WorldWideScience

Sample records for cathodic arc deposition

  1. Plasma distribution of cathodic ARC deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Raoux, S.; Krishnan, K.; MacGill, R.A.; Brown, I.G. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    The plasma distribution using a cathodic arc plasma source with and without magnetic macroparticle filter has been determined by depositing on a transparent plastic substrate and measuring the film absorption. It was found that the width of the distribution depends on the arc current, and it also depends on the cathode material which leads to a spatial separation of the elements when an alloy cathode is used. By applying a magnetic multicusp field near the exit of the magnetic filter, it was possible to modify the plasma distribution and obtain a flat plasma profile with a constant and homogeneous elemental distribution.

  2. A cathodic arc enhanced middle-frequency magnetron sputter system for deposition of hard protective coatings

    International Nuclear Information System (INIS)

    A new cathode arc enhanced magnetron sputter system for deposition of hard protective coatings is reported in this article. This system consists of eight targets: four outer targets are mounted on the wall of the chamber and four inner targets are placed around the center of the chamber. The outer and inner targets form four pair targets and are powered by four middle frequency power supplies. One of the outer targets can run either in the cathode arc mode or in the magnetron sputter mode. The Ti-containing diamond-like carbon nanocomposite coatings were deposited by using this system. The prepared coating exhibits high hardness (∼20 GPa), good adhesion (critical load is 50 N), very low friction coefficient (∼0.07); and excellent tribological performance with a wear rate of 1.4 x 10-16 m3·N-l·m-1. (authors)

  3. Influences of arc current on composition and properties of MgO thin films prepared by cathodic vacuum arc deposition

    International Nuclear Information System (INIS)

    MgO thin films with high optical transmittances (more than 90%) were prepared by cathodic vacuum arc deposition technique. With the increase of arc current from 40 to 80 A, the deposition pressure decreases and the film thickness increases; the atomic ratio of Mg/O in MgO thin films (obtained by RBS) increases from 0.97 to 1.17, giving that deposited at 50 A most close to the stoichiometric composition of the bulk MgO; the grains of MgO thin films grow gradually as shown in SEM images. XRD patterns show that MgO (1 1 0) orientation is predominant for films prepared at the arc currents ranged from 50 to 70 A. The MgO (1 0 0) orientation is much enhanced and comparable to that of MgO (1 1 0) for films prepared at the arc current of 80 A. The secondary electron emission coefficient of MgO thin film increases with arc current ranged from 50 to 70 A.

  4. Vacuum arc plasma generation and thin film deposition from a TiB2 cathode

    International Nuclear Information System (INIS)

    We have studied the utilization of TiB2 cathodes for thin film deposition in a DC vacuum arc system. We present a route for attaining a stable, reproducible, and fully ionized plasma flux of Ti and B by removal of the external magnetic field, which leads to dissipation of the vacuum arc discharge and an increased active surface area of the cathode. Applying a magnetic field resulted in instability and cracking, consistent with the previous reports. Plasma analysis shows average energies of 115 and 26 eV, average ion charge states of 2.1 and 1.1 for Ti and B, respectively, and a plasma ion composition of approximately 50% Ti and 50% B. This is consistent with measured resulting film composition from X-ray photoelectron spectroscopy, suggesting a negligible contribution of neutrals and macroparticles to the film growth. Also, despite the observations of macroparticle generation, the film surface is very smooth. These results are of importance for the utilization of cathodic arc as a method for synthesis of metal borides

  5. Layer Formation by Resputtering in Ti-Si-C Hard Coatings during Large Scale Cathodic Arc Deposition

    OpenAIRE

    Eriksson, Anders; Zhu, Jianqiang; Ghafoor, Naureen; Johansson, Mats; Sjölen, Jacob; Jensen, Jens; Odén, Magnus; Hultman, Lars; Rosén, Johanna

    2011-01-01

    This paper presents the physical mechanism behind the phenomenon of self-layering in thin films made by industrial scale cathodic arc deposition systems using compound cathodes and rotating substrate fixture. For Ti-Si-C films, electron microscopy and energy dispersive x-ray spectrometry reveals a trapezoid modulation in Si content in the substrate normal direction, with a period of 4 to 23 nm dependent on cathode configuration. This is caused by preferential resputtering of Si by the energet...

  6. Cross-sectional STEM study of cathodic arc deposited amorphous carbon and carbon-nitride films

    International Nuclear Information System (INIS)

    Full text: The VG601 high resolution dedicated Scanning Transmission Electron Microscope (STEM) located at the University of Sydney has the capability of providing structural information with a spatial resolution of less than one nanometre. Compositional information can be obtained using either Energy Dispersive Spectroscopy (EDS) or Electron Energy Loss Spectroscopy. Each characteristic absorption edge in EELS also exhibits structure which provides information on the atomic environment of the absorbing atom. The combination of EELS and STEM therefore provides a powerful tool for analysing structure at the nanometre scale. In this work we investigate the structure of cathodic arc deposited carbon and carbon-nitride films using this EELS/STEM combination. By preparing the films in cross-section and collecting a number of spectra in a line through the film thickness (line profile), it is possible to investigate the deposition process in great detail since variations in structure with depth in the film provide information on the 'history' of film growth. In the case of carbon based materials, this technique provides a direct measure of the variations in both density and proportion of diamond-like bonding. These measurements will be used to help understand the mechanisms of film growth by cathodic arc deposition

  7. Structure of MoCN films deposited by cathodic arc evaporation

    International Nuclear Information System (INIS)

    Molybdenum carbonitride (MoCN) coatings were deposited onto HS6-5-2 steel substrate using pure Mo targets in mixed acetylene and nitrogen atmosphere by cathodic arc evaporation. The structural properties of MoCN coatings with different carbon contents (as an effect of the C2H2 flow rate) were investigated systematically. Phase and chemical composition evolution of the coatings were characterized both by the glancing angle of X-ray diffraction (XRD) and wavelength dispersive spectrometry, respectively. These analyses have been supplemented by estimates of grain sizes and stress in the coatings. The XRD results show that the increase in acetylene flow rate causes the formation of molybdenum carbide (MoC) hexagonal phase in the coatings, a reduction of grain size and an increase in internal stress. - Highlights: • MoN and MoCN coatings were deposited by cathodic arc evaporation in nitrogen atmosphere. • MoCN coatings were formed using different acetylene flow rates. • Phase composition evolution was observed. • Crystallite size and stress were calculated

  8. Structure of MoCN films deposited by cathodic arc evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gilewicz, A., E-mail: adam.gilewicz@tu.koszalin.pl [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland); Jedrzejewski, R.; Kochmanska, A.E. [West Pomeranian University of Technology Szczecin, Faculty of Mechanical Engineering and Mechatronics, 19 Piastów Ave., 70-313 Szczecin (Poland); Warcholinski, B. [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland)

    2015-02-27

    Molybdenum carbonitride (MoCN) coatings were deposited onto HS6-5-2 steel substrate using pure Mo targets in mixed acetylene and nitrogen atmosphere by cathodic arc evaporation. The structural properties of MoCN coatings with different carbon contents (as an effect of the C{sub 2}H{sub 2} flow rate) were investigated systematically. Phase and chemical composition evolution of the coatings were characterized both by the glancing angle of X-ray diffraction (XRD) and wavelength dispersive spectrometry, respectively. These analyses have been supplemented by estimates of grain sizes and stress in the coatings. The XRD results show that the increase in acetylene flow rate causes the formation of molybdenum carbide (MoC) hexagonal phase in the coatings, a reduction of grain size and an increase in internal stress. - Highlights: • MoN and MoCN coatings were deposited by cathodic arc evaporation in nitrogen atmosphere. • MoCN coatings were formed using different acetylene flow rates. • Phase composition evolution was observed. • Crystallite size and stress were calculated.

  9. Production of thin carbon stripper foils using heated-substrates in a cathodic arc deposition system

    International Nuclear Information System (INIS)

    The lifetime of carbon stripper foil can have a marked impact on the successful running of a beam line. Standard techniques for production of carbon stripper foils include evaporation of carbon (ec) and laser-pulsed ablation (Ipa). Recent work by a using Ipa has been successful in substantially increasing the lifetime of a very thin foil. The suspected mechanism for the increased lifetime of the foil is that the amorphous carbon foil is density-matched to that of graphite (around 2.26g/cc). In this work, we attempt to reproduce this result by producing carbon stripper foils with a mass-density similar to graphite using a cathodic arc deposition system. The cathodic arc is well known for the production of tetrahedral amorphous carbon: a high density, high stress form of carbon with over 90% sp3-like bonds; to reduce the density of the carbon and promote more graphitic structure, a high bias was initially attempted but this proved unsuccessful. Another method is to use a heated-substrate holder to reduce compressive stress within the deposited film. The performance of the density-matched carbon stripper foils and the implications for future production of high-quality carbon stripper foils in our laboratory will be discussed. (authors)

  10. CrAlN coatings deposited by cathodic arc evaporation at different substrate bias

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalunya (Spain); Gomez, M.A. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalunya (Spain); Grupo de Corrosion y Proteccion, Universidad de Antioquia, A.A. 1226 Medellin (Colombia); Esteve, J. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalunya (Spain); Montala, F. [Tratamientos Termicos Carreras, TTC S.A., C/Doctor Almera 85, E-08205 Sabadell, Catalunya (Spain); Carreras, L. [Tratamientos Termicos Carreras, TTC S.A., C/Doctor Almera 85, E-08205 Sabadell, Catalunya (Spain); Grifol, M. [Tratamientos Termicos Carreras, TTC S.A., C/Doctor Almera 85, E-08205 Sabadell, Catalunya (Spain); Lousa, A. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalunya (Spain)]. E-mail: alousa@ub.edu

    2006-09-25

    CrAlN is a good candidate as an alternative to conventional CrN coatings especially for high temperature oxidation-resistance applications. Different CrAlN coatings were deposited on hardened steel substrates by cathodic arc evaporation (CAE) from chromium-aluminum targets in a reactive nitrogen atmosphere at negative substrate bias between - 50 and - 400 V. The negative substrate bias has important effects on the deposition growth rate and crystalline structure. All our coatings presented hardness higher than conventional CrN coatings. The friction coefficient against alumina and tungsten carbide balls was around 0.6. The sliding wear coefficient of the CrAlN coatings was very low while an important wear was observed in the balls before a measurable wear were produced in the coatings. This effect was more pronounced as the negative substrate bias was increased.

  11. Effects of filtered cathodic vacuum arc deposition (FCVAD) conditions on photovoltaic TiO2 films

    International Nuclear Information System (INIS)

    Highlights: • Titanium dioxide films were synthesized using the FCVAD technique. • Various FCVAD conditions were tested. • The TiO2 films were characterized. • The FCVAD condition effects on the film characteristics were studied. • The O2 pressure had the most important effect on the film quality. - Abstract: Titanium dioxide (TiO2) films for photovoltaic applications were synthesized using filtered cathodic vacuum arc deposition (FCVAD) technique. Various deposition conditions were tested for an optimal film formation. The conditions included the oxygen (O2) pressure which was varied from a base pressure 10−5 to 10−4, 10−3, 10−2 and 10−1 Torr, sample holder bias varied using 0 or −250 V, deposition time varied from 10, 20 to 30 min, and deposition distance varied from 1 to 3 cm. The deposited films were also annealed and compared with unannealed ones. The films under various conditions were characterized using optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS) and Raman spectroscopy techniques. The film transparency increased and thickness decreased to a nanoscale with increasing of the O2 pressure. The transparent deposited films contained stoichiometric titanium and oxygen under the medium O2 pressure. The as-deposited films were TiO2 containing some rutile but no anatase which needed annealing to form

  12. Tribological characterization of chromium nitride coating deposited by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    CrN coatings were prepared by filtered cathodic vacuum arc (FCVA) technique. The influence of the deposition parameters (nitrogen partial pressure PN2, substrate bias voltage Vs and preheating of the substrate) on the structural, mechanical and tribological properties of the FCVA CrN coatings was investigated. Further, the FCVA CrN coating was compared in dry reciprocating sliding with commercial multi-arc ion plating (MAIP) CrN coating as to friction and wear properties. Profilometer, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) were used to evaluate the wear scars and the wear mechanisms were discussed. The results showed that the structural, mechanical and tribological properties of the FCVA CrN coatings were significantly dependent on the deposition parameters. The FCVA CrN coating deposited with PN2 of 0.1 Pa, Vs of -100 V and without preheating exhibited the optimal mechanical and tribological properties. The FCVA CrN coating exhibited much better anti-abrasive and anti-spalling properties than the MAIP CrN coating, which was resulted from significant reduction of macroparticles and pitting defects by the FCVA technique. The MAIP CrN coating suffered severe concentrated wear by a combination wear mechanisms of delamination, abrasive and oxidative wear when high normal load was applied, while for the FCVA CrN coating the wear mechanisms were ultra-mild abrasive and oxidative wear.

  13. Tribological characterization of chromium nitride coating deposited by filtered cathodic vacuum arc

    Science.gov (United States)

    Mo, J. L.; Zhu, M. H.

    2009-06-01

    CrN coatings were prepared by filtered cathodic vacuum arc (FCVA) technique. The influence of the deposition parameters (nitrogen partial pressure P, substrate bias voltage Vs and preheating of the substrate) on the structural, mechanical and tribological properties of the FCVA CrN coatings was investigated. Further, the FCVA CrN coating was compared in dry reciprocating sliding with commercial multi-arc ion plating (MAIP) CrN coating as to friction and wear properties. Profilometer, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) were used to evaluate the wear scars and the wear mechanisms were discussed. The results showed that the structural, mechanical and tribological properties of the FCVA CrN coatings were significantly dependent on the deposition parameters. The FCVA CrN coating deposited with P of 0.1 Pa, Vs of -100 V and without preheating exhibited the optimal mechanical and tribological properties. The FCVA CrN coating exhibited much better anti-abrasive and anti-spalling properties than the MAIP CrN coating, which was resulted from significant reduction of macroparticles and pitting defects by the FCVA technique. The MAIP CrN coating suffered severe concentrated wear by a combination wear mechanisms of delamination, abrasive and oxidative wear when high normal load was applied, while for the FCVA CrN coating the wear mechanisms were ultra-mild abrasive and oxidative wear.

  14. Cathodic arc deposition of nitrogen doped tetrahedral amorphous carbon for computer memories

    International Nuclear Information System (INIS)

    Much interest has been shown in the use of tetrahedral amorphous carbon (ta-C) deposited by filtered cathodic arc as an inexpensive, easily produced, wide band-gap semiconductor in the fabrication of electronic devices. Around the world much of this interest has been in its potential use as a low electron-affinity field emitter for flat-screen displays. Recent observations of a nonvolatile memory effect in nitrogen doped ta-C at the University of Sydney suggest that new possibilities may exist for its use as a means of non-volatile digital information storage. Devices with switching times of 100 μs, read times of 100 ns, and effective memory retention times of the order of months have been fabricated. Nonvolatile memory phenomena observed in the electrical characteristics of nitrogen doped ta-C thin films suggests such traps may be useful as a means of digital information storage

  15. Review of cathodic arc deposition technology at the start of the new millennium

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, D M; Anders, A

    2000-02-24

    The vacuum cathodic arc has been known to provide a means of producing coatings since the second half of the 19th century. This makes it one of the oldest known means for making coatings in a vacuum. In the last century it has been recognized that the copious quantities of ions produced by the process offers certain advantages in terms of coating properties. Specifically, ions can be steered and/or accelerated toward the parts to be coated. This, in turn, can provide enhanced adhesion, film density, and composition stoichiometry in the case of compound coatings. The ions generated by the cathodic arc have high ''natural'' kinetic energy values in the range 20-200 eV, leading to enhanced surface mobility during the deposition process and even ion subplantation. In many cases, dense coatings are achieved even when non-normal arrival angles are involved. The ion energy can further manipulated by the plasma immersion biasing technique. The issue of macroparticle contamination has been addressed by a variety of novel plasma filters. In spite of all of these advantages, this deposition technique has not been widely adopted in the western nations for commercial coating except in the case of enhancing the performance of cutting tools. The purpose of the this review is to explore reasons for this lack of general use of the technology and to point out some encouraging recent developments which may lead to its accelerated adoption for a much wider variety of applications in the near future.

  16. Tribological characterization of chromium nitride coating deposited by filtered cathodic vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Mo, J.L. [Tribology Research Institute, Traction Power State Key Laboratory, Southwest Jiaotong University, 111 Er Huan Road, Chengdu 610031 (China); Zhu, M.H., E-mail: zhuminhao@swjtu.cn [Tribology Research Institute, Traction Power State Key Laboratory, Southwest Jiaotong University, 111 Er Huan Road, Chengdu 610031 (China)

    2009-06-15

    CrN coatings were prepared by filtered cathodic vacuum arc (FCVA) technique. The influence of the deposition parameters (nitrogen partial pressure P{sub N{sub 2}}, substrate bias voltage V{sub s} and preheating of the substrate) on the structural, mechanical and tribological properties of the FCVA CrN coatings was investigated. Further, the FCVA CrN coating was compared in dry reciprocating sliding with commercial multi-arc ion plating (MAIP) CrN coating as to friction and wear properties. Profilometer, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX) were used to evaluate the wear scars and the wear mechanisms were discussed. The results showed that the structural, mechanical and tribological properties of the FCVA CrN coatings were significantly dependent on the deposition parameters. The FCVA CrN coating deposited with P{sub N{sub 2}} of 0.1 Pa, V{sub s} of -100 V and without preheating exhibited the optimal mechanical and tribological properties. The FCVA CrN coating exhibited much better anti-abrasive and anti-spalling properties than the MAIP CrN coating, which was resulted from significant reduction of macroparticles and pitting defects by the FCVA technique. The MAIP CrN coating suffered severe concentrated wear by a combination wear mechanisms of delamination, abrasive and oxidative wear when high normal load was applied, while for the FCVA CrN coating the wear mechanisms were ultra-mild abrasive and oxidative wear.

  17. Thermal conductivity of titanium aluminum silicon nitride coatings deposited by lateral rotating cathode arc

    International Nuclear Information System (INIS)

    A series of physical vapour deposition titanium aluminum silicon nitride nanocomposite coating with a different (Al + Si)/Ti atomic ratio, with a thickness of around 2.5 μm were deposited on stainless steel substrate by a lateral rotating cathode arc process in a flowing nitrogen atmosphere. The composition and microstructure of the as-deposited coatings were analyzed by energy dispersive X-ray spectroscopy, and X-ray diffraction, and cross-sectional scanning electron microscopy observation. The titanium nitride (TiN) coating shows a clear columnar structure with a predominant (111) preferential orientation. With the incorporation of Al and Si, the crystallite size in the coatings decreased gradually, and the columnar structure and (111) preferred orientation disappeared. Thermal conductivity of the as-deposited coating samples at room temperature was measured by using pulsed photothermal reflectance technique. Thermal conductivity of the pure TiN coating is about 11.9 W/mK. With increasing the (Al + Si)/Ti atomic ratio, the coatings' thermal conductivity decreased monotonously. This reduction of thermal conductivity could be ascribed to the variation of coatings' microstructure, including the decrease of grain size and the resultant increase of grain boundaries, the disruption of columnar structure, and the reduced preferential orientation. - Highlights: • A series of titanium aluminum silicon nitride with different (Al + Si)/Ti atomic ratio were deposited on Fe304. • The composition and microstructure of the as-deposited coatings were analyzed. • Thermal conductivity of the samples was measured by pulsed photothermal reflectance. • With increasing the (Al + Si)/Ti atomic ratio, thermal conductivity decreased. • Reduction of thermal conductivity is ascribed to the variation of its microstructure

  18. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na

    2013-08-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy. Results of the plasmon excitation energy shift and through-thickness elemental concentration show a multilayered a-C film structure comprising an interface layer consisting of C, Si, and, possibly, SiC, a buffer layer with continuously increasing sp 3 fraction, a relatively thicker layer (bulk film) of constant sp 3 content, and an ultrathin surface layer rich in sp 2 hybridization. A detailed study of the C K-edge spectrum indicates that the buffer layer between the interface layer and the bulk film is due to the partial backscattering of C+ ions interacting with the heavy atoms of the silicon substrate. The results of this study provide insight into the minimum thickness of a-C films deposited by FCVA under optimum substrate bias conditions. Copyright © 2013 Materials Research Society.

  19. Low temperature deposition of tantalum diffusion barrier by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Tantalum (Ta) diffusion barrier films were deposited on un-patterned and patterned silicon substrates at ambient temperature and without substrate bias by filtered cathodic vacuum arc (FCVA). The films were characterized by atomic force microscopy, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, four-point resistivity probe and surface profilometer. It was found that the Ta film was 750 A thick and free of C and O except for surface contamination. The film morphology was smooth and uniform with root-mean-square roughness of ∼0.82 A. The Ta film was polycrystalline β phase with a mean grain size of ∼3 nm and possessed a dense microstructure, which are ascribed to the high energy of the condensing species in FCVA. It was shown that the Ta filling of the trenches (0.33 μm wide, 1 : 1 aspect ratio) was very conformal and quite uniform. Also, it was preliminarily found that at the Ta film was effective against diffusion of Cu into Si at 600 deg. C

  20. Arc cathode spots

    International Nuclear Information System (INIS)

    Arc spots are usually highly unstable and jump statistically over the cathode surface. In a magnetic field parallel to the surface, preferably they move in the retrograde direction; i.e., opposite to the Lorentzian rule. If the field is inclined with respect to the surface, the spots drift away at a certain angle with respect to the proper retrograde direction (Robson drift motion). These well-known phenomena are explained by one stability theory

  1. The electrochemical behavior of thermally oxidized CrN coatings deposited on steel by cathodic arc plasma deposition

    International Nuclear Information System (INIS)

    Cathodic arc plasma deposition of the CrN coating has been applied to an industrial scale to improve the corrosion resistance of the AISI 304 stainless steel. Thermal oxidation in air was carried out at the temperature of 500 and 800 deg. C for 1 h. The effect of the thermal oxidation on the aqueous corrosion behavior of the CrN/304s assembly was investigated in this study. The composition and structure of the CrN coatings were studied by the grazing X-ray diffraction (GXRD), electron probe X-ray microanalyzer (EPMA), and X-ray photoelectron spectroscopy (XPS). The polarization resistance (Rp) of all samples was measured and compared in terms of a polarization resistance resulting from electrochemical impedance spectroscopy (EIS) in a mixture of 0.5 M H2SO4 + 1 M NaCl solution. The results indicated that the corrosion resistance of the CrN coated steel oxidized at 500 deg. C is significantly reduced. On the contrary, the electrochemical behavior of the CrN coated steel oxidized at 800 deg. C shows better corrosion resistance than the one oxidized at 500 deg. C and as-deposited steel. After thermal oxidation at 800 deg. C, the oxide layer formed on top of CrN coating enhances the corrosion protection of the CrN coated steel

  2. Room temperature deposition of highly dense TiO2 thin films by filtered cathodic vacuum arc

    Science.gov (United States)

    Guillén, E.; Heras, I.; Rincón Llorente, G.; Lungwitz, F.; Alcon-Camas, M.; Escobar-Galindo, R.

    2015-08-01

    A systematic study of TiO2 films deposited by dc filtered cathodic vacuum arc (FCVA) was carried out by varying the deposition parameters in a reactive oxygen atmosphere. The influence of the oxygen partial pressure on film properties is analyzed. Composition was obtained by Rutherford backscattering spectroscopy (RBS) measurements, which also allow us to obtain the density of the films. Morphology of the samples was studied by scanning electron microscopy (SEM) and their optical properties by ellipsometry. Transparent, very dense and stoichiometric TiO2 films were obtained by FCVA at room temperature.

  3. Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, Emma, E-mail: emma.harkonen@helsinki.fi [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Tervakangas, Sanna; Kolehmainen, Jukka [DIARC-Technology Inc., Espoo (Finland); Díaz, Belén; Światowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe [Laboratoire de Physico-Chimie des Surfaces, CNRS (UMR 7075) – Chimie ParisTech (ENSCP), F-75005 Paris (France); Fenker, Martin [FEM Research Institute, Precious Metals and Metals Chemistry, D-73525 Schwäbisch Gmünd (Germany); Tóth, Lajos; Radnóczi, György [Research Centre for Natural Sciences HAS, (MTA TKK), Budapest (Hungary); Ritala, Mikko [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland)

    2014-10-15

    Sublayers grown with filtered cathodic arc deposition (FCAD) were added under atomic layer deposited (ALD) oxide coatings for interface control and improved corrosion protection of low alloy steel. The FCAD sublayer was either Ta:O or Cr:O–Ta:O nanolaminate, and the ALD layer was Al{sub 2}O{sub 3}–Ta{sub 2}O{sub 5} nanolaminate, Al{sub x}Ta{sub y}O{sub z} mixture or graded mixture. The total thicknesses of the FCAD/ALD duplex coatings were between 65 and 120 nm. Thorough analysis of the coatings was conducted to gain insight into the influence of the FCAD sublayer on the overall coating performance. Similar characteristics as with single FCAD and ALD coatings on steel were found in the morphology and composition of the duplex coatings. However, the FCAD process allowed better control of the interface with the steel by reducing the native oxide and preventing its regrowth during the initial stages of the ALD process. Residual hydrocarbon impurities were buried in the interface between the FCAD layer and steel. This enabled growth of ALD layers with improved electrochemical sealing properties, inhibiting the development of localized corrosion by pitting during immersion in acidic NaCl and enhancing durability in neutral salt spray testing. - Highlights: • Corrosion protection properties of ALD coatings were improved by FCAD sublayers. • The FCAD sublayer enabled control of the coating-substrate interface. • The duplex coatings offered improved sealing properties and durability in NSS. • The protective properties were maintained during immersion in a corrosive solution. • The improvements were due to a more ideal ALD growth on the homogeneous FCAD oxide.

  4. Structure and mechanical properties of Ti-Al-N coatings deposited by combined cathodic arc middle frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Research highlights: → Ti-Al-N coatings were deposited on Si and WC substrates by combined cathodic arc middle-frequency magnetron (MF) sputtering under a Ti arc power of 10 kW with different Al MF targets currents. The hardness of the Ti-Al-N coatings was in the range of 23-32 GPa, whereas the Young modulus values were in the range of 420-540 GPa. - Abstract: Ti-Al-N coatings were deposited on Si (1 1 1) and WC substrates by combined cathodic arc middle-frequency magnetron (MF) sputtering under a Ti arc power of 10 kW and with different Al MF targets currents. X-ray diffraction patterns (XRD) showed that the Ti-Al-N coatings were polycrystallize with a preferred (1 1 1) orientation at 2θ = 43.7o. The (1 1 1) diffraction showed a decrease in peak intensity but a increase in FWHM values with the increasing of Al contents. Nano-meter sized TiN crystal grains distinguished by the lattice fringe contrast were verified by plan-view transmission electron (TEM) and selected area electron diffraction (SAED) images. With the increasing of MF sputter currents from 5 to 20 A, the Al contents in the Ti-Al-N coatings monotonically increased from 4.8 to 10.8 at.%, whereas the N and O contents were nearly constant. The hardness of the Ti-Al-N coatings was in the range of 23-32 GPa, and the Young modulus values were in the range of 420-540 GPa.

  5. Deposition of TiN Films by Novel Filter Cathodic Arc Technique

    Institute of Scientific and Technical Information of China (English)

    NIU Er-Wu; FAN Song-Hua; LI Li; L(U) Guo-Hua; FENG Wen-Ran; ZHANG Gu-Ling; YANG Si-Ze

    2006-01-01

    A straight magnetic filtering arc source is used to deposit thin films of titanium nitride.The properties of thefilms depend strongly on the deposition process.TiN films can be deposited directly onto heated substrates in anitrogen atmosphere or onto unbiased substrates by condensing the Ti+ ion beam in about 300 eV N2+ nitrogen ionbombardment.In the latter case.the film stoichiometry is varied from an N:Ti ratio of 0.6-1.1 by controlling thearrival rates of Ti and nitrogen ions.Meanwhile,simple models are used to describe the evolution of compressivestress as function of the arrival ratio and the composition of the ion-assisted TiN films.

  6. THE EFFECT OF NITROGEN GAS FLOW RATE ON THE PROPERTIES OF TiN-COATED HIGH-SPEED STEEL (HSS) USING CATHODIC ARC EVAPORATION PHYSICAL VAPOR DEPOSITION (PVD) TECHNIQUE

    OpenAIRE

    ALI MUBARAK; ESAH BINTI HAMZAH; MOHD RADZI HJ. MOHD TOFF; ABDUL HAKIM BIN HASHIM

    2005-01-01

    Cathodic arc evaporation (CAE) is a widely-used technique for generating highly ionized plasma from which hard and wear resistant physical vapor deposition (PVD) coatings can be deposited. A major drawback of this technique is the emission of micrometer-sized droplets of cathode material from the arc spot, which are commonly referred to as "macroparticles." In present study, titanium nitride (TiN) coatings on high-speed steel (HSS) coupons were produced with a cathodic arc evaporation techniq...

  7. The effect of substrate bias on titanium carbide/amorphous carbon nanocomposite films deposited by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    The titanium carbide/amorphous carbon nanocomposite films have been deposited on silicon substrate by filtered cathodic vacuum arc (FCVA) technology, the effects of substrate bias on composition, structures and mechanical properties of the films are studied by scanning electron spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy and nano-indentation. The results show that the Ti content, deposition rate and hardness at first increase and then decrease with increasing the substrate bias. Maximum hardness of the titanium carbide/amorphous carbon nanocomposite film is 51 Gpa prepared at −400 V. The hardness enhancement may be attributed to the compressive stress and the fraction of crystalline TiC phase due to ion bombardment

  8. Friction properties of amorphous carbon ultrathin films deposited by filtered cathodic vacuum arc and radio-frequency sputtering

    International Nuclear Information System (INIS)

    The friction properties of ultrathin films of amorphous carbon (a-C) deposited on Si(100) substrates by filtered cathodic vacuum arc and radio-frequency sputtering were investigated by surface force microscopy. Deposition parameters yielding a-C films with high sp3 content were used to deposit films of thickness between 5 and 35 nm. The coefficient of friction of both types of a-C films was measured with a 1-μm-radius conical diamond tip and normal loads in the range of 20–640 μN. The results show a strong dependence of the friction properties on the surface roughness, thickness, and structure of the a-C films, which are influenced by the intricacies of the deposition method. The dependence of the coefficient of friction on normal load and the dominance of adhesion and plowing friction mechanisms are interpreted in terms of the through-thickness variation of carbon atom hybridization of the a-C films. - Highlights: • Comparison of nanoscale friction properties of ultrathin amorphous carbon films. • Friction dependence on film roughness, thickness, and structure (hybridization). • Effect of through-thickness changes in carbon atom hybridization on film friction. • Explanation of film friction trends in terms of competing friction mechanisms

  9. Friction properties of amorphous carbon ultrathin films deposited by filtered cathodic vacuum arc and radio-frequency sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Matlak, J.; Komvopoulos, K., E-mail: kyriakos@me.berkeley.edu

    2015-03-31

    The friction properties of ultrathin films of amorphous carbon (a-C) deposited on Si(100) substrates by filtered cathodic vacuum arc and radio-frequency sputtering were investigated by surface force microscopy. Deposition parameters yielding a-C films with high sp{sup 3} content were used to deposit films of thickness between 5 and 35 nm. The coefficient of friction of both types of a-C films was measured with a 1-μm-radius conical diamond tip and normal loads in the range of 20–640 μN. The results show a strong dependence of the friction properties on the surface roughness, thickness, and structure of the a-C films, which are influenced by the intricacies of the deposition method. The dependence of the coefficient of friction on normal load and the dominance of adhesion and plowing friction mechanisms are interpreted in terms of the through-thickness variation of carbon atom hybridization of the a-C films. - Highlights: • Comparison of nanoscale friction properties of ultrathin amorphous carbon films. • Friction dependence on film roughness, thickness, and structure (hybridization). • Effect of through-thickness changes in carbon atom hybridization on film friction. • Explanation of film friction trends in terms of competing friction mechanisms.

  10. DUPLEX Al2O3/DLC COATING ON 15SiCp/2024 ALUMINUM MATRIX COMPOSITE USING COMBINED MICROARC OXIDATION AND FILTERED CATHODIC VACUUM ARC DEPOSITION

    OpenAIRE

    WENBIN XUE; HUA TIAN; JIANCHENG DU; MING HUA; XU ZHANG; YONGLIANG LI

    2012-01-01

    Microarc oxidation (MAO) treatment produces a thick Al2O3 coating on the 15SiCp/2024 aluminum matrix composite. After pretreatment of Ti ion implantation, a thin diamond-like carbon film (DLC) was deposited on the top of polished Al2O3 coating by a pulsed filtered cathodic vacuum arc (FCVA) deposition system with a metal vapor vacuum arc (MEVVA) source. The morphology and tribological properties of the duplex Al2O3/DLC multiplayer coating were investigated by Raman spectroscopy, scanning elec...

