WorldWideScience

Sample records for cathodic protection

  1. Cathodic protection -- Rectifier 46

    International Nuclear Information System (INIS)

    Lane, W.M.

    1995-01-01

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the cathodic protection system functions as required by project criteria. The cathodic protection system is for the tank farms on the Hanford Reservation. The tank farms store radioactive waste

  2. Cathodic protection -- Rectifier 47

    International Nuclear Information System (INIS)

    Lane, W.M.

    1995-01-01

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the cathodic protection system functions as required by project criteria. The cathodic protection system is for the tank farms at the Hanford Reservation. The tank farms store radioactive waste

  3. Cathodic Protection Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs Navy design and engineering of ship and submarine impressed current cathodic protection (ICCP) systems for underwater hull corrosion control and...

  4. Smart cathodic protection systems

    NARCIS (Netherlands)

    Polder, R.B.; Leggedoor, J.; Schuten, G.; Sajna, S.; Kranjc, A.

    2010-01-01

    Cathodic protection delivers corrosion protection in concrete structures exposed to aggressive environments, e.g. in de-icing salt and marine climates. Working lives of a large number of CP systems are at least more than 13 years and probably more than 25 years, provided a minimum level of

  5. Design Of Photovoltaic Powered Cathodic Protection System

    Directory of Open Access Journals (Sweden)

    Golina Samir Adly

    2017-07-01

    Full Text Available The corrosion caused by chemical reaction between metallic structures and surrounding mediums such as soil or water .the CP cathodic protection system is used to protect metallic structure against corrosion. Cathodic protection CP used to minimize corrosion by utilizing an external source of electrical current which forces the entire structure to become a cathode. There are two Types of cathodic protection system Galvanic current Impressed current.the Galvanic current is called a sacrificial anode is connected to the protected structure cathode through a DC power supply. In Galvanic current system a current passes from the sacrificing anode to the protected structure .the sacrificial anode is corroded rather than causing the protected structure corrosion .protected structure requires a constant current to stop the corrosion which determined by area structure metal and the surrounding medium. The rains humidity are decrease soil resistivity and increase the DC current .The corrosion and over protection resulting from increase in the DC current is harmful for the metallic structure. This problem can be solved by conventional cathodic protection system by manual adjustment of DC voltage periodically to obtain a constant current .the manual adjustment of DC voltage depends on experience of the technician and using the accuracy of the measuring equipment. The errors of measuring current depend on error from the technician or error from the measuring equipment. the corrosion of structure may occur when the interval between two successive adjustment is long .An automatically regulated cathodic protection system is used to overcome problems from conventional cathodic protection system .the regulated cathodic protection system adjust the DC voltage of the system automatically when it senses the variations of surrounding medium resistivity so the DC current is constant at the required level.

  6. Pipelines cathodic protection design methodologies for impressed ...

    African Journals Online (AJOL)

    Several inadequate designs of cathodically polarized offshore and onshore pipelines have been reported in Nigeria owing to design complexity and application of the cathodic protection system. The present study focused on critical and detailed approach in impressed current and sacrificial anode design calculation ...

  7. Cathode protection for underground steel tanks

    International Nuclear Information System (INIS)

    Angelovski, Zoran

    1998-01-01

    Cathodic protection of underground petroleum storage tanks and piping systems is acceptable for both economic and ecological reasons. With out the cathodic protection of underground steel reservoirs, short time after the exploitation, there was a bore as a result of underground corrosion. The bore causes ecological consequences and at the same time its repair needs big investments. Furthermore, there are great number of tanks placed near cities, so in the future this problem needs a special attention in order to preserve ecological surrounding. The topic of this paper is underground corrosion as well as cathodic protection of steel tanks for oil derivatives storage. (author)

  8. Concentration changes due to cathodic protection

    NARCIS (Netherlands)

    Gellings, P.J.

    1978-01-01

    By solving the appropriate diffusion equations the concentration changes are calculated in the environment of underground structures protected cathodically. It is shown that these changes are negligible under all practical circumstances.

  9. Renovation of the cathodic protection system

    NARCIS (Netherlands)

    Schuten, G.; Leggedoor, J.; Polder, R.B.; Peelen, W.H.A.

    2003-01-01

    The first system for Cathodic Protection of concrete in the Netherlands was applied to a one bicycle lane of a bridge suffering corrosion due to de-icing salt penetration in 1986. This CP system was based on the Ferex 100S conducting polymer cable anode in a cementitious overlay. Its functioning was

  10. Impressed current cathodic protection of deep water structures

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.

    that the cathodic protection design approaches for shallow water may not be adequate for deeper water. This paper discusses on environmental factors encountered in deep water and their effect on cathodic protection behaviour of steel. Further, current CP design...

  11. Cathodic protection of a nuclear fuel facility

    International Nuclear Information System (INIS)

    Corbett, R.A.

    1989-01-01

    This article discusses corrosion on buried process piping and tanks at a nuclear fuel facility and the steps taken to design a system to control underground corrosion. Collected data have indicated that cathodic protection is needed to supplement the regular use of high-integrity, corrosion-resistant coatings; wrapping systems; special backfills; and insulation material. The technical approach discussed in this article is generally applicable to other types of power and/or industrial plants with extensive networks of underground steel piping

  12. A definitive criterion for cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Roger [Cathodic Protection Network International Ltd., Reading (United Kingdom)

    2009-07-01

    The corrosion reaction is defined using the Pourbaix Diagram and includes consideration of the pH, temperature, pressure, nobility of the metal and conductivity of the electrolyte. The passive zone can be established in a laboratory by creating a closed circuit condition in which the voltages can be measured. Natural corrosion cells occurring in simple conditions can be evaluated for the purpose of monitoring the performance of cathodic protection. Metal pipelines are complex networks of conductors submerged in electrolyte of infinitely variable qualities. The present method used to ascertain the effectiveness of cathodic protection has many inherent errors and results in costly and unpredictable corrosion failures. An electrode has been devised to define the exact electrical status of the corrosion reaction at its location. The design allows a closed circuit measurement of the corrosion current that can determine whether or not corrosion has been stopped by cathodic protection. This has allowed the development of software that can calculate the condition and corrosion status throughout a network of pipelines, using electrical circuit analysis common in the electronics industry. (author)

  13. Cathodic protection -- Addition of 6 anodes to existing rectifier 31

    International Nuclear Information System (INIS)

    Lane, W.M.

    1995-01-01

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the cathodic protection system additions are installed, connected, and function as required by project criteria. The cathodic protection system is for the tank farms on the Hanford Reservation. The tank farms store radioactive wastes

  14. Cathodic corrosion protection of steel pipes; Kathodischer Korrosionsschutz von Rohrleitungsstaehlen

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Markus [SGK Schweizerische Gesellschaft fuer Korrosionsschutz, Zuerich (Switzerland); Schoeneich, Hanns-Georg [Open Grid Europe, Essen (Germany)

    2011-07-01

    The cathodic corrosion protection has been proven excellently in the practical use for buried steel pipelines. This is evidenced statistically by a significantly less frequency of loss compared to non-cathodically protected pipelines. Based on thermodynamic considerations, the authors of the contribution under consideration describe the operation of the cathodic corrosion protection and regular adjustment of the electrochemical potential at the interface steel / soil in practical use. Subsequently, the corrosion scenarios are discussed that may occur when an incorrect setting of the potential results from an operation over several decades. This incorrect setting also can be caused by the failure of individual components of the corrosion protection.

  15. Cathodic protection for the bottoms of above ground storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, John P. [Tyco Adhesives, Norwood, MA (United States)

    2004-07-01

    Impressed Current Cathodic Protection has been used for many years to protect the external bottoms of above ground storage tanks. The use of a vertical deep ground bed often treated several bare steel tank bottoms by broadcasting current over a wide area. Environmental concerns and, in some countries, government regulations, have introduced the use of dielectric secondary containment liners. The dielectric liner does not allow the protective cathodic protection current to pass and causes corrosion to continue on the newly placed tank bottom. In existing tank bottoms where inadequate protection has been provided, leaks can develop. In one method of remediation, an old bottom is covered with sand and a double bottom is welded above the leaking bottom. The new bottom is welded very close to the old bottom, thus shielding the traditional cathodic protection from protecting the new bottom. These double bottoms often employ the use of dielectric liner as well. Both the liner and the double bottom often minimize the distance from the external tank bottom. The minimized space between the liner, or double bottom, and the bottom to be protected places a challenge in providing current distribution in cathodic protection systems. This study examines the practical concerns for application of impressed current cathodic protection and the types of anode materials used in these specific applications. One unique approach for an economical treatment using a conductive polymer cathodic protection method is presented. (author)

  16. Developments in cathodic protection. Ontwikkelingen in de kathodische bescherming

    Energy Technology Data Exchange (ETDEWEB)

    Van Bruchem, H. (VEG-Gasinstituut NV, Apeldoorn (Netherlands))

    1990-07-01

    Developments in cathodic protection of underground steel pipelines used for the transport of natural gas in the Netherlands are outlined. Besides criteria like applied negative potential in relation to ohmic resistances of soil, overprotection and the influence of stray currents, for instance in the vicinity of railroad tracks, are discussed. Control measurements of cathodic protection are described; a new method, wave form analysis, is outlined. 5 figs., 4 refs., 5 ills.

  17. Study on pulsed current cathodic protection in a simulated system

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Milin; Li, Helin [Xi' an Jiao Tong Universitiy (China)]|[Tubular Goods Research Center of China National Petroleum Corp. (China); Qiu, Yubing; Guo, Xingpeng [Hua Zhong University of Science and Techonology (China)

    2004-07-01

    The pulsed current cathodic protection (PCCP) is a new cathodic protection (CP) technology and shows more advantages over the conventional DC cathodic protection (DCCP) in oil well casing system. However, little information about PCCP is reported. In this research, a simulated CP system was set up in a pool of 3.5 m x 2.0 m x 3.0 m size, in which the effects of the square wave pulsed current (SWPC) parameters (amplitude: IA, frequency: f, duty cycle: P), auxiliary anode distance (d) and media conductivity ({mu}) on the cathodic potential (E) distribution were studied, and the protection effects of PCCP and DCCP were compared. The results show that with increase of the square wave parameters (IA, f, P), the E distribution becomes more negative and the effects of each current parameter are relate closely to the cathode polarizing state. Only with suitable square wave parameters can the whole cathode be effectively protected. With increase of d and {mu}, the E distribution becomes more uniform. Compared with DCCP system, PCCP system has much more uniform E distribution, costs less average current, and gains much better protection effects. Further, the mechanism of PCCP was analyzed. (authors)

  18. Cathodic Protection Design Algorithms for Refineries Aboveground Storage Tanks

    Directory of Open Access Journals (Sweden)

    Kosay Abdul sattar Majbor

    2017-12-01

    Full Text Available Storage tanks condition and integrity is maintained by joint application of coating and cathodic protection. Iraq southern region rich in oil and petroleum product refineries need and use plenty of aboveground storage tanks. Iraq went through conflicts over the past thirty five years resulting in holding the oil industry infrastructure behind regarding maintenance and modernization. The primary concern in this work is the design and implementation of cathodic protection systems for the aboveground storage tanks farm in the oil industry. Storage tank external base area and tank internal surface area are to be protected against corrosion using impressed current and sacrificial anode cathodic protection systems. Interactive versatile computer programs are developed to provide the necessary system parameters data including the anode requirements, composition, rating, configuration, etc. Microsoft-Excel datasheet and Visual Basic.Net developed software were used throughout the study in the design of both cathodic protection systems. The case study considered in this work is the eleven aboveground storage tanks farm situated in al-Shauiba refinery in southern IRAQ. The designed cathodic protection systems are to be installed and monitored realistically in the near future. Both systems were designed for a life span of (15-30 years, and all their parameters were within the internationally accepted standards.

  19. Operational test report - Project W-320 cathodic protection systems

    International Nuclear Information System (INIS)

    Bowman, T.J.

    1998-01-01

    Washington Administrative Code (WAC) 173-303-640 specifies that corrosion protection must be designed into tank systems that treat or store dangerous wastes. Project W-320, Waste Retrieval Sluicing System (WRSS), utilizes underground encased waste transfer piping between tanks 241-C-106 and 241-AY-102. Corrosion protection is afforded to the encasements of the WRSS waste transfer piping through the application of earthen ionic currents onto the surface of the piping encasements. Cathodic protection is used in conjunction with the protective coatings that are applied upon the WRSS encasement piping. WRSS installed two new two rectifier systems (46 and 47) and modified one rectifier system (31). WAC 173-303-640 specifies that the proper operation of cathodic protection systems must be confirmed within six months after initial installation. The WRSS cathodic protection systems were energized to begin continuous operation on 5/5/98. Sixteen days after the initial steady-state start-up of the WRSS rectifier systems, the operational testing was accomplished with procedure OTP-320-006 Rev/Mod A-0. This operational test report documents the OTP-320-006 results and documents the results of configuration testing of integrated piping and rectifier systems associated with the W-320 cathodic protection systems

  20. ICCP cathodic protection of tanks with photovoltaic power supply

    Directory of Open Access Journals (Sweden)

    Janowski Mirosław

    2016-01-01

    Full Text Available Corrosion is the result of the electrochemical reaction between a metal or composite material usually having conducting current properties. Control of corrosion related defect is a very important problem for structural integrity in ground based structures. Cathodic protection (CP is a technique to protect metallic structures against corrosion in an aqueous environment, it is employed intense on the steel drains in oil and gas industry, specifically to protect underground tanks and pipelines. CP is commonly applied to a coated structure to provide corrosion control to areas where the coating may be damaged. It may be applied to existing structures to prolong their life. There are two types of cathodic protection systems: sacrificial (galvanic anode cathodic protection (SACP; the other system is Impressed Current Cathodic Protection (ICCP. Majority of the structures protected employ impressed current system. The main difference between the two is that SACP uses the galvanic anodes which are electrochemically more electronegative than the structure to be protected - the naturally occurring electrochemical potential difference between different metallic elements to provide protection; ICCP uses an external power source (electrical generator with D.C. with inert anodes, and this system is used for larger structures, or where electrolyte resistivity is high and galvanic anodes cannot economically deliver enough current to provide protection. The essential of CP is based on two parameters, the evolution of the potential and the current of protection. A commonly accepted protection criterion used for steel is a potential value of minus 850 mV. ICCP system consist of anodes connected to a DC power source. As power sources may be used such as solar panels, wind turbines, etc. The object of this study is analysis of the possibilities and operating parameters of ICCP system supplied with photovoltaic solar panels. Photovoltaic generator made up of the

  1. Early stage beneficial effects of cathodic protection in concrete structures

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.; Neeft, E.A.C.; Stoop, B.T.J.

    2010-01-01

    Over the last 25 years, cathodic protection (CP) of reinforced concrete structures suffering from chloride induced reinforcement corrosion has shown to be successful and durable. CP current causes steel polarisation, electrochemical reactions and ion transport in the concrete. CP systems are

  2. Cathodic Protection Field Trials on Prestressed Concrete Components, Final Report

    Science.gov (United States)

    1998-01-01

    This is the final report in a study to demonstrate the feasibility of using cathodic protection (CP) on concrete bridge structures containing prestressed steel. The interim report, FHWA-RD-95-032, has more details on the installation of selected CP s...

  3. Bacterial corrosion in marine sediments: influence of cathodic protection

    International Nuclear Information System (INIS)

    Therene, Martine

    1988-01-01

    In order to protect offshore structures from marine corrosion, cathodic protection is widely applied via sacrificial anodes (for example zinc or aluminium) or impressed current. In aerated seawater, steel is considered to be protected when a potential of -8050 mV/Cu.CuSO 4 is achieved. In many cases, however this potential must be lowered, due to the activity of microorganisms and more specially sulfate-reducing bacteria (SRB). SRB are obligate anaerobes using sulphate as electron acceptor with resultant production of sulphide. Some of them are also able to use hydrogen as energy source, causing cathodic depolarization of steel surfaces. An experiment was performed to analyze the relation between SRB activity and use of different cathodic potentials applied to mild steel samples in marine sediments. Analytical techniques employed included lipid bio-markers and electrochemical methods. Results indicated an evolution of the bacterial community structure both on the steel and in the sediment, as a function of time and potential. The results also show that cathodically produced hydrogen promotes the growth of SRB (author) [fr

  4. Cathodic protection of reinforced concrete structures in the Netherlands - Experience and developments: Cathodic protection of concrete - 10 years experience

    NARCIS (Netherlands)

    Polder, R.B.

    1998-01-01

    Cathodic protection (CP) of reinforcing steel in concrete structures has been used successfully for over 20 years. CP is able to stop corrosion in a reliable and economical way where chloride contamination has caused reinforcement corrosion and subsequent concrete damage. To new structures where

  5. Cathodic protection beneath thick external coating on flexible pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Festy, Dominique; Choqueuse, Dominique; Leflour, Denise; Lepage, Vincent [Ifremer - Centre de Brest, BP 70 29280 Plouzane (France); Condat, Carol Taravel; Desamais, Nicolas [Technip- FLEXIFRANCE - PED/PEC - Rue Jean Hure, 76580 Le Trait (France); Tribollet, Bernard [UPR 15 du CNRS, Laboratoire LISE, 4 Place Jussieu, 75252 Paris Cedex (France)

    2004-07-01

    Flexible offshore pipelines possess an external polymer sheath to protect the structure against seawater. In case of an accidental damage of the outer sheath, the annulus of the flexible pipe is flooded with seawater. Far from the damage, corrosion and/or corrosion fatigue of armour steel wires in the annulus occur in a strictly deaerated environment; this has been studied for a few years. At the damage location, the steel wires are in direct contact with renewed seawater. In order to protect them against corrosion, a cathodic protection is applied using sacrificial anodes located at the end fittings. The goal of this work is to evaluate the extent of the cathodic protection as well as the electrolyte oxygen concentration beneath the coating around the damage, to know whether or not there is a non protected area with enough oxygen where corrosion and corrosion fatigue can occur. The experimental work was performed with a model cell (2000 x 200 mm{sup 2}), composed of a mild steel plate and a PMMA coat (transparent poly-methyl-methacrylate). The thickness of the gap between the steel plate and the PMMA coat was 0.5 mm. The potential and current density were monitored all along the cell (70 sensors). The oxygen concentration was also recorded. The experiments were performed with natural sea water, and cathodic protection was applied in a reservoir at one extremity of the cell. Another reservoir at the other cell extremity enabled carbon dioxide bubbling to simulate pipeline annular conditions. PROCOR software was used to simulate potential and current density within the gap and a mathematical model was developed to model oxygen concentration evolution. Both model and experimental results show that the extent of the cathodic protection is much greater than that of oxygen. Oxygen depletion is very quick within the gap when seawater fills it and the oxygen concentration is close to zero a few milli-metres from the gap opening. On the other hand, the cathodic protection

  6. Impacts of cathodic protection on waste package performance

    International Nuclear Information System (INIS)

    Atkins, J.E.; Lee, J.H.; Andrews, R.W.

    1996-01-01

    The current design concept for a multi-barrier waste container for the potential repository at Yucca Mountain, Nevada, calls for an outer barrier of 100 mm thick corrosion-allowance material (CAM) (carbon steel) and an inner barrier of 20 mm thick corrosion-resistant material (CRM) (Alloy 825). Fulfillment of the NRC subsystem requirements (10 CFR 60.113) of substantially complete containment and controlled release of radionuclides from the engineered barrier system (EBS) will rely mostly upon the robust waste container design, among other EBS components. In the current waste container design, some degree of cathodic protection of CRM will be provided by CAM. This paper discusses a sensitivity case study for the impacts of cathodic protection of the inner barrier by the outer barrier on the performance of waste package

  7. Tool successfully detects changes in cathodic protection system

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-05-15

    A new oil and gas industry tool has been developed to check if an operator's cathodic protection (CP) is effective. This inline inspection tool developed, by Baker Hughes, is called cathodic protection current measurement (CPCM). It measures how much CP current the pipeline is receiving and shows the direction of the current flowing back to the CP source. This system was used to successfully perform a full CP current inspection on a 43 mile-long pipeline in the Eastern United States. Tests identified that one rectifier was flowing current in the reverse direction from that expected and that a few areas had high current densities. The operator then changed the CP system to test the tool and results showed that the tool correctly detected the changes.

  8. Corrosion and protection in reinforced concrete : Pulse cathodic protection: an improved cost-effective alternative

    NARCIS (Netherlands)

    Koleva, D.A.

    2007-01-01

    Corrosion and protection in reinforced concrete. Pulse cathodic protection: an improved cost-effective alternative. The aim of the research project was to study the possibilities for establishing a new or improved electrochemical method for corrosion prevention/protection for reinforced concrete.

  9. Effects of cathodic protection on cracking of high-strength pipeline steels

    Energy Technology Data Exchange (ETDEWEB)

    Elboujdaini, M.; Revie, R. W.; Attard, M. [CANMET Materials Technology Laboratory, Ottawa, ON(Canada)], email: melboujd@nrcan.gc.ca

    2010-07-01

    Four strength levels of pipeline steels, ranging from X-70 to X-120, were compared to determine whether higher strength materials are more susceptible to hydrogen embrittlement under cathodic protection. Ductility was measured in a solution at four protection levels, going from no cathodic protection to 500 mV of overprotection. All four steels showed loss of ductility under cathodic protection. Under cathodic polarization, the loss of ductility increased with the strength of the steel and the activity of the potential. After slow-strain-rate experiments conducted in air and examination of fracture surfaces, it is concluded that application of cathodic potentials, cathodic overprotection, higher strength of steel, and exposure to aqueous solution are factors that decrease the ductility of steel. Hydrogen reduction seems to be an important factor in ductility reduction and fractures. Observations suggest that high-strength pipelines need better control of cathodic protection than lower-strength pipelines.

  10. Fabrication of sacrificial anode cathodic protection through casting method

    International Nuclear Information System (INIS)

    Mohd Sharif Sattar; Muhamad Daud; Siti Radiah Mohd Kamarudin; Azali Muhamad; Zaiton Selamat; Rusni Rejab

    2007-01-01

    Aluminum is one of the few metals that can be cast by all of the processes used in casting metals. These processes consist of die casting, permanent mold casting, sand casting (green sand and dry sand), plaster casting, investment casting, and continuous casting. Other processes such as lost foam, squeeze casting, and hot isostatic pressing are also used. Permanent mold casting method was selected in which used for fabricating of sacrificial anode cathodic protection. This product was ground for surface finished and fabricated in the cylindrical form and reinforced with carbon steel at a center of the anode. (Author)

  11. Applications of cathodic protection for the protection of aqueous and soil corrosion of power plant components

    International Nuclear Information System (INIS)

    Sinha, A.K.; Mitra, A.K.; Bhakta, U.C.; Sanyal, S.K.

    2000-01-01

    Power plant components exposed to environments such as water and soil are susceptible to severe corrosion. Many times the effect of corrosion in power plant components can be catastrophic. The problem is aggravated for underground pipelines due to additional factors such as large network of pipelines, proximity to earth mat, high voltage transmission lines, corrosive chemicals, inadequate approach etc. Other components such as condenser water boxes, internals of pipelines, clarifier bridge structures, cooling water inlet gates and pipes etc. which are in continuous contact with water, are subjected to severe corrosion. The nature and locations of all such components are at places which are not accessible for routine maintenance and hence they require long term reliable protection against corrosion. Experience has shown that anti-corrosive coatings are inadequate in preventing corrosion and due to their location regular maintenance coatings are also not feasible. Under such circumstances the applications of cathodic protection provides a long term solution the design of cathodic protection, for such applications differs from the commonly employed cathodic protection for cross-country pipelines and submerged structures due to other complexities in the plant region and maintenance of the applied system. The present paper intends to discuss the applications of cathodic protection with suitable anti-corrosive coatings for protection of various power plant components and the specific features of each type of application. (author)

  12. Corrosion Potential Profile Simulation in a Tube under Cathodic Protection

    Directory of Open Access Journals (Sweden)

    Mauricio Ohanian

    2014-01-01

    Full Text Available The potential distribution in tubes of a heat exchanger is simulated when applying cathodic polarization to its extremes. The comparison of two methods to achieve this goal is presented: a numeric solution based on boundary elements carried out with the commercial software Beasy-GID and a semianalytical method developed by the authors. The mathematical model, the simplifications considered, and the problem solving are shown. Since both approaches use polarization curves as a boundary condition, experimental polarization curves (voltage versus current density were determined in the laboratory under flow conditions and cylindrical cell geometry. The results obtained suggest the impossibility of extending the protection along the whole tube length; therefore, other protection methods are considered.

  13. 1999 Annual Cathodic Protection Survey Report for PFP

    International Nuclear Information System (INIS)

    BOWMAN, T.J.

    2000-01-01

    This cathodic protection (CP) report documents the results of the 1999 annual CP survey of the underground piping within PFP property. An annual survey of CP systems is required by Washington Administrative Code (WAC). A spreadsheet to document the 1999 annual survey polarization data is included in this report. Graphs are included to trend the cathodic voltages and the polarization voltages at each test station on PFP property. The trending spans from 1994 to 1999. Graphs are also included to trend voltage and amperage outputs of each rectifier during the annual surveys. During the annual survey, resistance testing between the underground piping was conducted at each test station. The testing showed that all piping (with test leads into the test stations) was continuous with every pipe represented in the test stations. The resistance data is not documented in this report but can be accessed in work package 22-99-01003. During the annual survey, the wiring configurations of anode junction boxes AJB(R45-1) and AJB(45-1) were documented. The sketches can be accessed from the JCS work record of work package 22-99-01003. Analysis, conclusions, and recommendations of the 1999 annual CP survey results are included in this report

  14. Efficiency control of cathodic protection measured using passivation verification technique in different concrete structures

    NARCIS (Netherlands)

    Martínez, I.; Andrade, C.; Vennesland, O.; Evensen, U.; Polder, R.B.; Leggedor, J.

    2007-01-01

    It is well known that cathodic protection is the most useful method for stopping corrosion when the deterioration process has started, but the most important issue that is still missing in the cathodic protection studies is how to check its efficiency in a reliable way. This paper presents results

  15. The change of pH under a paint film due to cathodic protection

    NARCIS (Netherlands)

    Gellings, P.J.; Ekama, H.C.

    1975-01-01

    The diffusion of OH−-ions and H2 formed during cathodic protection through a paint film is studied. The diffusion equation is solved for non-stationary conditions and from this the steady state is also derived. It is shown that under usual operating conditions of cathodic protection of ships the

  16. Photovoltaic power without batteries for continuous cathodic protection

    Science.gov (United States)

    Muehl, W. W., Sr.

    1994-02-01

    The COASTSYSTA designed, installed, and started up on 20 Jan. 1990, a state-of-the-art stand alone photovoltaic powered impressed current cathodic protection system (PVCPSYS) not requiring any auxiliary/battery backup power for steel and iron submerged structures. The PVCPSYS installed on 775' of steel sheet piling of a Navy bulkhead is continuing to provide complete, continuous corrosion protection. This has been well documented by COASTSYSTA and verified on-site by the U.S. Army Civil Engineering Research Laboratory, Champaign, Illinois and the Navy Energy Program Office-Photovoltaic Programs, China Lake, California. The Department of Defense (DoD) Photovoltaic Review Committee and Sandia National Laboratories consider this successful and cost effective system a major advance in the application of photovoltaic power. The PVCPSYS uses only renewable energy and is environmentally clean. A patent is pending on the new technology. Other possible PVCPSYS applications are mothballed ships, docks, dams, locks, bridges, marinas, offshore structures, and pipelines. The initial cost savings by installing a PVCPSYS vs. a conventional CP system was in excess of $46,000.00.

  17. Corrosion and cathodic protection of buried pipes: study, simulation and application of solar energy

    International Nuclear Information System (INIS)

    Laoun, Brahim; Serir, Lazhar; Niboucha, Karima

    2006-01-01

    Cathodic protection is intensively used on steel pipes in petroleum and gas industries. It is a technique used to prevent corrosion which transforms the whole pipe into a cathode of a corrosion cell. Two types of cathodic protection systems are usually used: 1) the galvanic protection systems which use galvanic anodes, also called sacrificial anodes being electrochemically more electronegative than the structure to be protected and 2) the imposed current systems, which through a current generator will deliver a direct current from the anode to the structure to be protected. The aim of this work is to design a cathodic protection system of a pipe by imposed current with auxiliary electric solar energy. (O.M.)

  18. APPLIED OF IMPRESSED CURRENT CATHODIC PROTECTION DESIGN FOR FUEL PIPELINE NETWORK AT NAVAL BASE

    Directory of Open Access Journals (Sweden)

    k. Susilo

    2017-06-01

    Full Text Available Indonesian Navy (TNI AL is the main component for Maritime Security and Defence. Because of that, TNI AL needs Indonesian Warship (KRI to covered Maritime area. The main requirement from KRI is fulfilled by demand. To pock of fuel demand from KRI at Naval Base, it needs a new pipeline of fuel distribution network system. The pipeline network system used for maximum lifetime must be protected from corrosion. Basically, there are five methods of corrosion control such as change to a more suitable material, modification to the environment, use of protective coating, design modification to the system or component, and the application of cathodic or anodic protection. Cathodic protection for pipeline available in two kinds, namely Sacrifice Anode and Impressed Current Cathodic Protection (ICCP. This paper makes analysis from design of Impressed Current Cathodic Protection and total current requirement in the method. This paper showed both experimental from speciment test and theoritical calculation. The result showed that design of Impressed Current Cathodic Protection on fuel distribution pipeline network system requires voltage 33,759 V(DC, protection current 6,6035 A(DC by theoritical calculation and 6,544 A(DC from pipeline specimen test, with 0,25 mpy for corrosion rate. Transformer Rectifier design needs requirements 45 V with 10 A for current. This research result can be made as literature and standardization for Indonesian Navy in designing the Impressed Current Cathodic Protection for fuel distribution pipeline network system.

  19. The risk of hydrogen embrittlement in high-strength prestressing steels under cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Isecke, B.; Mietz, J. (Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany))

    1993-01-01

    High strength prestressing steels in prestressed concrete structures are protected against corrosion due to passivation resulting from the high alkalinity of the concrete. If depassivation of the prestressing steel occurs due to the ingress of chlorides the corrosion risk can be minimized by application of cathodic protection with impressed current. The risk of hydrogen embrittlement of the prestressing steel is especially pronounced if overprotection is applied due to hydrogen evolution in the cathodic reaction. The present work considers this risk by hydrogen activity measurements under practical conditions and application of different levels of cathodic protection potentials. Information on threshold potentials in prestressed concrete structures is provided, too. (orig.).

  20. E.M.I Effects of Cathodic Protection on Electromagnetic Flowmeters

    Directory of Open Access Journals (Sweden)

    Ozge Sahin

    2007-01-01

    Full Text Available Electromagnetic flowmeters are used to measure the speed of water flow in water distribution systems. Corrosion problem in metal pipelines can be solved by cathodic protection methods. This paper presents a research on corruptive effects of the cathodic protection system on electromagnetic flowmeter depending on its measuring principle. Experimental measurements are realized on the water distribution pipelines of the Izmir Municipality, Department of Water and Drainage Administration (IZSU in Turkey and measurement results are given. Experimental results proved that the values measured by the electromagnetic flowmeter (EMF are affected by cathodic protection system current. Comments on the measurement results are made and precautions to be taken are proposed.

  1. Permanent cathodic protection monitoring systems for offshore pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Jim [Deepwater Corrosion Services Inc., Houston, TX (United States)

    2009-07-01

    Historically offshore pipeline cathodic protection monitoring has relied on the use of portable survey techniques. This has typically relied on ROV assisted or surface deployed survey methods. These methods have been shown to have technical as well as economic shortcomings, this is particularly true of buried offshore pipelines where accuracy is always questionable. As more focus is being placed on offshore pipeline integrity, it was time for a new method to emerge. The technology discussed involves the retro-placement of permanent clamp-on monitors onto the pipeline which can measure pipeline to seawater potential as well as current density. The sensors can be interrogated locally using light powered subsea voltage readouts. Application of the technology can be either during pipeline construction, during installation of life extension CP systems, or during routine subsea pipeline interventions. The new method eliminates the need for long cables or expensive acoustic or modulated data transfer and provides all the information required to fully verify CP system performance, thus eliminating the need for expensive close-interval surveys. Some deployment case histories will be presented along with feasibility of application on deep water pipelines and comparative economics. (author)

  2. Designing cathodic protection systems for marine structures and vehicles. ASTM special technical publication 1370

    Energy Technology Data Exchange (ETDEWEB)

    Hack, H.P. [ed.

    1999-07-01

    Cathodic protection is an important method of protecting structures and ships from the corrosive effects of seawater. Poor designs can be far more costly to implement than optimal designs, Improper design can cause overprotection, with resulting paint blistering and accelerated corrosion of some alloys, underprotection, with resultant structure corrosion, or stray current corrosion of nearby structures. The first ASTM symposium specifically aimed at cathodic protection in seawater was intended to compile all the criteria and philosophy for designing both sacrificial and impressed current cathodic protection systems for structures and vehicles in seawater. The papers which are included in this STP are significant in that they summarize the major seawater cathodic protection system design philosophies. Papers have been processed separately for inclusion on the database.

  3. Characterisation of corrosion products on pipeline steel under cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Lanarde, Lise [Gaz de France Research and Development Division, 361 avenue du President Wilson, BP33, 93211 Saint Denis La Plaine (France)]|[UPR15 du CNRS, Laboratoire des Interfaces et Systemes Electrochimiques, Universite Pierre et Marie Curie, C.P. 133, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Campaignolle, Xavier; Karcher, Sebastien; Meyer, Michel [Gaz de France Research and Development Division, 361 avenue du President Wilson, BP33, 93211 Saint Denis La Plaine (France); Joiret, Suzanne [UPR15 du CNRS, Laboratoire des Interfaces et Systemes Electrochimiques, Universite Pierre et Marie Curie, C.P. 133, 4 Place Jussieu 75252 Paris Cedex 05 (France)

    2004-07-01

    Onshore gas transmission lines are conjointly protected against external corrosion by cathodic protection (CP) and organic coatings. If both protection systems are simultaneously faulty, the pipe may be subjected to local loss of protection criteria. Consequently, the development of a corrosion due to the ground intrinsic corrosiveness may occur. To guarantee an optimal and safe use of its 31000 km buried gas transmission network, Gaz de France regularly inspects its pipelines. When indications of metal damage are suspected, excavations are realized to carry out a finer diagnosis and, if necessary, to repair. Whenever, corrosions are encountered, although it occurs very scarcely, it is necessary to evaluate its degree of gravity: activity, mechanism, and kinetics. Among corrosion defects, it is indeed essential to differentiate those active, from those older inactive at the time of excavation, since those last ones may possibly have been annihilated, by a PC reinforcement for instance. Eventually, the identification of the corrosion mechanism and its associated rate will provide an assessment of the risks encountered by other sections of the pipeline similar to that excavated. This study investigates to what extent the degree of gravity (activity, kinetics) of a corrosion can be determined by the characterization and identification of its associated corrosion products. Moreover, it will attempt to relate it to the close environment features as well as to the operating conditions of the pipe. The preliminary results presented in this paper consist in a laboratory study of the time evolution of corrosion products formed on the surface of ordinary low carbon steel samples. The specimens have been previously subjected to various polarization conditions in various aqueous media. The selected solutions are characteristic of ground waters. The main parameters considered for the definition of the media were its initial chemical composition, pH and dissolved gas composition

  4. 1998 Annual Cathodic Protection Survey Report for the 242-A Evaporator Area

    International Nuclear Information System (INIS)

    BOWMAN, T.J.

    1999-01-01

    This report is the second annual cathodic protection report for the 242-A evaporator. The report documents and trends annual polarization survey data, rectifier inspection data, and continuity data from 1994 through mid-1999

  5. Investigation of Corrosion and Cathodic Protection in Reinforced Concrete. II : Properties of Steel Surface Layers

    NARCIS (Netherlands)

    Koleva, D.A.; De Wit, J.H.W.; Van Breugel, K.; Lodhi, Z.F.; Ye, G.

    2007-01-01

    The present study explores the formation of corrosion products on the steel surface (using as-received low carbon construction steel) in reinforced concrete in conditions of corrosion and subsequent transformation of these layers in conditions of cathodic protection (CP).

  6. Investigation of Corrosion and Cathodic Protection in Reinforced Concrete. I : Application of Electrochemical Techniques

    NARCIS (Netherlands)

    Koleva, D.A.; De Wit, J.H.W.; Van Breugel, K.; Lodhi, Z.F.; Van Westing, E.

    2007-01-01

    The electrochemical behavior of steel reinforcement in conditions of corrosion and cathodic protection was studied, using electrochemical impedance spectroscopy (EIS) and compared to reference (noncorroding) conditions. Polarization resistance (PR) method and potentiodynamic polarization (PDP) were

  7. Cathodic Protection for Above Ground Storage Tank Bottom Using Data Acquisition

    Directory of Open Access Journals (Sweden)

    Naseer Abbood Issa Al Haboubi

    2015-07-01

    Full Text Available Impressed current cathodic protection controlled by computer gives the ideal solution to the changes in environmental factors and long term coating degradation. The protection potential distribution achieved and the current demand on the anode can be regulated to protection criteria, to achieve the effective protection for the system. In this paper, cathodic protection problem of above ground steel storage tank was investigated by an impressed current of cathodic protection with controlled potential of electrical system to manage the variation in soil resistivity. Corrosion controller has been implemented for above ground tank in LabView where tank's bottom potential to soil was manipulated to the desired set point (protection criterion 850 mV. National Instruments Data Acquisition (NI-DAQ and PC controllers for tank corrosion control system provides quick response to achieve steady state condition for any kind of disturbances.

  8. Research to develop guidelines for cathodic protection of concentric neutral cables, volume 3

    Science.gov (United States)

    Hanck, J. A.; Nekoksa, G.

    1982-08-01

    Data associated with the corrosion of concentric neutral (CN) wires of direct buried primary cables were statistically analyzed, and guidelines for cathodic protection of CN wires for the electric utility industry were developed. The cathodic protection are reported. Field tests conducted at 36 bellholes excavated in California, Oklahoma, and North Carolina are described. Details of the electrochemical, chemical, bacteriological, and sieve analyses of native soil and imported backfill samples are also included.

  9. Reliability centred maintenance of the cathodic protection system of the Bolivia-Brazil gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Jorge Fernando Pereira [Transportadora Brasileira Gasoduto, TBG, Bolivia-Brasil S.A (Brazil)

    2004-07-01

    This paper presents the results of the Reliability-Centred Maintenance study performed on the Cathodic Protection System of the Bolivia -Brazil Gas Pipeline. The Cathodic Protection installation for the north spread (from Corumba to Guararema, 1413 km) was commissioned in March 1999 and for the south spread (from Campinas to Porto Alegre, 1180 km) one year after. The protection against corrosion of the buried external surface of our gas pipeline is provided, primarily, by an high-efficient external coating, complemented by a impressed current cathodic protection system consisting of: - Forty-one rectifiers and respective anodes ground beds; - One solar panel and respective anodes ground beds; - Fifty-nine insulating joints and respective protective devices; - Nine hundred and ninety pipe-to-soil test stations; - Thirty-six pipe-to-soil remote monitoring devices; - Forty-one electrical power feeder network to the rectifiers. The rectifiers/anodes ground beds are installed at each 50 km approximately, including the solar panel, and the pipe-to-soil test stations at each 2.5 km, under different environment conditions. The insulating joints and theirs protective devices are installed inside stations (launch and receive scrapers, compression and metering) and city-gates, as well, the pipe-to-soil remote monitoring devices. The cathodic protection system and electrical power feeder network are inspected and maintained by a TBG third part Contractor.

  10. Photogenerated cathode protection properties of nano-sized TiO2/WO3 coating

    International Nuclear Information System (INIS)

    Zhou Minjie; Zeng Zhenou; Zhong Li

    2009-01-01

    Nano-sized TiO 2 /WO 3 bilayer coatings were prepared on type 304 stainless steel substrate by sol-gel method. The performance of photo-electrochemical and photogenerated cathode protection of the coating was investigated by the electrochemical method. The results show that the bilayer coating with four TiO 2 layers and three WO 3 layers exhibits the highest photo-electrochemical efficiency and the best corrosion resistance property. Type 304 stainless steel with the coating can maintain cathode protection for 6 h in the dark after irradiation by UV illumination for 1 h. In addition, the mechanism of the photogenerated cathode protection for the bilayer coating was also explored.

  11. Feasibility of applying cathodic protection to double-wall waste storage tanks

    International Nuclear Information System (INIS)

    Moore, E.L.

    1977-01-01

    A study was conducted to determine the feasibility of applying impressed current cathodic protection to double-wall storage tanks containing terminal waste solutions. Norton Corrosion Limited concluded that such a system could be designed for installation on the tanks. Under their direction, Battelle Northwest Laboratories conducted a laboratory study to develop necessary data for design of the system. A separate study conducted by Battelle Columbus Laboratories indicated that, while terminal waste solutions by themselves do not promote stress corrosion cracking, cathodic protection may promote this type of corrosion under certain conditions. As a result of these findings, the recommendation was made not to install cathodic protection on the double-wall tanks containing terminal waste solutions

  12. Experimental study of cathodic protection of concrete from a 30 year old bridge

    NARCIS (Netherlands)

    Polder, R.B.; Nerland, O.C.

    1998-01-01

    An experimental study of cathodic protection (CP) was carried out with a conductive primer anode applied to specimens from a concrete bridge. The bridge was demolished after 30 years of service due to severe delaminations and reinforcement corrosion. Four specimens of approximately 1 m2 each were

  13. Short-term benefits of Cathodic Protection of steel in concrete

    NARCIS (Netherlands)

    Pacheco, J.; Polder, R.B.; Fraaij, A.L.A.; Mol, J.M.C.

    2012-01-01

    Cathodic Protection (CP) of steel in concrete has been used over the past decades in order to increase the remaining service life of concrete infrastructure. CP involves the application of an electrical current to the corroding reinforcing bars, thus stopping and preventing further corrosion. The

  14. Influence of soil on St3 surface spectroscopic characteristics under cathode protection conditions

    International Nuclear Information System (INIS)

    Kuznetsova, E.G.; Lazorenko-Manevich, R.M.; Sokolova, L.A.; Remezkova, L.V.

    1992-01-01

    Using electroreflection spectra it is shown, that St3 surface following long holding in cold clay without cathode protection is less heterogeneous relative to water absorption, than surface of initial specimens, as well as, of specimens holded in wet clay. This variation of distribution of adsorption centres by heats of water absorption results from stable absorption of surface-and-active components of clayed soil and is accompanied by increase of St3 corrosion stability. Long-term cathode polarization reduces initial distribution and decreases corrosion stability of St3

  15. Research to develop guidelines for cathodic protection of concentric neutral cables, volume 1

    Science.gov (United States)

    Hanck, J. A.; Nekoksa, G.

    1981-08-01

    Data associated with corrosion of concentric neutrals (CN) of direct buried cables from field tests conducted at 36 bellholes excavated in California, Oklahoma, and North Carolina are presented. The electrochemical, chemical, bacteriological, and sieve analyses of native soil and imported backfill samples are included. Up to 129 values were determined for each bellhole and stored on cards as a data bank. All values were statistically analyzed and correlated with corrosion found. The severity of corrosion correlated best with CN corrosion potentials, CN resistance measurements, coarseness of backfill, and soil resistivity. The guidelines for installation of cathodic protection on CN cables are to be based upon the evaluation of over 100 experimental cathodic protection systems and upon laboratory testing for protection criteria with and without ac effects.

  16. Effect of Alternating Current on the Cathodic Protection and Interface Structure of X80 Steel

    Directory of Open Access Journals (Sweden)

    Huiru Wang

    2017-07-01

    Full Text Available This study employs potential-monitoring techniques, cyclic voltammetry tests, alternating current (AC voltammetry methods, and surface characterization to investigate the AC corrosion of cathodically protected X80 pipeline steel. In a non-passive neutral solution at pH 7.2, a sufficiently negative potential completely protects steel at an AC current density of 100 A/m2. In an alkaline solution at pH 9.6, more serious AC corrosion occurs at more negative cathodic protection (CP potential, whereas without CP the steel suffers negligible corrosion. In addition, the interface capacitance increases with AC amplitude. Based on these results, the AC corrosion mechanisms that function under various conditions are analyzed and described.

  17. Cathodic protection simulation of above ground storage tank bottom: Experimental and numerical results

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Marcelo [Inspection Department, Rio de Janeiro Refinery - REDUC, Petrobras, Rio de Janeiro (Brazil); Brasil, Simone L.D.C. [Chemistry School, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro (Brazil); Baptista, Walmar [Corrosion Department, Research Centre - CENPES, Petrobras (Brazil); Miranda, Luiz de [Materials and Metallurgical Engineering Program, COPPE, UFRJ, Rio de Janeiro (Brazil); Brito, Rosane F. [Corrosion Department, Research Centre, CENPES, Petrobras, Rio de Janeiro (Brazil)

    2004-07-01

    The deterioration history of Above ground Storage Tanks (AST) of Petrobras' refineries - shows that the great incidence of corrosion in the AST bottom is at the external side. This is a problem in the disposability of storage crude oil and other final products. At this refinery, all AST's are built over a concrete base with a lot of pile to support the structure and distribute the charge homogeneously. Because of this it is very difficult to use cathodic protection as an anti-corrosive method for each one of these tanks. This work presents an alternative cathodic protection system to protect the external side of the tank bottom using a new metallic bottom, placed at different distance from the original one. The space between the two bottoms was filled with one of two kinds of soils, sand or clay, more conductive than the concrete. Using a prototype tank it was studied the potential distributions over the new tank bottom for different system parameters, as soil resistivity, number and position of anodes localized in the old bottom. These experimental results were compared to numerical simulations, carried out using a software based on the Boundary Element Method. The computer simulation validates this protection method, confirming to be a very useful tool to define the optimized cathodic protection system configuration. (authors)

  18. The polarising processes by cathodic protection and their effects

    Directory of Open Access Journals (Sweden)

    Vu¾cha Ján

    2004-09-01

    Full Text Available For the determination of appropriate protection against the corrosion of metal materials it is necessary to understand in details the principle of the corrosion. The corrosion is the oxidation of metal material which results in the change of its chemical composition. This chemical change is greatly influenced by the electrical current flowing in metal depending on electrical current flowing direction and intensity.

  19. Experimental Study on the Influence of AC Stray Current on the Cathodic Protection of Buried Pipe

    Directory of Open Access Journals (Sweden)

    Qingmiao Ding

    2016-01-01

    Full Text Available The size of the damaged area of the coating and its position on the pipeline impacted the cathodic protection potential, and there was a damaged area of the greatest impact value. When damaged area was 300 mm2, the IR drop was the largest, and this situation could easily lead to inadequate protection; when the parallel spacing between pipeline and interference source was unchanged, the measured value curves of cathodic protection potential presented “U” shaped trend with the increasing stray current interference intensity. Under certain parallel spacing between pipeline and interference source, high alternating stray current intensity would cause serious negative offsets, so that the overprotection of the pipeline occurred, and make the coating crack; there was a parallel threshold length. When less than the threshold, the pipe-ground potential increases rapidly with the parallel length increasing. In order to judge whether a pipeline was interference by AC stray current and the risk of stray current corrosion, we should make a comprehensive analysis of the cathodic protection energizing potential, the switch-off potential, AC pipe-soil potential, IR drops, and so on.

  20. Reduce operational cost and extend the life of pipeline infrastructure by automating remote cathodic protection systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosado, Elroy [Freewave Technologies, Inc., Boulder, CO (United States). Latin America

    2009-07-01

    Energy and Pipeline Companies wrestle to control operating costs largely affected by new government regulations, ageing buried metal assets, rising steel prices, expanding pipeline operations, new interference points, HCA encroachment, restrictive land use policies, heightened network security, and an ageing soon-to-retire work force. With operating costs on the rise, seemingly out of control, many CP and Operations Professionals look to past best practices in cost containment through automation. Many companies achieve solid business results through deployment of telemetry and SCADA automation of remote assets and now hope to expand this success to further optimize operations by automating remote cathodic protection systems. This presentation will provide examples of how new remote cathodic protection systems are helping energy and pipeline companies address the growing issue of the aging pipeline infrastructure and reduce their costs while optimizing their operations. (author)

  1. Cathodic protection of mild steel and copper in deep waters of the Arabian Sea and Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Venkat, K.; Wagh, A.B.

    Performance of cathodic protection system to mild steel and copper in deep (> 1000 m) oceanic waters of the Arabian Sea and Bay of Bengal has been assessed using aluminium and mild steel sacrificial anodes. The corrosion rates of unprotected metals...

  2. Cathodic protection of carbon steel in natural seawater: Effect of sunlight radiation

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, Alessandro [Istituto per l' Energetica e le Interfasi, IENI - CNR, Milano, via Roberto Cozzi 53 20125 Milano (Italy)], E-mail: alessandro.benedetti@cnr.it; Magagnin, Luca [Dip. Chimica, Materiali e Ing. Chimica G. Natta, Politecnico di Milano, via Mancinelli 7, 20131 Milano (Italy); Passaretti, Francesca [Istituto per l' Energetica e le Interfasi IENI - CNR, Lecco, c.so Promessi Sposi 29, 23900 Lecco (Italy); Chelossi, Elisabetta; Faimali, Marco [Istituto di Scienze Marine, ISMAR- CNR - Via De Marini 6, 16149, Genova (Italy); Montesperelli, Giampiero [Universita di Roma - Tor Vergata, Dipartimento di Scienze e Tecnologie Chimiche, Via della Ricerca Scientifica 00133, Roma (Italy)

    2009-11-01

    Cathodic protection of metals in seawater is known to be influenced by chemical-physical parameters affecting cathodic processes (oxygen discharge, hydrogen evolution and calcareous deposit precipitation). In shallow seawater, these parameters are influenced by sunlight photoperiod and photosynthetic activity. The results presented here represent the first step in studies dedicated to cathodic protection in shallow photic seawater. This paper reports on carbon steel protected at -850 mV vs. Ag/AgCl (oxygen limiting current regime) in the presence of sunlight radiation but in the absence of biological and photosynthetic activity, the role of which deserves future research. Comparison of results obtained by exposing electrochemical cells to daylight cycles in both biologically inactivated natural seawater and in NaCl 3.5 wt.% solutions showed that sunlight affects current densities and that calcareous deposit interfere with light-currents effects. Sunlight radiation and induced heating of the solution have been separated, highlighting results not otherwise obvious: (1) observed current waves concomitant with sunlight radiation depend fundamentally on solar radiation, (2) solar radiation can determine current enhancements from early to late phases of aragonite crystal growth, (3) a three-day-old CaCO{sub 3} layer reduces but does not eliminate the amplitude of the current waves. Theoretical calculations for oxygen limiting currents and additional field tests showed that sunlight, rather than bulk solution heating, is the main cause of daily current enhancements. This was confirmed by polarizations performed at -850 and -1000 mV vs. Ag/AgCl (constant bulk temperature), during which the electrode was irradiated with artificial lighting. This test also confirmed O{sub 2} discharge to be the cathodic process involved. A mechanism of radiation conversion to heat in the oxygen diffusion layer region is proposed.

