O labeling phosphopeptides'stability under SCX-LTQ-FT is relatively poor with that under IPG-IEF-LTQ-FT.%比较分析了强阳离子交换(SCX)与等电聚焦(IPG-IEF)技术在磷酸化蛋白质组学中的应用.采用3种标准磷酸化蛋白对SCX与IPG-IEF两种技术对磷酸化肽段富集的有效性进行考察.以HepG2细胞为复杂样本,考察SCX与IPG-IEF在实际样本中的应用情况.对SCX与IPG-IEF技术在18O标记的磷酸化蛋白质组定量研究中的应用情况进行考察.蛋白鉴定采用高准确度、高灵敏度、高分辨率的LTQ-FTICR-MS/MS质谱仪.实验表明:SCX和IPG- IEF在大规模磷酸化肽段分离过程中均有效;在复杂样本中,SCX技术的分离效果优于IPG- IEF; IPG- IEF的重复性好于SCX;在磷酸化蛋白质组定量分析结果表明,IPG-IEF技术的稳定性优

  5. 弱酸型聚合物微球固相萃取填料的制备及水中杀虫剂的测定%Preparation of weak acid cation exchange polymer microspheres solid-phase extraction packing and determination of pesticides in river water

    Institute of Scientific and Technical Information of China (English)

    申书昌; 徐雅雯; 马柏凤

    2015-01-01

    The polymer microspheres with lipotropy and weak cation exchange performance were prepared through suspension poly-merization method using styrene and divinyl benzene and methyl acrylate as monomers,PVA as dispersant,benzoyl peroxide as the initiator. The structure and morphology of microspheres were examined by infrared spectrum and scanning electron micro-scope. While observing the structure and morphology of the filler. The composite microspheres were used as solid-phase extraction ( SPE) sorbents for selective extraction nitroclofene,bithionol,praziquantel and albendazole in the river water. Acetonitrile was used as eluent,and the eluate was determined by high performance liquid chromatography. The effects of the sample flow rate and pH, volume and flow rate of eluent on adsorption ratios were investigated,the best solid phase extraction conditions were obtained. The best HPLC condition was chosen. The results show that SiO2/PS composite microspheres have a uniform monodispersity in particle size. The SPE sorbents have good adsorption performance to nitroclofene,bithionol,praziquantel and albendazole in water,and the method of SPE-HPLC for determining the four pesticides has good reproducibility, the detection limits for nitroclofene, bithionol, praziquantel and albendazole were 0. 26μg·L-1 ,0. 31μg·L-1 ,0. 42μg·L-1 and 0. 63μg·L-1 respectively.%本文制备了聚合物基质弱酸型阳离子交换固相萃取填料,以甲基丙烯酸和苯乙烯为原料,二乙烯基苯为交联剂,聚乙烯醇为分散剂,过氧化苯甲酰为引发剂,采用悬浮聚合法制备了具有亲脂和弱阳离子交换性能的球形固相萃取填料,并对其结构和形貌进行了表征。以该聚合物微球作为填料制备固相萃取小柱,萃取水中联硝氯酚、硫双二氯酚、吡喹酮和丙硫苯咪唑4种杀虫剂,乙腈为洗脱剂,洗脱液采用液相色谱分析。分别考察了样品的pH值和流速、洗脱剂的体积和流

  6. Plasmalemmal and mitochondrial Na(+) -Ca(2+) exchange in neuroglia.

    Science.gov (United States)

    Parpura, Vladimir; Sekler, Israel; Fern, Robert

    2016-10-01

    In the absence of the electrical signaling for which neurons are so highly specialized, GLIA rely on the slow propagation of ionic signals to mediate network events such as Ca(2+) and Na(+) waves. Glia differ from neurons in another important way, they are replete with a high density of ionic-transport proteins that are essential for them to fulfil their basic functions as guardians of the intra and extra-cellular milieux. Both the signaling and the homeostatic properties of glial cells are therefore particularly dependent upon the regulation of the two principle physiological metal cations, Ca(2+) and Na(+) . For both ions, glia express high-affinity/low capacity ATP-fuelled pumps that can rapidly move small numbers of ions against an electro-chemical gradient. For both Ca(2+) and Na(+) regulation, a single transporter family, the Na(+) -Ca(2+) exchanger (NCX), is used to maintain cellular ion homeostasis over the longer term and under conditions of prolonged or acute ionic dysregulation in astrocytes, oligodendroglia and microglia. Our understanding of glial NCX, both plasmalemmal and mitochondrial, is undergoing the kind of transformation that our understanding of glial cells, in general, has undergone in recent decades. These exchange proteins are becoming increasingly recognized for their essential roles in intracellular homeostasis while their signaling functions are starting to come to light. This review summarizes these key aspects and highlights the many areas where work has yet to begin in this rapidly evolving field. GLIA 2016;64:1646-1654. PMID:27143128

  7. The Effects of Sulfonated Poly(ether ether ketone Ion Exchange Preparation Conditions on Membrane Properties

    Directory of Open Access Journals (Sweden)

    Rebecca S. L. Yee

    2013-08-01

    Full Text Available A low cost cation exchange membrane to be used in a specific bioelectrochemical system has been developed using poly(ether ether ketone (PEEK. This material is presented as an alternative to current commercial ion exchange membranes that have been primarily designed for fuel cell applications. To increase the hydrophilicity and ion transport of the PEEK material, charged groups are introduced through sulfonation. The effect of sulfonation and casting conditions on membrane performance has been systematically determined by producing a series of membranes synthesized over an array of reaction and casting conditions. Optimal reaction and casting conditions for producing SPEEK ion exchange membranes with appropriate performance characteristics have been established by this uniquely systematic experimental series. Membrane materials were characterized by ion exchange capacity, water uptake, swelling, potential difference and NMR analysis. Testing this extensive membranes series established that the most appropriate sulfonation conditions were 60 °C for 6 h. For mechanical stability and ease of handling, SPEEK membranes cast from solvent casting concentrations of 15%–25% with a resulting thickness of 30–50 µm were also found to be most suitable from the series of tested casting conditions. Drying conditions did not have any apparent impact on the measured parameters in this study. The conductivity of SPEEK membranes was found to be in the range of 10−3 S cm−1, which is suitable for use as a low cost membrane in the intended bioelectrochemical systems.

  8. Natural zeolite reactivity towards ozone: The role of compensating cations

    International Nuclear Information System (INIS)

    Highlights: ► Chemical and thermal treatment enhances catalytic activity of natural zeolite. ► Modified natural zeolite exhibits high stability after thermal treatment. ► Reducing the compensating cation content leads to an increase on ozone abatement. ► Surface active atomic oxygen was detected using the DRIFT technique. ► The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L−1). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH3-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  9. Natural zeolite reactivity towards ozone: The role of compensating cations

    Energy Technology Data Exchange (ETDEWEB)

    Valdes, Hector, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologias Limpias (F. Ingenieria), Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, Concepcion (Chile); Alejandro, Serguei; Zaror, Claudio A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Concepcion (Chile)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Chemical and thermal treatment enhances catalytic activity of natural zeolite. Black-Right-Pointing-Pointer Modified natural zeolite exhibits high stability after thermal treatment. Black-Right-Pointing-Pointer Reducing the compensating cation content leads to an increase on ozone abatement. Black-Right-Pointing-Pointer Surface active atomic oxygen was detected using the DRIFT technique. Black-Right-Pointing-Pointer The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L{sup -1}). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH{sub 3}-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  10. Proton and sodium cation affinities of harpagide: a computational study.

    Science.gov (United States)

    Colas, Cyril; Bouchonnet, Stéphane; Rogalewicz-Gilard, Françoise; Popot, Marie-Agnès; Ohanessian, Gilles

    2006-06-15

    The aim of this work was to estimate the proton and sodium cation affinities of harpagide (Har), an iridoid glycoside responsible for the antiinflammatory properties of the medicinal plant Harpagophytum. Monte Carlo conformational searches were performed at the semiempirical AM1 level to determine the most stable conformers for harpagide and its protonated and Na+-cationized forms. The 10 oxygen atoms of the molecule were considered as possible protonation and cationization sites. Geometry optimizations were then refined at the DFT B3LYP/6-31G level from the geometries of the most stable conformers found. Final energetics were obtained at the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G level. The proton and sodium ion affinities of harpagide have been estimated at 223.5 and 66.0 kcal/mol, respectively. Since harpagide mainly provides HarNa+ ions in electrospray experiments, the DeltarG298 associated with the reaction of proton/sodium exchange between Har and methanol, MeOHNa+ + HarH+ --> MeOH2+ + HarNa+ (1), has been calculated; it has been estimated to be 1.9 kcal/mol. Complexing a methanol molecule to each reagent and product of reaction 1 makes the reaction become exothermic by 1.7 kcal/mol. These values are in the limit of the accuracy of the method and do not allow us to conclude definitely whether the reaction is endo- or exothermic, but, according to these very small values, the cation exchange reaction is expected to proceed easily in the final stages of the ion desolvation process. PMID:16759142

  11. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  12. Enhanced Mixed Electronic-Ionic Conductors through Cation Ordering

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Allan J. [Univ. of Houston, TX (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Grey, Clare [Stony Brook Univ., NY (United States)

    2014-08-31

    The performance of many energy conversion and storage devices depend on the properties of mixed ionic-electronic conducting (miec) materials. Mixed or ambipolar conductors simultaneously transport ions and electrons and provide the critical interface between chemical and electrical energy in devices such as fuel cells, ion transport membranes, and batteries. Enhancements in storage capacity, reversibility, power density and device lifetime all require new materials and a better understanding of the fundamentals of ambipolar conductivity and surface reactivity.The high temperature properties of the ordered perovksites AA’B2O5+x, where A = rare earth ion, Y and B = Ba, Sr were studied. The work was motivated by the high oxygen transport and surface exchange rates observed for members of this class of mixed ionic and electronic conductors. A combined experimental and computational approach, including structural, electrochemical, and transport characterization and modeling was used. The approach attacks the problem simultaneously at global (e.g., neutron diffraction and impedance spectroscopy), local (e.g., pair distribution function, nuclear magnetic resonance) and molecular (ab initio thermokinetic modeling) length scales. The objectives of the work were to understand how the cation and associated anion order lead to exceptional ionic and electronic transport properties and surface reactivity in AA’B2O5+x perovskites. A variety of compounds were studied by X-ray and neutron diffraction, measurements of thermodynamics and transport and theoretically. These included PrBaCo2O5+x and NdBaCo2O5+x, PrBaCo2-xFexO6- δ (x = 0, 0.5, 1.0, 1.5 and 2) and LnBaCoFeO6- δ (Ln = La, Pr, Nd, Sm, Eu and Gd), Sr3YCo4O10.5, YBaMn2O5+x. A0.5A’0.5BO3 (where A=Y, Sc, La, Ce, Pr, Nd, Pm, Sm; A’= Sr

  13. Ion exchange reactions in amorphous and crystalline aluminium silicates from solution of cerium salts

    International Nuclear Information System (INIS)

    Reactions of ion-exchange of Na+ by Ce3+ and NH4+ on the zeolite containing catalyst, amorphous silica alumina and zeolite Y have been studied. The cerium cations are shown to be exchanged by the Na+ cations with more selectivity than the anmonia cations. In the case of the zeolite containing catalyst and amorphous silica alumina the region of the staggered ion-exchange from the mixture of the solutions of cerium and ammonium sulphates was been detected. This is explained by the formation fo cerium complexes with the sulphate ions

  14. Characterization and adsorption properties of a lanthanum-loaded magnetic cationic hydrogel composite for fluoride removal.

    Science.gov (United States)

    Dong, Shuoxun; Wang, Yili

    2016-01-01

    In this study, a novel lanthanum-loaded magnetic cationic hydrogel (MCH-La) was synthesized for fluoride adsorption from drinking water. The adsorption kinetics, isotherms, and effects of pH and co-existing anions on fluoride uptake by MCH-La were evaluated. FTIR, Raman and XPS were used to analyze the fluoride adsorption mechanism of MCH-La. Results showed that MCH-La had positive zeta potential values of 23.6-8.0 mV at pH 3.0-11.0, with the magnitude of saturation magnetization up to 10.3 emu/g. The fluoride adsorption kinetics by MCH-La fitted well with the fractal-like-pseudo-second-order model, and the adsorption capacity reached 93% of the ultimate adsorption capacity within the first 10 min. The maximum fluoride adsorption capacity for MCH-La was 136.78 mg F(-)/g at an equilibrium fluoride concentration of 29.3 mg/L and pH 7.0. Equilibrium adsorption data showed that the Sips model was more suitable than the Langmuir and Freundlich models. MCH-La still had more than 100 mg of F(-)/g adsorption capacity at a strongly alkaline solution (pH > 10). The adsorption process was highly pH-dependent, and the optimal adsorption was attained at pH 2.8-4.0, corresponding to ligand exchange, electrostatic interactions, and Lewis acid-base interactions. With the exception of both anions of HCO3(-) and SiO4(4-), Cl(-), NO3(-), and SO4(2-) did not evidently prevent fluoride removal by MCH-La at their real concentrations in natural groundwater. The fluoride adsorption capacity of the regenerated MCH-La approached 70% of the fresh MCH-La from the second to fifth recycles. FTIR and Raman spectra revealed that C-O and CO functional groups on MCH contributed to the fluoride adsorption, this finding was also confirmed by the XPS F 1s spectra. Deconvolution of C 1s spectra before and after fluoride adsorption indicated that the carboxyl, anhydride, and phenol groups of MCH were involved in the fluoride removal.