  11. Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc

    International Nuclear Information System (INIS)

    A series of [TiN/TiAlN]n multilayer coatings with different bilayer numbers n = 5, 10, 25, 50, and 100 were deposited on stainless steel substrate AISI 304 by a lateral rotating cathode arc technique in a flowing nitrogen atmosphere. The composition and microstructure of the coatings have been analyzed by using energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and conventional and high-resolution transmission electron microscopy (HRTEM). XRD analysis shows that the preferential orientation growth along the (111) direction is reduced in the multilayer coatings. TEM analysis reveals that the grain size of the coatings decreases with increasing bilayer number. HRTEM imaging of the multilayer coatings shows a high density misfit dislocation between the TiN and TiAlN layers. The cross-plane thermal conductivity of the coatings was measured by a pulsed photothermal reflectance technique. With increasing bilayer number, the multilayer coatings' thermal conductivity decreases gradually. This reduction of thermal conductivity can be ascribed to increased phonon scattering due to the disruption of columnar structure, reduced preferential orientation, decreased grain size of the coatings and present misfit dislocations at the interfaces. - Highlights: • TiN/TiAlN multilayer coatings with different bilayer number were deposited on SS. • The composition and microstructure of the as-deposited coatings were analyzed. • Thermal conductivity of the coatings was measured by pulsed photothermal reflectance. • Thermal conductivity depends on the coatings' microstructure and number of layers. • With increasing the bilayer number, thermal conductivity decreased

  12. Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc

    Energy Technology Data Exchange (ETDEWEB)

    Samani, M.K., E-mail: majid1@e.ntu.edu.sg [Novitas, Nanoelectronics Centre of Excellence, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Ding, X.Z. [Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Khosravian, N. [Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Amin-Ahmadi, B. [Electron Microscopy for materials Science (EMAT), Department of Physics, University of Antwerpen, Groenenborgerlan 171, B-2020 Antwerpen (Belgium); Yi, Yang [Data Storage Institute, A*STAR (Agency for Science, Technology and Research), 117608 (Singapore); Chen, G. [BC Photonics Technological Company, 5255 Woodwards Rd., Richmond, BC V7E 1G9 (Canada); Neyts, E.C.; Bogaerts, A. [Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Tay, B.K. [Novitas, Nanoelectronics Centre of Excellence, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-03-02

    A series of [TiN/TiAlN]{sub n} multilayer coatings with different bilayer numbers n = 5, 10, 25, 50, and 100 were deposited on stainless steel substrate AISI 304 by a lateral rotating cathode arc technique in a flowing nitrogen atmosphere. The composition and microstructure of the coatings have been analyzed by using energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and conventional and high-resolution transmission electron microscopy (HRTEM). XRD analysis shows that the preferential orientation growth along the (111) direction is reduced in the multilayer coatings. TEM analysis reveals that the grain size of the coatings decreases with increasing bilayer number. HRTEM imaging of the multilayer coatings shows a high density misfit dislocation between the TiN and TiAlN layers. The cross-plane thermal conductivity of the coatings was measured by a pulsed photothermal reflectance technique. With increasing bilayer number, the multilayer coatings' thermal conductivity decreases gradually. This reduction of thermal conductivity can be ascribed to increased phonon scattering due to the disruption of columnar structure, reduced preferential orientation, decreased grain size of the coatings and present misfit dislocations at the interfaces. - Highlights: • TiN/TiAlN multilayer coatings with different bilayer number were deposited on SS. • The composition and microstructure of the as-deposited coatings were analyzed. • Thermal conductivity of the coatings was measured by pulsed photothermal reflectance. • Thermal conductivity depends on the coatings' microstructure and number of layers. • With increasing the bilayer number, thermal conductivity decreased.

  13. Density changes with substrate negative bias for ta-C films deposited by filter cathode vacuum arc

    Institute of Scientific and Technical Information of China (English)

    TAN Man-lin; ZHU Jia-qi; HAN Jie-cai; MENG Song-he

    2004-01-01

    Specular X-ray reflectivity (XRR) measurements were used to study the density and cross-section information of tetrahedral amorphous carbon (ta-C) films deposited by filter cathode vacuum arc(FCVA) system at different substrate bias. According to the correlation between density and substrate negative bias, it is found that the value of density reaches a maximum at -80 V bias. As the substrate bias increases or decreases, the density tends to lower gradually. Based on the density of diamond and graphite, sp3 bonding ratio of ta-C films was obtained from their corresponding density according to a simple equation between the two. And a similar parabolic variation was observed for ta-C films with the sp3 content changes with substrate negative bias. The mechanical properties such as hardness and elastic modulus were also measured and compared with the corresponding density for ta-C films. From the distribution of data points, a linear proportional correlation between them was found, which shows that the density is a critical parameter to characterize the structure variation for ta-C films.

  14. The electronic structure of tungsten oxide thin films prepared by pulsed cathodic arc deposition and plasma-assisted pulsed magnetron sputtering

    International Nuclear Information System (INIS)

    Pulsed cathodic arc and pulsed magnetron sputtered WO3 thin films were investigated using electron microscopy. It was found that the cathodic arc deposited material consisted of the α-WO3 phase with a high degree of crystallinity. In contrast, the magnetron sputtered material was highly disordered making it difficult to determine its phase. Electron energy-loss spectroscopy was used to study the oxygen K edge of the films and it was found that the near-edge fine structures of films produced by the two deposition methods differed. The oxygen K-edge near-edge structures for various phases of WO3 were calculated using two different self-consistent methods. Each phase was found to exhibit a unique oxygen K edge, which would allow different phases of WO3 to be identified using x-ray absorption spectroscopy or electron energy-loss spectroscopy. Both calculation methods predicted an oxygen K edge for the γ-WO3 phase which compared well to previous x-ray absorption spectra. In addition, a close match was found between the oxygen K edges obtained experimentally from the cathodic arc deposited material and that calculated for the α-WO3 phase

  15. Annealing effect of thermal spike in MgO thin film prepared by cathodic vacuum arc deposition

    International Nuclear Information System (INIS)

    MgO films were prepared by using pulsed cathodic vacuum arc deposition technique. The substrate bias voltage was in the range of −150 to −750 V. Film structure was investigated by X-ray diffraction (XRD). The annealing effect of thermal spike produced by the impacting of energetic ions was analyzed. The calculated results showed that the lifetime of a thermal spike generated by an energetic ion with the energy of 150 eV was less than one picosecond and it was sufficient to allow Mg2+ or O2- to move one bond length to satisfy the intrinsic stress relief in the affected volume. The MgO(200) lattice spacings of the films deposited at different bias voltages were all larger than the ideal value of 2.1056 Å. As the bias amplitude increased the lattice spacing decreased, which indicated that the compressive stress in the film was partially relieved with increasing impacting ion energy. The stress relief also could be reflected from the film orientation with bias voltage. The biaxial elastic modulus for MgO(100), MgO(110) and MgO(111) planes were calculated and they were M(100) = 199 GPa, M(110) = 335 GPa and M(111) = 340 GPa, respectively. The M values indicated that the preferred orientation will be MgO(200) due to the minimum energy configuration when the lattice strain was large. It was confirmed by the XRD results in our experiments. - Highlights: • MgO thin films with preferred orientation were obtained by CVAD technique. • Annealing effect of a thermal spike in MgO film was discussed. • Lattice spacing of MgO film decreased with the increase of bias voltage. • Film preferred orientation changed from (200) to (220) as the bias voltage increased

  16. Characteristics of CrAlSiN + DLC coating deposited by lateral rotating cathode arc PVD and PACVD process

    Energy Technology Data Exchange (ETDEWEB)

    Lukaszkowicz, Krzysztof, E-mail: krzysztof.lukaszkowicz@polsl.pl [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego St. 18A, 44-100 Gliwice (Poland); Sondor, Jozef, E-mail: j.sondor@liss.cz [LISS, a.s., Dopravni 2603, 756 61 Roznov p.R. (Czech Republic); Balin, Katarzyna, E-mail: katarzyna.balin@us.edu.pl [A. Chełkowski Institute of Physic, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Kubacki, Jerzy, E-mail: jerzy.kubacki@us.edu.pl [A. Chełkowski Institute of Physic, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland)

    2014-09-01

    Highlights: • The chemical composition of the CrAlSiN + DLC coatings was studied. • The coatings have nanostructural character with fine crystallites. • Their average size grain is less than 10 nm. • The coatings demonstrate friction coefficient within the range 0.05–0.07. • The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate. - Abstract: Coating system composed of CrAlSiN film covered by diamond-like carbon (DLC)-based lubricant, deposited on hot work tool steel substrate was the subject of the research. The CrAlSiN and DLC layers were deposited by PVD lateral rotating ARC-cathodes (LARC) and PACVD technology on the X40CrMoV5-1 respectively. HRTEM investigation shows an amorphous character of DLC layer. It was found that the tested CrAlSiN layer has a nanostructural character with fine crystallites while their average size is less than 10 nm. Based on the XRD pattern of the CrAlSiN, the occurrence of fcc phase was only observed in the coating, the texture direction 〈3 1 1〉 is perpendicular to the sample surface. Combined SEM, AES and ToF-SIMS studies confirmed assumed chemical composition and layered structure of the coating. The chemical distribution of the elements inside the layers and at the interfaces was analyzed by SEM and AES methods. It was shown that additional CrN layer is present between substrate and CrAlSiN coating. The atomic concentration of the particular elements of DLC and CrAlSiN layer was calculated from the XPS measurements. In sliding dry friction conditions the friction coefficient for the investigated elements is set in the range between 0.05 and 0.07. The investigated coating reveals high wear resistance. The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate.

  17. Hydrogen absorption by Zr-1Nb alloy with TiN[x] film deposited by filtered cathodic vacuum arc

    OpenAIRE

    Kashkarov, Egor Borisovich; Nikitenkov, Nikolai Nikolaevich; Syrtanov, Maksim Sergeevich; Babihina, M. N.

    2016-01-01

    This paper describes the opportunity of titanium nitride (TiNx) films application as protective coating for Zr-2.5Nb alloy from hydrogenation. Dense TiN[x] films were prepared by filtered cathodic vacuum arc (CVA). Hydrogen absorption rate was calculated from the kinetic curves of hydrogen sorption at elevated temperature of the sample (T=673 K) and pressure (P=2 atm). Results revealed that TiN[x] films significantly reduced hydrogen absorption rate of Zr-2.5Nb.

  18. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.

    2012-07-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical and experimental results. The thickness of a-C films deposited at different incidence angles was investigated in the light of Monte Carlo simulations, and the calculated depth profiles were compared with those obtained from high-resolution transmission electron microscopy (TEM). The topography and structure of the a-C films were studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The film thickness decreased with the increase of the incidence angle, while the surface roughness increased and the content of tetrahedral carbon hybridization (sp 3) decreased significantly with the increase of the incidence angle above 45° , measured from the surface normal. TEM, AFM, and XPS results indicate that the smoothest and thinnest a-C films with the highest content of sp 3 carbon bonding were produced for an incidence angle of 45°. The findings of this study have direct implications in ultrahigh-density magnetic recording, where ultrathin and smooth a-C films with high sp 3 contents are of critical importance. © 2012 IEEE.

  19. Cathodic arc grown niobium films for RF superconducting cavity applications

    Science.gov (United States)

    Catani, L.; Cianchi, A.; Lorkiewicz, J.; Tazzari, S.; Langner, J.; Strzyzewski, P.; Sadowski, M.; Andreone, A.; Cifariello, G.; Di Gennaro, E.; Lamura, G.; Russo, R.

    2006-07-01

    Experimental results on the characterization of the linear and non-linear microwave properties of niobium film produced by UHV cathodic arc deposition are presented. Surface impedance Zs as a function of RF field and intermodulation distortion (IMD) measurement have been carried out by using a dielectrically loaded resonant cavity operating at 7 GHz. The experimental data show that these samples have a lower level of intrinsic non-linearities at low temperature and low circulating power in comparison with Nb samples grown by sputtering. These results make UHV cathodic arc deposition a promising technique for the improvement of RF superconducting cavities for particle accelerators.

  20. Cathodic arc grown niobium films for RF superconducting cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    Catani, L. [INFN-Roma2, Rome (Italy); Cianchi, A. [INFN-Roma2, Rome (Italy); Lorkiewicz, J. [INFN-Roma2, Rome (Italy); Tazzari, S. [Universita di Roma ' Tor Vergata' and INFN-Roma2, Rome (Italy); Langner, J. [Soltan Institute for Nuclear Studies, Swierk (Poland); Strzyzewski, P. [Soltan Institute for Nuclear Studies, Swierk (Poland); Sadowski, M. [Soltan Institute for Nuclear Studies, Swierk (Poland); Andreone, A. [University of Napoli ' Federico II' and INFN-NA, Naples (Italy); Cifariello, G. [University of Napoli ' Federico II' and INFN-NA, Naples (Italy); Di Gennaro, E. [University of Napoli ' Federico II' and INFN-NA, Naples (Italy); Lamura, G. [University of Napoli ' Federico II' and INFN-NA, Naples (Italy); Russo, R. [Seconda Universita di Napoli, INFN-NA, Naples (Italy)

    2006-07-15

    Experimental results on the characterization of the linear and non-linear microwave properties of niobium film produced by UHV cathodic arc deposition are presented. Surface impedance Z {sub s} as a function of RF field and intermodulation distortion (IMD) measurement have been carried out by using a dielectrically loaded resonant cavity operating at 7 GHz. The experimental data show that these samples have a lower level of intrinsic non-linearities at low temperature and low circulating power in comparison with Nb samples grown by sputtering. These results make UHV cathodic arc deposition a promising technique for the improvement of RF superconducting cavities for particle accelerators.

  1. Cr{sub 1-x}Al{sub x}N coatings deposited by lateral rotating cathode arc for high speed machining applications

    Energy Technology Data Exchange (ETDEWEB)

    Ding Xingzhao [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)], E-mail: xzding@SIMTech.a-star.edu.sg; Zeng, X.T.; Liu, Y.C.; Fang, F.Z.; Lim, G.C. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)

    2008-02-29

    In this work, a series of Cr{sub 1-x}Al{sub x}N (0 {<=} x {<=} 0.7) coatings were deposited on high speed steel substrates by a vacuum arc reactive deposition process from two lateral rotating elemental chromium and aluminum cathodes in a flowing pure nitrogen atmosphere. The composition, structural, mechanical, and tribological properties of the as-deposited coatings were systematically characterized by energy dispersive analysis of X-rays, X-ray diffraction, nanoindentation, and ball-on-disc tribometer experiments. All of the as-deposited CrAlN coatings exhibited a higher hardness than CrN, showing a maximum hardness of about 40 GPa (at around X = 0.63) which is twice higher than that of the CrN. The wear performance under ambient conditions of the CrAlN coatings was found much better, with both lower friction coefficient and wear rate, than TiAlN coatings deposited by the same technique. The wear rate of the CrAlN coatings against alumina counterpart was about 2-3 orders in magnitude lower than that of the TiAlN coatings. Selected CrAlN coatings with the highest hardness were also deposited on some WC-based end-mills. An evident better performance of the CrAlN-coated end-mills was observed than the TiAlN-coated ones for cutting a hardened tool steel material under high speed machining conditions.

  2. Influences of deposition parameters on the microstructure and properties of nanostructural TiN films synthesized by filtered cathodic arc plasma

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yujuan; YAN Pengxun; WU Zhiguo; ZHANG Pingyu

    2005-01-01

    Titanium nitride (TiN) films with nanostructure were prepared at ambient temperature on a (111) silicon substrate by the filtered cathodic arc plasma (FCAP) technology with an in-plane "S" filter. The effects of deposition parameters on the grain size, texture and nano-hardness of the films were systematically investigated. The grain size was obtained through calculation using the Scherrer formula and observed by TEM. The results of X-ray diffraction and electon diffraction indicated that increasing either negative subs~ate bias or argon flow promoted the formation of (111) preferred orientation. High argon flow leads to biaxial texture. The micro-hardness of the TiN films as a function of grain size showed a behavior according to the Hall-Petch relation under high argon flow.

  3. Structure and Performance of TiC-containing Diamond-like Carbon Nanocomposite Coatings Deposited by Rectangular Cathodic Arc Ion-plating

    Institute of Scientific and Technical Information of China (English)

    XIE Guosheng; YIN Zhimin; DING Hui; LI Xiaohong; YANG Bing

    2009-01-01

    TiC-containing diamond-like carbon(TiC-DLC)nanocomposite coatings were deposited by a rectangular cathodic arc ion-plating system using C_2H_2 as reacting gas.Raman spectroscopy and transmission electron microscopy analysis show that with increasing flow rate of C_2H_2,the structure of nanocomposite coatings changes from TiC nanograin-containing to graphite nanograin-containing DLC.The hardness measurements show that the hardness decreases from 28 GPa to 18 GPa with increasing C_2H_2 flow rate.The scratch test show that a high critical load(>40 N)was obtained and exhibited a good adhesion between the coating and the substrate.Wear experiment shows that the friction coefficient of TiC-DLC nanocomposite coatings decreases with increasing C_2H_2.A low friction coefficient of 0.07 was obtained at 480 sccm C_2H_2.

  4. Duplex Al2O3/DLC Coating on 15SiCp/2024 Aluminum Matrix Composite Using Combined Microarc Oxidation and Filtered Cathodic Vacuum Arc Deposition

    Science.gov (United States)

    Xue, Wenbin; Tian, Hua; Du, Jiancheng; Hua, Ming; Zhang, Xu; Li, Yongliang

    2012-08-01

    Microarc oxidation (MAO) treatment produces a thick Al2O3 coating on the 15SiCp/2024 aluminum matrix composite. After pretreatment of Ti ion implantation, a thin diamond-like carbon film (DLC) was deposited on the top of polished Al2O3 coating by a pulsed filtered cathodic vacuum arc (FCVA) deposition system with a metal vapor vacuum arc (MEVVA) source. The morphology and tribological properties of the duplex Al2O3/DLC multiplayer coating were investigated by Raman spectroscopy, scanning electron microscopy (SEM) and SRV ball-on-disk friction tester. It is found that the duplex Al2O3/DLC coating had good adhesion and a low friction coefficient of less than 0.07. As compared to a single Al2O3 or DLC coating, the duplex Al2O3/DLC coating on aluminum matrix composite exhibited a better wear resistance against ZrO2 ball under dry sliding, because the Al2O3 coating as an intermediate layer improved load support for the top DLC coating on 15SiCp/2024 composite substrate, meanwhile the top DLC coating displayed low friction coefficient.

  5. Deposition of silicon-carbon coatings from the plasma of a non-self-sustained arc discharge with a heated cathode

    Science.gov (United States)

    Grenadyorov, A. S.; Oskomov, K. V.; Solov'ev, A. A.; Rabotkin, S. V.

    2016-05-01

    Amorphous hydrogenated carbon doped with silicon oxide ( a-C:H:Si:O), which is referred to as silicon-carbon coatings in this work, consists of thin amorphous films, which are used as commercial solid lubricants due to their higher stability under extreme environmental conditions as compared to amorphous hydrogenated carbon. The deposition of silicon-carbon coatings from the plasma of a non-self-sustained arc discharge with a heated cathode is considered. Silicon-carbon coatings are deposited using polyphenul methylsiloxane as a precursor at a flow rate of 0.05 mL/min in an argon atmosphere at a pressure of 0.1 Pa. A high-frequency power supply is used to apply a high-frequency bias voltage to a substrate during deposition. After deposition, the mechanical properties of the coatings are studied. The maximum hardness of the coating is 20 GPa at a minimum friction coefficient of 0.16 and a wear rate of 1.3 × 10-5 mm3 N-1 m-1. Energy dispersive analysis shows that the coatings contain a significant content of carbon and oxygen (about 80 and 15%, respectively) and a low content of silicon (about 5%).

  6. Effect of pressure on the deposition of hydrogen-free amorphous carbon and carbon nitride films by the pulsed cathodic arc discharge method

    International Nuclear Information System (INIS)

    Hydrogen-free amorphous carbon (a-C) and carbon nitride (a-C:N) films were deposited using the pulsed cathodic arc discharge at different argon and nitrogen pressures. The surface and mechanical properties of these films were found to strongly depend on the gas pressure. The tetrahedral amorphous carbon and hard a-C:N films with smooth surfaces (rms roughness: 0.15 nm) were prepared at lower gas pressures (-2 Pa). Incorporation of an increasing amount of nitrogen in a-C:N films caused a decrease in film hardness. All the films were covered with the thin (0.3-2 nm) graphite-like surface layers. The film hardness was correlated to the soft surface layer thickness, and the films with thinner surface layers exhibit higher hardness. The mean energies of pulsed plasma beams were measured as the functions of argon and nitrogen pressures. The mean energies of plasma beams decrease in an exponential fashion with increasing gas pressure due to the carbon ion collisions with the neutral gas species. The effects of mean energies of deposited species on the film deposition were explained in terms of the thermal spike migration of surface atoms. The formation of graphite-like surface layers is associated with the low-energy deposition process. The low-energy (10 eV) species may produce the strong thermal spike at film surface, and contribute to the formation of sp3 bonded structure at a sp3 bonded matrix

  7. Effect of pulsed bias on the properties of ZrN/TiZrN films deposited by a cathodic vacuum arc

    Institute of Scientific and Technical Information of China (English)

    Zhang Guo-Ping; Wang Xing-Quan; Lü Guo-Hua; Zhou Lan; Huang Jun; Chen Wei; Yang Si-Ze

    2013-01-01

    .ZrN/TiZrN multilayers are deposited by using the cathodic vacuum arc method with different substrate bias (from 0 to-800 V),using Ti and Zr plasma flows in residual N2 atmosphere,combined with ion bombardment of sample surfaces.The effect of pulsed bias on the structure and properties of films is investigated.Microstructure of the coating is analyzed by X-ray diffraction (XRD),and scanning electron microscopy (SEM).In addition,nanohardness,Young's modulus,and scratch tests are performed.The experimental results show that the films exhibit a nanoscale multilayer structure consisting of TiZrN and ZrN phases.Solid solutions are formed for component TiZrN films.The dominant preferred orientation of TiZrN films is (111) and (220).At a pulsed bias of-200 V,the nanohardness and the adhesion strength of the ZrN/TiZrN multilayer reach a maximum of 38 GPa,and 78 N,respectively.The ZrN/TiZrN multilayer demonstrates an enhanced nanohardness compared with binary TiN and ZrN films deposited under equivalent conditions.

  8. Effect of modulation periods on the microstructure and mechanical properties of DLC/TiC multilayer films deposited by filtered cathodic vacuum arc method

    International Nuclear Information System (INIS)

    Highlights: • DLC/TiC multilayer films with different modulation periods at same modulation ratio 1:1 were deposited by FCVA. • The residual stress of DLC/TiC multilayer films decreases with the modulation periods decrease. • The hardness of the multilayer DLC films decreases with modulation periods increasing. - Abstract: The high stress of diamond-like carbon (DLC) film limits its thickness and adhesion on substrate. Multilayer structure is one approach to overcome this disadvantage. In this paper, the DLC/TiC multilayer films with different modulation periods (80 nm, 106 nm or 160 nm) at same modulation ratio of 1:1 were deposited on Si(1 0 0) wafer and Ti-6Al-4V substrate by filtered cathodic vacuum arc (FCVA) technology. X-ray diffraction (XRD), transmission electron microscopy (TEM), nanoindention and wear test were employed to investigate the effect of modulation periods on the microstructure and mechanical properties of the multilayer films. The results showed that the residual stress of the DLC/TiC multilayer films could be effectively reduced and the residual stress decreased with the modulation periods decreasing. The hardness of the DLC/TiC multilayer films increased with modulation periods decreasing. The DLC/TiC multilayer film with modulation period of 106 nm had the best wear resistance due to the good combination of hardness, ductility and low compressive stress

  9. Influence of the vacuum-arc source configuration and arc discharge parameters on the evolution and location of arc spots on the cathode surface

    Directory of Open Access Journals (Sweden)

    J. Walkowicz

    2009-12-01

    Full Text Available Purpose: The paper presents investigations of the evolution, structure and location of arc spots on the cathode frontal surfaces of two types of industrial arc sources.Design/methodology/approach: The temporal behaviour of cathode spots was recorded with the use of a fast CCD camera. The experiments were performed at four values of arc current, nine compositions of the process atmosphere N2+C2H2 and three pressure ranges of the process atmosphere.Findings: The analysis of the recorded pictures revealed the fine structure of the arc discharge for the investigated range of process conditions. Both temporal and spatial behaviour of cathode spots were different for both investigated arc sources. The correspondence between radial distributions of the cathode spots on the cathode surface and radial distribution of plasma flow elements analysed in the volume of the vacuum chamber was revealed.Research limitations/implications: The paper show experimental methodology that can be used for the research of the specificity of cathode spots movement on the cathodes made from different materials.Originality/value: The originality of the research presented in the paper consists in assigning overall correlation between vacuum-arc source configuration and parameters of vacuum-arc discharge – on the one hand, and space-time behaviour of the arc spots during their movement on the circular cathode surface and radial distribution of excited and ionized atoms of the cathode material in the deposition chamber – on the other.

  10. Tantalum oxide nanocoatings prepared by atomic layer and filtered cathodic arc deposition for corrosion protection of steel: Comparative surface and electrochemical analysis

    International Nuclear Information System (INIS)

    Highlights: ► 50 nm Ta2O5 coatings grown by ALD at 160 °C and FCAD for protection of steel. ► Combined analysis by ToF-SIMS, XPS, polarization curves and EIS. ► Relation between chemical architecture and corrosion protection properties studied. ► Localized corrosion by pitting with absence of coating dissolution demonstrated. ► Origin and role of spurious interfacial oxide promoting coating breakdown emphasized. -- Abstract: A comparative study by Time-of-Flight Secondary Ions Mass Spectrometry and X-ray Photoelectron Spectroscopy, i–E polarization curves and Electrochemical Impedance Spectroscopy of the corrosion protection of low alloy steel by 50 nm thick tantalum oxide coatings prepared by low temperature Atomic Layer Deposition (ALD) and Filtered Cathodic Arc Deposition (FCAD) is reported. The data evidence the presence of a spurious oxide layer mostly consisting of iron grown by transient thermal oxidation at the ALD film/substrate interface in the initial stages of deposition and its suppression by pre-treatment in the FCAD process. Carbonaceous contamination (organic and carbidic) resulting from incomplete removal of the organic precursor is the major cause of the poorer sealing properties of the ALD film. No coating dissolution is demonstrated in neutral or acid 0.2 M NaCl solutions. In acid solution localized corrosion by pitting proceeds faster with the ALD than with the FCAD coating. The roles of the pre-existing channel defects exposing the substrate surface and of the spurious interfacial oxide promoting coating breakdown and/or delamination are emphasized

  11. Effect of Silane Flow Rate on Structure and Corrosion Resistance of Ti–Si—N Thin Films Deposited by a Hybrid Cathodic Arc and Chemical Vapour Process

    International Nuclear Information System (INIS)

    Ti–Si–N thin films with different silicon contents are deposited by a cathodic arc technique in an Ar+N2 +SiH4 mixture atmosphere. With the increase of silane Bow rate, the content of silicon in the Ti–Si–N films varies from 2.0 at. % to 12.2 at. %. Meanwhile, the cross-sectional morphology of these films changes from an apparent columnar microstructure to a dense fine-grained structure. The x-ray diffractometer (XRD) and x-ray photoelectron spectroscopy (XPS) results show that the Ti–Si–N film consists of TiN crystallites and SiNx amorphous phase. The corrosion resistance is improved with the increase of silane Bow rate. Growth defects in the films produced play a key role in the corrosion process, especially for the local corrosion. The porosity of the films decreases from 0.13% to 0.00032% by introducing silane at the Bow rate of 14sccm. (gases, plasmas, and electric discharges)

  12. Effect of silane flow rate on structure and corrosion resistance of Ti-Si-N thin films deposited by a hybrid cathodic arc and chemical vapour process

    International Nuclear Information System (INIS)

    Ti-Si-N thin films with different silicon contents are deposited by a cathodic arc technique in an Ar+N2+SiH4 mixture atmosphere. With the increase of silane flow rate, the content of silicon in the Ti-Si-N films varies from 2.0 at.% to 12.2 at.%. Meanwhile, the cross-sectional morphology of these films changes from an apparent columnar microstructure to a dense fine-grained structure. The x-ray diffractometer (XRD) and x-ray photoelectron spectroscopy (XPS) results show that the Ti-Si-N film consists of TiN crystallites and SiNx amorphous phase. The corrosion resistance is improved with the increase of silane flow rate. Growth defects in the films produced play a key role in the corrosion process, especially for the local corrosion. The porosity of the films decreases from 0.13% to 0.00032% by introducing silane at the flow rate of 14 sccm. (authors)

  13. TiN/CrN multilayered hard coatings with TiCrN interlayer deposited by a filtered cathodic vacuum arc technique

    Institute of Scientific and Technical Information of China (English)

    Chengming Li; Qi He; Gang Lin; Xiaojun Sun; Weizhong Tang; Fanxiu Lu

    2004-01-01

    TiN/CrN multilayered hard coatings with TiCrN interlayer were deposited on high speed steel substrates by using a filtered cathodic vacuum arc technique. The structure and composition of the coatings were characterized by scanning electron microscopy (SEM) and Auger electron spectroscopy (AES). A high adhesion of up to 80 N was demonstrated by scratching tests for the multilayered coatings. Nanoindentation tests were performed to determine the hardness and elastic modulus of the coatings as a function of the multiplayer modulation period. It was observed that the hardness of the multilayered coatings is higher than those of either TiN or CrN single coatings, and it increases with decreasing modulation periods, which is consistent with predictions from the Hall-Perch type strengthening mechanism, though at small modulation periods, deviation from the Hall-Petch relation has been observed for the multilayered coatings. The life-span of drills coated with TiN/CrN multilayered is triple as long as that coated with TiN layer.

  14. ADHESION STRENGTH OF TiN COATINGS AT VARIOUS ION ETCHING DEPOSITED ON TOOL STEELS USING CATHODIC ARC PVD TECHNIQUE

    OpenAIRE

    MUBARAK ALI; ESAH HAMZAH; NOUMAN ALI

    2009-01-01

    Titanium nitride (TiN) widely used as hard coating material was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The goal of this study was to examine the effect of ion etching with and without titanium (Ti) and chromium (Cr) on the adhesion strength of TiN coatings deposited on tool steels. From the scratch tester, it was observed that by increasing Ti ion etching showed an increase in adhesion strength of the deposited coatings. ...

  15. X-ray photoelectron spectroscopy of nano-multilayered Zr-O/Al-O coatings deposited by cathodic vacuum arc plasma

    International Nuclear Information System (INIS)

    Nano-multilayered Zr-O/Al-O coatings with alternating Zr-O and Al-O layers having a bi-layer period of 6-7 nm and total coating thickness of 1.0-1.2 μm were deposited using a cathodic vacuum arc plasma process on rotating Si substrates. Plasmas generated from two cathodes, Zr and Al, were deposited simultaneously in a mixture of Ar and O2 background gases. The Zr-O/Al-O coatings, as well as bulk ZrO2 and Al2O3 reference samples, were studied using X-ray photoelectron spectroscopy (XPS). The XPS spectra were analyzed on the surface and after sputtering with a 4 kV Ar+ ion gun. High resolution angle resolved spectra were obtained at three take-off angles: 15o, 45o and 75o relative to the sample surface. It was shown that preferential sputtering of oxygen took place during XPS of bulk reference ZrO2 samples, producing ZrO and free Zr along with ZrO2 in the XPS spectra. In contrast, no preferential sputtering was observed with Al2O3 reference samples. The Zr-O/Al-O coatings contained a large amount of free metals along with their oxides. Free Zr and Al were observed in the coating spectra both before and after sputtering, and thus cannot be due solely to preferential sputtering. Transmission electron microscopy revealed that the Zr-O/Al-O coatings had a nano-multilayered structure with well distinguished alternating layers. However, both of the alternating layers of the coating contained of a mixture of aluminum and zirconium oxides and free Al and Zr metals. The concentration of Zr and Al changed periodically with distance normal to the coating surface: the Zr maximum coincided with the Al minimum and vice versa. However the concentration of Zr in both alternating layers was significantly larger than that of Al. Despite the large free metal concentration, the Knoop hardness, 21.5 GPa, was relatively high, which might be attributed to super-lattice formation or formation of a metal-oxide nanocomposite within the layers.

  16. Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc

    International Nuclear Information System (INIS)

    In this paper, four kinds of hard coatings, TiN, CrN, TiAlN and CrAlN (with Al/Ti or Al/Cr atomic ratio around 1:1), were deposited on stainless steel substrates by a lateral rotating cathode arc technique. The as-deposited coatings were annealed in ambient atmosphere at different temperatures (500-1000 oC) for 1 h. The evolution of chemical composition, microstructure, and microhardness of these coatings after annealing at different temperatures was systematically analyzed by energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and nanoindentation experiments. The oxidation behaviour and its influence on overall hardness of these four coatings were compared. It was found that the ternary TiAlN and CrAlN coatings have better oxidation resistance than their binary counterparts, TiN and CrN coatings. The Cr-based coatings (CrN and CrAlN) exhibited evidently better oxidation resistance than the Ti-based coatings (TiN and TiAlN). TiN coating started to oxidize at 500 oC. After annealing at 700 oC no N could be detected by EDX, indicating that the coating was almost fully oxidized. After annealed at 800 oC, the coating completely delaminated from the substrate. TiAlN started to oxidize at 600 oC. It was nearly fully oxidized (with little residual nitrogen detected in the coating by EDX) and partially delaminated at 1000 oC. Both CrN and CrAlN started to oxidize at 700 oC. CrN was almost fully oxidized (with little residual nitrogen detected in the coating by EDX) and partially delaminated at 900 oC. The oxidation rate of the CrAlN coating is quite slow. After annealing at 1000 oC, only about 19 at.% oxygen was detected and the coating showed no delamination. The Ti-based (TiN and TiAlN) coatings were not able to retain their hardness at higher temperatures (≥ 700 oC). On the other hand, the hardness of CrAlN was stable at a high level between 33 and 35 GPa up to an annealing temperature of 800 oC and still kept at a comparative high value of 18.7 GPa

  17. The Effect of Nitrogen Gas Flow Rate on the Properties of TiN-COATED High-Speed Steel (hss) Using Cathodic Arc Evaporation Physical Vapor Deposition (pvd) Technique

    Science.gov (United States)

    Mubarak, Ali; Hamzah, Esah Binti; Mohd Toff, Mohd Radzi Hj.; Hashim, Abdul Hakim Bin

    Cathodic arc evaporation (CAE) is a widely-used technique for generating highly ionized plasma from which hard and wear resistant physical vapor deposition (PVD) coatings can be deposited. A major drawback of this technique is the emission of micrometer-sized droplets of cathode material from the arc spot, which are commonly referred to as "macroparticles." In present study, titanium nitride (TiN) coatings on high-speed steel (HSS) coupons were produced with a cathodic arc evaporation technique. We studied and discussed the effect of various nitrogen gas flow rates on microstructural and mechanical properties of TiN-coated HSS coupons. The coating properties investigated in this work included the surface morphology, thickness of deposited coating, adhesion between the coating and substrate, coating composition, coating crystallography, hardness and surface characterization using a field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray (EDX), X-ray diffraction (XRD) with glazing incidence angle (GIA) technique, scratch tester, hardness testing machine, surface roughness tester, and atomic force microscope (AFM). An increase in the nitrogen gas flow rate showed decrease in the formation of macro-droplets in CAE PVD technique. During XRD-GIA studies, it was observed that by increasing the nitrogen gas flow rate, the main peak [1,1,1] shifted toward the lower angular position. Surface roughness decreased with an increase in nitrogen gas flow rate but was higher than the uncoated polished sample. Microhardness of TiN-coated HSS coupons showed more than two times increase in hardness than the uncoated one. Scratch tester results showed good adhesion between the coating material and substrate. Considerable improvement in the properties of TiN-deposited thin films was achieved by the strict control of all operational steps.