  3. Experimental Study of Thermoelectric Generator as Electrical Source of Impressed Current Cathodic Protection for Ship Hull

    Directory of Open Access Journals (Sweden)

    Adi Kurniawan

    2017-06-01

    Full Text Available Impressed Current Cathodic Protection (ICCP is a method to protect metallic material such as ship hull from corrosion by using electric current. In this research, a prototype of thermoelectric generator is developed in order to supply the ICCP system. This thermoelectric generator is planned to utilize the exhaust gas from main engine of the ship. Method carried in this research is assembling the prototype of thermoelectric generator followed by conducted experiment to observe the potential energy of the prototype. After that, the required number of thermoelectric generator is calculated to supply the ICCP system to protect the ship from corrosion. The object in this research is live fish carrier “Wellboat” which has 396.08 m2 wetted area. The required voltage and current to protect the ship from corrosion for three years are 16.67 Volt and 2.66 Ampere. Based on the experiment, a prototype of thermoelectric generator can generate 0.34 Ampere and 4.43 Volt, causing the need of 8 series and 4 parallels connection. It can be concluded that the corrosion rate on the ship hull can be decelerated by using impressed current cathodic protection method without needing additional cost or fuel consumption to produce electric energy.  

  4. Protection Performance Simulation of Coal Tar-Coated Pipes Buried in a Domestic Nuclear Power Plant Using Cathodic Protection and FEM Method

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H. Y.; Lim, B. T.; Kim, K. S.; Kim, J. W.; Park, H. B. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of); Kim, Y. S.; Kim, K. T. [Andong National University, Andong (Korea, Republic of)

    2017-06-15

    Coal tar-coated pipes buried in a domestic nuclear power plant have operated under the cathodic protection. This work conducted the simulation of the coating performance of these pipes using a FEM method. The pipes, being ductile cast iron have been suffered under considerably high cathodic protection condition beyond the appropriate condition. However, cathodic potential measured at the site revealed non-protected status. Converting from 3D CAD data of the power plant to appropriate type for a FEM simulation was conducted and cathodic potential under the applied voltage and current was calculated using primary and secondary current distribution and physical conditions. FEM simulation for coal tar-coated pipe without defects revealed over-protection condition if the pipes were well-coated. However, the simulation for coal tar-coated pipes with many defects predict that the coated pipes may be severely degraded. Therefore, for high risk pipes, direct examination and repair or renewal of pipes are strongly recommended.

  5. Cathodic protection of steel by electrodeposited zinc-nickel alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, K.R.; Smith, C.J.E. [Defence Research Agency, Farnborough (United Kingdom). Structural Materials Centre; Robinson, M.J. [Cranfield Univ. (United Kingdom). School of Industrial and Manufacturing Science

    1995-12-01

    The ability of electrodeposited zinc-nickel alloy coatings to cathodically protect steel was studied in dilute chloride solutions. The potential distribution along steel strips partly electroplated with zinc-nickel alloys was determined, and the length of exposed steel that was held below the minimum protection potential (E{sub prot}) was taken as a measure of the level of cathodic protection (CP) provided by the alloy coatings. The level of CP afforded by zinc alloy coatings was found to decrease with increasing nickel content. When nickel content was increased to {approx} {ge} 21 wt%, no CP was obtained. Surface analysis of uncoupled zinc-nickel alloys that were immersed in sodium chloride (NaCl) solutions showed the concentration of zinc decreased in the surface layers while the concentration of nickel increased, indicating that the alloys were susceptible to dezincification. The analysis of zinc-nickel alloy coatings on partly electroplated steel strips that were immersed in chloride solution showed a significantly higher level of dezincification than that found for uncoupled alloy coatings. This effect accounted for the rapid loss of CP afforded to steel by some zinc alloy coatings, particularly those with high initial nickel levels.

  6. Humectants To Augment Current From Metallized Zinc Cathodic Protection Systems on Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R.; Covino Jr., Bernard S.; Cramer, Stephen D.; Russell, James H. Russell; Bullard, Sophie J.; Collins, W. Keith; Bennett, Jack E. (J.E. Bennett Consulting, Inc.); Soltesz, Steven M. (ODOT); Laylor, H. Martin (ODOT)

    2002-12-01

    Cathodic protection (CP) systems using thermal-sprayed zinc anodes are employed to mitigate the corrosion process in reinforced concrete structures. However, the performance of the anodes is improved by moisture at the anode-concrete interface. Research was conducted to investigate the effect of hydrophilic chemical additives, humectants, on the electrical performance and service life of zinc anodes. Lithium bromide and lithium nitrate were identified as feasible humectants with lithium bromide performing better under galvanic CP and lithium nitrate performing better under impressed current CP. Both humectants improved the electrical operating characteristics of the anode and increased the service life by up to three years.

  7. Hydrogen Assisted Crack in Dissimilar Metal Welds for Subsea Service under Cathodic Protection

    Science.gov (United States)

    Bourgeois, Desmond

    Dissimilar metal welds (DMWs) are routinely used in the oil and gas industries for structural joining of high strength steels in order to eliminate the need for post weld heat treatment (PWHT) after field welding. There have been reported catastrophic failures in these DMWs, particularly the AISI 8630 steel - Alloy 625 DMW combination, during subsea service while under cathodic protection (CP). This is due to local embrittlement that occurs in susceptible microstructures that are present at the weld fusion boundary region. This type of cracking is known as hydrogen assisted cracking (HAC) and it is influenced by base/filler metal combination, and welding and PWHT procedures. DMWs of two material combinations (8630 steel -- Alloy 625 and F22 steel -- Alloy 625), produced with two welding procedures (BS1 and BS3) in as welded and PWHT conditions were investigated in this study. The main objectives included: 1) evaluation of the effect of materials composition, welding and PWHT procedures on the gradients of composition, microstructure, and properties in the dissimilar transition region and on the susceptibility to HAC; 2) investigation of the influence of microstructure on the HAC failure mechanism and identification of microstructural constituents acting as crack nucleation and propagation sites; 3) assessment of the applicability of two-step PWHT to improve the resistance to HAC in DMWs; 4) establishment of non-failure criterion for the delayed hydrogen cracking test (DHCT) that is applicable for qualification of DMWs for subsea service under cathodic protection (CP).

  8. Soil characteristics as criteria for cathodic protection of a nuclear fuel production facility

    International Nuclear Information System (INIS)

    Jenkins, C.F.; Corbett, R.A.

    1987-01-01

    The fact that buried metallic structures corrode is well documented. It has been postulated that the extent and rate of attack is controlled predominantly by the characteristics of the surrounding soil. Therefore, prior to constructing a new facility designed to process accumulated nuclear waste, consideration was given to protecting its underground pipelines against corrosion. Leak frequency curves from other nearby plantsites, extensive soil resistivity surveys, and geochemical analyses, were used to evaluate the onsite soil characteristics for corrosion susceptibility. Analysis of the data collected over a three-year period indicated that although the soil is not overly aggressive, substantial heterogeneity existed so as to establish galvanic cells along pipe lengths passing through the soil. To limit the extent of corrosion on underground piping, the application of an impressed current cathodic protection system was recommended to supplement a high integrity, corrosion resistant coating and wrap system

  9. Cathodic protection of XL 52 steel under the influence of sulfate reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel, R. Garcia [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico, D.F. 07730 (Mexico); Departamento de lngenieria Metalurgica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, 04510 Mexico, D.F. (Mexico); Olivares, G. Zavala; Gayosso, M.J. Hernandez; Trejo, A. Gayosso [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico, D.F. 07730 (Mexico)

    2011-01-15

    The effect of sulfate reducing bacteria (SRB) upon the cathodic protection of XL 52 steel was determined, in order to identify if the potential value of -0.950 V versus copper/copper sulfate electrode is good enough to protect the metal surface. During the experiments, different operational parameters were monitored: hydrogen sulfide production, iron concentration, electrolyte alkalinity, microorganisms' population, as well as the metal surface damage. At the same time, the corrosion rate was determined using two electrochemical techniques: polarization resistance (PR) and electrochemical impedance spectroscopy (EIS). According to the results, it was observed that the protection potential of -0.950 V versus copper/copper sulfate electrode is not enough to control the microbiologically induced corrosion. This situation is reinforced by the fact that significant iron concentration was found in the electrolyte. The microbiological activity is not affected by the protection potential. On the contrary, the population growth is slightly strengthened. The alkalinity generated by the applied potential did not stop the SRB growth. A type of localized corrosion was developed during the experiments with microorganisms, even when the protection potential was applied to the system. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. An assessment of the present criteria for cathodic protection of buried steel pipelines

    International Nuclear Information System (INIS)

    Barlo, T.J.; Berry, W.E.

    1984-01-01

    An experimental laboratory study has been conducted to assess the criteria for cathodic protection of a buried pipeline. The specific cathodicprotection potential requirements to prevent pitting and general corrosion of steel were determined in six natural soils with various amounts of moisture and oxygen (aerated or deaerated), and were compared to the criteria values of -0.85 V (Cu/CuSO 4 ), 100 mV polarization, 300 mV voltage shift, and Tafel potential. The effects of temperature 60 0 C (140 0 F) anaerobic bacteria, and steel surface condition (bare or mill scaled) on the specific requirements in selected soils were assessed also. Overall, the research concluded the present criteria were generally valid in concept; however, the critical values for the present criteria could vary with the environment, but with one noted exception. This experimental study concluded that the 100 mV polarization criterion was the most generally valid and applicable criterion

  11. Strategies for the optimization of cathodic protection of pipelines under AC influence; Strategien fuer die Optimierung des kathodischen Korrosionsschutzes von Rohrleitungen unter Wechselspannungsbeeinflussung

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Markus [SGK Schweizerische Gesellschaft fuer Korrosionsschutz, Zuerich (Switzerland)

    2012-07-01

    The newly determined values for the protection of cathodically protected pipelines against AC corrosion cannot be readily applied to all pipelines. From this perspective, the author of the contribution under consideration reports on strategies for the optimization of cathodic protection of pipelines under AC influence. It is hardly possible to define general strategies. Rather, an examination of the entire pipeline is essential. Is a compliance with the prescribed limits not possible or only possible with unreasonable effort, an active cathodic corrosion protection in combination with remote-controlled monitoring and protection devices can reduce the current corrosion risk.

  12. Hydrogen cracking susceptibility evaluation of buried steel pipe under cathodic protection. Cathode boshokuka ni okeru maisetsu kokan no suisoware kanjusei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Y.; Nonaka, H. (Osaka Gas Co. Ltd., Osaka (Japan)); Yamakawa, K. (University of Osaka Prefecture, Osaka (Japan). College of Engineering)

    1992-12-01

    An evaluation was given on effects of hydrogen on pipeline materials in order to determine a most base value in an optimal cathodic protection potential in cathodic protection of buried pipelines. Protection potentials were estimated from the relation between critical hydrogen amount and the potentials in marine clays and sodium acetate as electrolyte. The materials were evaluated using a strain rate tensile experiment method. The following results were obtained: The more base the potential, the elongation was somewhat less than the result in air, while the tensile strength increased slightly; difference in water content in soils varies the cross section contraction rate; the rate does not change in a marine clay containing water at 20%, but it decreases in a 30%-content soil; an SEM observation revealed pseudo cleavage faces; and the critical hydrogen amount that causes hydrogen cracking is 10 ppb, which corresponds to -1.4V in a marine clay containing water at 30%, and -1.2V at 14%. A loading experiment with actual loads verified that no fracture due to hydrogen cracking occurs even under an overprotection environment when a load imposed on an actual pipeline is kept constant. 16 refs., 10 figs., 3 tabs.

  13. Real-time corrosion control system for cathodic protection of buried pipes for nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Ki Tae; Kim, Hae Woong; Kim, Young Sik; Chang, Hyun Young; Lim, Bu Taek; Park, Heung Bae

    2015-01-01

    Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.)

  14. Real-time corrosion control system for cathodic protection of buried pipes for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Tae; Kim, Hae Woong; Kim, Young Sik [School of Materials Science and Engineering, Andong National University, Andong (Korea, Republic of); Chang, Hyun Young; Lim, Bu Taek; Park, Heung Bae [Power Engineering Research Institute, KEPCO Engineering and Construction Company, Seongnam (Korea, Republic of)

    2015-02-15

    Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.)

  15. Magnesium-Based Sacrificial Anode Cathodic Protection Coatings (Mg-Rich Primers for Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Michael D. Blanton

    2012-09-01

    Full Text Available Magnesium is electrochemically the most active metal employed in common structural alloys of iron and aluminum. Mg is widely used as a sacrificial anode to provide cathodic protection of underground and undersea metallic structures, ships, submarines, bridges, decks, aircraft and ground transportation systems. Following the same principle of utilizing Mg characteristics in engineering advantages in a decade-long successful R&D effort, Mg powder is now employed in organic coatings (termed as Mg-rich primers as a sacrificial anode pigment to protect aerospace grade aluminum alloys against corrosion. Mg-rich primers have performed very well on aluminum alloys when compared against the current chromate standard, but the carcinogenic chromate-based coatings/pretreatments are being widely used by the Department of Defense (DoD to protect its infrastructure and fleets against corrosion damage. Factors such as reactivity of Mg particles in the coating matrix during exposure to aggressive corrosion environments, interaction of atmospheric gases with Mg particles and the impact of Mg dissolution, increases in pH and hydrogen gas liberation at coating-metal interface, and primer adhesion need to be considered for further development of Mg-rich primer technology.

  16. A Study of Calcareous Deposits on Cathodically Protected Mild Steel in Artificial Seawater

    Directory of Open Access Journals (Sweden)

    Yuanfeng Yang

    2015-03-01

    Full Text Available Calcareous deposits were formed on steel under conditions of cathodic protection in artificial seawater at applied constant current densities ranging from 50 to 400 mA·m−2. The calcareous layers were characterized using a Field Emission Gun Scanning Electron Microscope (FEG SEM in conjunction with Energy Dispersive X-Ray Analysis (EDX, and Electrochemical Impedance Spectroscopy (EIS. At cathodic current densities of 50–100 mA·m−2 where corrosion was still occurring, a clear correlation existed between the iron containing corrosion product and the overlying magnesium hydroxide layer. This revealed that the mapping of magnesium rich areas on a steel surface can be used in the identification of local corrosion sites. At current densities of 150–200 mA·m−2, a layered deposit was shown to occur consisting of an inner magnesium-containing layer and an outer calcium-containing layer. At current densities of 300–400 mA·m−2, intense hydrogen bubbling through macroscopic pores in the deposits gave rise to cracking of the deposited film. Under such conditions deposits do not have a well-defined double layer structure. There is also preferential formation of magnesium-rich compounds near the steel surface at the early stages of polarisation and within the developing pores and cracks of calcareous deposits later on. Based on SEM/EDX investigation of calcareous depositions the impedance model was proposed and used to monitor in situ variations in steel corrosion resistance, and to calculate the thickness of formed deposits using the length of oxygen diffusion paths.

  17. Promoting Barrier Performance and Cathodic Protection of Zinc-Rich Epoxy Primer via Single-Layer Graphene

    Directory of Open Access Journals (Sweden)

    Jingrong Liu

    2018-05-01

    Full Text Available The effect of single-layer graphene sheets (Gr on the corrosion protection of zinc-rich epoxy primers (ZRPs was investigated. Scanning electron microscopy (SEM with an energy dispersive spectrometer (EDS were used to characterize morphology and composition of the coatings after immersion for 25 days. The cross-sectional SEM images and X-ray photoelectron spectroscopy (XPS confirmed that the addition of single-layer graphene facilitated assembling of zinc oxides on the interface between the coating and the steel. The open circuit potential (OCP, electrochemical impedance spectroscopy (EIS measurements revealed that both the cathodic protection and barrier performance of the ZRP were enhanced after addition of 0.6 wt. % Gr (Gr0.6-ZRP. In addition, the cathodic protection property of the Gr0.6-ZRP was characterized quantitatively by localized electrochemical impedance spectroscopy (LEIS in the presence of an artificial scratch on the coating. The results demonstrate that moderate amounts of single-layer graphene can significantly improve corrosion resistance of ZRP, due to the barrier protection and cathodic protection effects.

  18. CdTe/TiO{sub 2} nanocomposite material for photogenerated cathodic protection of 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiu-tong, E-mail: xiutongwang@gmail.com [Institutes of Oceanology, Chinese Academy of Sciences, Qingdao 266071 China (China); Wei, Qin-yi, E-mail: weiqiny200@163.com [Institutes of Oceanology, Chinese Academy of Sciences, Qingdao 266071 China (China); University of Chinese Academy of Sciences, 19 (Jia) Yuquan Road, Beijing 100049 (China); Zhang, Liang, E-mail: zzll20081988@126.com [CNOOC Information Technology co., Ltd. Beijing Branch, Beijing 100029 China (China); Sun, Hao-fen, E-mail: fyqfyx@163.com [School of Environmental and Municipal Engineering Qingdao, Qingdao Technological University, Qingdao 266033 China (China); Li, Hong, E-mail: lhqdio1987@163.com [Institutes of Oceanology, Chinese Academy of Sciences, Qingdao 266071 China (China); Zhang, Qiao-xia, E-mail: qiaoxiazhang1989@163.com [Institutes of Oceanology, Chinese Academy of Sciences, Qingdao 266071 China (China)

    2016-06-15

    Graphical abstract: - Highlights: • The photoelectric properties of TiO{sub 2} could greatly improve by doping with CdTe. • The cathodic protection property of the CdTe/TiO{sub 2} was superior to that of pure TiO{sub 2}. • The protective action of the CdTe/TiO{sub 2} for 304SS could be maintained in the dark. - Abstract: TiO{sub 2} nanotubes were fabricated by the anodization method, and CdTe was deposited on them via electrochemical deposition method. The optimal performance of the CdTe/TiO{sub 2} composites was achieved via changing the acidity of the electrolyte. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction were used to investigate the surface morphology, elemental analysis and phase characteristics of the composite materials. Some electrochemical tests, such as open-circuit potential, current variation versus time were carried out to investigate the photogenerated cathodic protection of 304 stainless steel by CdTe/TiO{sub 2}. The results indicated that the cathodic protection performance of the CdTe/TiO{sub 2} composite was superior to that of pure TiO{sub 2} in the wavelength of visible light. The CdTe/TiO{sub 2} composite exhibited optimal photogenerated cathodic protection properties under visible light for the corrosion potential of 304 stainless steel shifted negatively to −850 mV when the concentration of HCl in the deposition electrolyte was 1 mol/L.

  19. Cathodic corrosion protection in a gas distribution grid. Operational experience in five years of operation; Kathodischer Korrosionsschutz in einem Gasverteilungsnetz. Betriebserfahrung nach fuenf Jahren

    Energy Technology Data Exchange (ETDEWEB)

    Poka, Werner [Stadtwerke Straubing (Germany); Gaugler, Hans; Steiger, Oliver [Stadtwerke Muenchen (Germany)

    2011-07-01

    In late 2001, Stadtwerke Straubing in Bavaria decided on cathodic corrosion protection of the Straubing low-pressure grid, with about 120 km of steel pipes. Planning started in early 2002 in cooperation with Stadtwerke Munich (SWM). Three years later, in December 2005, the last of the 25 grid sections was integrated in the cathodic corrosion protection system. This was followed by two years of monitoring, documentation, and measurements. The effectiveness of the cathodic corrosion protection system was proved for the whole low-pressure grid. Cost was reduced and availability enhanced. The project is discussed in detail, including economic efficiency, leak frequency and condition monitoring on the basis of measurements.

  20. Application of Direct Assessment Approaches and Methodologies to Cathodically Protected Nuclear Waste Transfer Lines

    International Nuclear Information System (INIS)

    Dahl, Megan M.; Pikas, Joseph; Edgemon, Glenn L.; Philo, Sarah

    2013-01-01

    The U.S. Department of Energy's (DOE) Hanford Site is responsible for the safe storage, retrieval, treatment, and disposal of approximately 54 million gallons (204 million liters) of radioactive waste generated since the site's inception in 1943. Today, the major structures involved in waste management at Hanford include 149 carbon steel single-shell tanks, 28 carbon-steel double-shell tanks, plus a network of buried metallic transfer lines and ancillary systems (pits, vaults, catch tanks, etc.) required to store, retrieve, and transfer waste within the tank farm system. Many of the waste management systems at Hanford are still in use today. In response to uncertainties regarding the structural integrity of these systems,' an independent, comprehensive integrity assessment of the Hanford Site piping system was performed. It was found that regulators do not require the cathodically protected pipelines located within the Hanford Site to be assessed by External Corrosion Direct Assessment (ECDA) or any other method used to ensure integrity. However, a case study is presented discussing the application of the direct assessment process on pipelines in such a nuclear environment. Assessment methodology and assessment results are contained herein. An approach is described for the monitoring, integration of outside data, and analysis of this information in order to identify whether coating deterioration accompanied by external corrosion is a threat for these waste transfer lines

  1. Sol-gel prepared active ternary oxide coating on titanium in cathodic protection

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2007-12-01

    Full Text Available The characteristics of a ternary oxide coating, on titanium, which consisted of TiO2, RuO2 and IrO2 in the molar ratio 0.6:0.3:0.1, calculated on the metal atom, were investigated for potential application for cathodic protection in a seawater environment. The oxide coatings on titanium were prepared by the sol gel procedure from a mixture of inorganic oxide sols, which were obtained by forced hydrolysis of metal chlorides. The morphology of the coating was examined by scanning electron microscopy. The electrochemical properties of activated titanium anodes were investigated by cyclic voltammetry and polarization measurements in a H2SO4- and NaCl-containing electrolyte, as well as in seawater sampled on the Adriatic coast in Tivat, Montenegro. The anode stability during operation in seawater was investigated by the galvanostatic accelerated corrosion stability test. The morphology and electrochemical characteristics of the ternary coating are compared to that of a sol-gel-prepared binary Ti0.6Ru0.4O2 coating. The activity of the ternary coating was similar to that of the binary Ti0.6Ru0.4O2 coating in the investigated solutions. However, the corrosion stability in seawater is found to be considerably greater for the ternary coating.

  2. Investigation on the Cathodic Protection Effect of Low Pressure Cold Sprayed AlZn Coating in Seawater via Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Guosheng Huang

    2017-07-01

    Full Text Available Cold spray can deposit a composite coating simply by spraying mechanically-mixed Al and Zn powders, while no quantitative data has been reported on the anti-corrosion performance of different composite cold-sprayed coatings. In the present work, the finite element method was used to estimate the cathodic protection effect by simulating the potential distribution on a damaged cold-sprayed AlZn coating on Q235 steel. The results indicate that AlZn coating can only provide a limiting cathodic protection for substrate, because it can only polarize a very narrow zone negative to −0.78 V (vs. SCE, saturated calomel electrode. The remaining area of the steel substrate still has a very high residual corrosion rate. Computational methods can be used to predict the corrosion rate of AlZn coating, and the simulation results were validated by the results of a weight loss experiment.

  3. Wireless monitor for cathodic protection in remote sites: a case study for a university spin-out company

    International Nuclear Information System (INIS)

    Hale, J M

    2007-01-01

    This paper describes how a new spin-out company managed to develop a product and bring it to market. The product, a wireless monitor system for use on cathodic protection equipment, is described briefly with emphasis on the main technical challenge of ultra low power demand. The rest of the paper is devoted to the real challenges facing a new spin-out company: ensuring that its product has a market and obtaining the finance to develop it. It shows how government grants and collaboration with an established company can help

  4. Hydrothermal synthesis and photoelectrochemical performance enhancement of TiO{sub 2}/graphene composite in photo-generated cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiwei, E-mail: vivizhg@yahoo.com [College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590 (China); Guo, Hanlin; Sun, Haiqing [College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Zeng, Rong-Chang [College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590 (China)

    2016-09-30

    Highlights: • TiO{sub 2}/graphene composites were synthesized through one-step hydrothermal method. • A bicrystalline framework of anatase and brookite formed. • Electrons transfer in the biphasic TiO{sub 2} results in electron-hole separation. • Graphene lead to a negative shift of the Fermi level. • The transfer barrier in the TiO{sub 2} and 304 stainless steel interface is decreased. - Abstract: TiO{sub 2}/graphene composites were synthesized through one-step hydrothermal method. The composites show an enhancement in photo-generated cathodic protection as the time-dependent profiles of photocurrent responses has confirmed. XRD data show that a bicrystalline framework of anatase and brookite formed as graphene provided donor groups in the hydrothermal process. The transfer of photoinduced electrons in the biphasic TiO{sub 2} results in effective electron-hole separation. Moreover, graphene lead to a negative shift of the Fermi level as evidenced by Mott–Schottky analysis, which decreases the Schottky barrier formed in the TiO{sub 2} and 304 stainless steel interface and results in the enhancement of photo-generated cathodic protection.

  5. The effect of cathodic protection on the behaviour of API-5LX 65 line-pipe weldments

    International Nuclear Information System (INIS)

    Saenz de Santamaria, M.; Procter, R.P.

    1987-01-01

    The results of studies of the loss of ductility shown by X65 linepipe steel weldments during slow strain rate testing in 3.5% NaCl solution, under conditions of cathodic protection/overprotection are reported. Two types of specimens have been used; the first type was extracted longitudinally from along the weld seam while the second type was taken perpendicular to the weld and contained in its gauge length, weld metal, heat affected zone and parent metal. The weld metal shows hardness values higher than those of the parent plate and the heat affected zone. Therefore, it could be expected to be more susceptible to hydrogen embrittlement under cathodic protection and overprotection conditions. However, in the second type of specimens, fracture actually takes place through the parent plate, or at lack of fusion flaws. This behaviour is related to the fact that the net sections stresses in the specimen are plastic in the parent plate but elastic in the weld metal and heat affected zone. (author)

  6. Effects of cathodic protection potential and stress ratio on fatigue thresholds of structured steels in sea water

    Energy Technology Data Exchange (ETDEWEB)

    Dolphin, A.S.; Tice, D.R.

    1987-09-01

    The results reported here suggest that the very high thresholds found under reducing {Delta}K conditions may be inapplicable under the increasing {Delta}K conditions likely to be more relevant to real structures. This conclusion is based on just two tests at - 0.85V SCE, and so requires confirmation over a range of R ratios and at free corrosion and overprotection potentials. Crack growth thresholds appear to be higher under cathodic over-protection conditions (-1.05V SCE) than at more positive potentials, due to calcareous scale formation. Tests at negative R ratios are required to ensure this calcareous scale would remain intact under compressive loading. Due to the large observed influence of calcareous scale on crack growth, and particularly on the arrest of growing cracks, more detailed microstructural examination is recommended on the specimens tested in this programme. (author).

  7. Constructing ternary polyaniline-graphene-TiO{sub 2} hybrids with enhanced photoelectrochemical performance in photo-generated cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiwei, E-mail: vivizhg@yahoo.com [College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590 (China); Guo, Hanlin; Sun, Haiqing [College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Zeng, Rongchang [College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590 (China)

    2017-07-15

    Highlights: • Ternary polyaniline-graphene-TiO{sub 2} hybrids were synthesized. • Flat band potential shift facilitates electron injection to the coupled metal. • Electrons and holes transfer in the hybrids promotes electron–hole separation. • Synergistic effects of the ternary components make the hybrids photo-chargeable. - Abstract: Ternary polyaniline-graphene-TiO{sub 2} nanocomposites were constructed through a stepwise synthetic route. The hybrids exhibit remarkable enhancement in photoelectrochemical performance. The transfer of photo-excited carriers in the ternary composites facilitates the photo-induced electron-hole separation. Meanwhile, the flat band potential shift of the hybrids increases the inner electric field intensity that drives the photo-excited electron migration from the composites to the coupled metal. Furthermore, the ternary hybrids were found firstly to be photo-chargeable, which shows application potentials in photo-generated cathodic protection in dark.

  8. Study of criterion for assuring the effectiveness of cathodic protection of buried steel pipelines being interfered with alternative current

    Energy Technology Data Exchange (ETDEWEB)

    He, X.; Jiang, G.; Qiu, Y.; Tang, H. [College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan (China); Zhang, G.; Jin, X.; Xiang, Z. [Huazhong Natural Gas Subsidiary of PetroChina Pipeline Company, Wuhan (China); Zhang, Z. [Dwell Company Limited, PetroChina Engineering Company, Ltd, Beijing (China)

    2012-06-15

    Interference of alternative current (AC) on corrosion of X65 steel was investigated in soil. It was observed that the unfavorable effect of interfering AC was able to be effectively inhibited by increasing the direct current density of the cathodic protection (CP) system. A clear correlation was established between the CP current density and the tolerable AC current density. This led to a new criterion for assuring the effectiveness of CP of buried pipelines being interfered with AC. Field experimental results on a buried pipeline running below a 500 kV transmission line showed that the criterion could satisfactorily predict the risk of AC interfering on the CP system. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Effect of Microstructure on Hydrogen Diffusion in Weld and API X52 Pipeline Steel Base Metals under Cathodic Protection

    Directory of Open Access Journals (Sweden)

    R. C. Souza

    2017-01-01

    Full Text Available The aim of this research was to evaluate the influence of microstructure on hydrogen permeation of weld and API X52 base metal under cathodic protection. The microstructures analyzed were of the API X52, as received, quenched, and annealed, and the welded zone. The test was performed in base metal (BM, quenched base metal (QBM, annealed base metal (ABM, and weld metal (WM. Hydrogen permeation flows were evaluated using electrochemical tests in a Devanathan cell. The potentiodynamic polarization curves were carried out to evaluate the corrosion resistance of each microstructure. All tests were carried out in synthetic soil solutions NS4 and NS4 + sodium thiosulfate at 25°C. The sodium thiosulfate was used to simulate sulfate reduction bacteria (SRB. Through polarization, assays established that the microstructure does not influence the corrosion resistance. The permeation tests showed that weld metal had lower hydrogen flow than base metal as received, quenched, and annealed.

  10. Alternating current corrosion of cathodically protected pipelines: Discussion of the involved processes and their consequences on the critical interference values

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, M. [SGK Swiss Society for Corrosion Protection, Technoparkstr. 1, CH-8005 Zuerich (Switzerland)

    2012-12-15

    Based on laboratory studies and model concepts, a profound understanding of the involved processes in ac corrosion and the required limits has been obtained in the last years. But there was no information whether these thresholds can be effectively applied to pipelines or whether operational constraints make their implementation impossible. Therefore, an extensive field test was carried out. Thereby, the relevance of the laboratory tests for field application could be demonstrated and all threshold values were confirmed. Detailed analysis made it possible to explain the observed threshold values based on thermodynamic and kinetic considerations. The results summarized in the present work are the basis for the normative work defining the thresholds for the operation conditions of cathodically protected pipelines. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Effect of RuCl{sub 3} Concentration on the Lifespan of Insoluble Anode for Cathodic Protection on PCCP

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H. W.; Kim, Y. S. [Materials Research Center for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University, Andong (Korea, Republic of); Chang, H. Y.; Lim, B. T.; Park, H. B. [Power Engineering Research Institute, KEPCO Engineering and Construction Company, Seongnam (Korea, Republic of)

    2015-08-15

    Prestressed Concrete steel Cylinder Pipe (PCCP) is extensively used as seawater pipes for cooling in nuclear power plants. The internal surface of PCCP is exposed to seawater, while the external surface is in direct contact with underground soil. Therefore, materials and strategies that would reduce the corrosion of its cylindrical steel body and external steel wiring need to be employed. To prevent against the failure of PCCP, operators provided a cathodic protection to the pre-stressing wires. The efficiency of cathodic protection is governed by the anodic performance of the system. A mixed metal oxide (MMO) electrode was developed to meet criteria of low over potential and high corrosion resistance. Increasing coating cycles improved the performance of the anode, but cycling should be minimized due to high materials cost. In this work, the effects of RuCl{sub 3} concentration on the electrochemical properties and lifespan of MMO anode were evaluated. With increasing concentration of RuCl{sub 3}, the oxygen evolution potential lowered and polarization resistance were also reduced but demonstrated an increase in passive current density and oxygen evolution current density. To improve the electrochemical properties of the MMO anode, RuCl{sub 3} concentration was increased. As a result, the number of required coating cycles were reduced substantially and the MMO anode achieved an excellent lifespan of over 80 years. Thus, we concluded that the relationship between RuCl{sub 3} concentration and coating cycles can be summarized as follows: No. of coating cycle = 0.48{sup *}[RuCl{sub 3} concentration, M]{sup -0.97}.

  12. Relation between the cathodic protection and the diagnosis of DCVG; Relacion entre la proteccion catodica y el diagnostico de DCVG

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez N, Miguel A; Malo Tamayo, Jose Maria [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Chavarria M, Rosalba; Duran E, Pablo [Petroleos Mexicanos (Mexico)

    2007-07-01

    The concern of the corrosion in buried pipes has increased with the course of time, the aging of the mechanical protection of the piping, results in defects in the coating, exposing the metal to the corrosive ground, in which the piping is lodged. If suitable levels of cathodic protection do not exist, the corrosion phenomenon in these defects is presented originating unexpected faults in the piping, increasing the costs of maintenance and repair, as well as the diminution in the safety during the operation, as much for the workers as for the communities near the installation of ducts. The technique of Direct Current Voltage Gradient (DCVG), besides locating the defects of the coating in a buried pipe (which are corrosion potential sites), determines corrosion status of the defects and its severity as far as the consumption of protection current that each of these absorbs. Nevertheless, all this information acquires a greater relevance, when it is correlated with the operating conditions of the cathodic protection systems, to be able to emit recommendations that lead to the mitigation or eradication of the corrosion problems, together with a good operation of the protection systems. [Spanish] La preocupacion por la corrosion en tuberias enterradas ha ido en aumento con el transcurso del tiempo, debido al envejecimiento de la proteccion mecanica de las tuberias, el cual da como resultado defectos en el recubrimiento, dejando expuesto el metal en suelo corrosivo, en el que se encuentra alojada la tuberia. Si no existen niveles de proteccion catodica adecuados, se propicia el fenomeno de corrosion en estos defectos, originando fallas inesperadas en las tuberias, incrementando a su vez los costos de mantenimiento y reparacion, asi como la disminucion en la seguridad durante la operacion, tanto para los trabajadores como para las comunidades cercanas a las instalaciones de ductos. La tecnica de Gradiente de Voltaje de Corriente Continua (DCVG), ademas de localizar los

  13. Composition and Morphology of Product Layers in the Steel/Cement Paste Interface in Conditions of Corrosion and Cathodic Protection in Reinforced Concrete

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.; De Wit, J.H.W.; Fraaij, A.L.A.; Boshkov, N.

    2007-01-01

    The present study explores the formation of corrosion products on the steel surface in reinforced concrete in conditions of corrosion and subsequent transformation of these layers in conditions of cathodic protection (CP). Of particular interest was to investigate if the introduced pulse CP (as

  14. The influence of time-variable cathodic corrosion protection on a.c. corrosion; Einfluss von zeitlich variierendem kathodischem Korrosionsschutz auf die Wechselstromkorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Markus; Voute, Carl-Heinz; Joos, David [SGK Schweizerische Gesellschaft fuer Korrosionsschutz, Zuerich (Switzerland)

    2011-07-01

    The current limiting values for corrosion of pipelines under a.c. current stress may be difficult to apply to pipelines, owing to the very heterogeneous bedding of the pipeline, poor jacket quality, or high short-term a.c. voltages. In principle, periodic alternation between very high and very low protective currents may optimize cathodic corrosion protection. This pulsed current strategy was found to be effective in laboratory tests if the operating parameters are set accurately.

  15. Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, Emma, E-mail: emma.harkonen@helsinki.fi [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Tervakangas, Sanna; Kolehmainen, Jukka [DIARC-Technology Inc., Espoo (Finland); Díaz, Belén; Światowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe [Laboratoire de Physico-Chimie des Surfaces, CNRS (UMR 7075) – Chimie ParisTech (ENSCP), F-75005 Paris (France); Fenker, Martin [FEM Research Institute, Precious Metals and Metals Chemistry, D-73525 Schwäbisch Gmünd (Germany); Tóth, Lajos; Radnóczi, György [Research Centre for Natural Sciences HAS, (MTA TKK), Budapest (Hungary); Ritala, Mikko [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland)

    2014-10-15

    Sublayers grown with filtered cathodic arc deposition (FCAD) were added under atomic layer deposited (ALD) oxide coatings for interface control and improved corrosion protection of low alloy steel. The FCAD sublayer was either Ta:O or Cr:O–Ta:O nanolaminate, and the ALD layer was Al{sub 2}O{sub 3}–Ta{sub 2}O{sub 5} nanolaminate, Al{sub x}Ta{sub y}O{sub z} mixture or graded mixture. The total thicknesses of the FCAD/ALD duplex coatings were between 65 and 120 nm. Thorough analysis of the coatings was conducted to gain insight into the influence of the FCAD sublayer on the overall coating performance. Similar characteristics as with single FCAD and ALD coatings on steel were found in the morphology and composition of the duplex coatings. However, the FCAD process allowed better control of the interface with the steel by reducing the native oxide and preventing its regrowth during the initial stages of the ALD process. Residual hydrocarbon impurities were buried in the interface between the FCAD layer and steel. This enabled growth of ALD layers with improved electrochemical sealing properties, inhibiting the development of localized corrosion by pitting during immersion in acidic NaCl and enhancing durability in neutral salt spray testing. - Highlights: • Corrosion protection properties of ALD coatings were improved by FCAD sublayers. • The FCAD sublayer enabled control of the coating-substrate interface. • The duplex coatings offered improved sealing properties and durability in NSS. • The protective properties were maintained during immersion in a corrosive solution. • The improvements were due to a more ideal ALD growth on the homogeneous FCAD oxide.

  16. Corrosion protection of Arctic offshore structures: Final report. [Effects of temperature and salinity on required cathodic protection current

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W.M.; Rogers, J.C.; Feyk, C.; Theuveny, B.

    1985-10-01

    Results are presented for a research program on corrosion prevention for Arctic offshore structures which are in contact with sea ice for a significant portion of the year. The electrical method most adaptable for structure protection involves the injection of impressed current from several remote anodes buried just beneath the sea floor. The electrical resistivity of annual sea ice as a function of temperature and salinity is presented. Details of the interface layers formed between sea ice and steel in the presence of current injection are shown. A computer program was developed to enable the calculation of protective current density into the structure, in the presence of ice rubble and ridges around the structure. The program and the results of an example calculation are given for a caisson- retained island structure. 81 refs., 103 figs., 3 tabs.

  17. Low-temperature liquid phase deposited TiO{sub 2} films on stainless steel for photogenerated cathodic protection applications

    Energy Technology Data Exchange (ETDEWEB)

    Lei, C.X.; Zhou, H. [College of Materials, Xiamen University, Xiamen 361005 (China); Feng, Z.D., E-mail: zdfeng@xmu.edu.cn [College of Materials, Xiamen University, Xiamen 361005 (China); Zhu, Y.F.; Du, R.G. [College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2011-06-01

    The low-temperature synthesis of anatase TiO{sub 2} films was an imperative requirement for their application to corrosion prevention of metals. In this paper, a liquid phase deposition (LPD) technique was developed to prepare TiO{sub 2} films on SUS304 stainless steel (304SS) at a relatively low temperature (80 deg. C). The as-prepared films were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photon spectroscopy (XPS). It was observed that a dense and crack-free anatase TiO{sub 2} film with a thickness about 300 nm was obtained. The film contained some fluorine and nitrogen elements, and the amounts of these impurities were greatly decreased upon calcination. Under the white light illumination, the electrode potential of TiO{sub 2} coated 304SS rapidly shifted to a more negative direction. Moreover, the photopotential of TiO{sub 2}/304SS electrode showed more negative values with increased film thickness. In conclusion, the photogenerated cathodic protection of 304SS was achieved by the low-temperature LPD-derived TiO{sub 2} film.

  18. Demonstration of Ice-Free Cathodic Protection Systems for Water Storage Tanks at Fort Drum: Final Report on Project AR-F-318 for FY05

    Science.gov (United States)

    2007-06-01

    16-inch diameter ductile iron pipe, where inlet and outlet pressures are nominally 100 psi and 50 psi, respectively. A local contractor will hot...P-641-G -- Primer Coating ; Zinc Dust- Zinc Oxide (for Galvanized Surfaces) 1.1.3. Federal Technical Reports. ETL 1110-9-10(FR) – Cathodic Protection...American National Standards Institute (ANSI) Standards. ANSI C80.1 -- Rigid Steel Conduit - Zinc Coated 1.1.6. American Society for Testing

  19. Cathodic corrosion protection for the inside areas of metallic plants (KKS-I); Kathodischer Korrosionsschutz fuer die Innenflaechen von metallischen Anlagen (KKS-I)

    Energy Technology Data Exchange (ETDEWEB)

    Tenzer, Norbert [TZ-International Corrosion Consulting, Hagen (Germany)

    2012-07-01

    Cathodic corrosion protection for the inside areas of metallic plants (KKS-I) is a worldwide used technology in order to afford a safe protection of metallic plans against corrosion. This technology is used for plants in the treatment and storage of drinking water, for containers and reaction vessels in the chemical industry, for plants in the oil and gas industry as well as for containers and large-dimension pipelines containing seawater for the cooling of air liquefaction plants, power plants and seawater desalination plants, for examples. Furthermore, there exist further special applications for wastewater systems and biogas plants. The general description of the KKS-I shall supply the information to the operators of appropriate plants, that the cathodic corrosion protection also offers a wide range of applications for the protection of the inside areas of the plants against corrosion. Beside the previously mentioned standard areas of application there exist manifold further possibilities of application for metallic plants. It has to be emphasized that there are application possibilities not only for unalloyed or low alloy steels but also for stainless steels, aluminium, lead, copper, titanium and zinc. The regulation DIN EN 12499 firstly edited in 2003 contains the fundamentals, areas of application and specifications.

  20. Mechanisms of LiCoO2 Cathode Degradation by Reaction with HF and Protection by Thin Oxide Coatings.

    Science.gov (United States)

    Tebbe, Jonathon L; Holder, Aaron M; Musgrave, Charles B

    2015-11-04

    Reactions of HF with uncoated and Al and Zn oxide-coated surfaces of LiCoO2 cathodes were studied using density functional theory. Cathode degradation caused by reaction of HF with the hydroxylated (101̅4) LiCoO2 surface is dominated by formation of H2O and a LiF precipitate via a barrierless reaction that is exothermic by 1.53 eV. We present a detailed mechanism where HF reacts at the alumina coating to create a partially fluorinated alumina surface rather than forming AlF3 and H2O and thus alumina films reduce cathode degradation by scavenging HF and avoiding H2O formation. In contrast, we find that HF etches monolayer zinc oxide coatings, which thus fail to prevent capacity fading. However, thicker zinc oxide films mitigate capacity loss by reacting with HF to form a partially fluorinated zinc oxide surface. Metal oxide coatings that react with HF to form hydroxyl groups over H2O, like the alumina monolayer, will significantly reduce cathode degradation.

  1. The effect of cerium-based conversion treatment on the cathodic delamination and corrosion protection performance of carbon steel-fusion-bonded epoxy coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Ramezanzadeh, B., E-mail: ramezanzadeh@aut.ac.ir [Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), 16765-654, Tehran (Iran, Islamic Republic of); Rostami, M. [Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology (ICST), 16765-654, Tehran (Iran, Islamic Republic of)

    2017-01-15

    Highlights: • Steel surface was treated by Ce and acid phosphoric solutions. • Ce treatment considerably enhanced the surface energy and produce nanoscale roughness. • Ce treated samples showed enhanced adhesion to FBE coating. • Ce treatment of steel significantly reduced the FBE cathodic delamination rate. • Ce treated sample showed enhanced corrosion resistance. - Abstract: The effect of surface pre-treatment of pipe surface by green cerium compound and phosphoric acid solution on the fusion-bonded epoxy (FBE) coating performance was studied. The composition and surface morphology of the steel samples treated by acid and Ce solutions were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), equipped with energy dispersive spectroscopy (EDS). Also, the surface free energy was evaluated on these samples through contact angle measurements. In addition, the effect of Ce and acid washing procedures on the adhesion properties and corrosion protection performance of the FBE was examined by pull-off, salt spray and electrochemical impedance spectroscopy (EIS) tests. Results showed that compared to acid washing, the chemical treatment by Ce solution noticeably increased the surface free energy of steel, improved the adhesion properties of FBE, decreased the cathodic delamination rate of FBE, and enhanced the coating corrosion resistance compared to the acid washed samples.

  2. Microbial corrosion and cracking in steel. A concept for evaluation of hydrogen-assisted stress corrosion cracking in cathodically protected high-pressure gas transmission pipelines

    DEFF Research Database (Denmark)

    Nielsen, Lars Vendelbo

    An effort has been undertaken in order to develop a concept for evaluation of the risk of hydrogen-assisted cracking in cathodically protected gas transmission pipelines. The effort was divided into the following subtasks: A. Establish a correlation between the fracture mechanical properties...... crack propagation. This resulted in threshold curves that can be used for assessment of the risk of hydrogen-assisted cracking as a function of operating pressure and hydrogen content - having the flaw size as discrete parameter. The results are to be used mainly on a conceptual basis......, but it was indicated that the requirements for crack propagation include an overprotective CP-condition, a severe sulphate-reducing environment, as well as a large flaw (8 mm or a leak in the present case). A 1 mm flaw (which may be the maximum realistic flaw size) is believed to be unable to provoke crack propagation...

  3. Mechanistic Insight in the Function of Phosphite Additives for Protection of LiNi0.5Co0.2Mn0.3O2 Cathode in High Voltage Li-Ion Cells.

    Science.gov (United States)

    He, Meinan; Su, Chi-Cheung; Peebles, Cameron; Feng, Zhenxing; Connell, Justin G; Liao, Chen; Wang, Yan; Shkrob, Ilya A; Zhang, Zhengcheng

    2016-05-11

    Triethlylphosphite (TEP) and tris(2,2,2-trifluoroethyl) phosphite (TTFP) have been evaluated as electrolyte additives for high-voltage Li-ion battery cells using a Ni-rich layered cathode material LiNi0.5Co0.2Mn0.3O2 (NCM523) and the conventional carbonate electrolyte. The repeated charge/discharge cycling for cells containing 1 wt % of these additives was performed using an NCM523/graphite full cell operated at the voltage window from 3.0-4.6 V. During the initial charge process, these additives decompose on the cathode surface at a lower oxidation potential than the baseline electrolyte. Impedance spectroscopy and post-test analyses indicate the formation of protective coatings by both additives on the cathode surface that prevent oxidative breakdown of the electrolyte. However, only TTFP containing cells demonstrate the improved capacity retention and Coulombic efficiency. For TEP, the protective coating is also formed, but low Li(+) ion mobility through the interphase layer results in inferior performance. These observations are rationalized through the inhibition of electrocatalytic centers present on the cathode surface and the formation of organophosphate deposits isolating the cathode surface from the electrolyte. The difference between the two phosphites clearly originates in the different properties of the resulting phosphate coatings, which may be in Li(+) ion conductivity through such materials.

  4. Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes

    DEFF Research Database (Denmark)

    Mei, Bastian Timo; Pedersen, Thomas; Malacrida, Paolo

    2015-01-01

    Stabilizing efficient photoabsorbers for solar water splitting has recently shown significant progress with the development of various protection layers. Suitable protection layers for tandem devices should be conductive, transparent, and stable in strongly acidic or alkaline solutions. This paper......O2 generally applicable for photoanode assemblies, and thus for protecting tandem devices, are outlined and quantitatively shown by band diagram calculations. The results presented here provide the understanding required for the design of highly efficient and stable photoelectrochemical water...

  5. A photoelectrochemical study of CdS modified TiO2 nanotube arrays as photoanodes for cathodic protection of stainless steel

    International Nuclear Information System (INIS)

    L, Jing; Lin Changjian; Li Juntao; Lin Zequan

    2011-01-01

    An electrodeposited CdS nanoparticles-modified highly-ordered TiO 2 nanotube arrays (CdS-TNs) photoelectrode and its performance of photocathodic protection are reported. The self-organized TiO 2 nanotube arrays are fabricated by electrochemical anodization in an organic-inorganic mixed electrolyte and sensitized with CdS nanoparticles by electrodeposition via a single-step direct current. The morphology, crystalline phase, and composition of the CdS-TNs films were characterized systematically by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy, respectively. The photoelectrochemical performances of the CdS-TNs film under illumination and dark conditions in 0.5 M NaCl solution were evaluated through the electrochemical measurements. It is indicated that the TNs incorporated by CdS effectively harvest solar light in the UV as well as the visible light (up to 480 nm) region. It is supposed that the high photoelectro-response activity of the CdS-TNs is attributed to the increased efficiency of charge separation and transport of electrons. The electrode potentials of 304 stainless steel coupled with the CdS-TNs is found to be negatively shifted for about 246 mV and 215 mV under UV and white light irradiation, respectively, which can be remained for 24 h even in darkness. It is implied that the CdS-TNs are able to effectively function a photogenerated cathodic protection for metals both under the UV and visible light illumination.

  6. A photoelectrochemical study of CdS modified TiO{sub 2} nanotube arrays as photoanodes for cathodic protection of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    L, Jing; Lin Changjian, E-mail: cjlin@xmu.edu.cn; Li Juntao; Lin Zequan

    2011-06-01

    An electrodeposited CdS nanoparticles-modified highly-ordered TiO{sub 2} nanotube arrays (CdS-TNs) photoelectrode and its performance of photocathodic protection are reported. The self-organized TiO{sub 2} nanotube arrays are fabricated by electrochemical anodization in an organic-inorganic mixed electrolyte and sensitized with CdS nanoparticles by electrodeposition via a single-step direct current. The morphology, crystalline phase, and composition of the CdS-TNs films were characterized systematically by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy, respectively. The photoelectrochemical performances of the CdS-TNs film under illumination and dark conditions in 0.5 M NaCl solution were evaluated through the electrochemical measurements. It is indicated that the TNs incorporated by CdS effectively harvest solar light in the UV as well as the visible light (up to 480 nm) region. It is supposed that the high photoelectro-response activity of the CdS-TNs is attributed to the increased efficiency of charge separation and transport of electrons. The electrode potentials of 304 stainless steel coupled with the CdS-TNs is found to be negatively shifted for about 246 mV and 215 mV under UV and white light irradiation, respectively, which can be remained for 24 h even in darkness. It is implied that the CdS-TNs are able to effectively function a photogenerated cathodic protection for metals both under the UV and visible light illumination.