  15. Incorporation of Monovalent Cations in Sulfate Green Rust

    DEFF Research Database (Denmark)

    Christiansen, B. C.; Dideriksen, K.; Katz, A.;

    2014-01-01

    Green rust is a naturally occurring layered mixed-valent ferrous-ferric hydroxide, which can react with a range of redox-active compounds. Sulfate-bearing green rust is generally thought to have interlayers composed of sulfate and water. Here, we provide evidence that the interlayers also contain...... with water showed that Na+ and K+ were structurally fixed in the interlayer, whereas Rb+ and Cs+ could be removed, resulting in a decrease in the basal layer spacing. The incorporation of cations in the interlayer opens up new possibilities for the use of sulfate green rust for exchange reactions with both...

  16. Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations.

    Science.gov (United States)

    Uchimiya, Minori; Klasson, K Thomas; Wartelle, Lynda H; Lima, Isabel M

    2011-03-01

    The amendment of carbonaceous materials such as biochars and activated carbons is a promising in situ remediation strategy for both organic and inorganic contaminants in soils and sediments. Mechanistic understandings in sorption of heavy metals on amended soil are necessary for appropriate selection and application of carbonaceous materials for heavy metal sequestration in specific soil types. In this study, copper sorption isotherms were obtained for soils having distinct characteristics: clay-rich, alkaline San Joaquin soil with significant heavy metal sorption capacity, and eroded, acidic Norfolk sandy loam soil having low capacity to retain copper. The amendment of acidic pecan shell-derived activated carbon and basic broiler litter biochar lead to a greater enhancement of copper sorption in Norfolk soil than in San Joaquin soil. In Norfolk soil, the amendment of acidic activated carbon enhanced copper sorption primarily via cation exchange mechanism, i.e., release of proton, calcium, and aluminum, while acid dissolution of aluminum cannot be ruled out. For San Joaquin soil, enhanced copper retention by biochar amendment likely resulted from the following additional mechanisms: electrostatic interactions between copper and negatively charged soil and biochar surfaces, sorption on mineral (ash) components, complexation of copper by surface functional groups and delocalized π electrons of carbonaceous materials, and precipitation. Influence of biochar on the release of additional elements (e.g., Al, Ca) must be carefully considered when used as a soil amendment to sequester heavy metals. PMID:21147495

  17. Enthalpy-entropy compensation for n-hexane adsorption on Y zeolite containing transition metal cations

    Directory of Open Access Journals (Sweden)

    Hercigonja R.

    2015-01-01

    Full Text Available In this work, the values of entropy changes related to n-hexane adsorption onto cation exchanged Y zeolite were calculated from differential heats. Various transition metal cations (Co2+, Ni2+, Zn2+ and Cd2+ were introduced into the lattice of the parent NaY, and the existence of enthalpy-entropy compensation effect related to n-hexane adsorption, id. est, the linearity of -ΔH vs. -ΔS plots was examined. The compensation effect was confirmed for all investigated zeolites. The compensation effect can be comprehended as governed by ion-induced dipole interaction between highly polarizing cationic centers in zeolite and nonopolar n-hexane molecules. Finally, the compensation effect and so the compensation temperature were found to depend on the type of charge-balancing cation (charge, size and electronic configuration. [Projekat Ministarstva nauke Republike Srbije, br. 172018

  18. Ion exchange purification of scandium

    Science.gov (United States)

    Herchenroeder, Laurie A.; Burkholder, Harvey R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity.

  19. Heat exchanger

    International Nuclear Information System (INIS)

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections

  20. Biochar soil amendment for waste-stream diversion, nutrient holding capacity, and carbon sequestration in two contrasting soils

    Science.gov (United States)

    Deem, L. M.; Crow, S. E.; Deenik, J. L.; Penton, C. R.; Yanagida, J.

    2013-12-01

    Biochar is organic matter that has been pyrolized under low oxygen conditions for use as a soil amendment. Currently biochar is viewed as a way to improve soil quality (e.g., increased nutrient and water holding capacity) and increase in soil carbon (C) sequestration. The use of biochar in soil is not new, yet little is known about the underlying mechanisms that control the interactions between biochar and soil following amendment. In the past, the effects of biochar addition on crop yields, soil properties and greenhouse gas (GHG) fluxes in both in-situ and controlled experiments have produced inconsistent results. These discrepancies may be uncovered in part by chemical and physical characterization of the biochar prior to amendment and identification of soil- and biochar-specific interactions. Furthermore, a more holistic consideration of the system may demonstrate the virtues of biochar amendment beyond the typical considerations of yield and gas flux. We expect that as the differences between the physical and chemical properties of the biochar and the soil increase, the impact on the soil quality metrics will also increase. For this study, we used a waste product (i.e., anaerobic digester sludge) biochar with 81.5% C, pH of 10.44, pH-independent charge for anion exchange capacity (AEC) and a pH-dependent charge for cation exchange capacity (CEC), 4.14% moisture content and 25.75 cmol¬c /kg exchangeable base cations. This biochar was incorporated into both a low and a high fertility Hawaiian field soil to quantitate biochar effects on crop yield, soil pH, CEC, AEC, hot and cold water extractable C and nitrogen, bulk density, phosphorus, soil microbial ecology, and GHG flux in varying soil conditions. Compared to the higher fertility soil, we hypothesized that the low fertility soil would demonstrate a greater increase in soil quality, including higher pH, CEC and water holding capacity. Two crop management practices were included with each soil: traditional

  1. Exchange Options

    NARCIS (Netherlands)

    Jamshidian, Farshid

    2007-01-01

    The contract is described and market examples given. Essential theoretical developments are introduced and cited chronologically. The principles and techniques of hedging and unique pricing are illustrated for the two simplest nontrivial examples: the classical Black-Scholes/Merton/Margrabe exchange

  2. International Exchanges

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>On April 1st,2014,CPAPD Deputy Secretary General Ms.Chen Huaifan met with Mr.Djudjuk Juyoto Suntani,President of the World Peace Committee,Indonesia,who headed the delegation,in the CPAPD office.The two sides exchanged views on issues of common concern including cooperation between the two organizations and the inheritance of Chinese culture.

  3. Desalination of Saline Sludges Using Ion-Exchange Column with Zeolite

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2008-01-01

    Full Text Available A flushing process followed by a zeolite based ion-exchange process were developed for the treatment of saline sludges from oil and gas exploration sites. The particle size distribution of sludge sample indicated the presence of very fine sand and clay. The electrical conductivity of the sludge was 42.2 dS m-1 indicating very saline sludge and the Cation Exchange Capacity (CEC was 40 cmoL kg-1 which was very suitable for ion-exchange process. A 500 g sample of saline sludge (containing CaCl2:MgCl2:NaCl ratio as 1:1.16:36.61 was washed using demineralized water in a mixed reactor and the sludge was allowed to settle for 36 h. The optimal number of washes was determined to be two washes with an overall salt removal efficiency of 94.47%. The treated sludge contained 515 mg salt kg-1 sludge (or 0.05% w w-1 and was suitable for agricultural application. The washwater was passed through a Mountain Stronach zeolite (chabazite based ion-exchange column for salt reduction. The sodium salt removal efficiency was 75.34%. This was increased to 99.79% when using two ion-exchange columns. The Ca and Mg ions were under regulatory limits and required no further treatment. The final salt concentration in the wash water was 314.0 mg L-1 which was below the limits established by the Canadian Guidelines. For complete removal of total salts, a series of ion-exchange columns with different zeolites (for removal of NaCl, MgCl2 and CaCl2 will be required.

  4. Use of laser induced photoacoustic spectroscopy (LIPAS) to determine equilibrium constants of cation-cation complexes

    International Nuclear Information System (INIS)

    Laser Induced PhotoAcoustic Spectroscopy (LIPAS) is a relatively new, photothermal technique to examine solutions. Studies in the past have shown it to be more sensitive than conventional absorption spectroscopy, while, yielding the same information thus allowing lower concentrations to be used. This study is using LIPAS to examine solutions to determine the equilibrium constants of cation-cation complexes. It has been found that actinyl(V) cations form cation-cation complexes with a variety of cations, including actinyl(VI) cations. The radioactive nature of the actinide elements requires special handling techniques and also require limits be placed on the amount of material that can be used. The sensitivity of some oxidation states of the actinides to oxygen also presents a problem. Preliminary results will be presented for actinyl(V)-actinyl(VI) cation-cation complexes that were studied using a remote LIPAS system incorporating fiber optics for transmission of laser signals

  5. High temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells

    DEFF Research Database (Denmark)

    Plackett, David; Siu, Ana; Li, Qingfeng;

    2011-01-01

    and pyridinium salts with varying polarity and hydrogen-bonding capacity. Clay modification by ion-exchange reactions involving replacement of interlayer inorganic cations was confirmed using X-ray photoelectron and infrared spectroscopy techniques. The cast PBI membranes were characterized by their water uptake......, acid doping and swelling, tensile strength, conductivity and hydrogen permeability as well as by fuel cell tests. For the composite membranes, high acid doping levels were achieved with sufficient mechanical strength and improved dimensional stability or reduced membrane swelling. At an acid doping......-doped pristine PBI membranes. In accordance with the hydrogen permeability measurements, fuel cell tests exhibited high open circuit voltages (i.e., 1.02 V) at room temperature as well as high I–V performance compared with normal PBI membranes....

  6. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.

    2010-03-01

    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  7. Transformation of anthracene on various cation-modified clay minerals.

    Science.gov (United States)

    Li, Li; Jia, Hanzhong; Li, Xiyou; Wang, Chuanyi

    2015-01-01

    In this study, anthracene was employed as a probe to explore the potential catalytic effect of clay minerals in soil environment. Clay minerals saturated with various exchangeable cations were tested. The rate of anthracene transformation follows the order: Fe-smectite > Cu-smectite > Al-smectite ≈ Ca-smectite ≈ Mg-smectite ≈ Na-smectite. This suggests that transition-metal ions such as Fe(III) play an important role in anthracene transformation. Among Fe(III)-saturated clays, Fe(III)-smectite exhibits the highest catalytic activity followed by Fe(III)-illite, Fe(III)-pyrophyllite, and Fe(III)-kaolinite, which is in agreement with the interlayer Fe(III) content. Moreover, effects by two common environmental factors, pH and relative humidity (RH), were evaluated. With an increase in pH or RH, the rate of anthracene transformation decreases rapidly at first and then is leveled off. GC-MS analysis identifies that the final product of anthracene transformation is 9,10-anthraquinone, a more bioavailable molecule compared to anthracene. The transformation process mainly involves cation-π bonding, electron transfer leading to cation radical, and further oxidation by chemisorbed O2. The present work provides valuable insights into the abiotic transformation and the fate of PAHs in the soil environment and the development of contaminated land remediation technologies.

  8. Synthesis of polycationic bentonite-ionene complexes and their benzene adsorption capacity

    Directory of Open Access Journals (Sweden)

    Valquíria Campos

    2015-04-01

    Full Text Available The purpose of this work was to structurally modify clays in order to incorporate water-insoluble molecules, such as petroleum hydrocarbons. The potential for ion exchange of quaternary ammonium salts was studied, which revealed their ability to interact with anions on the cationic surface, for environmental applications of the material. Ionenes, also known as polycations, have many potential uses in environmental applications. In this work, cationic aliphatic ammonium polyionenes, specifically 3,6-ionene and 3,6-dodecylionene, were prepared for incorporation into clay to form bentonite-ionene complexes. The intercalation of bentonite with ionene polymers resulted in an increase in the basal spacing of 3,6-dodecylionene from 1.5-3.5 nm. The higher d001 spacing of 3,6-dodecylionene samples than that of 3,6-ionene samples may be attributed to their longer tail length. The behavior of the TG/DTG curves and the activation energy values suggest that 3,6-dodecylionene (E = 174.85 kJ mol–1 is thermally more stable than 3,6 ionene (E = 115.52 kJ mol–1 complexes. The adsorption of benzene by 3,6-ionene and 3,6-dodecylionene was also investigated. The increase in benzene concentrations resulted in increased benzene adsorption by the sorbents tested in this work. The sorption capacity of benzene on ionene-modified bentonite was in the order of 3,6-dodecylionene > 3,6-ionene.

  9. Synthesis of Poly(cyclohexene oxide)-Montmorillonite Nanocomposite via In Situ Photoinitiated Cationic Polymerization with Bifunctional Clay

    OpenAIRE

    Işıl Bayram; Ayhan Oral; Kamil Şirin

    2013-01-01

    Poly(cyclohexene oxide) (PCHO)/clay nanocomposites were prepared by means of in situ photoinitiated cationic polymerization with initiator moieties immobilized within the silicate galleries of the clay particles. Diphenyliodonium molecules were intercalated via cation exchange process between Cloisite Ca and diphenyliodonium. The polymerization of CHO through the interlayer galleries of the clay can provide a homogenous distribution of the clay layers in the polymer matrix in nanosize and res...