  18. Study on nanocomposite Ti–Al–Si–Cu–N films with various Si contents deposited by cathodic vacuum arc ion plating

    International Nuclear Information System (INIS)

    Highlights: ► XRD peaks show a tendency of decreasing intensity with increasing Si content. ► Ti–Al–Si–Cu–N films present different microstructure with increasing Si content. ► Films with 6 at.% Si content obtain the highest hardness, elastic modulus and H3/E2. ► The wear rate decreases with an increase in hardness. - Abstract: In this study, nanocomposite Ti–Al–Si–Cu–N films were deposited on high speed steel substrates by the vacuum cathode arc ion plating (AIP) technique. By virtue of X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM), the influence of silicon content on the film microstructure and characteristics was investigated systematically, including the chemical composition, crystalline structure as well as cross-section morphologies. With increasing the silicon content, a deterioration of the preferred orientation and a dense globular structure were detected. In the meanwhile, atomic force microscopy (AFM), nano-indentation, Rockwell indenter and reciprocating test were also utilized to analyze the hardness, elastic modulus, H3/E2, friction coefficient, adhesive strength and wear rate of the Ti–Al–Si–Cu–N films. The results showed that an optimal silicon content correlated with the best mechanical and tribological properties of the presented Ti–Al–Si–Cu–N films existed. With increasing the silicon content, the hardness, elastic modulus and the ratio H3/E2 first were improved gradually, and then were impaired sharply again. When the silicon content reached to 6 at.%, the film possessed the highest hardness, elastic modulus and ratio H3/E2 of approximately 24 GPa, 218 GPa and 0.31, respectively. Besides, films containing both 6 at.% and 10 at.% Si contents obtained a relatively low friction coefficient and a good adhesive strength. The wear rate decreased with an increase in hardness, with the highest hardness corresponding to a wear rate

  19. Study on nanocomposite Ti-Al-Si-Cu-N films with various Si contents deposited by cathodic vacuum arc ion plating

    Energy Technology Data Exchange (ETDEWEB)

    Shi, J. [State Key Laboratory of Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Strasse 9-11, Siegen 57076 (Germany); Muders, C.M.; Kumar, A. [Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Strasse 9-11, Siegen 57076 (Germany); Jiang, X., E-mail: xin.jiang@uni-siegen.de [Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Strasse 9-11, Siegen 57076 (Germany); Pei, Z.L.; Gong, J. [State Key Laboratory of Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Sun, C., E-mail: csun@imr.ac.cn [State Key Laboratory of Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer XRD peaks show a tendency of decreasing intensity with increasing Si content. Black-Right-Pointing-Pointer Ti-Al-Si-Cu-N films present different microstructure with increasing Si content. Black-Right-Pointing-Pointer Films with 6 at.% Si content obtain the highest hardness, elastic modulus and H{sup 3}/E{sup 2}. Black-Right-Pointing-Pointer The wear rate decreases with an increase in hardness. - Abstract: In this study, nanocomposite Ti-Al-Si-Cu-N films were deposited on high speed steel substrates by the vacuum cathode arc ion plating (AIP) technique. By virtue of X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM), the influence of silicon content on the film microstructure and characteristics was investigated systematically, including the chemical composition, crystalline structure as well as cross-section morphologies. With increasing the silicon content, a deterioration of the preferred orientation and a dense globular structure were detected. In the meanwhile, atomic force microscopy (AFM), nano-indentation, Rockwell indenter and reciprocating test were also utilized to analyze the hardness, elastic modulus, H{sup 3}/E{sup 2}, friction coefficient, adhesive strength and wear rate of the Ti-Al-Si-Cu-N films. The results showed that an optimal silicon content correlated with the best mechanical and tribological properties of the presented Ti-Al-Si-Cu-N films existed. With increasing the silicon content, the hardness, elastic modulus and the ratio H{sup 3}/E{sup 2} first were improved gradually, and then were impaired sharply again. When the silicon content reached to 6 at.%, the film possessed the highest hardness, elastic modulus and ratio H{sup 3}/E{sup 2} of approximately 24 GPa, 218 GPa and 0.31, respectively. Besides, films containing both 6 at.% and 10 at.% Si contents obtained a relatively low friction coefficient and a good adhesive

  20. Diffuse and spot mode of cathode arc attachments in an atmospheric magnetically rotating argon arc

    International Nuclear Information System (INIS)

    A model including the cathode, near-cathode region, and arc column was constructed. Specifically, a thermal perturbation layer at the arc fringe was calculated in order to couple sheath/presheath modelling with typical arc column modelling. Comparative investigation of two modes of attachment of a dc (100, 150, 200 A) atmospheric-pressure arc in argon to a thermionic cathode made of pure tungsten was conducted. Computational data revealed that there exists two modes of arc discharge: the spot mode, which has an obvious cathode surface temperature peak in the arc attachment centre; and the diffuse mode, which has a flat cathode surface temperature distribution and a larger arc attachment area. The modelling results of the arc attachment agree with previous experimental observations for the diffuse mode. A further 3D simulation is obviously needed to investigate the non-axisymmetrical features, especially for the spot mode. (paper)

  1. Hollow cathode arc: effect of the cathode material on the internal plasma

    International Nuclear Information System (INIS)

    In discharges with hollow cathodes functioning in the arc regime, the cathode emits thermionic electrons which ionize the gas. To reduce the electrical power consumed by these discharges, cathodes made of thoriated tungsten and lathanum hexaboride have been used. The parameters of the plasma generated into the cathode have been measured with electrostatic probes. (Auth.)

  2. Corrosion durability of nanostructured TiAlYN coatings, deposited by PIII and D method from filtered vacuum-arc cathodic plasma

    International Nuclear Information System (INIS)

    The electrochemical characteristics of nanostructured TiAlYN coatings deposited on 12X18H10T steel substrates are investigated in 3% aqueous solution of NaCl. The coatings were deposited from filtered vacuum-arc plasma by PIII and D method. Measurements of corrosion potentials Ecor and anodic polarization curves showed that the best protection against galvanic corrosion (GC) provides TiA1YN coating containing 0.2 at.% Y deposited on the substrate when applying pulsed bias potential of -1.5 kV amplitude. Addition DC bias potential of -150 V to pulse one leads to deterioration of the protective properties: activation potential of anodic processes (APAP) decreases in 3...4 times. Increase in TiA1YN coatings deposition rate promotes improvement their protective properties due to improved adhesion and decreased level of residual stress

  3. The investigation of carbon nitride films prepared at various arc currents by vacuum cathode arc method

    International Nuclear Information System (INIS)

    The carbon nitride films have been prepared in the arc currents range of 20-60 A at the Ar/N2 atmosphere of 50/400 sccm by the vacuum cathode arc deposition method. The properties of the films were characterized by x-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and nanoindentation. The N concentration showed a maximum of 35 at% at 20 A and decreased gradually with the arc currents. The films below 40 A consisted of linear polymeric-like component and sp2 graphitic cluster. With the increasing of the arc current from 20 to 40 A, the ID/IG rose and the photoluminescence (PL) fell gradually, which resulted from the development of the sp2 graphitic phase and the decrease of the polymeric-like phase. As a result, the CC bonds increased and sp3CN and sp2CN decreased. Above 40 A, with the increasing of arc currents, ID/IG fell and the PL increased gradually, which reflected the decreasing of sp2 graphitic phase and the modification of C and N atoms in sp2 cluster. The CC bonds and sp3CN fell and the sp2CN rose. The nanohardness of films showed increasing tendency with the arc currents. The variation of the relative ratio and the average energy of N-containing species and C-containing species at the atmosphere would be responsible for the change in the properties of films. (author)

  4. Emission mechanism in high current hollow cathode arcs

    International Nuclear Information System (INIS)

    Large (2 cm-diameter) hollow cathodes have been operated in a magnetoplasmadynamic (MPD) arc over wide ranges of current (0.25 to 17 kA) and mass flow (10-3 to 8 g/sec), with orifice current densities and mass fluxes encompassing those encountered in low current steady-state hollow cathode arcs. Detailed cathode interior measurements of current and potential distributions show that maximum current penetration into the cathode is about one diameter axially upstream from the tip, with peak inner surface current attachment up to one cathode diameter upstream of the tip. The spontaneous attachment of peak current upstream of the cathode tip is suggested as a criterion for characteristic hollow cathode operation. This empirical criterion is verified by experiment

  5. A comparison study between atomic and ionic nitrogen doped carbon films prepared by ion beam assisted cathode arc deposition at various pulse frequencies

    International Nuclear Information System (INIS)

    A comparison study of microstructure and bonds composition of carbon nitride (CNx) films fabricated at atomic and ionic nitrogen source by pulse cathode arc method was presented. The relative fractions of CN/CC bonds, N-sp3C/N-sp2C and graphite-like/pyridine-like N bonding configurations in the CN films were evaluated by combining C1s and N1s X-ray photoelectron spectroscopy with the hardness and optical band gap measurement. The dependence of microstructure (quantity, size and disordering degree of Csp2 clusters) of CNx films on the nitrogen source and pulse frequency was determined by Raman spectroscopy. Films with high atomic ratio of nitrogen/carbon (0.17) and high hardness were produced at ionic nitrogen source and low pulse frequency. The results showed that ionic nitrogen source facilitated the formation of CN bonds and N-sp2C bonding configurations (mainly in graphite-like N form). Moreover presenting an optimum pulse frequency (∼10 Hz) leaded to the most nitrogen coordinated with sp3-C and the highest ratio of CN/CC bonds in the CNx films. An equilibrium action mechanism might exist between the quantity and energy of carbon and nitrogen ions/atoms, giving more nitrogen-incorporated carbon materials. These allow us to obtain the high content of N-Csp3 bonding and expected bonding structure by optimizing pulse frequency and nitrogen source.

  6. Unusual Cathode Erosion Patterns Observed for Steered Arc Sources

    OpenAIRE

    Kolbeck, Jonathan; Anders, André

    2014-01-01

    A cathodic arc source with a magnetron-type magnetic field was investigated for stability, erosion, and compatibility with a linear macroparticle filter. Here we report about unusual arc spot erosion patterns, which were narrow (~ 2 mm) with periodic pits when operating in argon, and broad (~ 10 mm) with periodic groves and ridges when operating in an argon and oxygen mixtures. These observations can be correlated with the ignition probability for type 2 and type 1 arc spots, respectively.

  7. Cyclic erosion of a cathode in high-pressure arcs

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, Valerian [ESAB Welding and Cutting Products and Francis Marion University, Florence, SC 29501 (United States)

    2003-07-07

    Erosion that occurred during arc shut down was investigated. The arc current was 200 A; the cathode was made of hafnium. Different gases were used: oxygen, nitrogen, and noble gases (argon, helium, and hydrogen-argon mixture). The gas pressure was 3 atm. It was shown that erosion in noble gases is higher compared to gases that create chemical compounds with hafnium (oxygen and nitrogen). The following model of arc-off erosion is suggested. An amount of plasma gas is diluted in the molten tip of the cathode. When the arc is terminated, the gas pressure in the cathode vicinity drops down. The diluted gas then leaves the molten puddle and carries some liquid material with it.

  8. An interchangeable-cathode vacuum arc plasma source

    International Nuclear Information System (INIS)

    A simplified vacuum arc design [based on metal vapor vacuum arc (MeVVA) concepts] is employed as a plasma source for a study of a 7Be non-neutral plasma. The design includes a mechanism for interchanging the cathode source. Testing of the plasma source showed that it is capable of producing on the order of 1012 charges at confinable energies using a boron-carbide disk as the cathode target. The design is simplified from typical designs for lower energy and lower density applications by using only the trigger spark rather than the full vacuum arc in high current ion beam designs. The interchangeability of the cathode design gives the source the ability to replace only the source sample, simplifying use of radioactive materials in the plasma source. The sample can also be replaced with a completely different conductive material. The design can be easily modified for use in other plasma confinement or full MeVVA applications.

  9. Cathode erosion in high-current high-pressure arc

    CERN Document Server

    Nemchinsky, V A

    2003-01-01

    Cathode erosion rate was experimentally investigated for two types of arcs: one with tungsten cathode in nitrogen atmosphere and one with hafnium cathode in oxygen atmosphere. Conditions were typical for plasma arc cutting systems: gas pressure from 2 to 5 atm, arc current from 200 to 400 A, gas flow rate from 50 to 130 litre min sup - sup 1. It was found that the actual cathode evaporation rate G is much lower than G sub 0 , the evaporation rate that follows from the Hertz-Knudsen formula: G = nu G sub 0. The difference is because some of the evaporated particles return back to the cathode. For conditions of our experiments, the factor nu could be as low as 0.01. It was shown experimentally that nu depends strongly on the gas flow pattern close to the cathode. In particular, swirling the gas increases nu many times. To explain the influence of gas swirling, model calculations of gas flows were performed. These calculations revealed difference between swirling and non-swirling flows: swirling the gas enhances...

  10. Cathodic Arcs From Fractal Spots to Energetic Condensation

    CERN Document Server

    Anders, Andre

    2009-01-01

    Emphasizes the fractal character of cathode spots, and describes strongly fluctuating plasma properties such as the presence of multiply charged ions that move with supersonic velocity. This book also deals with issues, such as arc source construction, and macroparticle removal. It is intended for scientists, practitioners, and students alike

  11. The fractal nature of vacuum arc cathode spots

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2005-05-27

    Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f {sup 2}, where f is frequency, supporting a fractal spot model associated with Brownian motion.

  12. Molecular beam sampling of a hollow cathode arc

    International Nuclear Information System (INIS)

    This thesis deals with the description of the process of molecular beam sampling of a Hollow Cathode Arc. The aim of the study is twofold, i.e. investigation of the applicability of molecular beam sampling as a plasma diagnostic and the use of a Hollow Cathode Arc as a high intensity beam source for ground state atoms and metastable state atoms in the superthermal energy range. Suitable models are introduced, describing the process of molecular beam sampling of both ground state atoms and metastable state atoms. Fast ground state atoms produced by ion-atom collisions. The experimental facilities, i.e. the Hollow Cathode Arc, the time-of-flight machine and the dye laser system are described. And an alternative detection scheme for ground state atoms is presented and experimental results on the molecular beam sampling of a low density plasma (densities 1019-1020 m-3) in the long arc configuration are reported. The results on the short arc configuration (densities 1021-1022 m-3) are discussed. (Auth.)

  13. Numerical analysis of the rotating arc root on the cathode surface

    International Nuclear Information System (INIS)

    Three-dimensional heat transfer equation was used to discuss the circular region of high temperature formed on the surface of the tubular tungsten cathode, the cathode surface temperature in the region becomes uniform gradually (except that at the point of the cathode arc root) when the cathode arc root of the secondary arc is rotating on surface of the tungsten cathode and the rotating frequency of the secondary arc root is increasing. And the necessary condition of the cathode surface temperature is provided to form the model of the multi-arc-root or diffusive arc root. At the same time, the cathode surface temperature at the point of the cathode arc root decreases and reaches a constant when the rotating frequency increases

  14. Filtered pulsed carbon cathodic arc: Plasma and amorphous carbon properties

    Science.gov (United States)

    Liu, Dongping; Benstetter, Günther; Lodermeier, Edgar; Zhang, Jialiang; Liu, Yanhong; Vancea, Johann

    2004-06-01

    The carbon plasma ion energies produced by the filtered pulsed cathodic arc discharge method were measured as a function of filter inductance. The energy determination is based on the electro-optical time-of-flight method. The average ion energies of the pulsed ion beams were found to depend upon the rise time and duration of pulsed arc currents, which suggests that a gain of ion kinetic energy mainly arises from the electric plasma field from the ambipolar expansion of both electrons and ions, and an electron drag force because of the high expansion velocity of the electrons. The tetrahedral amorphous carbon (ta-C) films with a sp3 fraction of ˜70% were deposited on silicon substrates at the average ion energies of >6 eV in the highly ionized plasmas. The ta-C films were found to be covered with a few graphitelike atomic layers. The surface properties of ultrathin carbon films, such as nanoscale friction coefficients, surface layer thickness, and silicon contents were strongly dependent on the ion energies. The growth of amorphous carbon films was explained in terms of the thermal spike migration of surface carbon atoms. In terms of this model, the thermal spike provides the energy required to release surface atoms from their metastable positions and leads to the formation of the sp3 bonded carbon on a sp3 bonded matrix. The experimental results indicate that the low-energy (<3 eV) carbon ions have insufficient energies to cause the rearrangement reaction within the film and they form graphitelike structures at film surface.

  15. Filtered pulsed carbon cathodic arc: Plasma and amorphous carbon properties

    International Nuclear Information System (INIS)

    The carbon plasma ion energies produced by the filtered pulsed cathodic arc discharge method were measured as a function of filter inductance. The energy determination is based on the electro-optical time-of-flight method. The average ion energies of the pulsed ion beams were found to depend upon the rise time and duration of pulsed arc currents, which suggests that a gain of ion kinetic energy mainly arises from the electric plasma field from the ambipolar expansion of both electrons and ions, and an electron drag force because of the high expansion velocity of the electrons. The tetrahedral amorphous carbon (ta-C) films with a sp3 fraction of ∼70% were deposited on silicon substrates at the average ion energies of >6 eV in the highly ionized plasmas. The ta-C films were found to be covered with a few graphitelike atomic layers. The surface properties of ultrathin carbon films, such as nanoscale friction coefficients, surface layer thickness, and silicon contents were strongly dependent on the ion energies. The growth of amorphous carbon films was explained in terms of the thermal spike migration of surface carbon atoms. In terms of this model, the thermal spike provides the energy required to release surface atoms from their metastable positions and leads to the formation of the sp3 bonded carbon on a sp3 bonded matrix. The experimental results indicate that the low-energy (<3 eV) carbon ions have insufficient energies to cause the rearrangement reaction within the film and they form graphitelike structures at film surface

  16. INFLUENCE OF VACUUM ARC PLASMA EVAPORATOR CATHODE GEOMETRY OF ON VALUE OF ADMISSIBLE ARC DISCHARGE CURRENT

    Directory of Open Access Journals (Sweden)

    I. A. Ivanou

    2015-01-01

    Full Text Available An analysis of main design parameters that determine a level of droplet formation intensity at the generating stage of plasma flow has been given in the paper. The paper considers the most widely used designs of water cooled consumable cathodes. Ti or Ti–Si and Fe–Cr alloys have been taken as a material for cathodes. The following calculated data: average ionic charge Zi for titanium plasma +1.6; for «titanium–silicon plasma» +1.2, an electronic discharge 1.6022 ⋅ 10–19 C, an ion velocity vi = 2 ⋅ 104 m/s, an effective volt energy equivalent of heat flow diverted in the cathode Uк = 12 V, temperature of erosion cathode surface Тп = 550 К; temperature of the cooled cathode surface То = 350 К have been accepted in order to determine dependence of a maximum admissible arc discharge current on cathode height. The calculations have been carried out for various values of the cathode heights hк (from 0.02 to 0.05 m. Diameter of a target cathode is equal to 0.08 m for a majority of technological plasma devices, therefore, the area of the erosion surface is S = 0.005 m2.A thickness selection for a consumable target cathode part in the vacuum arc plasma source has been justified in the paper. The thickness ensures formation of minimum drop phase in the plasma flow during arc cathode material evaporation. It has been shown that a maximum admissible current of an arc discharge is practically equal to the minimum current of stable arcing when thickness of the consumable cathode part is equal to 0.05 m. The admissible discharge current can be rather significant and ensure high productivity during coating process with formation of relatively low amount of droplet phase in the coating at small values of hк.

  17. The Best Arc Heater Regime for Minimum Copper Cathode Erosion

    International Nuclear Information System (INIS)

    On the basis of the experimental investigations and simple theoretical model, which regards electrode erosion as ablation of the electrode material under the action of intensive heat fluxes in the arc spot, we give estimations of the range of operating regimes of copper cathode with the minimum erosion. We show, that application of a magnetic field for displacing of arc over the electrodes surface has a number of specific limitations from point of view of electrode erosion. These limitations are related with a variation in the energy parameters of the arc spot and heat transfer between electric arc and the electrodes under the variation of magnetic field. As a result, an optimal magnetic field exists, which is a function of an electrode temperature θ0 and derivative dθ/ds. Here θ0=T/Tf; Tf - melting point of electrode material; s = v/I0.5; v - arc velocity; I - current. We give here relationships and diagrams, which make it possible to evaluate the range of the operation of copper cathode with the minimum erosion

  18. Surface Morphology and Properties of CrN Coating Deposited by Superimposed Pulse Bias Cathodic Arc Ion Deposition%脉冲偏压电弧离子镀CrN薄膜的表面形貌和性能研究

    Institute of Scientific and Technical Information of China (English)

    杨娟; 文晓霞; 卢春灿; 陈志谦; 聂朝胤

    2008-01-01

    采用脉冲偏压电孤离子镀技术沉积了CrN薄膜,并考察了在不同偏压下薄膜的表面形貌、相结构、显微硬度和耐磨性.随着偏压的增加,CrN薄膜表面颗粒运渐变少,表面粗糙度降低,结晶度增大,偏压为-100 V的CrN薄膜具有致密的表面结构,较高的硬度,最佳的抗磨性能.%In this study, the cathodic arc ion plating technique was used to deposit CrN films on stainless steel sub-strates. The mechanical properties of the cathodic arc ion deposited CrN films were correlated to the microstructure of the films, which in turn was determined by the vacuum arc deposition parameters. The goal of this study was to examine the effects of bias voltage on the surface morphology, phase structure, microhardness and wear resistance of CrN films. Various standard characterization techniques and equipment, such as X-ray diffraction, ball-on-disc friction tester, surface profilometer, scanning electronic microscopy, microindention system and optical microscopy, were used to analyze and qualify the surface morphology, the mechanical and tribological properties. With increasing e substrate bias voltages, the number of macroparticles decreased. The CrN coatings prepared at -100 V showed smooth surfaces, fine crystalline grains and high hardness and wear resistance.

  19. Cathodic micro-arc electrodeposition of yttrium stabilized zirconia (YSZ) coatings on FeCrAl alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The formation of ceramic coatings on metal substrate by cathodic electrolytic deposition (CELD) has received more attention in recent years. But only thin films can be prepared via CELD. Yttrium stabilized zirconia (YSZ) ceramic coatings were deposited on FeCrAl alloy by a novel technique--cathodic micro-arc electrodeposition (CMED). The result shows that, when a high pulse electric field is applied to the cathode which was pre-deposited with a thin YSZ film, dielectric breakdown occurs and micro-arc discharges appear. Coatings with reasonably thickness of ~300μm and crystalline structure can be deposited on the cathode by utilizing the energy of the micro-arc. The thickness of the as-deposited coating is dominated by the voltage and the frequency. Y2O3 is co-deposited with ZrO2 when Y(NO3)3 was added to the electrolyte, which stabilize t-phase, t′- phase and c-phase of ZrO2 at room temperature. The amount of the m-ZrO2 in the coating is diminished by increasing the concentration of Y(NO3)3 in the electrolyte. This report describes the processing of CMED and studies the microstructure of the deposited YSZ coatings.

  20. Radial profiles of electron density and current components at cathode surface in LaB6 hollow cathode arc

    International Nuclear Information System (INIS)

    Experimental studies on a hydrogen-fed LaB6 hollow cathode arc have been pursued. The plasma parameter in the cathode has been measured by a Langmuir probe. The radial variation in the electron density inside the cathode was calculated using the continuity and momentum equations, showing good agreement with the experimental results. The electron density at the cathode surface was estimated to be 15 % - 20 % of that at the cathode axis. It was also found from the current balance that the arc current components at the cathode surface consist of a thermionic current which takes into account the Schottky effect, the ion current and the secondary electron current induced by ion bombardment. The ion current and the cathode surface is larger than the electron current emitted from the cathode. (author)

  1. Ion velocities in a micro-cathode arc thruster

    International Nuclear Information System (INIS)

    Ion velocities in the plasma jet generated by the micro-cathode arc thruster are studied by means of time-of-flight method using enhanced ion detection system (EIDS). The EIDS triggers perturbations (spikes) on arc current waveform, and the larger current in the spike generates denser plasma bunches propagating along with the mainstream plasma. The EIDS utilizes double electrostatic probes rather than single probes. The average Ti ion velocity is measured to be around 2×104 m/s without a magnetic field. It was found that the application of a magnetic field does not change ion velocities in the interelectrode region while leads to ion acceleration in the free expanding plasma plume by a factor of about 2. Ion velocities of about 3.5×104 m/s were detected for the magnetic field of about 300 mT at distance of about 100–200 mm from the cathode. It is proposed that plasma is accelerated due to Lorentz force. The average thrust is calculated using the ion velocity measurements and the cathode mass consumption rate, and its increase with the magnetic field is demonstrated.

  2. Plasma source ion implantation of metal ions: Synchronization of cathodic-arc plasma production and target bias pulses

    International Nuclear Information System (INIS)

    An erbium cathodic-arc has been installed on a Plasma Source Ion Implantation (PSII) experiment to allow the implantation of erbium metal and the growth of adherent erbia (erbium oxide) films on a variety of substrates. Operation of the PSII pulser and the cathodic-arc are synchronized to achieve pure implantation, rather than the hybrid implantation/deposition being investigated in other laboratories. The relative phase of the 20 μs PSII and cathodic-arc pulses can to adjusted to tailor the energy distribution of implanted ions and suppress the initial high-current drain on the pulse modulator. The authors present experimental data on this effect and make a comparison to results from particle-in-cell simulations

  3. Account of near-cathode sheath in numerical models of high-pressure arc discharges

    Science.gov (United States)

    Benilov, M. S.; Almeida, N. A.; Baeva, M.; Cunha, M. D.; Benilova, L. G.; Uhrlandt, D.

    2016-06-01

    Three approaches to describing the separation of charges in near-cathode regions of high-pressure arc discharges are compared. The first approach employs a single set of equations, including the Poisson equation, in the whole interelectrode gap. The second approach employs a fully non-equilibrium description of the quasi-neutral bulk plasma, complemented with a newly developed description of the space-charge sheaths. The third, and the simplest, approach exploits the fact that significant power is deposited by the arc power supply into the near-cathode plasma layer, which allows one to simulate the plasma–cathode interaction to the first approximation independently of processes in the bulk plasma. It is found that results given by the different models are generally in good agreement, and in some cases the agreement is even surprisingly good. It follows that the predicted integral characteristics of the plasma–cathode interaction are not strongly affected by details of the model provided that the basic physics is right.

  4. Characteristics of Single Cathode Cascaded Bias Voltage Arc Plasma

    Science.gov (United States)

    Ou, Wei; Deng, Baiquan; Zeng, Xianjun; Gou, Fujun; Xue, Xiaoyan; Zhang, Weiwei; Cao, Xiaogang; Yang, Dangxiao; Cao, Zhi

    2016-06-01

    A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber, instead of the previous copper chambers, to provide better diagnostic observation and access to the plasma optical emission. The cathode chamber cooling scheme is also modified to be naturally cooled only by light emission without cooling water to improve the optical thin performance in the optical path. A single-parameter physical model has been developed to describe the power dissipated in the cascaded bias voltage arc discharge argon plasmas, which have been investigated by utilizing optical emission spectroscopy (OES) and Langmuir probe. In the experiments, discharge currents from 50 A to 100 A, argon flow rates from 800 sccm to 2000 sccm and magnetic fields of 0.1 T and 0.2 T were chosen. The results show: (a) the relationship between the averaged resistivity and the averaged current density exhibits an empirical scaling law as \\barη \\propto \\bar {j}-0.63369 and the power dissipated in the arc has a strong relation with the filling factor; (b) through the quartz, the argon ions optical emission lines have been easily observed and are dominating with wavelengths between 340 nm and 520 nm, which are the emissions of Ar+‑434.81 nm and Ar+‑442.60 nm line, and the intensities are increasing with the arc current and decreasing with the inlet argon flow rate; and (c) the electron density and temperature can reach 2.0 × 1019 m‑3 and 0.48 eV, respectively, under the conditions of an arc current of 90 A and a magnetic field of 0.2 T. The half-width of the ne radial profile is approximatively equal to a few Larmor radii of electrons and can be regarded as the diameter of the plasma jet in the experiments. supported by the International Thermonuclear Experimental Reactor (ITER) Program Special of Ministry of Science and Technology (No. 2013GB114003), and National Natural Science Foundation of China (Nos. 11275135, 11475122)

  5. Measurement of cathode surface temperature using the method of CCD imaging in arc discharge

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A two-wavelength pyrometry device using ordinary array CCD (charge coupled device) to collect the radiation data in the horizontal and vertical directions has been developed for measuring the cathode surface temperature during the arc discharge. Analyses of experimental results show that the device can make the measurement of the cathode surface temperature feasible. The cathode surface temperatures measured are lower than the melting point of tungsten (3653 K), and the arc current, cathode diameter, and the cathode length are the main influencing factors of the cathode surface temperature.

  6. RF properties at 6 GHz of ultra-high vacuum cathodic arc films up to 450 oersted

    International Nuclear Information System (INIS)

    Several films of niobium were deposited on copper plates via the ultra-high vacuum cathodic arc (UHVCA) deposition method as described by R. Russo et al. [R. Russo et al., Supercond. Sci. Tech. 18 (2005) L41; R. Russo et al., J. Appl. Phys., submitted for publication]. We attached these end plates to a 6 GHz cavity operating in the TE011 mode for characterizing the film quality by measuring the Q versus surface magnetic field

  7. The use of hollow cathodes in deposition processes: A critical review

    International Nuclear Information System (INIS)

    of electrons (we will call this a hollow cathode arc or HCA). The accepted explanation for the HCD phenomenon involves the existence of high-energy “pendulum” electrons, which are reflected from the sheaths on either side of the cathode; the long trajectory of this electron is understood to produce a large number of secondary electrons, with this resulting in the high plasma density and plasma current. We describe the structure of a parallel-plate discharge, particularly the gas phase and cathode surface excitation and ionization collision processes. Using this description, we discuss some of the problems associated with the conventional hollow cathode model and we propose a new explanation that has important implications for the physics and applications of hollow cathodes. In the last section of this review, we describe how hollow cathodes have and can be used to deposit thin films and nanostructured coatings. We provide an extensive and approximately chronological listing of how hollow cathodes have been successfully used to deposit materials, mainly by sputtering and plasma enhanced chemical vapour deposition based techniques. - Highlights: • We describe the discrepancies of the pendulum model of the hollow cathode plasma. • We present a model of the hollow cathode discharge based on doubly-charged ions. • The secondary electron yield of Ar++ from the cathode is about 4 times that of Ar+. • Plasma generation of Ar++ and the secondary electron emission are quasi-resonant. • A very high density hollow cathode discharge in pure hydrogen is not possible

  8. THE EFFECTS OF NEGATIVE BIAS AND FLUX RATIO ON THE PROPERTIES OF TiN THIN FILMS FORMED BY FILTERED CATHODIC ARC PLASMA TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    Y.J. Zhang; P.X. Yan; Z.G. Wu; W.W. Zhang; J. Wang; Q.J. Xue

    2005-01-01

    The filtered cathodic vacuum-arc (FCVA) technique is a supplementary and alternative technique with respect to convendtional physical and chemical vapour deposition which can remove macro-particles effectively and make the deposition process at ambient temperature.In this work, high quality TiN thin films were deposited on silicon substrates at low temperature using the improved filtered cathodic arc plasma (FCAP) technique. AFM, XRD, TEM were employed to characterize the TiN thin films. The effects of the negative substrate bias on the grain size, preferred crystalline orientation, surface roughness of TiN thin films were discussed.