  7. Combined Effect of Alternating Current Interference and Cathodic Protection on Pitting Corrosion and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in Near-Neutral pH Environment

    Directory of Open Access Journals (Sweden)

    Liwei Wang

    2018-03-01

    Full Text Available Influence of alternating current (AC on pitting corrosion and stress corrosion cracking (SCC behavior of X70 pipeline steel in the near-neutral pH environment under cathodic protection (CP was investigated. Both corrosion and SCC are inhibited by −0.775 VSCE CP without AC interference. With the superimposition of AC current (1–10 mA/cm2, the direct current (DC potential shifts negatively under the CP of −0.775 VSCE and the cathodic DC current decreases and shifts to the anodic direction. Under the CP potential of −0.95 VSCE and −1.2 VSCE, the applied AC current promotes the cathodic reaction and leads to the positive shift of DC potential and increase of cathodic current. Local anodic dissolution occurs attributing to the generated anodic current transients in the positive half-cycle of the AC current, resulting in the initiation of corrosion pits (0.6–2 μm in diameter. AC enhances the SCC susceptibility of X70 steel under −0.775 VSCE CP, attributing to the promotion of anodic dissolution and hydrogen evolution. Even an AC current as low as 1 mA/cm2 can enhance the SCC susceptibility.

  8. Cost analysis of teg-powered and solar-powered cathodic protection system for a-50 km long buried natural gas pipeline located in Sindh, Pakistan

    International Nuclear Information System (INIS)

    Shahid, M.; Inam, F.; Farooq, M.; Khan, F.N.

    2005-01-01

    Corrosion leaks are of significant concern to oil and gas industry and is considered to be the largest controllable factor in pipeline safety. Cathodic Protection (CP) is a well-established method for preventing corrosion of metallic materials. Electrical power is required and it is usually difficult and expensive to install conventional power lines in remote areas for readily available power supply. Oil/gas organizations make use of thermo-electric generators (TEG), which is relatively expensive in terms of running expenditures. Utilization of renewable energies is now being widely explored due to potential danger of running out of natural resources and dates back mid of 20th century [I]. However, use of solar powered CP system for oil/gas pipelines hasn't been encouraged much in Pakistan, probably due to lack of understanding. A project was undertaken for designing a solar powered CP system for a 52.4 km buried gas pipeline located at Sui/Sara gas fields (Latitude 27.5) of Tullow Pakistan (Dev.) Ltd. in Dharki, Sindh, Pakistan. After detailed analysis of soil condition, electrochemical testing, local climatic variation and cost analysis, it has been revealed that use of solar power is quite feasible for the above-mentioned pipeline section. Cost analysis and comparison have also favored this system since the maintenance cost of the solar-powered system is much less compared to TEG system. Installation cost of the solar system is about 1.57 times the cost of TEG; however, the maintenance cost is only -20% of that for TEG system. The higher installation cost has been estimated to be recoverable in less than one year of service. (author)

  9. Lipon coatings for high voltage and high temperature Li-ion battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Dudney, Nancy J.; Liang, Chengdu; Nanda, Jagjit; Veith, Gabriel M.; Kim, Yoongu; Martha, Surendra Kumar

    2017-12-05

    A lithium ion battery includes an anode and a cathode. The cathode includes a lithium, manganese, nickel, and oxygen containing compound. An electrolyte is disposed between the anode and the cathode. A protective layer is deposited between the cathode and the electrolyte. The protective layer includes pure lithium phosphorus oxynitride and variations that include metal dopants such as Fe, Ti, Ni, V, Cr, Cu, and Co. A method for making a cathode and a method for operating a battery are also disclosed.

  10. Nanotube cathodes.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-11-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  11. Nanotube cathodes

    International Nuclear Information System (INIS)

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-01-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  12. Estimation of overprotection region on the painted steel plate under impressed-current cathodic protection. Gaibu dengenho ni yoru inkyoku boshoku ka no toso kohan ni okeru kaboshoku iki ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, M.; Huang, Y.; Fujimoto, Y. (Hiroshima Univ., hiroshima (Japan). Faculty of Engineering)

    1992-09-04

    Painting and cathodic protection are used in combination as a corrosion resisting measure for ship hull. n analytic method which uses the boundary element method for protection electric field by impressed-current method is proposed to show that rational determination is possible for the arrangement and current of the anode, and the arrangement and set voltage of the reference electrode used to control the current. However, repetitive calculation is necessary until overprotection voltage disappears from the surface of the painted steel plate while giving optional insulated area because the insulated area of adequate dimension is unknown. To decrease the number of this repetitive calculation, a study is made on a method of estimating the magnitude of the insulated area to be input as the initial value in the electric field analysis by the boundary element method. Although the insulated area has been empirically obtained, such formurization may be useful for automatic optimization using a computer of the location and number of anode, anode current, arrangement and set voltage of the reference electrode, magnitude of the insulated area, etc. in the impressed-current cathodic protection system. 2 refs., 10 figs., 1 tab.

  13. Cathodic corrosion protection in jacket tube steel pipes. Practical experience after five years of operation, a summary; Kathodischer Korrosionsschutz von Stahlrohrleitungen in Mantelrohren. Praxishinweise nach 5 Jahren - eine Zusammenfassung

    Energy Technology Data Exchange (ETDEWEB)

    Lemkemeyer, Marc [RWE Westfalen-Weser-Ems Netz-service GmbH, Dortmund (Germany)

    2011-07-01

    In november 2006, the completely revised AfK recommendation No. 1 came into force. It was the first of its kind to contain concrete calculation methods for calculating the effects of cathodic corrosion protection in jacket tubes. In the five years that followed, a large number of jacket tubes was investigated by this method. It was found that some input parameters that are only estimated still require further specification. Further, some further calculation algorithms have been defined. Some of the specifications are described in more detail in this article.

  14. Remote monitoring of cathodic protection rectifiers of the Bolivia-Brazil Gas Pipeline using low orbit satellite telephone; Monitoracao remota de retificadores de protecao catodica do Gasoduto Bolivia-Brasil utilizando telefone via satelite de baixa orbita

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Jorge Fernando Pereira [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The present paper has for objective to present the information collected during definitions, development, implementation, testing and operation phases of the Pilot System for monitoring of the Cathodic Protection Rectifiers MS-10 and SP-09, installed on the Bolivia-Brazil Gas Pipeline. The adopted solution for the Pilot System includes, basically, communication through low-earth satellite telephone, inter linked to the public telephone net, acquisition and data transmission system (Remote Terminal Unit) and data reception in the Supervision and Control Room. (author)

  15. Méthodes de calcul pour la conception des systèmes de protection cathodique des structures longilignes Computing Methods for Designing Cathodic Protection Systemes for Elongate Stuctures

    Directory of Open Access Journals (Sweden)

    Roche M.

    2006-11-01

    Full Text Available Les différentes structures longilignes qu'utilise l'industrie des hydrocarbures sont, dans la plupart des cas, soumises à un système de protection cathodique par anodes sacrificielles ou par courant imposé. La conception de ces systèmes doit être basée sur l'étude de la variation du potentiel et de l'intensité le long de la structure causée par la chute ohmique. La méthode classique de calcul résoud couramment le cas des structures longilignes à diamètre constant traversant un terrain dont la résistivité est considérée comme constante sur toute la longueur. Dans le cas où la constitution de la structure varie, comme celui des casings de puits de forage, ou quand celle-ci traverse plusieurs types de terrain, le problème se complique. Nous proposons une méthode générale permettant de traiter rapidement tout problème de ce type, le nombre de tronçons n'étant pas limité. Cette méthode fait appel à des notions de facteur de réflexion et de résistance équivalente déjà exposées dans la littérature mais dont l'usage ne semble pas s'être répandu. The different elongate structures used by the hydrocarbon industry are, in most cases, subjected ta a cathodic protection system consisting of sacrificial anodes or an impressed current. Desings of such systems must be boséd on an analysis of variations in the potential and intensity along the structure as the result of the ohm drop. The conventional computing method commonly solves cases of elongote structures with a constant diameter, running through ground whose resistivity is considéred to be constant over the entire length. When the~nake-up of the structure varies, as is the case for borehole casings, or when it goes through several types of formations, the problem gets more complicated. We propose a general method for quickly dealing with any problem of this type, with no limit ta the number of lengths involved. This method makes use of reflection factor and

  16. Nanašanje trdih zaščitnih prevlek s katodnim lokom: Cathodic arc plasma deposition of hard protective coatings:

    OpenAIRE

    Panjan, Peter

    2002-01-01

    The cathodic arc evaporation process is based upon the vacuum arc, the physics of which is still under investigation. This method is using almost exclusively for the deposition of wear-resistant coatings onto cutting and forming tools. The method is fast, effective, and relatively cost efficient. This paper reviews the arc evaporation process. Naparevanje s katodnim lokom temelji na plazemskem loku, ki ga prižegmo v vakuumu. Postopek se uporablja skoraj izključno za pripravo trdih zaščitni...

  17. Cobalt, titanium or cerium oxide protective coatings for the nickel cathode of the molten carbonate fuel cells; Revetements protecteurs a base d'oxyde de cobalt, de titane ou de cerium pour la cathode de nickel des piles a combustible a carbonates fondus

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Blanco, L.

    2003-10-15

    The aim of this work is to combine the MCFC cathode Li{sub x}Ni{sub 1-x}O properties to those of the protective coatings of LiCoO{sub 2}, Li{sub 2}TiO{sub 3} or of CeO{sub 2}, less soluble in the molten carbonates. In the cases of LiCoO{sub 2}, have been carried out by controlled potential coulometry in aqueous solution, a deposition of Co{sub 3}O{sub 4} on dense Ni. The cobalt oxide reacts rapidly in the Li{sub 2}CO{sub 3}-Na{sub 2}CO{sub 3} medium at 650 C to give LiCoO{sub 2}, a spinel cubic phase revealed by Raman spectroscopy. (O.M.)

  18. Enhanced photoelectrochemical cathodic protection performance of the C{sub 3}N{sub 4}@In{sub 2}O{sub 3} nanocomposite with quasi-shell–core structure under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mengmeng; Chen, Zhuoyuan, E-mail: zychen@qdio.ac.cn; Bu, Yuyu

    2015-01-05

    Highlights: • The C{sub 3}N{sub 4}@In{sub 2}O{sub 3} composite with quasi-shell–core structure is prepared. • Photoelectrochemical cathodic protection performance of this composite was studied. • C{sub 3}N{sub 4} coating on In{sub 2}O{sub 3} dramatically enhances its light absorption capability. • C{sub 3}N{sub 4} coating on In{sub 2}O{sub 3} dramatically enhances its photoelectrochemical properties. • C{sub 3}N{sub 4} coating on In{sub 2}O{sub 3} dramatically enhances its electron transfer capability. - Abstract: Carbon nitride@Indium oxide (C{sub 3}N{sub 4}@In{sub 2}O{sub 3}) composite with quasi-shell–core structure was successfully prepared in this work. The photoinduced open circuit potential and current density results show that the C{sub 3}N{sub 4}@In{sub 2}O{sub 3} composite with quasi-shell–core structure could provide the optimal photoelectrochemical cathodic protection capability for 304 stainless steel under visible light when the adding amount of C{sub 3}N{sub 4} in the C{sub 3}N{sub 4}@In{sub 2}O{sub 3} composite is 3 wt%. The light absorption capability of the C{sub 3}N{sub 4}@In{sub 2}O{sub 3} composite was enhanced due to the synergistic effect of heterojunction structure. According to the HRTEM images, photoinduced Volt–Ampere characteristic curves and electrochemical impedance spectra, the ultrathin coating layer of C{sub 3}N{sub 4} on the surface of In{sub 2}O{sub 3} helps to form a heterojunction electric field at the interface between C{sub 3}N{sub 4} and In{sub 2}O{sub 3}, which enhances the separation efficiency of the photogenerated electron–hole pairs. Excessive C{sub 3}N{sub 4} will decline the photoelectrochemical cathodic protection of this composite due to the lower intrinsic electronic mobility and the lower photoelectric conversion property of C{sub 3}N{sub 4}.

  19. Post-heat treatment of arc-sprayed coating prepared by the wires combination of Mg-cathode and Al-anode to form protective intermetallic layers

    International Nuclear Information System (INIS)

    Xu Rongzheng; Song Gang

    2011-01-01

    A Mg-Al intermetallic compounds coating was prepared on the surface of Mg-steel lap joint by arc-sprayed Al-Mg composite coating (Mg-cathode and Al-anode) and its post-heat treatment (PHT). The effect of PHT temperature on the phase transition, microstructure and mechanical properties of the coating was investigated by X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, optical microscope and microhardness test. The result shows that the intermetallic compounds layer that is mainly composed of Al 3 Mg 2 and Mg 17 Al 12 is formed by the self-diffusion reaction of Mg and Al splats in the coating after PHT for 4 h at 430 deg. C.

  20. Cathodic disbonding of organic coatings on submerged steel

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Ole oeystein

    1998-12-31

    In offshore oil production, submerged steel structures are commonly protected by an organic coating in combination with cathodic protection. The main advantage is that the coating decreases the current demand for cathodic protection. But the coating degrades with time. This thesis studies one of the most important mechanisms for coating degradation in seawater, cathodic disbonding. Seven commercial coatings and two model coatings with various pigmentations have been studied. Parameter studies, microscopy and studies of free films were used in the mechanism investigations. Exposure to simulated North Sea conditions was used in the performance studies. The effect of aluminium and glass barrier pigments on cathodic disbonding was investigated. The mechanism for the effect of the aluminium pigments on cathodic disbonding was also investigated. The transport of charge and oxygen to the steel/coating interface during cathodic disbonding was studied for two epoxy coatings. Cathodic disbonding, blistering and current demand for cathodic protection was measured for nine commercial coatings for submerged steel structures, using the ASTM-G8 standard test and a long term test under simulated North Sea conditions. The relevance of the ASTM-G8 test as a prequalification test was evaluated. 171 refs., 40 figs., 6 tabs.

  1. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  2. Arcjet cathode phenomena

    Science.gov (United States)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  3. Cathode materials review

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus, E-mail: danielc@ornl.gov; Mohanty, Debasish, E-mail: danielc@ornl.gov; Li, Jianlin, E-mail: danielc@ornl.gov; Wood, David L., E-mail: danielc@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS6472 Oak Ridge, TN 37831-6472 (United States)

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  4. Cathode materials review

    International Nuclear Information System (INIS)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-01-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO 2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research

  5. Cathode materials review

    Science.gov (United States)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-06-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  6. Filtered cathodic arc source

    International Nuclear Information System (INIS)

    Falabella, S.; Sanders, D.M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45 degree to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures

  7. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  8. Performance Enhancement of Small Molecular Solar Cells by Bilayer Cathode Buffer.

    Science.gov (United States)

    Sun, Qinjun; Zhao, Huanbin; Zhou, Miao; Gao, Liyan; Hao, Yuying

    2016-04-01

    An effective composite bilayer cathode buffer structure is proposed for use in small molecular solar cells. CsF was doped in Alq3 to form the first cathode buffer, leading to small serial resistances. BCP was used as the second cathode buffer to block the holes to the electrode. The optimized bilayer cathode buffer significantly increased the short circuit and fill factor of devices. By integrating this bilayer cathode buffer, the CuPc/C60 small molecular heterojunction cell exhibited a power conversion efficiency of up to 0.8%, which was an improvement of 56% compared to a device with only the Alq3 cathode buffer. Meanwhile, the bilayer cathode buffer still has a good protective effect on the performance of the device.

  9. Air cathode structure manufacture

    Science.gov (United States)

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  10. Cathode ray tube screens

    International Nuclear Information System (INIS)

    Cockayne, B.; Robbins, D.J.; Glasper, J.L.

    1982-01-01

    An improved cathode ray tube screen is described which consists of a single- or a poly-crystalline slice of a material such as yttrium aluminium garnet in which dopants such as Tb 3 + , Eu 3 + , Ce 3 + or Tm 3 + are ion implanted to different depths or in different areas of the screen. Annealing the screen removes lattice damage caused by the ion implanting and assists the diffusion of the dopant into the crystal. (U.K.)

  11. Arc cathode spots

    International Nuclear Information System (INIS)

    Schrade, H.O.

    1989-01-01

    Arc spots are usually highly unstable and jump statistically over the cathode surface. In a magnetic field parallel to the surface, preferably they move in the retrograde direction; i.e., opposite to the Lorentzian rule. If the field is inclined with respect to the surface, the spots drift away at a certain angle with respect to the proper retrograde direction (Robson drift motion). These well-known phenomena are explained by one stability theory

  12. Cathode ray tube

    International Nuclear Information System (INIS)

    1979-01-01

    A cathode ray tube comprises two electron lens means in combination to crossover the electron beam at a second crossover between the two electron lens means with one of the two lens means having a variable voltage applied thereto to control the location of the beam crossover in order to focus the beam onto a display screen at any location away from the screen center. (Auth.)

  13. Improved Rare-Earth Emitter Hollow Cathode

    Science.gov (United States)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  14. pipelines cathodic protection design methodologies for impressed

    African Journals Online (AJOL)

    HOD

    oil and gas pipelines corrosion in the United State of. American alone ... or preventing external corrosion of pipeline steels and other metallic .... 2.1 Materials and Impressed Current Design. Carbon steel ..... Research Analysis, Vol. 2, pp 2277 ...

  15. Production of conductive coke for cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Mogollon, E.G.; Henao, L.E.; Pacheco, L.A.; Ortiz, J.L.; Diaz, J.J. [Universidad Nacional de Colombia, Bogota (Colombia). Departamento de Quimica

    1999-07-01

    The reduction of resistivity of coke by means of the cocarbonization of mixtures of coking coals was studied using coal tar as an additive. Optimum temperature and blending conditions for decreased resistivity were investigated. The effect of particle size on the dependency of coal rank was investigated. 2 refs., 4 figs., 2 tabs.

  16. Depression cathode structure for cathode ray tubes having surface smoothness and method for producing same

    International Nuclear Information System (INIS)

    Rychlewski, T.V.

    1984-01-01

    Depression cathode structures for cathode ray tubes are produced by dispensing liquid cathode material into the depression of a metallic supporting substrate, removing excess cathode material by passing a doctor blade across the substrate surface and over the depression, and drying the cathode layer to a substantially immobile state. The cathode layer may optionally be further shaped prior to substantially complete drying thereof

  17. Is overprotection of the sulfur cathode good for Li-S batteries?

    Science.gov (United States)

    Gao, Tian; Shao, Jie; Li, Xingxing; Zhu, Guobin; Lu, Qiujian; Han, Yuyao; Qu, Qunting; Zheng, Honghe

    2015-08-11

    How to restrain the dissolution of polysulfides from the sulfur cathode is the current research focus of Li-S batteries. Here, we find that moderate dissolution of polysulfides is of great importance for high-efficiency and stable discharge/charge cycling. Both overprotection and inadequate protection of the sulfur cathode are unfavorable for the cycling of Li-S batteries.

  18. Nanostructured lanthanum manganate composite cathode

    DEFF Research Database (Denmark)

    Wang, Wei Guo; Liu, Yi-Lin; Barfod, Rasmus

    2005-01-01

    that the (La1-xSrx)(y)MnO3 +/-delta (LSM) composite cathodes consist of a network of homogenously distributed LSM, yttria-stabilized zirconia (YSZ), and pores. The individual grain size of LSM or YSZ is approximately 100 nm. The degree of contact between cathode and electrolyte is 39% on average. (c) 2005...

  19. Testing Iodine as a New Fuel for Cathodes

    Science.gov (United States)

    Glad, Harley; Branam, Richard; Rogers, Jim; Warren, Matthew; Burleson, Connor; Siy, Grace

    2017-11-01

    The objective of this research is to demonstrate the viability of using iodine as an alternative space propulsion propellant. The demonstration requires the testing of a cathode with xenon and then the desired element iodine. Currently, cathodes run on noble gases such as xenon which must be stored in high pressure canisters and is very expensive. These shortcomings have led to researching possible substitutes. Iodine was decided as a suitable candidate because it's cheaper, can be stored as a solid, and has similar mass properties as xenon. In this research, cathodes will be placed in a vacuum chamber and operated on both gases to observe their performance, allowing us to gain a better understanding of iodine's behavior. Several planned projects depend on the knowledge gained from this project, such as larger scaled tests and iodine fed hall thrusters. The tasks of this project included protecting the stainless-steel vacuum chamber by gold plating and Teflon® coating, building a stand to hold the cathode, creating an anode resistant to iodine, and testing the cathode once setup was complete. The successful operation of the cathode was demonstrated. However, the experimental setup proved ineffective at controlling the iodine flow. Current efforts are focused on this problem. REU Site: Fluid Mechanics with Analysis using Computations and Experiments NSF Grant EEC 1659710.

  20. Electron emission from pseudospark cathodes

    International Nuclear Information System (INIS)

    Anders, A.; Anders, S.; Gundersen, M.A.

    1994-01-01

    The pseudospark cathode has the remarkable property of macroscopically homogeneous electron emission at very high current density (>1 kA/cm 2 ) over a large area (some cm 2 ). The model of electron emission presented here is based on the assumption that the pseudospark microscopically utilizes explosive arc processes, as distinct from earlier models of ''anomalous emission in superdense glow discharges.'' Explosive emission similar to vacuum are cathode spots occurs rapidly when the field strength is sufficiently high. The plasma remains macroscopically homogeneous since the virtual plasma anode adapts to the cathode morphology so that the current is carried by a large number of homogeneously distributed cathode spots which are similar to ''type 1'' and ''type 2'' spots of vacuum arc discharges. The net cathode erosion is greatly reduced relative to ''spark gap-type'' emission. At very high current levels, a transition to highly erosive spot types occurs, and this ''arcing'' leads to a significant reduction in device lifetime. Assuming vacuum-arc-like cathode spots, the observed current density and time constants can be easily explained. The observed cathode erosion rate and pattern, recent fast-camera data, laser-induced fluorescence, and spectroscopic measurements support this approach. A new hypothesis is presented explaining current quenching at relatively low currents. From the point of view of electron emission, the ''superdense glow'' or ''superemissive phase'' of pseudosparks represents an arc and not a glow discharge even if no filamentation or ''arcing'' is observed

  1. Research on an improved explosive emission cathode

    International Nuclear Information System (INIS)

    Liu Guozhi; Sun Jun; Shao Hao; Chen Changhua; Zhang Xiaowei

    2009-01-01

    This paper presents a physical description of the cathode plasma process of an explosive emission cathode (EEC) and experimental results on a type of oil-immersed graphite EEC. It is believed that the generation of a cathode plasma is mainly dependent on the state of the cathode surface, and that adsorbed gases and dielectrics on the cathode surface play a leading role in the formation of the cathode plasma. Based on these ideas, a type of oil-immersed graphite EEC is proposed and fabricated. The experiments indicate that the oil-immersed cathodes have improved emissive properties and longer lifetimes.

  2. The feasibility and application of PPy in cathodic polarization antifouling.

    Science.gov (United States)

    Jia, Meng-Yang; Zhang, Zhi-Ming; Yu, Liang-Min; Wang, Jia; Zheng, Tong-Tong

    2018-04-01

    Cathodic polarization antifouling deserves attention because of its environmentally friendly nature and good sustainability. It has been proven that cathodic voltages applied on metal substrates exhibit outstanding antifouling effects. However, most metals immersed in marine environment are protected by insulated anticorrosive coatings, restricting the cathodic polarization applied on metals. This study developed a conducting polypyrrole (PPy)/acrylic resin coating (σ = 0.18 Scm -1 ), which can be applied in cathodic polarization antifouling. The good stability and electro-activity of PPy in the negative polarity zone in alkalescent NaCl solution were verified by linear sweep voltammetry (LSV), chronoamperometry (CA), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), demonstrating the feasibility of PPy as cathodic polarization material. Furthermore, the antifouling effects of PPy/acrylicresin coating on 24-h old Escherichia coli bacteria (E. coli) which formed on PPy/acrylic resin-coated plastic plate were measured under different cathodic potentials and treatment time, characterized by fluorescent microscope. The results suggest that at cathodic potential around -0.5 V (vs. saturated calomel electrode (SCE)), there was little trace of attached bacteria on the substrate after 20 min of treatment. PPy/acrylicresin-coated substrates were also subjected to repeated cycles of biofilm formation and electrochemical removal, where high removal efficiencies were maintained throughout the total polarization process. Under these conditions, the generation of hydrogen peroxide is believed to be responsible for the antifouling effects because of causing oxidative damage to cells, suggesting the potential of the proposed technology for application on insulated surfaces in various industrial settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Protective

    Directory of Open Access Journals (Sweden)

    Wessam M. Abdel-Wahab

    2013-10-01

    Full Text Available Many active ingredients extracted from herbal and medicinal plants are extensively studied for their beneficial effects. Antioxidant activity and free radical scavenging properties of thymoquinone (TQ have been reported. The present study evaluated the possible protective effects of TQ against the toxicity and oxidative stress of sodium fluoride (NaF in the liver of rats. Rats were divided into four groups, the first group served as the control group and was administered distilled water whereas the NaF group received NaF orally at a dose of 10 mg/kg for 4 weeks, TQ group was administered TQ orally at a dose of 10 mg/kg for 5 weeks, and the NaF-TQ group was first given TQ for 1 week and was secondly administered 10 mg/kg/day NaF in association with 10 mg/kg TQ for 4 weeks. Rats intoxicated with NaF showed a significant increase in lipid peroxidation whereas the level of reduced glutathione (GSH and the activity of superoxide dismutase (SOD, catalase (CAT, glutathione S-transferase (GST and glutathione peroxidase (GPx were reduced in hepatic tissues. The proper functioning of the liver was also disrupted as indicated by alterations in the measured liver function indices and biochemical parameters. TQ supplementation counteracted the NaF-induced hepatotoxicity probably due to its strong antioxidant activity. In conclusion, the results obtained clearly indicated the role of oxidative stress in the induction of NaF toxicity and suggested hepatoprotective effects of TQ against the toxicity of fluoride compounds.

  4. Electron emission mechanism of carbon fiber cathode

    International Nuclear Information System (INIS)

    Liu Lie; Li Limin; Wen Jianchun; Wan Hong

    2005-01-01

    Models of electron emission mechanism are established concerning metal and carbon fiber cathodes. Correctness of the electron emission mechanism was proved according to micro-photos and electron scanning photos of cathodes respectively. The experimental results and analysis show that the surface flashover induces the electron emission of carbon fiber cathode and there are electron emission phenomena from the top of the carbon and also from its side surface. In addition, compared with the case of the stainless steel cathode, the plasma expansion velocity for the carbon fiber cathode is slower and the pulse duration of output microwave can be widened by using the carbon fiber cathode. (authors)

  5. Plasma Deposition of Oxide-Coated Cathodes

    National Research Council Canada - National Science Library

    Umstattd, Ryan

    1998-01-01

    ...; such cathodes may also have applicability for lower current density continuous wave devices. This novel approach to manufacturing an oxide cathode eliminates the binders that may subsequently (and unpredictably...

  6. Mechanistic Enhancement of SOFC Cathode Durability

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, Eric [Univ. of Maryland, College Park, MD (United States)

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  7. Evaluation and diagnosis of the cathodic protection of ducts in the left margin of the Tonala River of the Superintendencia General de Ductos Minatitlan; Evaluacion y diagnostico de la proteccion catodica en la margen izquierda del Rio Tonala de la Superintendencia General de Ductos Minatitlan

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez N, Miguel A; Malo T, Jose M; Munoz Ledo C, Ramon; Uruchurtu C, Jorge; Castrejon G, Rafael [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Sanchez G, Luis; Algarra M, Raul; Abreu L, Emilio [Gerencia de Mantenimiento, Pemex (Mexico)

    2003-07-01

    The present study contains the measurements obtained as a part of the evaluation of the protection system of ducts located in the left margin of the Tonal River, made by the Gerencia de Materiales y Procesos Quimicos of the Instituto de Investigaciones Electricas (IIE) during the last trimester of year 2001. Also, the measurements of potential in conditions of instantaneous ignition and extinguished in measuring posts of the duct in Rights of Way (DDV) Tonala-Nudo Teapa 23 are studied, in order to determine the real protection level reached by the cathodic protection system, the possible unprotected zones and the possible corrective measures that lead to a safe operation of the ducts. [Spanish] El presente estudio contiene las mediciones obtenidas como parte de la evaluacion del sistema de proteccion de los ductos ubicados en la margen izquierda del rio Tonala, realizadas por la Gerencia de Materiales y Procesos Quimicos del Instituto de Investigaciones Electricas (IIE) durante el ultimo trimestre del ano 2001. Asimismo, se tratan las mediciones de potencial en condiciones de encendido y apagado instantaneo en postes de medicion del ducto en los Derechos De Via (DDV) Tonala-Nudo Teapa 23, con el proposito de determinar el nivel real de proteccion alcanzado por el sistema de proteccion catodica, las posibles zonas desprotegidas y las posibles medidas correctivas que conduzcan a una operacion segura de los ductos.

  8. Synopsis of Cathode No.4 Activation

    International Nuclear Information System (INIS)

    Kwan, Joe; Ekdahl, C.; Harrison, J.; Kwan, J.; Leitner, M.; McCruistian, T.; Mitchell, R.; Prichard, B.; Roy, P.

    2006-01-01

    The purpose of this report is to describe the activation of the fourth cathode installed in the DARHT-II Injector. Appendices have been used so that an extensive amount of data could be included without danger of obscuring important information contained in the body of the report. The cathode was a 612 M type cathode purchased from Spectra-Mat. Section II describes the handling and installation of the cathode. Section III is a narrative of the activation based on information located in the Control Room Log Book supplemented with time plots of pertinent operating parameters. Activation of the cathode was performed in accordance with the procedure listed in Appendix A. The following sections provide more details on the total pressure and constituent partial pressures in the vacuum vessel, cathode heater power/filament current, and cathode temperature

  9. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2002-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is

  10. Barium-Dispenser Thermionic Cathode

    Science.gov (United States)

    Wintucky, Edwin G.; Green, M.; Feinleib, M.

    1989-01-01

    Improved reservoir cathode serves as intense source of electrons required for high-frequency and often high-output-power, linear-beam tubes, for which long operating lifetime important consideration. High emission-current densities obtained through use of emitting surface of relatively-low effective work function and narrow work-function distribution, consisting of coat of W/Os deposited by sputtering. Lower operating temperatures and enhanced electron emission consequently possible.

  11. Electron beam generation form a superemissive cathode

    International Nuclear Information System (INIS)

    Hsu, T.-Y.; Liou, R.-L.; Kirkman-Amemiya, G.; Gundersen, M.A.

    1991-01-01

    An experimental study of electron beams produced by a superemissive cathode in the Back-Lighted Thyratron (BLT) and the pseudospark is presented. This work is motivated by experiments demonstrating very high current densities (≥10 kA/cm 2 over an area of 1 cm 2 ) from the pseudospark and BLT cathode. This high-density current is produced by field-enhanced thermionic emission from the ion beam-heated surface of a molybdenum cathode. This work reports the use of this cathode as a beam source, and is to be distinguished from previous work reporting hollow cathode-produced electron beams. An electron beam of more than 260 A Peak current has been produced with 15 kV applied voltage. An efficiency of ∼10% is estimated. These experimental results encourage further investigation of the super-emissive cathode as an intense electron beam source for applications including accelerator technology

  12. Reflective article having a sacrificial cathodic layer

    Science.gov (United States)

    Kabagambe, Benjamin; Buchanan, Michael J.; Scott, Matthew S.; Rearick, Brian K.; Medwick, Paul A.; McCamy, James W.

    2017-09-12

    The present invention relates to reflective articles, such as solar mirrors, that include a sacrificial cathodic layer. The reflective article, more particularly includes a substrate, such as glass, having a multi-layered coating thereon that includes a lead-free sacrificial cathodic layer. The sacrificial cathodic layer includes at least one transition metal, such as a particulate transition metal, which can be in the form of flakes (e.g., zinc flakes). The sacrificial cathodic layer can include an inorganic matrix formed from one or more organo-titanates. Alternatively, the sacrificial cathodic layer can include an organic polymer matrix (e.g., a crosslinked organic polymer matrix formed from an organic polymer and an aminoplast crosslinking agent). The reflective article also includes an outer organic polymer coating, that can be electrodeposited over the sacrificial cathodic layer.

  13. Preventing Corrosion by Controlling Cathodic Reaction Kinetics

    Science.gov (United States)

    2016-03-25

    3. DATES COVERED (From - To) 09/23/15 - 04/22/16 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Preventing Corrosion by Controlling Cathodic Reaction...Preventing corrosion by controlling cathodic reaction kinetics Progress Report for Period: 1 SEP 2015-31 MAR 2016 John Keith Department of...25 March 2016 Preventing corrosion by controlling cathodic reaction kinetics Annual Summary Report: FY16 PI: John Keith, 412-624-7016,jakeith

  14. Hollow cathode for positive ion sources

    International Nuclear Information System (INIS)

    Schechter, D.E.; Kim, J.; Tsai, C.C.

    1979-01-01

    Development to incorporate hollow cathodes into high power ion sources for neutral beam injection systems is being pursued. Hollow tube LaB 6 -type cathodes, similar to a UCLA design, have been constructed and tested in several ORNL ion source configurations. Results of testing include arc discharge parameters of >1000 and 500 amps for 0.5 and 10 second pulse lengths, respectively. Details of cathode construction and additional performance results are discussed

  15. Cold cathode arc model in mercury discharges

    International Nuclear Information System (INIS)

    Li, Y.M.; Byszewski, W.W.; Budinger, A.B.

    1990-01-01

    Voltage/current characteristics measured during the starting of metal halide lamps indicate a low voltage discharge when condensates (mainly mercury) are localized on the electrodes. In this case, even with a cold cathode which does not emit electrons, the current is very high and voltage across the lamp drops to about 15 to 20 V. This type of discharge is similar to the cold cathode mercury vapor arc found in mercury pool rectifiers. The cathode sheath in the mercury vapor arc is characterized by very small cathode spot size, on the order of 10 -c cm 2 , very high current density of about 10 6 A/cm 2 and very low cathode fall of approximately 10 volts. The discharge is modified and generalized to describe the cathode phenomena in the cold cathode mercury vapor arc. The sensitivity of calculated discharge parameters with respect to such modifications were examined. Results show that the cathode fall voltage remains fairly constant (7-8 volts) with large fractional variations of metastable mercury atoms bombarding the cathode. This result compares very well with experimental waveforms when anode fall and plasma voltage approximations are incorporated

  16. Two-beam virtual cathode accelerator

    International Nuclear Information System (INIS)

    Peter, W.

    1992-01-01

    A proposed method to control the motion of a virtual cathode is investigated. Applications to collective ion acceleration and microwave generation are indicated. If two counterstreaming relativistic electron beams of current I are injected into a drift tube of space-charge-limiting current I L = 2I, it is shown that one beam can induce a moving virtual cathode in the other beam. By dynamically varying the current injected into the drift tube region, the virtual cathode can undergo controlled motion. For short drift tubes, the virtual cathodes on each end are strongly-coupled and undergo coherent large-amplitude spatial oscillations within the drift tube

  17. Cathode materials: A personal perspective

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Texas Materials Institute, University of Texas at Austin, ETC 9.102, 1 University Station, Austin, TX 78712-1063 (United States)

    2007-12-06

    A thermodynamically stable rechargeable battery has a voltage limited by the window of the electrolyte. An aqueous electrolyte has a window of 1.2 eV, which prevents achieving the high energy density desired for many applications. A non-aqueous electrolyte with a window of 5 eV requires Li{sup +} rather than H{sup +} as the working ion. Early experiments with Li{sub x}TiS{sub 2} cathodes showed competitive capacity and rate capability, but problems with a lithium anode made the voltage of a safe cell based on a sulfide cathode too low to be competitive with a nickel/metal-hydride battery. Transition-metal oxides can give voltages of 4.5 V versus Li{sup +}/Li{sup 0}. However, the challenge with oxides has been to obtain a competitive capacity and rate capability while retaining a high voltage with low-cost, environmentally friendly cathode materials. Comparisons will be made between layered Li{sub 1-x}MO{sub 2}, spinels Li{sub 1-x}[M{sub 2}]O{sub 4}, and olivines Li{sub 1-x}MPO{sub 4} having 0 < x < 1. Although higher capacities can be obtained with layered Li{sub 1-x}MO{sub 2} compounds, which have enabled the wireless revolution, their metastability makes them unlikely to be used in power applications. The spinel and olivine framework structures have been shown to be capable of charge/discharge rates of over 10C with a suitable temperature range for plug-in hybrid vehicles. (author)

  18. Fundamental aspects of cathodic sputtering

    International Nuclear Information System (INIS)

    Harman, R.

    1979-01-01

    The main fundamental aspects and problems of cathodic sputtering used mainly for thin film deposition and sputter etching are discussed. Among many types of known sputtering techniques the radiofrequency /RF/ diode sputtering is the most universal one and is used for deposition of metals, alloys, metallic compounds, semiconductors and insulators. It seems that nowadays the largest number of working sputtering systems is of diode type. Sometimes also the dc or rf triode sputtering systems are used. The problems in these processes are practically equivalent and comparable with the problems in the diode method and therefore our discussion will be, in most cases applicable for both, the diode and triode methods

  19. Cathode-follower power amplifier

    International Nuclear Information System (INIS)

    Giordano, S.; Puglisi, M.

    1983-01-01

    In circular accelerators and particularly in storage rings it is essential that the total impedance, as seen by the beam, be kept below some critical value. A model of the accelerating system was built using a single-ended cathode-follower amplifier driving a ferrite-loaded cavity. The system operated at 234.5 kHz with a peak output voltage of +-10 kV on the gap. The dynamic output impedance, as measured on the gap, was < 15 ohms

  20. Cathodic hydrogen charging of zinc

    International Nuclear Information System (INIS)

    Panagopoulos, C.N.; Georgiou, E.P.; Chaliampalias, D.

    2014-01-01

    Highlights: •Incorporation of hydrogen into zinc and formation of zinc hydrides. •Investigation of surface residual stresses due to hydrogen diffusion. •Effect of hydrogen diffusion and hydride formation on mechanical properties of Zn. •Hydrogen embrittlement phenomena in zinc. -- Abstract: The effect of cathodic hydrogen charging on the structural and mechanical characteristics of zinc was investigated. Hardening of the surface layers of zinc, due to hydrogen incorporation and possible formation of ZnH 2 , was observed. In addition, the residual stresses brought about by the incorporation of hydrogen atoms into the metallic matrix, were calculated by analyzing the obtained X-ray diffraction patterns. Tensile testing of the as-received and hydrogen charged specimens revealed that the ductility of zinc decreased significantly with increasing hydrogen charging time, for a constant value of charging current density, and with increasing charging current density, for a constant value of charging time. However, the ultimate tensile strength of this material was slightly affected by the hydrogen charging procedure. The cathodically charged zinc exhibited brittle transgranular fracture at the surface layers and ductile intergranular fracture at the deeper layers of the material

  1. Ion source with plasma cathode

    International Nuclear Information System (INIS)

    Yabe, E.

    1987-01-01

    A long lifetime ion source with plasma cathode has been developed for use in ion implantation. In this ion source, a plasma of a nonreactive working gas serves as a cathode in place of a thermionic tungsten filament used in the Freeman ion source. In an applied magnetic field, the plasma is convergent, i.e., filamentlike; in zero magnetic field, it turns divergent and spraylike. In the latter case, the plasma exhibits a remarkable ability when the working gas has an ionization potential larger than the feed gas. By any combination of a working gas of either argon or neon and a feed gas of AsF 5 or PF 5 , the lifetime of this ion source was found to be more than 90 h with an extraction voltage of 40 kV and the corresponding ion current density 20 mA/cm 2 . Mass spectrometry results show that this ion source has an ability of generating a considerable amount of As + and P + ions from AsF 5 and PF 5 , and hence will be useful for realizing a fully cryopumped ion implanter system. This ion source is also eminently suitable for use in oxygen ion production

  2. Model of dopant action in oxide cathodes

    International Nuclear Information System (INIS)

    Engelsen, Daniel den; Gaertner, Georg

    2005-01-01

    The paper describes an electrochemical model, which largely explains the formation of Ba in the oxide cathode at activation and normal operation. In a non-doped oxide cathode electrolysis of BaO is, besides the exchange reaction from the activators in the cathode nickel, an important source of Ba. By doping with rare earth oxides the conductivity of the oxide layer increases, which implies that the potential difference during current drawing over the oxide layer becomes lower and electrolysis of BaO is suppressed. This implies that the part of the electronic conductivity of the (Ba,Sr)O layer induced by the dopants also controls the sensitivity for poisoning: the higher the dopant level, the larger the sensitivity for poisoning. Furthermore, the suppression of electrolysis during normal operation largely explains why doped oxide cathodes have a better life performance than non-doped cathodes. Finally a hypothesis on the enhancement of sintering upon doping is presented

  3. Cathode Effects in Cylindrical Hall Thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Granstedt, E.M.; Raitses, Y.; Fisch, N. J.

    2008-09-12

    Stable operation of a cylindrical Hall thruster (CHT) has been achieved using a hot wire cathode, which functions as a controllable electron emission source. It is shown that as the electron emission from the cathode increases with wire heating, the discharge current increases, the plasma plume angle reduces, and the ion energy distribution function shifts toward higher energies. The observed effect of cathode electron emission on thruster parameters extends and clarifies performance improvements previously obtained for the overrun discharge current regime of the same type of thruster, but using a hollow cathode-neutralizer. Once thruster discharge current saturates with wire heating, further filament heating does not affect other discharge parameters. The saturated values of thruster discharge parameters can be further enhanced by optimal placement of the cathode wire with respect to the magnetic field.

  4. Effect of cathode gas humidification on performance and durability of Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Hagen, Anke; Liu, Yi-Lin

    2010-01-01

    The effect of cathode inlet gas humidification was studied on single anode supported Solid Oxide Fuel Cells (SOFC's). The studied cells were Risø 2 G and 2.5 G. The former consists of a LSM:YSZ composite cathode, while the latter consists of a LSCF:CGO composite cathode on a CGO protection layer....... The humidification effect was found to be dependent on both the degree of humidification and the cathode polarization. No significant effect of humidification was found at OCV which rules out the possibility of a traditional poisoning effect with a blocking of active sites. Post-mortem high resolution FEG......-SEM analysis showed clear changes at and around the cathode/electrolyte contact area. In contrast to Risø 2 G cells, a very high tolerance towards humidification of cathode gas air was observed for Risø 2.5 G cells with no detectable effect of humidification even when the humidification was as high as 12.8 mol%...

  5. Analysis of cathode geometry to minimize cathode erosion in direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Causa, Federica [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Universita degli studi di Messina, 98122 Messina (Italy); Ghezzi, Francesco; Caniello, Roberto; Grosso, Giovanni [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dellasega, David [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2012-12-15

    Microplasma jets are now widely used for deposition, etching, and materials processing. The present study focuses on the investigation of the influence of cathode geometry on deposition quality, for microplasma jet deposition systems in low vacuum. The interest here is understanding the influence of hydrogen on sputtering and/or evaporation of the electrodes. Samples obtained with two cathode geometries with tapered and rectangular cross-sections have been investigated experimentally by scanning electron microscopy and energy dispersion X-ray spectroscopy. Samples obtained with a tapered-geometry cathode present heavy contamination, demonstrating cathode erosion, while samples obtained with a rectangular-cross-section cathode are free from contamination. These experimental characteristics were explained by modelling results showing a larger radial component of the electric field at the cathode inner wall of the tapered cathode. As a result, ion acceleration is larger, explaining the observed cathode erosion in this case. Results from the present investigation also show that the ratio of radial to axial field components is larger for the rectangular geometry case, thus, qualitatively explaining the presence of micro-hollow cathode discharge over a wide range of currents observed in this case. In the light of the above findings, the rectangular cathode geometry is considered to be more effective to achieve cleaner deposition.

  6. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  7. Cathodic behavior of zirconium in aqueous solutions

    International Nuclear Information System (INIS)

    Hine, F.; Yasuda, M.; Sato, H.

    1977-01-01

    The electrochemical behavior of Zr was studied by polarization measurements. The surface oxide and zirconium hydride formed by cathodic polarization of Zr have been examined by X-ray, SEM, and a hardness tester. Zirconium hydride would form on Zr cathode after the surface oxide is reduced at the potential, which is several hundred mV more noble than the predicted value shown by the Pourbaix diagram. The parameters for the hydrogen evolution reaction on the hydride formed Zr cathode differs from that on the oxide covered surface, which means that hydrogen evolution takes place on both surfaces under a different mechanism, while details are still veiled at present

  8. Rechargeable lithium/polymer cathode batteries

    Science.gov (United States)

    Osaka, Tetsuya; Nakajima, Toshiki; Shiota, Koh; Owens, Boone B.

    1989-06-01

    Polypyrrole (PPy) and polyaniline (PAn) were investigated for cathode materials of rechargeable lithium batteries. PPy films prepared with PF6(-) anion and/or platinum substrate precoated with nitrile butadiene rubber (NBR) were excellent cathode materials because of rough and/or highly oriented film structure. PAn films were successfully prepared from non-aqueous propylene carbonate solution containing aniline, CF3COOH and lithium perchlorate. Its acidity strongly affects the anion doping-undoping behavior. The PAn cathode prepared in high acidic solution (e.g., 4:1 ratio of acid:aniline) gives the excellent battery performance.

  9. Numerical study on rectangular microhollow cathode discharge

    International Nuclear Information System (INIS)

    He Shoujie; Ouyang Jiting; He Feng; Li Shang

    2011-01-01

    Rectangular microhollow cathode discharge in argon is investigated by using two-dimensional time-dependent self-consistent fluid model. The electric potential, electric field, particle density, and mean electron energy are calculated. The results show that hollow cathode effect can be onset in the present configuration, with strong electric field and high mean electron energy in the cathode fall while high density and quasineutral plasma in the negative glow. The potential well and electric filed reversal are formed in the negative glow region. It is suggested that the presence of large electron diffusion flux necessitates the field reversal and potential well.

  10. Cold cathode diode X-ray source

    International Nuclear Information System (INIS)

    Cooperstein, G.; Lanza, R.C.; Sohval, A.R.

    1983-01-01

    A cold cathode diode X-ray source for radiation imaging, especially computed tomography, comprises a rod-like anode and a generally cylindrical cathode, concentric with the anode. The spacing between anode and cathode is so chosen that the diode has an impedance in excess of 100 ohms. The anode may be of tungsten, or of carbon with a tungsten and carbon coating. An array of such diodes may be used with a closely packed array of detectors to produce images of rapidly moving body organs, such as the beating heart. (author)

  11. Plasma distribution of cathodic ARC deposition system

    International Nuclear Information System (INIS)

    Anders, S.; Raoux, S.; Krishnan, K.; MacGill, R.A.; Brown, I.G.

    1996-01-01

    The plasma distribution using a cathodic arc plasma source with and without magnetic macroparticle filter has been determined by depositing on a transparent plastic substrate and measuring the film absorption. It was found that the width of the distribution depends on the arc current, and it also depends on the cathode material which leads to a spatial separation of the elements when an alloy cathode is used. By applying a magnetic multicusp field near the exit of the magnetic filter, it was possible to modify the plasma distribution and obtain a flat plasma profile with a constant and homogeneous elemental distribution

  12. Cyclotron resonance in a cathode ray tube

    International Nuclear Information System (INIS)

    Gherbanovschi, N.; Tanasa, M.; Stoican, O.

    2002-01-01

    Absorption of the RF energy by the electron beam in a cathode ray tube due to the cyclotron resonance is described. The cathode ray tube is placed within a Helmholtz coils system supplied by a sawtooth current generator. In order to generate RF field and to detect RF absorption a gate dip-meter equipped with a FET transistor is used. The bias voltage variations of the FET transistors as a function of the magnetic field are recorded. The operating point of the cathode ray tube has been chosen so that the relaxation oscillations of the detection system can be observed. (authors)

  13. 40 CFR 261.40 - Conditional Exclusion for Used, Intact Cathode Ray Tubes (CRTs) Exported for Recycling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Conditional Exclusion for Used, Intact Cathode Ray Tubes (CRTs) Exported for Recycling. 261.40 Section 261.40 Protection of Environment...) Exported for Recycling. Used, intact CRTs exported for recycling are not solid wastes if they meet the...

  14. Modeling High Pressure Micro Hollow Cathode Discharges

    National Research Council Canada - National Science Library

    Boeuf, Jean-Pierre; Pitchford, Leanne

    2004-01-01

    This report results from a contract tasking CPAT as follows: The Grantee will perform theoretical modeling of point, surface, and volume high-pressure plasmas created using Micro Hollow Cathode Discharge sources...

  15. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  16. Rare earth oxide doping in oxide cathodes

    International Nuclear Information System (INIS)

    Engelsen, Daniel den; Gaertner, Georg

    2006-01-01

    The effect on life performance and poisoning with O 2 by doping oxide cathodes with rare earth oxides and pseudo rare earth oxides, notably yttria, is qualitatively explained in terms of electrolysis of BaO during emission of electrons. Doped cathodes show less electrolysis and consume therefore less Ba during life: consequently, doped cathodes have a better life performance. However, the lower Ba-production makes doped cathodes more sensitive to oxygen poisoning. The experimentally found relation between conductivity and yttria concentration was the motive to propose a new model for the crystal imperfections in BaO. In this new imperfection model most Y 3+ -ions will combine with barium vacancies, therefore, the increase of the conductivity is modest and also the effect on the position of the Fermi level is modest. By assuming a combination of bulk and surface conductivity, the agreement between experiment and theory can be improved further

  17. Electrodeposition of uranium in stirred liquid cadmium cathode

    International Nuclear Information System (INIS)

    Koyama, T.; Tanaka, H.

    1997-01-01

    The electrodeposition of U in a liquid Cd cathode was known to be hampered by the formation of dendritic U on the Cd surface. Electrotransports of uranium to the stirred liquid Cd cathode were carried out at 773 K for different cathode current densities and different Reynolds number of stirring. The maximum amount of U taken in the liquid Cd cathode without forming dendrites was found to increase with an increasing Reynolds number of stirring and decrease with increasing cathode current density. (orig.)

  18. Plasma generation using the hollow cathod

    International Nuclear Information System (INIS)

    Moon, K.J.