  10. Cation Intercalation in Manganese Oxide Nanosheets: Effects on Lithium and Sodium Storage.

    Science.gov (United States)

    Lu, Ke; Hu, Ziyu; Xiang, Zhonghua; Ma, Jizhen; Song, Bin; Zhang, Jintao; Ma, Houyi

    2016-08-22

    The rapid development of advanced energy-storage devices requires significant improvements of the electrode performance and a detailed understanding of the fundamental energy-storage processes. In this work, the self-assembly of two-dimensional manganese oxide nanosheets with various metal cations is introduced as a general and effective method for the incorporation of different guest cations and the formation of sandwich structures with tunable interlayer distances, leading to the formation of 3D Mx MnO2 (M=Li, Na, K, Co, and Mg) cathodes. For sodium and lithium storage, these electrode materials exhibited different capacities and cycling stabilities. The efficiency of the storage process is influenced not only by the interlayer spacing but also by the interaction between the host cations and shutter ions, confirming the crucial role of the cations. These results provide promising ideas for the rational design of advanced electrodes for Li and Na storage. PMID:27458045

  11. Ion Exchange Technology Development in Support of the Urine Processor Assembly Precipitation Prevention Project for the International Space Station

    Science.gov (United States)

    Mitchell, Julie L.; Broyan, James L.; Pickering, Karen D.; Adam, Niklas; Casteel, Michael; Callahan, Michael; Carrier, Chris

    2012-01-01

    In support of the Urine Processor Assembly Precipitation Prevention Project (UPA PPP), multiple technologies were explored to prevent CaSO4 2H2O (gypsum) precipitation during the on-orbit distillation process. Gypsum precipitation currently limits the water recovery rate onboard the International Space Station (ISS) to 70% versus the planned 85% target water recovery rate. Due to its ability to remove calcium cations in pretreated augmented urine (PTAU), ion exchange was selected as one of the technologies for further development by the PPP team. A total of 13 ion exchange resins were evaluated in various equilibrium and dynamic column tests with solutions of dissolved gypsum, urine ersatz, PTAU, and PTAU brine at 85% water recovery. While initial evaluations indicated that the Purolite SST60 resin had the highest calcium capacity in PTAU (0.30 meq/mL average), later tests showed that the Dowex G26 and Amberlite FPC12H resins had the highest capacity (0.5 meq/mL average). Testing at the Marshall Spaceflight Center (MSFC) integrates the ion exchange technology with a UPA ground article under flight-like pulsed flow conditions with PTAU. To date, no gypsum precipitation has taken place in any of the initial evaluations.

  12. Progress of research on the influence of alkaline cation and alkaline solution on bentonite properties

    International Nuclear Information System (INIS)

    Based on the previous laboratory studies and numerical simulation on bentonite in alkaline environments, the effects of alkaline cation and alkaline solution on mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite are emphasized in this paper, temperature, pH values and concentration are discussed as main affecting factors. When bentonite is exposed to alkaline cation or alkaline solution, microstructure of bentonite will be changed due to the dissolution of montmorillonite and the formation of secondary minerals, which results in the decrease of swelling pressure. The amount of the reduction of swelling pressure depends on the concentration of alkaline solution. Temperature, polyvalent cation, salinity and concentration are the main factors affecting hydraulic properties of bentonite under alkaline conditions. Therefore, future research should focus on the mechanism of coupling effects of weak alkaline solutions on the mineral composition, microstructure, swelling capacity and hydraulic properties of bentonite under different temperatures and different pH values. (authors)

  13. Metal cation/anion adsorption on calcium carbonate: Implications to metal ion concentrations in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, J.M.; Cowan, C.E.; Resch, C.T.

    1990-05-01

    This chapter evaluates the sorption behavior of metallic ions on specimen calcite as a basis for determining the importance of calcite relative to other subsurface sorbents, such as layer silicates and oxides, in controlling metal ion concentration in calcareous groundwaters. A review of the literature shows the sorption of both metallic cations and anions on calcite over ranges in pH and CO{sub 2} partial pressure to be consistent with a surface-exchange process where cations exchange with surface Ca and anions exchange with surface CO{sub 3}. A general surface-exchange model was developed to account for the effects of Ca and CO{sub 3} concentrations, pH, and calcite surface area on cation and anion sorption onto calcite. The model was applied to recently developed experimental sorption data of Zn and SeO{sub 3} on specimen calcite in equilibrium CaCO{sub 3}(aq) suspensions. The surface-exchange model was able to describe the effects of pH on both cation and anion sorption, and provided good predictions of the effects of variable CO{sub 2}(g) pressure on Zn sorption and of PO{sub 4} on SeO{sub 3} sorption. The surface-exchange model, combined with sorption constants for other phases, was used to calculate Cd sorption to a hypothetical aquifer material containing a mixture of sorbents. The sorbent concentrations were fixed to those expected in groundwater zones. The multi-sorbent calculation documented the importance of calcite as a sorbent for metallic ions in groundwater.93 refs., 18 figs., 5 tabs.

  14. Experimental research on heat transfer in a coupled heat exchanger

    Directory of Open Access Journals (Sweden)

    Liu Yin

    2013-01-01

    Full Text Available The heat exchanger is a devise used for transferring thermal energy between two or more different temperatures. The widespreadly used heat exchanger can only achieve heat exchange between two substances. In this paper, a coupled heat exchanger is proposed, which includes a finned heat exchanger and a double pipe heat exchanger, for multiple heat exchange simultaneously. An experiment is conducted, showing that the average heating capacity increases more than 35%, and the average heating efficiency increases more than 55%, compared with the ordinary air-source heat pump.

  15. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms.

    Science.gov (United States)

    Demirci, Selami; Ustaoğlu, Zeynep; Yılmazer, Gonca Altın; Sahin, Fikrettin; Baç, Nurcan

    2014-02-01

    Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag(+) ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.

  16. Selective ion exchange recovery of rare earth elements from uranium mining solutions

    Science.gov (United States)

    Rychkov, Vladimir N.; Kirillov, Evgeny V.; Kirillov, Sergey V.; Bunkov, Grigory M.; Mashkovtsev, Maxim A.; Botalov, Maxim S.; Semenishchev, Vladimir S.; Volkovich, Vladimir A.

    2016-09-01

    A comparative study of rare earth, ferric and aluminum ions ion exchange behavior on gel sulfonated p;olystyrene cation exchange resins depending on the degree of the matrix cross-linking and pH of the solution is presented. Selective ion exchange of REEs is possible at the pH range of 1.5-2.0 using strongly acidic cation exchange resins containing more than 8 % of DVB. The preliminary results of testing the efficiency of REEs recovery from the industrial uranium underground leaching solutions are also presented.

  17. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick

    2010-01-01

    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  18. Ion exchange investigation on the Syrian zeolite

    International Nuclear Information System (INIS)

    We have studied the ion exchange process by using Syrian zeolite from the region of Tell-Assis with four solutions containing these ions: Ag+, NH4+, Pb2+, and Cu2+. It was found that the required time to reach the equilibrium is 6-8 hours, and depends on the type of ion. the exchange capacity mainly depends on the type of ions, and range between 0.5-1.57 m. mol/g. The effect of pH on ion exchange capacity was obvious and the best results were reached when the pH ranged between 5+ will exchange with univalent and bivalent ions in the zeolite, whereas the bivalent ions as Pb+2 will preferentially exchange with the bivalent ions in the zeolite. we concluded that the used zeolite gave good results compared with some known zeolite. (Author)

  19. Phosphorus sorption capacities and physicochemical properties of nine substrate materials for constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Cui, L.H.; Zhu, X.Z.; Ma, M.; Ouyang, Y.; Dong, M.; Zhu, W.L.; Luo, S.M. [South China Agricultural University, Guangdong (China)

    2008-08-15

    Constructed wetland (CW) is a promising technique for removal of pollutants from wastewater and agricultural runoff. The performance of a CW to remove pollutants, however, hinges on the use of suitable substrate materials. This study examined the physicochemical properties and phosphorus (P) sorption capacities of nine different CW substrate materials using both batch experiments and the Freundlich as well as the Langmuir isotherm. The nine substrate materials used in this study were turf, topsoil, gravel, midsized sand (MSS), blast furnace slag (BFS), coal burn slag (CBS), blast furnace artificial slag (BFAS), coal burn artificial slag (CBAS), and midsized artificial sand (MSAS). Experimental data showed that sorption of P increased with initial solution P concentrations for all nine substrate materials. The maximum P sorption capacity of the substrate materials estimated by Langmuir isotherm was in the following order: turf (4243 mg/kg substrate) > BFAS (2116 mg/kg substrate) > BFS (1598 mg/kg substrate) > CBS (1449 mg/kg substrate) > top soil (1396 mg/kg substrate) > CBAS (1194 mg/kg substrate) > MSAS (519 mg/kg substrate) > gravel (494 mg/kg substrate) > MSS (403 mg/kg substrate). The specific gravity of eight substrate materials (except gravel) had very significant negative correlations with the P sorption, whereas the particle diameter of D-60 and uniformity coefficient (K-60) had positive correlations with the P sorption. The cation exchange capacity, organic matter, available ferrous, and exchangeable aluminum of the eight substrate materials also had very significant positive correlations with the P sorption, while the pH of the substrate materials showed a very significant negative correlation with the P sorption. Our study further suggests that turf and CBAS are the two relatively ideal substrate materials suitable for removal of P from a CW system.

  20. Anion exchange selectivity of surfactant modified clinoptilolite-rich tuff for environmental remediation.

    Science.gov (United States)

    de Gennaro, Bruno; Catalanotti, Lilia; Bowman, Robert S; Mercurio, Mariano

    2014-09-15

    describe cation exchange selectivity in zeolites. Finally, it was also verified that the zeolite modified with HDTMA-Cl is able to better exploit its anion exchange capacity compared to the same zeolite modified with HDTMA-Br. PMID:24998071

  1. 非能动余热排出换热器换热能力数值分析%Numerical Analysis on Heat Removal Capacity of Passive Residual Heat Removal Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    张文文; 丛腾龙; 田文喜; 秋穗正; 苏光辉; 谢永诚; 蒋兴

    2015-01-01

    Thermal‐hydraulics characteristics of AP1000 passive residual heat removal heat exchanger (PRHR‐HX) at initial operating stage were analyzed based on the por‐ous media model .The data obtained from RELAP5 under the condition of the station blackout was employed as the inlet flow rate and temperature boundary of CFD calcula‐tion .The distribution resistances were added into the C‐type tube bundle region which was treated as porous zone .Three‐dimensional distributions of velocity and temperature in the in‐containment refueling water storage tank (IRWST ) were calculated by the commercial CFD code FLUENT .The heat transfer between the primary loop side and the IRWST side was calculated by user self‐defined function UDF .The results show that the heat transfer capability decreases with the increase of water temperature and a thermal stratification phenomenon in the tank occurs .The present results indicate that the method containing coupled heat transfer from the primary loop side fluid to IRWST side fluid and porous media model is a suitable approach to study the transient thermal‐hydraulics of PRHR/IRWST system .%基于多孔介质模型,对AP1000非能动余热排出换热器(PRHR‐HX)运行初始阶段进行了数值模拟。一回路的入口温度及流量采用RELAP5的计算结果,并以此作为CFD计算的边界条件。采用多孔介质模型处理C型管束区,添加管束区分布阻力。通过商业CFD软件FLUENT 计算得到安全壳内置换料水箱(IRWST )侧冷却剂的三维温度及速度分布,通过用户自定义函数 UDF 完成一回路侧与IRWST侧的耦合换热计算,获得一回路温度分布及换热量。计算结果表明,随着IRWST 内冷却剂温度升高,换热器热负荷降低,并出现明显的热分层现象,同时证明采用多孔介质模型与耦合换热计算是分析PRHR/IRWST系统瞬态热工水力特性的有效方法。

  2. Anion and cation diffusion in barium titanate and strontium titanate

    International Nuclear Information System (INIS)

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO3 single crystals has been studied by means of 18O2/16O2 isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial pressure and temperature. The data

  3. Localization versus delocalization in diamine radical cations

    DEFF Research Database (Denmark)

    Brouwer, A.M.; Wiering, P.G.; Zwier, J.M.;

    1997-01-01

    The optical absorption spectrum of the radical cation of 1,4-diphenylpiperazine 2a shows a strong transition in the near-IR, and only a weak band at 445 nm, in the region where aniline radical cations normally absorb strongly. This indicates that the charge and spin are delocalized over the two...