  9. Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Thin diamond-like carbon (DLC) stripper foils ∼5μg/cm2 in thickness were produced and evaluated as heavy-ion strippers for the Beijing HI-13 Tandem Accelerator. The DLC layers ∼4μg/cm2 in thickness were produced by the filtered cathodic vacuum arc technology onto glass slides coated with betaine–saccharose as releasing agent, which were previously covered with evaporated carbon layers ∼1μg/cm2 in thickness by the controlled ac arc-discharge method. Irradiation lifetimes of the DLC stripper foils were tested using the heavy-ion beams at the terminal of the Beijing HI-13 Tandem Accelerator, and compared with those of the standard carbon stripper foils made by the combined dc and ac arc-discharge method. The measurements indicate that the DLC stripper foils outlast the standard combined dc and ac arc-discharge carbon stripper foils by a factor of at least 13 and 4 for the 197Au− (∼9MeV, ∼1μA) and 63Cu− (∼9MeV, ∼1μA) ion beams, respectively. The structure and properties of the DLC foils deposited onto silicon substrates by the filtered cathodic vacuum arc technology were also evaluated and analyzed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy images show that the DLC foils contain hardly droplets through the double 90° filters. The X-ray photoelectron spectrum indicates that sp3 bonds of the DLC foils exceed 70%. The integral intensity ratio of the D peak to the G peak (ID/IG) measured by the Raman spectroscopy is 0.78

  10. Erosion behaviour of composite Al-Cr cathodes in cathodic arc plasmas in inert and reactive atmospheres

    CERN Document Server

    Franz, Robert; Hawranek, Gerhard; Polcik, Peter

    2015-01-01

    Al$_{x}$Cr$_{1-x}$ composite cathodes with Al contents of x = 0.75, 0.5 and 0.25 were exposed to cathodic arc plasmas in Ar, N$_2$ and O$_2$ atmospheres and their erosion behaviour was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by X-ray diffraction analysis. Cathode poisoning effects in the reactive N$_2$ and O$_2$ atmospheres were non-uniform as a result of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded centre region of the cathodes.

  11. Erosion behavior of composite Al-Cr cathodes in cathodic arc plasmas in inert and reactive atmospheres

    International Nuclear Information System (INIS)

    AlxCr1−x composite cathodes with Al contents of x = 0.75, 0.5, and 0.25 were exposed to cathodic arc plasmas in Ar, N2, and O2 atmospheres and their erosion behavior was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by x-ray diffraction analysis. Cathode poisoning effects in the reactive N2 and O2 atmospheres were nonuniform as a result of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded center region of the cathodes

  12. Transition characteristics from radio-frequency discharge to arc in hollow cathode configuration

    Institute of Scientific and Technical Information of China (English)

    许建平; 巩春志; 吴明忠; 田修波

    2014-01-01

    The technique ofglow discharges in radio frequency configuration was applied to ignite hollow cathode vacuum arc discharge.The effect of discharge parameters on the building up of hollow cathode arc discharge was investigated.The emission spectrum during the vacuum arc ignition process was measured to disclose the discharge dynamics.There exists a threshold radio frequency power (300 W),beyond which hollow cathode is in γmode discharge status while radio frequency discharge changes into the arc discharge.With the increase of the radio frequency power,the plasma temperature and electronic density increase,and the discharge mode transits more rapidly.The ignition time ofhollow cathode vacuum arc discharge is less than 4 s with a radio frequency power of700 W.

  13. Improved control of TiN coating properties using cathodic arc evaporation with a pulsed bias

    International Nuclear Information System (INIS)

    A combined d.c. - pulse bias voltage was used in combination with a cathodic arc evaporation process for the deposition of TiN on planar plates and drilling tools at substrate temperatures T between 330 and 500degC. This new pulse technique appeared to be a powerful tool to achieve independent control of the substrate temperature, coating adhesion and uniformity of deposition. As a result, high coating adhesion can be obtained at low substrate temperatures. The adhesion uniformity across large-area samples is considerably improved. Unpolished rough substrate parts can be coated without cauliflower-like growth defects. Because of intensive ion bombardment in the pulse period, smoother TiN coatings with a reduced droplet size were obtained. (orig.)

  14. Cathode erosion in a high-pressure high-current arc: calculations for tungsten cathode in a free-burning argon arc

    International Nuclear Information System (INIS)

    The motion of an evaporated atom of the cathode material in a near-cathode plasma is considered. It is shown that the evaporated atom is ionized almost instantly. The created ion, under the influence of a strong electric field existing in the cathode proximity, has a high probability of returning to the cathode. A small fraction of evaporated atoms are able to diffuse away from the cathode to the region where they are involved in plasma flow and lose their chance to return to the cathode. The fraction of the total evaporated atoms, which do not return to the cathode, the escape factor, determines the net erosion rate. In order to calculate this factor, the distributions of the plasma parameters in the near-cathode plasma were considered. Calculations showed that the escape factor is on the order of a few per cent. Using experimental data on the plasma and cathode temperatures, we calculated the net erosion rate for a free-burning 200 A argon arc with a thoriated tungsten cathode. The calculated erosion rate is close to 1 µg s-1, which is in agreement with available experimental data. (paper)

  15. Properties of Coatings Deposited Using a Filtered Vacuum Arc Carbon Plasma Source

    International Nuclear Information System (INIS)

    A filtered vacuum arc plasma source with an adjustable cathode-anode gap was used to produce a carbon plasma for deposition of coatings on various substrates. The deposition apparatus consisted of a plasma gun, a toroidal plasma duct, a deposition chamber, and a cooled substrate holder. The plasma gun consisted of a cylindrical graphite cathode, an annular graphite anode, and a mechanism providing axial movement of the cathode to the anode. The arc was ignited in vacuum by momentarily contacting the cathode with the anode, while applying a D.C. current of 100 A between the cathode and the anode, and then withdrawing the cathode away from the anode in the axial direction, forming a cathode-anode gap of 12 mm. A carbon plasma jet passed through the anode into the toroidal duct and then to the substrate. The substrates were stainless steel and polycarbonate coupons, glass slides, and glass and polycarbonate substrates with a SnO2 coating. It was shown that the structure of the coatings deposited on stainless steel substrates depended on the negative bias voltage (Vbias) applied to the substrate. With Vbias=0, the coatings were not adherent, at Vbias =-10 V the coatings were porous, but the pore density decreased with increasing negative Vbias. At Vbias =-20-25 V the adhesion of the coating was good, and dense, hard (HV-34-60 GPa) DLC coatings were formed. At Vbias 235 V, the formation of graphite phase was observed whose area increased with increasing Vbias. Coatings deposited on polycarbonate surfaces were adherent without applying bias. However, the substrate surface was damaged due to heat flux to the substrate produced by the plasma, after a deposition duration which depended on the magnetic field strength

  16. Influence of the vacuum-arc source configuration and arc discharge parameters on the evolution and location of arc spots on the cathode surface

    OpenAIRE

    J. Walkowicz; J. Smolik; Z. Słomka; B. Kułakowska-Pawlak; W. Żyrnicki

    2009-01-01

    Purpose: The paper presents investigations of the evolution, structure and location of arc spots on the cathode frontal surfaces of two types of industrial arc sources.Design/methodology/approach: The temporal behaviour of cathode spots was recorded with the use of a fast CCD camera. The experiments were performed at four values of arc current, nine compositions of the process atmosphere N2+C2H2 and three pressure ranges of the process atmosphere.Findings: The analysis of the recorded picture...

  17. Growth of single and bilayer graphene by filtered cathodic vacuum arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Kesarwani, A. K.; Panwar, O. S., E-mail: ospanwar@mail.nplindia.ernet.in; Bisht, Atul [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012, India and Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, New Delhi 110012 (India); Dhakate, S. R. [Physics and Engineering of Carbon Materials, Division of Materials Physics and Engineering, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012, India and Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, New Delhi 110012 (India); Rakshit, R. K. [Quantum Phenomena and Applications Group, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012, India and Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, New Delhi 110012 (India); Singh, V. N. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012, India and Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, New Delhi 110012 (India); Kumar, Ashish [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2016-03-15

    The authors present a viable process to grow the high quality graphene films with control over number of layers by the filtered cathodic vacuum arc (FCVA) technique. In the FCVA process, the different carbon concentrations can be controlled by precisely tuning the arc time (1–4 s). The arc generated carbon was deposited on the nickel catalyst at 800 °C, annealed for 10 min, and cooled down to room temperature in the presence of hydrogen gas, resulting in the graphene films with control over number of layers. Prior to arcing, hydrogen etching of nickel was carried out to clean the surface of the substrate. A growth model to prepare the high quality graphene has also been proposed. The as-grown graphene films were transferred to different substrates and are characterized by Raman spectroscopy, optical microscopy, high resolution transmission electron microscopy, and atomic force microscopy to determine the number of layers present in these films. Raman spectra of the prepared graphene films exhibit change in the G peak position from 1582.4 to 1578.1 cm{sup −1}, two-dimensional (2D) peak shifts from 2688.5 to 2703.8 cm{sup −1}, the value of I{sub 2D}/I{sub G} increased from 0.38 to 3.82, and the full width at half maxima of 2D peak changed from 41 to 70 cm{sup −1}, for different layers of graphene films. The high resolution transmission electron microscopy image revealed that the graphene films prepared for 1 and 2 s arc times have single and bi- or trilayered structures, respectively.

  18. Growth of single and bilayer graphene by filtered cathodic vacuum arc technique

    International Nuclear Information System (INIS)

    The authors present a viable process to grow the high quality graphene films with control over number of layers by the filtered cathodic vacuum arc (FCVA) technique. In the FCVA process, the different carbon concentrations can be controlled by precisely tuning the arc time (1–4 s). The arc generated carbon was deposited on the nickel catalyst at 800 °C, annealed for 10 min, and cooled down to room temperature in the presence of hydrogen gas, resulting in the graphene films with control over number of layers. Prior to arcing, hydrogen etching of nickel was carried out to clean the surface of the substrate. A growth model to prepare the high quality graphene has also been proposed. The as-grown graphene films were transferred to different substrates and are characterized by Raman spectroscopy, optical microscopy, high resolution transmission electron microscopy, and atomic force microscopy to determine the number of layers present in these films. Raman spectra of the prepared graphene films exhibit change in the G peak position from 1582.4 to 1578.1 cm−1, two-dimensional (2D) peak shifts from 2688.5 to 2703.8 cm−1, the value of I2D/IG increased from 0.38 to 3.82, and the full width at half maxima of 2D peak changed from 41 to 70 cm−1, for different layers of graphene films. The high resolution transmission electron microscopy image revealed that the graphene films prepared for 1 and 2 s arc times have single and bi- or trilayered structures, respectively

  19. Analytical electron microscopy of interface layers between Ti(6% Al, 4% V) and a CrN cathodic arc coating

    International Nuclear Information System (INIS)

    This paper reports on the applications of analytical electron microscopy to the study of cathodic arc deposited CrN coating on a Ti(6% Al, 4% V) substrate. Particular attention is given to analysis of the coating/substrate interface. Electron energy loss spectroscopy is used to show that the Cr sputter cleaning of the Ti(6% Al, 4% V) results in penetration of Cr into the substrate giving a bcc alloy layer whose composition varies from Ti(6% Al, 4% V) at the substrate interface to almost pure Cr at the coating interface. Subsequent deposition of CrN results in an initial deposition of sub-stoichiometric Cr2N followed by sub-stoichiometric CrN with a } 022{ texture and a columnar structure. The degree of sub-stoichiometry of the nitrides depends on the substrate bias and the substrate orientation relative to the cathode. (author)

  20. Different modes of arc attachment at HID cathodes: simulation and comparison with measurements

    International Nuclear Information System (INIS)

    Based on a model for the plasma boundary layer of high intensity discharge cathodes, simulations are performed and compared with experimental results. To solve the power balance of the cathode body different methods are used, namely a 1D integral solution as well as 1D, 2D and 3D finite-element calculations. The simulations are done for cylindrical tungsten cathodes operated in different pure noble gas discharges (0.1-1.0 MPa) and with currents between 0.5 and 10 A. Under these conditions different modes of arc attachment are found, both in simulations and experiments. For the diffuse mode of arc attachment an excellent quantitative agreement between measurements and the simulations is obtained, reflecting an improved accuracy of measurements and simulation. In addition, different spot modes are found. At least one of these modes is also observed in the experiment. Also for this spot mode the agreement between measurements and simulation for the integral quantities is good. There are still some open questions concerning the spot mode of cathodic arc attachment. Varying the geometric dimensions of the cathode, the proper simulation of the heat conduction problem of the cathode body is shown. Variations of the plasma properties, like gas type and pressure, prove the conceptional capability of the boundary layer model for the simulation of different modes of arc attachment. Evaluating the cathode fall characteristics, regions of existence for the different modes are found, which are similar to the experiments

  1. Effect of N2 and Ar gas on DC arc plasma generation and film composition from Ti-Al compound cathodes

    International Nuclear Information System (INIS)

    DC arc plasma from Ti, Al, and Ti1−xAlx (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes has been characterized with respect to plasma chemistry (charged particles) and charge-state-resolved ion energy for Ar and N2 pressures in the range 10−6 to 3 × 10−2 Torr. Scanning electron microscopy was used for exploring the correlation between the cathode and film composition, which in turn was correlated with the plasma properties. In an Ar atmosphere, the plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathode stoichiometry. Introducing N2 above ∼5 × 10−3 Torr, lead to a reduced Al content in the plasma as well as in the film, and hence a 1:1 correlation between the cathode and film composition cannot be expected in a reactive environment. This may be explained by an influence of the reactive gas on the arc mode and type of erosion of Ti and Al rich contaminations, as well as on the plasma transport. Throughout the investigated pressure range, a higher deposition rate was obtained from cathodes with higher Al content. The origin of generated gas ions was investigated through the velocity rule, stating that the most likely ion velocities of all cathode elements from a compound cathode are equal. The results suggest that the major part of the gas ions in Ar is generated from electron impact ionization, while gas ions in a N2 atmosphere primarily originate from a nitrogen contaminated layer on the cathode surface. The presented results provide a contribution to the understanding processes of plasma generation from compound cathodes. It also allows for a more reasonable approach to the selection of composite cathode and experimental conditions for thin film depositions

  2. Amorphous boron coatings produced with vacuum arc deposition technology

    Science.gov (United States)

    Klepper, C. C.; Hazelton, R. C.; Yadlowsky, E. J.; Carlson, E. P.; Keitz, M. D.; Williams, J. M.; Zuhr, R. A.; Poker, D. B.

    2002-05-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresponding modulus of 180 GPa. This gives a very high value for the H/E ratio, a figure-of-merit for impact resistance of the film. A number of applications are contemplated, including corrosion/abrasion protection for die-casting dies and improved wear resistance for biomedical implants.

  3. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  4. Erosion behavior of composite Al-Cr cathodes in cathodic arc plasmas in inert and reactive atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Franz, Robert, E-mail: robert.franz@unileoben.ac.at; Mendez Martin, Francisca; Hawranek, Gerhard [Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700 Leoben (Austria); Polcik, Peter [Plansee Composite Materials GmbH, Siebenbürgerstrasse 23, 86983 Lechbruck am See (Germany)

    2016-03-15

    Al{sub x}Cr{sub 1−x} composite cathodes with Al contents of x = 0.75, 0.5, and 0.25 were exposed to cathodic arc plasmas in Ar, N{sub 2}, and O{sub 2} atmospheres and their erosion behavior was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by x-ray diffraction analysis. Cathode poisoning effects in the reactive N{sub 2} and O{sub 2} atmospheres were nonuniform as a result of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded center region of the cathodes.

  5. Optimization of a PIII&D System Using a Cathodic Arc with Titanium

    Science.gov (United States)

    Fazio, M.; Kleiman, A.; Lamas, D. G.; Grondona, D.; Marquez, A.

    2014-05-01

    A plasma immersion ion implantation and deposition (PIII&D) system was recently built at INFIP. A dc cathodic arc with a Ti cathode of 5 cm in diameter and an annular anode of 8cm in diameter was employed as the plasma source. The substrate chamber was electrically insulated and connected with the main discharge chamber through a straight magnetic duct. The discharge current was run at 100 A. The substrate was biased with a pulsed generator (30 kV, 30 A, 0.05 - 3 kHz) based on a pulse transformer controlled by IGBT switches. In this work the optimization of the process as function of the pulse parameters is presented. The characteristics of Ti coatings on steel substrates obtained varying the pulse amplitude from 2 to 12 kV and the pulse frequency from 200 Hz to 400 Hz were analyzed and compared with films grown without biasing the substrate. The thickness was determined weighting the samples before and after the treatment. The morphology was observed with an atomic force microscope. The film structure was studied by x-ray diffraction.

  6. Joule heat generation in thermionic cathodes of high-pressure arc discharges

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M. S.; Cunha, M. D. [Departamento de Fisica, CCCEE, Universidade da Madeira, Largo do Municipio, 9000 Funchal (Portugal)

    2013-02-14

    The nonlinear surface heating model of plasma-cathode interaction in high-pressure arcs is extended to take into account the Joule effect inside the cathode body. Calculation results are given for different modes of current transfer to tungsten cathodes of different configurations in argon plasmas of atmospheric or higher pressures. Special attention is paid to analysis of energy balances of the cathode and the near-cathode plasma layer. In all the cases, the variation of potential inside the cathode is much smaller than the near-cathode voltage drop. However, this variation can be comparable to the volt equivalent of the energy flux from the plasma to the cathode and then the Joule effect is essential. Such is the case of the diffuse and mixed modes on rod cathodes at high currents, where the Joule heating causes a dramatic change of thermal and electrical regimes of the cathode. The Joule heating has virtually no effect over characteristics of spots on rod and infinite planar cathodes.

  7. Ion spectra of vacuum arc plasma with compound and alloy cathodes

    International Nuclear Information System (INIS)

    We have carried out an experimental investigation of the charge state distribution of ions produced in the vacuum arc plasma for the case when the cathode is a compound or alloy. The plasma was generated in a metal vapor vacuum arc ion source, and the charge state spectra were measured using a time-of-flight method. We have compared these spectra to the spectra obtained from cathodes of the constituent elements. The cathode materials used and reported on here were the following groups: SiC/Si/C [i.e., we have compared the spectra obtained using a cathode of silicon carbide with the spectra obtained using (a) a silicon cathode and (b) a carbon cathode], TiC/TiN/TiO2/Ti/C, WC/W/C, (UC-ZrC)/UN/U/Zr/C, brass/Cu/Zn, and stainless steel/Fe/Cr/Ni. The arc current employed throughout was approximately 100 A. We find that the charge state distributions change depending on the elemental composition of the alloy or compound of which the cathode is fabricated

  8. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.

    Science.gov (United States)

    Zhu, Wei; Teel, George; O'Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium's osseointegration involves inducing bio-mimetic nanotopography to enhance cell-implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications. PMID:26677327

  9. p-Type Sb-Doped ZnO Thin Films Prepared with Filtered Vacuum Arc Deposition

    OpenAIRE

    David, T; Goldsmith, S.; Boxman, R. L.

    2005-01-01

    Thin p-type Sb-doped ZnO films were grown by filtered vacuum arc deposition (FVAD), on untreated glass samples. The arc cathode was prepared by dissolving Sb into molten Zn. The deposition was performed with 200 A arc current, running for 120-240 s in 0.426 Pa oxygen pressure. The film thickness was 330-500 nm. The aotmic concentration of Sb in the films was ~1.5%, whereas the O/Zn atomic concentration ratio was ~0.7. Sb incorporation into the polycrystalline ZnO matrix was concluded from XRD...

  10. On the mechanism of operation of a cathode spot cell in a vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Mesyats, G. A.; Petrov, A. A. [P. N. Lebedev Physical Institute, RAS, 53 Leninsky Ave., Moscow 119991 (Russian Federation); Bochkarev, M. B. [Institute of Electrophysics, UB, RAS, 106 Amundsen St., Ekaterinburg 620016 (Russian Federation); Barengolts, S. A., E-mail: sb@nsc.gpi.ru [A. M. Prokhorov General Physics Institute, RAS, 38 Vavilov St., Moscow 119991 (Russian Federation)

    2014-05-05

    The erosive structures formed on a tungsten cathode as a result of the motion of the cathode spot of a vacuum arc over the cathode surface have been examined. It has been found that the average mass of a cathode microprotrusion having the shape of a solidified jet is approximately equal to the mass of ions removed from the cathode within the lifetime of a cathode spot cell carrying a current of several amperes. The time of formation of a new liquid-metal jet under the action of the reactive force of the plasma ejected by the cathode spot is about 10 ns, which is comparable to the lifetime of a cell. The growth rate of a liquid-metal jet is ∼10{sup 4} cm/s. The geometric shape and size of a solidified jet are such that a new explosive emission center (spot cell) can be initiated within several nanoseconds during the interaction of the jet with the dense cathode plasma. This is the underlying mechanism of the self-sustained operation of a vacuum arc.

  11. The evolution of ion charge states in cathodic vacuum arc plasmas: a review

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2011-12-18

    Cathodic vacuum arc plasmas are known to contain multiply charged ions. 20 years after “Pressure Ionization: its role in metal vapour vacuum arc plasmas and ion sources” appeared in vol. 1 of Plasma Sources Science and Technology, it is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the “noise” in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges putting decades of experimentation and modeling in perspective.

  12. Dynamics of cathode spots in low-pressure arc plasma removing oxide layer on steel surfaces

    Science.gov (United States)

    Tang, Z. L.; Yang, K.; Liu, H. X.; Zhang, Y. C.; Li, H.; Zhu, X. D.

    2016-03-01

    The dynamics of cathode spots has been investigated in low-pressure arc plasma for removing oxide layer on low carbon steel surfaces. The motion of cathode spots was observed with a high speed camera, and the arc voltage was analyzed by fast Fourier transform. The spots move on clean steel surface as a random walk, and the low-frequency components dominated the voltage waveform. However, the spots on steel surfaces with oxide layer tend to burn on the rim of the eroded area formed in the previous arcing, and the low-frequency components decrease correspondingly. The "color" of the colored random noise for arc voltage varies from the approximate brown noise for clean steel surface to pink noise for thick oxide layer, where the edge effect of boundary is considered to play a significant role.

  13. Synthesis and characterization of CrCN-DLC composite coatings by cathodic arc ion-plating

    Science.gov (United States)

    Wang, R. Y.; Wang, L. L.; Liu, H. D.; Yan, S. J.; Chen, Y. M.; Fu, D. J.; Yang, B.

    2013-07-01

    CrCN-DLC composite coatings were deposited onto silicon (1 0 0) and cemented carbides substrates using pure Cr targets under C2H2 ambient by cathodic arc ion plating system. The influence of C2H2 flow rate on the structure and mechanical properties of the coatings was investigated systemically. The coatings structure and bonding state were characterized by XRD, Raman and X-ray photoelectron spectroscopy. The chemical composition was measured by EDS. The mechanical performance and tribological behaviour of the coatings were studied by a hardness tester and ball-on-disc wear tester. The results showed that with increasing C2H2 flow rate from 50 to 100 sccm, the corresponding hardness of coatings increased firstly and then decreased with further addition of C2H2 flow rate. The coatings deposited at lower C2H2 flow rate (less than 200 sccm) exhibited a relatively higher hardness value (more than HV0.0252000) and then the hardness decrease with increasing C2H2 flow rate. The friction coefficient also exhibited similar variation trend, when the C2H2 flow rate was higher than 100 sccm, the friction coefficient decreased and then maintained in a relatively lower value from 0.18 to 0.24, which may be attribute to the increasing carbon content and the coating exhibited more diamond-like structure.

  14. Synthesis and characterization of CrCN–DLC composite coatings by cathodic arc ion-plating

    International Nuclear Information System (INIS)

    CrCN–DLC composite coatings were deposited onto silicon (1 0 0) and cemented carbides substrates using pure Cr targets under C2H2 ambient by cathodic arc ion plating system. The influence of C2H2 flow rate on the structure and mechanical properties of the coatings was investigated systemically. The coatings structure and bonding state were characterized by XRD, Raman and X-ray photoelectron spectroscopy. The chemical composition was measured by EDS. The mechanical performance and tribological behaviour of the coatings were studied by a hardness tester and ball-on-disc wear tester. The results showed that with increasing C2H2 flow rate from 50 to 100 sccm, the corresponding hardness of coatings increased firstly and then decreased with further addition of C2H2 flow rate. The coatings deposited at lower C2H2 flow rate (less than 200 sccm) exhibited a relatively higher hardness value (more than HV0.0252000) and then the hardness decrease with increasing C2H2 flow rate. The friction coefficient also exhibited similar variation trend, when the C2H2 flow rate was higher than 100 sccm, the friction coefficient decreased and then maintained in a relatively lower value from 0.18 to 0.24, which may be attribute to the increasing carbon content and the coating exhibited more diamond-like structure

  15. Micromachining of large area amorphous carbon membranes prepared by filtered cathodic vacuum arc technique

    Science.gov (United States)

    Liujiang, Yu; Tay, B. K.; Sheeja, D.; Fu, Y. Q.; Miao, J. M.

    2004-02-01

    Currently, there is a strong drive to make micro-electro-mechanical system (MEMS) devices from higher performance materials such as diamond-like carbon or amorphous carbon (a-C) films, due to their excellent tribological properties, low-stiction (hydrophobic) surfaces, chemical inertness and high elastic modulus, compared to that of Si. The hydrogen free a-C films prepared, by Nanyang Technological University's (NTUs) patented filtered cathodic vacuum arc (FCVA) technique, at 100 eV exhibits high fraction of tetrahedral (sp 3 bonded) carbon atoms. These films exhibit relatively high hardness, stiffness and wear resistance in addition to low friction and stiction behaviour. However, the primary problem lies in the large intrinsic compressive stress induced during the deposition process. By making use of high substrate pulse bias, we have successfully produced low stress, thick a-C films. The films were then characterised using different equipments to evaluate the stress, microstructure and morphological roughness. Large area a-C membranes, of 2 mm×2 mm in size, have also been fabricated using the low stress, thick film deposited by the above method.

  16. Micromachining of large area amorphous carbon membranes prepared by filtered cathodic vacuum arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Liujiang, Yu; Tay, B.K.; Sheeja, D.; Fu, Y.Q.; Miao, J.M

    2004-02-29

    Currently, there is a strong drive to make micro-electro-mechanical system (MEMS) devices from higher performance materials such as diamond-like carbon or amorphous carbon (a-C) films, due to their excellent tribological properties, low-stiction (hydrophobic) surfaces, chemical inertness and high elastic modulus, compared to that of Si. The hydrogen free a-C films prepared, by Nanyang Technological University's (NTUs) patented filtered cathodic vacuum arc (FCVA) technique, at 100 eV exhibits high fraction of tetrahedral (sp{sup 3} bonded) carbon atoms. These films exhibit relatively high hardness, stiffness and wear resistance in addition to low friction and stiction behaviour. However, the primary problem lies in the large intrinsic compressive stress induced during the deposition process. By making use of high substrate pulse bias, we have successfully produced low stress, thick a-C films. The films were then characterised using different equipments to evaluate the stress, microstructure and morphological roughness. Large area a-C membranes, of 2 mmx2 mm in size, have also been fabricated using the low stress, thick film deposited by the above method.

  17. Study on a negative hydrogen ion source with hot cathode arc discharge

    International Nuclear Information System (INIS)

    A negative hydrogen (H−) ion source with hot cathode arc discharge was designed and fabricated as a primary injector for a 10 MeV PET cyclotron at IMP. 1 mA dc H− beam with ε N,RMS = 0.08 π mm mrad was extracted at 25 kV. Halbach hexapole was adopted to confine the plasma. The state of arc discharge, the parameters including filament current, arc current, gas pressure, plasma electrode bias, and the ratio of Ie−/IH− were experimentally studied. The discussion on the result, and opinions to improve the source were given

  18. Influence of Oxygen Pressure on Filtered Vacuum Arc Deposition of Tin Oxide Thin Films

    International Nuclear Information System (INIS)

    Tin oxide is a conducting material which is transparent in the visible region, reflective in the infra-red, and absorbing in the ultraviolet. Applied as a thin film, it is used for transparent electrodes for solar cells and in energy conserving coatings on architectural glass. This paper presents the results of experiments in which tin oxide films were deposited using filtered vacuum arc deposition. A plasma jet of ionized Sn vapor was produced by cathode spots on a 93 mm diameter Sn cathode by a 160 A d.c. arc. The plasma jet was directed through a quarter torus duct using a magnetic field, while droplets of liquid Sn collided with the duct walls and were thus filtered from the plasma stream. The plasma jet was directed either to a probe or to a substrate placed downstream from the duct outlet, and where an oxygen atmosphere was maintained at a pressure P 0-6 mTorr. Arc voltage, ion current, coating transmission and coating conductivity were measured as a function of the oxygen pressure. It was found that the arc voltage was 30V, and relatively independent of p for P<4 mTorr. With higher pressures, the arc increasingly operated in a high voltage mode, with an arc voltage typically 10 V higher than in the low voltage mode. The change from the low to the high voltage mode is likewise associated with a trebling in the extracted ion current, from 250 to 750 mA. The deposition rate decreased linearly from 14 to 5 nm/s when the pressure was increased from 3 to 5 mTorr. The optical extinction length had a maximum value of 2.6 m in the pressure range of 3.9-4.3 mTorr, while minimum electrical conductivities of 410-3 - cm were obtained for 3.8-4.1 mTorr

  19. Time and material dependence of the voltage noise generated by cathodic vacuum arcs

    International Nuclear Information System (INIS)

    The high frequency fluctuations of the burning voltage of cathodic vacuum arcs have been investigated in order to extract information on cathode processes, especially concerning evolution in time after arc ignition. Eight cathode materials (W, Ta, Hf, Ti, Ni, Au, Sn, Bi) were selected covering a wide range of cohesive energy. The voltage noise was recorded using both a broad-band voltage divider and an attenuator connected to a fast oscilloscope (limits 1 GHz analog and 5 GS s-1 digital). Fast Fourier transform revealed a power spectrum that is linear in log-log presentation, with a slope of 1/f 2, where f is the frequency (brown noise). The amplitude of the spectral power of the voltage noise was found to scale with the cohesive energy, in agreement with earlier measurements at lower resolution. These basic results do not depend on the time after arc initiation. However, lower arc current in the beginning of the pulse shows greater voltage noise, suggesting an inverse relation between the noise amplitude and number of emission sites (cathode spot fragments)

  20. Lifetime of hydrogenated composite cathodes in a vacuum arc ion source

    Energy Technology Data Exchange (ETDEWEB)

    Savkin, K. P., E-mail: savkin@opee.hcei.tsc.ru; Frolova, V. P.; Nikolaev, A. G.; Yushkov, G. Yu. [Institute of High Current Electronics SB RAS, Tomsk 634055 (Russian Federation); Oks, E. M. [Institute of High Current Electronics SB RAS, Tomsk 634055 (Russian Federation); Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Barengolts, S. A. [Prokhorov General Physics Institute RAS, Moscow 119991 (Russian Federation)

    2016-02-15

    The paper reports on a study of the mass-charge state of the plasma produced in a vacuum arc discharge with composite cathodes which were copper-disk coated with a hydrogenated Zr film of thicknesses 9, 22, and 35 μm. The cathodes allow the generation of multicomponent gas and metal ion beams with a hydrogen ion content from several to several tens of percent. Also investigated is the dependence of the H ion fraction in a beam on the Zr film thickness during erosion to the point of disappearance of Zr peaks in mass-charge spectra. The ability of the vacuum arc system to produce H ions is analyzed by analyzing the cathode lifetime as a function of the film thickness and pulse repetition frequency.

  1. An ion source based on the cathodic arc

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, D.M.; Falabella, S.

    1992-12-31

    This invention is comprised of a cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated. An array of electrically isolated rings positioned in the source serves the duel purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles.

  2. Research on the use of UHV arc discharges for deposition of superconducting layers

    International Nuclear Information System (INIS)

    High-field superconducting cavities, as used in charged particle accelerators, are at present based mostly on the Nb-bulk technology, but Nb-coated Cu-cavities might offer several advantages. In order to study possibilities of the vacuum arc technique to form high-quality superconducting thin films for the coating RF copper cavities, special efforts have been undertaken within a framework of the scientific collaboration between the 'Tor Vergata' University of Rome and the Andrzej Soltan Institute for Nuclear Studies at Swierk. During recent years several experimental arc-based devices have been designed and constructed in the both research centers. In particular, cathodic-arc sources with planar- and cylindrical-cathodes made of pure Nb have been constructed and investigated. Arc discharges with magnetic filters (for the elimination of micro-droplets) have also been investigated. All these systems have been exploited under ultra-high vacuum (UHV) conditions. The paper describes the status of research on the deposition of superconducting Nb-films, and particularly the recent progress in these investigations. It has been shown that high-quality Nb-films can be deposited with the described UHV arc technique. The critical temperature of film samples, which were coated in planar geometry, is very close to the Nb-bulk value. The very narrow transitions as well as X-ray diffraction patterns indicate that the obtained films are less stressed and more homogeneous than standard ones produced by means of the sputtering technique. The deposited Nb-films have higher RRR (up to 80) and larger grain sizes in a comparison with sputtered ones, which were deposited at the same temperature. The RF measurements have also demonstrated good RF properties of the produced Nb-films. (author)

  3. Sputter deposition of BSCCO films from a hollow cathode

    International Nuclear Information System (INIS)

    High-Tc superconducting thin films were deposited onto MgO single crystal substrates from a hollow cathode onto ceramic targets with the nominal composition of Bi2Sr2CaCu2Ox. Films similar in composition to those used for the targets were deposited on MgO substrates by rf sputtering. The effects of sputtering time, rf power, and post-annealing on film microstructure and properties were studied in detail. Substrate temperature was found to have a significant influence on the film characteristics. Initial results show that deposition rates from a hollow cathode are an order of magnitude higher than those of a planar magnetron source at equivalent power levels. Large deposition rates allow for the coating of long lengths of wire

  4. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium

    Directory of Open Access Journals (Sweden)

    Zhu W

    2015-12-01

    Full Text Available Wei Zhu,1 George Teel,1 Christopher M O’Brien,1 Taisen Zhuang,1 Michael Keidar,1 Lijie Grace Zhang1–3 1Department of Mechanical and Aerospace Engineering, 2Department of Biomedical Engineering, 3Department of Medicine, The George Washington University, Washington, DC, USA Abstract: Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing biomimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications

  5. Deposition of various metal, ceramic, and cermet coatings by an industrial-scale large area filtered arc deposition process

    International Nuclear Information System (INIS)

    Nearly defect-free nitride, carbide, and oxiceramic coatings have been deposited by a unidirectional dual large area filtered arc deposition (LAFAD) process. One LAFAD dual arc vapor plasma source was used in both gas ionization and coating deposition modes with and without vertical magnetic rastering of the plasma flow. Substrates made of different metal alloys, as well as carbide and ceramics, were installed at different vertical positions on the 0.5 m diameter turntable of the industrial-scale batch coating system which was rotated at 12 rpm to assess deposition rates and coating thickness uniformity. Targets of the same or different compositions were installed on the primary cathodic arc sources of the LAFAD plasma source to deposit a variety of coating compositions by mixing the metal vapor and reactive gaseous components in a magnetically confined, strongly ionized plasma flow with large kinetic energy. The maximum deposition rate typically ranged from 1.5 μm/h for TiCr/TiCrN to 2.5 μm/h for Ti/TiN multilayer and AlN single layer coatings, and up to 6 μm/h for AlCr-based oxiceramic coatings for primary cathode current ranging from 120 to 140 A. When the arc current was increased to 200 A, the deposition rates of TiN-based coatings were as high as 5 μm/h. The vertical coating thickness uniformity was ±15% inside of a 150 mm area without vertical rastering. Vertical rastering increased the uniform coating deposition area up to 250 mm. The coating thickness distribution was well correlated with the output ion current distribution as measured by a multisection ion collector probe. Coatings were characterized for thickness, surface profile, adhesion, hardness, and elemental composition. Estimates of electrical resistivity indicated good dielectric properties for most of the TiCrAlY-based oxiceramic, oxinitride, and nitride coatings. The multielement LAFAD plasma flow consisting of fully ionized metal vapor with a reactive gas ionization rate in excess of 50

  6. Influence of steering magnetic field on the time-resolved plasma chemistry in cathodic arc discharges

    Science.gov (United States)

    Ehiasarian, A. P.; Hovsepian, P. Eh; New, R.; Valter, J.