    1983-01-01

    A hollow cathode of tungsten was adapted to an University of California, Berkely, LBL bucket ion source to investigate ion density fluctuations at the extractior grid. Fluctuations in plasma ion density are observed to range between 100kHz to 2 MHz. The observed fluctuation frequencies of plasma ion density are found to be inversely proportional to the square root of ion masses. It is guessed that the plasma fluctuation are also correlated with the hollow cathode length. (Author)

  19. Nanoporous silver cathode surface treated by atomic layer deposition of CeO_x for low-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Neoh, Ke Chean; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Choi, Hyung Jong; Park, Suk Won; Shim, Joon Hyung

    2016-01-01

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO_x) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C–450 °C. Our work confirms that ALD CeO_x treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO_x surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO_x treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO_x-treated Ag cathodes related to the microstructure of the layers. (paper)

  20. Development of plasma cathode electron guns

    Science.gov (United States)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  1. Hydrothermal synthesis of cathode materials

    Science.gov (United States)

    Chen, Jiajun; Wang, Shijun; Whittingham, M. Stanley

    A number of cathodes are being considered for the next generation of lithium ion batteries to replace the expensive LiCoO 2 presently used. Besides the layered oxides, such as LiNi yMn yCo 1-2 yO 2, a leading candidate is lithium iron phosphate with the olivine structure. Although this material is inherently low cost, a manufacturing process that produces electrochemically active LiFePO 4 at a low cost is also required. Hydrothermal reactions are one such possibility. A number of pure phosphates have been prepared using this technique, including LiFePO 4, LiMnPO 4 and LiCoPO 4; this method has also successfully produced mixed metal phosphates, such as LiFe 0.33Mn 0.33Co 0.33PO 4. Ascorbic acid was found to be better than hydrazine or sugar at preventing the formation of ferric ions in aqueous media. When conductive carbons are added to the reaction medium excellent electrochemical behavior is observed.

  2. Plasma processes inside dispenser hollow cathodes

    International Nuclear Information System (INIS)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Polk, James E.; Jameson, Kristina K.

    2006-01-01

    A two-dimensional fluid model of the plasma and neutral gas inside dispenser orificed hollow cathodes has been developed to quantify plasma processes that ultimately determine the life of the porous emitters inserted in these devices. The model self-consistently accounts for electron emission from the insert as well as for electron and ion flux losses from the plasma. Two cathodes, which are distinctively different in size and operating conditions, have been simulated numerically. It is found that the larger cathode, with outer tube diameter of 1.5 cm and orifice diameter of 0.3 cm, establishes an effective emission zone that spans approximately the full length of the emitter when operated at a discharge current of 25 A and a flow rate of 5.5 sccm. The net heating of the emitter is caused by ions that are produced by ionization of the neutral gas inside the tube and are then accelerated by the sheath along the emitter. The smaller cathode, with an outer diameter of 0.635 cm and an orifice diameter of 0.1 cm, does not exhibit the same operational characteristics. At a flow rate of 4.25 sccm and discharge current of 12 A, the smaller cathode requires 4.5 times the current density near the orifice and operates with more than 6 times the neutral particle density compared to the large cathode. As a result, the plasma particle density is almost one order of magnitude higher compared to the large cathode. The plasma density in this small cathode is high enough such that the Debye length is sufficiently small to allow 'sheath funneling' into the pores of the emitter. By accessing areas deeper into the insert material, it is postulated that the overall emission of electrons is significantly enhanced. The maximum emission current density is found to be about 1 A/mm 2 in the small cathode, which is about one order of magnitude higher than attained in the large cathode. The effective emission zone in the small cathode extends to about 15% of the emitter length only, and the

  3. Compact Rare Earth Emitter Hollow Cathode

    Science.gov (United States)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  4. Thermal Interference Fit Anode Assembly for Cathodic Protection

    Science.gov (United States)

    2018-02-22

    April 2018 The below identified patent application is available for licensing. Requests for information should be addressed to: TECHNOLOGY...royalties thereon or therefor. CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention

  5. 2013 Estorm - Invited Paper - Cathode Materials Review

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus [ORNL; Mohanty, Debasish [ORNL; Li, Jianlin [ORNL; Wood III, David L [ORNL

    2014-01-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403 431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783 789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  6. Beryllium electrodeposition on aluminium cathode from chloride melts

    International Nuclear Information System (INIS)

    Nichkov, I.F.; Novikov, E.A.; Serebryakov, G.A.; Kanashin, Yu.P.; Sardyko, G.N.

    1980-01-01

    Cathodic processes during beryllium deposition on liquid and solid aluminium cathodes are investigated. Mixture of sodium, potassium and beryllium chloride melts served as an lectrolyte. Beryllium ion discharge at the expense of alloy formation takes place at more positive potentials than on an indifferent cathode at low current densities ( in the case of liquid aluminium cathode). Metallographic analysis and measurements of microhardness have shown, that the cathodic product includes two phases: beryllium solid solution in aluminium and metallic beryllium. It is concluded, that aluminium-beryllium alloys with high cathodic yield by current can be obtained by the electrolytic method

  7. Comparison of hollow cathode discharge plasma configurations

    International Nuclear Information System (INIS)

    Farnell, Casey C; Farnell, Cody C; Williams, John D

    2011-01-01

    Hollow cathodes used in plasma contactor and electric propulsion devices provide electrons for sustaining plasma discharges and enabling plasma bridge neutralization. Life tests show erosion on hollow cathodes exposed to the plasma environment produced in the region downstream of these devices. To explain the observed erosion, plasma flow field measurements are presented for hollow cathode generated plasmas using both directly immersed probes and remotely located plasma diagnostics. Measurements on two cathode discharge configurations are presented: (1) an open, no magnetic field configuration and (2) a setup simulating the discharge chamber environment of an ion thruster. In the open cathode configuration, large amplitude plasma potential oscillations, ranging from 20 to 85 V within a 34 V discharge, were observed using a fast response emissive probe. These oscillations were observed over a dc potential profile that included a well-defined potential hill structure. A remotely located electrostatic analyzer (ESA) was used to measure the energy of ions produced within the plasma, and energies were detected that met, and in some cases exceeded, the peak oscillatory plasma potentials detected by the emissive probe. In the ion thruster discharge chamber configuration, plasma potentials from the emissive probe again agreed with ion energies recorded by the remotely located ESA; however, much lower ion energies were detected compared with the open configuration. A simplified ion-transit model that uses temporal and spatial plasma property measurements is presented and used to predict far-field plasma streaming properties. Comparisons between the model and remote measurements are presented.

  8. Investigations Of A Pulsed Cathodic Vacuum Arc

    Science.gov (United States)

    Oates, T. W. H.; Pigott, J.; Denniss, P.; Mckenzie, D. R.; Bilek, M. M. M.

    2003-06-01

    Cathodic vacuum arcs are well established as a method for producing thin films for coatings and as a source of metal ions. Research into DC vacuum arcs has been going on for over ten years in the School of Physics at the University of Sydney. Recently a project was undertaken in the school to design and build a pulsed CVA for use in the investigation of plasma sheaths and plasma immersion ion implantation. Pulsed cathodic vacuum arcs generally have a higher current and plasma density and also provide a more stable and reproducible plasma density than their DC counterparts. Additionally it has been shown that if a high repetition frequency can be established the deposition rate of pulsed arcs is equal to or greater than that of DC arcs with a concomitant reduction in the rate of macro-particle formation. We present here results of our investigations into the building of a center-triggered pulsed cathodic vacuum arc. The design of the power supply and trigger mechanism and the geometry of the anode and cathode are examined. Observations of type I and II arc spots using a CCD camera, and cathode spot velocity dependence on arc current will be presented. The role of retrograde motion in a high current pulsed arc is discussed.

  9. Manganese Dioxide As Rechargeable Magnesium Battery Cathode

    International Nuclear Information System (INIS)

    Ling, Chen; Zhang, Ruigang

    2017-01-01

    Rechargeable magnesium battery (rMB) has received increased attention as a promising alternative to current Li-ion technology. However, the lack of appropriate cathode that provides high-energy density and good sustainability greatly hinders the development of practical rMBs. To date, the successful Mg 2+ -intercalation was only achieved in only a few cathode hosts, one of which is manganese dioxide. This review summarizes the research activity of studying MnO 2 in magnesium cells. In recent years, the cathodic performance of MnO 2 was impressively improved to the capacity of >150–200 mAh g −1 at voltage of 2.6–2.8 V with cyclability to hundreds or more cycles. In addition to reviewing electrochemical performance, we sketch a mechanistic picture to show how the fundamental understanding about MnO 2 cathode has been changed and how it paved the road to the improvement of cathode performance.

  10. Manganese Dioxide As Rechargeable Magnesium Battery Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Chen, E-mail: chen.ling@toyota.com; Zhang, Ruigang [Toyota Research Institute of North America, Ann Arbor, MI (United States)

    2017-11-03

    Rechargeable magnesium battery (rMB) has received increased attention as a promising alternative to current Li-ion technology. However, the lack of appropriate cathode that provides high-energy density and good sustainability greatly hinders the development of practical rMBs. To date, the successful Mg{sup 2+}-intercalation was only achieved in only a few cathode hosts, one of which is manganese dioxide. This review summarizes the research activity of studying MnO{sub 2} in magnesium cells. In recent years, the cathodic performance of MnO{sub 2} was impressively improved to the capacity of >150–200 mAh g{sup −1} at voltage of 2.6–2.8 V with cyclability to hundreds or more cycles. In addition to reviewing electrochemical performance, we sketch a mechanistic picture to show how the fundamental understanding about MnO{sub 2} cathode has been changed and how it paved the road to the improvement of cathode performance.

  11. Investigations Of A Pulsed Cathodic Vacuum Arc

    International Nuclear Information System (INIS)

    Oates, T.W.H.; Pigott, J.; Denniss, P.; Mckenzie, D.R.; Bilek, M.M.M.

    2003-01-01

    Cathodic vacuum arcs are well established as a method for producing thin films for coatings and as a source of metal ions. Research into DC vacuum arcs has been going on for over ten years in the School of Physics at the University of Sydney. Recently a project was undertaken in the school to design and build a pulsed CVA for use in the investigation of plasma sheaths and plasma immersion ion implantation. Pulsed cathodic vacuum arcs generally have a higher current and plasma density and also provide a more stable and reproducible plasma density than their DC counterparts. Additionally it has been shown that if a high repetition frequency can be established the deposition rate of pulsed arcs is equal to or greater than that of DC arcs with a concomitant reduction in the rate of macro-particle formation. We present here results of our investigations into the building of a center-triggered pulsed cathodic vacuum arc. The design of the power supply and trigger mechanism and the geometry of the anode and cathode are examined. Observations of type I and II arc spots using a CCD camera, and cathode spot velocity dependence on arc current will be presented. The role of retrograde motion in a high current pulsed arc is discussed

  12. Remote Monitoring of Cathodic Protection and Cathodic Protection System Upgrades for Tanks and Pipelines at Fort Carson

    Science.gov (United States)

    2007-06-01

    4 Flush T/S PROPOSED RMU SITE 17 IN Front of Golf Clubhouse x FH -Yl TL -477 13516677 4285195 Glen 4 Flush T/S - Anode Not Connected...Every investigation should include an action plan. Focus on causes and hazards. Develop an analysis of what happened, how it happened and how it...could have been prevented. Determine what caused the accident itself, not just the injury. If a third party or defective product contributed to

  13. The influence of cathode excavation of cathodic arc evaporator on thickness uniformity and erosion products angle distribution

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2014-01-01

    Full Text Available Cathodic arc evaporators are used for coating with functional films. Prolonged or buttend evaporators may be used for this purposes. In butt-end evaporator the cathode spots move continuously on the cathode work surface and evaporate cathode material. High depth excavation profile forms on the cathode work surface while the thick coating precipitation (tens or hundreds of microns. The cathode excavation profile is shaped like a “cup” with high walls for electrostatic discharge stabilization systems with axial magnetic fields. Cathode spots move on the bottom of the “cup”. It is very likely that high “cup” walls are formed as a result of lasting work time influence on the uniformity of precipitated films.In the present work the influence of excavation profile walls height on the uniformity of precipitated coating was carried out. The high profile walls are formed due to lasting work of DC vacuum arc evaporator. The cathode material used for tests was 3003 aluminum alloy. The extended substrate was placed parallel to the cathode work surface. Thickness distribution along the substrate length with the new cathode was obtained after 6 hours and after 12 hours of continuous operation.The thickness distribution of precipitated coating showed that the cathode excavation has an influence on the angular distribution of the matter escaping the cathode. It can be clearly seen from the normalized dependence coating thickness vs the distance from the substrate center. Also the angular distribution of the matter flow from the cathode depending on the cathode working time was obtained. It was shown that matter flow from the cathode differs from the LambertKnudsen law. The more the cathode excavation the more this difference.So, cathode excavation profile has an influence on the uniformity of precipitated coating and it is necessary to take in account the cathode excavation profile while coating the thick films.

  14. Oxide cathodes produced by plasma deposition

    International Nuclear Information System (INIS)

    Scheitrum, G.; Caryotakis, G.; Pi, T.; Umstattd, R.; Brown, I.; Montiero, O.

    1997-01-01

    These are two distinct applications for high-current-density, long-life thermionic cathodes. The first application is as a substitute for explosive emission cathodes used in high-power microwave (HPM) devices being developed for Air Force programs. The second application is in SLAC's X-band klystrons for the Next Linear Collider (NLC). SLAC, UCD, and LBL are developing a plasma deposition process that eliminates the problems with binders, carbonate reduction, peeling, and porosity. The emission layer is deposited using plasma deposition of metallic barium in vacuum with an oxygen background gas. An applied bias voltage drives the oxide plasma into the nickel surface. Since the oxide is deposited directly, it does not have problems with poisoning from a hydrocarbon binder. The density of the oxide layer is increased from the 40--50% for standard oxide cathodes to nearly 100% for plasma deposition

  15. Synchrotron Investigations of SOFC Cathode Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Idzerda, Yves

    2013-09-30

    The atomic variations occurring in cathode/electrolyte interface regions of La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3-δ} (LSCF) cathodes and other SOFC related materials have been investigated and characterized using soft X-ray Absorption Spectroscopy (XAS) and diffuse soft X-ray Resonant Scattering (XRS). X-ray Absorption Spectroscopy in the soft X-ray region (soft XAS) is shown to be a sensitive technique to quantify the disruption that occurs and can be used to suggest a concrete mechanism for the degradation. For LSC, LSF, and LSCF films, a significant degradation mechanism is shown to be Sr out-diffusion. By using the XAS spectra of hexavalent Cr in SrCrO4 and trivalent Cr in Cr2O3, the driving factor for Sr segregation was identified to be the oxygen vacancy concentration at the anode and cathode side of of symmetric LSCF/GDC/LSCF heterostructures. This is direct evidence of vacancy induced cation diffusion and is shown to be a significant indicator of cathode/electrolyte interfacial degradation. X-ray absorption spectroscopy is used to identify the occupation of the A-sites and B-sites for LSC, LSF, and LSCF cathodes doped with other transition metals, including doping induced migration of Sr to the anti-site for Sr, a significant cathode degradation indicator. By using spatially resolved valence mapping of Co, a complete picture of the surface electrochemistry can be determined. This is especially important in identifying degradation phenomena where the degradation is spatially localized to the extremities of the electrochemistry and not the average. For samples that have electrochemical parameters that are measured to be spatially uniform, the Co valence modifications were correlated to the effects of current density, overpotential, and humidity.

  16. Monitoring Cathodic Shielding and Corrosion under Disbonded Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Varela, F.; Tan, M. Y. J.; Hinton, B.; Forsyth, M. [Deakin University, Victoria (Australia)

    2017-06-15

    Monitoring of corrosion is in most cases based on simulation of environmental conditions on a large and complex structure such as a buried pipeline using a small probe, and the measurement of thermodynamics and kinetics of corrosion processes occurring on the probe surface. This paper presents a hybrid corrosion monitoring probe designed for simulating deteriorating conditions wrought by disbonded coatings and for measuring current densities and distribution of such densities on a simulated pipeline surface. The concept of the probe was experimentally evaluated using immersion tests under cathodic protection (CP) in high resistivity aqueous solution. Underneath the disbonded area, anodic currents and cathodic currents were carefully measured. Anodic current densities were used to calculate metal loss according to Faraday’s law. Calculated corrosion patterns were compared with corrosion damage observed at the surface of the probe after a series of stringent tests. The capability of the probe to measure anodic current densities under CP, without requiring interruption, was demonstrated in high resistivity aqueous solution. The pattern of calculated metal loss correlated well with corrosion products distribution observed at the array surface. Working principles of the probe are explained in terms of electrochemistry.

  17. Hot zirconium cathode sputtered layers for useful surface modification

    International Nuclear Information System (INIS)

    Duckworth, R.G.

    1986-01-01

    It has been found that multilayer zirconium based sputtered coatings can greatly improve the wear properties of a wide variety of mechanical components, machine tools, and metal surfaces. Although a hot (approximately 1000 0 C) cathode is employed, temperature sensitive components can be beneficially treated, and for precision parts a total coating thickness of only 0.5μm is often perfectly effective. Even at the highest coating rates substrate temperatures are below 300 0 C. For the corrosion protection of less well finished surfaces thicker layers are usually required and it is important that relatively stress free layers are produced. The authors employed a variety of tailored zirconium/zirconium nitride/zirconium oxide mixed layers to solve a number of tribological problems for some 5 or 6 years. However, it is only recently that they designed, built, and commissioned rapid cycle, multiple cathode, load-lock plant for economic production of such coatings. This paper provides an introduction to this method of depositing pure zirconium and pure synthetic zirconium nitride films

  18. Corrosion and protection of aluminum alloys in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Nisancioglu Kemal [Department of Materials Technology, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2004-07-01

    The paper deals with pitting and uniform corrosion and effectiveness of cathodic protection in reducing these corrosion forms. In stagnant waters or presence of low flow rates, pitting may occur. However, pitting corrosion, driven by the Fe-rich cathodic intermetallic compounds, is often of superficial nature. The pits tend to passivate as a result of etching or passivation of the intermetallics with time. Cathodic protection is an effective way of preventing pitting. It also requires low current densities since the cathodic area, defined by the Fe-rich intermetallics, is small in contrast to steel, which is uniformly accessible to the cathodic reaction. Although thermodynamic calculations suggest possible instability of the oxide in slightly alkaline solutions, such as seawater, protective nature of the oxide in practice is attributed to the presence of alloying elements such as Mg and Mn. Thus, the passivity of both the aluminum matrix alloy (the anode) and the intermetallics (cathodes) have to be considered in evaluating the corrosion and protection of aluminum alloys. With increasing flow rate, the possibility of pitting corrosion reduces with increase in the rate of uniform corrosion, which is controlled by the flow dependent chemical dissolution of the oxide. Cathodic protection does not stop this phenomenon, and coatings have to be used. (authors)

  19. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-01-01

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  20. Cathode architectures for alkali metal / oxygen batteries

    Science.gov (United States)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  1. DARHT 2 kA Cathode Development

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B.; Roy, P.K.; Waldron, W.; Westenskow, G.; Yu, S.; Bieniosek, F.M.

    2009-03-09

    In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm{sup 2} of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm{sup 2}. The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10{sup -8} Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function

  2. DARHT 2 kA Cathode Development

    International Nuclear Information System (INIS)

    Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B.; Roy, P.K.; Waldron, W.; Westenskow, G.; Yu, S.; Bieniosek, F.M.

    2009-01-01

    In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm 2 of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm 2 . The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10 -8 Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function value). We reexamined

  3. Studies on pulsed hollow cathode capillary discharges

    Energy Technology Data Exchange (ETDEWEB)

    Choi, P; Dumitrescu-Zoita, C; Larour, J; Rous, J [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises; Favre, M; Moreno, J; Chuaqui, H; Wyndham, E [Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Zambra, M [Comision Chilena de Energia Nuclear, Santiago (Chile); Wong, C S [Univ. of Malaya, Kuala Lumpur (Malaysia). Plasma Research Lab

    1997-12-31

    Preliminary results on radiation characteristics of pulsed hollow cathode capillary discharges are presented. The device combines the on axis electron beam assisted ionization capabilities of the transient hollow cathode discharge with a novel high voltage low inductance geometrical design, which integrates the local energy storage into the electrode system. A nanosecond regime high temperature plasma is produced in a long, high aspect ratio capillary, with light emission in the UV to XUV region. The discharge is operated from near vacuum to pressure in the 1000 mTorr range. (author). 2 figs., 7 refs.

  4. Cathode characterization system: preliminary results with (Ba,Sr,Ca) O coated cathodes

    International Nuclear Information System (INIS)

    Nono, M.C.A.; Goncalves, J.A.N.; Barroso, J.J.; Dallaqua, R.S.; Spassovsky, I.

    1993-01-01

    The performance of a cathode characterization system for studying the emission parameters of thermal electron emitters is reported. The system consists of vacuum chamber, power supplies and equipment for measuring and control. Measurements have been taken of the emission current as function of cathode temperature and anode voltage. Several (Ba, Sr) O coated cathodes were tested and the results have shown good agreement with Child's and Richardson's laws. The experimental work function is between 1.0 and 2.0 e V. All emission parameters measured are consistent with international literature data. (author)

  5. A Novel Cathode Material for Cathodic Dehalogenation of 1,1-Dibromo Cyclopropane Derivatives.

    Science.gov (United States)

    Gütz, Christoph; Selt, Maximilian; Bänziger, Markus; Bucher, Christoph; Römelt, Christina; Hecken, Nadine; Gallou, Fabrice; Galvão, Tomás R; Waldvogel, Siegfried R

    2015-09-28

    Leaded bronze turned out to be an excellent cathode material for the dehalogenation reaction of cyclopropanes without affecting the strained molecular entity. With this particular alloy, beneficial properties of lead cathodes are conserved, whereas the corrosion of cathode is efficiently suppressed. The solvent in the electrolyte determines whether a complete debromination reaction is achieved or if the process can be selectively stopped at the monobromo cyclopropane intermediate. The electroorganic conversion tolerates a variety of functional groups and can be conducted at rather complex substrates like cyclosporine A. This approach allows the sustainable preparation of cyclopropane derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Li- and Mn-Rich Cathode Materials: Challenges to Commercialization

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming [Energy and Environmental Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Myeong, Seungjun [School of Energy and Chemical Engineering, Green Energy Materials Development Center, Ulsan National Institute of Science and Technology (UNIST), Korea 689-798; Cho, Woongrae [School of Energy and Chemical Engineering, Green Energy Materials Development Center, Ulsan National Institute of Science and Technology (UNIST), Korea 689-798; Yan, Pengfei [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Xiao, Jie [Energy and Environmental Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Cho, Jaephil [School of Energy and Chemical Engineering, Green Energy Materials Development Center, Ulsan National Institute of Science and Technology (UNIST), Korea 689-798; Zhang, Ji-Guang [Energy and Environmental Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA

    2016-12-14

    The lithium- and manganese-rich (LMR) layered structure cathode exhibit one of the highest specific energy (~900 Wh kg-1) among all the cathode materials. However, the practical applications of LMR cathodes are still hindered by several significant challenges including voltage fade, large initial capacity loss, poor rate capability and limited cycle life. Herein, we review the recent progresses and understandings on the application of LMR cathode materials from practical point of view. Several key parameters of LMR cathodes that affect the LMR/graphite full cell operation are systematically analysed. These factors include the first cycle capacity loss, voltage fade, powder tap density, electrode density of LMR based cathode etc. New approaches to minimize the detrimental effect of these factors are highlighted in this work. We also provided the perspectives for the future research on LMR cathode materials, focusing on addressing the fundamental problems of LMR cathodes while always keeping practical considerations in mind.

  7. Reservoir Cathode for Electric Space Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a hollow reservoir cathode to improve performance in ion and Hall thrusters. We will adapt our existing reservoir cathode technology to this purpose....

  8. Long Life Cold Cathodes for Hall effect Thrusters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An electron source incorporating long life, high current density cold cathodes inside a microchannel plate for use with ion thrusters is proposed. Cathode lifetime...

  9. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    Science.gov (United States)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-01-01

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608

  10. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson

    2000-03-31

    . However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

  11. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2001-09-30

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. In this portion of study we have focused on producing YSZ films on porous LSM substrates. When using the polymer precursor there are a number of obstacles to overcome in order to form dense electrolyte layers on porous substrates (cathode or anode). Probably the most difficult problems are: (1) Extreme penetration of the polymer into the substrate must be prevented. (2) Shrinkage cracking must be avoided. (3) Film thickness in the 1 to 5{micro}m range must be achieved. We have demonstrated that cracking due to shrinkage involved during the elimination of solvents and organic matter and densification of the remaining oxide is not a problem as long as the resulting oxide film is < {approx} 0.15 {micro}m in thickness. We have also shown that we can make thicker films by making multiple depositions if the substrate is smooth (roughness {le} 0.1 {micro}m) and contains no surface pores > 0.2 {micro}m. The penetration of the polymer into the porous substrate can be minimized by increasing the viscosity of the polymer and reducing the largest pore at the surface of the substrate to {le} 0.2 {micro}m. We have shown that this can be done, but we have also shown that it is difficult to make dense films that are defect free with areas > 1 cm{sup 2}. This is because of the roughness of the substrate and the difficulty in making a substrate which does not have surface voids > 0.2 {micro}m. Thus the process works well for dense, smooth substrates for films < 1 {micro}m thick, but is difficult to apply to rough, porous surfaces and to make film thickness > 1 {micro}m. As a result of these problems, we have been addressing the issue of how to make dense films in the thickness range of 1 to 5 {micro}m on sintered porous substrates without introducing cracks and holes due to shrinkage and surface voids? These

  12. Determining localized anode condition to maintain effective corrosion protection.

    Science.gov (United States)

    2010-01-01

    Thermal sprayed zinc anodes used for impressed current cathodic protection of reinforced concrete deteriorate over time. : Two different technologies, ultrasound and electrical circuit resistance combined with water permeability, were : investigated ...

  13. Polymer coatings as separator layers for microbial fuel cell cathodes

    KAUST Repository

    Watson, Valerie J.; Saito, Tomonori; Hickner, Michael A.; Logan, Bruce E.

    2011-01-01

    and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge

  14. Coating for lithium anode, thionyl chloride active cathode electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Catanzarite, V.O.

    1983-01-04

    Electrochemical power cells having a cathode current collector, a combination liquid active cathode depolarizer electrolyte solvent and an anode that forms surface compounds when in intimate contact with the liquid cathode are enhanced by the addition of a passivation limiting film contiguous to said anode. The passivating film is a member of the cyanoacrilate family of organic compounds.

  15. Coating for lithium anode, thionyl chloride active cathode electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Catanzarite, V.O.

    1981-10-20

    Electrochemical power cells having a cathode current collector, a combination liquid active cathode depolarizer electrolyte solvent and an anode that forms surface compounds when in intimate contact with the liquid cathode are enhanced by the addition of a passivation limiting film contiguous to said anode. The passivating film is a member of the cyanoacrilate family of organic compounds.

  16. Cold cathodes on ultra-dispersed diamond base

    International Nuclear Information System (INIS)

    Alimova, A.N.; Zhirnov, V.V.; Chubun, N.N.; Belobrov, P.I.

    1998-01-01

    Prospects of application of nano diamond powders for fabrication of cold cathodes are discussed.Cold cathodes based on silicon pointed structures with nano diamond coatings were prepared.The deposition technique of diamond coating was dielectrophoresis from suspension of nano diamond powder in organic liquids.The cathodes were tested in sealed prototypes of vacuum electronic devices

  17. Explosive-emission cathode fabricated using track method

    International Nuclear Information System (INIS)

    Akap'ev, G.N.; Korenev, S.A.

    1989-01-01

    Fabrication technique for large area multipoint cathodes is described. The technique is based on channels filling with metal in the ion-irradiated dielectric film producted after channel etching. It is shown, that cathode may be used under explosive emission conditions. Characteristics of diode with the mentioned type cathodes are measured

  18. RF Photoelectric injectors using needle cathodes

    International Nuclear Information System (INIS)

    Lewellen, J.W.; Brau, C.A.

    2003-01-01

    Photocathode RF guns, in various configurations, are the injectors of choice for both current and future applications requiring high-brightness electron beams. Many of these applications, such as single-pass free-electron lasers, require beams with high brilliance but not necessarily high charge per bunch. Field-enhanced photoelectric emission has demonstrated electron-beam current density as high as 10 10 A/m 2 , with a quantum efficiency in the UV that approaches 10% at fields on the order of 10 10 V/m. Thus, the use of even a blunt needle holds promise for increasing cathode quantum efficiency without sacrificing robustness. We present an initial study on the use of needle cathodes in photoinjectors to enhance beam brightness while reducing beam charge. Benefits include lower drive-laser power requirements, easier multibunch operation, lower emittance, and lower beam degradation due to charge-dependent effects in the postinjector accelerator. These benefits result from a combination of a smaller cathode emission area, greatly enhanced RF field strength at the cathode, and the charge scaling of detrimental postinjector linac effects, e.g., transverse wakefields and CSR

  19. RF Photoelectric injectors using needle cathodes

    Science.gov (United States)

    Lewellen, J. W.; Brau, C. A.

    2003-07-01

    Photocathode RF guns, in various configurations, are the injectors of choice for both current and future applications requiring high-brightness electron beams. Many of these applications, such as single-pass free-electron lasers, require beams with high brilliance but not necessarily high charge per bunch. Field-enhanced photoelectric emission has demonstrated electron-beam current density as high as 10 10 A/m 2, with a quantum efficiency in the UV that approaches 10% at fields on the order of 10 10 V/m. Thus, the use of even a blunt needle holds promise for increasing cathode quantum efficiency without sacrificing robustness. We present an initial study on the use of needle cathodes in photoinjectors to enhance beam brightness while reducing beam charge. Benefits include lower drive-laser power requirements, easier multibunch operation, lower emittance, and lower beam degradation due to charge-dependent effects in the postinjector accelerator. These benefits result from a combination of a smaller cathode emission area, greatly enhanced RF field strength at the cathode, and the charge scaling of detrimental postinjector linac effects, e.g., transverse wakefields and CSR.

  20. Barium depletion in hollow cathode emitters

    International Nuclear Information System (INIS)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2016-01-01

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al 2 O 3 source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values

  1. Cathode follower RF system with frequency modulation

    International Nuclear Information System (INIS)

    Irie, Y.; Yano, Y.; Kaneko, N.; Kobayashi, Y.

    1994-01-01

    A model RF system with a cathode follower was tested under frequency modulation in the 1-3.5 MHz range. The repetition rate was 40 Hz. The oscillation was stable, and the output impedance was measured to be around 20 ohm. (author)

  2. Progress of air-breathing cathode in microbial fuel cells

    Science.gov (United States)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  3. Cathode Composition in a Saltwater Metal-Air Battery

    Directory of Open Access Journals (Sweden)

    William Shen

    2017-01-01

    Full Text Available Metal-air batteries consist of a solid metal anode and an oxygen cathode of ambient air, typically separated by an aqueous electrolyte. Here, simple saltwater-based models of aluminum-air and zinc-air cells are used to determine the differences between theoretical cell electric potentials and experimental electric potentials. A substantial difference is observed. It is also found that the metal cathode material is crucial to cell electric potential, despite the cathode not participating in the net reaction. Finally, the material composition of the cathode appears to have a more significant impact on cell potential than the submerged surface area of the cathode.

  4. Emission ability of La-Sc-Mo cathode

    International Nuclear Information System (INIS)

    Yang Jiancan; Nie Zuoren; Xi Xiaoli; Wang Yiman

    2004-01-01

    In this paper La-Sc-Mo cathode has been prepared and its electron emission ability was measured. This type of cathode shows good electron emission performance that the saturated current density is 6.74 A cm -1 and the work function is about 2.59 eV at 1300 deg. C, which is much lower than thoriated tungsten cathode (Th-W). So it is a potential cathode to replace the Th-W cathode with radioactive pollution. Surface analysis shows that good emission ability due to the 20 nm surplus La layer and the element Sc may do good to the La diffusion to the surface

  5. Explosive emission cathode on the base of carbon plastic fibre

    International Nuclear Information System (INIS)

    Korenev, S.A.; Baranov, A.M.; Kostyuchenko, S.V.; Chernenko, N.M.

    1989-01-01

    A fabrication process for explosive emission cathodes on the base of carbon plastic fibre of practically any geometrical shape and dimensions is developed. Experimental studies of electron beam current collection from cathodes, 2cm in diameter, at voltages across the diode of 10 and 150-250kV. It is shown that the ignition voltage for cathode plasma is ∼2kV at the interelectrode diode gap of 5mm and residual gas pressure of ∼5x10 -5 Torr. The carbon-fibre cathode, fabricated in this way, provides more stable current collection of an electron beam (without oscillations) than other cathodes

  6. Co-deposition of metallic actinides on a solid cathode

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, S. J.; Williamson, M. A.; Willit, J. L. [Argonne National Laboratory, Argonne (United States)

    2008-08-15

    The amount of rare earth contamination that will be found in a co-deposit of actinides is a function of the type of cathode used. A non-alloying solid cathode will result in a significantly lower rare earth contamination in the actinide co-deposit than a liquid cadmium cathode. With proper control of the cathode potential vs. a stable reference electrode, co-deposition of uranium with other more electroactive metals has been demonstrated using a non-alloying solid cathode.

  7. Co-deposition of metallic actinides on a solid cathode

    International Nuclear Information System (INIS)

    Limmer, S. J.; Williamson, M. A.; Willit, J. L.

    2008-01-01

    The amount of rare earth contamination that will be found in a co-deposit of actinides is a function of the type of cathode used. A non-alloying solid cathode will result in a significantly lower rare earth contamination in the actinide co-deposit than a liquid cadmium cathode. With proper control of the cathode potential vs. a stable reference electrode, co-deposition of uranium with other more electroactive metals has been demonstrated using a non-alloying solid cathode

  8. Polymer coatings as separator layers for microbial fuel cell cathodes

    KAUST Repository

    Watson, Valerie J.

    2011-03-01

    Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production. © 2010 Elsevier B.V. All rights reserved.

  9. Cathodic behaviour of stainless steel in coastal Indian seawater: calcareous deposits overwhelm biofilms.

    Science.gov (United States)

    Eashwar, M; Subramanian, G; Palanichamy, S; Rajagopal, G; Madhu, S; Kamaraj, P

    2009-01-01

    Type-316 stainless steel (SS) was investigated as the cathode in galvanic couples in full-strength seawater from the Gulf of Mannar on the southeast coast of India. Tests were devised to examine the impact of SS cathodes on anode materials with or without the accrual of marine biofilms. Biofilmed SS cathodes significantly enhanced the rate of corrosion of nickel, causing noble shifts in the couple potentials. With mild steel and zinc as the anodes, calcareous deposits developed quite rapidly on the SS cathodes and led to a significant reduction of bacterial numbers. The calcareous deposits also caused substantial reduction of galvanic corrosion rates for mild steel, whereas there was no difference for zinc. The deposits were identified by XRD as essentially carbonates, oxides and hydroxides of calcium and magnesium. Potentiodynamic polarization performed on the actual couples after disconnection and equilibration provided reasonable interpretations of the galvanic corrosion trends. Data from this work suggest that a potential of about -0.70 V vs. saturated calomel electrode (SCE) should provide optimum protection of SS in warmer, full-strength seawater that supports the precipitation of calcareous deposits. The criterion commonly recommended for temperate conditions of lower water temperature and estuarine waters of lower alkalinity is -1.0 V (SCE).

  10. Cathode R&D for Future Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, D.H.; /SLAC; Bazarov, I.; Dunham, B.; /Cornell U., CLASSE; Harkay, K.; /Argonne; Hernandez-Garcia; /Jefferson Lab; Legg, R.; /Wisconsin U., SRC; Padmore, H.; /LBL, Berkeley; Rao, T.; Smedley, J.; /Brookhaven; Wan, W.; /LBL, Berkeley

    2010-05-26

    This paper reviews the requirements and current status of cathodes for accelerator applications, and proposes a research and development plan for advancing cathode technology. Accelerator cathodes need to have long operational lifetimes and produce electron beams with a very low emittance. The two principal emission processes to be considered are thermionic and photoemission with the photocathodes being further subdivided into metal and semi-conductors. Field emission cathodes are not included in this analysis. The thermal emittance is derived and the formulas used to compare the various cathode materials. To date, there is no cathode which provides all the requirements needed for the proposed future light sources. Therefore a three part research plan is described to develop cathodes for these future light source applications.

  11. Cathode R and D for future light sources

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, D.H., E-mail: dowell@slac.stanford.ed [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Bazarov, I.; Dunham, B. [Cornell University, Cornell Laboratory for Accelerator-Based Sciences and Education (CLASSE) Wilson Laboratory, Cornell University, Ithaca, NY 14853 (United States); Harkay, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Il 60439 (United States); Hernandez-Garcia, C. [Thomas Jefferson Laboratory, 12000 Jefferson Ave, Free Electron Laser Suite 19 Newport News, VA 23606 (United States); Legg, R. [University of Wisconsin, SRC, 3731 Schneider Dr., Stoughton, WI 53589 (United States); Padmore, H. [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States); Rao, T.; Smedley, J. [Brookhaven National Laboratory, 20 Technology Street, Bldg. 535B, Brookhaven National Laboratory Upton, NY 11973 (United States); Wan, W. [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 (United States)

    2010-10-21

    This paper reviews the requirements and current status of cathodes for accelerator applications, and proposes a research and development plan for advancing cathode technology. Accelerator cathodes need to have long operational lifetimes and produce electron beams with a very low emittance. The two principal emission processes to be considered are thermionic and photoemission with the photocathodes being further subdivided into metal and semi-conductors. Field emission cathodes are not included in this analysis. The thermal emittance is derived and the formulas used to compare the various cathode materials. To date, there is no cathode which provides all the requirements needed for the proposed future light sources. Therefore a three part research plan is described to develop cathodes for these future light source applications.

  12. Emission mechanism in high current hollow cathode arcs

    International Nuclear Information System (INIS)

    Krishnan, M.

    1976-01-01

    Large (2 cm-diameter) hollow cathodes have been operated in a magnetoplasmadynamic (MPD) arc over wide ranges of current (0.25 to 17 kA) and mass flow (10 -3 to 8 g/sec), with orifice current densities and mass fluxes encompassing those encountered in low current steady-state hollow cathode arcs. Detailed cathode interior measurements of current and potential distributions show that maximum current penetration into the cathode is about one diameter axially upstream from the tip, with peak inner surface current attachment up to one cathode diameter upstream of the tip. The spontaneous attachment of peak current upstream of the cathode tip is suggested as a criterion for characteristic hollow cathode operation. This empirical criterion is verified by experiment

  13. The effect of cathode geometry on barium transport in hollow cathode plasmas

    International Nuclear Information System (INIS)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2014-01-01

    The effect of barium transport on the operation of dispenser hollow cathodes was investigated in numerical modeling of a cathode with two different orifice sizes. Despite large differences in cathode emitter temperature, emitted electron current density, internal xenon neutral and plasma densities, and size of the plasma-surface interaction region, the barium transport in the two geometries is qualitatively very similar. Barium is produced in the insert and flows to the surface through the porous structure. A buildup of neutral Ba pressure in the plasma over the emitter surface can suppress the reactions supplying the Ba, restricting the net production rate. Neutral Ba flows into the dense Xe plasma and has a high probability of being ionized at the periphery of this zone. The steady state neutral Ba density distribution is determined by a balance between pressure gradient forces and the drag force associated with collisions between neutral Ba and neutral Xe atoms. A small fraction of the neutral Ba is lost upstream. The majority of the neutral Ba is ionized in the high temperature Xe plasma and is pushed back to the emitter surface by the electric field. The steady state Ba + ion density distribution results from a balance between electrostatic and pressure forces, neutral Xe drag and Xe + ion drag with the dominant forces dependent on location in the discharge. These results indicate that hollow cathodes are very effective at recycling Ba within the discharge and therefore maintain a high coverage of Ba on the emitter surface, which reduces the work function and sustains high electron emission current densities at moderate temperatures. Barium recycling is more effective in the cathode with the smaller orifice because the Ba is ionized in the dense Xe plasma concentrated just upstream of the orifice and pushed back into the hollow cathode. Despite a lower emitter temperature, the large orifice cathode has a higher Ba loss rate through the orifice because the Xe

  14. New discharge tube with virtual cathode

    International Nuclear Information System (INIS)

    Seidelmann, L.; Aubrecht, L.

    2003-01-01

    Till this time known methods of the excitation of the discharge between electrodes are using either secondary or thermo emission of electrons by the cathode. Usually we speak about the self-maintained discharge. Lifetime of the cathode, that is shortened by the emission, limits in principle, the lifetime of the whole discharge tube. The discharge can, according to the present state of the art, be induced also by the inductive way. Arrangement for excitation of such discharge is rather expensive. The construction of the inductive excited discharge tube is considerably influenced by the necessity of the limitation of the losses in excitation magnetic circuits. Especially length of the discharge and pressure of the working gas are limited by the economic standpoints. Function of the discharge is always connected with unwanted electromagnetic radiation, whose restraint is expensive and represents limiting factor for arrangement of the discharge tube (Authors)

  15. Barium Depletion in Hollow Cathode Emitters

    Science.gov (United States)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  16. Long pulse, plasma cathode E-gun

    International Nuclear Information System (INIS)

    Goebel, D.M.; Schumacher, R.W.; Watkins, R.M.

    1993-01-01

    A unique, long-pulse E-gun has been developed for high-power tube applications. The Hollow-Cathode-Plasma (HCP) E-gun overcomes the limitations of conventional thermionic-cathode guns that have limited current density (typically ≤ 10 A/cm 2 ) or field-emission guns that offer high current density but suffer from short pulsewidth capability (typically 50 A/cm 2 ), long-pulse operation without gap closure, and also requires no cathode-heater power. The gun employs a low-pressure glow discharge inside a hollow cathode (HC) structure to provide a stable, uniform plasma surface from which a high current-density electron beam can be extracted. The plasma density is controlled by a low-voltage HC discharge pulser to produce the desired electron current density at the first grid of a multi-grid accelerator system. A dc high-voltage electron-beam supply accelerates the electrons across the gap, while the HC pulser modulates the beam current to generate arbitrary pulse waveforms. The electron accelerator utilizes a multi-aperture array that produces a large area, high perveance (>35 μpervs) beam consisting initially of many individual beamlets. The E-beam is normally operated without an applied magnetic field in the ion-focused regime, where the plasma produced by beam ionization of a background gas space-charge neutralizes the beam, and the Bennett self-pinch compresses the beamlets and increases the current density. The self-pinched beam has been observed to propagate over a meter without beam breakup or instabilities. The HCP E-gun has been operated at voltages up to 150 kV, currents up to 750 A, and pulse lengths of up to 120 μsec

  17. Bi-metallic nanoparticles as cathode electrocatalysts

    Science.gov (United States)

    Lu, Jun; Amine, Khalil; Wang, Xiaoping; Luo, Xiangyi; Myers, Deborah J.

    2018-03-27

    A lithium-air battery cathode catalyst includes core-shell nanoparticles on a carbon support, wherein: a core of the core-shell nanoparticles is platinum metal; and a shell of the core-shell nanoparticles is copper metal; wherein: the core-shell nanoparticles have a weight ratio of the copper metal to the platinum metal from about 4% to about 6% copper to from about 2% to about 12% platinum, with a remaining percentage being the carbon support.

  18. Cathode readout with stripped resistive drift tubes

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Kekelidze, G.D.; Novikov, E.A.; Peshekhonov, V.D.; Shafranov, M.D.; Zhiltsov, V.E.

    1995-01-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with a carbon layer with a resistivity of 0.5, 30 and 70 kΩ/□. Both the anode wire and the cathode strip signals were detected to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented. (orig.)

  19. Cathode readout with stripped resistive drift tubes

    Science.gov (United States)

    Bychkov, V. N.; Kekelidze, G. D.; Novikov, E. A.; Peshekhonov, V. D.; Shafranov, M. D.; Zhiltsov, V. E.

    1995-12-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with a carbon layer with a resistivity of 0.5, 30 and 70 kΩ/□. Both the anode wire and the cathode strip signals were detected to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented.

  20. Surface studies of thermionic cathodes and the mechanism of operation of an impregnated tungsten cathode

    International Nuclear Information System (INIS)

    Forman, R.

    1976-09-01

    The surface properties of conventional impregnated cathodes were investigated by the use of Auger spectroscopy and work function measurements, and these were compared with a synthesized barium- or barium oxide coated tungsten surface. The barium- and barium oxide coated surfaces were prepared by evaporating barium onto a tungsten surface that can be heated to elevated temperatures. Multilayer or monolayer coverages can be investigated using this technique. The results of this study show that the surface of an impregnated tungsten cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on partially oxidized tungsten, using the criteria of identical Auger patterns and work functions. Desorption measurements of barium from a tungsten surface were also made. These results in conjunction with Auger and work function data were interpreted to show that throughout most of its life an impregnated cathode operating in the range of 1100 C has a partial monolayer rather than a monolayer of barium on its surface

  1. Luminance enhancement in quantum dot light-emitting diodes fabricated with Field’s metal as the cathode

    Science.gov (United States)

    Basilio, Carlos; Oliva, Jorge; Lopez-Luke, Tzarara; Pu, Ying-Chih; Zhang, Jin Z.; Rodriguez, C. E.; de la Rosa, E.

    2017-03-01

    This work reports the fabrication and characterization of blue-green quantum dot light-emitting diodes (QD-LEDs) by using core/shell/shell Cd1-x Zn x Se/ZnSe/ZnS quantum dots. Poly [(9,9-bis(3‧-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) was introduced in order to enhance the electron injection and also acted as a protecting layer during the deposition of the cathode (a Field’s metal sheet) on the organic/inorganic active layers at low temperature (63 °C). This procedure permitted us to eliminate the process of thermal evaporation for the deposition of metallic cathodes, which is typically used in the fabrication of OLEDs. The performance of devices made with an aluminum cathode was compared with that of devices which employed Field’s metal (FM) as the cathode. We found that the luminance and efficiency of devices with FM was ~70% higher with respect to those that employed aluminum as the cathode and their consumption of current was similar up to 13 V. We also demonstrated that the simultaneous presence of 1,2-ethanedethiol (EDT) and PFN enhanced the luminance in our devices and improved the current injection in QD-LEDs. Hence, the architecture for QD-LEDs presented in this work could be useful for the fabrication of low-cost luminescent devices.

  2. Cathode power distribution system and method of using the same for power distribution

    Science.gov (United States)

    Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2014-11-11

    Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

  3. Rf Gun with High-Current Density Field Emission Cathode

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  4. Degradation factors of a new long life cathode

    International Nuclear Information System (INIS)

    Zhang Mingchen; Zhang Honglai; Liu Pukun; Li Yutao

    2011-01-01

    This paper analyses the degradation factors of a new long life coated impregnated cathode after accelerated life test. The surface state of the cathode is investigated with scanning electron microscope (SEM) as well as the content and variation of the various elements on the surface and the longitudinal section of the cathode are analyzed with Auger electron spectroscopy (AES) before and after the life test. The analyzing results with SEM show that the cathode coating shrinks at the life end and leads to a rise in its work function. The analyzing results with AES show that the percent of the W increases and the active materials Ba decreases on the cathode surface at the life end. Furthermore, there is less Ba underneath the cathode surface but still a lot of Ba in the tungsten matrix at the life end.

  5. Cathode plasma expansion in diode with explosive emission

    International Nuclear Information System (INIS)

    Zuo Yinghong; Fan Ruyu; Wang Jianguo; Zhu Jinhui

    2012-01-01

    The evolution characteristics of the cathode plasma in a planar diode with explosive emission were analyzed. Be- sides the axial expansion which can reduce the effective anode-cathode gap, the radial expansion of the cathode plasma which can affect the effective emitting area was also taken into account. According to the Child-Langmuir law and the experimental data of current and voltage with a electron vacuum diode under four-pulse mode, the dynamics of the cathode plasma was investigated, on the assumption that the radial speeds of the cathode plasma was approximately equal to the axial speed. The results show that the radial and axial expansion speeds of the cathode plasma are 0.9-2.8 cm/μs. (authors)

  6. Cathodic corrosion: Part 2. Properties of nanoparticles synthesized by cathodic corrosion

    International Nuclear Information System (INIS)

    Yanson, A.I.; Yanson, Yu.I.

    2013-01-01

    We demonstrate how cathodic corrosion in concentrated aqueous solutions enables one to prepare nanoparticles of various metals and metal alloys. Using various characterization methods we show that the composition of nanoparticles remains that of the starting material, and the resulting size distribution remains rather narrow. For the case of platinum we show how the size and possibly even the shape of the nanoparticles can be easily controlled by the parameters of corrosion. Finally, we discuss the advantages of using the nanoparticles prepared by cathodic corrosion for applications in (electro-)catalysis.

  7. Theory of hollow cathode arc discharges. II. Metastable state balance inside the cathode. Application to argon

    International Nuclear Information System (INIS)

    Ferreira, C.M.; Delcroix, J.L.

    1975-01-01

    In the hollow cathode the metastable species are created by fast electrons, which are emitted by the cathode wall and injected in the plasma across a space-charge sheath, and destroyed by Maxwellian electrons. A detailed analysis of the different electronic destruction mechanisms in argon shows that the re-excitation up to 3p 5 4p states plays a very important role. Solutions of the metastable balance equation were obtained in a wide range of variation of the discharge parameters displaying the best conditions of operation to obtain high concentrations [fr

  8. Molten carbonate fuel cell cathode with mixed oxide coating

    Science.gov (United States)

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  9. Ultra High Energy Density Cathodes with Carbon Nanotubes

    Science.gov (United States)

    2013-12-10

    a) Carbon nanotube paper coated with NCA cathode composite for testing as positive electrode in Li-ion battery (b) Comparison of NCA specific...received and purified CNT electrodes coated with NCA cathode composite. (b) Discharge capacities as a function of rate and cycle for NCA on Al and...thickness increases. The first approach was to cast SOA NCA cathode composites onto CNT current collectors using an adjustable blade coater. The

  10. Knife-edge thin film field emission cathodes

    International Nuclear Information System (INIS)

    Lee, B.; Demroff, H.P.; Drew, M.M.; Elliott, T.S.; Mazumdar, T.K.; McIntyre, P.M.; Pang, Y.; Smith, D.D.; Trost, H.J.