  4. Tripodal Receptors for Cation and Anion Sensors

    Directory of Open Access Journals (Sweden)

    David N. Reinhoudt

    2006-08-01

    Full Text Available This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  5. Evaluating CO2 mineralization capacity of sedimentary rock Using BCR sequential extraction procedures

    Science.gov (United States)

    Yang, Gang-Ting; Yu, Chi-Wen; Yang, Hsiao-Ming; Chiao, Chung-Hui; Yang, Ming-Wei

    2015-04-01

    To relief the high concentration of carbon dioxide in the atmosphere, carbon capture and storage (CCS) is gradually becoming an important concept to reduce greenhouse gas emissions. In IPCC Special Report on CCS, the storage mechanisms for geological formations are categorized into structural/stratigraphic, hydrodynamic and geochemical trappings. Geochemical trapping is considered as a storage mechanism, which can further increase storage capacity, effectiveness and security in terms of permanent CO2 sequestration. The injected CO2 can have geochemical interactions with pore fluid and reservoir rocks and transform into minerals. It is important to evaluate the capacity of reservoir rock for sequestrating CO2. In this study, sedimentary rock samples were collected from a 2-km-deep well in Midwestern Taiwan; and, the BCR sequential extraction experiments developed by European Union Measurement and Testing Programme were conducted. BCR was designed for extracting three major phases from soil, including exchangeable phase and carbonates (the first stage), reducible phase (the second stage) and oxidizable phase (the third stage). The chemistry of extracted solutions and rock residues were measured with ICP-MS and XRF, respectively. According to the results of XRF, considerable amounts of calcium and iron can be extracted by BCR procedures but other cations are negligible. In general, shale has a higher capacity of CO2 sequestration than sandstone. The first stage of extraction can release about 6 (sandstone) to 18.5 (shale) g of calcium from 1 kg rock, which are equivalent to 6.6 and 20.4 g CO2/kg rock, respectively. In the second stage extraction, 0.71 (sandstone) to 1.38 (shale) g/kg rock of iron can be released and can mineralized 0.56 to 1.08 g CO2/kg rock. However, there are no considerable cations extracted in the third stage of BCR as shown by the XRF analysis. In addition, the results of ICP-MS show that Mg can be released in the order of 10-3 g from 1 kg rock

  6. Cationic Bolaamphiphiles for Gene Delivery

    Science.gov (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  7. Study on the Cation-π Interactions between Ammonium Ion and Aromatic π Systems

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao-Xu; ZHANG Jing-Chang; CAO Wei-Liang

    2006-01-01

    The nature and strength of the cation-π interactions between NH4+ and toluene, p-cresol, or Me-indole were studied in terms of the topological properties of molecular charge density and binding energy decomposition. The results display that the diversity in the distribution pattern of bond and cage critical points reflects the profound influenceof the number and nature of substituent on the electron density of the aromatic rings. On the other hand, the energy decomposition shows that dispersion and repulsive exchange forces play an important role in the organic cation ( NH4+ )-π interaction, although the electrostatic and induction forces dominate the interaction. In addition, it isintriguing that there is an excellent correlation between the electrostatic energy and ellipticity at the bond critical point of the aromatic π systems, which would be helpful to further understand the electrostatic interaction in the cation-π complexes.

  8. INTERACTION OF AMINO ACID WITH ION EXCHANGE RESIN Ⅲ.FURTHER INVESTIGA TION OF SUPEREQUIVALENT ADSORPTION MECHANISM OF AMINO ACID ON ION EXCHANGE RESIN

    Institute of Scientific and Technical Information of China (English)

    ZHANGHui; SHAOTong; 等

    1994-01-01

    The adsorption isotherms of glycine,alanine and oxidized glutathion on strong acid cation and strong base anion exchange resins from aqueous solutions were measured and the superequivalent adsorptions of glycine and alanine observed.The infrared spectra of glycine adsorbed on the cation and the anion exchange resins,001×7 and 201×7,were measured.From these results,it is concluded that the amino acid adsorption on the ion exchange resin proceeds not only through ion exchange and proton transfer mechanisms,but also through aminecarboxylate interaction between the adsorbed amino acid molecules,and the formation of second layer of amino acid molecules is the mechanism of superequivalent adsorption of amino acid,the carboxylate or amine groups of the first layer of amino acid molecules on the ion exchange resin act as the exchange sites for the second layer of amino acid molecules.

  9. Comparative design evaluation of plate fin heat exchanger and coiled finned tube heat exchanger for helium liquefier in the temperature range of 300-80 K

    International Nuclear Information System (INIS)

    Present indigenous helium liquefaction system at RRCAT uses the cross-counter flow coiled-finned tube heat exchangers developed completely from Indian resources. These coiled-finned tube heat exchangers are mainly suitable up to medium capacity helium liquefiers. For large capacity helium liquefier, plate fin heat exchangers are more suitable options. This paper presents the comparative evaluation of the design of both types of heat exchangers in the temperature range of 300-80 K for helium liquefier. (author)

  10. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  11. Symmetric, coherent, Choquet capacities

    OpenAIRE

    Kadane, Joseph B.; Wasserman, Larry

    1996-01-01

    Choquet capacities are a generalization of probability measures that arise in robustness, decision theory and game theory. Many capacities that arise in robustness are symmetric or can be transformed into symmetric capacities. We characterize the extreme points of the set of upper distribution functions corresponding to coherent, symmetric Choquet capacities on [0, 1]. We also show that the set of 2-alternating capacities is a simplex and we give a Choquet representation of this set.

  12. Protein phylogenetic analysis of Ca2+/cation antiporters and insights into their evolution in plants

    Directory of Open Access Journals (Sweden)

    Laura eEmery

    2012-01-01

    Full Text Available Cation transport is a critical process in all organisms and is essential for mineral nutrition, ion stress tolerance, and signal transduction. Transporters that are members of the Ca2+/Cation Antiporter (CaCA superfamily are involved in the transport of Ca2+ and/or other cations using the counter exchange of another ion such as H+ or Na+. The CaCA superfamily has been previously divided into five transporter families: the YRBG, NCX, NCKX, CAX and CCX families, which include the well-characterized Na+/Ca2+ exchanger (NCX and H+/cation exchanger (CAX transporters. To examine the evolution of CaCA transporters within higher plants and the green plant lineage, CaCA genes were identified from the genomes of sequenced flowering plants, a bryophyte, lycophyte, and freshwater and marine algae, and compared with those from non-plant species. We found evidence of the expansion and increased diversity of flowering plant genes within the CAX and CCX families. Genes related to the NCX family are present in land plant though they encode distinct MHX homologs which probably have an altered transport function. In contrast, the NCX and NCKX genes which are absent in land plants have been retained in many species of algae, especially the marine algae, indicating that these organisms may share ‘animal-like’ characteristics of Ca2+ homeostasis and signaling. A group of genes encoding novel CAX-like proteins containing an EF hand domain were identified from plants and selected algae but appeared to be lacking in any other species. Lack of functional data for most of the CaCA proteins make it impossible to reliably predict substrate specificity and function for many of the groups or individual proteins. The abundance and diversity of CaCA genes throughout all branches of life indicates the importance of this class of cation transporter, and that many transporters with novel functions are waiting to be discovered.

  13. Amazon kaolinite functionalized with diethylenetriamine moieties for U(VI) removal: Thermodynamic of cation-basic interactions

    International Nuclear Information System (INIS)

    The compound N-[3-(trimethoxysilyl)propyl]diethylenetriamine (MPDET) was anchored onto Amazon kaolinite surface (KLT) by heterogeneous route. The modified and natural kaolinite clay samples were characterized by transmission electron microscopy (TEM), scanning electron microscopic (SEM), N2 adsorption, powder X-ray diffraction, thermal analysis, ion exchange capacities, and nuclear magnetic nuclei of 29Si and 13C. The well-defined peaks obtained in the 13C NMR spectrum in the 5.0-62.1 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The adsorption of uranyl on natural (KLT) and modified (KLTMPDET) kaolinite clays was investigated as a function of the solution pH, metal concentration, temperature, and ionic strength. The ability of these materials to remove U(VI) from aqueous solution was followed by a series of adsorption isotherms adjusted to a Sips equation at room temperature and pH 4.0. The maximum number of moles adsorbed was determined to be 8.37 x 10-3 and 13.87 x 10-3 mmol g-1 for KLT and KLTMPDET at 298 K, respectively. The energetic effects (ΔintH, ΔintG, and ΔintS) caused by metal cations adsorption were determined through calorimetric titrations.

  14. Preparation of cationized pine sawdust for nitrate removal: Optimization of reaction conditions.

    Science.gov (United States)

    Keränen, Anni; Leiviskä, Tiina; Hormi, Osmo; Tanskanen, Juha

    2015-09-01

    Anion exchange materials were prepared from pine sawdust (Pinus sylvestris, PSD) through cationizing treatment with N-(3-chloro-2-hydroxypropyl) trimethyl ammonium chloride (CHMAC) in the presence of NaOH. Response surface methodology (RSM) was used to find the optimal reaction conditions. Three factors were chosen: reaction temperature (26-94 °C), reaction time (0.32-3.7 h) and NaOH/CHMAC molar ratio (0.19-2.2). Product yield (%) was used as a response. A quadratic model was fitted to the experimental data. The optimal conditions were: a reaction temperature of 57 °C, a reaction time of 1.8 h and a NaOH/CHMAC molar ratio of 1.32. A maximum nitrogen content of 2.6% was obtained at 60 °C, 3.7 h and a molar ratio of 1.2. The molar ratio had the greatest impact on the response. Regression analysis revealed that over 95% of the variance can be explained by the model. A maximum nitrate sorption capacity of 15.3 ± 1.4 mg N/g was achieved. The effect of CHMAC dose was also studied (a NaOH/CHMAC molar ratio of 1.2): 0.064 mol/g PSD was found to be near the optimum. Nitrate-contaminated groundwater (27.5 mg/l NO3) was treated with CPSD. Doses of 3-6 g/l resulted in 59-71% nitrate reduction. PMID:26093104

  15. Determination of boron in silicates after ion exchange separation

    Science.gov (United States)

    Kramer, H.

    1955-01-01

    Existing methods for the determination of boron in silicates are not entirely satisfactory. Separation as the methyl ester is lengthy and frequently erratic. An accurate and rapid method applicable to glass, mineral, ore, and water samples uses ion exchange to remove interfering cations, and boron is determined titrimetrically in the presence of mannitol, using a pH meter to indicate the end point.

  16. EVALUATING ION EXCHANGE FOR REMOVING RADIUM FROM GROUNDWATER

    Science.gov (United States)

    This article, the second in a series, focuses on the results of bench- and pilot-scale studies of ion exchange processes for radium removal from groundwater in Lemont, Ill. Batch and column studies indicated a very high resin selectivity for radium compared with common cations. E...

  17. Quantitative mapping of intracellular cations in the human amniotic membrane

    Science.gov (United States)

    Moretto, Ph.; Llabador, Y.; Simonoff, M.; Razafindrabe, L.; Bara, M.; Guiet-Bara, A.

    1993-05-01

    The effect of magnesium and taurine on the permeability of cell membranes to monovalent cations has been investigated using the Bordeaux nuclear microprobe. PIXE and RBS techniques have been used to provide quantitative measurements and ion distributions in the isolated amniotic membrane. This physiological model for cellular exchanges allowed us to reveal the distribution of most elements involved in cellular pathways and the modifications under different experimental conditions of incubation in physiological fluids. The PIXE microanalysis provided an original viewpoint on these mechanisms. Following this first study, the amnion compact lamina was found to play a role which was not, up to now, taken into account in the interpretation of electrophysiological experimentations. The release of some ionic species, such as K +, from the epithelial cells, during immersion in isotonic fluids, could have been hitherto underestimated.

  18. Diffusion of anions and cations in compacted sodium bentonite

    International Nuclear Information System (INIS)

    The thesis presents the results of studies on the diffusion mechanisms of anions and cations in compacted sodium bentonite, which is planned to be used as a buffer material in nuclear waste disposal in Finland. The diffusivities and sorption factors were determined by tracer experiments. The pore volume accessible to chloride, here defined as effective porosity, was determined as a function of bentonite density and electrolyte concentration in water, and the Stern-Gouy double-layer model was used to explain the observed anion exclusion. The sorption of Cs+ and Sr2+ was studied in loose and compacted bentonite samples as a function of the electrolyte concentration in solution. In order to obtain evidence of the diffusion of exchangeable cations, defined as surface diffusion, the diffusivities of Cs+ and Sr2+ in compacted bentonite were studied as a function of the sorption factor, which was varied by electrolyte concentration in solution. The measurements were performed both by a non-steady state method and by a through-diffusion method. (89 refs., 35 fig., 4 tab.)

  19. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface.

    Science.gov (United States)

    Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin; Crumlin, Ethan J; Yildiz, Bilge

    2016-09-01

    Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO3) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H2O and CO2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, ) by the positively charged oxygen vacancies () enriched at the surface. Here we show that reducing the surface concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O2 molecules. We take La0.8Sr0.2CoO3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a 'volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss. PMID:27295099

  20. Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface

    Science.gov (United States)

    Tsvetkov, Nikolai; Lu, Qiyang; Sun, Lixin; Crumlin, Ethan J.; Yildiz, Bilge

    2016-09-01

    Segregation and phase separation of aliovalent dopants on perovskite oxide (ABO3) surfaces are detrimental to the performance of energy conversion systems such as solid oxide fuel/electrolysis cells and catalysts for thermochemical H2O and CO2 splitting. One key reason behind the instability of perovskite oxide surfaces is the electrostatic attraction of the negatively charged A-site dopants (for example, ) by the positively charged oxygen vacancies () enriched at the surface. Here we show that reducing the surface concentration improves the oxygen surface exchange kinetics and stability significantly, albeit contrary to the well-established understanding that surface oxygen vacancies facilitate reactions with O2 molecules. We take La0.8Sr0.2CoO3 (LSC) as a model perovskite oxide, and modify its surface with additive cations that are more and less reducible than Co on the B-site of LSC. By using ambient-pressure X-ray absorption and photoelectron spectroscopy, we proved that the dominant role of the less reducible cations is to suppress the enrichment and phase separation of Sr while reducing the concentration of and making the LSC more oxidized at its surface. Consequently, we found that these less reducible cations significantly improve stability, with up to 30 times faster oxygen exchange kinetics after 54 h in air at 530 °C achieved by Hf addition onto LSC. Finally, the results revealed a `volcano' relation between the oxygen exchange kinetics and the oxygen vacancy formation enthalpy of the binary oxides of the additive cations. This volcano relation highlights the existence of an optimum surface oxygen vacancy concentration that balances the gain in oxygen exchange kinetics and the chemical stability loss.