    2004-08-01

    External magnetic fields are used extensively to steer the cathode spot of arc discharges in order to improve target utilization and minimize droplet generation. Optical emission spectroscopy (OES) and electrostatic probe measurements in a Cr arc discharge were used to characterize the effect of the external magnetic field on the ion flux to the substrates and on the composition and time evolution of the plasma. A combination of a permanent magnet array and an electromagnetic coil was used to vary the shape and strength of the magnetic field on the cathode surface. Finite element modelling of the magnetic field distribution identified two types of geometry—through-field, with lines normal to the cathode surface, and arched-field, with lines forming a magnetic 'tunnel'. The magnetic flux densities measured with a Hall probe were in the range from -15 to +15 mT. The particular shape and strength of the magnetic field determined the specific confinement regions and diffusion pathways for the plasma. The total ion saturation current density at the substrate position was in the range between 2 and 11.5 mA cm-2 depending on the magnetic field shape. The magnetic field strongly influenced the relative optical emission from Cr0, Cr1+ and Cr2+ metal species, and the resulting charge state distribution. Time-resolved OES and probe measurements of a particular position on the arc cathode revealed that an Ar plasma is trapped near the cathode and is sustained even when the cathode spot is a significant distance from the observation volume. The importance of this 'residual' Ar plasma for the charge state distribution of metal ions is discussed.

  7. Influence of steering magnetic field on the time-resolved plasma chemistry in cathodic arc discharges

    Energy Technology Data Exchange (ETDEWEB)

    Ehiasarian, A P [Materials Research Institute, Sheffield Hallam University, Howard St., Sheffield, S1 1WB (United Kingdom); Hovsepian, P Eh [Materials Research Institute, Sheffield Hallam University, Howard St., Sheffield, S1 1WB (United Kingdom); New, R [Materials Research Institute, Sheffield Hallam University, Howard St., Sheffield, S1 1WB (United Kingdom); Valter, J [HVM Plasma Ltd, Na Hutmance 2, Prague 5, 158 00 (Czech Republic)

    2004-08-07

    External magnetic fields are used extensively to steer the cathode spot of arc discharges in order to improve target utilization and minimize droplet generation. Optical emission spectroscopy (OES) and electrostatic probe measurements in a Cr arc discharge were used to characterize the effect of the external magnetic field on the ion flux to the substrates and on the composition and time evolution of the plasma. A combination of a permanent magnet array and an electromagnetic coil was used to vary the shape and strength of the magnetic field on the cathode surface. Finite element modelling of the magnetic field distribution identified two types of geometry-through-field, with lines normal to the cathode surface, and arched-field, with lines forming a magnetic 'tunnel'. The magnetic flux densities measured with a Hall probe were in the range from -15 to +15 mT. The particular shape and strength of the magnetic field determined the specific confinement regions and diffusion pathways for the plasma. The total ion saturation current density at the substrate position was in the range between 2 and 11.5 mA cm{sup -2} depending on the magnetic field shape. The magnetic field strongly influenced the relative optical emission from Cr{sup 0}, Cr{sup 1+} and Cr{sup 2+} metal species, and the resulting charge state distribution. Time-resolved OES and probe measurements of a particular position on the arc cathode revealed that an Ar plasma is trapped near the cathode and is sustained even when the cathode spot is a significant distance from the observation volume. The importance of this 'residual' Ar plasma for the charge state distribution of metal ions is discussed.

  8. QE data for Pb/Nb deposited photo cathode samples

    CERN Document Server

    Sekutowicz, J

    2010-01-01

    This report outlines progress in the development of photo-cathodes for a hybrid lead/niobium (Pb/Nb) superconducting SRF electron injector. We have coated eight Nb samples with lead to study and determine deposition conditions leading to high quality emitting area. The results show that the oxide layer significantly influences the quantum efficiency (QE) of all measured cathodes. In addition, we learned that although the laser cleaning enhanced the QE substantially, the film morphology was strongly modified. That observation convinced us to make the coatings thicker and therefore more robust.

  9. Metal-doped diamond-like carbon films synthesized by filter-arc deposition

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) thin films are extensively utilized in the semiconductor, electric and cutting machine industries owing to their high hardness, high elastic modulus, low friction coefficients and high chemical stability. DLC films are prepared by ion beam-assisted deposition (BAD), sputter deposition, plasma-enhanced chemical vapor deposition (PECVD), cathodic arc evaporation (CAE), and filter arc deposition (FAD). The major drawbacks of these methods are the degraded hardness associated with the low sp3/sp2 bonding ratio, the rough surface and poor adhesion caused by the presence of particles. In this study, a self-developed filter arc deposition (FAD) system was employed to prepare metal-containing DLC films with a low particle density. The relationships between the DLC film properties, such as film structure, surface morphology and mechanical behavior, with variation of substrate bias and target current, are examined. Experimental results demonstrate that FAD-DLC films have a lower ratio, suggesting that FAD-DLC films have a greater sp3 bonding than the CAE-DLC films. FAD-DLC films also exhibit a low friction coefficient of 0.14 and half of the number of surface particles as in the CAE-DLC films. Introducing a CrN interfacial layer between the substrate and the DLC films enables the magnetic field strength of the filter to be controlled to improve the adhesion and effectively eliminate the contaminating particles. Accordingly, the FAD system improves the tribological properties of the DLC films

  10. Synthesis and characterization of CrCN–DLC composite coatings by cathodic arc ion-plating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.Y. [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Wang, L.L. [Key Laboratory of Artificial Nanomaterials and Nanostructure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Liu, H.D. [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Yan, S.J. [Key Laboratory of Artificial Nanomaterials and Nanostructure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Y.M. [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Fu, D.J. [Key Laboratory of Artificial Nanomaterials and Nanostructure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yang, B., E-mail: toyangbing@163.com [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China)

    2013-07-15

    CrCN–DLC composite coatings were deposited onto silicon (1 0 0) and cemented carbides substrates using pure Cr targets under C{sub 2}H{sub 2} ambient by cathodic arc ion plating system. The influence of C{sub 2}H{sub 2} flow rate on the structure and mechanical properties of the coatings was investigated systemically. The coatings structure and bonding state were characterized by XRD, Raman and X-ray photoelectron spectroscopy. The chemical composition was measured by EDS. The mechanical performance and tribological behaviour of the coatings were studied by a hardness tester and ball-on-disc wear tester. The results showed that with increasing C{sub 2}H{sub 2} flow rate from 50 to 100 sccm, the corresponding hardness of coatings increased firstly and then decreased with further addition of C{sub 2}H{sub 2} flow rate. The coatings deposited at lower C{sub 2}H{sub 2} flow rate (less than 200 sccm) exhibited a relatively higher hardness value (more than HV{sub 0.025}2000) and then the hardness decrease with increasing C{sub 2}H{sub 2} flow rate. The friction coefficient also exhibited similar variation trend, when the C{sub 2}H{sub 2} flow rate was higher than 100 sccm, the friction coefficient decreased and then maintained in a relatively lower value from 0.18 to 0.24, which may be attribute to the increasing carbon content and the coating exhibited more diamond-like structure.

  11. Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique

    International Nuclear Information System (INIS)

    In this study, formation of magnesium substituted hydroxyapatite (Ca10−xMgx(PO4)6(OH)2) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti1−x,Mgx)N (x = 0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37 °C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. - Highlights: • Mg incorporated in (Ti,Mg)N coating structure and did not form a separate phase • Mg dissolution in SBF solution facilitated Mg-substituted hydroxyapatite formation • (Ti,Mg)N acted as Mg-source for Mg-substituted hydroxyapatite formation in SBF

  12. Distribution of Cathode Spots in Vacuum Arc Under Nonuniform Axial Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    SHI Zong-qian; JIA Shen-li; WANG Li-jun; LI Xing-wen; WANG Zheng

    2007-01-01

    Recent results on the distribution of vacuum arc cathode spots (CSs) in nonuniform axial magnetic field (AMF) are presented.Based on previous studies,we deem that two contrary influences of AMF,inward effect and outward effect,are attributed to CSs distribution.With this notion,we have analyzed the controlling effectiveness of nonuniform AMF on CSs distribution. Experiments were conducted in a detachable vacuum chamber with iron-style AMF electrodes.Images of vacuum arc column and the distribution of CSs were photographed with a high-speed charge coupled device (CCD) camera. Experimental results agreed well with the theoretical analysis.

  13. Contamination due to memory effects in filtered vacuum arc plasma deposition systems

    International Nuclear Information System (INIS)

    Thin film synthesis by filtered vacuum arc plasma deposition is a widely used technique with a number of important emerging technological applications. A characteristic feature of the method is that during the deposition process not only is the substrate coated by the plasma, but the plasma gun itself and the magnetic field coil and/or vacuum vessel section constituting the macroparticle filter are also coated to some extent. If then the plasma gun cathode is changed to a new element, there can be a contamination of the subsequent film deposition by sputtering from various parts of the system of the previous coating species. We have experimentally explored this effect and compared our results with theoretical estimates of sputtering from the stopping and range of ions in matter code. We find film contamination of the order of 10-4-10-3, and the memory of the prior history of the deposition hardware can be relatively long lasting

  14. Contamination due to memory effects in filtered vacuum arc plasma deposition systems

    International Nuclear Information System (INIS)

    Thin film synthesis by filtered vacuum arc plasma deposition is a widely used technique with a number of important emerging technological applications. A characteristic feature of the method is that during the deposition process not only is the substrate coated by the plasma, but the plasma gun itself and the magnetic field coil and/or vacuum vessel section constituting the macroparticle filter are also coated to some extent. If then the plasma gun cathode is changed to a new element, there can be a contamination of the subsequent film deposition by sputtering from various parts of the system of the previous coating species. We have experimentally explored this effect and compared our results with theoretical estimates of sputtering from the SRIM (Stopping and Range of Ions in Matter) code. We find film contamination of order 10-4 - 10-3, and the memory of the prior history of the deposition hardware can be relatively long-lasting

  15. Contamination due to memory effects in filtered vacuum arc plasma deposition systems

    CERN Document Server

    Martins, D R; Verdonck, P; Brown, I G

    2002-01-01

    Thin film synthesis by filtered vacuum arc plasma deposition is a widely used technique with a number of important emerging technological applications. A characteristic feature of the method is that during the deposition process not only is the substrate coated by the plasma, but the plasma gun itself and the magnetic field coil and/or vacuum vessel section constituting the macroparticle filter are also coated to some extent. If then the plasma gun cathode is changed to a new element, there can be a contamination of the subsequent film deposition by sputtering from various parts of the system of the previous coating species. We have experimentally explored this effect and compared our results with theoretical estimates of sputtering from the SRIM (Stopping and Range of Ions in Matter) code. We find film contamination of order 10-4 - 10-3, and the memory of the prior history of the deposition hardware can be relatively long-lasting.

  16. Structure and Properties of Cr-containing Hydrogenated Diamond-like Carbon Films Deposited by DC Filtered Cathodic Vacuum Arc Technology%磁过滤直流真空阴极弧制备含铬类金刚石膜的结构及其性能研究

    Institute of Scientific and Technical Information of China (English)

    祝土富; 沈丽如; 徐桂东; 金凡亚

    2009-01-01

    采用磁过滤直流真空阴极弧沉积技术在单晶硅片、载玻片、不锈钢片基体上制备了含铬类金刚石(Cr-DLC)膜.用光学显微镜、椭偏仪、分光光度计、X射线光电子能谱(XPS)、X射线衍射能谱(XRD)、Raman光谱、纳米硬度计、摩擦磨损仪、洛氏硬度计检测了薄膜的组分结构、光学、力学等相关特性.结果表明,硅片上的薄膜厚度为47.6nm,碳含量为89%,s p~3键占碳含量的55.15%.不锈钢片上的薄膜具有典型的DLC膜Raman光谱特征,在空气中的摩擦系数约为0.1,耐磨性能优良,膜与基体的结合性能良好.%Cr-containing hydrogenated diamond-like carbon (Cr-DLC) films were deposited on stainless steel plate, monocrystalline silicon wafer and microscope slide glass by DC filtered cathodic vacuum arc technology. The composition, structure and properties of Cr-DLC films were investigated by spec-troscopic ellipsometer, X-ray photoelectron spectroscopy(XPS), powder X-ray diffraction(XRD), spectrophotometer, Raman spectroscopy, nanoindenter, ball-on-disk tribometer, Rockwell apparatus and optical microscope. It was shown that the content of C is 89% in the film deposited on silicon wa-fer and the content of sp~3 bonding carbon atoms in the C element is 55.15%. The Raman spectra of the film deposited on stainless steel plate has the typical characteristics of DLC. The hardness and elastic modulus of the film deposited on stainless steel plate are 16.01 GPa and 142.72 GPa. The fric-tion coefficient of the film deposited on stainless steel plate is about 0.1, the film also exhibits excel-lent wear resistance and the adhesion to substrate is very well.

  17. Composition Control of Alloy Coatings and Composition Designof Cathode Targets in Multi-Arc Ion Plating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The composition from alloy cathode target to alloy coating generally changes to some extentin multi-arc ion plating. This demixing effect leads to the difficulties in the control of alloycomposition of coating and in the design of composition of alloy cathode target. A new simple formula,is proposed in present work to deal with the problem. According to this formula, the composition of alloy coating can be calculated bymeans of the degrees of ionization of alloy elements. The results of calculation agree with theexperimental ones within very limited error range. Modifying the formula into another form,the design for alloy composition of cathode target can be conveniently carried out, and the ideal composition of alloy coating can be obtained.

  18. Unique erosion features of hafnium cathode in atmospheric pressure arcs of air, nitrogen and oxygen

    Science.gov (United States)

    Ghorui, S.; Meher, K. C.; Kar, R.; Tiwari, N.; Sahasrabudhe, S. N.

    2016-07-01

    Experimental investigation of cathode erosion in atmospheric pressure hafnium-electrode plasma torches is reported under different plasma environments along with the results of numerical simulation. Air, nitrogen and oxygen are the plasma gases considered. Distinct differences in the erosion features in different plasmas are brought out. Cathode images exhibiting a degree of erosion and measured erosion rates are presented in detail as a function of time of arc operation and arc current. Physical erosion rates are determined using high precision balance. The changes in the surface microstructures are investigated through scanning electron microscopy (SEM). Evolution of cathode chemistry is determined using energy dispersive x-ray spectroscopy (EDX). Numerical simulation with proper consideration of the plasma effects is performed for all the plasma gases. The important role of electromagnetic body forces in shaping the flow field and the distribution of pressure in the region is explored. It is shown that the mutual interaction between fluid dynamic and electromagnetic body forces may self-consistently evolve a situation of an extremely low cathode erosion rate.

  19. Protective coating of inner surface of steel tubes via vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maile, K.; Roos, E.; Lyutovich, A.; Boese, J.; Itskov, M. [Stuttgart Univ. (DE). Materialpruefungsanstalt (MPA); Ashurov, Kh.; Mirkarimov, A.; Kazantsev, S.; Kadirov, Kh. [Uzbek Academy of Science, Tashkent (Uzbekistan). Arifov Inst. of Electronics

    2010-07-01

    The Vacuum Arc Deposition (VAD) technique based on sputtering a chosen electrode material and its deposition via plasma allows highly-productive technology for creating a wide class of protecting coatings on complex structures. In this work, VAD was applied as a method for the protection of the inner surface of tubes for power-plant boilers against steam oxidation. For this aim, a source cathode of an alloy with high chromium and nickel content was employed in two different VAD treatment systems: a horizontal vacuum chamber (MPA) and a vertical system where the work-piece of the tubes to be protected served as a vacuum changer (Arifov Institute of Electronics). Surface coating with variation of deposition parameters and layer thickness was performed. Characterisation of coated tubes has shown that the method realised in this work allows attainment of material transfer from the cathode to the inner surface with nearly equal chemical composition. It was demonstrated that the initial martensitic structure of the tubes was kept after the vacuum-arc treatment which can provide for both the high mechanical robustness and the corrosion-resistance of the final material. (orig.)

  20. High thrust-to-power ratio micro-cathode arc thruster

    Directory of Open Access Journals (Sweden)

    Joseph Lukas

    2016-02-01

    Full Text Available The Micro-Cathode Arc Thruster (μCAT is an electric propulsion device that ablates solid cathode material, through an electrical vacuum arc discharge, to create plasma and ultimately produce thrust in the μN to mN range. About 90% of the arc discharge current is conducted by electrons, which go toward heating the anode and contribute very little to thrust, with only the remaining 10% going toward thrust in the form of ion current. A preliminary set of experiments were conducted to show that, at the same power level, thrust may increase by utilizing an ablative anode. It was shown that ablative anode particles were found on a collection plate, compared to no particles from a non-ablative anode, while another experiment showed an increase in ion-to-arc current by approximately 40% at low frequencies compared to the non-ablative anode. Utilizing anode ablation leads to an increase in thrust-to-power ratio in the case of the μCAT.

  1. Properties of TiAlCrN coatings prepared by vacuum cathodic arc ion plating

    Institute of Scientific and Technical Information of China (English)

    RU Qiang; HU Shejun; HUANG Nacan; ZHAO Lingzhi; QIU Xiuli; HU Xianqi

    2008-01-01

    TiAlCrN coatings were deposited by means of vacuum cathodic arc ion plating technique on TC11 (Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3Si) titanium alloy substrates. The composition, phase structure, mechanical performance, and oxidation-resistance of the nitride coatings were investigated by scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), auger electron spectroscopy (AES), and X-ray photoelectron microscopy (XPS). A new process for preparing protective coatings of the titanium alloy is successfully acquired. The experimental results indicate that the added element chromium in the TiAlN coatings make a contribution to form the (220) preferred direction. The phases of the coatings are composed of (Ti, Al)N and (Ti, Cr)N. After 700℃ and 800℃ oxidation, AES analysis shows that the diffusion distribution of the TiAlCrN coatings emerges a step shape. From the outside to the inner, the concentrations of O, Al, and Cr reduce, but those of Ti and N increase. The Al-rich oxide is formed on the surface of the coatings, and the mixed structure of Ti-rich and Cr-rich oxides is formed in the internal layer. The oxidation resistance of the TiAlCrN coatings is excellent at the range of 700 to 800℃. Adhesion wear is the dominant mechanical characteristic for the titanium alloy at room temperature, and the protective coatings with high hardness can improve the mechanical properties of the titanium alloy. The wear resistance of the TC11 alloy is considerably improved by the TiAlCrN coatings.

  2. Structure and Properties of Ti-Si-N Coatings Synthesized by Combining Cathode Arc and Middle-frequency Magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    YANG Zhongtian; ZHU Liya; YANG Bing; GUO Liping; FU Dejun

    2009-01-01

    Ti-Si-N composite coatings were synthesized on a novel combining cathode and middle-frequency magnetron sputtering system,designed on an industrial scale.Ti was produced from the arc target and Si from magnetron target during deposition.The influences of negative bias voltage and Si content on the hardness and microstructure of the coatings were investigated.The composite coatings prepared under optimized conditions were characterized to be nc-TiN/a-Si_3N_4 structure with grain sizes of TiN ranging from 8-15 nm and exhibited a high hardness of 40 GPa.The enhancement of the hardness is suggested to be caused by the nanograin-amorphous structure effects.

  3. Heat flux at the refractory cathode of a high-current, high-pressure arc (two modes of cathode spot attachment)

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, Valerian [ESAB Welding and Cutting Products and Francis Marion University, Florence SC 29501 (United States)

    2004-04-07

    Calorimetric measurements of a refractory (pure and thoriated tungsten) cathode in a high-current (100-500 A) high-pressure (1-5 atm) arc in nitrogen were performed. The measurements confirmed the existence of a 'high-current' mode of cathode spot (CS) operation-the mode we observed by a footprint method in our work (2003 J. Phys. D: Appl. Phys. 36 3007). In this mode, the heat load of a cathode does not depend on the pressure and is directly proportional to the arc current as opposed to the 'low current' mode where it is inversely proportional to the square root of pressure and directly proportional to the square root of current. The current density at the cathode surface calculated from the measured heat flux to the cathode is approximately half of the current density obtained by a footprint method. Both densities exhibit the same current and pressure dependences. The radial distribution of the cathode temperature inside the CS is discussed. We hypothesize that the temperature has its maximum at the spot periphery. In the case of the thoriated tungsten cathode, this maximum may be so high that, at this location, the cathode is virtually thorium free.

  4. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A. G.; Vizir, A. V.; Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation)

    2016-02-15

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereas for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.

  5. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

    International Nuclear Information System (INIS)

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereas for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%

  6. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    OpenAIRE

    Franz, Robert; Polcik, Peter; Anders, André

    2014-01-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al$^{+}$ regardless of the background gas species, whereas Cr$^{2+}$ ions were dominating in Ar and N$_2$ and Cr$^{+}$ in O$_2$ atmospheres. The energy distributions of the aluminium and chromium ions typically consist...

  7. Analysis of products of arc discharge plasma synthesis with a graphite cathode and a composite anode

    Science.gov (United States)

    Podgornyi, V. I.; Belashev, B. Z.; Kolodei, V. A.; Osaulenko, R. N.

    2015-01-01

    The composition, structure, and morphology of compounds formed in an argon arc discharge with a graphite cathode and a composite anode are studied by the methods of Raman scattering, X-ray diffraction analysis, X-ray microanalysis, and electron microscopy. Among the synthesis produces, graphite-like substances and metal carbides dominate; metal microcrystallites, fullerenes, and carbon nanotubes are present in some cases. It is found that carbides are not formed when anodes with a nickel admixture are used. The Raman spectra indicate the synthesis of single-wall carbon nanotubes in arcs with the C-Fe and C-Ni-V anodes. In the case of C-Ni and C-V anodes, electron microscopy data indicate the existence of micrometer-size carbon fiber structures in the synthesis products.

  8. Physical phenomena in a hollow cathode and interaction of powder with the vacuum arc

    International Nuclear Information System (INIS)

    The basic design of an arc discharge is a tube with the inner diameter R and working gas being fed through it into the low pressure chamber. The open end of the tube is directed to the anode. The length of the cathode tube is several inner diameters of the tube. There are four main working regimes of hollow arc discharge being distinguished by the magnitudes of plasma gas flow rate G, pressure P in a vacuum chamber and discharge current j : 1) normal regime, 2) low flow rate of plasma gas regime, 3) low current regime and 4) high pressure regime. The normal regime is of the greatest interest for its applications in plasma technologies so the latter one was thoroughly investigated in the present paper

  9. Field to thermo-field to thermionic electron emission: A practical guide to evaluation and electron emission from arc cathodes

    Science.gov (United States)

    Benilov, M. S.; Benilova, L. G.

    2013-08-01

    This work is concerned with devising a method of evaluation of electron emission in the framework of the Murphy-Good theory, which would be as simple and computationally efficient as possible while being accurate in the full range of conditions of validity of the theory. The method relies on Padé approximants. A comparative study of electron emission from cathodes of arcs in ambient gas and vacuum arcs is performed with the use of this method. Electron emission from cathodes of arcs in ambient gas is of thermionic nature even for extremely high gas pressures characteristic of projection and automotive arc lamps and is adequately described by the Richardson-Schottky formula. The electron emission from vaporizing (hot) cathodes of vacuum arcs is of thermo-field nature and is adequately described by the Hantzsche fit formula. Since no analytical formulas are uniformly valid for field to thermo-field to thermionic emission, a numerical evaluation of the Murphy-Good formalism is inevitable in cases where a unified description of the full range of conditions is needed, as is the general case of plasma-cathode interaction in vacuum arcs, and the technique proposed in this work may be the method of choice to this end.

  10. ERDA characterization of carbon nitride films deposited by hollow cathode discharge process

    International Nuclear Information System (INIS)

    The interest in carbon nitride (CN) thin films stems from the theoretical work of Liu and Cohen predicting the extreme hardness of this material, comparable to or greater than that of diamond. The growth of CN thin films employing various deposition techniques such as plasma chemical vapor deposition, sputtering, laser ablation, ion assisted dynamic mixing and low energy ion implantation has been reported. This contribution presents some results about the characterization of CNx films using elastic recoil detection analysis (ERDA) technique. CN films were deposited on silicon substrates by electron beam evaporation of pure graphite in a nitrogen environment. A hollow cathode discharge in arc regime was used both for evaporating a graphite target and for generating a high density plasma in the vicinity of the substrate. The main deposition parameters were as follows: gas (N2) pressure, 10-2 - 5.10-2 mbar; hollow cathode discharge power, 2.5 - 5 kW; substrate negative bias voltage, 0-150 V; graphite evaporation rate, 0.08 - 0.2 g/min; deposition duration, 15-60 min. The ERDA measurements were carried out at the Tandem accelerator of IFIN-HH using a 63Cu10+ beam at 80 MeV. The samples were mounted in a scattering target chamber with a vacuum higher than 5 x 10-5 Torr. The detector consisted in a compact ΔE(gas)-E(solid) telescope, placed at 30 angle with respect to the beam. The elements of the main interests were C and N. The measured Δ E -E spectra for two samples prepared in different conditions are presented. A quantitative analysis of the C and N energy spectra using our program SURFAN have been carried out for the these samples. It shows that the nitrogen to carbon atomic concentration ratio is close to 0.3. The nitrogen content is lower than that expected for the ideal β - C3N4 solid. (authors)

  11. FUNDAMENTAL PROBLEMS IN PULSED-BIAS ARC DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    G.Q.Lin; Z.F.Ding; D.Qi; N.H.Wang; M.D.Huang; D.Z.Wang; Y.N.Wang; C.Dong; L.S.Wen

    2002-01-01

    Arc deposition, a widely used surface coating technique, has disadvantages such aslarge droplet size and high deposition temperature. Recent trend in its renovation isthe introduction of pulsed bias at the substrate. The present paper attempts to describethe deposition process of TiN films using this technique with emphasis laid on theunderstanding of the basic problems such as discharge plasma properties, temperaturecalculation, and droplet size reduction. We show that this technique improves thefilm microstructure and quality, lowers deposition temperature, and allows coatingson insulating substrates. After analyzing load current oscillation behaviors, we havedetermined that the plasma load is of capacitance nature due to plasma sheath and thatit is equivalent to a circuit element consisting of parallel capacitance and resistance.At last, we point out the remaining problems and future development of the pulsed-biasarc deposition technique.

  12. Low pressure arc discharges with hollow cathodes and their using in plasma generators and charged particle sources

    CERN Document Server

    Vintizenko, L G; Koval, N N; Tolkachev, V S; Lopatin, I V; Shchanin, P M

    2001-01-01

    Paper presents the results of investigation into arc discharges with a hollow cathode generating 10 sup 1 sup 0 -10 sup 1 sup 2 concentration gas-discharge plasma in essential (approx 1 m sup 3) volumes at low (10 sup - sup 2 -1 Pa) pressures and up to 200 A discharge currents. One studied design of discharge systems with heated and cold cathodes their peculiar features, presented the parameters of plasma generators and of charged particle sources based on arc discharges and discussed, as well, the problems of more rational application of those systems in the processes for surface modification of solids

  13. Mechanical properties and scratch resistance of filtered-arc-deposited titanium oxide thin films on glass

    Energy Technology Data Exchange (ETDEWEB)

    Borrero-Lopez, Oscar, E-mail: oborlop@unex.es [Departamento de Ingenieria Mecanica, Energetica y de los Materiales, Universidad de Extremadura, 06071, Badajoz (Spain); School of Materials Science and Engineering, University of New South Wales NSW 2052, Sydney (Australia); Hoffman, Mark [School of Materials Science and Engineering, University of New South Wales NSW 2052, Sydney (Australia); Bendavid, Avi; Martin, Phil J. [CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield NSW 2070 (Australia)

    2011-09-01

    The mechanical properties and the scratch resistance of titanium oxide (TiO{sub 2}) thin films on a glass substrate have been investigated. Three films, with crystalline (rutile and anatase) and amorphous structures, were deposited by the filtered cathodic vacuum arc deposition technique on glass, and characterized by means of nanoindentation and scratch tests. The different damage modes (arc-like, longitudinal and channel cracks in the crystalline films; Hertzian cracks in the amorphous film) were assessed by means of optical and focused ion beam microscopy. In all cases, the deposition of the TiO{sub 2} film improved the contact-mechanical properties of uncoated glass. Crystalline films were found to possess a better combination of mechanical properties (i.e. elastic modulus up to 221 GPa, hardness up to 21 GPa, and fracture strength up to 3.6 GPa) than the amorphous film. However, under cyclic sliding contact above the critical fracture load, the amorphous film was found to withstand a higher number of cycles. The results are expected to provide useful insight for the design of optical coatings with improved contact-damage resistance.

  14. Mechanical properties and scratch resistance of filtered-arc-deposited titanium oxide thin films on glass

    International Nuclear Information System (INIS)

    The mechanical properties and the scratch resistance of titanium oxide (TiO2) thin films on a glass substrate have been investigated. Three films, with crystalline (rutile and anatase) and amorphous structures, were deposited by the filtered cathodic vacuum arc deposition technique on glass, and characterized by means of nanoindentation and scratch tests. The different damage modes (arc-like, longitudinal and channel cracks in the crystalline films; Hertzian cracks in the amorphous film) were assessed by means of optical and focused ion beam microscopy. In all cases, the deposition of the TiO2 film improved the contact-mechanical properties of uncoated glass. Crystalline films were found to possess a better combination of mechanical properties (i.e. elastic modulus up to 221 GPa, hardness up to 21 GPa, and fracture strength up to 3.6 GPa) than the amorphous film. However, under cyclic sliding contact above the critical fracture load, the amorphous film was found to withstand a higher number of cycles. The results are expected to provide useful insight for the design of optical coatings with improved contact-damage resistance.

  15. Vacuum arc with a distributed cathode spot as a plasma source for plasma separation of spent nuclear fuel and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Amirov, R. Kh., E-mail: ravus46@yandex.ru; Vorona, N. A.; Gavrikov, A. V.; Lizyakin, G. D.; Polishchuk, V. P.; Samoilov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    Results from experimental studies of a vacuum arc with a distributed cathode spot on the heated cathode are presented. Such an arc can be used as a plasma source for plasma separation of spent nuclear fuel and radioactive waste. The experiments were performed with a gadolinium cathode, the properties of which are similar to those of an uranium arc cathode. The heat flux from the plasma to the cathode (and its volt equivalent) at discharge voltages of 4-15 V and discharge currents of 44-81 A, the radial distribution of the emission intensity of gadolinium atoms and singly charged ions in the arc channel at a voltage of 4.3 V, and the plasma electron temperature behind the anode were measured. The average charge of plasma ions at arc voltages of 3.5-8 V and a discharge current of 52 A and the average rate of gadolinium evaporation in the discharge were also determined.

  16. Properties of boron and phosphorous incorporated tetrahedral amorphous carbon films grown using filtered cathodic vacuum arc process

    International Nuclear Information System (INIS)

    This paper reports the electrical, mechanical, structural and field emission properties of as grown and also boron and phosphorous incorporated tetrahedral amorphous carbon (ta-C) films, deposited using a filtered cathodic vacuum arc process. The effect of varying boron and phosphorous content (up to 2.0 at.% in to ta-C) on the conductivity (σD), activation energy (ΔE1), hardness, microstructure, emission threshold (Eturn-ON) and emission current density (J) at 12.5 V/μm of ta-C: B and ta-C: P films deposited at a high negative substrate bias of -300 V are reported. It is observed that both boron and phosphorous incorporation leads to a nearly an order increase in σD and corresponding decrease in ΔE1 and a slight increase in hardness as compared to as grown ta-C films. In the case of field assisted electron emission, it is observed that Eturn-ON increases and J decreases. The changes are attributed to the changes in the sp3/sp2 ratio of the films due to boron and phosphorous incorporation. The effect of boron on ta-C is to give a p-type effect whereas the effect of phosphorous gives n-type doping effect.