    1993-01-01

    Cathodes made of thin-film field emission arrays (FEA) have the advantages of high current density, pulsed emission, and low bias voltage operation. The authors have developed a technology to fabricate knife-edge field emission cathodes on (110) silicon wafers. The emitter geometry is optimized for efficient modulation at high frequency. Cathode fabrication progress and preliminary analysis of their applications in RF power sources are presented

  11. Structured electron beams from nano-engineered cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Lueangaramwong, A. [NICADD, DeKalb; Mihalcea, D. [NICADD, DeKalb; Andonian, G. [RadiaBeam Tech.; Piot, P. [Fermilab

    2017-03-07

    The ability to engineer cathodes at the nano-scale have open new possibilities such as enhancing quantum eciency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper we present numerical investigations of the beam dynamics associated to this class of cathode in the weak- and strong-field regimes.We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  12. Geiger counters of gamma rays with a bismuth cathode

    International Nuclear Information System (INIS)

    Meunier, R.; Legrand, J.P.

    1953-01-01

    Geiger Muller counters present a lake of efficiency of some per cent, for the γ radiations. In the region 0,3 - 1 MeV, a substantial growth of their output can be obtained by a special construction of their cathode. In accordance with previous works, we constructed some counter of formed cathode by a pleated copper wire fencing covered of Bi by electrolysis. The successive modifications brought to a cylindrical conventional cathode in sheet metal of copper, that succeeds to this type of cathode, drive to an improvement of the output. (M.B.) [fr

  13. Surface Characterization of the LCLS RF Gun Cathode

    International Nuclear Information System (INIS)

    Brachmann, Axel; Decker, Franz-Josef; Ding, Yuantao; Dowell, David; Emma, Paul; Frisch, Josef; Gilevich, Sasha; Hays, Gregory; Hering, Philippe; Huang, Zhirong; Iverson, Richard; Loos, Henrik; Miahnahri, Alan; Nordlund, Dennis; Nuhn, Heinz-Dieter; Pianetta, Piero; Turner, James; Welch, James; White, William; Wu, Juhao; Xiang, Dao

    2012-01-01

    The first copper cathode installed in the LCLS RF gun was used during LCLS commissioning for more than a year. However, after high charge operation (> 500 pC), the cathode showed a decline of quantum efficiency within the area of drive laser illumination. They report results of SEM, XPS and XAS studies that were carried out on this cathode after it was removed from the gun. X-ray absorption and X-ray photoelectron spectroscopy reveal surface contamination by various hydrocarbon compounds. In addition they report on the performance of the second installed cathode with emphasis on the spatial distribution of electron emission.

  14. Large area dispenser cathode applied to high current linac

    International Nuclear Information System (INIS)

    Yang Anmin; China Academy of Engineering Physics, Mianyang; Wu Dengxue; Liu Chenjun; Xia Liansheng; Wang Wendou; Zhang Kaizhi

    2005-01-01

    The paper introduced a dispenser cathode (411 M) which was 55 mm in diameter. A 200 kV long pulsed power generator with 2 μs flattop based on Marx-PEN and system with heat and voltage insulation were built. A 52 A space charge limited current was gained, when the temperature was 1165 degree C and the filament current was 18 A on the cathode and the voltage of the pulse was 75 kV at the cathode test stand. Experimental results show that the current values are consistent with the numerical simulation. The experiment reveals that the deflated gas will influence the cathode emission ability. (authors)

  15. Cathode fall measurement in a dielectric barrier discharge in helium

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yanpeng; Zheng, Bin; Liu, Yaoge [School of Electric Power, South China University of Technology, Guangzhou 510640 (China)

    2013-11-15

    A method based on the “zero-length voltage” extrapolation is proposed to measure cathode fall in a dielectric barrier discharge. Starting, stable, and discharge-maintaining voltages were measured to obtain the extrapolation zero-length voltage. Under our experimental conditions, the “zero-length voltage” gave a cathode fall of about 185 V. Based on the known thickness of the cathode fall region, the spatial distribution of the electric field strength in dielectric barrier discharge in atmospheric helium is determined. The strong cathode fall with a maximum field value of approximately 9.25 kV/cm was typical for the glow mode of the discharge.

  16. Measuring current emission and work functions of large thermionic cathodes

    International Nuclear Information System (INIS)

    Fortgang, C.M.

    2001-01-01

    As one component of the nations Stockpile Stewardship program, Los Alamos National Laboratory is constructing a 20 MeV, 2 kA (with a 4 kA upgrade capability), 3ps induction linac for doing x-ray radiography of explosive devices. The linac is one leg of a facility called the Dual-Axis Radiography Hydrodynamic Test Facility (DARHT). The electron gun is designed to operate at 3.2 MV. The gun is a Pierce type design and uses a 6.5' cathode for 2 kA operation and an 8' cathode for 4 kA operation. We have constructed a small facility called the Cathode Test Stand (CTS) to investigate engineering and physics issues regarding large thermionic dispenser-cathodes. In particular, we have looked at the issues of temperature uniformity on the cathode surface and cathode quality as measured by its work function. We have done thermal imaging of both 8' and 6.5' cathodes. Here we report on measurements of the cathode work function, both the average value and how it vanes across the face of the cathode.

  17. Explosive-emission cathode fabricated from superconducting cable

    International Nuclear Information System (INIS)

    Vavra, I.; Korenev, S.A.

    1989-01-01

    The authors describe on explosive-emission cathode that is based on stock superconducting cable - type NT-50, for example - that is bunched and held in a copper matrix. The copper matrix is partially etched away to create a multipoint structure for the cathode-plasma initiators. With 100-300 kV on the diode and a distance of 1 cm between the anode and cathode, electron currents of 20-80 and 60-300 A are obtained with cathode diameters of 0.5 and 1 cm, respectively

  18. Position resolution of MSGCs with cathode readout

    International Nuclear Information System (INIS)

    Amos, N.; Cremaldi, L.; Finocchiaro, G.; Gobbi, B.; Ng, K.K.; Manzella, V.; Peskov, V.; Rajagopalan, S.; Rubinov, P.; Schamberger, D.; Sellberg, G.; Steffens, J.; Tilden, R.; Wang, P.; Yu, Y.

    1997-01-01

    The performance of a telescope of micro-strip gas chambers (MSGC) has been studied in a beam of pions. Detectors with different anode pitch and with different substrates have been operated using several gas mixtures. The position resolutions obtained by reading out the cathodes for the 200 μm pitch is 42 μm. For the 400 μm pitch detectors the resolution is 42 μm after correcting the centroid positions with a function derived from the data. (orig.)

  19. Coated particles for lithium battery cathodes

    Science.gov (United States)

    Singh, Mohit; Eitouni, Hany Basam; Pratt, Russell Clayton; Mullin, Scott Allen; Wang, Xiao-Liang

    2017-07-18

    Particles of cathodic materials are coated with polymer to prevent direct contact between the particles and the surrounding electrolyte. The polymers are held in place either by a) growing the polymers from initiators covalently bound to the particle, b) attachment of the already-formed polymers by covalently linking to functional groups attached to the particle, or c) electrostatic interactions resulting from incorporation of cationic or anionic groups in the polymer chain. Carbon or ceramic coatings may first be formed on the surfaces of the particles before the particles are coated with polymer. The polymer coating is both electronically and ionically conductive.

  20. Low noise PWC cathode readout system

    International Nuclear Information System (INIS)

    Cisneros, E.; Hutchinson, D.; McShurley, D.; Richter, R.; Shapiro, S.

    1980-10-01

    A system has been developed, primarily to detect the induced charge deposited on PWC cathodes, which is versatile, fast and has a good signal to noise ratio for signals of greater than or equal to 10 -14 Coulomb input. The amplifier system, which is completely separated from the detector by 95 Ω coaxial cables, is followed by a new charge integrating, version of the SHAM/BADC system developed at SLAC. This SHAM IV system is CAMAC based, allowing for computer calibration of the entire system from amplifier through ADC

  1. Cathode Readout with Stripped Resistive Drift Tubes

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Kekelidze, G.D.; Novikov, E.A.; Peshekhonov, V.D.; Shafranov, M.D.; Zhil'tsov, V.E.

    1994-01-01

    A straw tube drift chamber prototype has been constructed and tested. The straw tube material is mylar film covered with carbon layer of resistivity 0.5, 30 and 70 k Ohm/sq. The gas mixture used was Ar/CH 4 . Both the anode wire and cathode signals were detected in order to study the behaviour of the chamber in the presence of X-ray ionization. The construction and the results of the study are presented. 7 refs., 11 figs., 1 tab

  2. Tailored Core Shell Cathode Powders for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Scott [NexTech Materials, Ltd.,Lewis Center, OH (United States)

    2015-03-23

    In this Phase I SBIR project, a “core-shell” composite cathode approach was evaluated for improving SOFC performance and reducing degradation of lanthanum strontium cobalt ferrite (LSCF) cathode materials, following previous successful demonstrations of infiltration approaches for achieving the same goals. The intent was to establish core-shell cathode powders that enabled high performance to be obtained with “drop-in” process capability for SOFC manufacturing (i.e., rather than adding an infiltration step to the SOFC manufacturing process). Milling, precipitation and hetero-coagulation methods were evaluated for making core-shell composite cathode powders comprised of coarse LSCF “core” particles and nanoscale “shell” particles of lanthanum strontium manganite (LSM) or praseodymium strontium manganite (PSM). Precipitation and hetero-coagulation methods were successful for obtaining the targeted core-shell morphology, although perfect coverage of the LSCF core particles by the LSM and PSM particles was not obtained. Electrochemical characterization of core-shell cathode powders and conventional (baseline) cathode powders was performed via electrochemical impedance spectroscopy (EIS) half-cell measurements and single-cell SOFC testing. Reliable EIS testing methods were established, which enabled comparative area-specific resistance measurements to be obtained. A single-cell SOFC testing approach also was established that enabled cathode resistance to be separated from overall cell resistance, and for cathode degradation to be separated from overall cell degradation. The results of these EIS and SOFC tests conclusively determined that the core-shell cathode powders resulted in significant lowering of performance, compared to the baseline cathodes. Based on the results of this project, it was concluded that the core-shell cathode approach did not warrant further investigation.

  3. Space-time-dependent development of the plasma in a pulsed hollow-cathode discharge

    International Nuclear Information System (INIS)

    Schaefer, G.; Wages, M.

    1988-01-01

    This paper presents streak camera investigations on the space-time-dependent development of pulsed hollow-cathode discharges (HCD's) starting from low-current preionization discharges. The discharges started closer to the end of the cathode, then moved further into the cathode, and then spread over a longer range along the axis of the cathode. The depth range of the intense pulsed hollow-cathode plasma was found to be two to eight times the cathode diameter

  4. Compact open cathode feed system for PEMFCs

    International Nuclear Information System (INIS)

    Ling, C.Y.; Cao, H.; Chen, Y.; Han, M.; Birgersson, E.

    2016-01-01

    Highlights: • Two different modes of feeding air into an open cathode PEMFC stack were studied. • Drawing air, as opposed to blowing air, into the stack results in more uniform air velocities entering the stack. • The uniform inlet velocities help maintain a more even temperature distribution field. • A 16% increase in power output is observed by drawing air into the stack. - Abstract: The open cathode design is commonly adopted for small sized proton exchange membrane fuel cells (PEMFCs) as it allows for smaller footprint and thus, higher power density. Axial fans are typically used to supply oxygen in these PEMFC systems. Apart from controlling stoichiometry, they also play a critical role in regulating internal temperature. This suggests that its location could have significant impact on fuel cell performance. In this work, the location of the fan is varied from the front to the rear in order to blow air or draw air into the stack respectively. The latter configuration reduces the non-uniformity in temperature and velocity by around 2 and 4 times respectively, resulting in a 16% increase in overall stack performance.

  5. Influence of substrate topography on cathodic delamination of anticorrosive coatings

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim

    2009-01-01

    and thereby the substrate topography, whereas the coating thickness had little influence. The presence of a significant potential gradient between the anode and the cathode and the dependency of the delamination rate on the tortuosity of the steel surface suggests that cathodic delamination is controlled...

  6. The Effect of Substrate Topography on Coating Cathodic Delamination

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Sørensen, Per A.; Kiil, Søren

    2011-01-01

    This article describes the effect of steel substrate topography on coating cathodic delamination. The study showed that the surface preparation can be used to control and minimize the rate of cathodic delamination. The coating should have maximum wetting properties so that substrates with high...

  7. Wire winding increases lifetime of oxide coated cathodes

    Science.gov (United States)

    Kerslake, W.; Vargo, D.

    1965-01-01

    Refractory-metal heater base wound with a thin refractory metal wire increases the longevity of oxide-coated cathodes. The wire-wound unit is impregnated with the required thickness of metal oxide. This cathode is useful in magnetohydrodynamic systems and in electron tubes.

  8. Reducing DRIFT backgrounds with a submicron aluminized-mylar cathode

    Science.gov (United States)

    Battat, J. B. R.; Daw, E.; Dorofeev, A.; Ezeribe, A. C.; Fox, J. R.; Gauvreau, J.-L.; Gold, M.; Harmon, L.; Harton, J.; Lafler, R.; Landers, J.; Lauer, R. J.; Lee, E. R.; Loomba, D.; Lumnah, A.; Matthews, J.; Miller, E. H.; Mouton, F.; Murphy, A. St. J.; Paling, S. M.; Phan, N.; Sadler, S. W.; Scarff, A.; Schuckman, F. G.; Snowden-Ifft, D.; Spooner, N. J. C.; Walker, D.

    2015-09-01

    Background events in the DRIFT-IId dark matter detector, mimicking potential WIMP signals, are predominantly caused by alpha decays on the central cathode in which the alpha particle is completely or partially absorbed by the cathode material. We installed a 0.9 μm thick aluminized-mylar cathode as a way to reduce the probability of producing these backgrounds. We study three generations of cathode (wire, thin-film, and radiologically clean thin-film) with a focus on the ratio of background events to alpha decays. Two independent methods of measuring the absolute alpha decay rate are used to ensure an accurate result, and agree to within 10%. Using alpha range spectroscopy, we measure the radiologically cleanest cathode version to have a contamination of 3.3±0.1 ppt 234U and 73±2 ppb 238U. This cathode reduces the probability of producing an RPR from an alpha decay by a factor of 70±20 compared to the original stainless steel wire cathode. First results are presented from a texturized version of the cathode, intended to be even more transparent to alpha particles. These efforts, along with other background reduction measures, have resulted in a drop in the observed background rate from 500/day to 1/day. With the recent implementation of full-volume fiducialization, these remaining background events are identified, allowing for background-free operation.

  9. Development of cathode material for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Rustam Mukhtaruly Turganaly

    2014-08-01

    Full Text Available The electrochemical characteristics of the cathode material coated with carbon layer has been developed. Various carbon coating methods. There  has been carried out a comparative electrochemical analysis of the coated and uncoated with carbon cathode material. 

  10. Plasma-induced field emission study of carbon nanotube cathode

    Directory of Open Access Journals (Sweden)

    Yi Shen

    2011-10-01

    Full Text Available An investigation on the plasma-induced field emission (PFE properties of a large area carbon nanotube (CNT cathode on a 2 MeV linear induction accelerator injector is presented. Experimental results show that the cathode is able to emit intense electron beams. Intense electron beams of 14.9–127.8  A/cm^{2} are obtained from the cathode. The CNT cathode desorbs gases from the CNTs during the PFE process. The fast cathode plasma expansion affects the diode perveance. The amount of outgassing is estimated to be 0.06–0.49  Pa·L, and the ratio of outgassing and electron are roughly calculated to be within the range of 170–350 atoms per electron. The effect of the outgassing is analyzed, and the outgassing mass spectrum of the CNT cathode has been studied during the PFE. There is a significant desorption of CO_{2}, N_{2}(CO, and H_{2} gases, which plays an important role during the PFE process. All the experiments demonstrate that the outgassing plays an important role in the formation of the cathode plasma. Moreover, the characteristic turn-on time of the CNT cathode was measured to be 39 ns.

  11. Cathode refunctionalization as a lithium ion battery recycling alternative

    Science.gov (United States)

    Ganter, Matthew J.; Landi, Brian J.; Babbitt, Callie W.; Anctil, Annick; Gaustad, Gabrielle

    2014-06-01

    An approach to battery end-of-life (EOL) management is developed involving cathode refunctionalization, which enables remanufacturing of the cathode from EOL materials to regain the electrochemical performance. To date, the optimal end-of-life management of cathode materials is based on economic value and environmental impact which can influence the methods and stage of recycling. Traditional recycling methods can recover high value metal elements (e.g. Li, Co, Ni), but still require synthesis of new cathode from a mix of virgin and recovered materials. Lithium iron phosphate (LiFePO4) has been selected for study as a representative cathode material due to recent mass adoption and limited economic recycling drivers due to the low inherent cost of iron. Refunctionalization of EOL LiFePO4 cathode was demonstrated through electrochemical and chemical lithiation methods where the re-lithiated LiFePO4 regained the original capacity of 150-155 mAh g-1. The environmental impact of the new recycling technique was determined by comparing the embodied energy of cathode material originating from virgin, recycled, and refunctionalized materials. The results demonstrate that the LiFePO4 refunctionalization process, through chemical lithiation, decreases the embodied energy by 50% compared to cathode production from virgin materials.

  12. Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources

    DEFF Research Database (Denmark)

    Atlung, Sven; West, Keld; Jacobsen, Torben

    1979-01-01

    Battery systems based on alkali metal anodes and solid solution cathodes,i.e., cathodes based on the insertion of the alkali cation in a "host lattice,"show considerable promise for high energy density storage batteries. Thispaper discusses the interaction between battery requirements...

  13. A Preliminary Study on Cathodic Prevention in Reinforced Mortar

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.; Mol, J.M.C.; De Wit, J.H.W.

    2010-01-01

    This work presents the preliminary tests on the performance of cathodic prevention (CPre) in reinforced mortar, subjected to aggressive (10% NaCl environment). Cathodic prevention is an electrochemical technique for minimizing, actually "preventing" any eventual corrosion of the steel bars in

  14. Barium depletion study on impregnated cathodes and lifetime prediction

    International Nuclear Information System (INIS)

    Roquais, J.M.; Poret, F.; Doze, R. le; Ricaud, J.L.; Monterrin, A.; Steinbrunn, A.

    2003-01-01

    In the thermionic cathodes used in cathode ray-tubes (CRTs), barium is the key element for the electronic emission. In the case of the dispenser cathodes made of a porous tungsten pellet impregnated with Ba, Ca aluminates, the evaporation of Ba determines the cathode lifetime with respect to emission performance in the CRT. The Ba evaporation results in progressive depletion of the impregnating material inside the pellet. In the present work, the Ba depletion with time has been extensively characterized over a large range of cathode temperature. Calculations using the depletion data allowed modeling of the depletion as a function of key parameters. The link between measured depletion and emission in tubes has been established, from which an end-of-life criterion was deduced. Taking modeling into account, predicting accelerated life-tests were performed using high-density maximum emission current (MIK)

  15. Analytical study of electron flows with a virtual cathode

    International Nuclear Information System (INIS)

    Dubinov, A.E.

    2000-01-01

    The dynamics of the electron flow behavior by its injection into a half-space is considered. Two problems are considered, namely the long-term injection of a monoenergetic electron flow and instantaneous flow injection with an assigned electron energy spectrum. The all flow electrons in both cases return to the injection plane. The simple analytical self-consistent model of the initial stage of the virtual cathode formation in a plane-parallel equipotential gap is plotted in the course of analysis whereof the duration of the virtual cathode formation process is determined. The performance of this model is not limited by the multivalence of the electron velocity in the flow. This makes it possible to extend the frames of the model performance relative to the moment of the virtual cathode formation and to consider its dynamics. The frequency of electron oscillations in the potential cathode-virtual cathode well is determined on the basis of the above model [ru

  16. New doped tungsten cathodes. Applications to power grid tubes

    International Nuclear Information System (INIS)

    Cachard, J. de; Cadoret, K; Martinez, L.; Veillet, D.; Millot, F.

    2001-01-01

    Thermionic emission behavior of tungsten/tungsten carbide modified with rare earth (La, Ce, Y) oxides is examined on account of suitability to deliver important current densities in a thermo-emissive set up and for long lifetime. Work functions of potential cathodes have been determined from Richardson plots for La 2 O 3 doped tungsten and for tungsten covered with variable compositions rare earth tungstates. The role of platinum layers covering the cathode was also examined. Given all cathodes containing mainly lanthanum oxides were good emitters, emphasis was put on service lifetime. Comparisons of lifetime in tungsten doped with rare earth oxides and with rare earth tungstates show that microstructure of the operating cathodes may play the major role in the research of very long lifetime cathodes. Based on these results, tests still running show lifetime compatible with power grid tubes applications. (author)

  17. Focused cathode design to reduce anode heating during vircator operation

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A. [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-10-15

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

  18. Post-Test Inspection of NASA's Evolutionary Xenon Thruster Long-Duration Test Hardware: Discharge and Neutralizer Cathodes

    Science.gov (United States)

    Shastry, Rohit; Soulas, George C.

    2016-01-01

    The NEXT Long-Duration Test is part of a comprehensive thruster service life assessment intended to demonstrate overall throughput capability, validate service life models, quantify wear rates as a function of time and operating condition, and identify any unknown life-limiting mechanisms. The test was voluntarily terminated in February 2014 after demonstrating 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The post-test inspection of the thruster hardware began shortly afterwards with a combination of non-destructive and destructive analysis techniques, and is presently nearing completion. This paper presents relevant results of the post-test inspection for both discharge and neutralizer cathodes. Discharge keeper erosion was found to be significantly reduced from what was observed in the NEXT 2 kh wear test and NSTAR Extended Life Test, providing adequate protection of vital cathode components throughout the test with ample lifetime remaining. The area of the discharge cathode orifice plate that was exposed by the keeper orifice exhibited net erosion, leading to cathode plate material building up in the cathode-keeper gap and causing a thermally-induced electrical short observed during the test. Significant erosion of the neutralizer cathode orifice was also found and is believed to be the root cause of an observed loss in flow margin. Deposition within the neutralizer keeper orifice as well as on the downstream surface was thicker than expected, potentially resulting in a facility-induced impact on the measured flow margin from plume mode. Neutralizer keeper wall erosion on the beam side was found to be significantly lower compared to the NEXT 2 kh wear test, likely due to the reduction in beam extraction diameter of the ion optics that resulted in decreased ion impingement. Results from the post-test inspection have led to some minor thruster design improvements.

  19. The effect of cathode surface impurities on gap closure

    International Nuclear Information System (INIS)

    Hinshelwood, D.D.

    1983-01-01

    Gap closure due to cathode (or anode) plasma motion is often the principal limitation on the pulse length of intense beam diodes and magnetically insulated transmission lines. Since the plasma expansion velocity is typically on the order of the sound speed, a high atomic number plasma is desirable. In recent experiments performed on a Sandia Nereus accelerator (240kV, 50kA, 3-30kA/cm 2 , 70ns) with a parallel plate diode, the cathode plasma was seen to be composed of both the cathode substrate material and constituents (hydrogen and carbon) of surface contaminants such as pump oils. The plasma expansion velocities, inferred from impedance measurements, were 1.5-2 cm/μs and were the same for carbon, aluminum and stainless steel cathodes. This similarity, combined with the temperature estimates of 2-3eV obtained from spectroscopy, implied that the expansion was due to protons from surface contaminants. Similar results were reported from studies of ablatively driven plasmas. In a continuation of the work, the results of time and spatially resolved spectroscopic studies of plasma formed on aluminum cathodes, yielding measurements of the expansion velocities of different components of the cathode plasma, are presented. We have heated stainless steel cathodes in situ to 700 0 C. The Hα line emission was seen to decrease by more than an order of magnitude (becoming lost in the background) when the cathodes were heated but no change in the impedance behavior was observed. Evidently the heating was insufficient to remove the last monolayer, which should contain more than enough hydrogen to close the gap. Preliminary experiments with gold-plated cathodes (which should be more resistant to chemisorption) yielded similar results. Further measurements of plasma formed on heated cathodes are presented

  20. Determination of electric field strength and kinetic temperature in the cathode fall region of a hollow cathode discharge

    Energy Technology Data Exchange (ETDEWEB)

    De la Rosa, M I; Perez, C; Gruetzmacher, K [Universidad de Valladolid, Facultad de Ciencias, 47071 Valladolid (Spain); Gonzalo, A B; Del Val, J A, E-mail: delarosa@opt.uva.e [Universidad de Salamanca, Escuela Politecnica Superior, 05003 Avila (Spain)

    2010-05-01

    In this work, we demonstrate the high potential of two-photon excitation of the 1S -2S transition of atomic hydrogen followed by optogalvanic detection, for measuring under identical experimental conditions, the kinetic temperature and the electric field strength in the cathode sheath region of a hollow cathode discharge. The first obtained results for both parameters are discussed in this paper.

  1. Geiger counters of gamma rays with a bismuth cathode; Compteurs de geiger a rayons gamma a cathode de bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, R; Legrand, J P [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    Geiger Muller counters present a lake of efficiency of some per cent, for the {gamma} radiations. In the region 0,3 - 1 MeV, a substantial growth of their output can be obtained by a special construction of their cathode. In accordance with previous works, we constructed some counter of formed cathode by a pleated copper wire fencing covered of Bi by electrolysis. The successive modifications brought to a cylindrical conventional cathode in sheet metal of copper, that succeeds to this type of cathode, drive to an improvement of the output. (M.B.) [French] Les compteurs de Geiger Muller presentent une efficacite assez faible de l'ordre de quelques pour cent, pour les rayonnements {gamma}. Dans la region 0,3 - 1 MeV, un accroissement substantiel de leur rendement peut etre obtenu par une construction speciale de leur cathode. Conformement a des travaux anterieurs, nous avons construit des compteurs a cathode formee par un grillage de cuivre plisse recouvert de Bi par electrolyse. Les modifications successives apportees a une cathode conventionnelle cylindrique en tole de cuivre, qui aboutissent a ce type de cathode, conduisent a une amelioration du rendement. (M.B.)

  2. A one-dimensional model illustrating virtual-cathode formation in a novel coaxial virtual-cathode oscillator.

    CSIR Research Space (South Africa)

    Turner, GR

    2014-09-01

    Full Text Available A one-dimensional electrostatic sheet model of a coaxial geometry Virtual Cathode Oscillator (VCO) is presented. The cathode is centrally located and connects to a peripherally located plate electrode to form a resonant cavity, and is thus...

  3. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m -2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation. © 2013 Elsevier B.V. All rights reserved.

  4. Cationic fluorinated polymer binders for microbial fuel cell cathodes

    KAUST Repository

    Chen, Guang; Wei, Bin; Logan, Bruce E.; Hickner, Michael A.

    2012-01-01

    Fluorinated quaternary ammonium-containing polymers were used as catalyst binders in microbial fuel cell (MFC) cathodes. The performance of the cathodes was examined and compared to NAFION ® and other sulfonated aromatic cathode catalyst binders using linear sweep voltammetry (LSV), impedance spectroscopy, and performance tests in single chamber air-cathode MFCs. The cathodes with quaternary ammonium functionalized fluorinated poly(arylene ether) (Q-FPAE) binders showed similar current density and charge transfer resistance (R ct) to cathodes with NAFION ® binders. Cathodes containing either of these fluorinated binders exhibited better electrochemical responses than cathodes with sulfonated or quaternary ammonium-functionalized RADEL ® poly(sulfone) (S-Radel or Q-Radel) binders. After 19 cycles (19 d), the power densities of all the MFCs declined compared to the initial cycles due to biofouling at the cathode. MFC cathodes with fluorinated polymer binders (1445 mW m -2, Q-FPAE-1.4-H; 1397 mW m -2, Q-FPAE-1.4-Cl; 1277 mW m -2, NAFION ®; and 1256 mW m -2, Q-FPAE-1.0-Cl) had better performance than those with non-fluorinated polymer binders (880 mW m -2, S-Radel; 670 mW m -2, Q-Radel). There was a 15% increase in the power density using the Q-FPAE binder with a 40% higher ion exchange capacity (Q-FPAE-1.4-H compared to Q-FPAE-1.0-Cl) after 19 cycles of operation, but there was no effect on the power production due to counter ions in the binder (Cl -vs. HCO 3 -). The highest-performance cathodes (NAFION ® and Q-FPAE binders) had the lowest charge transfer resistances (R ct) in fresh and in fouled cathodes despite the presence of thick biofilms on the surface of the electrodes. These results show that fluorinated binders may decrease the penetration of the biofilm and associated biopolymers into the cathode structure, which helps to combat MFC performance loss over time. © 2012 The Royal Society of Chemistry.

  5. Cathodic polarization as a mean to stabilize physical parameters of underground pipelines

    International Nuclear Information System (INIS)

    Skritskij, R.R.

    1993-01-01

    Possibilities of further utilization of old gas-pipelines are determined. The investigations conducted confirm the conclusions of the previous researches on the stabilizing and improving effect of cathode polarization on the physico-mechanical properties of gas pipeline steel. Efficient and constant electrochemical protection of gas pipelines with the expired or close to expiration life time stabilizers and improves the basic physicomechanical properties of pipeline steel: ultimate strength and yield point, relative stretching. The same refers to impact strength. Degradation of physico-mechanical properties of gas pipeline steel is observed only in the zone of the welded joint

  6. Study of some structural properties of hydrogenated amorphous silicon thin films prepared by radiofrequency cathodic sputtering

    International Nuclear Information System (INIS)

    Mellassi, K.; Chafik El Idrissi, M.; Barhdadi, A.

    2001-08-01

    In this work, we have used the grazing X-rays reflectometry technique to characterise hydrogenated amorphous silicon thin films deposited by radio-frequency cathodic sputtering. Relfectometry measurements are taken immediately after films deposition as well as after having naturally oxidised their surfaces during a more or less prolonged stay in the ambient. For the films examined just after deposition, the role of hydrogen appears in the increase of their density. For those analysed after a short stay in the ambient, hydrogen plays a protective role against the oxidation of their surfaces. This role disappears when the stay in the ambient is so long. (author)

  7. Catadioptric aberration correction in cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M. [IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 (United States); Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-04-15

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed.

  8. Cathodic Vacuum Arc Plasma of Thallium

    International Nuclear Information System (INIS)

    Yushkov, Georgy Yu.; Anders, Andre

    2006-01-01

    Thallium arc plasma was investigated in a vacuum arc ion source. As expected from previous consideration of cathode materials in the Periodic Table of the Elements, thallium plasma shows lead-like behavior. Its mean ion charge state exceeds 2.0 immediately after arc triggering, reaches the predicted 1.60 and 1.45 after about 100 microsec and 150 microsec, respectively. The most likely ion velocity is initially8000 m/s and decays to 6500 m/s and 6200 m/s after 100 microsec and 150microsec, respectively. Both ion charge states and ion velocities decay further towards steady state values, which are not reached within the 300microsec pulses used here. It is argued that the exceptionally high vapor pressure and charge exchange reactions are associated with the establishment of steady state ion values

  9. Properties of cathode materials in alkaline cells

    International Nuclear Information System (INIS)

    Salkind, A.J.; McBreen, J.; Freeman, R.; Parkhurst, W.A.

    1985-01-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve-type silver-zinc batteries, a new material - AgNiO/sub 2/ - and several nickel electrodes for nickel-cadmium and nickel-hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities detected by XPS and SAM. After the first discharge AgNiO/sub 2/ can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic-bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)/sub 2/ largely eliminate this

  10. Carbon nanowalls in field emission cathodes

    Directory of Open Access Journals (Sweden)

    Belyanin A. F.

    2017-12-01

    Full Text Available The carbon nanowall (CNW layers were grown from a gas mixture of hydrogen and methane, activated by a DC glow discharge, on Si substrates (Si/CNW layered structure. The second layer of CNW was grown either on the first layer (Si/CNW/CNW structure or on Ni or NiO films deposited on the first CNW layer (Si/CNW/Ni/CNW and Si/CNW/NiO/CNW structures. The composition and structure of the resulting layered structures were studied using scanning electron microscopy, Raman spectroscopy, and X-ray diffractometry. It was found that annealing of Si/CNW structure in vacuum, growing of the second CNW layer on Si/CNW, as well as deposition of Ni or NiO films prior to the growing of the second CNW layer improve functional properties of field emission cathodes based on the electron-emitting CNW layers.

  11. Olivine-type cathodes. Achievements and problems

    Science.gov (United States)

    Yamada, Atsuo; Hosoya, Mamoru; Chung, Sai-Cheong; Kudo, Yoshihiro; Hinokuma, Koichiro; Liu, Kuang-Yu; Nishi, Yoshio

    The recent progress at Sony in the design of practical olivine-type cathodes is reviewed briefly. First principle calculations revealed LiFePO 4 is a semiconductor with ca. 0.3 eV band gap and LiMnPO 4 is an insulator with ca. 2 eV band gap, which seems the major intrinsic obstacle to a smooth redox reaction at 4 V in the Mn-rich phase. Attention is also focused on the lattice frustration induced by the strong electron (Mn 3+: 3d 4-e gσ ∗)-lattice interaction (Jahn-Teller effect) in the charged state of Li(Mn yFe 1- y)PO 4 (0≤ y≤1). Dense nanocomposite formation with disordered conductive carbon as well as the choice of the appropriate synthetic precursors is highlighted as important engineering aspects, followed by some specific issues concerning tolerance to unusual conditions.

  12. Uranium vapor generator: pulsed hollow cathode lamp

    International Nuclear Information System (INIS)

    Carleer, M.; Gagne, J.; Leblanc, B.; Demers, Y.; Mongeau, B.

    1979-01-01

    The production of uranium vapors has been studied in the 5 L 0 6 ground state using a pulsed hollow cathode lamp. The evolution of the 238 U ( 5 L 0 6 ) concentration with time has been studied with Xe and Ar as buffer gases. A density of 2.7 x 10 13 atoms cm -3 was obtained with Xe as a buffer gas. In addition, those measurements, obtained from the absorption of a laser beam tuned to the 5758.143 A ( 5 L 0 6 -17,361 7 L 6 ) transition, allowed the determination of the transition probability A=2.1 x 10 5 sec -1 and of the branching ratio BR=0.08 for this transition

  13. Using cathode spacers to minimize reactor size in air cathode microbial fuel cells

    KAUST Repository

    Yang, Qiao

    2012-04-01

    Scaling up microbial fuel cells (MFCs) will require more compact reactor designs. Spacers can be used to minimize the reactor size without adversely affecting performance. A single 1.5mm expanded plastic spacer (S1.5) produced a maximum power density (973±26mWm -2) that was similar to that of an MFC with the cathode exposed directly to air (no spacer). However, a very thin spacer (1.3mm) reduced power by 33%. Completely covering the air cathode with a solid plate did not eliminate power generation, indicating oxygen leakage into the reactor. The S1.5 spacer slightly increased columbic efficiencies (from 20% to 24%) as a result of reduced oxygen transfer into the system. Based on operating conditions (1000ς, CE=20%), it was estimated that 0.9Lh -1 of air would be needed for 1m 2 of cathode area suggesting active air flow may be needed for larger scale MFCs. © 2012 Elsevier Ltd.

  14. An experimental study of molten salt electrorefining of uranium using solid iron cathode and liquid cadmium cathode for development of pyrometallurgical reprocessing

    International Nuclear Information System (INIS)

    Koyama, Tadafumi; Iizuka, Masatoshi; Tanaka, Hiroshi; Tokiwai, Moriyasu; Shoji, Yuichi; Fujita, Reiko; Kobayashi, Tsuguyuki.

    1997-01-01

    Electrorefining of uranium was studied for developing pyrometallurgical reprocessing technology of metal fuel cycle. After concentration dependence of polarization curve was measured, uranium was electrodeposited either on solid iron cathode or in liquid cadmium cathode. Design and operational conditions of the cathode were improved for obtaining much greater quantity of deposit, resulting in recovery of 732g of dendritic uranium on a single solid cathode, and of 232g of uranium in 2,344g of a liquid cadmium cathode. The behaviors of electro-codeposition of rare earth elements with uranium were observed for liquid cadmium cathode, and were found to follow the local equilibrium between salt electrolyte and cathode. The decontamination factors of FP simulating elements from uranium were tentatively determined as >2,000 for deposition to solid cathode and as >7 for deposition to liquid cadmium cathode, respectively. (author)

  15. Study of the hollow cathode plasma electron-gun

    International Nuclear Information System (INIS)

    Zhang Yonghui; Jiang Jinsheng; Chang Anbi

    2003-01-01

    For developing a novel high-current, long pulse width electron source, the theoretics and mechanism of the hollow cathode plasma electron-gun are analyzed in detail in this paper, the structure and the physical process of hollow cathode plasma electron-gun are also studied. This gun overcomes the limitations of most high-power microwave tubes, which employ either thermionic cathodes that produce low current-density beams because of the limitation of the space charge, or field-emission cathodes that offer high current density but provide only short pulse width because of plasma closure of the accelerating gap. In the theories studying on hollow cathode plasma electron-gun, the characteristic of the hollow-cathode discharge is introduced, the action during the forming of plasma of the stimulating electrode and the modulating anode are discussed, the movement of electrons and ions and the primary parameters are analyzed, and the formulas of the electric field, beam current density and the stabilization conditions of the beam current are also presented in this paper. The numerical simulation is carried out based on Poisson's equation, and the equations of current continuity and movement. And the optimized result is reported. On this basis, we have designed a hollow-cathode-plasma electron-gun, whose output pulse current is 2 kA, and pulse width is 1 microsecond

  16. Oxide Fiber Cathode Materials for Rechargeable Lithium Cells

    Science.gov (United States)

    Rice, Catherine E.; Welker, Mark F.

    2008-01-01

    LiCoO2 and LiNiO2 fibers have been investigated as alternatives to LiCoO2 and LiNiO2 powders used as lithium-intercalation compounds in cathodes of rechargeable lithium-ion electrochemical cells. In making such a cathode, LiCoO2 or LiNiO2 powder is mixed with a binder [e.g., poly(vinylidene fluoride)] and an electrically conductive additive (usually carbon) and the mixture is pressed to form a disk. The binder and conductive additive contribute weight and volume, reducing the specific energy and energy density, respectively. In contrast, LiCoO2 or LiNiO2 fibers can be pressed and sintered to form a cathode, without need for a binder or a conductive additive. The inter-grain contacts of the fibers are stronger and have fewer defects than do those of powder particles. These characteristics translate to increased flexibility and greater resilience on cycling and, consequently, to reduced loss of capacity from cycle to cycle. Moreover, in comparison with a powder-based cathode, a fiber-based cathode is expected to exhibit significantly greater ionic and electronic conduction along the axes of the fibers. Results of preliminary charge/discharge-cycling tests suggest that energy densities of LiCoO2- and LiNiO2-fiber cathodes are approximately double those of the corresponding powder-based cathodes.

  17. High Performance Cathodes for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  18. Self-organization in cathode boundary layer discharges in xenon

    International Nuclear Information System (INIS)

    Takano, Nobuhiko; Schoenbach, Karl H

    2006-01-01

    Self-organization of direct current xenon microdischarges in cathode boundary layer configuration has been studied for pressures in the range 30-140 Torr and for currents in the range 50 μA-1 mA. Side-on and end-on observations of the discharge have provided information on the structure and spatial arrangement of the plasma filaments. The regularly spaced filaments, which appear in the normal glow mode when the current is lowered, have a length which is determined by the cathode fall. It varies, dependent on pressure and current, between 50 and 70 μm. The minimum diameter is approximately 80 μm, as determined from the radiative emission in the visible. The filaments are sources of extensive excimer emission. Measurements of the cathode fall length have allowed us to determine the secondary emission coefficient for the discharge in the normal glow mode and to estimate the cathode fall voltage at the transition from normal glow mode to filamentary mode. It was found that the cathode fall voltage at this transition decreases, indicating the onset of additional electron gain processes at the cathode. The regular arrangement of the filaments, self-organization, is assumed to be due to Coulomb interactions between the positively charged cathode fall channels and positive space charges on the surface of the surrounding dielectric spacer. Calculations based on these assumptions showed good agreement with experimentally observed filament patterns

  19. Neutral hydrophilic cathode catalyst binders for microbial fuel cells

    KAUST Repository

    Saito, Tomonori

    2011-01-01

    Improving oxygen reduction in microbial fuel cell (MFC) cathodes requires a better understanding of the effects of the catalyst binder chemistry and properties on performance. A series of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) polymers with systematically varying hydrophilicity were designed to determine the effect of the hydrophilic character of the binder on cathode performance. Increasing the hydrophilicity of the PS-b-PEO binders enhanced the electrochemical response of the cathode and MFC power density by ∼15%, compared to the hydrophobic PS-OH binder. Increased cathode performance was likely a result of greater water uptake by the hydrophilic binder, which would increase the accessible surface area for oxygen reduction. Based on these results and due to the high cost of PS-b-PEO, the performance of an inexpensive hydrophilic neutral polymer, poly(bisphenol A-co-epichlorohydrin) (BAEH), was examined in MFCs and compared to a hydrophilic sulfonated binder (Nafion). MFCs with BAEH-based cathodes with two different Pt loadings initially (after 2 cycles) had lower MFC performance (1360 and 630 mW m-2 for 0.5 and 0.05 mg Pt cm-2) than Nafion cathodes (1980 and 1080 mW m -2 for 0.5 and 0.05 mg Pt cm-2). However, after long-term operation (22 cycles, 40 days), power production of each cell was similar (∼1200 and 700-800 mW m-2 for 0.5 and 0.05 mg Pt cm-2) likely due to cathode biofouling that could not be completely reversed through physical cleaning. While binder chemistry could improve initial electrochemical cathode performance, binder materials had less impact on overall long-term MFC performance. This observation suggests that long-term operation of MFCs will require better methods to avoid cathode biofouling. © 2011 The Royal Society of Chemistry.

  20. High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries.

    Science.gov (United States)

    Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo

    2017-12-13

    Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.

  1. Resonant cavity operation of a virtual cathode oscillator

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.

    1986-01-01

    Gigawatt level virtual cathode sources have been proposed for several applications. These include microwave weapons and drivers for high-energy particle accelerators. Both of these require a microwave source with very high power output that is controllable in frequency and phase. A conventional virtual cathode oscillator will not meet these requirements. The addition of a resonant cavity surrounding the oscillating virtual cathode either alone or pumped with a low-power injection signal, causing it to operate as an amplifier, could greatly influence the performance of this type of source making it more practical for accelerator and weapon applications. The progress on an experiment to test these concepts will be discussed

  2. Iron phosphate materials as cathodes for lithium batteries

    CERN Document Server

    Prosini, Pier Paolo

    2011-01-01

    ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" describes the synthesis and the chemical-physical characteristics of iron phosphates, and presents methods of making LiFePO4 a suitable cathode material for lithium-ion batteries. The author studies carbon's ability to increase conductivity and to decrease material grain size, as well as investigating the electrochemical behaviour of the materials obtained. ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" also proposes a model to explain lithium insertion/extraction in LiFePO4 and to predict voltage profiles at variou

  3. Operation and Applications of the Boron Cathodic Arc Ion Source

    International Nuclear Information System (INIS)

    Williams, J. M.; Freeman, J. H.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.

    2008-01-01

    The boron cathodic arc ion source has been developed with a view to several applications, particularly the problem of shallow junction doping in semiconductors. Research has included not only development and operation of the boron cathode, but other cathode materials as well. Applications have included a large deposition directed toward development of a neutron detector and another deposition for an orthopedic coating, as well as the shallow ion implantation function. Operational experience is described and information pertinent to commercial operation, extracted from these experiments, is presented.

  4. Erosion behavior of composite Al-Cr cathodes in cathodic arc plasmas in inert and reactive atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Franz, Robert, E-mail: robert.franz@unileoben.ac.at; Mendez Martin, Francisca; Hawranek, Gerhard [Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700 Leoben (Austria); Polcik, Peter [Plansee Composite Materials GmbH, Siebenbürgerstrasse 23, 86983 Lechbruck am See (Germany)

    2016-03-15

    Al{sub x}Cr{sub 1−x} composite cathodes with Al contents of x = 0.75, 0.5, and 0.25 were exposed to cathodic arc plasmas in Ar, N{sub 2}, and O{sub 2} atmospheres and their erosion behavior was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by x-ray diffraction analysis. Cathode poisoning effects in the reactive N{sub 2} and O{sub 2} atmospheres were nonuniform as a result of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded center region of the cathodes.

  5. Development of Hollow Cathode of High Power Middle Pressure Arcjet

    National Research Council Canada - National Science Library

    Vaulin, Eujeni

    1995-01-01

    ...: Determine integral performances of arcjet devices in nitrogen, ammonia, and their mixtures using hollow cathode devices at low and high current levels, perform short term tests (up to 50 hours...

  6. Ultraviolet Generation by Atmospheric Micro-Hollow Cathode Discharges

    National Research Council Canada - National Science Library

    Cooper, J

    2004-01-01

    Report developed under STTR contract for topic AFO3TOl9. This report documents the program objectives, work performed, results obtained, and future plans for a program to develop micro-hollow cathode discharge (MHCD...

  7. Cathodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Samson, Alfred Junio

    . High performance cathodes were obtained from strontium-doped lanthanum cobaltite (LSC) infiltrated - Ce0.9Gd0.1O1.95 (CGO) ionic conducting backbone. Systematic tuning of the CGO and LSC firing temperatures and LSC loading resulted in a cathode with low polarization resistance, Rp = 0.044 cm2 at 600......This dissertation focuses on the development of nanostructured cathodes for solid oxide fuel cells (SOFCs) and their performance at low operating temperatures. Cathodes were mainly fabricated by the infiltration method, whereby electrocatalysts are introduced onto porous, ionic conducting backbones...... with increasing LSC firing temperature, highlighting the importance of materials compability over higher ionic conductivity. The potential of Ca3Co4O9+delta as an electrocatalyst for SOFCs has also been explored and encouraging results were found i.e., Rp = 0.64 cm2 for a Ca3Co4O9+delta/CGO 50 vol % composite...

  8. Method of manufacture of a cathode ray tube

    International Nuclear Information System (INIS)

    1976-01-01

    This invention reveals the method of manufacturing a cathode ray tube with an electrode system for the excitation of at least two electron beams with special attention given to mounting the electrodes accurately

  9. The cathode material for a plasma-arc heater

    Science.gov (United States)

    Yelyutin, A. V.; Berlin, I. K.; Averyanov, V. V.; Kadyshevskii, V. S.; Savchenko, A. A.; Putintseva, R. G.

    1983-11-01

    The cathode of a plasma arc heater experiences a large thermal load. The temperature of its working surface, which is in contact with the plasma, reaches high values, as a result of which the electrode material is subject to erosion. Refractory metals are usually employed for the cathode material, but because of the severe erosion do not usually have a long working life. The most important electrophysical characteristic of the electrode is the electron work function. The use of materials with a low electron work function allows a decrease in the heat flow to the cathode, and this leads to an increase in its erosion resistance and working life. The electroerosion of certain materials employed for the cathode in an electric arc plasma generator in the process of reduction smelting of refractory metals was studied.

  10. Characteristics of uranium oxide cathode for neutron streak camera

    International Nuclear Information System (INIS)

    Niki, H.; Itoga, K.; Yamanaka, M.; Yamanaka, T.; Yamanaka, C.

    1986-01-01

    In laser fusion research, time-resolved neutron measurements require 20ps resolution in order to obtain the time history of the D-T burn. Uranium oxide was expected to be a sensitive material as a cathode of a neutron streak camera because of its large fission cross section. The authors report their measurements of some characteristics of the uranium oxide cathode connected to a conventional streak tube. 14 MeV neutron signal were observed as the bright spots on a TV monitor using a focus mode opration. Detection efficiency was ∼ 1 x 10 -6 for 1 μm thick cathode. Each signal consisted of more than several tens of components, which were corresponding to the secondary electrons dragged out from the cathode by a fission fragment. Time resolution is thought to be limited mainly by the transit time spread of the secondary electrons. 14ps resolution was obtained by a streak mode operation for a single fission event

  11. Lithium secondary batteries: Role of polymer cathode morphology

    Science.gov (United States)

    Naoi, Katsuhiko; Osaka, Tetsuya; Owens, Boone B.

    1988-06-01

    Electrically conducting polymers have been utilized both as the cathode and as the electrolyte element of Li secondary cells. Polymer cathodes were limited in their suitability for batteries because of the low energy content associated with low levels of doping and the inclusion of complex ionic species in the cathode. Recent studies have indicated that doping levels up to 100 percent can be achieved in polyanilene. High doping levels in combination with controlled morphologies have been found to improve the energy and rate capabilities of polymer cathodes. A morphology-modifying technique was utilized to enhance the charge/discharge characteristics of Li/liquid electrolyte polypyrrole cells. The polymer is electropolymerized in a preferred orientation morphology when the substrate is first precoated with an insulating film of nitrile butadiene rubber (NBR). Modification of the kinetic behavior of the electrode results from variations in the chemical composition of the NBR.

  12. Micro-cathode Arc Thruster PhoneSat Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — The Micro-cathode Arc Thruster Phonesat Experiment  was a joint project between George Washington University and NASA Ames Research Center that successfully...

  13. Measuring and correcting aberrations of a cathode objective lens

    International Nuclear Information System (INIS)

    Tromp, R.M.

    2011-01-01

    In this paper I discuss several theoretical and practical aspects related to measuring and correcting the chromatic and spherical aberrations of a cathode objective lens as used in Low Energy Electron Microscopy (LEEM) and Photo Electron Emission Microscopy (PEEM) experiments. Special attention is paid to the various components of the cathode objective lens as they contribute to chromatic and spherical aberrations, and affect practical methods for aberration correction. This analysis has enabled us to correct a LEEM instrument for the spherical and chromatic aberrations of the objective lens. -- Research highlights: → Presents a comprehensive theory of the relation between chromatic aberration and lens current in a cathode objective lens. → Presents practical methods for measuring both spherical and chromatic aberrations of a cathode objective lens. → Presents measurements of these aberrations in good agreement with theory. → Presents practical methods for measuring and correcting these aberrations with an electron mirror.

  14. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    Science.gov (United States)

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  15. Verification of high efficient broad beam cold cathode ion source

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Reheem, A. M., E-mail: amreheem2009@yahoo.com [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority, P.N.13759, Cairo (Egypt); Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo (Egypt); Ahmed, M. M. [Physics Department, Faculty of Science, Helwan University, Cairo (Egypt); Abdelhamid, M. M.; Ashour, A. H. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority (AEA), Cairo (Egypt)

    2016-08-15

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.

  16. TPC cathode read-out with C-pads

    International Nuclear Information System (INIS)

    Janik, R.; Pikna, M.; Sitar, B.; Strmen, P.; Szarka, I.

    2009-01-01

    A Time Projection Chamber with 'C' like shaped cathode pads was built and tested. It offers a low gas gain operation, a good pulse shape and a lightweight construction. The Pad Response Function (PRF), the cathode to anode pulse height ratios and the pad pulse shapes of the C-pad structure were measured and compared with planar cathode structures in two different wire geometries. The cathode to anode signal ratio was improved from between 0.2 and 0.4 up to 0.7. The PRF was considerably improved, it has a Gaussian shape and is narrower than in the case of the planar pads. The pulse shape from the C-pad read-out is similar to the pulse shape from a detector with a cylindrical shape of electrodes. A method for aluminum pad mass production based on a precise cold forging was developed and tested.