  1. CAX-ing a wide net: Cation/H(+) transporters in metal remediation and abiotic stress signalling

    Science.gov (United States)

    Cation/proton exchangers (CAXs) are a class of secondary energised ion transporter that are being implicated in an increasing range of cellular and physiological functions. CAXs are primarily Ca(2+) efflux transporters that mediate the sequestration of Ca(2+) from the cytosol, usually into the vacuo...

  2. Cycloaliphatic epoxide resins for cationic UV - cure

    International Nuclear Information System (INIS)

    This paper introduces the cyclo - aliphatic epoxide resins used for the various applications of radiation curing and their comparison with acrylate chemistry. Radiation curable coatings and inks are pre - dominantly based on acrylate chemistry but over the last few years, cationic chemistry has emerged successfully with the unique properties inherent with cyclo - aliphatic epoxide ring structures. Wide variety of cationic resins and diluents, the formulation techniques to achieve the desired properties greatly contributes to the advancement of UV - curing technology

  3. Cations and activated sludge floc structure

    OpenAIRE

    Park, Chul

    2002-01-01

    This research was designed to investigate the effect of cations on activated sludge characteristics and also to determine their influence on digestion performance. For this purpose, cations in solution and in floc were evaluated along with various activated sludge characteristics and the collected waste activated sludge underwent both anaerobic and aerobic digestion. It was found that large amounts of biopolymer (protein + polysaccharide) remained in the effluent of WWTP that received high in...

  4. Silica-based cationic bilayers as immunoadjuvants

    OpenAIRE

    Carmona-Ribeiro Ana M; da Costa Maria; Faquim-Mauro Eliana; Santana Mariana RA; Lincopan Nilton

    2009-01-01

    Abstract Background Silica particles cationized by dioctadecyldimethylammonium bromide (DODAB) bilayer were previously described. This work shows the efficiency of these particulates for antigen adsorption and presentation to the immune system and proves the concept that silica-based cationic bilayers exhibit better performance than alum regarding colloid stability and cellular immune responses for vaccine design. Results Firstly, the silica/DODAB assembly was characterized at 1 mM NaCl, pH 6...

  5. Removal of CdTe in acidic media by magnetic ion-exchange resin: A potential recycling methodology for cadmium telluride photovoltaic waste

    International Nuclear Information System (INIS)

    Highlights: • Sulfonated magnetic microsphere was prepared as one strong acid cation-exchange resin. • Cd and Te can be removed directly from the highly acidic leaching solution of CdTe. • Good chemical stability, fast adsorbing rate and quick magnetic separation in strong acidic media. • A potential path for recycling CdTe photovoltaic waste. - Abstract: Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste

  6. Removal of CdTe in acidic media by magnetic ion-exchange resin: A potential recycling methodology for cadmium telluride photovoltaic waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Teng, E-mail: zhangteng@mail.iee.ac.cn; Dong, Zebin; Qu, Fei; Ding, Fazhu; Peng, Xingyu; Wang, Hongyan; Gu, Hongwei

    2014-08-30

    Highlights: • Sulfonated magnetic microsphere was prepared as one strong acid cation-exchange resin. • Cd and Te can be removed directly from the highly acidic leaching solution of CdTe. • Good chemical stability, fast adsorbing rate and quick magnetic separation in strong acidic media. • A potential path for recycling CdTe photovoltaic waste. - Abstract: Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste.

  7. Matéria orgânica e aumento da capacidade de troca de cátions em solo com argila de atividade baixa sob plantio direto Soil organic matter and cation exchange capacity increase in a low activity clay soil under no-tillage system

    Directory of Open Access Journals (Sweden)

    Marlise Nara Ciotta

    2003-12-01

    Full Text Available O sistema de manejo afeta a matéria orgânica do solo, o que pode ter expressivo efeito na CTC de solos com argila de atividade baixa. Neste estudo, avaliou-se o efeito da utilização durante 21 anos do sistema plantio direto (SPD sobre os estoques de carbono orgânico (CO, bem como a sua relação com o aumento da CTC de um Latossolo bruno (629 g kg-1 de argila, em Guarapuava, PR. O SPD promoveu acúmulo de CO na camada superficial do solo (0-6cm, o que refletiu-se num aumento de 2,63t ha-1 no estoque de CO, na camada de 0-20cm, em comparação ao preparo convencional. A baixa taxa de acúmulo de CO (0,12t ha-1 ano-1 foi relacionada à alta estabilidade física da matéria orgânica neste solo argiloso e oxídico. Apesar do pequeno acúmulo de CO no solo sob SPD, este teve reflexo positivo na CTC do solo, com um aumento médio, na camada de 0-8cm, de 15,2mmol c kg-1 na CTC efetiva, e de 20,7mmol c kg-1 na CTC a pH 7,0, em comparação ao solo em preparo convencional. Os resultados obtidos reforçam a importância do SPD quanto ao seu efeito nos estoques de matéria orgânica e, em consequência, na CTC de solos tropicais e subtropicais com predominância de argila de atividade baixa.Soil management affects the organic matter stocks, and thus the CEC especially in low activity clay soils. The main goal of this study was to evaluate the long-term (21 years effect of the no-tillage on soil organic carbon (SOC stocks and its relationship with CEC increase in a clayey Oxisol (Hapludox, in Guarapuava (PR, Southern Brazil. No-tillage soil had only 2.63t ha-1 more SOC than conventionally tilled soil at 0-20cm, and the highest net accumulation occurred in soil surface layers (0-6cm. The low accumulation rate of SOC in the no-tilled soil (0,12t ha-1 yr-1 was related to the high physical stability of soil organic matter in this clayey Oxisol. Despite the small effect on SOC contents, the no-tilllage had an expressive influence on the CEC of 0-8cm soil layer. The effective CEC increased 15.2mmol c kg-1 and the potential (pH 7.0 CEC increased 20.7mmol c kg-1 in this soil layer, in comparison to conventional tillage system. The results support the positive effect of no-tillage on soil organic matter stocks and on CEC of tropical and subtropical soils with predominantly low activity clay minerals.

  8. Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar.

    Science.gov (United States)

    Zhao, Ling; Cao, Xinde; Zheng, Wei; Wang, Qun; Yang, Fan

    2015-10-01

    The feedstocks for biochar production are diverse and many of them contain various minerals in addition to being rich in carbon. Twelve types of biomass classified into 2 categories: plant-based and municipal waste, were employed to produce biochars under 350 °C and 500 °C. Their pH, point of zero net charge (PZNC), zeta potential, cation and anion exchange capacity (CEC and AEC) were analyzed. The municipal waste-based biochars (MW-BC) had higher mineral levels than the plant-based biochars (PB-BC). However, the water soluble mineral levels were lower in the MW-BCs due to the dominant presence of less soluble minerals, such as CaCO3 and (Ca,Mg)3(PO4)2. The higher total minerals in MW-BCs accounted for the higher PZNC (5.47-9.95) than in PB-BCs (1.91-8.18), though the PZNCs of the PB-BCs increased more than that of the MW-BCs as the production temperature rose. The minerals had influence on the zeta potentials via affecting the negative charges of biochars and the ionic strength of solution. The organic functional groups in PB-BCs such as -COOH and -OH had a greater effect on the CEC and AEC, while the minerals had a greater effect on that of MW-BCs. The measured CEC and AEC values had a strong positive correlation with the total amount of soluble cations and anions, respectively. Results indicated that biochar surface charges depend not only on the organic functional groups, but also on the minerals present and to some extent, minerals have more influences on the surface electrochemistry and ion exchange properties of biochar. PMID:25974107

  9. The radiolytic and chemical degradation of organic ion exchange resins under alkaline conditions: effect on radionuclide speciation

    International Nuclear Information System (INIS)

    The formation of water soluble organic ligands by the radiolytic and chemical degradation of several ion exchange resins was investigated under conditions close to those of the near field of a cementitious repository. The most important degradation products were characterised and their role on radionuclide speciation evaluated thoroughly. Irradiation of strong acidic cation exchange resins (Powdex PCH and Lewatite S-100) resulted in the formation of mainly sulphate and dissolved organic carbon. A small part of the carbon (10-20%) could be identified as oxalate. The identity of the remainder is unknown. Complexation studies with Cu2+ and Ni2+ showed the presence of two ligands: oxalate and ligand X. Although ligand X could not be identified, it could be characterised by its concentration, a deprotonation constant and a complexation constant for the NiX complex. The influence of oxalate and ligand X on the speciation of radionuclides is examined in detail. For oxalate no significant influence on the speciation of radionuclides is expected. The stronger complexing ligand X may exert some influence depending on its concentration and the values of other parameters. These critical parameters are discussed and limiting values are evaluated. In absence of irradiation, no evidence for the formation of ligands was found. Irradiation of strong basic anion exchange resins (Powdex PAO and Lewatite M-500) resulted in the formation of mainly ammonia, amines and dissolved organic carbon. Up to 50% of the carbon could be identified as methyl-, dimethyl- and trimethylamine. Complexation studies with Eu3+ showed that the complexing capacity under near field conditions was negligible. The speciation of cations such as Ag, Ni, Cu and Pd can be influenced by the presence of amins. The strongest amine-complexes are formed with Pd and therefore, as an example, the aqueous Pd-ammonia system is examined in great detail. (author) 30 figs., 10 tabs., refs

  10. The radiolytic and chemical degradation of organic ion exchange resins under alkaline conditions: effect on radionuclide speciation

    Energy Technology Data Exchange (ETDEWEB)

    Loon, L. van; Hummel, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-10-01

    The formation of water soluble organic ligands by the radiolytic and chemical degradation of several ion exchange resins was investigated under conditions close to those of the near field of a cementitious repository. The most important degradation products were characterised and their role on radionuclide speciation evaluated thoroughly. Irradiation of strong acidic cation exchange resins (Powdex PCH and Lewatite S-100) resulted in the formation of mainly sulphate and dissolved organic carbon. A small part of the carbon (10-20%) could be identified as oxalate. The identity of the remainder is unknown. Complexation studies with Cu{sup 2+} and Ni{sup 2+} showed the presence of two ligands: oxalate and ligand X. Although ligand X could not be identified, it could be characterised by its concentration, a deprotonation constant and a complexation constant for the NiX complex. The influence of oxalate and ligand X on the speciation of radionuclides is examined in detail. For oxalate no significant influence on the speciation of radionuclides is expected. The stronger complexing ligand X may exert some influence depending on its concentration and the values of other parameters. These critical parameters are discussed and limiting values are evaluated. In absence of irradiation, no evidence for the formation of ligands was found. Irradiation of strong basic anion exchange resins (Powdex PAO and Lewatite M-500) resulted in the formation of mainly ammonia, amines and dissolved organic carbon. Up to 50% of the carbon could be identified as methyl-, dimethyl- and trimethylamine. Complexation studies with Eu{sup 3+} showed that the complexing capacity under near field conditions was negligible. The speciation of cations such as Ag, Ni, Cu and Pd can be influenced by the presence of amins. The strongest amine-complexes are formed with Pd and therefore, as an example, the aqueous Pd-ammonia system is examined in great detail. (author) 30 figs., 10 tabs., refs.

  11. Total iron binding capacity

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  12. Discontinuous symplectic capacities

    NARCIS (Netherlands)

    Zehmisch, K.; Ziltener, F.J.

    2014-01-01

    We show that the spherical capacity is discontinuous on a smooth family of ellipsoidal shells. Moreover, we prove that the shell capacity is discontinuous on a family of open sets with smooth connected boundaries.

  13. Characterisation of a re-cast composite Nafion 1100 series of proton exchange membranes incorporating inert inorganic oxide particles

    International Nuclear Information System (INIS)

    A series of cation exchange membranes was produced by impregnating and coating both sides of a quartz web with a Nafion solution (1100 EW, 10%wt in water). Inert filler particles (SiO2, ZrO2 or TiO2; 5-20%wt) were incorporated into the aqueous Nafion solution to produce robust, composite membranes. Ion-exchange capacity/equivalent weight, water take-up, thickness change on hydration and ionic and electrical conductivity were measured in 1 mol dm-3 sulfuric acid at 298 K. The TiO2 filler significantly impacted on these properties, producing higher water take-up and increased conductivity. Such membranes may be beneficial for proton exchange membrane (PEM) fuel cell operation at low humidification. The PEM fuel cell performance of the composite membranes containing SiO2 fillers was examined in a Ballard Mark 5E unit cell. While the use of composite membranes offers a cost reduction, the unit cell performance was reduced, in practice, due to drying of the ionomer at the cathode.

  14. Characterisation of a re-cast composite Nafion 1100 series of proton exchange membranes incorporating inert inorganic oxide particles

    Energy Technology Data Exchange (ETDEWEB)

    Slade, S.M.; Smith, J.R.; Campbell, S.A. [School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael' s Building, White Swan Road, Portsmouth PO1 2DT (United Kingdom); Ralph, T.R. [Johnson Matthey Fuel Cells, Lydiard Fields, Great Western Way, Swindon SN5 8AT (United Kingdom)] [Electrochemical Engineering Laboratory, Energy Technology Research Group, School of Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Ponce de Leon, C. [Electrochemical Engineering Laboratory, Energy Technology Research Group, School of Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Walsh, F.C., E-mail: F.C.Walsh@soton.ac.u [Electrochemical Engineering Laboratory, Energy Technology Research Group, School of Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2010-09-01

    A series of cation exchange membranes was produced by impregnating and coating both sides of a quartz web with a Nafion solution (1100 EW, 10%wt in water). Inert filler particles (SiO{sub 2}, ZrO{sub 2} or TiO{sub 2}; 5-20%wt) were incorporated into the aqueous Nafion solution to produce robust, composite membranes. Ion-exchange capacity/equivalent weight, water take-up, thickness change on hydration and ionic and electrical conductivity were measured in 1 mol dm{sup -3} sulfuric acid at 298 K. The TiO{sub 2} filler significantly impacted on these properties, producing higher water take-up and increased conductivity. Such membranes may be beneficial for proton exchange membrane (PEM) fuel cell operation at low humidification. The PEM fuel cell performance of the composite membranes containing SiO{sub 2} fillers was examined in a Ballard Mark 5E unit cell. While the use of composite membranes offers a cost reduction, the unit cell performance was reduced, in practice, due to drying of the ionomer at the cathode.