  17. Plasma arc cutting: Microstructural modifications of hafnium cathodes during first cycles

    International Nuclear Information System (INIS)

    In the present work, the microstructural modifications of the Hf insert in plasma arc cutting (PAC) electrodes operating at 250 A were experimentally investigated during first cycles, in order to understand those phenomena occurring on and under the Hf emissive surface and involved in the electrode erosion process. Standard electrodes were subjected to an increasing number of cutting cycles (CCs) on mild steel plates in realistic operative conditions, with oxygen/air as plasma/shield gas. Microstructural analysis was performed for each electrode at different erosion stages by means of scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and Raman spectroscopy. Electrodes cross sections were also observed by means of optical microscopy (both in bright field and in reflected polarised light) after chemical etching. In the insert, three typical zones were found after cutting: monoclinic HfO2 layer; thermally-modified transition zone with O2–Hf solid solution; unmodified Hf. The erosion cavity and the oxide layer thickness increase with the number of cutting cycles. Macrocracking was observed in the oxide layer, while microcracking and grain growth were detected in the remelted Hf. Moreover, detachment was found at the Hf/Cu interface. Based on thermodynamics and kinetics of the Hf high temperature oxidation, conclusions can be drawn on the erosion mechanism involved. - Highlights: ► Hf microstructural modifications in cathodes after plasma arc cutting cycles investigated. ► 3 zones identified after cutting: HfO2 layer; remelted zone with O2–Hf solid solution; unmodified Hf. ► Hf-based ejections both in arc-on and arc-off phases; erosion cavity deepens with cutting cycles. ► Detachment at the Hf/Cu interfaces, worsening heat dissipation and oxidation/erosion phenomena. ► The use of a different current ramp at subsequent erosion stages is suggested.

  18. Macroparticles in Ti-Si-N-coatings deposited from vacuum-arc plasma with ion implantation

    International Nuclear Information System (INIS)

    The results of experiments on research of macroparticles hitting TiSiN-coatings during vacuum-arc deposition from direct plasma stream with PBII and D method are presented. Sintered titanium-silicon powder composite was applied as a cathode material. The effect associated with the depression of macroparticles capture by growing TiSiN-coating as a result of increase of negative bias pulse on substrate simultaneous with periodic high-voltage negative potential pulses was found out. The depression of macroparticles capture at the increase of bias pulse with PBII and D technique takes a place under two factors. The main factor is electrostatic reflection of a large share of the negatively charged macroparticles stream. The second factor is the dispersion of macroparticles, surmounting electrostatic repulsion and 'stuck' to the coating surface.

  19. Influence of operating current on the stability of deuterium arcs and hydrogen hollow cathode lamps used as background correctors in atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    The instability of deuterium arcs and hydrogen hollow cathode lamps influences significantly the reproducibility of atomic absorption measurements. The effect of current flowing through the lamp was studied as a factor influencing the stability of deuterium arcs and hydrogen lamps. Using longer integration times, it is possible to average the instability to some degree when working in the double beam mode. Considerable wavelength dependence of precision was found for both the deuterium arcs and the hydrogen hollow cathode lamps. (author)

  20. Characterization of SiC in DLC/a-Si films prepared by pulsed filtered cathodic arc using Raman spectroscopy and XPS

    International Nuclear Information System (INIS)

    DLC/a-Si films were deposited on germanium substrates. a-Si film was initially deposited as a seed layer on the substrate using DC magnetron sputtering. DLC film was then deposited on the a-Si layer via a pulsed filtered cathodic arc (PFCA) system. In situ ellipsometry was used to monitor the thicknesses of the growth films, allowing a precise control over the a-Si and DLC thicknesses of 6 and 9 nm, respectively. It was found that carbon atoms implanting on a-Si layer act not only as a carbon source for DLC formation, but also as a source for SiC formation. The Raman peak positions at 796 cm-1 and 972 cm-1 corresponded to the LO and TO phonon modes of SiC, respectively, were observed. The results were also confirmed using TEM, XPS binding energy and XPS depth profile analysis.

  1. Generation of super-size macroparticles in a direct current vacuum arc discharge from a Mo-Cu cathode

    Science.gov (United States)

    Zhirkov, Igor; Petruhins, Andrejs; Polcik, Peter; Kolozsvári, Szilard; Rosen, Johanna

    2016-02-01

    An inherent property of cathodic arc is the generation of macroparticles, of a typical size ranging from submicrometer up to a few tens of μm. In this work, we have studied macroparticle generation from a Mo0.78Cu0.22 cathode used in a dc vacuum arc discharge, and we present evidence for super-size macroparticles of up to 0.7 mm in diameter. All analyzed particles are found to be rich in Mo (≥98 at. %). The particle generation is studied by visual observation of the cathode surface during arcing, by analysis of composition and geometrical features of the used cathode surface, and by examination of the generated macroparticles with respect to shape and composition. A mechanism for super-size macroparticle generation is suggested based on observed segregated layers of Mo and Cu identified in the topmost part of the cathode surface, likely due to the discrepancy in melting and evaporation temperatures of Mo and Cu. The results are of importance for increasing the fundamental understanding of macroparticle generation, which in turn may lead to increased process control and potentially provide paths for tuning, or even mitigating, macroparticle generation.

  2. Device quality ZnO grown using a Filtered Cathodic Vacuum Arc

    Energy Technology Data Exchange (ETDEWEB)

    Elzwawi, Salim, E-mail: salim.elzwawi@pg.canterbury.ac.nz [Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, Canterbury (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Kim, Hyung Suk, E-mail: david.kim@pg.canterbury.ac.nz [Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, Canterbury (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Heinhold, Robert, E-mail: robert.heinhold@pg.canterbury.ac.nz [Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, Canterbury (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Lynam, Max, E-mail: mfl38@uclive.ac.nz [Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, Canterbury (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Turner, Gary, E-mail: gary.turner@canterbury.ac.nz [Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, Canterbury (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Partridge, Jim G., E-mail: jim.partridge@canterbury.ac.nz [Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, Canterbury (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); McCulloch, Dougal G., E-mail: dougal.mcculloch@rmit.edu.au [Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, VIC 3001 (Australia)

    2012-08-01

    In this paper we report on the structural, electrical and optical characteristics of unintentionally doped ZnO films grown on a-plane sapphire substrates using the Filtered Cathodic Vacuum Arc (FCVA) technique. The resulting films showed considerable promise for device applications with properties including high transparency, moderate intrinsic carrier concentrations (10{sup 17}-10{sup 19} cm{sup -3}), electron mobilities up to 30 cm{sup 2}/Vs, low surface roughness (typically <2% of film thickness) and well-structured photoluminescence. Post-annealing in oxygen at temperatures up to 800 Degree-Sign C produced significant improvements in the properties of these films. Silver oxide Schottky diodes fabricated on FCVA ZnO showed ideality factors as low as 1.20 and good sensitivity to ultraviolet light.

  3. Modeling and experimental investigation of spot dynamics on graphite cathodes in dc plasma arcs at high pressure

    International Nuclear Information System (INIS)

    From a model recently developed for refractory cathodes [Munoz-Serrano et al., J. Appl. Phys.98, 093303 (2005)], the behavior of a graphite cathode spot in a dc plasma torch at atmospheric pressure was investigated. Furthermore, an experimental study of these cathodes was made guided by the results obtained from the model. The model includes the modeling of the cathode region, the solution of the heat conduction problem in the cathode, and the simulation of the cathode ablation process. As a result of the model, the values of the parameters which characterize the cathode region were obtained, and the evolution of the spot under different working conditions determined by the value of the initial voltage drop in the cathode region, U0, was investigated. The results obtained show that the maximum spot radius diminishes when U0 increases. Furthermore, two qualitatively different conditions for the spot dynamics were found. For U0≥31 V, the spot radius continually grows over time until reaching a maximum value rm, and the spot remains fixed on a point of the cathode surface. For values of U0 less than 31 V the spot radius continues growing over time until reaching a maximum value with which it is not possible to satisfy the energy balance equation. This leads to spot extinction and to its appearance at another point of the cathode surface. Several graphite cathodes were experimentally studied, each one using different interelectrode voltage drop values Ua-c. Before and after arcing, the cathode surface was explored by an electron microscope, and the roughness profile of that surface was determined by a perthometer. This allowed measuring the average size of the craters produced on the cathode surface by the arc. The movement of the spot attachment for different values of interelectrode voltage was observed by a digital video camera. It was experimentally found that the average crater radius diminished when the Ua-c potential increased. Furthermore, it was seen that

  4. Contribution of moving speed of vacuum arc cathode spot to the heat conduction process

    Science.gov (United States)

    Nagasawa, Chihiro; Yamamoto, Shinji; Iwao, Toru

    2015-11-01

    Thermal spraying has been widely used because it can give various functions by coating materials on the surface. It is necessary to remove an oxide layer and form a roughness. However, the blast has problems that occurs crushing and wear of the particles, and residual grid becomes a starting point of rust and peeling. The pretreatment with vacuum arc cathode spot is focused by this problem. Cathode spot with high energy density evaporates the oxide layer and melts the bulk for roughness. However, this process is believed that surface state is changed by the power density and sojourn time because the roughness depends on the location. It remains to be elucidated the formation factor of roughness and removal process. Therefore, the models of heat conduction process and vapor mixed affected by moving speed were proposed. To elucidate the formation factor of roughness and removal process, the contribution of moving speed to the heat conduction process is analyzed. As a result, the molten depth, width, and volume depend on the moving speed.

  5. Structure and properties of Mo-containing diamond-like carbon films produced by ion source assisted cathodic arc ion-plating

    International Nuclear Information System (INIS)

    Ion source assisted cathodic arc ion-plating was used to synthesize molybdenum containing diamond-like carbon films. The element of molybdenum is uniformly distributed in our sample as analyzed by Rutherford backscattering spectroscopy. The surface morphology of the films was analyzed by scanning electron microscope and atomic force microscope. The structure and bond state of the molybdenum containing diamond-like carbon films were characterized by X-ray diffraction, high resolution transmission electron microscopy, Raman spectra, and X-ray photoelectron spectroscopy. The Mo content in the films was controlled by varying of the acetylene gas flow rates. The root-mean square roughness of the as-deposited sample was found in the range of 1.5 nm. The hardness of 35 GPa has been achieved at the optimum conditions of synthesis. This can be attributed to formation multilayer structure during deposition process and the formation of hard molybdenum carbide phase with C=Mo bonding. The results show that ion source assisted cathodic arc ion-plating is an effective technique to fabricate metal-containing carbon films with controlled metal contents.

  6. TRIBOLOGICAL BEHAVIORS OF DUPLEX DLC/Al2O3 COATINGS FABRICATED USING MICRO-ARC OXIDATION AND FILTERED CATHODIC VACUUM ARC SYSTEM

    OpenAIRE

    Wu, X. L.; Li, X. J.; Zhang, X; W. B. XUE; G. A. CHENG; A. D. LIU

    2007-01-01

    Micro-arc oxidation technique (MAO) treatment produces a layer of alumina film on the surface of the aluminum alloy. A hard and uniform tetrahedral amorphous carbon film (diamond-like carbon, DLC) was deposited on the top of the alumina layer of the 2024 aluminum alloy by a pulsed filtered catholic vacuum arc (FCVA) deposition system with a metal vapor vacuum arc (MEVVA) source. The morphology and tribological properties of the duplex DLC/Al2O3 coating were investigated by a scanning electron...

  7. Multiple solutions in the theory of dc glow discharges and cathodic part of arc discharges. Application of these solutions to the modeling of cathode spots and patterns: a review

    Science.gov (United States)

    Benilov, M. S.

    2014-10-01

    A new class of stationary solutions in the theory of glow discharges and plasma-cathode interaction in ambient-gas arc discharges has been found over the past 15 years. These solutions exist simultaneously with the solution given in textbooks, which describes a discharge mode with a uniform or smooth distribution of current over the cathode surface, and describes modes with various configurations of cathode spots: normal spots on glow cathodes, patterns of multiple spots recently observed on cathodes of glow microdischarges and spots on arc cathodes. In particular, these solutions show that cathode spots represent a manifestation of self-organization caused by basic mechanisms of the near-cathode space-charge sheath; another illustration of the richness of the gas discharge science. As far as arc cathodes are concerned, the new solutions have proved relevant for industrial applications. This work is dedicated to reviewing the multiple solutions obtained to date, their systematization, and analysis of their properties and physical meaning. The treatment is performed in the context of general trends of self-organization in bistable nonlinear dissipative systems, which allows one to consider glow discharges or arc-cathode interaction within a single physically transparent framework without going into mathematical details and offers a possibility of systematic computation of the multiple solutions. Relevant computational aspects and experimental data are discussed.

  8. A comparative research on magnetron sputtering and arc evaporation deposition of Ti-Al-N coatings

    International Nuclear Information System (INIS)

    Ti-Al-N coating has been proven to be an effective protective coating for machining applications. Here, the differences of cubic Ti-Al-N coatings with a similar Ti/Al atomic ratio of 1 deposited by magnetron sputtering and cathodic arc evaporation have been studied in detail. Main emphasis was laid on the characterization of thermal stability and cutting performance. Both coatings during annealing exhibit a structural transformation into stable phases c-TiN and h-AlN via an intermediate step of spiondal decomposition with the precipitation of c-AlN, however, a difference in decomposition process. Compared to sputtered coating inserts, an increase of tool life-time by 42% is obtained by evaporated coating inserts at the higher speed of 200 m/min, whereas the similar cutting life is observed at the speed of 160 m/min. It is attributed to the better stability of evaporated coating due to its later structural transformation at elevated temperature. A post-deposition vacuum annealing of both coated inserts in their corresponding temperature range of spiondal decomposition improves their cutting performance due to an increase in hardness arising from the precipitation of coherent cubic-phase nanometer-size c-AlN domains. Additionally, the sputtered coating behaves in worse oxidation resistance due to its more open structure. These behaviors can be understood considering the difference in microstructure and morphology of as deposited coatings originating from adatom mobility of deposited particles, where arc evaporation technique with higher ion to neutral ratio shows higher adatom mobility.

  9. Superhard nanocomposite nc-TiC/a-C:H film fabricated by filtered cathodic vacuum arc technique

    International Nuclear Information System (INIS)

    Superhard nanocomposite nc-TiC/a-C:H films, with an excellent combination of high elastic recovery, low friction coefficient and good H/E ratio, were prepared by filtered cathodic vacuum arc technique using the C2H2 gas as the precursor. The effect of C2H2 flow rate on the microstructure, phase composition, mechanical and tribological properties of nanocomposite nc-TiC/a-C:H films have been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy disperse spectroscopy (EDS), microindentation and tribotester measurements. It was observed that the C2H2 flow rate significantly affected the Ti content and hardness of films. Furthermore, by selecting the proper value for C2H2 flow rate, 20 sccm, one can deposit the nanocomposite film nc-TiC/a-C:H with excellent properties such as superhardness (66.4 GPa), high elastic recovery (83.3%) and high H/E ratio (0.13)

  10. AlN thin films prepared by DC arc deposition

    Science.gov (United States)

    Liang, Hai-feng; Yan, Yi-xin; Miao, Shu-fan

    2006-02-01

    Many researchers are interested in AlN films because of their novel thermal, chemical, mechanical, acoustic, and optical properties. Many methodsincluding such as DC/RF sputtering, chemical vapor deposition (CVD), laser chemical vapor deposition(LCVD), molecular beam epitaxy (MBE), thermal vapor deposition, can be used to prepare AlN films. In this paper, a new method, DC arc deposition, is used to deposite AlN films. It is an anti-reflective, protective film on optical elements. FTIR are used to determine the ALN structure and measure the transmittance spectrum. Ellipsometry is used to determine the films' refractive index, extinction index and thickness. The films' anti-wear properties are tested by pin-on-disc way and the anti-corrosion(anti-acid, anti-alkali, anti-salt) properties are also tested. The results show that the films is AlN films by the 670cm -1 typical peak, the films' extinction index is near to zero in the range of visible and infrared waveband, the films' refractive index is varied from 1.7 to 2.1 at range of visible and infrared waveband. The films have better anti-wear, anti-acid and anti-alkali properties, but their anti-salt properties are not good.

  11. Current density at the refractory cathode of a high-current high-pressure arc (two modes of cathode spot attachment)

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, Valerian [ESAB Welding and Cutting Products and Francis Marion University, Florence, SC 29501 (United States)

    2003-12-07

    The attachment of a high-pressure arc at a refractory cathode was investigated theoretically and experimentally. Simple model considerations showed that an isolated cathode spot (CS) could function in two different modes. At relatively low currents and pressures, the CS mode (first mode) corresponds to the existing model (Bade W L and Yos Y M 1963 Technical Documentary Report No ASD-TDR-62-729 vol 1 (part II); Neumann W 1969 Beitr Plasmaphysik 9 499-526; Benilov M S 1993 Phys. Rev. 48 506-15, 1994 IEEE Trans. Plasma Sci. 22 73-7, 1999 J. Phys. D: Appl. Phys. 32 257-62; Benilov M S and Marotta A 1995 J. Phys. D: Appl. Phys. 28 1869-82; Benilov M S and Cunha M D 2002 J. Phys. D: Appl. Phys. 35 1736-50, 2003 J. Phys. D: Appl. Phys. 36 603-14). In this mode current density does not depend on the arc current and is directly proportional to the gas pressure. At higher currents and/or higher pressures the CS exists in a different mode (second mode). In this mode current density does not depend on pressure and decreases as the current increases. If the product of the arc current, I, and the gas pressure, p, is lower than some critical value, then the first mode is realized; at a higher Ip product, the second one is realized. For discharges in nitrogen, the critical value was estimated as {approx}7 x 10{sup 7} A Pa. In the experimental part of this work, we investigated the footprints that the arc left at the cathode after it was terminated. Cathodes were made of pure and thoriated tungsten and the gases were nitrogen and argon. We have observed both modes. At 3 x 10{sup 5} Pa, the second mode was observed at currents higher than {approx}300 A; at 200 A, it was observed at pressures higher than {approx}3 x 10{sup 5} Pa. The CS footprint appearances are quite different. In the first mode the footprint has a smooth central part and a heavily eroded periphery. We believe that the cathode temperature is maximal not at the CS centre but at its periphery in this mode. With a

  12. Analysing bifurcations encountered in numerical modelling of current transfer to cathodes of dc glow and arc discharges

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P G C; Benilov, M S; Cunha, M D; Faria, M J [Departamento de Fisica, Universidade da Madeira, Largo do Municipio, 9000 Funchal (Portugal)

    2009-10-07

    Bifurcations and/or their consequences are frequently encountered in numerical modelling of current transfer to cathodes of gas discharges, also in apparently simple situations, and a failure to recognize and properly analyse a bifurcation may create difficulties in the modelling and hinder the understanding of numerical results and the underlying physics. This work is concerned with analysis of bifurcations that have been encountered in the modelling of steady-state current transfer to cathodes of glow and arc discharges. All basic types of steady-state bifurcations (fold, transcritical, pitchfork) have been identified and analysed. The analysis provides explanations to many results obtained in numerical modelling. In particular, it is shown that dramatic changes in patterns of current transfer to cathodes of both glow and arc discharges, described by numerical modelling, occur through perturbed transcritical bifurcations of first- and second-order contact. The analysis elucidates the reason why the mode of glow discharge associated with the falling section of the current-voltage characteristic in the solution of von Engel and Steenbeck seems not to appear in 2D numerical modelling and the subnormal and normal modes appear instead. A similar effect has been identified in numerical modelling of arc cathodes and explained.

  13. Self-forming TiBN Nanocomposite Multilayer Coating Prepared by Pulse Cathode Arc Method.

    Science.gov (United States)

    Cao, Yongzhi; Hu, Zhenjiang; Yan, Leilei; Yu, Fuli; Tu, Wendi

    2016-12-01

    Novel multilayer structured TiBN coatings were deposited on Si (100) substrate using TiBN complex cathode plasma immersion ion implantation and deposition technique (PIIID). The coatings were characterized by X-ray diffraction (XRD), high-resolution transmission electron microcopy (HRTEM), energy-dispersive spectrometer (EDS) and ball-on-disk test. XRD results reveal that both samples of TiBN coatings have the main diffraction peak of TiN (200) and (220). Cross-section TEM images reveal that these coatings have the character of self-forming multilayer and consists of face-centered cubic TiN and hexagonal BN nanocrystalline embedded in amorphous matrix. Because of the existence of hexagonal BN, the friction coefficient of the new TiBN coating in room temperature is obviously lower than that of the monolithic TiN nanocrystalline coating. PMID:27460597

  14. Self-forming TiBN Nanocomposite Multilayer Coating Prepared by Pulse Cathode Arc Method

    Science.gov (United States)

    Cao, Yongzhi; Hu, Zhenjiang; Yan, Leilei; Yu, Fuli; Tu, Wendi

    2016-07-01

    Novel multilayer structured TiBN coatings were deposited on Si (100) substrate using TiBN complex cathode plasma immersion ion implantation and deposition technique (PIIID). The coatings were characterized by X-ray diffraction (XRD), high-resolution transmission electron microcopy (HRTEM), energy-dispersive spectrometer (EDS) and ball-on-disk test. XRD results reveal that both samples of TiBN coatings have the main diffraction peak of TiN (200) and (220). Cross-section TEM images reveal that these coatings have the character of self-forming multilayer and consists of face-centered cubic TiN and hexagonal BN nanocrystalline embedded in amorphous matrix. Because of the existence of hexagonal BN, the friction coefficient of the new TiBN coating in room temperature is obviously lower than that of the monolithic TiN nanocrystalline coating.

  15. Simulation optimization of the cathode deposit growth in a coaxial electrolyzer-refiner

    Science.gov (United States)

    Smirnov, G. B.; Fokin, A. A.; Markina, S. E.; Vakhitov, A. I.

    2015-08-01

    The results of simulation of the cathode deposit growth in a coaxial electrolyzer-refiner are presented. The sizes of the initial cathode matrix are optimized. The data obtained by simulation and full-scale tests of the precipitation of platinum from a salt melt are compared.

  16. Fast deposition of diamond-like carbon films by radio frequency hollow cathode method

    International Nuclear Information System (INIS)

    Diamond-like carbon (DLC) thin films were deposited on p-type Si (100) substrates by RF hollow cathode method under different RF power and pressure, using ethane as the precursor gas. The deposition rate of 45 nm/min was achieved, almost 4 times higher than by conventional radio frequency plasma enhanced chemical vapor deposition. The mechanism of fast DLC films deposition is attributed to high plasma density in RF hollow cathode method, discussed in this paper. Scanning electron microscopy and Raman spectroscopy were used to investigate the microstructure of DLC films. The film hardness and Young's modulus were measured by nanoindentation. - Highlights: • Diamond-like carbon thin films were deposited by RF hollow cathode method. • The deposition rate of 45 nm/min was achieved. • A higher plasma density results in a higher deposition rate

  17. Salts separation and removing method from material deposited on molten salt electrolyzing cathode

    International Nuclear Information System (INIS)

    Deposition materials on a cathode obtained by processing highly radioactive drainage discharged from spent fuel reprocessing steps and electrolyzing them in molten salts are incorporated with salts such as LiCl-KCl used as an electrolysis bath. Cadmium is added to the cathode deposition materials comprising lanthanoid and/or actinoid, and melted to form a molten material. The molten material are solidified by cooling to separate a metal portion and salts from the cathode deposition materials. The metal portion is kept at a temperature at which cadmium metal is evaporated to remove cadmium. Subsequently, the metal portion is kept at a temperature at which an intermetallic compound and/or an alloy of cadmium and lanthanoid and/or actinoid is decomposed to remove cadmium. Since salts can be removed efficiently from cathode deposition materials, aimed actinoid metals can be recovered at a high purity. (I.N.)

  18. Microstructure and characterization of a novel cobalt coating prepared by cathode plasma electrolytic deposition

    Science.gov (United States)

    Quan, Cheng; He, Yedong

    2015-10-01

    A novel cobalt coating was prepared by cathode plasma electrolytic deposition (CPED). The kinetics of the electrode process in cathode plasma electrolytic deposition was studied. The composition and microstructure of the deposited coatings were investigated by SEM, EDS, XRD and TEM. The novel cobalt coatings were dense and uniform, showing a typically molten morphology, and were deposited with a rather fast rate. Different from the coatings prepared by conventional electrodeposition or chemical plating, pure cobalt coatings with face center cubic (fcc) structure were obtained by CPED. The deposited coatings were nanocrystalline structure with an average grain size of 40-50 nm, exhibited high hardness, excellent adhesion with the stainless steels, and superior wear resistance. The properties of the novel cobalt coatings prepared by CPED have been improved significantly, as compared with that prepared by conventional methods. It reveals that cathode plasma electrolytic deposition is an effective way to prepare novel cobalt coatings with high quality.

  19. Charge-state and element-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    CERN Document Server

    Franz, Robert; Anders, André

    2014-01-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al$^{+}$ regardless of the background gas species, whereas Cr$^{2+}$ ions were dominating in Ar and N$_2$ and Cr$^{+}$ in O$_2$ atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were mainly thermalised. In addition to the positively charged metal and gas ions, negatively charged oxygen an...

  20. Erosion behaviour of a Ti3SiC2 cathode under low-current vacuum arc

    International Nuclear Information System (INIS)

    In this article, the arc erosion behaviour of high-purity Ti3SiC2 in vacuum was investigated by x-ray diffraction, scanning electron microscope, energy dispersive x-ray spectroscopy, and micro-Raman spectroscopy. From the results obtained, Ti3SiC2 is unstable due to the high energy intensity and high temperature of the vacuum arc. The dissociation of Ti3SiC2 takes place at the sample surface, resulting in the formation of solid TiCx and gaseous Si. TiCx is ejected from cathode to the surface of anode while Si is evaporated to the vacuum chamber. The micro-Raman results reveal that small amounts of carbon appeared as a by-product of the dissociation of Ti3SiC2, indicating that the Ti–C bonding is broken down under the vacuum arc. (paper)

  1. Nanostructured (Ti-Zr-NbN Coatings Obtained by Vacuum-arc Deposition Method: Structure and Properties

    Directory of Open Access Journals (Sweden)

    О.V. Maksakova

    2015-12-01

    Full Text Available In the article discusses the results of the deposition of nanostructured coatings obtained by vacuum arc deposition of cathode (Ti-Zr-Nb, and analyzes their structure, morphology, elemental composition, and tribological properties (friction, wear and adhesion. The structural analysis showed the formation of an FCC phase and BCC phase in a small amount (at a chamber pressure Р = 4×10 – 3 Тоrr. The results of tribological tests showed that the friction coefficient varies from 0.61 to 0.491, and Vickers hardness from 37 to 44.57 GPa when changing (increasing the pressure in the chamber. The analysis of the elements in the tracks of friction was studied.

  2. Cathodic electrophoretic deposition of bismuth oxide (Bi2O3) coatings and their photocatalytic activities

    International Nuclear Information System (INIS)

    Graphical abstract: Bismuth oxide (Bi2O3) coating has been prepared by cathodic electrophoretic deposition method and exhibits high photocatalytic activities for the degradation of Rhodamine B. - Highlights: • The nano-Bi2O3 coatings have been firstly successfully fabricated by EPD method. • The EPD deposition mechanism of Bi2O3 coatings is firstly given. • Deposition dynamics are investigated by regulating different deposition times and applied field strengths in detail. • Obtained coating show great photocatalytic activities for the degradation of Rhodamine B. - Abstract: In this study, cathodic electrophoretic deposition (EPD), a low cost, one-step and flexible method, has been successfully developed to prepare bismuth oxide (Bi2O3) coatings. Stable suspensions consisted of isopropyl alcohol and trace additive-polyethyleneimine. Deposition was achieved on the cathode at applied field strengths of 5–25 V mm−1 using a total solids loading of 0.5–2 g L−1 at ambient temperature and pressure. The deposition mechanism of Bi2O3 coatings was firstly given, and deposition kinetics were investigated in detail. The deposits were characterized qualitatively by field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDS) observation, atomic force microscope (AFM), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis, respectively. Moreover, the photocatalytic activities of obtained coatings were evaluated through degradation of Rhodamine B under ultraviolet and visible light irradiation

  3. Multi-Seconds Diagnostic Neutral Beam Injector Based on Arc-Discharge with LaB6 Hollow Cathode

    International Nuclear Information System (INIS)

    The diagnostic neutral beam injector based on arc-discharge plasma source with LaB6 hollow cathode is described.The ion source of the diagnostic injector provides a proton beam with a current up to 2.5A, the particle energy up to 50 keV, the beam divergence is ∼0.5 deg. The beam species at the 2 A ion current are: H+-83%, H2+-5%, H3+-12%. The injector was tested at pulse duration up to 2 seconds

  4. Synthesis of Ti-Si-N nanocomposite coatings by a novel cathodic arc assisted middle-frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Ti-Si-N nanocomposite coatings were synthesized by using a cathodic arc assisted middle-frequency magnetron sputtering system in an industrial scale. X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscopy were employed to investigate the chemical bonding and microstructure of the coatings. Atomic force microscope and scanning electron microscope were used to characterize the surface and cross-sectional morphologies of the samples. The coating was found to be nc-TiN/a-Si3N4 structure and exhibit a high hardness of 40 GPa when the Si content was 6.3 at.%.

  5. Mechanism of cathode spot splitting in vacuum arcs in an oblique magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Beilis, I. I. [Electrical Discharge and Plasma Laboratory, School of Electrical Engineering, Fleischman Faculty of Engineering, Tel Aviv University, P.O. Box. 39040, Tel Aviv 69978 (Israel)

    2015-10-15

    Experiments in the last decade showed that for cathode spots in a magnetic field that obliquely intercepts the cathode surface, the current per spot increased with the transverse component of the magnetic field and decreased with the normal component. The present work analyzes the nature of cathode spot splitting in an oblique magnetic field. A physical model for cathode spot current splitting was developed, which considered the relation between the plasma kinetic pressure, self-magnetic pressure, and applied magnetic pressure in a current carrying cathode plasma jet. The current per spot was calculated, and it was found to increase with the tangential component of the magnetic field and to decrease with the normal component, which agrees well with the experimental dependence.

  6. Bias voltage effect on the structure and property of chromium copper-diamond-like carbon multilayer films fabricated by cathodic arc plasma

    International Nuclear Information System (INIS)

    Chromium copper-diamond-like carbon (Cr:Cu)-DLC films were deposited onto silicon and by cathodic arc evaporation process using chromium (Cr) and copper (Cu) target arc sources to provide Cr and Cu in the Me-DLC. Acetylene reactive gases were the carbon source and activated at 180 deg. C at 13 mTorr, and a substrate bias voltage was varied from -50 V to -200 V to provide the (Cr:Cu)-DLC structure. The structure, interface, and chemical bonding state of the produced film were analyzed by transmission electron microscope (TEM), IR Fourier transform (FTIR) spectra, and X-ray photoelectron spectroscopy (XPS). The results showed that the Cr-containing a-C:H/Cu coatings exhibited an amorphous layer of DLC:Cr layer and a crystalline layer of Cu multilayer structure. The profiles of sp3/sp2 (XPS) ratios corresponded to the change of microhardness profile by varying the pressure of the negative DC bias voltage. These (Cr:Cu)-DLC coatings are promising materials for soft substrate protective coatings.

  7. Structural and optical properties of Ti-doped ZnO thin films prepared by the cathodic vacuum arc technique with different annealing processes

    International Nuclear Information System (INIS)

    Highly transparent Ti-doped ZnO thin films were prepared on glass substrates at a deposition rate of approximately 33 nm/min using the cathodic vacuum arc technique with a Zn target power of 550 W and a Ti target power of 750 W, respectively. X-ray diffraction measurements have shown that the Ti-doped ZnO thin film with a vacuum post-annealing condition is c-axis oriented but an amorphous phase at the other post-annealing atmosphere and as-deposited condition. Transmittance measurements show that the best optical quality of the Ti-doped ZnO thin films occurred at a post-annealing atmosphere of N2/H2 mixed gases. Additionally, the optical transmittance of all films has been found more than 85% in a range of 500-700 nm. The lowest electrical resistivity was 3.48 x 10-3 Ω cm, obtained on as-deposited films. However, the post-annealing condition greatly increased the resistivity.

  8. Formation of Deposits on the Cathode Surface of Aluminum Electrolysis Cells

    Science.gov (United States)

    Allard, François; Soucy, Gervais; Rivoaland, Loig

    2014-12-01

    The efficiency of electrolysis cells for aluminum production is reduced when deposits are formed on the cathode block surface. Overfeeding of alumina or excessive heat loss in industrial cells leads to the formation of highly resistive deposits. In this study, the chemical composition of sludge, ledge toe, and thin deposits was investigated at the bottom of both industrial and experimental electrolysis cells. The formation of deposits in laboratory experiments was demonstrated in acidic, neutral, and basic electrolytic bath. A gradient of chiolite (Na5Al3F14) and α-Al2O3 was observed in the deposits. The bath at the bottom of the experimental electrolysis cell had a higher cryolite ratio implying a higher liquidus temperature. The sludge formed at the bottom of the cell can lift the aluminum metal resulting in an important reduction of the contact surface between the aluminum and the cathode block. Moreover, the deposits disturb the current path and generate horizontal current components in the metal which enhance the motion and lower the current efficiency. A thin film of bath supersaturated in alumina was observed under the metal. This work provides clarification on the formation mechanisms of the various deposits responsible for the deterioration of the cathode surface.