  17. The Properties of Normal Conducting Cathodes in FZD Superconducting Gun

    CERN Document Server

    Xiang, R; Buettig, H; Janssen, D; Justus, M; Lehnert, U; Michel, P; Murcek, P; Schamlott, A; Schneider, Ch; Schurig, R; Staufenbiel, F; Teichert, J

    2009-01-01

    The superconducting radio frequency photoinjector (SRF photoinjector) is one of the latest applications of SC technology in the accelerator field. Since superconducting cathodes with high QE are not available up to now, normal conducting cathode material is the main choice for the SRF photoinjectors. However, the compatibility between the cathode and the cavity is one of the challenges for this concept. The SRF gun with Cs2Te cathode has been successfully operated under the collaboration of BESSY, DESY, FZD, and MBI. In this paper, some experience gained in the gun commissioning will be concluded. The results of the properties of Cs2Te photocathode in the cavity will be presented, such as the Q.E., the life time, the dark current and the thermal emittance.

  18. Macroparticle generation in DC arc discharge from a WC cathode

    Science.gov (United States)

    Zhirkov, Igor; Polcik, Peter; Kolozsvári, Szilard; Rosen, Johanna

    2017-03-01

    We have studied macroparticle generation from a tungsten carbide cathode used in a dc vacuum arc discharge. Despite a relatively high decomposition/melting point (˜3100 K), there is an intensive generation of visible particles with sizes in the range 20-35 μm. Visual observations during the discharge and scanning electron microscopy of the cathode surface and of collected macroparticles indicate a new mechanism for particle formation and acceleration. Based on the W-C phase diagram, there is an intensive sublimation of carbon from the melt resulting from the cathode spot. The sublimation supports the formation of a sphere, which is accelerated upon an explosion initiated by Joule heating at the critical contact area between the sphere and the cathode body. The explosive nature of the particle acceleration is confirmed by surface features resembling the remains of a splash on the droplet surface.

  19. Catalysts, Protection Layers, and Semiconductors

    DEFF Research Database (Denmark)

    Chorkendorff, Ib

    2015-01-01

    Hydrogen is the simplest solar fuel to produce and in this presentation we shall give a short overview of the pros and cons of various tandem devices [1]. The large band gap semiconductor needs to be in front, but apart from that we can chose to have either the anode in front or back using either...... acid or alkaline conditions. Since most relevant semiconductors are very prone to corrosion the advantage of using buried junctions and using protection layers offering shall be discussed [2-4]. Next we shall discuss the availability of various catalysts for being coupled to these protections layers...... and how their stability may be evaluated [5, 6]. Examples of half-cell reaction using protection layers for both cathode and anode will be discussed though some of recent examples under both alkaline and acidic conditions. Si is a very good low band gap semiconductor and by using TiO2 as a protection...

  20. Cathodes for lithium-air battery cells with acid electrolytes

    Science.gov (United States)

    Xing, Yangchuan; Huang, Kan; Li, Yunfeng

    2016-07-19

    In various embodiments, the present disclosure provides a layered metal-air cathode for a metal-air battery. Generally, the layered metal-air cathode comprises an active catalyst layer, a transition layer bonded to the active catalyst layer, and a backing layer bonded to the transition layer such that the transition layer is disposed between the active catalyst layer and the backing layer.

  1. High-performance lanthanum-ferrite-based cathode for SOFC

    DEFF Research Database (Denmark)

    Wang, W.G.; Mogensen, Mogens Bjerg

    2005-01-01

    with LSCF/CGO on YSZ, the Rs was the same as that of our best LSM samples, which indicates good adhesion between LSCF/CGO cathode and YSZ electrolyte. Aging experiment at 800 'C for the cathode of LSCF/CGO on YSZ electrolyte shows a degradation rate of 5 x 10(-4) Omega CM2/h in R-p, while the R-s has...

  2. Development of extruded resistive plastic tubes for proportional chamber cathodes

    International Nuclear Information System (INIS)

    Kondo, K.

    1982-01-01

    Carbon mixed plastic tubes with resistivity of 10 3 approx. 10 4 Ωcm have been molded with an extrusion method and used for the d.c. cathode of a proportional counter and a multi-wire proportional chamber. The signal by gas multiplication was picked up from a strip r.f. cathode set outside the tube. The characteristics of the counter in the proportional and limited streamer modes have been studied

  3. Phenomenological model of an electron flow with a virtual cathode

    International Nuclear Information System (INIS)

    Koronovskij, A.A.; Khramov, A.E.; Anfinogenov, V.G.

    1999-01-01

    A phenomenological model of electron flow with a virtual cathode in diode space, which is a modification of cellular automation, is suggested. The type of models, called cellular conveyer, permits making allowance for distribution and delay in a beam with a virtual cathode. A good agreement between results of numerical study of electron flow dynamics and results obtained using the phenomenological model described has been achieved [ru

  4. Chromium (V) compounds as cathode material in electrochemical power sources

    Science.gov (United States)

    Delnick, F.M.; Guidotti, R.A.; McCarthy, D.K.

    A cathode for use in a thermal battery, comprising a chromium (V) compound. The preferred materials for this use are Ca/sub 5/(CrO/sub 4/)/sub 3/Cl, Ca/sub 5/(CrO/sub 4/)OH, and Cr/sub 2/O/sub 5/. The chromium (V) compound can be employed as a cathode material in ambient temperature batteries when blended with a suitably conductive filler, preferably carbon black.

  5. Fabrication and description of a cold cathode electron gun

    International Nuclear Information System (INIS)

    Sari, A.H.; Ghorannevis, M.; Hantehzadeh, M.R.; Yousefi, M.R.

    2003-01-01

    In this study the structure and schematic configuration of a cold cathode electron gun has been shown, which use obstructed discharge for electron producing. This type of discharge and mechanism of secondary electron emission by ions and fast neutral interaction have been described. The experiment starts in pressure of 1*10 -3 torr, in existence of helium gas. A negative DC voltage apply to a concave cathode up to -20 k V which determine electron energy

  6. High-Current Cold Cathode Employing Diamond and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2014-10-22

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  7. High precision straw tube chamber with cathode readout

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Golutvin, I.A.; Ershov, Yu.V.

    1992-01-01

    The high precision straw chamber with cathode readout was constructed and investigated. The 10 mm straws were made of aluminized mylar strip with transparent longitudinal window. The X coordinate information has been taken from the cathode strips as induced charges and investigated via centroid method. The spatial resolution σ=120 μm has been obtained with signal/noise ratio about 60. The possible ways for improving the signal/noise ratio have been described. 7 refs.; 8 figs

  8. A high precision straw tube chamber with cathode readout

    International Nuclear Information System (INIS)

    Bychkov, V.N.; Golutvin, I.A.; Ershov, Yu.V.; Zubarev, E.V.; Ivanov, A.B.; Lysiakov, V.N.; Makhankov, A.V.; Movchan, S.A.; Peshekhonov, V.D.; Preda, T.

    1993-01-01

    The high precision straw chamber with cathode readout was constructed and investigated. The 10 mm diameter straws were made of aluminized Mylar with transparent longitudinal window. The X-coordinate information has been taken from cathode strips as induced charges and investigated with the centroid method. The spatial resolution σ x =103 μm was obtained at a signal-to-noise ratio of about 70. The possible ways to improve the signal-to-noise ratio are discussed. (orig.)

  9. Cathodic reduction of benzil in acetone and in dichloromethane

    Energy Technology Data Exchange (ETDEWEB)

    Quintanilla, Gloria [Departamento de Quimica Organica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain)], E-mail: gloria.quintanilla@uah.es; Liebeck, Miriam; Bengtsson, Carina; Arnold, Lena; Barba, Fructuoso [Departamento de Quimica Organica, Universidad de Alcala, 28871 Alcala de Henares, Madrid (Spain)

    2008-02-15

    The cathodic reduction of benzil has been carried out at a controlled potential on a mercury cathode in two different SSE (solvent-supporting-electrolyte) conditions: (a) acetone/lithium perchlorate in absence of electrophile where 2,3-diphenyl-5-methyl-furan and 1,2-diphenyl-2-hydroxy-1,4-pentanedione were obtained as main products and (b) dichloromethane/tetrabuthylammonium chloride with the addition of oxalyl chloride as electrophile, where a fast electron transfer took place.

  10. The mechanism of cathodic electrodeposition of epoxy coatings and the corrosion behaviour of the electrodeposited

    Directory of Open Access Journals (Sweden)

    VESNA B. MISKOVIC-STANKOVIC

    2002-05-01

    Full Text Available The model of organic film growth on a cathode during electrodeposition process proposes the current density-time and film thickness-time relationships and enables the evaluation of the rate contants for the electrochemical reaction of OH– ion evolution and for the chemical reaction of organic film deposition. The dependences of film thickness and rate constants on the applied voltage, bath temperature and resin concentration in the electrodeposition bath have also been obtained. The deposition parameters have a great effect on the cathodic electrodeposition process and on the protective properties of the obtained electrodeposited coatings. From the time dependences of the pore resistance, coating capacitance and relative permittivity, obtained from impedance measurements, the effect of applied voltage, bath temperature and resin concentration on the protective properties of electrodeposited coatings has been shown. Using electrochemical impedance spectroscopy, thermogravimetric analysis, gravimetric liquid sorption experiments, differential scanning calorimetry and optical miscroscopy, the corrosion stability of epoxy coatings was investigated. A mechanism for the penetration of electrolyte through an organic coating has been suggested and the shape and dimensions of the conducting macropores have been determined. It was shown that conduction through a coating depends only on the conduction through the macropores, although the quantity of electrolyte in the micropores of the polymer net is about one order of magnitude greater than that inside the conducting macropores.

  11. AB/sub 5/-catalyzed hydrogen evolution cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Hall, D E; Sawada, T; Shepard, V R; Tsujikawa, Y

    1984-01-01

    The AB/sub 5/ metal compounds are highly efficient hydrogen evolution electrocatalysts in alkaline electrolyte. Three types of AB/sub 5/-catalyzed cathode structures were made, using the hydride-forming AB/sub 5/ compounds in particulate form. Plastic-bonded cathodes containing >90 w/o AB/sub 5/ (finished-weight basis) were the most efficient, giving hydrogen evolution overpotentials (/eta/ /SUB H2/ ) of about 0.05 V at 200 mA cm/sup -2/. However, they tended to swell and shed material during electrolysis. Pressed, sintered cathodes containing 40-70 w/o catalyst in a nickel binder gave /eta/ /SUB H2/ about0.08 V; catalyst retention was excellent. Porous, sintered cathode coatings were made with 30-70 w/o AB/sub 5/ catalyst loadings. Their overpotentials were similar to those of the pressed, sintered cathodes. However, at catalyst loadings below about 40 w/o, high overpotentials characteristic of the nickel binder were observed. The structural and electrochemical properties of the three AB/sub 5/-catalyzed cathodes are discussed.

  12. Cathode erosion in high-current high-pressure arc

    CERN Document Server

    Nemchinsky, V A

    2003-01-01

    Cathode erosion rate was experimentally investigated for two types of arcs: one with tungsten cathode in nitrogen atmosphere and one with hafnium cathode in oxygen atmosphere. Conditions were typical for plasma arc cutting systems: gas pressure from 2 to 5 atm, arc current from 200 to 400 A, gas flow rate from 50 to 130 litre min sup - sup 1. It was found that the actual cathode evaporation rate G is much lower than G sub 0 , the evaporation rate that follows from the Hertz-Knudsen formula: G = nu G sub 0. The difference is because some of the evaporated particles return back to the cathode. For conditions of our experiments, the factor nu could be as low as 0.01. It was shown experimentally that nu depends strongly on the gas flow pattern close to the cathode. In particular, swirling the gas increases nu many times. To explain the influence of gas swirling, model calculations of gas flows were performed. These calculations revealed difference between swirling and non-swirling flows: swirling the gas enhances...

  13. Impact of cathode evaporation on a free-burning arc

    International Nuclear Information System (INIS)

    Etemadi, K.

    1990-01-01

    In the center of a free-burning, high intensity argon arc at atmospheric pressure, a highly ionized vapor beam of copper has been generated by a continuous feeding of a thin (0.5 and 1 mm diameter) copper wire to the hot surface region of the cathode in the vicinity of the plasma attachment. The copper vapor is carried into the plasma column between the electrodes by the self-magnetic induced plasma flow caused by the conical shape of the cathode. In order to study the vapor beam, the arc is modeled at atmospheric pressure, with a current of 150 A, a gap spacing of 1 cm, a cathode tip of 60 degrees and a copper vapor flow of 1 mg/s. The temperature, mass flow, current flow and Cu concentration are calculated for the entire plasma region. The intensity distribution of CuI spectral line at 5218.2 angstrom is also recorded by emission spectroscopy and compared with the calculated values. The copper vapor in the cathode region has velocities of 210 m/s with a mass concentration of above 90% within 0.5 mm from the arc axis. The vapor passes from the cathode toward the anode with a slight diffusion in the argon plasma. Higher temperatures and current densities in the core of the arc, caused by the cathode evaporation, are calculated

  14. An adjustable electron achromat for cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M., E-mail: rtromp@us.ibm.com [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Leiden Institute of Physics, Kamerlingh Onnes Laboratory, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-12-15

    Chromatic aberration correction in light optics began with the invention of a two-color-corrected achromatic crown/flint lens doublet by Chester Moore Hall in 1730. Such color correction is necessary because any single glass shows dispersion (i.e. its index of refraction changes with wavelength), which can be counteracted by combining different glasses with different dispersions. In cathode lens microscopes (such as Photo Electron Emission Microscopy – PEEM) we encounter a similar situation, where the chromatic aberration coefficient of the cathode lens shows strong dispersion, i.e. depends (non-linearly) on the energy with which the electrons leave the sample. Here I show how a cathode lens in combination with an electron mirror can be configured as an adjustable electron achromat. The lens/mirror combination can be corrected at two electron energies by balancing the settings of the electron mirror against the settings of the cathode lens. The achromat can be adjusted to deliver optimum performance, depending on the requirements of a specific experiment. Going beyond the achromat, an apochromat would improve resolution and transmission by a very significant margin. I discuss the requirements and outlook for such a system, which for now remains a wish waiting for fulfilment. - Highlights: • The properties of cathode objective lens plus electron mirror are discussed. • In analogy with light-optical achromats, cathode lens plus mirror can be configured as an electron achromat. • Unlike light optics, the electron achromat can be adjusted to best fulfill experimental requirements.

  15. Performance of MSGCs with cathode readout

    International Nuclear Information System (INIS)

    Cremaldi, L.; Finocchiaro, G.; Rajagopalan, S.; Schamberger, D.

    1996-01-01

    The performance of a telescope of Micro-Strip Gas Chambers (MSGC) has been studied in a beam of minimum ionizing particles. Detectors of two different pitches have been studied. The position resolutions is obtained by reading out the cathodes and interpolating based on the amplitude of the signals. The position of the hit in the chamber is found to differ systematically from the cluster centroid position. A correction method is derived from the data and applied to improve the resolution. After correction, the spatial resolution of chambers with 200 μm pitch is found to be 42 μm, and for the 400 μm pitch detectors the resolution is 42 μm. The improved interpolation for the 400 μm pitch chamber can be understood in terms of the better signal to noise observed for the 400 μm pitch detectors. The degradation in resolution as a function of angle of track incidence is also expected to be less for the larger pitch chambers

  16. Lithium Iron Orthosilicate Cathode: Progress and Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Jiangfeng [College; amp, Physics (CECMP), Soochow University, Suzhou 215006, PR China; Jiang, Yu [College; amp, Physics (CECMP), Soochow University, Suzhou 215006, PR China; Bi, Xuanxuan [Chemical; Li, Liang [College; amp, Physics (CECMP), Soochow University, Suzhou 215006, PR China; Lu, Jun [Chemical

    2017-07-18

    The pursuit of cathodes with a high capacity is remarkably driven by the ever increasing demand of high-energy lithium ion batteries in electronics and transportation. In this regard, polyanionic lithium iron orthosilicate (Li2FeSiO4) offers a promising opportunity because it affords a high theoretical capacity of 331 mAh g–1. However, such a high theoretical capacity of Li2FeSiO4 has frequently been compromised in practice because of the extremely low electronic and ionic conductivity. To address this issue, material engineering strategies to boost the Li storage kinetics in Li2FeSiO4 have proven indispensable. In this Perspective, we will briefly present the structural characteristics, intrinsic physicochemical properties, and electrochemical behavior of Li2FeSiO4. We particularly focus on recent materials engineering of silicates, which is implemented mainly through advanced synthetic techniques and elaborate controls. This Perspective highlights the importance of integrating theoretical analysis into experimental implementation to further advance the Li2FeSiO4 materials.

  17. MWPC with highly segmented cathode pad readout

    International Nuclear Information System (INIS)

    Debbe, R.; Fischer, J.; Lissauer, D.

    1989-01-01

    Experiments being conducted with high energy heavy ion beams at Brookhaven National Laboratory and at CERN have shown the importance of developing position sensitive detectors capable of handling events with high multiplicity in environments of high track density as will also be the case in future high luminosity colliders like SSC and RHIC. In addition, these detectors are required to have a dynamic range wide enough to detect minimum ionizing particles and heavy ions like oxygen or silicon. We present here a description of work being done on a prototype of such a detector at BNL. Results from a similar counter are also presented in this Conference. The ''pad chamber'' is a detector with a cathode area subdivided into a very large number of pixel-like elements such that a charged particle traversing the detector at normal incidence leaves an induced charge on a few localized pads. The pads are interconnected by a resistive strip, and readout amplifiers are connected to the resistive strip at appropriate, carefully determined spacings. The pattern of tracks in a multi-hit event is easily recognized, and a centroid-finding readout system allows position determination to a small fraction of the basic cell size. 5 refs., 9 figs

  18. A one-dimensional model illustrating virtual-cathode formation in a novel coaxial virtual-cathode oscillator

    International Nuclear Information System (INIS)

    Turner, Geoffrey R.

    2014-01-01

    A one-dimensional electrostatic sheet model of a coaxial geometry Virtual Cathode Oscillator (VCO) is presented. The cathode is centrally located and connects to a peripherally located plate electrode to form a resonant cavity, and is thus considered to be a novel design. Charge is modelled as concentric sheets about the cathode whose absolute position and velocity are determined as a function of time by solving the relativistic equations of motion. The model predicts the formation of a virtual cathode between the grid and plate electrodes for the case of a space-charge limited current. Setting the electron reflexing frequency (as a function of the grid potential) comparable with the cavity resonant frequency is predicted to improve the efficiency of microwave emission

  19. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae; Zhang, Fang; Logan, Bruce E.

    2014-01-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry

  20. Electrochemical corrosion protection of storage water heaters in the building services; Elektrochemischer Korrosionsschutz von Speicher-Wassererwaermern in der Gebaeudetechnik

    Energy Technology Data Exchange (ETDEWEB)

    Bytyn, Wilfried [MAGONTEC GmbH, Bottrop (Germany)

    2012-06-15

    Storage water heaters currently experience a new consideration as a central thermal energy storage with an energy buffer characteristics. The contribution under consideration presents the principles and conditions of use for the cathodic corrosion protection of storage water heaters.

  1. Numerical simulation of the throwing power of cathodic prevention applied to marine reinforced concrete piles by means of sacrificial anodes

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Luca; Redaelli, Elena [Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica ' G. Natta' , Via Mancinelli, 7, 20131 Milan (Italy)

    2004-07-01

    The paper deals with the determination of current and potential distribution in reinforced concrete elements partially submerged in seawater aimed at predicting the throwing power of cathodic prevention applied by means of sacrificial anodes. Previous laboratory studies carried out on reinforced concrete columns 15 cm x 15 cm x 120 cm showed that the use of sacrificial anodes placed in the solution at the bottom of the column could provide protection of corroding steel bars in the emerged part of the pile up to about 60 cm from the water level. However, if sacrificial anodes were applied when the concrete was chloride free and steel bars were still passive, even the highest bar, placed at 1 m from the level of water, was protected. This is due to the higher polarizability of passive steel, that makes the throwing power of cathodic prevention higher compared to that of cathodic protection. In order to extend the results obtained on small-scale specimens to elements of higher dimensions, numerical simulations of current and potential distribution were carried out. Two-dimensional models were set up of reinforced concrete piles containing steel bars at different heights protected with sacrificial anodes placed in the water in which they were partially submerged. Boundary conditions describing the electrochemical behaviour of bars were obtained from polarisation curves measured on the previously mentioned columns. Values of concrete conductivity at different heights from the water level were also obtained from those tests. Several cases were considered, representative of conditions differing in electrochemical behaviour of steel bars, dimensions of element, position of sacrificial anodes. The paper discusses the results obtained from the models and compares them in terms of the throwing power that can be reached by using sacrificial anodes immersed in the seawater to protect reinforcing steel bars in the emerged part of a pile. (authors)

  2. Copper current collectors reduce long-term fouling of air cathodes in microbial fuel cells

    KAUST Repository

    Myung, Jaewook; Yang, Wulin; Saikaly, Pascal; Logan, Bruce E

    2018-01-01

    Long-term operation of wastewater-fed, microbial fuel cells (MFCs) with cathodes made of activated carbon and stainless steel (SS) current collectors can result in decreased performance due to cathode fouling. Copper has good antimicrobial properties, and it is more electrically conductive than SS. To demonstrate that a copper current collector could produce a more fouling resistant cathode, MFCs with air cathodes using either SS or copper current collectors were operated using domestic wastewater for 27 weeks. The reduction in biofouling over time was shown by less biofilm formation on the copper cathode surface compared to SS cathodes, due to the antimicrobial properties of copper. Maximum power densities from 17–27 weeks were 440 ± 38 mW/m2 using copper and 370 ± 21 mW/m2 using SS cathodes. The main difference in the microbial community was a nitrifying community on the SS cathodes, which was not present on the copper cathodes.

  3. Copper current collectors reduce long-term fouling of air cathodes in microbial fuel cells

    KAUST Repository

    Myung, Jaewook

    2018-02-05

    Long-term operation of wastewater-fed, microbial fuel cells (MFCs) with cathodes made of activated carbon and stainless steel (SS) current collectors can result in decreased performance due to cathode fouling. Copper has good antimicrobial properties, and it is more electrically conductive than SS. To demonstrate that a copper current collector could produce a more fouling resistant cathode, MFCs with air cathodes using either SS or copper current collectors were operated using domestic wastewater for 27 weeks. The reduction in biofouling over time was shown by less biofilm formation on the copper cathode surface compared to SS cathodes, due to the antimicrobial properties of copper. Maximum power densities from 17–27 weeks were 440 ± 38 mW/m2 using copper and 370 ± 21 mW/m2 using SS cathodes. The main difference in the microbial community was a nitrifying community on the SS cathodes, which was not present on the copper cathodes.

  4. A new thin film deposition process by cathodic plasma electrolysis

    International Nuclear Information System (INIS)

    Paulmier, T.; Kiriakos, E.; Bell, J.; Fredericks, P.

    2004-01-01

    Full text: A new technique, called atmospheric pressure plasma deposition (APPD), has been developed since a few years for the deposition of carbon and DLC, Titanium or Silicon films on metal and metal alloys substrates. A high voltage (2kV) is applied in a liquid electrolytic solution between an anode and a cathode, both electrodes being cylindrical: a glow discharge is then produced and confined at the vicinity of the cathode. The physic of the plasma in the electrolytic solution near the cathode is very different form the other techniques of plasma deposition since the pressure is here close to the atmospheric pressure. We describe here the different physico-chemical processes occurring during the process. In this cathodic process, the anodic area is significantly larger than the cathode area. In a first step, the electrolytic solution is heated by Joule effect induced by the high voltage between the electrodes. Due to the high current density, the vaporization of the solution occurs near the cathode: a large amount of bubbles are produced which are stabilized at the electrode by hydrodynamic and electromagnetic forces, forming a vapour sheath. The electric field and voltage drop are then concentrated in this gas envelope, inducing the ionization of the gas and the ignition of a glow discharge at the surface of the material. This plasma induces the formation of ionized and reactive species which diffuse and are accelerated toward the cathode. These excited species are the precursors for the formation of the deposition material. At the same time, the glow discharge interacts with the electrolyte solution inducing also ionization, convection and polymerization processes in the liquid: the solution is therefore a second source of the deposition material. A wide range of films have been deposited with a thickness up to 10 micrometers. These films have been analyzed by SEM and Raman spectroscopy. The electrolytic solution has been characterized by GC-MS and the

  5. Post-Removal Examination of GTF Cathode No.2

    International Nuclear Information System (INIS)

    Kirby, R.

    2005-01-01

    This photo-cathode (PC), GTF Cathode No.2, was removed from the GTF in October, 2000. It was characterized in September, 1999 by G. Mulhollan and me (Report entitled ''A Brief Report on a Brief Examination of the Electropolished GTF Cathode'', LCLS-TN-99-10). The cathode conditions and results of that exam were: (1) The cathode was conventionally machined and cleaned in the SLAC Plating Shop. (2) The machining process left a central defect (400 microns diameter) which was not removed by electropolishing. (3) The electropolished surface was ''orange-peeled'', typical of excessive polishing. (4) Secondary electron microscopy (SEM) examination showed numerous 10 micron-diameter etch pits and a small number of copper surface particles. Operation of this cathode in the GTF exhibited ''holloW--beam'' behavior, suggesting that the central defect may have been responsible for non-normal emergence of the photo-emitted beam. No laser cleaning of the cathode was done, so all arc features are due to breakdowns. Post-removal analysis consisted of loW--magnification digital camera pictures (taken with glancing-incidence tungsten white light illumination, to emphasize particles/pitting) and SEM. All images are available in digital (TIFF) form. Also available is a Power Point presentation of the results. Contact me for either. These image files are high-resolution and, thus, large in size. A 200K loW--resolution contact sheet of a few images is attached to this report. Images are referred to by file name

  6. Durability and performance optimization of cathode materials for fuel cells

    Science.gov (United States)

    Colon-Mercado, Hector Rafael

    The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and

  7. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    International Nuclear Information System (INIS)

    Lei Yang; Ze Liu; Shizhone Wang; Jaewung Lee; Meilin Liu

    2008-01-01

    The main objective of this DOE project is to demonstrate that the performance and long-term stability of the state-of-the-art LSCF cathode can be enhanced by a catalytically active coating (e.g., LSM or SSC). We have successfully developed a methodology for reliably evaluating the intrinsic surface catalytic properties of cathode materials. One of the key components of the test cell is a dense LSCF film, which will function as the current collector for the electrode material under evaluation to eliminate the effect of ionic and electronic transport. Since it is dense, the effect of geometry would be eliminated as well. From the dependence of the electrode polarization resistance on the thickness of a dense LSCF electrode and on partial pressure of oxygen, we have confirmed that the surface catalytic activity of LSCF limits the performances of LSCF-based cathodes. Further, we have demonstrated, using test cells of different configurations, that the performance of LSCF-based electrodes can be significantly enhanced by infiltration of a thin film of LSM or SSC. In addition, the stability of LSCF-based cathodes was also improved by infiltration of LSM or SSC. While the concept feasibility of the electrode architecture is demonstrated, many details are yet to be determined. For example, it is not clear how the surface morphology, composition, and thickness of the coatings change under operating conditions over time, how these changes influence the electrochemical behavior of the cathodes, and how to control the microscopic details of the coatings in order to optimize the performance. The selection of the catalytic materials as well as the detailed microstructures of the porous LSCF and the catalyst layer may critically impact the performance of the proposed cathodes. Further, other fundamental questions still remain; it is not clear why the degradation rates of LSCF cathodes are relatively high, why a LSM coating improves the stability of LSCF cathodes, which catalysts

  8. Electrodeposition of uranium and transuranic metals (Pu) on solid cathode

    International Nuclear Information System (INIS)

    Laplace, A. F.; Lacquement, J.; Willitt, J. L.; Finch, R. A.; Fletcher, G. A.; Williamson, M. A.

    2008-01-01

    The results from a study of U and Pu metal electrodeposition from molten eutectic LiCl-KCl on a solid inert cathode are presented. This study has been conducted using ∼ to 50 g of U-Pu together with rare earths (mostly Nd) and 1.5 kg of salt. The introduction of a three-electrode probe with an Ag/AgCl reference electrode has allowed voltammetric measurement during electrolysis and control of the cathode potential versus the reference. Cyclic and square-wave voltammetric measurements proved to be very useful tools for monitoring the electrolysis as well as selecting the cathode versus reference potential to maximize the separation between actinides and rare earths. The voltammetric data also highlighted the occurrence of back reactions between the cathode deposit and oxidizing equivalents formed at the anode that remained in the molten salt electrolyte. Any further electrolysis test needs to be conducted continuously and followed by immediate removal of the cathode to minimize those back reactions. (authors)

  9. Modelling current transfer to cathodes in metal halide plasmas

    International Nuclear Information System (INIS)

    Benilov, M S; Cunha, M D; Naidis, G V

    2005-01-01

    This work is concerned with investigation of the main features of current transfer to cathodes under conditions characteristic of metal halide (MH) lamps. It is found that the presence of MHs in the gas phase results in a small decrease of the cathode surface temperature and of the near-cathode voltage drop in the diffuse mode of current transfer; the range of stability of the diffuse mode expands. Effects caused by a variation of the work function of the cathode surface owing to formation of a monolayer of alkali metal atoms on the surface are studied for particular cases where the monolayer is composed of sodium or caesium. It is found that the formation of the sodium monolayer affects the diffuse mode of current transfer only moderately and in the same direction that the presence of metal atoms in the gas phase affects it. Formation of the caesium monolayer produces a dramatic effect: the cathode surface temperature decreases very strongly, the diffuse-mode current-voltage characteristic becomes N-S-shaped

  10. High Performance Fe-Co Based SOFC Cathodes

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent; Hansen, Karin Vels; Mogensen, Mogens Bjerg

    2010-01-01

    With the aim of reducing the temperature of the solid oxide fuel cell (SOFC), a new high-performance perovskite cathode has been developed. An area-specific resistance (ASR) as low as 0.12 Ωcm2 at 600 °C was measured by electrochemical impedance spectroscopy (EIS) on symmetrical cells. The cathode...... is a composite between (Gd0.6Sr0.4)0.99Fe0.8Co0.2O3-δ (GSFC) and Ce0.9Gd0.1O1.95 (CGO10). Examination of the microstructure of the cathodes by scanning electron microscopy (SEM) revealed a possibility of further optimisation of the microstructure in order to increase the performance of the cathodes. It also...... seems that an adjustment of the sintering temperature will make a lowering of the ASR value possible. The cathodes were compatible with ceria-based electrolytes but reacted to some extent with zirconia-based electrolytes depending on the sintering temperature....

  11. Ethanol tolerant Pt-alloy cathodes for DEFC applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Valera, F.J. [CINVESTAV Unidad Saltillo, Coahuila (Mexico). Grupo de Recursos Minerales y Energeticos; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    Direct ethanol fuel cells (DEFCs) based on Ru/C cathodes have interesting current density versus cell voltage behaviour. In particular, the selectivity towards the oxygen reduction reaction (ORR) in acid medium in the presence of ethanol was improved when this cathode material was used. This study quantified the degree of tolerance to ethanol and the electrocatalytic activity for the ORR. It compared the specific activity towards the ORR for Pt1Co1/C and Pt3Cr1/C. The study showed that these cathodes have a high tolerance to this alcohol and demonstrated the good performance of this type of Pt-alloy in a DEFC as oxygen reduction cathodes. The performance of the Pt1Co1/C alloy was shown to be better than the Pt3Cr1/C, even when the former had a lower Pt content. The enhanced catalytic behaviour of the PtCo/C alloy can be attributed to the higher degree of allying or a smaller mean particle size and a larger surface area. Polarization measurements with relatively high ethanol concentrations confirmed the good catalytic behaviour of the PtCo/C alloy as cathode in a DEFC operating at 90 degrees C. Current work is focusing on the variation of Co content in the alloy structure and the analysis of this change in terms of ORR activity, tolerance to ethanol and electrochemical behaviour in a DEFC. 10 refs., 5 figs.

  12. Electron and ion kinetics in a micro hollow cathode discharge

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G J; Iza, F; Lee, J K [Electronics and Electrical Engineering Department, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2006-10-21

    Electron and ion kinetics in a micro hollow cathode discharge are investigated by means of two-dimensional axisymmetric particle-in-cell Monte Carlo collision simulations. Argon discharges at 10 and 300 Torr are studied for various driving currents. Electron and ion energy probability functions (IEPF) are shown at various times and locations to study the spatio-temporal behaviour of the discharge. The electron energy probability function (EEPF) evolves from the Druyvesteyn type in the early stages of the discharge into a two (or three) temperature distribution when steady state is reached. In steady state, secondary electrons accelerated across the cathode fall populate the high energy tail of the EEPF while the low energy region is populated by trapped electrons. The IEPF evolves from a Maxwellian in the negative glow (bulk) to a two temperature distribution on the cathode surface. The overpopulation of low energy ions near the cathode surface is attributed to a larger collision cross section for low energy ions and ionization within the cathode fall.

  13. Electron and ion kinetics in a micro hollow cathode discharge

    International Nuclear Information System (INIS)

    Kim, G J; Iza, F; Lee, J K

    2006-01-01

    Electron and ion kinetics in a micro hollow cathode discharge are investigated by means of two-dimensional axisymmetric particle-in-cell Monte Carlo collision simulations. Argon discharges at 10 and 300 Torr are studied for various driving currents. Electron and ion energy probability functions (IEPF) are shown at various times and locations to study the spatio-temporal behaviour of the discharge. The electron energy probability function (EEPF) evolves from the Druyvesteyn type in the early stages of the discharge into a two (or three) temperature distribution when steady state is reached. In steady state, secondary electrons accelerated across the cathode fall populate the high energy tail of the EEPF while the low energy region is populated by trapped electrons. The IEPF evolves from a Maxwellian in the negative glow (bulk) to a two temperature distribution on the cathode surface. The overpopulation of low energy ions near the cathode surface is attributed to a larger collision cross section for low energy ions and ionization within the cathode fall

  14. The design of cathode for organic photovoltaic devices

    Science.gov (United States)

    Song, De; Shi, Feng; Xia, Xuan; Li, Ye; Duanmu, Qingduo

    2016-11-01

    We have discussed the effect of the residual gas in the Al metal cathode deposition process and consequently influence the performance of organic photovoltaic devices (such as organic photoelectron detector or solar cell). We believe that the origin of degradation in Jsc and FF from the Al cathode device should be the formation of AlOx in the C60-Al interface, which contaminate the interface and plays a role like an energy barrier that block the charge collect process. To solve this problem the Ag and Alq3 layer had been inserted before the Al. Owing to the advantageous of Alq3 and Ag layer, the device which Al cathode prepared at a lower vacuum condition exhibits a comparable performance to that device which Al cathode deposited in regular situation. As an additional benefit, since the introducing of Alq3/Ag layer in the VOPc/C60 organic photovoltaic device performs a better near-infrared response, this phenomenon has been confirmed by means of both simulation and experimental data. So the design of our new cathode structure provides a degree of freedom to modulate the light absorption for organic photovoltaic devices in short-wave and long-wave.

  15. A new large-scale plasma source with plasma cathode

    International Nuclear Information System (INIS)

    Yamauchi, K.; Hirokawa, K.; Suzuki, H.; Satake, T.

    1996-01-01

    A new large-scale plasma source (200 mm diameter) with a plasma cathode has been investigated. The plasma has a good spatial uniformity, operates at low electron temperature, and is highly ionized under relatively low gas pressure of about 10 -4 Torr. The plasma source consists of a plasma chamber and a plasma cathode generator. The plasma chamber has an anode which is 200 mm in diameter, 150 mm in length, is made of 304 stainless steel, and acts as a plasma expansion cup. A filament-cathode-like plasma ''plasma cathode'' is placed on the central axis of this source. To improve the plasma spatial uniformity in the plasma chamber, a disk-shaped, floating electrode is placed between the plasma chamber and the plasma cathode. The 200 mm diameter plasma is measure by using Langmuir probes. As a result, the discharge voltage is relatively low (30-120 V), the plasma space potential is almost equal to the discharge voltage and can be easily controlled, the electron temperature is several electron volts, the plasma density is about 10 10 cm -3 , and the plasma density is about 10% variance in over a 100 mm diameter. (Author)

  16. Thermodynamic evaluation of liquid Cd cathode containing U and Pu

    International Nuclear Information System (INIS)

    Kurata, Masaki; Uozumi, Koichi; Kato, Tetsuya; Iizuka, Masatoshi

    2009-01-01

    In our previous study, a mixture of U and Pu was recovered in liquid Cd cathode from molten salt under various conditions of the U:Pu ratio. Two important things were observed. The first was that three kinds of precipitated phase had been detected in the saturated liquid Cd cathode, such as a U metal and two kinds of U-Pu-Cd compound. The compositions of the compounds were roughly (U+Pu):Cd=1:11 and (U+Pu):Cd=1:6. The second was that the U metal had selectively precipitated in the saturated liquid Cd cathode under the condition that the U:Pu ratio is higher than about 0.8 in the liquid Cd phase. In the present study, phase diagrams were evaluated by the CALPHAD method on the liquid Cd cathode containing U and Pu. The U-Pu-Cd compounds were modeled as MCd 11 -type and MCd 6 -type, respectively, based on the reported binary phase diagrams of U-Cd and Pu-Cd. The calculated result reasonably agreed with the experimental observations. The variations in the U and Pu activities were estimated along with the U:Pu ratio, which is related to the precipitation of various phases in the liquid Cd cathode. (author)

  17. Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells

    KAUST Repository

    Chen, Guang; Zhang, Fang; Logan, Bruce E.; Hickner, Michael A.

    2013-01-01

    enabled high coulombic efficiencies (CEs) in MFCs with activated carbon (AC) cathodes without significantly decreasing power output. MFCs with AC cathodes and PVA separators had CEs (43%-89%) about twice those of AC cathodes lacking a separator (17

  18. Electron current extraction from a permanent magnet waveguide plasma cathode

    Energy Technology Data Exchange (ETDEWEB)

    Weatherford, B. R.; Foster, J. E. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Kamhawi, H. [NASA Glenn Research Center, Cleveland, Ohio 44135 (United States)

    2011-09-15

    An electron cyclotron resonance plasma produced in a cylindrical waveguide with external permanent magnets was investigated as a possible plasma cathode electron source. The configuration is desirable in that it eliminates the need for a physical antenna inserted into the plasma, the erosion of which limits operating lifetime. Plasma bulk density was found to be overdense in the source. Extraction currents over 4 A were achieved with the device. Measurements of extracted electron currents were similar to calculated currents, which were estimated using Langmuir probe measurements at the plasma cathode orifice and along the length of the external plume. The influence of facility effects and trace ionization in the anode-cathode gap are also discussed.

  19. The base metal of the oxide-coated cathode

    International Nuclear Information System (INIS)

    Poret, F.; Roquais, J.M.

    2005-01-01

    The oxide-coated cathode has been the most widely used electron emitter in vacuum electronic devices. From one manufacturing company to another the emissive oxide is either a double-Ba, Sr-or a triple-Ba, Sr, Ca-oxide, having always the same respective compositions. Conversely, the base metal composition is very often proprietary because of its importance in the cathode emission performances. The present paper aims at explaining the operation of the base metal through a review. After a brief introduction, the notion of activator is detailed along with their diffusivities and their associated interfacial compounds. Then, the different cathode life models are described prior to few comments on the composition choice of a base metal. Finally, the specificities of the RCA/Thomson 'bimetal' base metal are presented with a discussion on the optimized composition choice illustrated by a long-term life-test of five different melts

  20. LSM-YSZ Cathodes with Reaction-Infiltrated Nanoparticles

    International Nuclear Information System (INIS)

    Lu, Chun; Sholklapper, Tal Z.; Jacobson, Craig P.; Visco, StevenJ.; De Jonghe, Lutgard C.

    2006-01-01

    To improve the LSM-YSZ cathode performance of intermediate temperature solid oxide fuel cells (SOFCs), Sm0.6Sr0.4CoO3-sigma (SSC) perovskite nanoparticles are incorporated into the cathodes by a reaction-infiltration process. The SSC particles are ∼20 to 80nm in diameter, and intimately adhere to the pore walls of the preformed LSM-YSZ cathodes. The SSC particles dramatically enhance single-cell performance with a 97 percent H2+3 percent H2O fuel, between 600 C and 800 C. Consideration of a simplified TPB (triple phase boundary) reaction geometry indicates that the enhancement may be attributed to the high electrocatalytic activity of SSC for electrochemical reduction of oxygen in a region that can be located a small distance away from the strict triple phase boundaries. The implication of this work for developing high-performance electrodes is also discussed

  1. Model for solid oxide fuel cell cathodes prepared by infiltration

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Hendriksen, Peter Vang

    2017-01-01

    A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC......, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed...... scanning electron microscopy and simulations of the measured polarization resistances, an expression for the area specific resistance (rp) associated with the oxygen exchange on the surface of the infiltrated LSC particles was extracted and compared with literature values. A series of microstructural...

  2. Process system and method for fabricating submicron field emission cathodes

    Science.gov (United States)

    Jankowski, Alan F.; Hayes, Jeffrey P.

    1998-01-01

    A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape.

  3. Cathodic processes during ruthenium electrodeposition from a chloride melt

    International Nuclear Information System (INIS)

    Sokol'skij, D.V.

    1985-01-01

    Cathodic processes occurring during the electrolysis of chloride melts in the presence of oxygen-containing impurities were studied. The experiments were carried out at 500, 550 600 and 680 deg C, ruthenium ions concentration in KCl-NaCl-CsCl eutectic melt being 0.4-1.5 mol% and BaO additions 4.8x10 -2 mol%. Temperature dependence of Ru(3) ion diffusion coefficient in the chloride melt (lg D=3.25-1508/T+-0.02) and activation energy of the diffusion process (6.9 k cal/mol) were determined. It is shown that changes of the shape of E, t-curve and the deviation of values determined in the cause of chronopotentiometric investigations from the corresponding values of reversable processes are related in many respects to the participation of oxygen-containing compounds in the cathodic process. Irreversibility of the cathodic process is also connected with metal crystallization during electrodeposition

  4. Anode and cathode geometry and shielding gas interdependence in GTAW

    International Nuclear Information System (INIS)

    Key, J.F.

    1979-01-01

    Parametric analyses and high-speed photography of the interdependence of electrode (cathode) tip geometry, shielding gas composition, and groove (anode) geometry indicate that spot-on-plate tests show that blunt cathode shapes have penetration effects similar to addition of a high ionization potential inert gas (such as helium) to the argon shielding gas. Electrode shape and shielding gas composition effects are not synergistic. The time required to develop a given penetration is a function of anode and cathode geometry and shielding gas composition, in addition to other essential welding variables. Spot-on-plate tests are a valid analysis of radical pulsed GTAW. Bead-on-plate tests are a valid analysis of mild pulsed or constant current GTAW

  5. Preliminary results on the chemical characterisation of the cathode nickel--emissive layer interface in oxide cathodes

    International Nuclear Information System (INIS)

    Jenkins, S.N.; Barber, D.K.; Whiting, M.J.; Baker, M.A.

    2003-01-01

    In cathode ray tube (CRT) thermionic oxide cathodes, the nickel-oxide interface properties are key to understanding the mechanisms of operation. At the elevated operational temperatures, free barium is formed at the interface by the reaction of reducing activators, from the nickel alloy, with barium oxide. The free barium diffuses to the outer surface of the oxide providing a low work function electron-emitting surface. However, during cathode life an interface layer grows between the nickel alloy and oxide, comprised of reaction products. The interfacial layer sets limits on the cathode performance and useful operational lifetime by inhibiting the barium reducing reaction. This paper discusses sample preparation procedures for exposure of the interface and the use of several surface and bulk analytical techniques to study interface layer formation. SEM, AES and SIMS data are presented, which provide preliminary insight into the mechanisms operating during the cathode's lifetime. There is evidence that the activator elements in the nickel alloy base, Al and Mg, are able to diffuse to the surface of the oxide during activation and ageing and that these elements are enriched at the interface after accelerated life

  6. A Transient Model for Fuel Cell Cathode-Water Propagation Behavior inside a Cathode after a Step Potential

    Directory of Open Access Journals (Sweden)

    Der-Sheng Chan

    2010-04-01

    Full Text Available Most of the voltage losses of proton exchange membrane fuel cells (PEMFC are due to the sluggish kinetics of oxygen reduction on the cathode and the low oxygen diffusion rate inside the flooded cathode. To simulate the transient flooding in the cathode of a PEMFC, a transient model was developed. This model includes the material conservation of oxygen, vapor, water inside the gas diffusion layer (GDL and micro-porous layer (MPL, and the electrode kinetics in the cathode catalyst layer (CL. The variation of hydrophobicity of each layer generated a wicking effect that moves water from one layer to the other. Since the GDL, MPL, and CL are made of composite materials with different hydrophilic and hydrophobic properties, a linear function of saturation was used to calculate the wetting contact angle of these composite materials. The balance among capillary force, gas/liquid pressure, and velocity of water in each layer was considered. Therefore, the dynamic behavior of PEMFC, with saturation transportation taken into account, was obtained in this study. A step change of the cell voltage was used to illustrate the transient phenomena of output current, water movement, and diffusion of oxygen and water vapor across the entire cathode.

  7. Back bombardment for dispenser and lanthanum hexaboride cathodes

    Directory of Open Access Journals (Sweden)

    Mahmoud Bakr

    2011-06-01

    Full Text Available The back bombardment (BB effect limits wide usage of thermionic rf guns. The BB effect induces not only ramping-up of a cathode’s temperature and beam current, but also degradation of cavity voltage and beam energy during a macropulse. This paper presents a comparison of the BB effect for the case of dispenser tungsten-base (DC and lanthanum hexaboride (LaB_{6} thermionic rf gun cathodes. For each, particle simulation codes are used to simulate the BB effect and electron beam dynamics in a thermionic rf gun cathode. A semiempirical equation is also used to investigate the stopping range and deposited heat power of BB electrons in the cathode material. A numerical simulation method is used to calculate the change of the cathode temperature and current density during a single macropulse. This is done by solving two differential equations for the rf gun cavity equivalent circuit and one-dimensional thermal diffusion equation. High electron emission and small beam size are required for generation of a high-brightness electron beam, and so in this work the emission properties of the cathode are taken into account. Simulations of the BB effect show that, for a pulse of 6  μs duration, the DC cathode experiences a large change in the temperature compared with LaB_{6}, and a change in current density 6 times higher. Validation of the simulation results is performed using experimental data for beam current beyond the gun exit. The experimental data is well reproduced using the simulation method.

  8. Anode front-end electronics for the cathode strip chambers of the CMS Endcap Muon detector

    International Nuclear Information System (INIS)

    Ferguson, T.; Bondar, N.; Golyash, A.; Sedov, V.; Terentiev, N.; Vorobiev, I.

    2005-01-01

    The front-end electronics system for the anode signals of the CMS Endcap Muon cathode strip chambers has about 183,000 channels. The purposes of the anode front-end electronics are to acquire precise muon timing information for bunch crossing number identification at the Level-1 muon trigger system and to provide a coarse radial position of the muon track. Each anode channel consists of an input protection network, amplifier, shaper, constant-fraction discriminator, and a programmable delay. The essential parts of the electronics include a 16-channel amplifier-shaper-discriminator ASIC CMP16 and a 16-channel ASIC D16G providing programmable time delay. The ASIC CMP16 was optimized for the large cathode chamber size (up to 3x2.5 m 2 ) and for the large input capacitance (up to 200 pF). The ASIC combines low power consumption (30 mW/channel) with good time resolution (2-3 ns). The delay ASIC D16G makes possible the alignment of signals with an accuracy of 2.2 ns. This paper presents the anode front-end electronics structure and results of the preproduction and the mass production tests, including radiation resistance and reliability tests. The special set of test equipment, techniques, and corresponding software developed and used in the test procedures are also described

  9. Tandem cathode for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Björketun, Mårten E.; Strasser, Peter

    2013-01-01

    The efficiency of proton exchange membrane fuel cells is limited mainly by the oxygen reduction reaction at the cathode. The large cathodic overpotential is caused by correlations between binding energies of reaction intermediates in the reduction of oxygen to water. This work introduces a novel...... to identify potentially active and selective materials for both catalysts. Co-porphyrin is recommended for the first step, formation of hydrogen peroxide, and three different metal oxides – SrTiO3(100), CaTiO3(100) and WO3(100) – are suggested for the subsequent reduction step....

  10. Cathode-supported hybrid direct carbon fuel cells

    DEFF Research Database (Denmark)

    Gil, Vanesa; Gurauskis, Jonas; Deleebeeck, Lisa

    2017-01-01

    The direct conversion of coal to heat and electricity by a hybrid direct carbon fuel cell (HDCFC) is a highly efficient and cleaner technology than the conventional combustion power plants. HDCFC is defined as a combination of solid oxide fuel cell and molten carbonate fuel cell. This work...... investigates cathode-supported cells as an alternative configuration for HDCFC, with better catalytic activity and performance. This study aims to define the best processing route to manufacture highly efficient cathode-supported cells based on La0.75Sr0.25MnO3/yttria-stabilized zirconia infiltrated backbones...

  11. QE data for Pb/Nb deposited photo cathode samples

    CERN Document Server

    Sekutowicz, J

    2010-01-01

    This report outlines progress in the development of photo-cathodes for a hybrid lead/niobium (Pb/Nb) superconducting SRF electron injector. We have coated eight Nb samples with lead to study and determine deposition conditions leading to high quality emitting area. The results show that the oxide layer significantly influences the quantum efficiency (QE) of all measured cathodes. In addition, we learned that although the laser cleaning enhanced the QE substantially, the film morphology was strongly modified. That observation convinced us to make the coatings thicker and therefore more robust.

  12. Lanthanum Manganate Based Cathodes for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Jørgensen, Mette Juhl

    Composite cathodes for solid oxide fuel cells were investigated using electrochemical impedance spectroscopy and scanning electron microscopy. The aim was to study the oxygen reduction process in the electrode in order to minimise the voltage drop in the cathode. The electrodes contained...... five processes were found to affect the impedance of LSM/YSZ composite electrodes. Two high frequency processes were ascribed to transport of oxide ions/oxygen intermediates across LSM/YSZ interfaces and through YSZ in the composite. Several competitive elementary reaction steps, which appear as one...