  15. CDMA systems capacity engineering

    CERN Document Server

    Kim, Kiseon

    2004-01-01

    This new hands-on resource tackles capacity planning and engineering issues that are crucial to optimizing wireless communication systems performance. Going beyond the system physical level and investigating CDMA system capacity at the service level, this volume is the single-source for engineering and analyzing systems capacity and resources.

  16. Adsorption on mixtures of ion exchangers

    International Nuclear Information System (INIS)

    A theoretical study has been made of adsorption on mixtures of ion exchangers. The effect of variables such as the concentration of the ion being adsorbed, the concentration of the supporting electrolyte, loading, the values of the capacities and equilibrium constants for the various exchange processes, and the fraction of each adsorber in the mixture on the observed distribution coefficient has been investigated. A computer program has been written to facilitate the calculation of distribution coefficients for the adsorption of an ion on a given mixture of ion exchangers under a specified set of conditions

  17. Totalization Data Exchange (TDEX)

    Data.gov (United States)

    Social Security Administration — The Totalization Data Exchange (TDEX) process is an exchange between SSA and its foreign country partners to identify deaths of beneficiaries residing abroad. The...

  18. Lignocellulosic Wheat Straw-Derived Ion-Exchange Adsorbent for Heavy Metals Removal.

    Science.gov (United States)

    Krishnani, K K

    2016-02-01

    The aim of this work is to develop partially delignified Ca(2+)-and-Mg(2+)-ion-exchanged product from lignocellulosic wheat straw for the removal of eight different heavy metals Pb(2+), Cd(2+), Hg(2+), Co(2+), Ni(2+), Mn(2+), Zn(2+), and Cu(2+) and for detoxification of Cr(VI). Maximum fixation capacity, pH, and initial metal concentration dependence were determined to confirm strong affinity of Pb(2+), Cd(2+), Cu(2+), Zn(2+), and Hg(2+) ions onto the product, whereas Co(2+), Ni(2+), and Mn(2+) were the least fixed. Morphology of the product characterized by scanning electron microscope showed its physical integrity. Different experimental approaches were applied to determine the role of cations such as Ca(2+), Mg(2+), and Na(+) and several functional groups present in the product in an ion exchange for the fixation of metal ions. Potentiometric titration and Scatchard and Dahlquist interpretation were employed for determination of binding site heterogeneity. Results showed strong and weak binding sites in the product. This product has advantages over other conventional processes by virtue of abundance, easy operational process, and cost reduction in waste disposal of its raw material.

  19. Evaluation of the capacity of heavy metal adsorption in exfoliated vermiculite; Avaliacao da capacidade de adsorcao de metal pesado em vermiculitas esfoliadas

    Energy Technology Data Exchange (ETDEWEB)

    Lima, J.F.; Silva, P.S.; Hanken, R.B.L. [Universidade Federal de Campina Grande (UAEMa/UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Raposo, C.M.O., E-mail: raposo@dmg.ufcg.edu.b [Universidade Federal de Campina Grande (UAMG/UFCG), Bodocongo, PB (Brazil). Unidade Academica de Mineracao e Geologia

    2009-07-01

    Many groups from modern society have seen with attention the issues of pollutants, generally present in nature, those same that have caused irreversible damages to the environment. The Vermiculite, a phyllosilicate, with t-o-t structure, have high interlamelar charge, has been studied as cationic exchanger, whose application when exfoliated, are increased. This work has the objective of evaluate the absorption capacity of chromium (III), in different concentrations, in high, slim and medium concentrations of exfoliated vermiculites. The results obtained from the characterization by spectroscopy in infrared and by diffraction of x-ray from prepared solids showed important variations in the quantity of adsorbed metal in order the size of the concentrated particles. (author)

  20. RATE LAW AND ITS MOMENT EXPRESSIONS FOR PELLICULAR ION EXCHANGE MATERIALS OF VARIOURS SHAPES

    Institute of Scientific and Technical Information of China (English)

    YangGengliang; ZhangXiaomin; 等

    1994-01-01

    In this paper,the kinetic moment expressions and rate laws are derived for pellicular ion exchange materials with various geometrical forms under the conditions that ion exchange rate is controlled by both the partical diffusion and the film diffusion in finite solution volume.In addition,for strong acidic cation ion exchange fibre,by using the equations obtained we calculated the partical diffusion coefficients and the transfer coefficients in the film under different experimental conditions.

  1. Capacity Statement for Railways

    DEFF Research Database (Denmark)

    Landex, Alex

    2007-01-01

    The subject “Railway capacity” is a combination of the capacity consumption and how the capacity is utilized. The capacity utilization of railways can be divided into 4 core elements: The number of trains; the average speed; the heterogeneity of the operation; and the stability. This article...... describes how the capacity consumption for railways can be worked out and analytical measurements of how the capacity is utilized. Furthermore, the article describes how it is possible to state and visualize railway capacity. Having unused railway capacity is not always equal to be able to operate more...... trains. This is due to network effects in the railway system and due to the fact that more trains results in lower punctuality....

  2. Adsorption of Metsulfuron and Bensulfuron on a Cationic Surfactant-Modified Paddy Soil

    Institute of Scientific and Technical Information of China (English)

    LIAO Min; XIE Xiao-Mei

    2007-01-01

    Adsorption isotherms of metsulfuron and bensulfuron on a hexadecyltrimethylammonium (HDTMA) bromide-modified paddy soil under different ionic strengths, with divalent cation Cu2+, or having different pH were studied to describe their adsorptive behavior, and to try to explain the adsorption process of a sulfonylurea compound with a carbamoylsulfamoyl group in the modified soil environment. All the adsorption isotherms fitted the Freundlich equation well, and the HDTMA treatment of paddy soil dramatically enhanced adsorption capacity of metsulfuron or bensulfuron. Also, an increase of ionic strength and the addition of divalent heavy metal cation Cu2+ on the HDTMA-modified paddy soil increased the adsorption of metsulfuron or bensulfuron. Additionally, for metsulfuron and bensulfuron in the aqueous phase, adsorption capacity of the HDTMA-modified paddy soil gradually increased with decreasing pH.

  3. Dynamics of ion exchange between self-assembled redox polyelectrolyte multilayer modified electrode and liquid electrolyte.

    Science.gov (United States)

    Grumelli, Doris E; Garay, Fernando; Barbero, Cesar A; Calvo, Ernesto J

    2006-08-10

    A probe beam deflection (PBD) study of ion exchange between an electroactive polymer poly(allylamine)-bipyridyl-pyridine osmium complex film and liquid electrolyte is reported. The PBD measurements were made simultaneously to chronoamperometric oxidation-reduction cycles, to be able to detect kinetic effects in the ion exchange. Layer-by-layer (LbL) self-assembled redox polyelectrolyte films with osmium bipyridyl complex covalently attached to poly(allylamine) (PAH-Os) and poly(styrene sulfonate) (PSS) have been built by alternate electrostatic adsorption from soluble polyelectrolytes. The ionic exchange during initial conditioning of the film ("break-in") undergoing oxidation-reduction cycles and recovery after equilibration in the reduced state have shown an exchange of anions and cations with time lag between them. The effect of the nature of cation on the ionic exchange has been investigated with dilute HCl, LiCl, NaCl, and CsCl electrolytes. The ratio of anion to cation exchanged at the film-electrolyte interface has a strong dependence on the nature of charge in the topmost layer, that is, when negatively charged PSS is the capping layer, a larger proportion of cation exchange is observed. This demonstrates that the electrical potential distribution at the redox polyelectrolyte multilayer (PEM)/electrolyte interface determines the ionic flux in response to charge injection in the film. PMID:16884254

  4. Innate cation sensitivity in a semiconducting polymer.

    Science.gov (United States)

    Althagafi, Talal M; Algarni, Saud A; Grell, Martin

    2016-09-01

    Water-gated organic thin film transistors (OTFTs) using the hole transporting semiconducting polymer, poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT), show an innate response of their threshold voltage to the addition of divalent metal cations to the gating water, without deliberately introducing an ion-sensitive component. A similar threshold response is shown for several divalent cations, but is absent for monovalent cations. Response is absent for transistors using the inorganic semiconductor ZnO, or the similar organic semiconductor poly(3-hexylthiophene) (rrP3HT), instead of PBTTT. We assign innate cation sensitivity to residues of the organometallic Pd(0) complex used as catalyst in PBTTT synthesis which bears strong resemblance to typical metal chelating agents. Organometallic Pd(0) residues are absent from ZnO, and also from rrP3HT which is polymerised with a different type of catalyst. However, when Pd(0) complex is deliberately added to rrP3HT casting solutions, resulting OTFTs also display threshold response to a divalent cation. PMID:27343580

  5. The Gravitational Heat Exchanger

    OpenAIRE

    De Aquino, Fran

    2015-01-01

    The heat exchangers are present in many sectors of the economy. They are widely used in Refrigerators, Air-conditioners, Engines, Refineries, etc. Here we show a heat exchanger that works based on the gravity control. This type of heat exchanger can be much more economic than the conventional heat exchangers.

  6. Topology Control in VANET and Capacity Estimation

    OpenAIRE

    Giang, Anh Tuan; BUSSON, Anthony; Lambert, Alain; Gruyer, Dominique

    2013-01-01

    Some safety applications using VANET exchange a large amount of data, and consequently require an important network capacity. In this paper, we focus on extended perception map applications, that use information from local and distant sensors to offer driving assistance (autonomous driving, collision warning, etc). Extended perception requires a high bandwidth that might not be available in practice in classical IEEE 802.11p ad hoc networks. Therefore, we propose an adaptive power control alg...

  7. Heat Capacity of Hydrous Silicate Melts

    Science.gov (United States)

    Robert, G.; Whittington, A. G.; Stechern, A.; Behrens, H.

    2015-12-01

    We determined the heat capacities of four series of glasses and liquids of basaltic and basaltic andesite compositions including two natural remelts from Fuego volcano, Guatemala, and two Fe-free analogs. The samples are low-alkali, Ca- and Mg-rich aluminosilicates with non-bridging oxygen to tetrahedrally-coordinated cation ratios (NBO/T) ranging between 0.33 and 0.67. Differential scanning calorimetry measurements were performed at atmospheric pressure between room temperature and ≈100 K above the glass transition for hydrous samples and up to ≈1800 K for dry samples. The water contents investigated range up to 5.34 wt.% (16.4 mol%). Water does not measurably affect the heat capacity of glasses (T capacity, which generally gets larger with increasing water content and with decreasing polymerization. The onset of the glass transition in hydrous samples also occurs below the Dulong-Petit limit of 3R/g atom. We see little change in liquid heat capacity with increasing water content; hydrous liquid heat capacities are within 3-6% of the dry liquid, at low temperatures just above the glass transition. However, dry liquids show a decrease in heat capacity with increasing temperature above the glass transition, from supercooled to superliquidus temperatures. Liquid heat capacity values just above the glass transition range between 95-100 J/mol K, whereas liquid heat capacity values at superliquidus temperatures are between 85-91 J/mol K. Comparison with other studies of the heat capacity of hydrous glasses and liquids shows that the liquid heat capacity of strongly depolymerized samples (NBO/T ≥ 0.8) increases with increasing water content, whereas depolymerized samples (0.4 ≤ NBO/T ≤ 0.8) or polymerized samples (NBO/T ≤ 0.4) generally show little change or a moderate decrease in liquid heat capacity with increasing water content.

  8. Cationically polymerizable monomers derived from renewable sources

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.V.

    1992-10-01

    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  9. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.;

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...... and topological features of these glasses and we use AFM to quantify the resistances associated with each deformation process under Vickers indentation. We demonstrate that the mixed cation effect manifests itself as a maximum in the amount of bonded tetrahedral units and as a minimum in liquid fragility index...

  10. Cation Effect on Copper Chemical Mechanical Polishing

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; LIU Bo; SONG Zhi-Tang; FENG Song-Lin

    2009-01-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demon-strates the worst performance. These results reveal a mechanism that sma//molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  11. Evaluation of railway capacity

    DEFF Research Database (Denmark)

    Landex, Alex; Kaas, Anders H.; Schittenhelm, Bernd;

    2006-01-01

    This paper describes the relatively new UIC 406 method for calculating capacity consumption on railway lines. The UIC 406 method is an easy and effective way of calculating the capacity consumption, but it is possible to expound the UIC 406 method in different ways which can lead to different...... of a railway network. Some of the aspects which have to be paid attention to making annual capacity statements are presented too....

  12. Nuclear Capacity Auctions

    OpenAIRE

    Fridolfsson, Sven-Olof; Tangerås, Thomas

    2011-01-01

    We propose nuclear capacity auctions as a means to improve the incentives for investing in nuclear power. A properly designed auction would (i) allocate the license to the most efficient bidder; (ii) sell the license if and only if new nuclear power was socially optimal. In particular, capacity auctions open the market for large-scale entry by outside firms. Requiring licensees to sell a share of capacity as virtual power plant contracts increases auction efficiency by softening incumbent pro...