  9. Investigations of the cathode region of an argon arc plasma by degenerate four-wave mixing laser spectroscopy and optical emission spectroscopy

    International Nuclear Information System (INIS)

    Degenerate four-wave mixing (DFWM) laser spectroscopy was used in local studies of atmospheric pressure argon plasma generated in a free-burning arc. The results of plasma diagnostics using the DFWM method were compared to the results obtained with optical emission measurements. In the cathode region of the arc the maxima of both the DFWM signal and the emission coefficient for the 696.5 nm Ar I line depend on the distance from the cathode tip. This effect proves the departure of the plasma state from local thermal equilibrium (LTE) as it has been reported by many authors. On the other hand the Stark shifts of the 696.5 nm Ar I line determined by the DFWM method in relation to plasma diagnostic results show no deviations from LTE on the arc axis down to 1.0 mm from the cathode tip

  10. Physical and Mechanical Properties of (Ti-Zr-NbN Coatings, Fabricated by Vacuum-Arc Deposition

    Directory of Open Access Journals (Sweden)

    Maksakova O.V.

    2015-08-01

    Full Text Available The coatings based on (Ti-Zr-NbN were fabricated by vacuum-arc deposition of the Ti+Zr+Nb cathodes in the nitrogen atmosphere. Their physical and mechanical properties as well as tribological characteristics have been studied. The coatings are characterized by a columnar structure, their hardness reaches 44.57 GPa. The adhesion strength of coatings reaches 66.77 GPa, the friction coefficient of the «cover – Al2O3» is 1.1. It has been determined, that the hardness of the investigated coatings significantly depends on the pressure of the reaction gas. The coatings are promising as protective coatings for friction pairs and cutting tools.

  11. Cathodic behaviour of stainless steel in coastal Indian seawater: calcareous deposits overwhelm biofilms.

    Science.gov (United States)

    Eashwar, M; Subramanian, G; Palanichamy, S; Rajagopal, G; Madhu, S; Kamaraj, P

    2009-01-01

    Type-316 stainless steel (SS) was investigated as the cathode in galvanic couples in full-strength seawater from the Gulf of Mannar on the southeast coast of India. Tests were devised to examine the impact of SS cathodes on anode materials with or without the accrual of marine biofilms. Biofilmed SS cathodes significantly enhanced the rate of corrosion of nickel, causing noble shifts in the couple potentials. With mild steel and zinc as the anodes, calcareous deposits developed quite rapidly on the SS cathodes and led to a significant reduction of bacterial numbers. The calcareous deposits also caused substantial reduction of galvanic corrosion rates for mild steel, whereas there was no difference for zinc. The deposits were identified by XRD as essentially carbonates, oxides and hydroxides of calcium and magnesium. Potentiodynamic polarization performed on the actual couples after disconnection and equilibration provided reasonable interpretations of the galvanic corrosion trends. Data from this work suggest that a potential of about -0.70 V vs. saturated calomel electrode (SCE) should provide optimum protection of SS in warmer, full-strength seawater that supports the precipitation of calcareous deposits. The criterion commonly recommended for temperate conditions of lower water temperature and estuarine waters of lower alkalinity is -1.0 V (SCE). PMID:19169951

  12. Production and characterization of multilayer coatings of Ti/TiN on AISI 316L stainless steel by the PVD technique of cathodic arc ion plating

    International Nuclear Information System (INIS)

    Multilayer coatings were produced from bi-layers (compound layers) of Ti/TiN in a PVD reactor of cathodic arc ion plating. The process was carried out at an Argon gas pressure of 5x10-3 Torr for the interlayer of Ti and a nitrogen + argon pressure of 2x10-2 Torr for the deposit of TiN and a Bias voltage of -500V for the Ti layer and -100V for the TiN layer. The arc current held constant at 80 amp. The samples were kept at high temperatures ≥ 300oC, mounted on a rotating system that held the test piece 15-25 cm from the Ti electrode. Certified composition AISI 316L and AISI 410 stainless steel were used for the substrate. Coatings with one or two compound layers with similar thicknesses were made. The coatings were characterized mechanically by adherence, thickness and microhardness by Vickers indentation with 25g loads. The texture was studied by X-ray diffraction and present phases and residual tensions were determined. The results of the X-ray diffraction show the presence of the mostly TiN phase, with fcc structure in the mono-layer and the bi-layer. Residual tensions are compressive and elevated due to the expansion of the TiN network during the deposition process. Measurements of the bi-layers at different angles showed a relaxing of the tensions close to the surface, which could be due to the effect of the second interlayer of Ti. Preferential orientations associated with the growth process of the layers and the developed microstructure were detected in the TiN (CW)

  13. The optimization of molybdenum back contact films for Cu(In,Ga)Se2 solar cells by the cathodic arc ion plating method

    International Nuclear Information System (INIS)

    Molybdenum back contact films for Cu(In,Ga)Se2 (CIGS) solar cells have been deposited using DC magnetron sputtering methods. The electronic pathway properties of the molybdenum film have been highly dependent on the working gas pressure in magnetron sputtering, which should be carefully controlled to obtain high conductivity and adhesion. A coating method, cathodic arc ion plating, was used for molybdenum back contact electrode fabrication. The aim of this work was to find a metallization method for CIGS solar cells, which has less sensitivity on the working pressure. The resistivity, grain size, growth structures, stress, and efficiency of the films in CIGS solar cells were investigated. The results reveal that the growth structures of the molybdenum films mainly affect the conductivity. The lowest electrical resistivity of the ion-plated molybdenum films was 6.9 μΩ-cm at a pressure of 0.7 Pa. The electrical resistivity variation showed a gently increasing slope with linearity under a working gas pressure of 13.3 Pa. However, a high value of the residual stress of over 1.3 GPa was measured. In order to reduce stress, titanium film was selected as the buffer layer material, and the back contact films were optimized by double-layer coating of two kinds of hetero-materials with arc ion plating. CIGS solar cells prepared molybdenum films to measure the efficiency and to examine the effects of the back contact electrode. The resistivity, grain size, and surface morphology of molybdenum films were measured by four-point probe, X-ray diffraction, and a scanning electron microscope. The residual stress of the films was calculated from differences in bending curvatures measured using a laser beam. - Highlights: • Molybdenum back contact films for Cu(In,Ga)Se2 solar cells were prepared by the cathodic arc ion plating. • The lowest electrical resistivity of molybdenum film was 6.9 μΩ-cm. • Titanium buffer layer reduced the compressive residual stress of ion

  14. Synthesis of aluminium nanoparticles by arc evaporation of an aluminium cathode surface

    Indian Academy of Sciences (India)

    M Gazanfari; M Karimzadeh; S Ghorbani; M R Sadeghi; G Azizi; H Karimi; N Fattahi; Z Karimzadeh

    2014-06-01

    Aluminium nanoparticles (Al Nps) are synthesized using arc discharge method by applying direct current between aluminium electrodes in liquid environment without any use of vacuum equipment, heat exchangers, high temperatures furnaces and inert gases. After synthesis of Al Nps, in situ coating process on the nanoparticles was performed immediately. The effects of media on the yield and morphology of aluminium nanoparticles were investigated. Analysis result of the samples indicated that particle size was less than 30 nm, when 120 A/cm2 arc current was used. In addition, coating agent can affect arc velocity, arc stability, morphology and composition of the nanoparticles. Resultant nanoparticles were identified using X-ray powder diffraction (XRD), also their surface morphology was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and finally the accuracy of coating was assessed with infrared (IR) spectroscopy.

  15. Li-rich Thin Film Cathode Prepared by Pulsed Laser Deposition

    OpenAIRE

    Binggong Yan; Jichang Liu; Bohang Song; Pengfei Xiao; Li Lu

    2013-01-01

    Li-rich layer-structured cathode thin films are prepared by pulsed laser deposition. X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS) and electrochemical testing in half battery cells are used to characterize crystal structure, surface morphology, chemical valence states and electrochemical performance of these thin films, respectively. It is observed that partial layer to spinel transformation takes place during post anneali...

  16. Sunlight-enhanced calcareous deposition on cathodic stainless steel in natural seawater

    Digital Repository Service at National Institute of Oceanography (India)

    Eashwar, M.; SathishKumar, P.; Ravishankar, R.; Subramanian, G.

    : Biofouling, vol.29(2); 2013; 185-193 Sunlight enhances calcareous deposition on cathodic stainless steel in natural seawater M. Eashwara,*, P. Sathish Kumara,b, R. Ravishankarb, G. Subramaniand aCSIR – Central Electrochemical Research Institute..., Corrosion Research Centre, Mandapam Camp - 623519, Tamil Nadu, India bCurrent Address: CSIR – National Institute of Oceanography, Marine Corrosion and Materials Research Division, Dona Paula, Goa - 403 004, India cCSIR – Central Electrochemical...

  17. Influence of Cathode and Nozzle Wear on Distributions of Fluctuations in Cutting Arc

    Czech Academy of Sciences Publication Activity Database

    Gruber, Jan; Šonský, Jiří; Hlína, Jan

    Brno : Brno university of Technology, 2013, s. 163-166. ISBN 978-80-214-4753-0. [Symposium on Physics of Switching Arc /20./. Nové Město na Moravě (CZ), 02.09.2013-06.09.2013] Institutional support: RVO:61388998 Keywords : plasma cutting * nozzle lifecycle * fluctuations Subject RIV: BL - Plasma and Gas Discharge Physics

  18. Observation of HF Cathode and ARC Root Inside Cutting Plasma Torch

    Czech Academy of Sciences Publication Activity Database

    Šonský, Jiří; Gruber, Jan

    Brno : Brno university of Technology, 2013, s. 297-300. ISBN 978-80-214-4753-0. [Symposium on Physics of Switching Arc /20./. Nové Město na Moravě (CZ), 02.09.2013-06.09.2013] Institutional support: RVO:61388998 Keywords : plasma torch * fluctuations * FFT Subject RIV: BL - Plasma and Gas Discharge Physics

  19. Atmospheric pressure arc discharge with ablating graphite anode

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, V. A. [Keiser University, Fort Lauderdale Campus, FL, 33309, USA; Raitses, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2015-05-18

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  20. Cathodic deposition and characterization of tin oxide coatings on graphite for electrochemical supercapacitors

    Science.gov (United States)

    Wu, Mengqiang; Zhang, Liping; Wang, Dongmei; Xiao, Chao; Zhang, Shuren

    Amorphous tin oxide (SnO x) was cathodically deposited onto graphite electrode in a bath containing 0.1 M stannous chloride (SnCl 2), 0.5 M sodium nitrate (NaNO 3), and 0.4 M nitric acid (HNO 3) in an aqueous solution of 50% (v/v) ethanol. The SnO x coatings grown on graphite were characterized as typical capacitive behaviors by cyclic voltammetry (CV), chronopotentiometric (CP) in 0.5 M KCl. Specific capacitance (in milli-farad per square centimeter, C a) changes linearly with the deposition charge up to 4.5 C cm -2, and a maximum of as high as 355 mF cm -2 was obtained with the SnO x coating grown at around 5 C cm -2. For the SnO x coating deposited at 0.2 C cm -2, a maximum specific capacitance (in farad per gram, C m) of 298 and 125 F g -1 was achieved from CVs at a scan rate of 10, and 200 mV s -1, respectively. The value of C m significantly gets lower from 265 to around 95 F g -1 when the deposition charge increases from 0.2 to around 6.0 C cm -2. The long cycle-life and stability of the SnO x coatings on graphite via the presented cathodic deposition were also demonstrated.

  1. Vacuum arc cathode spot parameters from high‐resolution luminosity measurements

    OpenAIRE

    Anders, A.; Anders, S.; Jüttner, B.; Pursch, H.; Bötticher, W.; Lück, H.

    1992-01-01

    Cathode spots on arc‐cleaned copper and molybdenum electrodes in vacuum were studied by fast image converter framing and streak camera photography with high temporal and spatial resolution. The frame exposure time was 20 ns and the interframe period was 200 ns; the streak sweep time was between 200 ns and 1 μs. Spatial structures with a resolution of 5 μm could be determined by observing the spot movement with a small slit at the streak camera and a high sweep speed. Strong fluctuations of th...

  2. Electrical, optical, and structural properties of thin films with tri-layers of AZO/ZnMgO/AZO grown by filtered vacuum arc deposition

    International Nuclear Information System (INIS)

    Highlights: ► AZO/ZnMgO/AZO tri-layered films were grown by FCAD filtered cathodic arc deposition. ► The films were highly transparent and presented excellent electrical resistivity. ► The films presented optical transmittance in the visible light higher than 80%. - Abstract: Transparent conductive oxides (TCO) are indispensable as front electrode for most of thin film electronic devices such as transparent electrodes for flat panel displays, photovoltaic cells, windshield defrosters, transparent thin film transistors, and low emissivity windows. Thin films of aluminum-doped zinc oxide (AZO) have shown to be one of the most promising TCOs. In this study, three layered Al-doped ZnO (AZO)/ZnMgO/AZO heterostructures were prepared by filtered cathodic arc deposition (FCAD) on glass substrates. The objective is to find a set of parameters that will allow for improved optical and electrical properties of the films such as low resistivity, high mobility, high number of charge carriers, and high transmittance. We have investigated the effect of modifications in thickness and doping of the ZnMgO inner layer on the structural, electrical, and optical characteristics of the stacked heterostructures.

  3. Study of the feasibility of distributed cathodic arc as a plasma source for development of the technology for plasma separation of SNF and radioactive wastes

    Science.gov (United States)

    Amirov, R. Kh.; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.

    2015-12-01

    One of the key problems in the development of plasma separation technology is designing a plasma source which uses condensed spent nuclear fuel (SNF) or nuclear wastes as a raw material. This paper covers the experimental study of the evaporation and ionization of model materials (gadolinium, niobium oxide, and titanium oxide). For these purposes, a vacuum arc with a heated cathode on the studied material was initiated and its parameters in different regimes were studied. During the experiment, the cathode temperature, arc current, arc voltage, and plasma radiation spectra were measured, and also probe measurements were carried out. It was found that the increase in the cathode heating power leads to the decrease in the arc voltage (to 3 V). This fact makes it possible to reduce the electron energy and achieve singly ionized plasma with a high degree of ionization to fulfill one of the requirements for plasma separation of SNF. This finding is supported by the analysis of the plasma radiation spectrum and the results of the probe diagnostics.

  4. Study of the feasibility of distributed cathodic arc as a plasma source for development of the technology for plasma separation of SNF and radioactive wastes

    International Nuclear Information System (INIS)

    One of the key problems in the development of plasma separation technology is designing a plasma source which uses condensed spent nuclear fuel (SNF) or nuclear wastes as a raw material. This paper covers the experimental study of the evaporation and ionization of model materials (gadolinium, niobium oxide, and titanium oxide). For these purposes, a vacuum arc with a heated cathode on the studied material was initiated and its parameters in different regimes were studied. During the experiment, the cathode temperature, arc current, arc voltage, and plasma radiation spectra were measured, and also probe measurements were carried out. It was found that the increase in the cathode heating power leads to the decrease in the arc voltage (to 3 V). This fact makes it possible to reduce the electron energy and achieve singly ionized plasma with a high degree of ionization to fulfill one of the requirements for plasma separation of SNF. This finding is supported by the analysis of the plasma radiation spectrum and the results of the probe diagnostics

  5. Study of the feasibility of distributed cathodic arc as a plasma source for development of the technology for plasma separation of SNF and radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Amirov, R. Kh.; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A., E-mail: ravus46@yandex.ru; Yartsev, I. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-12-15

    One of the key problems in the development of plasma separation technology is designing a plasma source which uses condensed spent nuclear fuel (SNF) or nuclear wastes as a raw material. This paper covers the experimental study of the evaporation and ionization of model materials (gadolinium, niobium oxide, and titanium oxide). For these purposes, a vacuum arc with a heated cathode on the studied material was initiated and its parameters in different regimes were studied. During the experiment, the cathode temperature, arc current, arc voltage, and plasma radiation spectra were measured, and also probe measurements were carried out. It was found that the increase in the cathode heating power leads to the decrease in the arc voltage (to 3 V). This fact makes it possible to reduce the electron energy and achieve singly ionized plasma with a high degree of ionization to fulfill one of the requirements for plasma separation of SNF. This finding is supported by the analysis of the plasma radiation spectrum and the results of the probe diagnostics.

  6. Spectroscopic investigations of Cr, CrN and TiCr anti-multipactor coatings grown by cathodic-arc reactive evaporation

    International Nuclear Information System (INIS)

    Cr, CrN, TiCr coatings have been investigated as potential anti-multipactor coatings. The coatings were synthesized by cathodic-arc reactive evaporation in Ar-N2 atmosphere where the ion energy is controlled by substrate biasing. Chemical state analysis and surface composition were studied by X-ray photoemission spectroscopy (XPS), whereas bulk composition and depth profile were studied by glow discharge optical emission spectroscopy (GDOES). The surface morphology was studied by optical profilometry (OP) and scanning electron microscopy (SEM). The compositions of the coatings were CrN and Ti40Cr60 and they were homogeneous in depth. Surface oxidation was higher in Ti40Cr60 than in CrN. Coatings deposited at high negative bias show lower deposition rate and had lower surface roughness than those obtained at low bias. Secondary electron emission yield (SEY) was higher for CrN than for Ti40Cr60, both before and after low-energy Ar+ ion bombardment. The SEY of Ti40Cr60 (1.17 maximum) was clearly smaller than the others. The maximum yield, σ m, and the first crossover electron energy, E 1, are the most important parameters, and (E 1/σ m)1/2 is a good figure of merit. This quantity was approximately 3 eV1/2 for Cr and CrN and 4 eV1/2 for Ti40Cr. After Ar+ ion bombardment, the average value improved significantly to 8.9 eV1/2 for Cr and CrN and 10.2 eV1/2 for Ti40Cr60. The radio-frequency multipactor performance of these materials was simulated using the experimentally determined SEY parameters

  7. Deposition of chromium nitride coatings from vacuum arc plasma in increased nitrogen pressure

    International Nuclear Information System (INIS)

    The application of protective coatings on metal materials is the effective way to improve their durability. Chromium nitride coatings are applied mainly on tools due to good resistivity to oxidation compared to other metal nitride coatings and good wear resistance. Some characteristics of the coatings deposited in fixed position in regard of chromium cathode on the samples parallel directed to it and the other arranged opposite in the nitrogen pressure ranged from 0.5 to 3.0 Pa are investigated.

  8. Cadmium cathodic deposition on polycrystalline p-selenium: Dark and photoelectrochemical processes

    International Nuclear Information System (INIS)

    Cathodic reduction of Cd2+ on p-Se proceeds at low overpotential in the dark and results in bulk Cd, while the underpotential deposition is kinetically inhibited. Cadmium adlayer is photoelectrochemically deposited on illuminated electrode 0.7 V above E(Cd2+/Cd). The adlayer cathodic deposition under illumination proceeds with simultaneous formation of CdSe nanoparticles. Potentiodynamic electrochemical impedance spectroscopy has discriminated the two products of the photoelectrochemical reaction both by their potentials of anodic oxidation and by characteristic dependences of impedance on potential. Anodic oxidation of CdSe nanoparticles gives a sharp peak of real impedance in low frequencies close to the corresponding anodic current peak in cyclic voltammogram. The impedance peak appears below a threshold frequency ft. The latter separates two modes of diffusion in anodic dissolution of CdSe nanoparticles. The diffusion proceeds independently at different particles above ft and turns to cooperative mode below the threshold frequency. Due to this effect, information on spatial distribution of growing nuclei on electrode surface in early stages of electrodeposition can be obtained from potentiodynamic impedance spectra.

  9. Natural Deposit Coatings on Steel during Cathodic Protection and Hydrogen Ingress

    Directory of Open Access Journals (Sweden)

    Wayne R. Smith

    2015-11-01

    Full Text Available The calcareous coating formed during cathodic protection (CP in seawater is known to reduce the current demand by hindering the transport of species required to support the cathodic reactions and, thereby, improve the economic performance of CP systems. There is, however, uncertainty as to whether the coating reduces hydrogen uptake or indeed enhances it. To ascertain this, two sets of samples were polarized at −1.1 V (standard calomel electrode, SCE in 3.5% w/v NaCl and synthetic seawater (ASTM D1141 at 20 °C and the diffusible hydrogen content measured over a period of 530 h. Under such conditions reports suggest a deposit with two distinct layers, comprising an initial brucite layer followed by an aragonite layer. Contrary to other findings, a fine initial layer containing Ca and Mg followed by a brucite layer was deposited with a few specks of Ca-containing zones in synthetic seawater. The hydrogen uptake was found to occur within the initial 100 h of exposure in synthetic seawater whilst it continued without the benefit of a deposit coating, i.e., in 3.5 wt % NaCl solution.

  10. Synthesis of thick diamond films by direct current hot-cathode plasma chemical vapour deposition

    CERN Document Server

    Jin Zeng Sun; Bai Yi Zhen; Lu Xian Yi

    2002-01-01

    The method of direct current hot-cathode plasma chemical vapour deposition has been established. A long-time stable glow discharge at large discharge current and high gas pressure has been achieved by using a hot cathode in the temperature range from 1100 degree C to 1500 degree C and non-symmetrical configuration of the poles, in which the diameter of the cathode is larger than that of anode. High-quality thick diamond films, with a diameter of 40-50 mm and thickness of 0.5-4.2 mm, have been synthesized by this method. Transparent thick diamond films were grown over a range of growth rates between 5-10 mu m/h. Most of the thick diamond films have thermal conductivities of 10-12 W/K centre dot cm. The thick diamond films with high thermal conductivity can be used as a heat sink of semiconducting laser diode array and as a heat spreading and isolation substrate of multichip modules. The performance can be obviously improved

  11. Cathodic deposition and characterization of tin oxide coatings on graphite for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Mengqiang; Wang, Dongmei; Xiao, Chao; Zhang, Shuren [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronics and Solid State Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Liping [Department of Materials and Chemical Engineering, Sichuan University of Science and Engineering, No.180, Xueyuan Street, Huixing Road, Zigong 643000 (China)

    2008-01-03

    Amorphous tin oxide (SnO{sub x}) was cathodically deposited onto graphite electrode in a bath containing 0.1 M stannous chloride (SnCl{sub 2}), 0.5 M sodium nitrate (NaNO{sub 3}), and 0.4 M nitric acid (HNO{sub 3}) in an aqueous solution of 50% (v/v) ethanol. The SnO{sub x} coatings grown on graphite were characterized as typical capacitive behaviors by cyclic voltammetry (CV), chronopotentiometric (CP) in 0.5 M KCl. Specific capacitance (in milli-farad per square centimeter, C{sub a}) changes linearly with the deposition charge up to 4.5 C cm{sup -2}, and a maximum of as high as 355 mF cm{sup -2} was obtained with the SnO{sub x} coating grown at around 5 C cm{sup -2}. For the SnO{sub x} coating deposited at 0.2 C cm{sup -2}, a maximum specific capacitance (in farad per gram, C{sub m}) of 298 and 125 F g{sup -1} was achieved from CVs at a scan rate of 10, and 200 mV s{sup -1}, respectively. The value of C{sub m} significantly gets lower from 265 to around 95 F g{sup -1} when the deposition charge increases from 0.2 to around 6.0 C cm{sup -2}. The long cycle-life and stability of the SnO{sub x} coatings on graphite via the presented cathodic deposition were also demonstrated. (author)

  12. Spectroscopic investigation of vacuum-arc anode plasmas for thin film deposition

    International Nuclear Information System (INIS)

    A vacuum-arc plasma source has been designed and tested for fabrication of thin films, which are clear of droplets. In order to avoid these droplets, the source has been designed to produce pulsed plasmas generated by the anode, and to screen the substrate against the plasma streaming away from the cathode spot. We present here spectroscopic measurements and analyses carried out in order to characterize the electron population of this anode plasma. The vacuum arc was first operated with a carbon anode of diameter 0.5 mm and an arc current of 192 A. The visible and near-infrared spectra were recorded with various resolutions, in direct view of the anode spot, with an intensified CCD camera. Dominant C+ and C2+ lines were identified and the plasma parameters deduced from their relative intensities showed that local thermal equilibrium was reached, giving an electron temperature about 3.2 eV and an electron density around 2.5x1017 cm-3. The study was extended to lower currents of 140, 92 and 65 A. The temperature and the density monotonically decreased down to about 2 eV and 1.5x1015 cm-3

  13. A fundamental study of chromium deposition on solid oxide fuel cell cathode materials

    Science.gov (United States)

    Tucker, Michael C.; Kurokawa, Hideto; Jacobson, Craig P.; De Jonghe, Lutgard C.; Visco, Steven J.

    Chromium contamination of metal oxides and SOFC cathode catalysts is studied in the range 700-1000 °C. Samples are exposed to a moist air atmosphere saturated with volatile Cr species in the presence and absence of direct contact between the sample and ferritic stainless steel powder. Chromium contamination of the samples is observed to occur via two separate pathways: surface diffusion from the stainless steel surface and vapor deposition from the atmosphere. Surface diffusion dominates in all cases. Surface diffusion is found to be a significant source of Cr contamination for LSM and LSCF at 700, 800, and 1000 °C. Vapor deposition of Cr onto LSCF was observed at each of these temperatures, but was not observed for LSM at 700 or 800 °C. Comparison of the behavior for LSM, LSCF, and single metal oxides suggests that Mn and Co, respectively, are responsible for the Cr contamination of these catalysts.

  14. Diamond-Like Carbon Film Deposition Using DC Ion Source with Cold Hollow Cathode

    Directory of Open Access Journals (Sweden)

    E. F. Shevchenko

    2014-01-01

    Full Text Available Carbon diamond-like thin films on a silicon substrate were deposited by direct reactive ion beam method with an ion source based on Penning direct-current discharge system with cold hollow cathode. Deposition was performed under various conditions. The pressure (12–200 mPa and the plasma-forming gas composition consisting of different organic compounds and hydrogen (C3H8, CH4, Si(CH32Cl2, H2, the voltage of accelerating gap in the range 0.5–5 kV, and the substrate temperature in the range 20–850°C were varied. Synthesized films were researched using nanoindentation, Raman, and FTIR spectroscopy methods. Analysis of the experimental results was made in accordance with a developed model describing processes of growth of the amorphous and crystalline carbon materials.

  15. Optimization of Weld Bead Parameters of Nickel Based Overlay Deposited by Plasma Transferred Arc Surfacing with Adequacy Test

    OpenAIRE

    Bhaskarananda Dasgupta; Pinaky Bhadury

    2014-01-01

    Plasma Transferred Arc surfacing is a kind of Plasma Transferred Arc Welding process. Plasma Transferred Arc surfacing (PTA) is increasingly used in applications where enhancement of wear, corrosion and heat resistance of materials surface is required. The shape of weld bead geometry affected by the PTA Welding process parameters is an indication of the quality of the weld. In this paper the analysis and optimization of weld bead parameters, during deposition of a Nickel based...

  16. Method of forming ultra thin film devices by vacuum arc vapor deposition

    Science.gov (United States)

    Schramm, Harry F. (Inventor)

    2005-01-01

    A method for providing an ultra thin electrical circuit integral with a portion of a surface of an object, including using a focal Vacuum Arc Vapor Deposition device having a chamber, a nozzle and a nozzle seal, depressing the nozzle seal against the portion of the object surface to create an airtight compartment in the chamber and depositing one or more ultra thin film layer(s) only on the portion of the surface of the object, the layers being of distinct patterns such that they form the circuit.

  17. Structure and mechanical properties of diamondlike carbon films produced by hollow-cathode plasma deposition

    International Nuclear Information System (INIS)

    Diamondlike carbon (DLC) films are deposited on AISI 304 stainless-steel substrates using hollow-cathode chemical vapor deposition. The effects of the substrate bias on the structural and mechanical properties of the films are studied. X-ray photoelectron spectroscopy reveals the existence of C=C (sp2) and C-C (sp3) functional groups in the films, and Raman spectra show that the ratio of the G (graphite) peak to the D (disorder) peak depends on the sample bias. The DLC film deposited at -50 V bias has the highest sp3 content, and this is consistent with the G-band position and D-band full width at half maximum as a result of substrate biasing. The sample bias also has a critical influence on the thickness and hardness of the deposited films. The largest thickness (1700 nm) and highest hardness (HV1099) are achieved at a bias voltage of -50 V. All the films show low friction coefficients, and the sample treated at -200 V gives rise to the lowest friction coefficient

  18. In situ plasma diagnostics study of a commercial high-power hollow cathode magnetron deposition tool

    International Nuclear Information System (INIS)

    Using a newly designed and built plasma diagnostic system, the plasma parameters were investigated on a commercial 200 mm high-power hollow cathode magnetron (HCM) physical vapor deposition tool using Ta target under argon plasma. A three dimensional (3D) scanning radio frequency (rf)-compensated Langmuir probe was constructed to measure the spatial distribution of the electron temperature (Te) and electron density (ne) in the substrate region of the HCM tool at various input powers (2-15 kW) and pressures (10-70 mTorr). The Te was in the range of 1-3 eV, scaling with decreasing power and decreasing pressure. Meanwhile, ne was in the range of 4x1010-1x1012 cm-3 scaling with increasing power and decreasing pressure. As metal deposits on the probe during the probe measurements, a self-cleaning plasma cup was designed and installed in the chamber to clean the tungsten probe tip. However, its effectiveness in recovering the measured plasma parameters was hindered by the metal layer deposited on the insulating probe tube which was accounted for the variation in the plasma measurements. Using a quartz crystal microbalance combined with electrostatic filters, the ionization fraction of the metal flux was measured at various input power of 2-16 kW and pressure of 5-40 mTorr. The metal ionization fraction reduced significantly with the increasing input power and decreasing gas pressure which were attributed to the corresponding variation in the ionization cross section and the residence time of the sputtered atoms in the plasma, respectively. Both the metal neutral and ion flux increased at higher power and lower pressure. The 3D measurements further showed that the ionization fraction decreased when moving up from the substrate to the cathode.

  19. Deposition of Functional Coatings Based on Intermetallic Systems TiAl on the Steel Surface by Vacuum Arc Plasma

    Science.gov (United States)

    Budilov, V.; Vardanyan, E.; Ramazanov, K.

    2015-11-01

    Laws governing the formation of intermetallic phase by sequential deposition of nano-sized layers coatings from vacuum arc plasma were studied. Mathematical modeling process of deposition by vacuum arc plasma was performed. In order to identify the structural and phase composition of coatings and to explain their physical and chemical behaviour XRD studies were carried out. Production tests of the hardened punching tools were performed.

  20. Process development for the manufacture of an integrated dispenser cathode assembly using laser chemical vapor deposition

    Science.gov (United States)

    Johnson, Ryan William

    2005-07-01

    Laser Chemical Vapor Deposition (LCVD) has been shown to have great potential for the manufacture of small, complex, two or three dimensional metal and ceramic parts. One of the most promising applications of the technology is in the fabrication of an integrated dispenser cathode assembly. This application requires the deposition of a boron nitride-molybdenum composite structure. In order to realize this structure, work was done to improve the control and understanding of the LCVD process and to determine experimental conditions conducive to the growth of the required materials. A series of carbon fiber and line deposition studies were used to characterize process-shape relationships and study the kinetics of carbon LCVD. These studies provided a foundation for the fabrication of the first high aspect ratio multi-layered LCVD wall structures. The kinetics studies enabled the formulation of an advanced computational model in the FLUENT CFD package for studying energy transport, mass and momentum transport, and species transport within a forced flow LCVD environment. The model was applied to two different material systems and used to quantify deposition rates and identify rate-limiting regimes. A computational thermal-structural model was also developed using the ANSYS software package to study the thermal stress state within an LCVD deposit during growth. Georgia Tech's LCVD system was modified and used to characterize both boron nitride and molybdenum deposition independently. The focus was on understanding the relations among process parameters and deposit shape. Boron nitride was deposited using a B3 N3H6-N2 mixture and growth was characterized by sporadic nucleation followed by rapid bulk growth. Molybdenum was deposited from the MoCl5-H2 system and showed slow, but stable growth. Each material was used to grow both fibers and lines. The fabrication of a boron nitride-molybdenum composite was also demonstrated. In sum, this work served to both advance the

  1. The Chahnaly low sulfidation epithermal gold deposit, western Makran volcanic arc, southeastern Iran

    Science.gov (United States)

    Sholeh, Ali; Rastad, Ebrahim; Huston, David L.; Gemmell, J. Bruce; Taylor, Ryan D.

    2016-01-01

    The Chahnaly low-sulfidation epithermal Au deposit and nearby Au prospects are located northwest of the intermittently active Bazman stratovolcano on the western end of the Makran volcanic arc, which formed as the result of subduction of the remnant Neo-Tethyan oceanic crust beneath the Lut block. The arc hosts the Siah Jangal epithermal and Kharestan porphyry prospects, near Taftan volcano, as well as the Saindak Cu-Au porphyry deposit and world-class Reko Diq Cu-Au porphyry deposit, near Koh-i-Sultan volcano to the east-northeast in Pakistan. The host rocks for the Chahnaly deposit include early Miocene andesite and andesitic volcaniclastic rocks that are intruded by younger dacitic domes. Unaltered late Miocene dacitic ignimbrites overlie these rocks. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb zircon geochronology data yield ages between 21.8 and 9.9 Ma for the acidic-intermediate regional volcanism. The most recent volcanic activity of the Bazman stratovolcano involved extrusion of an olivine basalt during Pliocene to Quaternary times. Interpretation of geochemical data indicate that the volcanic rocks are synsubduction and calc-alkaline to subalkaline. The lack of a significant negative Eu anomaly, a listric-shaped rare earth element pattern, and moderate La/Yb ratios of host suites indicate a high water content of the source magma.