  13. UV photoemission from metal cathodes for picosecond power switches

    International Nuclear Information System (INIS)

    Fischer, J.; Srinivasan-RAo, T.; Tsang, T.

    1989-01-01

    Results are reported of photoemission studies using laser pulses of 10 ps duration and 4.66 eV photon energy on metal cathodes. These included thin wires, flat surfaces and an yttrium cathode with a grainy surface. The measurements of current density and quantum efficiency under low and high surface fields indicate that field assisted efficiencies exceeding 0.1% and current densities exceeding 10 5 A/cm 2 are obtainable. The results are compared to the requirements of switch power applications. 24 refs., 13 figs., 1 tab

  14. Advanced Cathodes for Next Generation Electric Propulsion Technology

    Science.gov (United States)

    2008-03-01

    learning opportunity- of which it did. Finally, Dr. Glen Perram of the physics department at AFIT was so gracious to let us borrow his Langmuir Probe in...Applications Like Hall thrusters, ion thrusters also employ hollow cathodes.15,18,19,20,21 Harold Kaufman at NASA Glen Research Center (GRC... brittle nature, a problem common to CeB6 and LaB6. As a result, easier to machine polycrystalline inserts for LaB6 have been used for hollow cathodes in

  15. Impedance Modeling of Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2010-01-01

    A 1-dimensional impedance model for a solid oxide fuel cell cathode is formulated and applied to a cathode consisting of 50/50 wt% strontium doped lanthanum cobaltite and gadolinia doped ceria. A total of 42 impedance spectra were recorded in the temperature range: 555-852°C and in the oxygen...... partial pressure range 0.028-1.00 atm. The recorded impedance spectra were successfully analyzed using the developed impedance model in the investigated temperature and oxygen partial pressure range. It is also demonstrated that the model can be used to predict how impedance spectra evolve with different...

  16. Web-Based Cathode Strip Chamber Data Display

    CERN Multimedia

    Firmansyah, M

    2013-01-01

    Cathode Strip Chamber (CSC) is a detector that uses gas and high electric field to detect particles. When a particle goes through CSC, it will ionize gas particles and generate electric signal in the anode and cathode of the detector. Analysis of the electric signal data can help physicists to reconstruct path of the particles and determine what happen inside the detector. Using data display, analysis of CSC data becomes easier. One can determine which data is interesting, unusual, or maybe only contain noise.\

  17. Improved Cathode Structure for a Direct Methanol Fuel Cell

    Science.gov (United States)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been

  18. Oxyphosphorus-containing polymers as binders for battery cathodes

    Science.gov (United States)

    Pratt, Russell Clayton; Mullin, Scott Allen; Eitouni, Hany Basam

    2018-05-29

    A class of polymeric phosphorous esters can be used as binders for battery cathodes. Metal salts can be added to the polymers to provide ionic conductivity. The polymeric phosphorous esters can be formulated with other polymers either as mixtures or as copolymers to provide additional desirable properties. Examples of such properties include even higher ionic conductivity and improved mechanical properties. Furthermore, cathodes that include the polymeric phosphorous esters can be assembled with a polymeric electrolyte separator and an anode to form a complete battery.

  19. Electrostatic probe and calorimetric measurements in a DC cathodic arc

    International Nuclear Information System (INIS)

    Lepone, Alejandro; Marquez, Adriana; Kelly, Hector; Grondona, Diana

    2001-01-01

    Several results obtained from measurements with spherical Langmuir probes and a calorimetric technique in a dc cathodic arc are presented. The arc is operated at a current level of 100 A, with a Copper cathode, and with Oxygen gas at a pressure in the range 0.005 divide 0.2 mbar. The measurements were performed at different axial positions in the discharge chamber. It is found that the electron temperature decreases for larger axial positions or higher pressures, but the derivation of reliable values for the ion density and kinetic energy require the consideration of atomic processes between the plasma and gas particles

  20. Nano-Particle Scandate Cathode for Space Communications Phase 2, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an improved cathode based on our novel theory of the role of scandium oxide in enhancing emission in tungsten-impregnated cathodes. Recent results have...

  1. Relation between surface roughness and number of cathode spots of a low-pressure arc

    International Nuclear Information System (INIS)

    Sato, Atsushi; Iwao, Toru; Yumoto, Motoshige

    2008-01-01

    A remarkable characteristic of the cathode spot of a low-pressure arc is that it can remove an oxide layer preferentially. Recently, cathode spots of a low-pressure arc have been used for cleaning metal oxide surfaces before thermal spraying or surface modification. Nevertheless, few reports have described the cathode spot movement or the oxide removal process. This experiment was carried out using a Fe+C cathode workpiece and a cylindrical copper anode. The cathode spot movement was recorded using a high-speed video camera. The images were later analysed using plasma image processing. The workpiece surface, which was covered with a 9.67 μm thick oxide, was analysed using laser microscopy after processing. The surface roughness and the number of cathode spots showed no direct relation because the current density per cathode spot did not change according to the number of cathode spots.

  2. SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Mogensen, Mogens Bjerg

    2011-01-01

    The cause of the degradation effect of moisture during operation of LSM cathode based SOFCs has been investigated by means of a detailed impedance characterization on LSM:YSZ composite cathode based SOFCs. Further the role of YSZ as cathode composite material was studied by measurements on SOFCs...... with a LSM:CGO composite cathode on a CGO interdiffusion barrier layer. It was found that both types of cathodes showed similar electrochemical characteristics towards the presence of moisture during operation. Upon addition and removal of moisture in the fed air the impedance study showed a change...... in the high frequency cathode arc, which is associated with the charge transport/transfer at the LSM/YSZ interface. On prolonged operation with the presence of moisture an ongoing increase in the high frequency cathode arc resulted in a permanent loss of cathode/electrolyte contact and thus increase...

  3. Study on the vibrational scraping of uranium product from a solid cathode of electrorefiner

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Bin; Kang, Young Ho; Hwang, Sung Chan; Lee, Han Soo; Paek, Seung Woo; Ahn, Do Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    A high-throughput electrorefiner has been developed for commercialization use by enhancing the uranium recovery from the reduced metal which is produced from the oxide reduction process. It is necessary to scrap and effectively collect uranium dendrites from the surface of the solid cathode for high yield. When a steel electrode is used as the cathode in the electrorefining process, uranium is deposited and regularly stuck to the steel cathode during electrorefining. The sticking coefficient of a steel cathode is very high. In order to decrease the sticking coefficient of the steel cathode effectively, vibration mode was applied to the electrode in this study. Uranium dendrites were scraped and fell apart from the steel cathode by a vibration force. The vibrational scraping of the steel cathode was compared to the self-scraping of the graphite cathode. Effects of the applied current density and the vibration stroke on the scraping of the uranium dendrites were also investigated.

  4. Hollow Cathode Studies for the Next Generation Ion Engines in JAXA

    Science.gov (United States)

    Ohkawa, Yasushi; Hayakawa, Yukio; Yoshida, Hideki; Miyazaki, Katsuhiro; Kitamura, Shoji; Kajiwara, Kenichi

    The current status of experimental studies of hollow cathodes for the next-generation ion engines in the Aerospace Research and Development Directorate, JAXA is described. One of the topics on the hollow cathode studies is a life test of a discharge cathode. The keeper disk, orifice plate, and cathode tube of this discharge cathode are made of "high density graphite," which possesses much higher tolerance to ion impingement compared with conventional metal materials. The life test had started in March 2006 and the cumulative operation time reached 15,600 hours in April 2008. No severe degradation has been found both in the operation voltages and electrodes so far, and the test is favorably in progress. In addition to the life test of the discharge cathode, some experiments for design optimization of neutralizer cathodes have been performed. A life test of the neutralizer cathode is being started in June 2008.

  5. Cobalt and cerium coated Ni powder as a new candidate cathode material for MCFC

    International Nuclear Information System (INIS)

    Kim, Min Hyuk; Hong, Ming Zi; Kim, Young-Suk; Park, Eunjoo; Lee, Hyunsuk; Ha, Hyung-Wook; Kim, Keon

    2006-01-01

    The dissolution of nickel oxide cathode in the electrolyte is one of the major technical obstacles to the commercialization of molten carbonate fuel cell (MCFC). To improve the MCFC cathode stability, the alternative cathode material for MCFC was prepared, which was made of Co/Ce-coated on the surface of Ni powder using a polymeric precursor based on the Pechini method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDAX) were employed in characterization of the alternative cathode materials. The Co/Ce-coated Ni cathode prepared by the tape-casting technique. The solubility of the Co/Ce-coated Ni cathode was about 80% lower when compare to that of pure Ni cathode under CO 2 :O 2 (66.7:33.3%) atmosphere at 650 deg. C. Consequently, the fine Co/Ce-coated Ni powder could be confirmed as a new alternative cathode material for MCFC

  6. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    KAUST Repository

    Zhang, Fang; Chen, Guang; Hickner, Michael A.; Logan, Bruce E.

    2012-01-01

    Poly(dimethylsiloxane) (PDMS) was investigated as an alternative to Nafion as an air cathode catalyst binder in microbial fuel cells (MFCs). Cathodes were constructed around either stainless steel (SS) mesh or copper mesh using PDMS as both catalyst

  7. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis.

    KAUST Repository

    Siegert, Michael; Yates, Matthew D; Call, Douglas F; Zhu, Xiuping; Spormann, Alfred; Logan, Bruce E

    2014-01-01

    In methanogenic microbial electrolysis cells (MMCs), CO2 is reduced to methane using a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane generation, we examined several cathode materials

  8. Cathode for Electric Space Propulsion Utilizing Iodine as Propellant, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a hollow reservoir cathode suitable for use in ion or Hall thrusters which utilizes iodine as a propellant. Reservoir cathodes have several unique...

  9. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell

    KAUST Repository

    Zhang, Fang

    2009-11-01

    An inexpensive activated carbon (AC) air cathode was developed as an alternative to a platinum-catalyzed electrode for oxygen reduction in a microbial fuel cell (MFC). AC was cold-pressed with a polytetrafluoroethylene (PTFE) binder to form the cathode around a Ni mesh current collector. This cathode construction avoided the need for carbon cloth or a metal catalyst, and produced a cathode with high activity for oxygen reduction at typical MFC current densities. Tests with the AC cathode produced a maximum power density of 1220 mW/m2 (normalized to cathode projected surface area; 36 W/m3 based on liquid volume) compared to 1060 mW/m2 obtained by Pt catalyzed carbon cloth cathode. The Coulombic efficiency ranged from 15% to 55%. These findings show that AC is a cost-effective material for achieving useful rates of oxygen reduction in air cathode MFCs. © 2009 Elsevier B.V. All rights reserved.

  10. Rechargeable Aqueous Zinc-Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode

    KAUST Repository

    Xia, Chuan; Guo, Jing; Lei, Yongjiu; Liang, Hanfeng; Zhao, Chao; Alshareef, Husam N.

    2017-01-01

    metal pyrovanadate compounds. The zinc pyrovanadate nanowires show significantly improved electrochemical performance when used as intercalation cathode for aqueous zinc–ion battery. Specifically, the ZVO cathode delivers high capacities of 213 and 76 m

  11. Reactivity between carbon cathode materials and electrolyte based on industrial and laboratory data

    CSIR Research Space (South Africa)

    Chauke, L

    2013-07-01

    Full Text Available Interaction between electrolyte and carbon cathodes during the electrolytic production of aluminium decreases cell life. This paper describes the interaction between carbon cathode materials and electrolyte, based on industrial and laboratory data...

  12. Mosaic-shaped cathode for highly durable solid oxide fuel cell under thermal stress

    Science.gov (United States)

    Joo, Jong Hoon; Jeong, Jaewon; Kim, Se Young; Yoo, Chung-Yul; Jung, Doh Won; Park, Hee Jung; Kwak, Chan; Yu, Ji Haeng

    2014-02-01

    In this study, we propose a novel "mosaic structure" for a SOFC (solid oxide fuel cell) cathode with high thermal expansion to improve the stability against thermal stress. Self-organizing mosaic-shaped cathode has been successfully achieved by controlling the amount of binder in the dip-coating solution. The anode-supported cell with mosaic-shaped cathode shows itself to be highly durable performance for rapid thermal cycles, however, the performance of the cell with a non-mosaic cathode exhibits severe deterioration originated from the delamination at the cathode/electrolyte interface after 7 thermal cycles. The thermal stability of an SOFC cathode can be evidently improved by controlling the surface morphology. In view of the importance of the thermal expansion properties of the cathode, the effects of cathode morphology on the thermal stress stability are discussed.

  13. Cathode erosion in a high-pressure high-current arc: calculations for tungsten cathode in a free-burning argon arc

    International Nuclear Information System (INIS)

    Nemchinsky, Valerian

    2012-01-01

    The motion of an evaporated atom of the cathode material in a near-cathode plasma is considered. It is shown that the evaporated atom is ionized almost instantly. The created ion, under the influence of a strong electric field existing in the cathode proximity, has a high probability of returning to the cathode. A small fraction of evaporated atoms are able to diffuse away from the cathode to the region where they are involved in plasma flow and lose their chance to return to the cathode. The fraction of the total evaporated atoms, which do not return to the cathode, the escape factor, determines the net erosion rate. In order to calculate this factor, the distributions of the plasma parameters in the near-cathode plasma were considered. Calculations showed that the escape factor is on the order of a few per cent. Using experimental data on the plasma and cathode temperatures, we calculated the net erosion rate for a free-burning 200 A argon arc with a thoriated tungsten cathode. The calculated erosion rate is close to 1 µg s -1 , which is in agreement with available experimental data. (paper)

  14. Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jin

    2009-01-07

    This is the final report for project entitled 'Research and development of a new field enhanced low temperature thermionic cathode that enables fluorescent dimming and load shedding without auxiliary cathode heating', under Agreement Number: DE-FC26-04NT-42329. Under this project, a highly efficient CNT based thermionic cathode was demonstrated. This cathode is capable of emitting electron at a current density two order of magnitude stronger then a typical fluorescent cathode at same temperatures, or capable of emitting at same current density but at temperature about 300 C lower than that of a fluorescent cathode. Detailed fabrication techniques were developed including CVD growth of CNTs and sputter deposition of oxide thin films on CNTs. These are mature technologies that have been widely used in industry for large scale materials processing and device fabrications, thus, with further development work, the techniques developed in this project can be scaled-up in manufacturing environment. The prototype cathodes developed in this project were tested in lighting plasma discharge environment. In many cases, they not only lit and sustain the plasma, but also out perform the fluorescent cathodes in key parameters such like cathode fall voltages. More work will be needed to further evaluate more detailed and longer term performance of the prototype cathode in lighting plasma.

  15. Testing a GaAs cathode in SRF gun

    International Nuclear Information System (INIS)

    Wang, E.; Kewisch, J.; Ben-Zvi, I.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2011-01-01

    RF electron guns with a strained superlattice GaAs cathode are expected to generate polarized electron beams of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface and lower cathode temperature. We plan to install a bulk GaAs:Cs in a SRF gun to evaluate the performance of both the gun and the cathode in this environment. The status of this project is: In our 1.3 GHz 1/2 cell SRF gun, the vacuum can be maintained at nearly 10 -12 Torr because of cryo-pumping at 2K. With conventional activation of bulk GaAs, we obtained a QE of 10% at 532 nm, with lifetime of more than 3 days in the preparation chamber and have shown that it can survive in transport from the preparation chamber to the gun. The beam line has been assembled and we are exploring the best conditions for baking the cathode under vacuum. We report here the progress of our test of the GaAs cathode in the SRF gun. Future particle accelerators, such as eRHIC and the ILC require high-brightness, high-current polarized electrons. Strained superlattice GaAs:Cs has been shown to be an efficient cathode for producing polarized electrons. Activation of GaAs with Cs,O(F) lowers the electron affinity and makes it energetically possible for all the electrons, excited into the conduction band that drift or diffuse to the emission surface, to escape into the vacuum. Presently, all operating polarized electron sources, such as the CEBAF, are DC guns. In these devices, the excellent ultra-high vacuum extends the lifetime of the cathode. However, the low field gradient on the photocathode's emission surface of the DC guns limits the beam quality. The higher accelerating gradients, possible in the RF guns, generate a far better beam. Until recently, most RF guns operated at room temperature, limiting the vacuum to ∼10 -9 Torr. This destroys the GaAs's NEA surface. The SRF guns combine the excellent vacuum conditions of DC guns and the high accelerating

  16. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dong; Liu, Mingfei; Lai, Samson; Blinn, Kevin; Liu, Meilin

    2012-09-30

    The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details and stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar

  17. Influence of the radial spacing between cathodes on the surface composition of iron samples sintered by hollow cathode electric discharge

    Directory of Open Access Journals (Sweden)

    Brunatto S.F.

    2001-01-01

    Full Text Available The present work reports an investigation of the influence of the radial spacing between cathodes on the iron sintering process by hollow cathode electrical discharge, with surface enrichment of the alloying elements Cr and Ni. Pressed cylindrical samples of 9.5 mm diameter and density of 7.0 ± 0.1 g/cm³ were prepared by compaction of Ancorsteel 1000C iron powder. These samples, constituting the central cathode, were positioned concentrically in the interior of an external cathode machined from a tube of stainless steel AISI 310 (containing: 25% Cr, 16% Ni, 1.5% Mn, 1.5% Si, 0.03% C and the remainder Fe. Sintering was done at 1150 °C, for 120 min, utilizing radial spacings between the central and hollow cathodes of 3, 6 and 9 mm and a gas mixture of 80% Ar and 20% H2, with a flow rate of 5 cm³/s at a pressure of 3 Torr. The electric discharge was generated using a pulsed voltage power source, with a period of 200 mus. The radial spacing had only a slight influence on the quantity of atoms of alloying elements deposited and diffused on the surface of the sample. Analysis with a microprobe showed the presence of chrome (up to 4.0% and nickel (up to 3.0%, in at. % at the surface of the samples. This surface enrichment can be attributed to the mechanism of sputtering of the metallic atoms present in the external cathode, with the deposition of these elements on the sample surface and consequent diffusion within the sample.

  18. Formation of virtual cathodes and microwave generation in relativistic electron beams

    International Nuclear Information System (INIS)

    Kwan, T.J.T.; Thode, L.E.

    1984-01-01

    Simulation of the generation of a relativistic electron beam in a foil diode configuration and the subsequent intense microwave generation resulting from the formation of the virtual cathode is presented. The oscillating virtual cathode and the trapped beam electrons between the real and the virtual cathodes were found to generate microwaves at two distinct frequencies. Generation of high-power microwaves with about 10% efficiency might reasonably be expected from such a virtual-cathode configuration

  19. Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells

    KAUST Repository

    Xie, Xing; Pasta, Mauro; Hu, Liangbing; Yang, Yuan; McDonough, James; Cha, Judy; Criddle, Craig S.; Cui, Yi

    2011-01-01

    A carbon nanotube (CNT)-textile-Pt cathode for aqueous-cathode microbial fuel cells (MFCs) was prepared by electrochemically depositing Pt nanoparticles on a CNT-textile. An MFC equipped with a CNT-textile-Pt cathode revealed a 2.14-fold maximum power density with only 19.3% Pt loading, compared to that with a commercial Pt coated carbon cloth cathode. © 2011 The Royal Society of Chemistry.

  20. Cathode fall parameters of a self-sustained normal glow discharge in atmospheric-pressure helium

    International Nuclear Information System (INIS)

    Arkhipenko, V.I.; Zgirovskii, S.M.; Kirillov, A.A.; Simonchik, L.V.

    2002-01-01

    Results from comprehensive studies of a high-current self-sustained glow discharge in atmospheric-pressure helium are presented. The main parameters of the cathode fall, namely, the electric field profile, cathode fall thickness, current density, gas temperature, and heat flux to the cathode are determined. The results obtained are discussed using one-dimensional models of the cathode fall with allowance for volumetric heat release

  1. Carbon Nanotube-CoF2 Multifunctional Cathode for Lithium Ion Batteries: Effect of Electrolyte on Cycle Stability.

    Science.gov (United States)

    Wang, Xinran; Gu, Wentian; Lee, Jung Tae; Nitta, Naoki; Benson, Jim; Magasinski, Alexandre; Schauer, Mark W; Yushin, Gleb

    2015-10-01

    Transition metal fluorides (MFx ) offer remarkably high theoretical energy density. However, the low cycling stability, low electrical and ionic conductivity of metal fluorides have severely limited their applications as conversion-type cathode materials for lithium ion batteries. Here, a scalable and low-cost strategy is reported on the fabrication of multifunctional cobalt fluoride/carbon nanotube nonwoven fabric nanocomposite, which demonstrates a combination of high capacity (near-theoretical, 550mAhgCoF2-1) and excellent mechanical properties. Its strength and modulus of toughness exceed that of many aluminum alloys, cast iron, and other structural materials, fulfilling the use of MFx -based materials in batteries with load-bearing capabilities. In the course of this study, cathode dissolution in conventional electrolytes has been discovered as the main reason that leads to the rapid growth of the solid electrolyte interphase layer and attributes to rapid cell degradation. And such largely overlooked degradation mechanism is overcome by utilizing electrolyte comprising a fluorinated solvent, which forms a protective ionically conductive layer on the cathode and anode surfaces. With this approach, 93% capacity retention is achieved after 200 cycles at the current density of 100 mA g(-1) and over 50% after 10 000 cycles at the current density of 1000 mA g(-1) . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cathode material and pulsed plasma treatment influence on the microstructure and microhardness of high-chromium cast iron surface

    Directory of Open Access Journals (Sweden)

    Юлія Геннадіївна Чабак

    2016-11-01

    Full Text Available The article presents an analysis of the cathode material and the pulse plasma treatment mode influence on the surface microstructure and microhardness of high chrome (15% Cr cast iron. The methods of metallographic analysis and microhardness measurements were used. It has been shown that pulsed plasma treatment at 4 kV voltage with the use of the electro-axial thermal accelerator results in surface modification with high microhardness 950-1050 HV50, and in the formation of the coating due to the transfer of the electrodes material. The specific features of using different cathode materials have been systematized. It has been found that graphite electrodes are not recommended to be used due to their low strength and fracture under plasma pulses. In case of using tungsten cathode a coating of small thickness (20-30 microns and having cracks has been formed on the specimen surface. The most expedient is to apply the electrodes with low melting point (such as killed St.3, which provides a high-quality state of treated surface and formation the protective crack-free coating of 80-100 microns thick. It has been found that as a result of the plasma pulsed treatment the enrichment of coating with carbon is likely to occur that results in microhardness increase. The prospects of this technology as well as its shortcomings have been described

  3. Recommandations pour la protection des fonds de réservoirs contre la corrosion externe et interne Recommendations for Protecting Tank Bottoms Against External and Internal Corrosion

    Directory of Open Access Journals (Sweden)

    Chambre Syndicale du Pétrole

    2006-11-01

    Full Text Available Ce document analyse le sprincipales causes de corrosion externe et inerne des réservoirs de stockage à axe vertical et recommande diverses mesures de prévention. Pour la protection externe, ces mesures concernent la conception des fondations et des fonds et la protection cathodique our la protection interne, elles concernet l'inhibition chimique, la protection cathodique et surtout les revêtements. This article analyzes the leading causes of external ant internal corrosion of vertical-axis storage tanks ant reccomends different prevention measures to protect the outside these measures have to do with the design of the foundations and bottom as well as with cathodic protection. t protect the inside they have to do with chemical inhibition, cathodic production and espacially coatings.

  4. Chromium poisoning of LSM/YSZ and LSCF/CGO composite cathodes

    DEFF Research Database (Denmark)

    Bentzen, Janet Jonna; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2009-01-01

    from 300 to 2,970 h. Both LSM/YSZ and LSCF/CGO cathodes were sensitive to chromium poisoning; LSCF/CGO cathodes to a lesser extent than LSM/YSZ. Humid air aggravated the degradation of the cathode performance. Post-mortem electron microscopic investigations revealed several Cr-containing compounds...

  5. Heating of refractory cathodes by high-pressure arc plasmas: II

    International Nuclear Information System (INIS)

    Benilov, M S; Cunha, M D

    2003-01-01

    Solitary spots on infinite planar cathodes and diffuse and axially symmetric spot modes on finite cathodes of high-pressure arc discharges are studied in a wide range of arc currents. General features are analysed and extensive numerical results on planar and cylindrical tungsten cathodes of atmospheric-pressure argon arcs are given for currents of up to 100 kA. It is shown, in particular, that the temperature of cathode surface inside a solitary spot varies relatively weakly and may be estimated, to the accuracy of about 200-300 K, without actually solving the thermal conduction equation in the cathode body. Asymptotic behaviour of solutions for finite cathodes in the limiting case of high currents is found and confirmed by numerical results. A general pattern of current-voltage characteristics of various modes on finite cathodes suggested previously on the basis of bifurcation analysis is confirmed. A transition from the spot modes on a finite cathode in the limit of large cathode dimensions to the solitary spot mode on an infinite planar cathode is studied. It is found that the solitary spot mode represents a limiting form of the high-voltage spot mode on a finite cathode. A question of distinguishing between diffuse and spot modes on finite cathodes is considered

  6. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells

    Science.gov (United States)

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2...

  7. Development of spark cathode E-guns. Draft final reprt, Phase I, July--October 1978

    International Nuclear Information System (INIS)

    Loda, G.; Lindstrand, R.

    1979-01-01

    A 12 sided spark cathode is designed and constructed to replace the bladed, cold cathode structure in the electron gun of the Los Alamos Scientific Laboratory Antares prototype power amplifier. Design work includes computer modeling and full scale low voltage modeling. Life testing to 100,000 pulses is documented. The spark cathode offers precise control of emission site location and a high reliability

  8. The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells

    KAUST Repository

    Zhang, Yimin; Merrill, Matthew D.; Logan, Bruce E.

    2010-01-01

    , and cathodes made of this material with high specific surface areas can achieve performance similar to carbon cathodes containing a platinum catalyst in MECs. SS mesh cathodes were examined here as a method to provide a higher surface area material than flat

  9. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell

    KAUST Repository

    Deng, Qian; Li, Xinyang; Zuo, Jiane.; Ling, Alison; Logan, Bruce E.

    2010-01-01

    An activated carbon fiber felt (ACFF) cathode lacking metal catalysts is used in an upflow microbial fuel cell (UMFC). The maximum power density with the ACFF cathode is 315 mW m-2, compared to lower values with cathodes made of plain carbon paper

  10. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    KAUST Repository

    Zhang, Fang; Merrill, Matthew D.; Tokash, Justin C.; Saito, Tomonori; Cheng, Shaoan; Hickner, Michael A.; Logan, Bruce E.

    2011-01-01

    that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid

  11. Preparation and surface characteristics of Re3W matrix scandate cathode: An experimental and theoretical study

    Science.gov (United States)

    Lai, Chen; Wang, Jinshu; Zhou, Fan; Liu, Wei; Hu, Peng; Wang, Changhao; Wang, Ruzhi; Miao, Naihua

    2018-05-01

    The Scandia doped thermionic cathodes have received great attention owing to their high electron emission density in past two decades. Here, Scandia doped Re3W matrix scandate (RS) cathodes are fabricated by using Sc2O3 doped Re3W powders that prepared by spray drying method. The micromorphology, surface composition and chemical states of RS cathode are investigated with various modern technologies. It reveals that the reduction temperature of RS powders is dramatically increased by Sc2O3. On the surface of RS cathode, a certain amount of Sc2O3 nanoparticles and barium salt submicron particles are observed. According to the in situ Auger electron spectroscopy analysis, the concentration ratio of Ba:Sc:O is determined to be 2.9:1.1:2.7. The X-ray photoelectron spectroscopy data indicates that low oxidation state of Sc is clearly observed in scandate cathodes. The high atomic ratio of Ba on RS cathode surface is suggested due to the high adsorption of Re3W to Ba. Moreover, RS cathode shows better adsorption to Sc by comparison with conventional tungsten matrix scandate cathode. For RS cathode, the main depletion of Sc is suggested to -OSc desorbing from RS cathode surface. RS cathode is expected to be an impressive thermionic cathode with good emission properties and ion anti-bombarding insensitivity.

  12. Cs-K-Te photo cathodes: a promising electron source for free-electron lasers

    NARCIS (Netherlands)

    Bisero, D.; Bisero, D.; van Oerle, B.M.; van Oerle, B.M.; Ernst, G.J.; Verschuur, Jeroen W.J.; Witteman, W.J.

    1998-01-01

    The characteristics of Cs–K–Te photo-cathodes when used in a photo-cathode linear accelerator will be presented together with a short review of their photo-emissive properties. The cathodes have been illuminated by light pulses obtained by frequency quadrupling the light of a Nd:YLF laser. The

  13. Measurements on the source properties of a hollow cathode

    NARCIS (Netherlands)

    Vogels, J.M.M.J.; Konings, L.U.E.; Koelman, J.M.V.A.; Schram, D.C.; Bötticher, W.; Wenk, H.; Schulz-Gulde, E.

    1983-01-01

    The ion production rate of a hollow cathode in a magnetized arc has been measured. At low magnetic fields supersonic ion drifts have been observed. The ionized fraction of the gas flow decreases with increasing flow and the ion flux saturates at high flow rates

  14. The fractal nature of vacuum arc cathode spots

    International Nuclear Information System (INIS)

    Anders, Andre

    2005-01-01

    Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f 2 , where f is frequency, supporting a fractal spot model associated with Brownian motion

  15. Durability and Performance of High Performance Infiltration Cathodes

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Hjalmarsson, Per

    2013-01-01

    The performance and durability of solid oxide fuel cell (SOFC) cathodes consisting of a porous Ce0.9Gd0.1O1.95 (CGO) infiltrated with nitrates corresponding to the nominal compositions La0.6Sr0.4Co1.05O3-δ (LSC), LaCoO3-δ (LC), and Co3O4 are discussed. At 600°C, the polarization resistance, Rp......, varied as: LSC (0.062Ωcm2)cathode was found to depend on the infiltrate firing temperature and is suggested to originate...... of the infiltrate but also from a better surface exchange property. A 450h test of an LSC-infiltrated CGO cathode showed an Rp with final degradation rate of only 11mΩcm2kh-1. An SOFC with an LSC-infiltrated CGO cathode tested for 1,500h at 700°C and 0.5Acm-2 (60% fuel, 20% air utilization) revealed no measurable...

  16. Impregnation of LSM Based Cathodes for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Højberg, Jonathan; Søgaard, Martin

    2011-01-01

    Composites cathodes consisting of strontium doped lanthanum manganite (LSM) and yttria stabilized zirconia have been impregnated with the nitrates corresponding to the nominal compositions: La0.75Sr0.25Mn1.05O3 +/-delta (LSM25), Ce0.8Sm0.2O2 (SDC) and a combination of both (dual). The latter...

  17. Effect of mulitivalent cation dopants on lithium manganese spinel cathodes

    CSIR Research Space (South Africa)

    De Kock, A

    1998-02-01

    Full Text Available The aim of this investigation is to determine optimised spinel cathode compositions that can be used in lithium cells. The cycling stability of 4 V LixMn2O4 electrodes in lithium, flooded electrolyte glass cells has been improved by the addition...

  18. Collective ion acceleration by means of virtual cathodes

    International Nuclear Information System (INIS)

    Peter, W.; Faehl, R.J.; Snell, C.; Jones, M.E.

    1985-01-01

    Experiments on collective ion acceleration by means of the formation of a virtual cathode have been carried out for a number of years in the Soviet Union and in the United States. Recently, there has been renewed interest in the subject as a possible means of accelerating ions to very high energies. By understanding the physics underlying the acceleration process it may be possible to determine the feasibility of virtual cathode staging for very high energy ion production. For this reason, a theoretical and computational effort is underway at Los Alamos in order to clarify the basic issues of collective ion acceleration by means of virtual cathodes. To support the theoretical effort, simulations were done with the fully electromagnetic and relativistic particle-in-cell code ISIS (in a one-dimensional mode) and the electrostatic one-dimensional code BIGONE. In the simulations, an electron beam of density 6 x 10 11 cm -3 is injected into a one-dimensional box of length L. To supply the necessary ions for collective acceleration, a plasma source containing both ions and electrons was initialized near the emitting boundary. Of prime interest in this study was to understand the dynamics of virtual cathode formation and the dynamics of the acceleration process for the ions. In particular, the question of whether the ions are accelerated by a moving potential well or hydrodynamic pressure due to ambipolar expansion is of primary interest. 3 refs., 5 figs

  19. Cathodic Arcs From Fractal Spots to Energetic Condensation

    CERN Document Server

    Anders, Andre

    2009-01-01

    Emphasizes the fractal character of cathode spots, and describes strongly fluctuating plasma properties such as the presence of multiply charged ions that move with supersonic velocity. This book also deals with issues, such as arc source construction, and macroparticle removal. It is intended for scientists, practitioners, and students alike

  20. Interactions of alkali metals and electrolyte with cathode carbons

    Energy Technology Data Exchange (ETDEWEB)

    Naas, Tyke

    1997-12-31

    The Hall-Heroult process for electrolytic reduction of alumina has been the only commercial process for production of primary aluminium. The process runs at high temperature and it is important to minimize the energy consumption. To save energy it is desirable to reduce the operating temperature. This can be achieved by adding suitable additives such as LiF or KF to the cryolitic electrolyte. This may conflict with the objective of extending the lifetime of the cathode linings of the cell as much as possible. The thesis investigates this possibility and the nature of the interactions involved. It supports the hypothesis that LiF-additions to the Hall-Heroult cell electrolyte is beneficial to the carbon cathode performance because the diminished sodium activity reduces the sodium induced stresses during the initial period of electrolysis. The use of KF as an additive is more dangerous, but the results indicate that additions up to 5% KF may be tolerated in acidic melts with semigraphitic or graphitic cathodes with little risk of cathode problems. 153 refs., 94 figs., 30 tabs.

  1. Anodal vs cathodal stimulation of motor cortex: a modeling study

    NARCIS (Netherlands)

    Manola, L.; Holsheimer, J.; Veltink, Petrus H.; Buitenweg, Jan R.

    Objective. To explore the effects of electrical stimulation performed by an anode, a cathode or a bipole positioned over the motor cortex for chronic pain management. Methods. A realistic 3D volume conductor model of the human precentral gyrus (motor cortex) was used to calculate the

  2. Flexible geometry hodoscope using proportional chamber cathode read-out

    International Nuclear Information System (INIS)

    Aubret, C.; Bellefon, A. de; Benoit, P.; Brunet, J.M.; Tristram, G.

    1978-01-01

    The construction of a cathode read-out proportional chamber, used as a low mass hodoscope is described. Results on efficiency, time resolution and space resolution are shown. The associative logic, which permits the use of the chamber as a coplanarity chamber is briefly presented

  3. Impedance of thin film cathodes: thickness and current collector dependence

    NARCIS (Netherlands)

    Boukamp, Bernard A.; Hildenbrand, N.; Bouwmeester, Henricus J.M.; Blank, David H.A.

    2015-01-01

    The influence of the layer thickness of mixed ionic–electronic conducting (MIEC) cathodes and the type of noble metal current collector on the apparent surface exchange resistance is studied with impedance spectroscopy. The impedance data is analyzed with the ‘General Finite Length Diffusion’

  4. Multi-cathode metal vapor arc ion source

    International Nuclear Information System (INIS)

    Brown, I.G.; MacGill, R.A.

    1988-01-01

    This patent describes an apparatus for generating an ion beam. It comprises: a vacuum enclosure; a support member; cathodes; an anode; means for transporting; a source of electrical power; means for producing an electric arc; means for guiding; and means for extracting ions

  5. Neutral hydrophilic cathode catalyst binders for microbial fuel cells

    KAUST Repository

    Saito, Tomonori; Roberts, Timothy H.; Long, Timothy E.; Logan, Bruce E.; Hickner, Michael A.

    2011-01-01

    and due to the high cost of PS-b-PEO, the performance of an inexpensive hydrophilic neutral polymer, poly(bisphenol A-co-epichlorohydrin) (BAEH), was examined in MFCs and compared to a hydrophilic sulfonated binder (Nafion). MFCs with BAEH-based cathodes

  6. Influence of surface wettability on cathode electroluminescence of porous silicon

    International Nuclear Information System (INIS)

    Goryachev, D.N.; Sreseli, O.M.; Belyakov, L.V.

    1997-01-01

    Influence of porous silicon wettability on efficiency of its cathode electroluminescence in electrolytes was investigated. It was revealed that increase of porous silicon wettability by electrolyte improved contact with a sublayer and provided generation of sufficient quantity of charge carriers. Diffusion - ionic, not electronic mechanism of charge transfer to the centers of micro crystallite electroluminescence is observed in porous silicon - electrolyte systems

  7. A high-current pulsed cathodic vacuum arc plasma source

    International Nuclear Information System (INIS)

    Oates, T.W.H.; Pigott, J.; Mckenzie, D.R.; Bilek, M.M.M.

    2003-01-01

    Cathodic vacuum arcs (CVAs) are well established as a method for producing metal plasmas for thin film deposition and as a source of metal ions. Fundamental differences exist between direct current (dc) and pulsed CVAs. We present here results of our investigations into the design and construction of a high-current center-triggered pulsed CVA. Power supply design based on electrolytic capacitors is discussed and optimized based on obtaining the most effective utilization of the cathode material. Anode configuration is also discussed with respect to the optimization of the electron collection capability. Type I and II cathode spots are observed and discussed with respect to cathode surface contamination. An unfiltered deposition rate of 1.7 nm per pulse, at a distance of 100 mm from the source, has been demonstrated. Instantaneous plasma densities in excess of 1x10 19 m -3 are observed after magnetic filtering. Time averaged densities an order of magnitude greater than common dc arc densities have been demonstrated, limited by pulse repetition rate and filter efficiency

  8. Whistleblower Protection

    Science.gov (United States)

    The Whistleblower Protection Enhancement Act of 2012 (WPA) and the Whistleblower Protection Act of 1989 Enhanced by the Act of 2012 provides protection rights for Federal employees against retaliation for whistleblowing activities.

  9. Space and time dependent properties of the virtual cathode in a reflex-type pulsed ion diode (virtual cathode in a reflex-type pulsed ion diode)

    International Nuclear Information System (INIS)

    Matsumoto, Yoshio; Yano, Syukuro

    1982-01-01

    Properties of a virtual cathode in a pulsed ion diode composed of an insulator-mesh anode and a metal-mesh cathode were studied experimentally at anode voltages below 360kV. Potential distribution in the virtual cathode side was measured with an insulated electrostatic potential probe, and ion beam currents in virtual and real cathode sides were measured with biased ion collectors. A loss parameter for the electron current at the virtual cathode was evaluated from the measured electron current values by using relations derived from the one-dimensional Child-Langmuir theory applied to the reflex triode. The ion beam accompanies a considerable amount of electron current, and this influences the stability of the virtual cathode; this perturbation results in variations of ion current with time. Space potentials in the emitted ion beam are given, suggesting an existence of high energy electrons of several keV accelerated by positive space potential of the ion beam. (author)

  10. Enhanced cycling stability of Li-rich nanotube cathodes by 3D graphene hierarchical architectures for Li-ion batteries

    International Nuclear Information System (INIS)

    Ma, Dingtao; Li, Yongliang; Wu, Maosheng; Deng, Libo; Ren, Xiangzhong; Zhang, Peixin

    2016-01-01

    A hybrid composite of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 nanotubes (LMNCO NTs) wrapped with reduced graphene oxide (RGO) nanosheets (LMNCO@RGO) was prepared as cathode for lithium-ion batteries. The discharge capacity of the LMNCO@RGO composite is only reducing 3.5% after 100 cycles at 1 C. Such composite which simultaneously combines a high surface area of LMNCO NTs with shorten ionic diffusion pathway and high conductivity of 3D graphene hierarchical architectures as well as structural protection layers, displaying a good cycling stability.

  11. Radiation protection

    International Nuclear Information System (INIS)

    Koelzer, W.

    1975-01-01

    Physical and radiological terms, quantities, and units. Basic principles of radiation protection (ICRP, IAEA, EURATOM, FRG). Biological effects of ionizing radiation. Objectives of practical radiation protection. (HP) [de

  12. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.

    Science.gov (United States)

    Liang, Zheng; Zheng, Guangyuan; Li, Weiyang; Seh, Zhi Wei; Yao, Hongbin; Yan, Kai; Kong, Desheng; Cui, Yi

    2014-05-27

    Sulfur is a cathode material for lithium-ion batteries with a high specific capacity of 1675 mAh/g. The rapid capacity fading, however, presents a significant challenge for the practical application of sulfur cathodes. Two major approaches that have been developed to improve the sulfur cathode performance include (a) fabricating nanostructured conductive matrix to physically encapsulate sulfur and (b) engineering chemical modification to enhance binding with polysulfides and, thus, to reduce their dissolution. Here, we report a three-dimensional (3D) electrode structure to achieve both sulfur physical encapsulation and polysulfides binding simultaneously. The electrode is based on hydrogen reduced TiO2 with an inverse opal structure that is highly conductive and robust toward electrochemical cycling. The relatively enclosed 3D structure provides an ideal architecture for sulfur and polysulfides confinement. The openings at the top surface allow sulfur infusion into the inverse opal structure. In addition, chemical tuning of the TiO2 composition through hydrogen reduction was shown to enhance the specific capacity and cyclability of the cathode. With such TiO2 encapsulated sulfur structure, the sulfur cathode could deliver a high specific capacity of ∼1100 mAh/g in the beginning, with a reversible capacity of ∼890 mAh/g after 200 cycles of charge/discharge at a C/5 rate. The Coulombic efficiency was also maintained at around 99.5% during cycling. The results showed that inverse opal structure of hydrogen reduced TiO2 represents an effective strategy in improving lithium sulfur batteries performance.

  13. State of the art, to protect lines that transport hydrocarbons

    International Nuclear Information System (INIS)

    Carta Petrolera

    1998-01-01

    Personnel's periodic and forced displacement for monitoring the buried pipe and to obtain reports on the state of the lines, it will no longer be necessary in some tracts of the pipeline in Colombia, now the remote supervision exists for the control of the systems of cathodic protection, a technology that ECOPETROL is applying in its lines of transport. This technique facilitates the preventive maintenance to the systems to the corrosion protection

  14. Resistivity network and structural model of the oxide cathode for CRT application

    OpenAIRE

    Hashim, A. A.; Barratt, D. S.; Hassan, A. K.; Evans-Freeman, J. H.; Nabok, A.

    2006-01-01

    In this paper, the electrical properties of oxide cathode\\ud and oxide cathode plus, supplied by LG Philips Displays, have been\\ud investigated in relation to different cathode activation regimes and\\ud methods. Oxide cathode activation treatment for different durations\\ud has been investigated. The formations of the compounds associated\\ud to the diffusion of reducing elements (Mg, Al, and W) to the Ni cap surface of oxide cathode were studied by a new suggestion method. Scanning electron mi...

  15. Anode Supported Solid Oxide Fuel Cells - Deconvolution of Degradation into Cathode and Anode Contributions

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus

    2007-01-01

    The degradation of anode supported cells was studied over 1500 h as function of cell polarization either in air or oxygen on the cathode. Based on impedance analysis, contributions of anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates...... of the cathode were strongly dependent on the pO(2); they were significantly smaller when testing in oxygen compared to air. Microstructural analysis of the cathode/electrolyte interface of a not-tested reference cell carried out after removal of the cathode showed sharp craters on the electrolyte surface where...

  16. Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells

    Science.gov (United States)

    Zhu, Yimin; Zelenay, Piotr

    2006-03-21

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  17. An explosive-emitter cathode produced using the heavy ion track technique

    International Nuclear Information System (INIS)

    Akap'ev, G.N.; Korenev, S.A.

    1988-01-01

    A cathode based on thin metallic foils with a homogeneous needle surface is described. The cathode was manufactured using the heavy ion track technique which permits the production of cathodes with an unlimited area and a needle density ranging from about 10 3 to 10 9 needles per cm 2 . An electron gun using this type of cathode has a current of 200-900 A and an energy of 100-300 keV. The cross section of the electron beam is fairly uniform. It is shown that needle emitters of similar shape and size play the principal role in forming a homogeneous cathode plasma

  18. The explosive cathode on the base of carbon-fibrous plastic material

    International Nuclear Information System (INIS)

    Korenev, S.A.; Baranov, A.M.; Kostyuchenko, S.V.; Chernenko, N.M.

    1988-01-01

    Production process of exploseve cathodes on the base of carbon-fibrous plastic material of any geometric form and size is discussed. Experimental study of current take-off from cathodes with diameter 2 cm of 10 kV and 150-250 kV voltage are given. It is shown that ignition voltage of cathode plasma is 2 kV with 5 mm gap electrode of diode and 5 ·10 -5 Tor pressure of residual gas. It is shown that carbon-fibrous cathode, made by this technology, provides more stable current take-off electron beam (withoud oscillations) in comparison with other cathodes

  19. Study on the cathode of ion source for neutral beam injector

    International Nuclear Information System (INIS)

    Tanaka, Shigeru

    1983-08-01

    Durability of the cathode is an important problem in developing a high power long pulse ion source for neutral beam injector. The Purpose of this study is to develope a long life cathode and investigate the applicability of it to the source. Directly heated filaments which are commonly used as the cathode of injector source do not live very long in general. In the present work, an indirectly heated hollow cathode made of impregnated porous tungsten tube is proposed as the alternative of the directly heated cathode. At first, we fabricated a small hollow cathode to study the discharge characteristcs in a bell-jar configuration and to apply it to a duoPIGatron hydrogen ion source. The experiment showed that the gas flow rate for sustaining the stable arc discharge in the discharge chamber becomes higher than that when the filament cathode is used. To solve this problem, an experiment for gas reduction was made using a newly fabricated larger hollow cathode and a magnetic multi-pole ion source. The influence of the orifice diameter, the effect of a button and of magnetic field on the gas flow rate were experimentally studied and a method for gas reduction was found. In addition, effect of the magnetic field on the characteristics of the hollow cathode ion source was examined in detail and an optimum field configuration around the cathode was found. Finally, beam extraction from an intensively cooled hollow cathode ion source for up to 10 sec was successfully carried out. (author)

  20. Joule heat generation in thermionic cathodes of high-pressure arc discharges

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M. S.; Cunha, M. D. [Departamento de Fisica, CCCEE, Universidade da Madeira, Largo do Municipio, 9000 Funchal (Portugal)

    2013-02-14

    The nonlinear surface heating model of plasma-cathode interaction in high-pressure arcs is extended to take into account the Joule effect inside the cathode body. Calculation results are given for different modes of current transfer to tungsten cathodes of different configurations in argon plasmas of atmospheric or higher pressures. Special attention is paid to analysis of energy balances of the cathode and the near-cathode plasma layer. In all the cases, the variation of potential inside the cathode is much smaller than the near-cathode voltage drop. However, this variation can be comparable to the volt equivalent of the energy flux from the plasma to the cathode and then the Joule effect is essential. Such is the case of the diffuse and mixed modes on rod cathodes at high currents, where the Joule heating causes a dramatic change of thermal and electrical regimes of the cathode. The Joule heating has virtually no effect over characteristics of spots on rod and infinite planar cathodes.

  1. A study on the recovery of TRU elements by a container-aided solid cathode

    International Nuclear Information System (INIS)

    Kwon, S.W.; Lee, J.H.; Woo, M.S.; Shim, J.B.; Kim, E.H.; Yoo, J.H.; Park, S.W.; Park, H.S.

    2005-01-01

    Pyroprocessing is a very prominent way for the recovery of the long-lived elements from the spent nuclear fuel. Electrorefining is a key technology of pyroprocessing and generally composed of two recovery steps - deposit of uranium onto a solid cathode and the recovery of TRU (TRansUranic) elements by a liquid cadmium cathode. The liquid cadmium cathode has some problems such as a cadmium volatilization problem, a low separation factor, and a complicates structure. In this study, CASC (Container-Aided Solid Cathode) was proposed as a candidate for replacing a liquid cadmium cathode and the deposition behavior of the cathode was examined during the electrorefining experiments. The CASC is a solid cathode surrounded with a porous ceramic container, where the container is used to capture the dripped deposit from the cathode. In the electrorefining experiment, the uranium used as a surrogate for the TRU elements, was effectively separated from cerium. The anode material and surface area were also investigated during electrolysis experiments for the more efficient electrorefining system. From the results of this study, it is concluded that the container-aided solid cathode can be a potential candidate for replacing a liquid cadmium cathode and the cathode should be developed further for the better electrolysis operation. (author)

  2. Targeted partial surface modification with nano-SiO2@Li2CoPO4F as high-voltage cathode material for LIBs

    Science.gov (United States)

    Chang, Caiyun; Huang, Zhipeng; Tian, Runsai; Jiang, Xinyu; Li, Chunsheng; Feng, Jijun

    2017-10-01

    Tuning whole/partial surface modification on cathode material with oxide material is a sought-after method to enhance the electrochemical performance in power storage field. Herein, nano-SiO2 targeted partial surface modified high voltage cathode material Li2CoPO4F has been successfully fabricated via a facile self-assembly process in silica dispersion at ambient temperature. With the aid of polar -OH groups attracted on the surface of SiO2 micelles, the nano-SiO2 preferentially nestle up along the borders and boundaries of Li2CoPO4F particles, where protection should be deployed with emphasis against the undesirable interactions between materials and electrolytes. Compared with pristine Li2CoPO4F, the SiO2 selectively modified Li2CoPO4F cathode materials, especially LCPF-3S, exhibit desirable electrochemical performances with higher discharge capacity, more outstanding cycle stability and favorable rate capability without any additional carbon involved. The greatly enhanced electrochemical properties can be attributed to the improved lithium-ion diffusion kinetics and structure tolerance during repeated lithiation/delithiation process. Such findings reveal a great potential of nano-SiO2 modified Li2CoPO4F as high energy cathode material for lithium ion batteries.

  3. Anode-cathode power distribution systems and methods of using the same for electrochemical reduction

    Science.gov (United States)

    Koehl, Eugene R; Barnes, Laurel A; Wiedmeyer, Stanley G; Williamson, Mark A; Willit, James L

    2014-01-28

    Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly. Electrical systems may be used with an electrolyte container into which the modular cathode and anode assemblies extend and are supported above, with the modular cathode and anode assemblies mechanically and electrically connecting to the respective contacts in power distribution systems.

  4. Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application

    International Nuclear Information System (INIS)

    Barik, R.K.; Bera, A.; Raju, R.S.; Tanwar, A.K.; Baek, I.K.; Min, S.H.; Kwon, O.J.; Sattorov, M.A.; Lee, K.W.; Park, G.-S.