  13. Capacity Building in Vietnam

    OpenAIRE

    Adam McCarty

    2001-01-01

    This report is the outcome of a study commissioned to examine the capacity building needs in Vietnam, and is a supplementary document to the Asian Development Bank's Country Operational Strategy for Vietnam. Vietnam's needs in terms of capacity building are particularly important given that is it a transitional economy and also one with little institutional experience in dealing with the international donor community. This paper examines the international awareness of capacity building and ca...

  14. BASIMO - Borehole Heat Exchanger Array Simulation and Optimization Tool

    Science.gov (United States)

    Schulte, Daniel; Rühaak, Wolfram; Welsch, Bastian; Bär, Kristian; Sass, Ingo

    2016-04-01

    Borehole heat exchangers represent a well-established technology, which pushes for new fields of applications and novel modifications. Current simulation tools cannot - or only to some extent - describe features like inclined or partly insulated boreholes unless they run fully discretized models of the borehole heat exchangers. However, fully discretized models often come at a high computational cost, especially for large arrays of borehole heat exchangers. We present a tool, which uses one dimensional thermal resistance and capacity models for the borehole heat exchangers coupled with a numerical finite element model for the subsurface heat transport. An unstructured tetrahedral mesh bypasses the limitations of structured grids for borehole path geometries, while the thermal resistance and capacity model is improved to account for borehole heat exchanger properties changing with depth. The presented tool benefits from the fast analytical solution of the thermal interactions within the boreholes while still allowing for a detailed consideration of the borehole heat exchanger properties.

  15. The French capacity mechanism

    International Nuclear Information System (INIS)

    The French capacity mechanism has been design to ensure security of supply in the context of the energy transition. This energy transition challenges the electricity market design with several features: peak load growth, the development of renewables, demand response,... To ensure security of supply in this context, a capacity mechanism is being implemented in France. It is a market wide capacity obligation on electricity suppliers, based on market principles. Suppliers are responsible for forecasting their obligation, which corresponds to their contribution to winter peak load, and must procure enough capacity certificates to meet their obligations. Capacity certificates are granted to capacities through a certification process, which assesses their contribution to security of supply on the basis of availability commitments. This certification process is technology neutral and performance based, associated with controls and penalties in case of non compliance. Demand Side is fully integrated in the market, either through the reduction of suppliers' capacity obligation or direct participation after certification. In addition to the expected benefits in terms of security of supply, the French capacity market will foster the development of demand response. The participation of foreign capacities will require adaptations which are scheduled in a road-map, and could pave the way for further European integration of energy policies. (authors)

  16. Interplay between carrier and cationic defect concentration in ferromagnetism of anatase Ti1-xTaxO2 thin films

    Directory of Open Access Journals (Sweden)

    A. Roy Barman

    2012-03-01

    Full Text Available Thin films of Ta incorporated TiO2 grown by pulsed laser deposition under specific growth conditions show room temperature ferromagnetism. Ta introduces carriers and concomitantly cationic defects, the combination of which leads to ferromagnetism. In this paper, we report on the dependence of the carrier and cationic defect density (compensation on various parameters such as oxygen growth pressure, temperature and Ta concentration. Most likely, the Ti vacancies act as magnetic centers and the free electrons help with the exchange leading to ferromagnetism via Ruderman-Kittel-Kasuya-Yosida mechanism.

  17. Study on the permselectivity of ion exchange membrane

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ion exchange membranes with high permselectivity (the character of separating cations from anions or anions from cations) and high selectivity (the character of separating cations or anions of different valencies) are important for electrodialysis process. The Donnan equilibrium theory, based on the equilibrium of ions and no electric field, can not exactly explain the permselectivity of ion exchange membrane for ED process, since it is impossible to set up a ion exchange equilibrium between membrane and solution and to neglect the influence of electrical driving force on ions during ED process. A novel model named "anti-electric potential " is established to interpret the permselectivity of ion exchange membrane, according to the determination of electric potential between membranes and the variation of elements content in solutions and membranes. The results of experiment prove that the "anti-electric potential" really exists within membranes. As for the selectivity, the results reveal that electric potential and hydration energy have great influence on the concentration and mobility of ions in membranes.

  18. Kilogram-scale purification of americium by ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Wheelwright, E. J.

    1979-01-01

    Sequential anion and cation exchange processes have been used for the final purification of /sup 241/Am recovered during the reprocessing of aged plutonium metallurgical scrap. Plutonium was removed by absorption of Dowex 1, X-3.5 (30 to 50 mesh) anion exchange resin from 6.5 to 7.5 M HNO/sub 3/ feed solution. Following a water dilution to 0.75 to 1.0 M HNO/sub 3/, americium was absorbed on Dowex 50W, X-8 (50 to 100 mesh) cation exchange resion. Final purification was accomplished by elution of the absorbed band down 3 to 4 successive beds of the same resin, preloaded with Zn/sup 2 +/, with an NH/sub 4/OH buffered chelating agent. The recovery of mixed /sup 241/Am-/sup 243/Am from power reactor reprocessing waste has been demonstrated. Solvent extraction was used to recover a HNO/sub 3/ solution of mixed lanthanides and actinides from waste generated by the reprocessng of 13.5 tons of Shippingport Power Reactor blanket fuel. Sequential cation exchange band-displacement processes were then used to separate americium and curium from the lanthanides and then to separate approx. 60 g of /sup 244/Cm from 1000 g of mixed /sup 241/Am-/sup 243/Am.

  19. Iran outlines oil productive capacity

    International Nuclear Information System (INIS)

    National Iranian Oil Co. (NIOC) tested production limits last month to prove a claim of 4 million bd capacity made at September's meeting of the organization of Petroleum Exporting Countries. Onshore fields account for 3.6 million bd of the total, with offshore fields providing the rest. NIOC plans to expand total capacity to 4.5 million bd by April 1993, consisting of 4 million b/d onshore and 500,000 b/d offshore. Middle East Economic Survey says questions remain about completion dates for gas injection, drilling, and offshore projects, but expansion targets are attainable within the scheduled time. NIOC said some slippage may be unavoidable, but it is confident the objective will be reached by third quarter 1993 at the latest. More than 60 rigs are working or about to be taken under contract to boost development drilling in onshore fields and provide gas injection in some. NIOC has spent $3.2 billion in foreign exchange on the drilling program in the last 2 1/2 years

  20. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation.

    Directory of Open Access Journals (Sweden)

    Justin John Finnerty

    Full Text Available Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores.

  1. Heat Capacity Analysis Report

    International Nuclear Information System (INIS)

    The purpose of this report is to provide heat capacity values for the host and surrounding rock layers for the waste repository at Yucca Mountain. The heat capacity representations provided by this analysis are used in unsaturated zone (UZ) flow, transport, and coupled processes numerical modeling activities, and in thermal analyses as part of the design of the repository to support the license application. Among the reports that use the heat capacity values estimated in this report are the ''Multiscale Thermohydrologic Model'' report, the ''Drift Degradation Analysis'' report, the ''Ventilation Model and Analysis Report, the Igneous Intrusion Impacts on Waste Packages and Waste Forms'' report, the ''Dike/Drift Interactions report, the Drift-Scale Coupled Processes (DST and TH Seepage) Models'' report, and the ''In-Drift Natural Convection and Condensation'' report. The specific objective of this study is to determine the rock-grain and rock-mass heat capacities for the geologic stratigraphy identified in the ''Mineralogic Model (MM3.0) Report'' (BSC 2004 [DIRS 170031], Table 1-1). This report provides estimates of the heat capacity for all stratigraphic layers except the Paleozoic, for which the mineralogic abundance data required to estimate the heat capacity are not available. The temperature range of interest in this analysis is 25 C to 325 C. This interval is broken into three separate temperature sub-intervals: 25 C to 95 C, 95 C to 114 C, and 114 C to 325 C, which correspond to the preboiling, trans-boiling, and postboiling regimes. Heat capacity is defined as the amount of energy required to raise the temperature of a unit mass of material by one degree (Nimick and Connolly 1991 [DIRS 100690], p. 5). The rock-grain heat capacity is defined as the heat capacity of the rock solids (minerals), and does not include the effect of water that exists in the rock pores. By comparison, the rock-mass heat capacity considers the heat capacity of both solids and pore

  2. Biochar contribution to soil pH buffer capacity

    Science.gov (United States)

    Tonutare, Tonu; Krebstein, Kadri; Utso, Maarius; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit

    2014-05-01

    Biochar as ecologically clean and stable form of carbon has complex of physical and chemical properties which make it a potentially powerful soil amendment (Mutezo, 2013). Therefore during the last decade the biochar application as soil amendment has been a matter for a great number of investigations. For the ecological viewpoint the trend of decreasing of soil organic matter in European agricultural land is a major problem. Society is faced with the task to find possibilities to stabilize or increase soil organic matter content in soil and quality. The availability of different functional groups (e.g. carboxylic, phenolic, acidic, alcoholic, amine, amide) allows soil organic matter to buffer over a wide range of soil pH values (Krull et al. 2004). Therefore the loss of soil organic matter also reduces cation exchange capacity resulting in lower nutrient retention (Kimetu et al. 2008). Biochar can retain elements in soil directly through the negative charge that develops on its surfaces, and this negative charge can buffer acidity in the soil. There are lack of investigations about the effect of biochar to soil pH buffering properties, The aim of our investigation was to investigate the changes in soil pH buffer capacity in a result of addition of carbonizated material to temperate region soils. In the experiment different kind of softwood biochars, activated carbon and different soil types with various organic matter and pH were used. The study soils were Albeluvisols, Leptosols, Cambisols, Regosols and Histosols . In the experiment the series of the soil: biochar mixtures with the biochar content 0 to 100% were used. The times of equiliberation between solid and liquid phase were from 1 to 168 hours. The suspension of soil: biochar mixtures was titrated with HCl solution. The titration curves were established and pH buffer capacities were calculated for the pH interval from 3.0 to 10.0. The results demonstrate the dependence of pH buffer capacity from soil type

  3. Water adsorption on free cobalt cluster cations

    NARCIS (Netherlands)

    D.M. Kiawi; J.M. Bakker; J. Oomens; W.J. Buma; Z. Jamshidi; L. Visscher; L.B.F.M. Waters

    2015-01-01

    Cationic cobalt clusters complexed with water Con+-​H2O (n = 6-​20) are produced through laser ablation and investigated via IR multiple photon dissocn. (IR-​MPD) spectroscopy in the 200-​1700 cm-​1 spectral range. All spectra exhibit a resonance close to the 1595 cm-​1 frequency of the free water b

  4. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.;

    2003-01-01

    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M alk...

  5. Resonance raman studies of phenylcyclopropane radical cations

    NARCIS (Netherlands)

    Godbout, J.T.; Zuilhof, H.; Heim, G.; Gould, I.R.; Goodman, J.L.; Dinnocenzo, J.P.; Myers Kelley, A.

    2000-01-01

    Resonance Raman spectra of the radical cations of phenylcyclopropane and trans-1-phenyl-2-methylcyclopropane are reported. A near-UV pump pulse excites a photosensitizer which oxidizes the species of interest, and a visible probe pulse delayed by 35 ns obtains the spectrum of the radical ion. The tr

  6. Anionic/cationic complexes in hair care.

    Science.gov (United States)

    O'Lenick, Tony

    2011-01-01

    The formulation of cosmetic products is always more complicated than studying the individual components in aqueous solution. This is because there are numerous interactions between the components, which make the formulation truly more than the sum of the parts. This article will look at interactions between anionic and cationic surfactants and offer insights into how to use these interactions advantageously in making formulations.

  7. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.

    Science.gov (United States)

    Sepehr, Fatemeh; Paddison, Stephen J

    2015-06-01

    Vanadium redox flow batteries (VRFBs) may be a promising solution for large-scale energy storage applications, but the crossover of any of the redox active species V(2+), V(3+), VO(2+), and VO2(+) through the ion exchange membrane will result in self-discharge of the battery. Hence, a molecular level understanding of the states of vanadium cations in the highly acidic environment of a VRFB is needed. We examine the effects of sulfuric and triflic (CF3SO3H) acids on the hydration of vanadium species as they mimic the electrolyte and functional group of perfluorosulfonic acid (PFSA) membranes. Hybrid density functional theory in conjunction with a continuum solvation model was utilized to obtain the local structures of the hydrated vanadium cations in proximity to H2SO4, CF3SO3H, and their conjugate anions. The results indicate that none of these species covalently bond to the vanadium cations. The hydration structure of V(3+) is more distorted than that of V(2+) in an acidic medium. The oxo-group of VO2(+) is protonated by either acid, in contrast to VO(2+) which is not protonated. The atomic partial charge of the four oxidation states of vanadium varies from +1.7 to +2.0. These results provide the local solvation structures of vanadium cations in the VRFBs environment that are directly related to the electrolytes stability and diffusion of vanadium ions into the membrane. PMID:25954916

  8. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.

    Science.gov (United States)

    Sepehr, Fatemeh; Paddison, Stephen J

    2015-06-01

    Vanadium redox flow batteries (VRFBs) may be a promising solution for large-scale energy storage applications, but the crossover of any of the redox active species V(2+), V(3+), VO(2+), and VO2(+) through the ion exchange membrane will result in self-discharge of the battery. Hence, a molecular level understanding of the states of vanadium cations in the highly acidic environment of a VRFB is needed. We examine the effects of sulfuric and triflic (CF3SO3H) acids on the hydration of vanadium species as they mimic the electrolyte and functional group of perfluorosulfonic acid (PFSA) membranes. Hybrid density functional theory in conjunction with a continuum solvation model was utilized to obtain the local structures of the hydrated vanadium cations in proximity to H2SO4, CF3SO3H, and their conjugate anions. The results indicate that none of these species covalently bond to the vanadium cations. The hydration structure of V(3+) is more distorted than that of V(2+) in an acidic medium. The oxo-group of VO2(+) is protonated by either acid, in contrast to VO(2+) which is not protonated. The atomic partial charge of the four oxidation states of vanadium varies from +1.7 to +2.0. These results provide the local solvation structures of vanadium cations in the VRFBs environment that are directly related to the electrolytes stability and diffusion of vanadium ions into the membrane.

  9. Cationic lipids and cationic ligands induce DNA helix denaturation: detection of single stranded regions by KMnO4 probing.

    Science.gov (United States)

    Prasad, T K; Gopal, Vijaya; Rao, N Madhusudhana

    2003-09-25

    Cationic lipids and cationic polymers are widely used in gene delivery. Using 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as a cationic lipid, we have investigated the stability of the DNA in DOTAP:DNA complexes by probing with potassium permanganate (KMnO4). Interestingly, thymidines followed by a purine showed higher susceptibility to cationic ligand-mediated melting. Similar studies performed with other water-soluble cationic ligands such as polylysine, protamine sulfate and polyethyleneimine also demonstrated melting of the DNA but with variations. Small cations such as spermine and spermidine and a cationic detergent, cetyl trimethylammonium bromide, also rendered the DNA susceptible to modification by KMnO4. The data presented here provide direct proof for melting of DNA upon interaction with cationic lipids. Structural changes subsequent to binding of cationic lipids/ligands to DNA may lead to instability and formation of DNA bubbles in double-stranded DNA.

  10. Liquid heat capacity lasers

    Science.gov (United States)

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  11. The effect of chemical and organic amendments on sodium exchange equilibria in a calcareous sodic soil.

    Science.gov (United States)

    Ranjbar, Faranak; Jalali, Mohsen

    2015-11-01

    In this study, the reclamation of a calcareous sodic soil with the exchangeable sodium percentage (ESP) value of 26.6% was investigated using the cheap and readily available chemical and organic materials including natural bentonite and zeolite saturated with calcium (Ca2+), waste calcite, three metal oxide nanoparticles functionalized with an acidic extract of potato residues, and potato residues. Chemical amendments were added to the soil at a rate of 2%, while potato residues were applied at the rates of 2 and 4% by weight. The ESP in the amended soils was reduced in the range of 0.9-4.9% compared to the control soil, and the smallest and the largest decline was respectively observed in treatments containing waste calcite and 4% of potato residues. Despite the reduction in ESP, the values of this parameter were not below 15% at the end of a 40-day incubation period. So, the effect of solutions of varying sodium adsorption ratio (SAR) values of 0, 5, 10, 20, 30, 40, and 50 on sodium (Na+) exchange equilibria was evaluated in batch systems. The empirical models (simple linear, Temkin, and Dubinin-Radushkevich) fitted well to experimental data. The relations of quantity to intensity (Q/I) revealed that the potential buffering capacity for Na+ (PBCNa) varied from 0.275 to 0.337 ((cmolc kg(-1)) (mmol L(-1))(-1/2)) in the control soil and amended soils. The relationship between exchangeable sodium ratio (ESR) and SAR was individually determined for the control soil and amended soils. The values of Gapon selectivity coefficient (KG) of Na+ differed from the value suggested by U.S. Salinity Laboratory (USSL). The PHREEQC, a geochemical computer program, was applied to simulate Na+ exchange isotherms by using the mechanistic cation exchange model (CEM) along with Gaines-Thomas selectivity coefficients. The simulation results indicated that Na+ exchange isotherms and Q/I and ESR-SAR relations were influenced by the type of counter anions. The values of K G increased in

  12. The effect of chemical and organic amendments on sodium exchange equilibria in a calcareous sodic soil.

    Science.gov (United States)

    Ranjbar, Faranak; Jalali, Mohsen

    2015-11-01

    In this study, the reclamation of a calcareous sodic soil with the exchangeable sodium percentage (ESP) value of 26.6% was investigated using the cheap and readily available chemical and organic materials including natural bentonite and zeolite saturated with calcium (Ca2+), waste calcite, three metal oxide nanoparticles functionalized with an acidic extract of potato residues, and potato residues. Chemical amendments were added to the soil at a rate of 2%, while potato residues were applied at the rates of 2 and 4% by weight. The ESP in the amended soils was reduced in the range of 0.9-4.9% compared to the control soil, and the smallest and the largest decline was respectively observed in treatments containing waste calcite and 4% of potato residues. Despite the reduction in ESP, the values of this parameter were not below 15% at the end of a 40-day incubation period. So, the effect of solutions of varying sodium adsorption ratio (SAR) values of 0, 5, 10, 20, 30, 40, and 50 on sodium (Na+) exchange equilibria was evaluated in batch systems. The empirical models (simple linear, Temkin, and Dubinin-Radushkevich) fitted well to experimental data. The relations of quantity to intensity (Q/I) revealed that the potential buffering capacity for Na+ (PBCNa) varied from 0.275 to 0.337 ((cmolc kg(-1)) (mmol L(-1))(-1/2)) in the control soil and amended soils. The relationship between exchangeable sodium ratio (ESR) and SAR was individually determined for the control soil and amended soils. The values of Gapon selectivity coefficient (KG) of Na+ differed from the value suggested by U.S. Salinity Laboratory (USSL). The PHREEQC, a geochemical computer program, was applied to simulate Na+ exchange isotherms by using the mechanistic cation exchange model (CEM) along with Gaines-Thomas selectivity coefficients. The simulation results indicated that Na+ exchange isotherms and Q/I and ESR-SAR relations were influenced by the type of counter anions. The values of K G increased in

  13. Secrecy Outage Capacity of Fading Channels

    CERN Document Server

    Gungor, Onur; Koksal, C Emre; Gamal, Hesham El; Shroff, Ness B

    2011-01-01

    This paper considers point to point secure communication over flat fading channels under an outage constraint. More specifically, we extend the definition of outage capacity to account for the secrecy constraint and obtain sharp characterizations of the corresponding fundamental limits under two different assumptions on the transmitter CSI (Channel state information). First, we find the outage secrecy capacity assuming that the transmitter has perfect knowledge of the legitimate and eavesdropper channel gains. In this scenario, the capacity achieving scheme relies on opportunistically exchanging private keys between the legitimate nodes. These keys are stored in a key buffer and later used to secure delay sensitive data using the Vernam's one time pad technique. We then extend our results to the more practical scenario where the transmitter is assumed to know only the legitimate channel gain. Here, our achievability arguments rely on privacy amplification techniques to generate secret key bits. In the two cas...

  14. Studies on the application of temperature-responsive ion exchange polymers with whey proteins.

    Science.gov (United States)

    Maharjan, Pankaj; Campi, Eva M; De Silva, Kirthi; Woonton, Brad W; Jackson, W Roy; Hearn, Milton T W

    2016-03-18

    Several new types of temperature-responsive ion exchange resins of different polymer composition have been prepared by grafting the products from the co-polymerisation of N-phenylacrylamide, N-iso-propylacrylamide and acrylic acid derivatives onto cross-linked agarose. Analysis of the binding isotherms for these different resins obtained under batch adsorption conditions indicated that the resin based on N-iso-propylacrylamide containing 5% (w/w) N-phenylacrylamide and 5% (w/w) acrylic acid resulted in the highest adsorption capacity, Bmax, for the whey protein, bovine lactoferrin, e.g. 14 mg bovine lactoferrin/mL resin at 4 °C and 62 mg bovine lactoferrin/mL resin at 40 °C, respectively. Under dynamic loading conditions at 40 °C, 94% of the loaded bovine lactoferrin on a normalised mg protein per mL resin basis was adsorbed by this new temperature-responsive ion-exchanger, and 76% was eluted by a single cycle temperature shift to 4 °C without varying the composition of the 10mM sodium dihydrogen phosphate buffer, pH 6.5, or the flow rate. The binding characteristics of these different ion exchange resins with bovine lactoferrin were also compared to results obtained using other resins based on N-isopropylacrylamide but contained N-tert-butylacrylamide rather than N-phenylacrylamide, where the corresponding dynamic capture and release properties for bovine lactoferrin required different temperature conditions of 20 °C and 50 °C, respectively for optimal desorption/adsorption. The cationic protein, bovine lactoperoxidase, was also adsorbed and desorbed with these temperature-responsive resins under similar conditions of changing temperature, whereas the anionic protein, bovine β-lactoglobulin, was not adsorbed under this regime of temperature conditions but instead eluted in the flow-through. PMID:26905884

  15. Cation-cation interactions, magnetic communication and reactivity of the pentavalent uraniumion [U(NR)2]+

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Liam P [Los Alamos National Laboratory; Schelter, Eric J [Los Alamos National Laboratory; Boncella, James M [Los Alamos National Laboratory; Yang, Ping [Los Alamos National Laboratory; Gsula, Robyn L [NON LANL; Scott, Brian L [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory; Kiplinger, Jacqueline L [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory

    2009-01-01

    The dimeric bis(imido) uranium complex [{l_brace}U(NtBu)2(I)(tBu2bpy){r_brace}2] (see picture; U green, N blue, I red) has cation-cation interactions between [U(NR)2]+ ions. This f1-f1 system also displays f orbital communication between uranium(V) centers at low temperatures, and can be oxidized to generate uranium(VI) bis(imido) complexes.

  16. Electron self-exchange activation parameters of diethyl sulfide and tetrahydrothiophene

    Directory of Open Access Journals (Sweden)

    Martin Goez

    2013-07-01

    Full Text Available Electron transfer between the title compounds and their radical cations, which were generated by photoinduced electron transfer from the sulfides to excited 2,4,6-triphenylpyrylium cations, was investigated by time-resolved measurements of chemically induced dynamic nuclear polarization (CIDNP in acetonitrile. The strongly negative activation entropies provide evidence for an associative–dissociative electron exchange involving dimeric radical cations. Despite this mechanistic complication, the free energies of activation were found to be well reproduced by the Marcus theory of electron transfer, with the activation barrier still dominated by solvent reorganization.

  17. Preparation of protamine cationic nanobubbles and experimental study of their physical properties and in vivo contrast enhancement.

    Science.gov (United States)

    Tong, Hai-Peng; Wang, Luo-Fu; Guo, Yan-Li; Li, Lang; Fan, Xiao-Zhou; Ding, Jun; Huang, Hai-Yun

    2013-11-01

    In this study, we aimed to prepare a novel type of microbubble (MB), protamine cationic nanobubble (NB), to provide a new vector for tumor gene therapy. We prepared cationic NBs with protamine and other lipid components using mechanical oscillation. The protamine cationic NBs had a mean diameter of 521.2 ± 37.57 nm, a zeta potential of +18.5 mV, and a gene-carrying capacity of 15.69 μg androgen receptor (AR) siRNA per 10(8) NBs. The cationic NBs exhibited superior contrast enhancement for in vivo imaging compared with SonoVue (Bracco, Geneva, Switzerland), and their physical properties did not change significantly after 1 wk; meanwhile, the transfection efficiency of the cationic NBs in androgen-independent prostate cancer cells mediated by ultrasound irradiation was better than that of liposomes (82.17 ± 7.4% vs. 55.04 ± 5.4%, p < 0.01). Therefore, the protamine cationic NB can be considered for use as a novel type of gene-loading MB for ultrasound imaging and MB-mediated gene therapy of tumors. PMID:23932278

  18. Chemical behavior of organic compounds in the interface ofwater/dual-cation organobentonite

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The sorption behavior of polar or ionizable organiccompounds, such as p-nitrophenol, phenol and aniline, in thewater/organobentonite systems is investigated. Both adsorption andpartition occur to the sorption of organic compounds to dual-cationorganobentonites. The separate contributions of adsorption andpartition to the total sorption of organic compounds to dual-cationorganobentonites are analyzed mathematically in the first time. The factors to the contributions are also discussed. The results indicated that the contribution of adsorption and partition is related to the composition and ratio of dual-cation surfactants exchanging onto the bentonite. The sorption of organic compounds to dual-cation organobentonite is dominated by adsorption at low concentrations and by partition at high concentrations, making the organobentonites powerful sorbents for organic contaminants over wide range of concentrations.

  19. Synthesis, surface properties and oil solubilisation capacity of cationic gemini surfactants

    NARCIS (Netherlands)

    Dam, Th.; Engberts, J.B.F.N.; Karthäuser, J.; Karaborni, S.; Os, N.M. van

    1996-01-01

    The critical micelle concentration (CMC) and the surface tension at the CMC have been determined for the gemini surfactants alkanediyl-u,w-bis(dimethyla1kylammoniubmr omide) by means of dynamic surface tension measurements. For the same number of carbon atoms in the hydrophobic chain per hydrophilic

  20. UtilityTelecom_EXCHANGE

    Data.gov (United States)

    Vermont Center for Geographic Information — The UtilityTelecom_EXCHANGE represents Vermont Telephone Exchange boundaries as defined by the VT Public Service Board. The original data was created by UVM in...