    2013-01-01

    High power terahertz vacuum electron devices demand high current density and uniform emission dispenser cathode. It was found that the coating of noble metals e.g., Os, Ir, and Re on the surface of tungsten dispenser cathodes enhances the emission capabilities and uniformity. Hence metal coated cathode might be the best candidate for terahertz devices applications. In this study, ternary-alloy-film cathode (2Os:2Re:1 W) and Os coated cathode have been developed and the results are presented. The cathodes made out of this alloy coating showed 1.5 times higher emission and 0.02 eV emission uniformity as compared to those of simply Os coated cathodes which can be used in terahertz devices application.

  5. Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application

    Energy Technology Data Exchange (ETDEWEB)

    Barik, R. K.; Bera, A. [School of Electrical Engineering and Computer Science, Seoul National University, Seoul (Korea, Republic of); Raju, R. S. [Central Electronics Engineering Research Institute (CEERI), Rajasthan (India); Tanwar, A. K.; Baek, I. K.; Min, S. H.; Kwon, O. J.; Sattorov, M. A. [Department of Physics and Astronomy, Center for THz-Bio Application Systems, and Seoul-Teracom Inc., Seoul National University, Seoul (Korea, Republic of); Lee, K. W. [LIG Nex1, Seoul (Korea, Republic of); Park, G.-S., E-mail: gunsik@snu.ac.kr [School of Electrical Engineering and Computer Science, Seoul National University, Seoul (Korea, Republic of); Department of Physics and Astronomy, Center for THz-Bio Application Systems, and Seoul-Teracom Inc., Seoul National University, Seoul (Korea, Republic of); Advanced Institute of Convergence Technology, Suwon-si, Gyeonggi-do (Korea, Republic of)

    2013-07-01

    High power terahertz vacuum electron devices demand high current density and uniform emission dispenser cathode. It was found that the coating of noble metals e.g., Os, Ir, and Re on the surface of tungsten dispenser cathodes enhances the emission capabilities and uniformity. Hence metal coated cathode might be the best candidate for terahertz devices applications. In this study, ternary-alloy-film cathode (2Os:2Re:1 W) and Os coated cathode have been developed and the results are presented. The cathodes made out of this alloy coating showed 1.5 times higher emission and 0.02 eV emission uniformity as compared to those of simply Os coated cathodes which can be used in terahertz devices application.

  6. Assessment of the cathode contribution to the degradation of anode-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus

    2008-01-01

    The degradation of anode-supported cells was studied over 1500 h as a function of cell polarization either in air or oxygen on the cathode side. Based on impedance analysis, contributions of the anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates...... of the cathode were strongly dependent on the pO(2). Microstructural analysis of the cathode/electrolyte interface carried out after removal of the cathode showed craters on the electrolyte surface where the lanthanum strontium manganite (LSM) particles had been located. The changes of shape and size...... of these craters observed after testing correlated with the cell voltage degradation rates. The results can be interpreted in terms of element redistribution at the cathode/electrolyte interface and formation of foreign phases giving rise to a weakening of local contact points of the LSM cathode and yttria...

  7. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells.

    Science.gov (United States)

    Kim, Junyoung; Sengodan, Sivaprakash; Kwon, Goeun; Ding, Dong; Shin, Jeeyoung; Liu, Meilin; Kim, Guntae

    2014-10-01

    We report on an excellent anode-supported H(+) -SOFC material system using a triple conducting (H(+) /O(2-) /e(-) ) oxide (TCO) as a cathode material for H(+) -SOFCs. Generally, mixed ionic (O(2-) ) and electronic conductors (MIECs) have been selected as the cathode material of H(+) -SOFCs. In an H(+) -SOFC system, however, MIEC cathodes limit the electrochemically active sites to the interface between the proton conducting electrolyte and the cathode. New approaches to the tailoring of cathode materials for H(+) -SOFCs should therefore be considered. TCOs can effectively extend the electrochemically active sites from the interface between the cathode and the electrolyte to the entire surface of the cathode. The electrochemical performance of NBSCF/BZCYYb/BZCYYb-NiO shows excellent long term stability for 500 h at 1023 K with high power density of 1.61 W cm(-2) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Modular cathode assemblies and methods of using the same for electrochemical reduction

    Science.gov (United States)

    Wiedmeyer, Stanley G.; Barnes, Laurel A.; Williamson, Mark A.; Willit, James L.

    2018-03-20

    Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.

  9. Freestanding and flexible graphene papers as bioelectrochemical cathode for selective and efficient CO2 conversion

    DEFF Research Database (Denmark)

    Aryal, Nabin; Halder, Arnab; Zhang, Minwei

    2017-01-01

    During microbial electrosynthesis (MES) driven CO2 reduction, cathode plays a vital role by donating electrons to microbe. Here, we exploited the advantage of reduced graphene oxide (RGO) paper asnovel cathode material to enhance electron transfer between the cathode and microbe, which in turn...... facilitated CO2 reduction. The acetate production rate of Sporomusa ovata-driven MES reactors was 168.5 ± 22.4 mmol m−2 d−1 with RGO paper cathodes poised at −690 mV versus standard hydrogen electrode. This rate was approximately 8 fold faster than for carbon paper electrodes of the same dimension....... The current density with RGO paper cathodes of 2580 ± 540 mA m−2 was increased 7 fold compared to carbon paper cathodes. This also corresponded to a better cathodic current response on their cyclic voltammetric curves. The coulombic efficiency for the electrons conversion into acetate was 90.7 ± 9.3% with RGO...

  10. Impedance of porous IT-SOFC LSCF:CGO composite cathodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jacobsen, Torben; Wandel, Marie

    2011-01-01

    The impedance of technological relevant LSCF:CGO composite IT-SOFC cathodes was studied over a very wide performance range. This was experimentally achieved by impedance measurements on symmetrical cells with three different microstructures in the temperature range 550–850 °C. In order to account...... for the impedance spectra of the poor performing cathodes the Finite-Length-Gerischer (FLG) impedance was derived and applied to the impedance data. The FLG impedance describes for a given microstructure the situation where the cathode is made too thin from a cathode development point of view. The moderate...... performing cathodes showed a slightly suppressed Gerischer impedance, while the impedance spectra of the well performing cathodes showed the presence of an arc due to oxygen gas diffusion. The overall impedance of the well performing cathodes could be described with a slightly suppressed Gerischer impedance...

  11. Ion source using a hollow cathode discharge system and especially, particle accelerator comprising said source

    International Nuclear Information System (INIS)

    Mourier, Georges.

    1975-01-01

    An ion source provided with a hollow cathode discharge system is presented. The ion extraction system is designed in view of generating a beam directed towards a point of use located far from the point of ion production. Said source essentially comprises two cathodes facing each other, an anode at a continuous voltage with respect to the cathodes, a heated filament beyond the cathode on the path of the extracted beam, and a grid between said filament and cathode. The ion extraction is limited to a certain portion of the ions present inside the plasma, so as the discharge to continue to be sustained by itself. For that purpose pierced cathodes are used, with a transparency (the ratio of the hole area to the whole cathode area) not much higher than 50% [fr

  12. Plasma-induced field emission and plasma expansion of carbon nanotube cathodes

    International Nuclear Information System (INIS)

    Liao Qingliang; Zhang Yue; Qi Junjie; Huang Yunhua; Xia Liansheng; Gao Zhanjun; Gu Yousong

    2007-01-01

    High intensity electron emission cathodes based on carbon nanotube films have been successfully fabricated. An investigation of the explosive field emission properties of the carbon nanotube cathode in a double-pulse mode was presented and a high emission current density of 245 A cm -2 was obtained. The formation of the cathode plasma layer was proved and the production process of the electron beams from the cathode was explained. The time and space resolution of the electron beams flow from the cathode was investigated. The plasma expanded at a velocity of ∼8.17 cm μs -1 towards the anode and influenced on the intensity and distribution of electron beams obviously. The formation of cathode plasma had no preferential position and the local enhancement of electron beams was random. This carbon nanotube cathode appears to be suitable for high-power microwave device applications

  13. Using Multispectral Imaging to Measure Temperature Profiles and Emissivity of Large Thermionic Dispenser, Cathodes

    International Nuclear Information System (INIS)

    Simmons, D.F.; Fortgang, C.M.; Holtkamp, D.B.

    2001-01-01

    Thermionic dispenser cathodes are widely used in modern high-power microwave tubes. Use of these cathodes has led to significant improvement in performance. In recent years these cathodes have been used in electron linear accelerators (LINACs), particularly in induction LINACs, such as the Experimental Test Accelerator at Lawrence Livermore National Laboratory and the Relativistic Test Accelerator at Lawrence Berkeley National Laboratory. For induction LINACs, the thermionic dispenser cathode provides greater reproducibility, longer pulse lengths, and lower emittance beams than does a field emission cathode. Los Alamos National Laboratory is fabricating a dual-axis X-ray radiography machine called dual-axis radiograph hydrodynamic test (DARHT). The second axis of DARHT consists of a 2-kA, 20-MeV induction LINAC that uses a 3.2-MeV electron gun with a tungsten thermionic-dispenser cathode. Typically the DARHT cathode current density is 10 A/cm 2 at 1050 C. Under these conditions current density is space-charge limited, which is desirable since current density is independent of temperature. At lower temperature (the temperature-limited regime) there are variations in the local current density due to a nonuniform temperature profile. To obtain the desired uniform current density associated with space-charge limited operation, the coolest area on the cathode must be at a sufficiently high temperature so that the emission is space-charge limited. Consequently, the rest of the cathode is emitting at the same space-charge-limited current density but is at a higher temperature than necessary. Because cathode lifetime is such a strong function of cathode temperature, there is a severe penalty for nonuniformity in the cathode temperature. For example, a temperature increase of 50 C means cathode lifetime will decrease by a factor of at least four. Therefore, we are motivated to measure the temperature profiles of our large-area cathodes

  14. Physical protection

    International Nuclear Information System (INIS)

    Myers, D.A.

    1989-01-01

    Physical protection is defined and its function in relation to other functions of a State System of Accounting for and Control of Nuclear Materials is described. The need for a uniform minimum international standard for physical protection as well as the need for international cooperation in physical protection is emphasized. The IAEA's INFCIRC/225/Rev. 1 (Annex 1) is reviewed. The Convention on the Physical Protection of Nuclear Material (Annex 2) is discussed. Photographs show examples of typical physical protection technology (Annex 3)

  15. Diplomatic Protection

    OpenAIRE

    Režná, Jana

    2006-01-01

    Final thesis Topic: Diplomatic protection Thesis supervisor: JUDr. Vladimír Balaš, CSc. Student: Marek Čermák Thesis on the topic of diplomatic protection deals with the granting of exercise of diplomatic protection by the states and is divided into seven chapters which follow each other. The first chapter describes the diplomatic protection and its historical foundations. The second chapter focuses on the possibility of exercise of diplomatic protection in respect of natural persons and the ...

  16. An investigation of energy balances in palladium cathode electrolysis experiments

    Science.gov (United States)

    Longhurst, G. R.; Dolan, T. J.; Henriksen, G. L.

    1990-09-01

    A series of experiments was performed at the Idaho National Engineering Laboratory (INEL) to investigate mechanisms that may contribute to energy flows in electrolysis cells like those of Fleischmann and Pons. Ordinary water (H2O), heavy water (D2O), and a mixture of the two were used in the INEL experiments. Cathodes used include a 51-μm Pd foil and 1-mm diameter extruded wire Pd rods in straight and coiled configurations. Energy balances in these experiments revealed no significant net gain or net loss of energy. Cell overpotential curves were fit well with a Tafel equation, with parameters dependent on electrode configuration, electrolyte composition, and temperature. Water evaporation and interactions of hydrogen isotopes with the Pd cathode were evaluated and found not to be significant to energy balances. No ionizing radiation, tritium production, or other evidence of fusion reactions was observed in the INEL experiments.

  17. Asymmetric anode and cathode extraction structure fast recovery diode

    Science.gov (United States)

    Xie, Jiaqiang; Ma, Li; Gao, Yong

    2018-05-01

    This paper presents an asymmetric anode structure and cathode extraction fast and soft recovery diode. The device anode is partial-heavily doped and partial-lightly doped. The P+ region is introduced into the cathode. Firstly, the characteristics of the diode are simulated and analyzed. Secondly, the diode was fabricated and its characteristics were tested. The experimental results are in good agreement with the simulation results. The results show that, compared with the P–i–N diode, although the forward conduction characteristic of the diode is declined, the reverse recovery peak current is reduced by 47%, the reverse recovery time is shortened by 20% and the softness factor is doubled. In addition, the breakdown voltage is increased by 10%. Project supported by the National Natural Science Foundation of China (No. 51177133).

  18. Performance Improvement of an Inhomogeneous Cathode by Infiltration

    DEFF Research Database (Denmark)

    Seyed-Vakili, S. V.; Graves, Christopher R.; Babaei, A.

    2017-01-01

    The performance of solid oxide fuel cells (SOFCs) is considerably influenced by the microstructure and chemical composition of cathode materials. Porous La0.85Sr0.15FeO3– Ce0.9Gd0.1O2 composite electrodes were infiltrated by La0.6Sr0.4CoO3 and La0.6Sr0.4FeO3. The effects of infiltration loading...... performance of the electrodes. The electrochemical results revealed that the polarization resistance of the cathodes significantly was decreased by infiltration from 2.59 to 0.034 Ω cm2 measured at 670 °C. The best electrode performance was achieved at a calcination temperature of 770 °C. It was also found...

  19. The Impact of Strong Cathodic Polarization on SOC Electrolyte Materials

    DEFF Research Database (Denmark)

    Kreka, Kosova; Hansen, Karin Vels; Jacobsen, Torben

    2016-01-01

    One of the most promising reversible energy conversion/storage technologies is that of Solid Oxide Fuel/Electrolysis Cells (SOFC/SOEC, collectively termed SOC). Long term durability is typically required for such devises to become economically feasible, hence considerable amount of work has...... of impurities at the grain boundaries, electrode poisoning, delamination or cracks of the electrolyte etc., have been observed in cells operated at such conditions, lowering the lifetime of the cell1,2. High polarizations are observed at the electrolyte/cathode interface of an electrolysis cell operated at high...... current density. In case of a cell voltage above 1.6 V, p-type and n-type electronic conductivity are often observed at the anode and cathode respectively3. Hence, a considerable part of the current is lost as leakage through the electrolyte, thus lowering the efficiency of the cell considerably....

  20. Progress on Using NEA Cathodes in an RF Gun

    CERN Document Server

    Fliller, Raymond P; Blüm, Hans; Edwards, Helen; Hüning, Markus; Schultheiss, Tom; Sinclair, Charles K

    2005-01-01

    RF guns have proven useful in multiple accelerator applications, and are an attractive electron source for the ILC. Using a NEA GaAs photocathode in such a gun allows for the production of polarized electron beams. However the lifetime of a NEA cathode in this environment is reduced by ion and electron bombardment and residual gas oxidation. We report progress made with studies to produce a RF gun using a NEA GaAs photocathode to produce polarized electron beams. Attempts to reduce the residual gas pressure in the gun are discussed. Initial measurements of ion flux through the cathode port are compared with simulations of ion bombardment. Future directions are also discussed.

  1. Sputter deposition of BSCCO films from a hollow cathode

    International Nuclear Information System (INIS)

    Lanagan, M.T.; Kampwirth, R.T.; Doyle, K.; Kowalski, S.; Miller, D.; Gray, K.E.

    1991-01-01

    High-T c superconducting thin films were deposited onto MgO single crystal substrates from a hollow cathode onto ceramic targets with the nominal composition of Bi 2 Sr 2 CaCu 2 O x . Films similar in composition to those used for the targets were deposited on MgO substrates by rf sputtering. The effects of sputtering time, rf power, and post-annealing on film microstructure and properties were studied in detail. Substrate temperature was found to have a significant influence on the film characteristics. Initial results show that deposition rates from a hollow cathode are an order of magnitude higher than those of a planar magnetron source at equivalent power levels. Large deposition rates allow for the coating of long lengths of wire

  2. Understanding Mn-Based Intercalation Cathodes from Thermodynamics and Kinetics

    Directory of Open Access Journals (Sweden)

    Yin Xie

    2017-07-01

    Full Text Available A series of Mn-based intercalation compounds have been applied as the cathode materials of Li-ion batteries, such as LiMn2O4, LiNi1−x−yCoxMnyO2, etc. With open structures, intercalation compounds exhibit a wide variety of thermodynamic and kinetic properties depending on their crystal structures, host chemistries, etc. Understanding these materials from thermodynamic and kinetic points of view can facilitate the exploration of cathodes with better electrochemical performances. This article reviews the current available thermodynamic and kinetic knowledge on Mn-based intercalation compounds, including the thermal stability, structural intrinsic features, involved redox couples, phase transformations as well as the electrical and ionic conductivity.

  3. The tungsten powder study of the dispenser cathode

    International Nuclear Information System (INIS)

    Bao Jixiu; Wan Baofei

    2006-01-01

    The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 deg. C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment

  4. The tungsten powder study of the dispenser cathode

    Science.gov (United States)

    Bao, Ji-xiu; Wan, Bao-fei

    2006-06-01

    The intercorrelation of tungsten powder properties, such as grain size, distribution and morphology, and porous matrix parameters with electron emission capability and longevity of Ba dispenser cathodes has been investigated for the different grain morphologies. It is shown that a fully cleaning step of the tungsten powder is so necessary that the tungsten powder will be reduction of oxide in hydrogen atmosphere above 700 °C. The porosity of the tungsten matrix distributes more even and the closed pore is fewer, the average granule size of the tungsten powder distributes more convergent. The porosity of the tungsten matrix and the evaporation of the activator are bigger and the pulse of the cathode is smaller when the granularity is bigger by the analysis of the electronic microscope and diode experiment.

  5. Ion acceleration in multi-species cathodic plasma jet

    Science.gov (United States)

    Krasov, V. I.; Paperny, V. L.

    2016-05-01

    A general expression for ion-ion coupling in a multi-species plasma jet was obtained. The expression is valid for any value of the inter-species velocity. This expression has enabled us to review a hydrodynamic problem of expanding the cathodic plasma microjet with two ion species within the respective charge states Z1 = +1 and Z2 = +2 into a vacuum. We were able to illustrate that in scenario when the initial (i.e., acquired during a process of emission from cathode's surface) difference for ion's species velocity exceeds a threshold value, the difference remains noticeable (roughly about 10% of the average jet's velocity) at a distance of a few centimeters from the emission center. At this point, it can be measured experimentally.

  6. Ion acceleration in multi-species cathodic plasma jet

    International Nuclear Information System (INIS)

    Krasov, V. I.; Paperny, V. L.

    2016-01-01

    A general expression for ion-ion coupling in a multi-species plasma jet was obtained. The expression is valid for any value of the inter-species velocity. This expression has enabled us to review a hydrodynamic problem of expanding the cathodic plasma microjet with two ion species within the respective charge states Z 1  = +1 and Z 2  = +2 into a vacuum. We were able to illustrate that in scenario when the initial (i.e., acquired during a process of emission from cathode's surface) difference for ion's species velocity exceeds a threshold value, the difference remains noticeable (roughly about 10% of the average jet's velocity) at a distance of a few centimeters from the emission center. At this point, it can be measured experimentally.

  7. Ion acceleration in multi-species cathodic plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Krasov, V. I.; Paperny, V. L. [Irkutsk State University, Irkutsk 664003 (Russian Federation)

    2016-05-15

    A general expression for ion-ion coupling in a multi-species plasma jet was obtained. The expression is valid for any value of the inter-species velocity. This expression has enabled us to review a hydrodynamic problem of expanding the cathodic plasma microjet with two ion species within the respective charge states Z{sub 1} = +1 and Z{sub 2} = +2 into a vacuum. We were able to illustrate that in scenario when the initial (i.e., acquired during a process of emission from cathode's surface) difference for ion's species velocity exceeds a threshold value, the difference remains noticeable (roughly about 10% of the average jet's velocity) at a distance of a few centimeters from the emission center. At this point, it can be measured experimentally.

  8. Virtual cathode formations in nested-well configurations

    International Nuclear Information System (INIS)

    Stephens, K. F. II; Ordonez, C. A.; Peterkin, R. E. Jr.

    1999-01-01

    Complete transmission of an electron beam through a cavity is not possible if the current exceeds the space-charge limited current. The formation of a virtual cathode reflects some of the beam electrons and reduces the current transmitted through the cavity. Transients in the injected current have been shown to lower the transmitted current below the value predicted by the electrostatic Child-Langmuir law. The present work considers the propagation of an electron beam through a nested-well configuration. Electrostatic particle-in-cell simulations are used to demonstrate that ions can be trapped in the electric potential depression of an electron beam. Furthermore, the trapped ions can prevent the formation of a virtual cathode for beam currents exceeding the space-charge limit

  9. Carbonization kinetics of La2O3-Mo cathode materials

    International Nuclear Information System (INIS)

    Jinshu, W.; Meiling, Z.; Tieyong, Z.; Jiuxing, Z.; Zuoren, N.

    2001-01-01

    The carbonization kinetics of La 2 O 3 -Mo cathode materials has been studied by thermal analysis method. Three-stage model of the carbonization has been presented in this paper. The carbonization rate is initially controlled by chemical reaction, then controlled by chemical reaction mixed with diffusion, finally controlled by diffusion. After the initial experimental data are processed according to this model, the correlation coefficients of the kinetic curves are satisfactory. The apparent activation energy of carbonization of La 2 O 3 -Mo cathode materials has been obtained. At the same time, we have deduced the empirical expressions of the amount of weight increased per unit area after carbonization, temperature and time in the temperature range 1393 K - 1493 K. (author)

  10. Coupling Phenomenon in Diode with Dielectric Gridded Cathode

    International Nuclear Information System (INIS)

    Lahav, A.; Berezovsky, V.; Schachter, L.

    1999-01-01

    We investigated the current characteristic in a vacuum diode with a Gridded cathode. The grid is located on a top of a Ferro - Electric disk with a uniform cathode on its back side. We found experimental evidence that the current in such a system exceeds Child - Langmuir limit, in agreement with results reported in [1]. Explanations to this phenomenon were given in term of the non-linear characteristic of the ferro - electric ceramic or by plasma-assisted emission and gap closure. Recently [2] it has been shown theoretically that electrostatic coupling between the dielectric disk and the vacuum gap is directly responsible to the excess of current. We shall report experimental results that may support this possibility

  11. Higher harmonics generation in relativistic electron beam with virtual cathode

    Energy Technology Data Exchange (ETDEWEB)

    Kurkin, S. A., E-mail: KurkinSA@gmail.com; Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E. [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028, Russia and Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation)

    2014-09-15

    The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.

  12. Solid oxide fuel cell cathode with oxygen-reducing layer

    Science.gov (United States)

    Surdoval, Wayne A.; Berry, David A.; Shultz, Travis

    2018-04-03

    The disclosure provides a SOFC comprised of an electrolyte, anode, and cathode, where the cathode comprises an MIEC and an oxygen-reducing layer. The oxygen-reducing layer is in contact with the MIEC, and the MIEC is generally between and separating the oxygen-reducing layer and the electrolyte. The oxygen-reducing layer is comprised of single element oxides, single element carbonates, or mixtures thereof, and has a thickness of less than about 30 nm. In a particular embodiment, the thickness is less than 5 nm. In another embodiment, the thickness is about 3 monolayers or less. The oxygen-reducing layer may be a continuous film or a discontinuous film with various coverage ratios. The oxygen-reducing layer at the thicknesses described may be generated on the MIEC surface using means known in the art such as, for example, ALD processes.

  13. Application of mercury cathode electrolysis to fission-product separation

    International Nuclear Information System (INIS)

    Besson, A.; Prigent, Y.; Van-Kote, F.

    1969-01-01

    A method involving controlled potential mercury cathode electrolysis has been developed to separate fission products. It allows the radiochemical determination of Ag, Cd, Pd, Rh, Ru, Sn, Te, Sb and Mo from solutions of fission products highly concentrated in mineral salts. The general procedure consists in three main steps: electrolytic amalgam generation, destruction of amalgams and ultimate purification of elements by other means. Electrolytic operations last about five hours. Chemical yields lie between 10 per cent and 70 per cent. (authors) [fr

  14. Neutralizer Hollow Cathode Simulations and Comparisons with Ground Test Data

    Science.gov (United States)

    Mikellides, Ioannis G.; Snyder, John S.; Goebel, Dan M.; Katz, Ira; Herman, Daniel A.

    2009-01-01

    The fidelity of electric propulsion physics-based models depends largely on the validity of their predictions over a range of operating conditions and geometries. In general, increased complexity of the physics requires more extensive comparisons with laboratory data to identify the region(s) that lie outside the validity of the model assumptions and to quantify the uncertainties within its range of application. This paper presents numerical simulations of neutralizer hollow cathodes at various operating conditions and orifice sizes. The simulations were performed using a two-dimensional axisymmetric model that solves numerically a relatively extensive system of conservation laws for the partially ionized gas in these devices. A summary of the comparisons between simulation results and Langmuir probe measurements is provided. The model has also been employed to provide insight into recent ground test observations of the neutralizer cathode in NEXT. It is found that a likely cause of the observed keeper voltage drop is cathode orifice erosion. However, due to the small magnitude of this change, is approx. 0.5 V (less than 5% of the beginning-of-life value) over 10 khrs, and in light of the large uncertainties of the cathode material sputtering yield at low ion energies, other causes cannot be excluded. Preliminary simulations to understand transition to plume mode suggest that in the range of 3-5 sccm the existing 2-D model reproduces fairly well the rise of the keeper voltage in the NEXT neutralizer as observed in the laboratory. At lower flow rates the simulation produces oscillations in the keeper current and voltage that require prohibitively small time-steps to resolve with the existing algorithms.

  15. Plasma gun with coaxial powder feed and adjustable cathode

    Science.gov (United States)

    Zaplatynsky, Isidor (Inventor)

    1991-01-01

    An improved plasma gun coaxially injects particles of ceramic materials having high melting temperatures into the central portion of a plasma jet. This results in a more uniform and higher temperature and velocity distribution of the sprayed particles. The position of the cathode is adjustable to facilitate optimization of the performance of the gun wherein grains of the ceramic material are melted at lower power input levels.

  16. Cathode Lens Mode of the SEM in Materials Science Applications

    Czech Academy of Sciences Publication Activity Database

    Frank, Luděk; Müllerová, Ilona; Matsuda, K.; Ikeno, S.

    2007-01-01

    Roč. 48, č. 5 (2007), s. 944-948 ISSN 1345-9678 R&D Projects: GA ČR GA102/05/2327; GA ČR GA202/04/0281 Institutional research plan: CEZ:AV0Z20650511 Keywords : electron microscopy of materials * scanning electron microscopy * low energy electron microscopy * cathode lens Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.018, year: 2007

  17. Anodic and cathodic reactions in molten calcium chloride

    International Nuclear Information System (INIS)

    Fray, D.J.

    2002-01-01

    Calcium chloride is a very interesting electrolyte in that it is available, virtually free, in high purity form as a waste product from the chemical industry. It has a very large solubility for oxide ions, far greater than many alkali halides and other divalent halides and has the same toxicity as sodium chloride and also a very high solubility in water. Intuitively, on the passage of current, it is expected that calcium would be deposited at the cathode and chlorine would evolve at the anode. However, if calcium oxide is added to the melt, it is possible to deposit calcium and evolve oxygen containing gases at the anode, making the process far less polluting than when chlorine is evolved. This process is discussed in terms of the addition of calcium to molten lead. Furthermore, these reactions can be altered dramatically depending upon the electrode materials and the other ions dissolved in the calcium chloride. As calcium is only deposited at very negative cathodic potentials, there are several interesting cathodic reactions that can occur and these include the decomposition of the carbonate ion and the ionization of oxygen, sulphur, selenium and tellurium. For example, if an oxide is used as the cathode in molten calcium chloride, the favoured reaction is shown to be the ionization of oxygen O + 2e - → O 2- rather than Ca 2+ + 2 e- → Ca. The oxygen ions dissolve in the salt leaving the metal behind, and this leads to the interesting hypothesis that metal oxides can be reduced directly to the metal purely by the use of electrons. Examples are given for the reduction of titanium dioxide, zirconium dioxide, chromium oxide and niobium oxide and by mixing oxide powders together and reducing the mixed compact, alloys and intermetallic compounds are formed. Preliminary calculations indicate that this new process should be much cheaper than conventional metallothermic reduction for these elements. (author)

  18. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous–cathode MEC improves power generation in air–cathode MFCs

    KAUST Repository

    Cheng, Shaoan; Kiely, Patrick; Logan, Bruce E.

    2011-01-01

    -cathode MFCs with this inoculum produced maximum power densities of 1070mWm-2 (cathode surface area) in single-chamber and 880mWm-2 in two-chamber MFCs. Coulombic efficiencies ranged from 25% to 50%, and COD removals were 50-70% based on total cellulose

  19. X-Band Thermionic Cathode RF Gun at UTNL

    CERN Document Server

    Fukasawa, Atsushi; Dobashi, Katsuhiro; Ebina, Futaro; Hayano, Hitoshi; Higo, Toshiyasu; Kaneyasu, Tatsuo; Matsuo, Kennichi; Ogino, Haruyuki; Sakae, Hisaharu; Sakamoto, Fumito; Uesaka, Mitsuru; Urakawa, Junji

    2005-01-01

    The X-band (11.424 GHz) linac for compact Compton scattering hard X-ray source are under construction at Nuclear Engineering Research Laboratory, University of Tokyo. This linac designed to accelerate up to 35 MeV, and this electron beam will be used to produce hard X-ray by colliding with laser. It consists of a thermionic cathode RF gun, an alpha magnet, and a traveling wave tube. The gun has 3.5 cells (unloaded Q is 8250) and will be operated at pi-mode. A dispenser cathode is introduced. Since the energy spread of the beam from the gun is predicted to be broad due to the continuous emission from the thermionic cathode, a slit is placed in the alpha magnet to eliminate low energy electrons. The simulation on the injector shows the beam energy 2.9 MeV, the charge 23 pC/bunch, and the emittance less than 10 mm.mrad. The experiment on the gun is planed in the beginning of 2005, and the details will be discussed on the spot.

  20. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    Science.gov (United States)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  1. Geometrical Aspects of a Hollow-cathode Magnetron (HCM)

    International Nuclear Information System (INIS)

    Cohen, Samuel A.; Wang, Zhehui

    1998-01-01

    A hollow-cathode magnetron (HCM), built by surrounding a planar sputtering-magnetron cathode with a hollow-cathode structure (HCS), is operable at substantially lower pressures than its planar-magnetron counterpart. We have studied the dependence of magnetron operational parameters on the inner diameter D and length L of a cylindrical HCS. Only when L is greater than L sub zero, a critical length, is the HCM operable in the new low-pressure regime. The critical length varies with HCS inner diameter D. Explanations of the lower operational pressure regime, critical length, and plasma shape are proposed and compared with a one-dimension diffusion model for energetic or primary electron transport. At pressures above 1 mTorr, an electron-impact ionization model with Bohm diffusion at a temperature equivalent to one-half the primary electron energy and with an ambipolar constraint can explain the ion-electron pair creation required to sustain the discharge. The critical length L sub zero is determined by the magnetization length of the primary electrons

  2. Molecular beam sampling of a hollow cathode arc

    International Nuclear Information System (INIS)

    Theuws, P.

    1981-01-01

    This thesis deals with the description of the process of molecular beam sampling of a Hollow Cathode Arc. The aim of the study is twofold, i.e. investigation of the applicability of molecular beam sampling as a plasma diagnostic and the use of a Hollow Cathode Arc as a high intensity beam source for ground state atoms and metastable state atoms in the superthermal energy range. Suitable models are introduced, describing the process of molecular beam sampling of both ground state atoms and metastable state atoms. Fast ground state atoms produced by ion-atom collisions. The experimental facilities, i.e. the Hollow Cathode Arc, the time-of-flight machine and the dye laser system are described. And an alternative detection scheme for ground state atoms is presented and experimental results on the molecular beam sampling of a low density plasma (densities 10 19 -10 20 m -3 ) in the long arc configuration are reported. The results on the short arc configuration (densities 10 21 -10 22 m -3 ) are discussed. (Auth.)

  3. Surfing Silicon Nanofacets for Cold Cathode Electron Emission Sites.

    Science.gov (United States)

    Basu, Tanmoy; Kumar, Mohit; Saini, Mahesh; Ghatak, Jay; Satpati, Biswarup; Som, Tapobrata

    2017-11-08

    Point sources exhibit low threshold electron emission due to local field enhancement at the tip. In the case of silicon, however, the realization of tip emitters has been hampered by unwanted oxidation, limiting the number of emission sites and the overall current. In contrast to this, here, we report the fascinating low threshold (∼0.67 V μm -1 ) cold cathode electron emission from silicon nanofacets (Si-NFs). The ensembles of nanofacets fabricated at different time scales, under low energy ion impacts, yield tunable field emission with a Fowler-Nordheim tunneling field in the range of 0.67-4.75 V μm -1 . The local probe surface microscopy-based tunneling current mapping in conjunction with Kelvin probe force microscopy measurements revealed that the valleys and a part of the sidewalls of the nanofacets contribute more to the field emission process. The observed lowest turn-on field is attributed to the absence of native oxide on the sidewalls of the smallest facets as well as their lowest work function. In addition, first-principle density functional theory-based simulation revealed a crystal orientation-dependent work function of Si, which corroborates well with our experimental observations. The present study demonstrates a novel way to address the origin of the cold cathode electron emission sites from Si-NFs fabricated at room temperature. In principle, the present methodology can be extended to probe the cold cathode electron emission sites from any nanostructured material.

  4. Geometrical aspects of a hollow-cathode planar magnetron

    International Nuclear Information System (INIS)

    Wang, Z.; Cohen, S.A.

    1999-01-01

    A hollow-cathode planar magnetron (HCPM), built by surrounding a planar sputtering-magnetron cathode with a hollow-cathode structure (HCS) [Z. Wang and S. A. Cohen, J. Vac. Sci. Technol. A 17, 77 (1999)], is operable at substantially lower pressures than its planar-magnetron counterpart. HCPM operational parameters depend on the inner diameter D and length L of its cylindrical HCS. Only when L is greater than L 0 , a critical length, is the HCPM operable in the new low-pressure regime. The critical length varies with HCS inner diameter D. Explanations of the lower operational pressure regime, critical length, and plasma shape are proposed and compared with a one-dimension diffusion model for energetic electron transport. At pressures above 1 mTorr, Bohm diffusion (temperature congruent primary electron energy), with an ambipolar constraint, can explain the ion - electron pair creation required to sustain the discharge. At the lowest pressure, ∼0.3 mTorr, collision-limited diffusion creates fewer ion - electron pairs than required for steady state and therefore cannot explain the experimental data. The critical length L 0 is consistent with the magnetization length of the primary electrons. copyright 1999 American Institute of Physics

  5. Laser microstructuring and annealing processes for lithium manganese oxide cathodes

    International Nuclear Information System (INIS)

    Proell, J.; Kohler, R.; Torge, M.; Ulrich, S.; Ziebert, C.; Bruns, M.; Seifert, H.J.; Pfleging, W.

    2011-01-01

    It is expected that cathodes for lithium-ion batteries (LIB) composed out of nano-composite materials lead to an increase in power density of the LIB due to large electrochemically active surface areas but cathodes made of lithium manganese oxides (Li-Mn-O) suffer from structural instabilities due to their sensitivity to the average manganese oxidation state. Therefore, thin films in the Li-Mn-O system were synthesized by non-reactive radiofrequency magnetron sputtering of a spinel lithium manganese oxide target. For the enhancement of the power density and cycle stability, large area direct laser patterning using UV-laser radiation with a wavelength of 248 nm was performed. Subsequent laser annealing processes were investigated in a second step in order to set up a spinel-like phase using 940 nm laser radiation at a temperature of 680 deg. C. The interaction processes between UV-laser radiation and the material was investigated using laser ablation inductively coupled plasma mass spectroscopy. The changes in phase, structure and grain shape of the thin films due to the annealing process were recorded using Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The structured cathodes were cycled using standard electrolyte and a metallic lithium anode. Different surface structures were investigated and a significant increase in cycling stability was found. Surface chemistry of an as-deposited as well as an electrochemically cycled thin film was investigated via X-ray photoelectron spectroscopy.

  6. Ion velocities in a micro-cathode arc thruster

    International Nuclear Information System (INIS)

    Zhuang Taisen; Shashurin, Alexey; Keidar, Michael; Beilis, Isak

    2012-01-01

    Ion velocities in the plasma jet generated by the micro-cathode arc thruster are studied by means of time-of-flight method using enhanced ion detection system (EIDS). The EIDS triggers perturbations (spikes) on arc current waveform, and the larger current in the spike generates denser plasma bunches propagating along with the mainstream plasma. The EIDS utilizes double electrostatic probes rather than single probes. The average Ti ion velocity is measured to be around 2×10 4 m/s without a magnetic field. It was found that the application of a magnetic field does not change ion velocities in the interelectrode region while leads to ion acceleration in the free expanding plasma plume by a factor of about 2. Ion velocities of about 3.5×10 4 m/s were detected for the magnetic field of about 300 mT at distance of about 100–200 mm from the cathode. It is proposed that plasma is accelerated due to Lorentz force. The average thrust is calculated using the ion velocity measurements and the cathode mass consumption rate, and its increase with the magnetic field is demonstrated.

  7. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    Science.gov (United States)

    He, Weihua; Yang, Wulin; Tian, Yushi; Zhu, Xiuping; Liu, Jia; Feng, Yujie; Logan, Bruce E.

    2016-11-01

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of -0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m-2, with balanced air and water pressures of 10-25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  8. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    KAUST Repository

    He, Weihua

    2016-09-30

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of −0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m, with balanced air and water pressures of 10–25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  9. Synthesis and characterization of cathode, anode and electrolyte materials for rechargeable lithium batteries

    Science.gov (United States)

    Yang, Shoufeng

    Two new classes of cathode materials were studied: iron phosphate/sulfate materials and layered manganese oxides, both of which are low cost and had shown some potential. The first class of materials have poor conductivity and cyclability. I studied a number of methods for increasing the conductivity, and determined that grinding the material with carbon black was as effective as special in-situ coatings. The optimum carbon loading was determined to be between 6 and 15 wt%. Too much carbon reduces the volumetric energy density, whereas too little significantly increased cell polarization (reduced the rate of reaction). The kinetic and thermodynamic stability of LiFePO 4 was also studied and it was determined that over discharge protection will be needed as irreversible Li3PO4 can be formed at low potentials. A novel hydrothermal synthesis method was developed, but the significant level of Fe on the Li site reduces the reaction rate too much. In the case of the layered manganese oxide, cation substitution with Co and Ni is found to be effective in avoiding Jahn-Teller effects and improving electrochemistry. A wide range of tin compounds have been suggested as lithium storage media for advanced anode materials, as tin can store over 4 Li per Sn atom. Lithium hexafluorophosphate, LiPF6, is presently the salt of choice for LiCoO2 batteries, but it is expensive and dissolves some manganese compounds. The lithium bis(oxolato)borate (BOB) salt was recently reported, and I made a study of its use in cells with the LiFePO4 cathode and the tin anode. During its synthesis, it became clear that LiBOB is very reactive with many solvents, and these complexes were characterized to better understand this new material. In LiBOB the lithium is five coordinated, an unstable configuration for the lithium ion so that water and many other solvents rapidly react to make a six coordination. Only in the case of ethylene carbonate was the lithium found to be four coordinated. The Li

  10. Environmental protection

    International Nuclear Information System (INIS)

    Klinda, J.; Lieskovska, Z.

    1998-01-01

    In this chapter environmental protection in the Slovak Republic in 1997 are reviewed. The economics of environmental protection, state budget, Slovak state environmental fund, economic instruments, environmental laws, environmental impact assessment, environmental management systems, and environmental education are presented

  11. Understanding the Role of Temperature and Cathode Composition on Interface and Bulk: Optimizing Aluminum Oxide Coatings for Li-Ion Cathodes

    International Nuclear Information System (INIS)

    Han, Binghong; Paulauskas, Tadas; Key, Baris; Peebles, Cameron; Park, Joong Sun

    2017-01-01

    Here, surface coating of cathode materials with Al_2O_3 has been shown to be a promising method for cathode stabilization and improved cycling performance at high operating voltages. However, a detailed understanding on how coating process and cathode composition changes the chemical composition, morphology and distribution of coating within cathode interface and bulk lattice, is still missing. In this study, we use a wet-chemical method to synthesize a series of Al_2O_3-coated LiNi_0_._5Co_0_._2Mn_0_._3O_2 and LiCoO_2 cathodes treated under various annealing temperatures and a combination of structural characterization techniques to understand the composition, homogeneity and morphology of coating layer and the bulk cathode. Nuclear magnetic resonance and electron microscopy results reveal that the nature of the interface is highly depended on the annealing temperature and cathode composition. For Al_2O_3-coated LiNi_0_._5Co_0_._2Mn_0_._3O_2, higher annealing temperature leads to more homogeneous and more closely attached coating on cathode materials, corresponding to better electrochemical performance. Lower Al_2O_3 coating content is found to be helpful to further improve the initial capacity and cyclability, which can greatly outperform the pristine cathode material. For Al_2O_3-coated LiCoO_2, the incorporation of Al into the cathode lattice is observed after annealing at high temperatures, implying the transformation from “surface coatings” to “dopants”, which is not observed for LiNi_0_._5Co_0_._2Mn_0_._3O_2. As a result, Al_2O_3-coated LiCoO_2 annealed at higher temperature shows similar initial capacity but lower retention compared to that annealed at a lower temperature, due to the intercalation of surface alumina into the bulk layered structure forming a solid solution.

  12. Understanding the Role of Temperature and Cathode Composition on Interface and Bulk: Optimizing Aluminum Oxide Coatings for Li-Ion Cathodes.

    Science.gov (United States)

    Han, Binghong; Paulauskas, Tadas; Key, Baris; Peebles, Cameron; Park, Joong Sun; Klie, Robert F; Vaughey, John T; Dogan, Fulya

    2017-05-03

    Surface coating of cathode materials with Al 2 O 3 has been shown to be a promising method for cathode stabilization and improved cycling performance at high operating voltages. However, a detailed understanding on how coating process and cathode composition change the chemical composition, morphology, and distribution of coating within the cathode interface and bulk lattice is still missing. In this study, we use a wet-chemical method to synthesize a series of Al 2 O 3 -coated LiNi 0.5 Co 0.2 Mn 0.3 O 2 and LiCoO 2 cathodes treated under various annealing temperatures and a combination of structural characterization techniques to understand the composition, homogeneity, and morphology of the coating layer and the bulk cathode. Nuclear magnetic resonance and electron microscopy results reveal that the nature of the interface is highly dependent on the annealing temperature and cathode composition. For Al 2 O 3 -coated LiNi 0.5 Co 0.2 Mn 0.3 O 2 , higher annealing temperature leads to more homogeneous and more closely attached coating on cathode materials, corresponding to better electrochemical performance. Lower Al 2 O 3 coating content is found to be helpful to further improve the initial capacity and cyclability, which can greatly outperform the pristine cathode material. For Al 2 O 3 -coated LiCoO 2 , the incorporation of Al into the cathode lattice is observed after annealing at high temperatures, implying the transformation from "surface coatings" to "dopants", which is not observed for LiNi 0.5 Co 0.2 Mn 0.3 O 2 . As a result, Al 2 O 3 -coated LiCoO 2 annealed at higher temperature shows similar initial capacity but lower retention compared to that annealed at a lower temperature, due to the intercalation of surface alumina into the bulk layered structure forming a solid solution.

  13. Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Xia Changrong; Zhang Yuelan; Liu Meilin

    2003-01-01

    Composites consisting of silver and yttria stabilized bismuth oxide (YSB) have been investigated as cathodes for low-temperature honeycomb solid oxide fuel cells with stabilized zirconia as electrolytes. At 600 deg. C, the interfacial polarization resistances of a porous YSB-Ag cathode is about 0.3 Ω cm 2 , more than one order of magnitude smaller than those of other reported cathodes on stabilized zirconia. For example, the interfacial resistances of a traditional YSZ-lanthanum maganites composite cathode is about 11.4 Ω cm 2 at 600 deg. C. Impedance analysis indicated that the performance of an YSB-Ag composite cathode fired at 850 deg. C for 2 h is severely limited by gas transport due to insufficient porosity. The high performance of the YSB-Ag cathodes is very encouraging for developing honeycomb fuel cells to be operated at temperatures below 600 deg. C

  14. Development of multi-pixel x-ray source using oxide-coated cathodes.

    Science.gov (United States)

    Kandlakunta, Praneeth; Pham, Richard; Khan, Rao; Zhang, Tiezhi

    2017-07-07

    Multiple pixel x-ray sources facilitate new designs of imaging modalities that may result in faster imaging speed, improved image quality, and more compact geometry. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide-coated cathodes. Oxide cathodes have high emission efficiency and, thereby, produce high emission current density at low temperature when compared to traditional tungsten filaments. Indirectly heated micro-rectangular oxide cathodes were developed using carbonates, which were converted to semiconductor oxides of barium, strontium, and calcium after activation. Each cathode produces a focal spot on an elongated fixed anode. The x-ray beam ON and OFF control is performed by source-switching electronics, which supplies bias voltage to the cathode emitters. In this paper, we report the initial performance of the oxide-coated cathodes and the MPTEX source.

  15. Beam Dynamics Simulations of Optically-Enhanced Field Emission from Structured Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Seymour, A. [Northern Illinois U.; Grote, D. [LLNL, Livermore; Mihalcea, D. [Northern Illinois U.; Piot, P. [Fermilab; Vay, J.-L. [LBNL, Berkeley

    2014-01-01

    Structured cathodes - cathodes with a segmented emission surface - are finding an increasing number of applications and can be combined with a variety of emission mechanisms, including photoemission and field emission. These cathodes have been used to enhance the quantum efficiency of metallic cathodes when operated as plasmonic cathodes, have produced high-current electron bunches though field emission from multiple tips, and can be used to form beams with transverse segmentations necessary for improving the performance of accelerator-based light sources. In this report we present recent progress towards the development of finite-difference time-domain particle-in-cell simulations using the emission process in structured cathodes based on the WARP framework. The simulations give further insight on the localized source of the emitted electrons which could be used for additional high-fidelity start-to-end simulations of electron accelerators that employ this type of electron source.

  16. Virtual cathode regime in nonstationary electric high-current discharge in hydrogen

    International Nuclear Information System (INIS)

    Baksht, F.G.; Borodin, V.S.; Zhuravlev, V.N.

    1988-01-01

    Virtual cathode (VC) regime in a non-stationary high-current hydrogen arch is constructed. Basic calculational characteristics of the near-the-cathode layer are presented. The calculation was conducted for a 1 cm long cathode under 2x10 4 A/cm 2 current density in pulse and 10 atm. pressure. A rectangular current pulse was considered. It is shown that VC formation is caused by electron temperature reduction in the near-the-cathode area. This results in the reduction of ion flux from plasma to the cathode surface and finally in the change of a sign of space charge and field intensity near the surface. Under the transition to VC regime only the cathode temperature and its effective work function are practically changed, while the rest of parameters remain approximately constant

  17. Design and experiment of high-current low-pressure plasma-cathode e-gun

    International Nuclear Information System (INIS)

    Xie Wenkai; Li Xiaoyun; Wang Bin; Meng Lin; Yan Yang; Gao Xinyan

    2006-01-01

    The preliminary design of a new high-power low pressure plasma-cathode e-gun is presented. Based on the hollow cathode effect and low-pressure glow discharge empirical formulas, the hollow cathode, the accelerating gap, and the working gas pressure region are given. The general experimental device of the low-pressure plasma cathode electron-gun generating high current density e-beam source is shown. Experiments has been done in continuous filled-in gases and gases-puff condition, and the discharging current of 150-200 A, the width of 60 μs and the collector current of 30-80 A, the width of 60 μs are obtained. The results show that the new plasma cathode e-gun can take the place of material cathode e-gun, especially in plasma filled microwave tubes. (authors)

  18. Cathode Assessment for Maximizing Current Generation in Microbial Fuel Cells Utilizing Bioethanol Effluent as Substrate

    DEFF Research Database (Denmark)

    Sun, Guotao; Thygesen, Anders; Meyer, Anne S.

    2016-01-01

    Implementation of microbial fuel cells (MFCs) for electricity production requires effective current generation from waste products via robust cathode reduction. Three cathode types using dissolved oxygen cathodes (DOCs), ferricyanide cathodes (FeCs) and air cathodes (AiCs) were therefore assessed...... to be the most sustainable option since it does not require ferricyanide. The data offer a new add-on option to the straw biorefinery by using bioethanol effluent for microbial electricity production....... using bioethanol effluent, containing 20.5 g/L xylose, 1.8 g/L arabinose and 2.5 g/L propionic acid. In each set-up the anode and cathode had an electrode surface area of 88 cm(2), which was used for calculation of the current density. Electricity generation was evaluated by quantifying current...

  19. Effect of a cathode buffer layer on the stability of organic solar cells

    International Nuclear Information System (INIS)

    Wang, Danbei; Zeng, Wenjin; Chen, Shilin; Su, Xiaodan; Wang, Jin; Zhang, Hongmei

    2015-01-01

    We present the effect of a cathode buffer layer on the performance and stability of organic photovoltaics (OPVs) based on a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM). Six kinds of cathode buffer layers, i.e. lithium fluoride, sodium chloride, NaCl/Mg, tris-(8-hydroxy-quinoline) aluminum, bathocuproine and 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene, were inserted between the photoactive layer and an Al cathode, which played a dominant role in the device’s performance. Devices with the cathode buffer layers above exhibited improved performance. The degradation of these devices with encapsulation was further investigated in an inert atmosphere. The results indicated that devices with inorganic cathode buffer layers exhibited better stability than those with organic cathode buffer layers. (paper)

  20. Electricity generation of microbial fuel cell with waterproof breathable membrane cathode

    Science.gov (United States)

    Xing, Defeng; Tang, Yu; Mei, Xiaoxue; Liu, Bingfeng

    2015-12-01

    Simplification of fabrication and reduction of capital cost are important for scale-up and application of microbial electrochemical systems (MES). A fast and inexpensive method of making cathode was developed via assembling stainless steel mesh (SSM) with waterproof breathable membrane (WBM). Three assemble types of cathodes were fabricated; Pt@SSM/WBM (SSM as cathode skeleton, WBM as diffusion layer, platinum (Pt) catalyst applied on SSM), SSM/Pt@WBM and Pt@WBM. SSM/Pt@WBM cathode showed relatively preferable with long-term stability and favorable power output (24.7 W/m3). Compared to conventional cathode fabrication, air-cathode was made for 0.5 h. The results indicated that the novel fabrication method could remarkably reduce capital cost and simplify fabrication procedures with a comparable power output, making MFC more prospective for future application.