  2. Measuring the ion flux to the deposition substrate in the hollow Cathode plasma jet

    Czech Academy of Sciences Publication Activity Database

    Virostko, Petr; Hubička, Zdeněk; Čada, Martin; Adámek, Petr; Kment, Štěpán; Tichý, M.; Jastrabík, Lubomír

    Melville, New York : American Instritute of Physics, 2008 - (Hartfuss, H.; Dudeck, M.; Muslelok, J.; Sadowski, M.), s. 427-430 ISBN 978-0-7354-0512-7. - (AIP Conference Proceedings. 993). [International Conference on Research and Applications of Plasmas, German-Polish Conference on Plasma Diagnostics for Fusion and Laboratory /4./ and French-Polish Seminar on Thermal Plasma in Space and Laboratory /6./. Greifswald (DE), 16.10.2007-19.10.2007] R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002; GA AV ČR KAN400720701; GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z10100522 Keywords : hollow cathode * plasma jet * ion flux * deposition of thin films Subject RIV: BM - Solid Matter Physics ; Magnetism

  3. Performance and preparation of tungsten coatings deposited onto graphite substrate by multi-arc ion plating

    International Nuclear Information System (INIS)

    Due to its high melting point, low sputtering rate and low tritium retention properties, tungsten is considered as a promising candidate material for plasma facing materials in fusion devices. Tungsten coating was deposited onto high-purity graphite substrate by multi-arc ion plating. The tungsten coating was characterized by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM) and 3D laser scanning microscope. The results indicate that: The thickness of tungsten coating is in the range of 3μm-10μm. The results of XRD show that the oriented crystal growth of the coatings occurred along (110) crystal plane. The multi-arc ion plating method yield excellent coverage of the graphite surface, even in the open pores of the substrate. The coating is dense and homogeneous. The bond between graphite and the coating was relatively dense. The average surface roughness of the coatings is about 1.2μm. (authors)

  4. Metal Matrix Composites Deposition in Twin Wire Arc Spraying Utilizing an External Powder Injection Composition

    Science.gov (United States)

    Tillmann, W.; Abdulgader, M.; Hagen, L.; Nellesen, J.

    2014-01-01

    The powder injection parameters, the location of the injection port, as well as the metal matrix composites are important features, which determine the deposition efficiency and embedding behavior of hard materials in the surrounding matrix of the twin wire arc-spraying process. This study investigates the applicability of external powder injection and aims to determine whether the powder injection parameters, the location, and the material combination (composition of the matrix as well as hard material) need to be specifically tailored. Therefore, the position of the injection port in relation to the arc zone was altered along the spraying axis and perpendicular to the arc. The axial position of the injection port determines the thermal activation of the injected powder. An injection behind the arc, close to the nozzle outlet, seems to enhance the thermal activation. The optimal injection positions of different hard materials in combination with zinc-, nickel- and iron-based matrices were found to be closer to the arc zone utilizing a high-speed camera system. The powder size, the mass of the particle, the carrier gas flow, and the electric insulation of the hard material affect the perpendicular position of the radial injection port. These findings show that the local powder injection, the wetting behavior of particles in the realm of the molten pool as well as the atomization behavior of the molten pool all affect the embedding behavior of the hard material in the surrounded metallic matrix. Hardness measurement by means of nanoindentation and EDX analysis along transition zones were utilized to estimate the bonding strength. The observation of a diffusion zone indicates a strong metallurgical bonding for boron carbides embedded in steel matrix.

  5. Investigation of micro-structure and micro-hardness properties of 304L stainless steel treated in a hot cathode arc discharge plasma

    International Nuclear Information System (INIS)

    We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N2 and 30% H2 gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples

  6. Investigation of micro-structure and micro-hardness properties of 304L stainless steel treated in a hot cathode arc discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Hitendra K., E-mail: hkmalik@physics.iitd.ac.in [Department of Physics, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Singh, Omveer [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Dahiya, Raj P. [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Deenbandhu Chhotu Ram University of Science and Technology, Murthal–131039 (India)

    2015-08-28

    We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N{sub 2} and 30% H{sub 2} gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples.

  7. Preparation of Pt deposited nanotubular TiO2 as cathodes for enhanced photoelectrochemical hydrogen production using seawater electrolytes

    International Nuclear Information System (INIS)

    The purpose of this study was to develop effective cathodes to increase the production of hydrogen and use the seawater, an abundant resource in the earth as the electrolyte in photoelectrochemical systems. In order to fabricate the Pt/TiO2 cathodes, various contents of the Pt precursor (0-0.4 wt%) deposited by the electrodeposition method were used. On the basis of the hydrogen evolution rate, 0.2 wt% Pt/TiO2 was observed to exhibit the best performance among the various Pt/TiO2 cathodes with the natural seawater and two concentrated seawater electrolytes obtained from single (nanofiltration) and combined membrane (nanofiltration and reverse osmosis) processes. The surface characterizations exhibited that crystal structures and morphological properties of Pt and TiO2 found the results of XRD pattern and SEM/TEM images, respectively. - Graphical abstract: On the basis of photoelectrochemical hydrogen production, 0.2 wt% Pt/TiO2 was observed to exhibit the best performance among the various Pt/TIO2 cathodes with natural seawater. In comparison of hydrogen evolution rate with various seawater electrolytes, 0.2 wt% Pt/TiO2 was found to show the better performance as cathode with the concentrated seawater electrolytes obtained from membrane. Highlights: → Pt deposited TiO2 electrodes are used as cathode in PEC H2 production. → Natural and concentrated seawater by membranes are used as electrolytes in PEC. → Pt/TiO2 shows a good performance as cathode with seawater electrolytes. → H2 evolution rate increases with more concentrated seawater electrolyte. → Highly saline seawater is useful resource for H2 production.

  8. High photoelectron emission from Co-diffused MgO deposited using arc plasma gun

    Science.gov (United States)

    Yamamoto, Shin-ichi; Kosuga, Hiroki

    2015-08-01

    MgO has several advantageous characteristics and has been applied in various fields. In this study, we deposited Co nanoparticles in an island pattern on a Si substrate using an arc plasma gun (APG). We subsequently formed a MgO thin film on this substrate by metal-organic decomposition (MOD), which enables the formation of films in the atmosphere, thereby yielding a double-layer structure. The MgO thin film formed on Co nanoparticles deposited using the APG with 500 pulses of arc discharge exhibited improved crystallinity and photoelectron emission at least threefold higher than that of a MgO thin film formed directly without depositing Co nanoparticles. Although the transmittance of the specimen formed by depositing Co nanoparticles was initially 30% or lower, it increased to greater than 90% after the formation of the MgO thin film and the dispersion of the Co nanoparticles in the MgO thin film during heat treatment at 900 °C. Our results clarify that the characteristics of MgO thin films are markedly improved by depositing Co nanoparticles before forming the films. The results of Kelvin probe force microscopy (KPFM) indicate that the outermost surface of the Co material had become CoO (cobalt oxide) with the dispersion of Co nanoparticles in the MgO thin film. The lattice parameter of CoO nanoparticles (an-axis lattice parameter of 4.2615 Å) after heating matches well with that of MgO (4.2126 Å). The MgO thin films that grew in conjunction with the CoO nanoparticles were highly crystallized. We successfully established a high-performance, cost-effective bottom-up process that requires no ion injection by dispersing Co nanoparticles in a MgO thin film through heat treatment.

  9. 小电流下真空电弧阴极斑点实验研究%Experimental research on vacuum arc cathode spots in small current

    Institute of Scientific and Technical Information of China (English)

    徐国顺; 吴国林; 庄劲武; 武瑾

    2015-01-01

    A cathode spots research platform which was based on vacuum arcing chamber was con‐structed ,the contacts material was CuCr50 ,the maximum distance was 4 .5 mm .Through high‐speed camera on the cathode spots ,a lot of small current vacuum arc cathode spots observation experiments were performed . Analysis found that cathode spots usually consist of multiple micro spots , these spots stay together and form a micro‐spot group .The current range of a single micro spot is from 7 A to 25 A .The upper limit current of a single cathode spot is 100 A .Along with the increase of current , the division of the micro‐spot group will be more and more obvious ,and eventually evolve into two in‐dependent cathode spots .%构建了基于可拆卸真空灭弧室的真空电弧阴极斑点研究平台,触头材料为CuCr50,极间最大开距4.5 mm .在极间无磁场影响的情况下,通过高速摄像机对阴极斑点进行拍摄,进行了大量小电流下阴极斑点的观测实验.结果发现:阴极斑点通常由多个微斑点组成,这些微斑点聚集在一起,形成一个微斑点群;单个微斑点的维持通流范围为7~25 A ;单个阴极斑点的通流上限为100 A ;随着电流的增大,单个阴极斑点会出现越来越明显的分裂现象,最终演变为两个相互独立的阴极斑点.

  10. Phase determination of filtered vacuum arc deposited TiO2 thin films by optical modeling

    International Nuclear Information System (INIS)

    Thin films of TiO2 were produced using filtered vacuum arc deposition. Arc currents were 275, 300, 325 A, and the oxygen pressure during deposition was 0.93 Pa. The substrates were glass microscope slides, at temperatures of 25 oC (RT), 200 oC, and 400 oC. Film thickness was in the range 100 to 250 nm, depending on the deposition conditions. Film structure and chemical composition were determined using XRD and XPS analyses, respectively. As-deposited films were amorphous, except to two samples that were found to be crystalline (deposited with 300 A, 325 A at 400 oC), and the crystalline phase was close to that of anatase. All of the films were partially crystallized by annealing in air at 450 oC for 1 h. The O:Ti atomic concentration ratio was in the range 1.6:1-2:1, independent of deposition conditions. The optical parameters, refractive index and the extinction coefficient of the films were determined using variable angle spectroscopic ellipsometry. In addition, the optical transmission of the films were determined in the UV-VIS and IR regions. The average optical transmission in the VIS spectrum was 70-85%, affected by the interference in the film with 90% maxima and 60% minima. The refractive index at λ = 550 nm was in the range 2.4 to 2.7, depending on the deposition conditions and annealing. Using the semi-empirical model of Wemple and DiDomenico for the dielectric function below the interband absorption edge of ionic and covalent solids, the dispersion energy parameters of TiO2 (Eo, Ed) were calculated. The underlying structural order of the amorphous films was inferred by comparing the dispersion energy parameters of the amorphous films with those of crystalline TiO2. As expected, the refractive index of the amorphous films depended on the underlying phase of the film. The optical analyses indicated that the underlying phase of the amorphous films deposited on RT substrates was close to anatase, whereas the underlying phase of the amorphous films deposited

  11. Structural investigation of two carbon nitride solids produced by cathodic arc deposition and nitrogen implantation

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, A.R.; McCulloch, D.; McKenzie, D.R.; Yin, Y.; Gerstner, E.G. [New South Wales Univ., Kensington, NSW (Australia)

    1996-12-31

    Carbon nitride materials have been the focus of research efforts worldwide. Most materials studied have been amorphous, with only a few groups claiming to have found a crystalline material. In this paper, carbon nitride materials prepared by two different techniques are analysed, and found to be remarkably similar in bonding and structure. The materials appear to have a primarily sp{sup 2} bonded carbon structure with a lower bond length than found in an amorphous carbon. This is explained by nitrogen substituting into `rings` to a saturation level of about one nitrogen per three carbon atoms. No evidence was found for a crystalline structure of formula C{sub 3}N{sub 4}, or any amorphous derivative of it. 16 refs., 1 tab., 5 figs.

  12. Structural investigation of two carbon nitride solids produced by cathodic arc deposition and nitrogen implantation

    International Nuclear Information System (INIS)

    Carbon nitride materials have been the focus of research efforts worldwide. Most materials studied have been amorphous, with only a few groups claiming to have found a crystalline material. In this paper, carbon nitride materials prepared by two different techniques are analysed, and found to be remarkably similar in bonding and structure. The materials appear to have a primarily sp2 bonded carbon structure with a lower bond length than found in an amorphous carbon. This is explained by nitrogen substituting into 'rings' to a saturation level of about one nitrogen per three carbon atoms. No evidence was found for a crystalline structure of formula C3N4, or any amorphous derivative of it. 16 refs., 1 tab., 5 figs

  13. Microstructural Evolution and Mechanical Properties of Inconel 625 Alloy during Pulsed Plasma Arc Deposition Process

    Institute of Scientific and Technical Information of China (English)

    Fujia Xu; Yaohui Lv; Yuxin Liu; Fengyuan Shu; Peng He; Binshi Xu

    2013-01-01

    Pulsed plasma arc deposition (PPAD),which combines pulsed plasma cladding with rapid prototyping,is a promising technology for manufacturing near net shape components due to its superiority in cost and convenience of processing.In the present research,PPAD was successfully used to fabricate the Ni-based superalloy Inconel 625 components.The microstructures and mechanical properties of deposits were investigated by scanning electron microscopy (SEM),optical microscopy (OM),transmission electron microscopy (TEM) with energy dispersive spectrometer (EDS),microhardness and tensile testers.It was found that the as-deposited structure exhibited homogenous columnar dendrite structure,which grew epitaxially along the deposition direction.Moreover,some intermetallic phases such as Laves phase,minor MC (NbC,TiC) carbides and needle-like δ-Ni3Nb were observed in γ-Ni matrix.Precipitation mechanism and distribution characteristics of these intermetallic phases in the as-deposited 625 alloy sample were analyzed.In order to evaluate the mechanical properties of the deposits,microhardness was measured at various location (including transverse plane and longitudinal plane).The results revealed hardness was in the range of 260-285 HVo.2.In particular,microhardness at the interface region between two adjacent deposited layers was slightly higher than that at other regions due to highly refined structure and the disperse distribution of Laves particles.Finally,the influence of precipitation phases and fabrication strategies on the tensile properties of the as-deposited samples was investigated.The failure modes of the tensile specimens were analyzed with fractography.

  14. Fabrication of gradient porous LSM cathode by optimizing deposition parameters in ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Multiple-step ultrasonic spray pyrolysis was developed to produce a gradient porous lanthanum strontium manganite (LSM) cathode on yttria-stabilized zirconia (YSZ) electrolyte for use in intermediate temperature solid oxide fuel cells (IT-SOFCs). The effect of solvent and precursor type on the morphology and compositional homogeneity of the LSM film was first identified. The LSM film prepared from organo-metallic precursor and organic solvent showed a homogeneous crack-free microstructure before and after heat treatment as opposed to aqueous solution. With respect to the effect of processing parameters, increasing the temperature and solution flow rate in the specific range of 520-580 deg. C leads to change the microstructure from a dense to a highly porous structure. Using a dilute organic solution a nanocrystalline thin layer was first deposited at 520 deg. C and solution flow rate of 0.73 ml/min on YSZ surface; then, three gradient porous layers were sprayed from concentrated solution at higher temperatures (540-580 deg. C) and solution flow rates (1.13-1.58 ml/min) to form a gradient porous LSM cathode film with ∼30 μm thickness. The microstructure, phase crystallinity and compositional homogeneity of the fabricated films were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive analysis of X-ray (EDX). Results showed that the spray pyrolized gradient film fabricated in the temperature range of 520-580 deg. C is composed of highly crystalline LSM phase which can remove the need for subsequent heat treatment

  15. Properties of SnO2 coatings fabricated on polymer substrates using filtered vacuum arc deposition

    International Nuclear Information System (INIS)

    Transparent conducting SnO2 coatings of 0.16-1.2 μm thickness were deposited on polymer substrates using filtered vacuum arc deposition. Mechanical and electro-optical properties of the coatings were investigated. Surface topography, nano-indentation hardness and nano-scratch resistance were studied using an atomic force microscope equipped with a diamond pyramid tip. Electrical sheet conductivity and optical transmission were studied as a function of the coating thickness. The surface nanohardness of SnO2 coated polymer samples was larger by at least an order of magnitude than that of the bare polymer surfaces. Transparent and conducting SnO2 coatings reduced the light-load scratch wear rate of the polymer substrates by two to three orders of magnitude, while providing optical transmission and electrical conductivity. This combination of properties would be useful for fabricating transparent scratch resistant coatings for vehicle and aircraft windows

  16. Structure and microtribological characteristics of laser-arc deposited TiB2 thin film

    Institute of Scientific and Technical Information of China (English)

    CAO Xiankun; SHAO Tianmin; WEN Shizhu; QING Tao; QI Feng

    2004-01-01

    TiB2 thin film was deposited by laser-arc deposition method on the surface of single crystalline silicon. The morphology, composition, structure and microtribological properties of the film were studied by using XPS, XRD and atomic force/friction force microscope (AFM/FFM). The results show that TiB2 (100) preferred growth on the Si(100)substrate, TiB2(001) preferred growth on the Si(111) substrate. The TiB2 thin film was composed of TiB2 and a small amount of TiO2. The friction coefficient of TiB2 film on substrates Si (100) and Si(111) in microtribological process were 0.087 and 0.073,respectively. TiB2 thin film displayed distinct ability of anti-scratch and wear-resistance.

  17. Effects of deposition parameters on microstructure and thermal conductivity of diamond films deposited by DC arc plasma jet chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    QU Quan-yan; QIU Wan-qi; ZENG De-chang; LIU Zhong-wu; DAI Ming-jiang; ZHOU Ke-song

    2009-01-01

    The uniform diamond films with 60 mm in diameter were deposited by improved DC arc plasma jet chemical vapor deposition technique. The structure of the film was characterized by scanning electronic microcopy(SEM) and laser Raman spectrometry. The thermal conductivity was measured by a photo thermal deflection technique. The effects of main deposition parameters on microstructure and thermal conductivity of the films were investigated. The results show that high thermal conductivity, 10.0 W/(K-cm), can be obtained at a CH4 concentration of 1.5% (volume fraction) and the substrate temperatures of 880-920 ℃ due to the high density and high purity of the film. A low pressure difference between nozzle and vacuum chamber is also beneficial to the high thermal conductivity.

  18. Search for novel amorphous alloys with high crystallization temperature by combinatorial arc plasma deposition

    International Nuclear Information System (INIS)

    This paper describes a combinatorial search for novel amorphous alloys with high crystallization temperatures (Tx) using combinatorial arc plasma deposition (CAPD). The CAPD technique can deposit 1089 (33 x 33) thin film samples with different compositions on a substrate at one time. These 1089 samples on the substrate are individually referred to as CAPD samples and collectively referred to as a thin film library. Thin film libraries of Ir-Zr-Fe, Ir-Zr-Al, Mo-Zr-Al, Mo-Zr-Si, Ru-Zr-Fe and Ru-Zr-Si were deposited by CAPD. The compositions and phases of the CAPD samples were measured by energy dispersive X-ray fluorescence spectrometry and X-ray diffractometry, respectively. The results revealed that each library included amorphous CAPD samples. Since it is impossible to measure the Tx, fracture strength, fracture strain and Young's modulus of the CAPD samples by conventional measurement methods, larger samples having the same compositions as the amorphous CAPD samples were fabricated by a sputtering system. Since all CAPD samples of Ir-Zr-Fe and Ir-Zr-Al were too brittle, their corresponding sputter-deposited samples were not prepared. Sputter-deposited Mo-Zr-Al, Mo-Zr-Si, Ru-Zr-Fe and Ru-Zr-Si samples with ∼50 at.% Mo- or Ru-content were fabricated, and Tx and mechanical properties of these sputter-deposited samples were evaluated. All the sputter-deposited samples of Mo-Zr-Al and Mo-Zr-Si showed high Tx exceeding 973 K and as well as brittle characteristics. Ru50Zr35Fe10 samples showed high Tx exceeding 1273 K and a low fracture strength of 0.26 GPa. Samples of Ru51Zr5Si44 showed a high Tx of 923 K and a high fracture strength of 1.25 GPa

  19. Unified model to the Tungsten inert Gas welding process including the cathode, the plasma and the anode; Modele couple cathode-plasma-piece en vue de la simulation du procede de soudage a l'arc TIG

    Energy Technology Data Exchange (ETDEWEB)

    Brochard, M.

    2009-06-15

    During this work, a 2D axially symmetric model of a TIG arc welding process had been developed in order to predict for given welding parameters, the needed variables for a designer of welded assembly: the heat input on the work piece, the weld pool geometry,... The developed model, using the Cast3M finite elements software, deals with the physical phenomena acting in each part of the process: the cathode, the plasma, the work piece with a weld pool, and the interfaces between these parts. To solve this model, the thermohydraulics equations are coupled with the electromagnetic equations that are calculated in part using the least squares finite element method. The beginning of the model validation consisted in comparing the results obtained with the ones available in the scientific literature. Thus, this step points out the action of each force in the weld pool, the contribution of each heat flux in the energy balance. Finally, to validate the model predictiveness, experimental and numerical sensitivity analyses were conducted using a design of experiments approach. The effects of the process current, the arc gap and the electrode tip angle on the weld pool geometry and the energy transferred to the work piece and the arc efficiency were studied. The good agreement obtained by the developed model for these outputs shows the good reproduction of the process physics. (author)

  20. Magmatism and Epithermal Gold-Silver Deposits of the Southern Ancestral Cascade Arc, Western Nevada and Eastern California

    Science.gov (United States)

    John, David A.; du Bray, Edward A.; Henry, Christopher D., (compiler); Vikre, Peter

    2015-01-01

    Many epithermal gold-silver deposits are temporally and spatially associated with late Oligocene to Pliocene magmatism of the southern ancestral Cascade arc in western Nevada and eastern California. These deposits, which include both quartz-adularia (low- and intermediate-sulfidation; Comstock Lode, Tonopah, Bodie) and quartz-alunite (high-sulfidation; Goldfield, Paradise Peak) types, were major producers of gold and silver. Ancestral Cascade arc magmatism preceded that of the modern High Cascades arc and reflects subduction of the Farallon plate beneath North America. Ancestral arc magmatism began about 45 Ma, continued until about 3 Ma, and extended from near the Canada-United States border in Washington southward to about 250 km southeast of Reno, Nevada. The ancestral arc was split into northern and southern segments across an inferred tear in the subducting slab between Mount Shasta and Lassen Peak in northern California. The southern segment extends between 42°N in northern California and 37°N in western Nevada and was active from about 30 to 3 Ma. It is bounded on the east by the northeast edge of the Walker Lane. Ancestral arc volcanism represents an abrupt change in composition and style of magmatism relative to that in central Nevada. Large volume, caldera-forming, silicic ignimbrites associated with the 37 to 19 Ma ignimbrite flareup are dominant in central Nevada, whereas volcanic centers of the ancestral arc in western Nevada consist of andesitic stratovolcanoes and dacitic to rhyolitic lava domes that mostly formed between 25 and 4 Ma. Both ancestral arc and ignimbrite flareup magmatism resulted from rollback of the shallowly dipping slab that began about 45 Ma in northeast Nevada and migrated south-southwest with time. Most southern segment ancestral arc rocks have oxidized, high potassium, calc-alkaline compositions with silica contents ranging continuously from about 55 to 77 wt%. Most lavas are porphyritic and contain coarse plagioclase

  1. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  2. Impedance analysis of nano thickness layered AlGaN acoustic sensor deposited by thermionic vacuum arc

    Science.gov (United States)

    Özen, Soner; Bilgiç, Eyüp; Gülmez, Gülay; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan; Mohammadigharehbagh, Reza

    2016-03-01

    In this study, AlGaN acoustic sensor was deposited on aluminum metal substrate by thermionic vacuum arc (TVA) method for the first time. Gallium materials are used in many applications for optoelectronic device and semiconductor technology. Thermionic vacuum arc is the deposition technology for the variously materials and applications field. The thickness of the acoustic sensor is in deposited as nano layer. Impedance analyses were realized. Also, TVA production parameters and some properties of the deposited layers were investigated. TVA is a fast deposition technology for the gallium compounds and doped gallium compounds. Obtained results show that AlGaN materials are very promising materials. Moreover, these acoustic sensors have been produced by TVA technology.

  3. Deposition of TiN, TiC, and TiO2 films by filtered arc evaporation

    International Nuclear Information System (INIS)

    A filtered arc deposition process was used in the reactive deposition of macroparticle-free TiO2, TiN, and TiC films. The TiO2 films were reactively deposited by arc evaporation of titanium in an oxygen atmosphere. The films deposited onto glass substrates heated to 350degC had a rutile structure and a refractive index n633 of 2.735 and extinction coefficient k633 of 0.07. Films of TiN and TiC were prepared by reactive evaporation in nitrogen and methane respectively. The lattice parameters and preferred orientations of the deposited films were measured as a function of negative substrate bias. The films were characterized by microhardness measurements, X-ray photoelectron spectroscopy and X-ray diffraction. (orig.)

  4. Electrochemical Deposition and Characterization of Ni-Mo Alloys as Cathode for Alkaline Water Electrolysis

    Science.gov (United States)

    Manazoğlu, Mert; Hapçı, Gökçe; Orhan, Gökhan

    2016-01-01

    In this study, Ni-Mo alloy coatings were electrochemically deposited on a copper plate in citrate solutions. The effects of Ni/Mo mole ratio in the electrolyte and pH value on hydrogen evolution reaction (HER) as well as the electrochemical stability were investigated in the alkaline solution for electrodeposited NiMo. The electrocatalytic activity of the fabricated NiMo alloys for HER in alkaline solutions was investigated by the polarization measurements and electrochemical impedance spectroscopy techniques. The morphology and chemical composition of the electrodeposited Ni-Mo were investigated using SEM and EDS analyses. It was found that NiMo electrode with the highest molybdenum content (ca. 38 wt.%) and high surface area show high electrocatalytic activity in the HER. This was produced from a bath with a pH of 9.5, Ni/Mo ratio of 1/10 and 0.5 M sodium citrate concentration. The stability of this coating was tested by polarization measurements after different anodic and cathodic treatment in 1 M NaOH solution. The open circuit potential ( E ocp) of the electrode as a function of immersion time was also measured.

  5. Decontamination of stainless steel covered with radioactive iron oxide deposit using cathodic polarization and ultra-sonic vibration

    International Nuclear Information System (INIS)

    The most effective method for reduction of radio activity in BWR nuclear power plants is to remove the iron oxide deposits on cooling pipes. The dissolution behavior of Fe3O4 deposits on the stainless steel were studied in the EDTA solution by means of cathodic polarization and ultra sonic vibration. The dissolution rates of deposits were determined by the decontamination factor (DF) calculated from the radio activity change. Dissolution rate of deposits were dependent on the electrode potential in the less noble range than their rest potentials of stainless steel. The potential at the highest dissolution rate was -1.0 V vs. SCE in the electrolyte at 80 0C. But the time variation of DF showed that the DF ceased from increasing at some intermediate values. This is perhaps because the current hardly flows to the deposits in a narrow crevice. Therefore, for the dissolution of deposits on stainless steel, it became clear that the successive vibration by ultra-sonic after treating by cathodic polarization is effective. (author)

  6. X-ray elastic constants of chromium nitride films deposited by arc-ion plating

    International Nuclear Information System (INIS)

    Thin films have been successfully utilized to improve the property of mechanical components. However, it is generally known that mechanical properties, such as elastic constants and tensile strength of thin films, are different from those of bulk material, and they are not known in the present state. In many times, x-ray stress measurement revealed a very high compressive residual stress state in the film when bulk elastic constants were used in the stress calculation. The purpose of this research is to investigate the elastic constants of chromium nitride (CrN) films. The film was deposited on austenitic stainless steel (JIS: SUS304) substrates by the arc-ion-plating (AIP) method under the following conditions: the pressure of nitrogen atmosphere was maintained at 2.63 Pa, the substrate temperature of about 573 K, the arc discharge current of 100 A, the bias voltage between -300 and -100 V, and the substrate rotating rate at 3 rpm. The lattice strain of CrN films was measured by x-ray method at various loading stages and the x-ray elastic constants of CrN films were evaluated

  7. GaN thin film deposition on glass and PET substrates by thermionic vacuum arc (TVA)

    Energy Technology Data Exchange (ETDEWEB)

    Pat, Suat, E-mail: suatpat@ogu.edu.tr [Eskisehir Osmangazi University, Physics Department, 26480 (Turkey); Korkmaz, Şadan; Özen, Soner [Eskisehir Osmangazi University, Physics Department, 26480 (Turkey); Şenay, Volkan [Bayburt University, Primary Science Education Department, 69000 (Turkey)

    2015-06-01

    In this paper, GaN thin film production was realized by thermionic vacuum arc (TVA), a plasma deposition technique, for the first time. We present a new deposition mechanism for GaN thin films with a very short production time. Microstructure properties of samples were analyzed by X-ray diffractometry. The peak at 2θ = 72.88° corresponding to GaN (0004) was detected in XRD spectra. The surface morphology of the deposited GaN films was analyzed using field emission scanning electron microscopy and atomic force microscopy. The surface properties of the produced samples are quite different. The average roughness values were determined to be 0.48 nm for GaN/PET and 1.17 nm for GaN/glass. The optical properties (i.e., refractive index and reflection) were determined using an interferometer. Moreover, the obtained optical data were compared with bulk GaN materials. The refractive indexes were measured as 2.2, 3,0 and 2,5 for the GaN/glass, GaN/PET and bulk GaN, respectively. The transparencies of the different GaN-coated substrates are nearly the same. The obtained band gap values were measured in the energy range of 3.3–3.5 eV. TVA is a novel non-reactive plasma technique for the generation of metal organic thin films. The main advantage of this method is its fast deposition rate without any loss in the quality of the films. - Highlights: • A new GaN thin film growth method is introduced. • Microstructure, surface and optical properties were characterized. • GaN/glass and GaN/PET were produced by a different plasma deposition method.

  8. GaN thin film deposition on glass and PET substrates by thermionic vacuum arc (TVA)

    International Nuclear Information System (INIS)

    In this paper, GaN thin film production was realized by thermionic vacuum arc (TVA), a plasma deposition technique, for the first time. We present a new deposition mechanism for GaN thin films with a very short production time. Microstructure properties of samples were analyzed by X-ray diffractometry. The peak at 2θ = 72.88° corresponding to GaN (0004) was detected in XRD spectra. The surface morphology of the deposited GaN films was analyzed using field emission scanning electron microscopy and atomic force microscopy. The surface properties of the produced samples are quite different. The average roughness values were determined to be 0.48 nm for GaN/PET and 1.17 nm for GaN/glass. The optical properties (i.e., refractive index and reflection) were determined using an interferometer. Moreover, the obtained optical data were compared with bulk GaN materials. The refractive indexes were measured as 2.2, 3,0 and 2,5 for the GaN/glass, GaN/PET and bulk GaN, respectively. The transparencies of the different GaN-coated substrates are nearly the same. The obtained band gap values were measured in the energy range of 3.3–3.5 eV. TVA is a novel non-reactive plasma technique for the generation of metal organic thin films. The main advantage of this method is its fast deposition rate without any loss in the quality of the films. - Highlights: • A new GaN thin film growth method is introduced. • Microstructure, surface and optical properties were characterized. • GaN/glass and GaN/PET were produced by a different plasma deposition method

  9. Friction and wear of TiCN coatings deposited by filtered arc

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S.W.; Ng, K.; Samandi, M. [Wollongong Univ. NSW (Australia). Department of Materials Engineering

    1998-06-01

    A series of macroparticle-free TiN, TiCN and TiC coatings were deposited on 316 austenitic stainless steel using a titanium target in a filtered arc deposition system and reactive mixtures of CH4 and N2 gases. The microhardness of the coatings were measured by using an Ultra Microhardness Indentation System (UMIS-2000). The wear and friction of the coatings were assessed under controlled test conditions in a pin-on-disc tribometer. The results show a significant increase in microhardness and wear resistance as the CH4 :N2 gas flow rate ratio is increased. At lower load (14N), all coatings exhibited low friction and wear. At higher load (25N), the higher carbon content TiCN and TiC coatings showed a much lower friction and wear compared to TiN and low carbon TiCN. The topographical examination of coatings and worn surfaces established that the self-lubricating effect of the carbonaceous particles condensed from the plasma during the deposition was primarily responsible for the low friction and wear regime. (authors). Extended abstract. 6 refs., 1 tab., 2 figs.

  10. Friction and wear of TiCN coatings deposited by filtered arc

    International Nuclear Information System (INIS)

    A series of macroparticle-free TiN, TiCN and TiC coatings were deposited on 316 austenitic stainless steel using a titanium target in a filtered arc deposition system and reactive mixtures of CH4 and N2 gases. The microhardness of the coatings were measured by using an Ultra Microhardness Indentation System (UMIS-2000). The wear and friction of the coatings were assessed under controlled test conditions in a pin-on-disc tribometer. The results show a significant increase in microhardness and wear resistance as the CH4 :N2 gas flow rate ratio is increased. At lower load (14N), all coatings exhibited low friction and wear. At higher load (25N), the higher carbon content TiCN and TiC coatings showed a much lower friction and wear compared to TiN and low carbon TiCN. The topographical examination of coatings and worn surfaces established that the self-lubricating effect of the carbonaceous particles condensed from the plasma during the deposition was primarily responsible for the low friction and wear regime. (authors)

  11. Multi-layer Ti-based Coating Obtained by Arc PVD Method

    OpenAIRE

    Pavlov, Konstantin; Gorchakov, Konstantin; Gorchakova, Svetlana; Salojoki, Kari; Barchenko, Vladimir; Sokolov, Aleksandr

    2013-01-01

    We report the obtaining and primary studies of ~ 250microns thick multi-layer Ti-based protective coating deposited at high cooling rate from substance generated by cathode arc discharge in vacuum. High adhesion to steel substrate was attained through prior Arc plasma generator cleaning and successive Ion Bombardment method. All three arc-generated fractions including mainly droplet, vapour and ions have been utilised to form the coating. Obtained coating features pore-free, least defects and...

  12. Atomic layer deposition of amorphous iron phosphates on carbon nanotubes as cathode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    A non-aqueous approach was developed to synthesize iron phosphate cathode materials by the atomic layer deposition (ALD) technique. Deposition of iron phosphate thin films was achieved on nitrogen-doped carbon nanotubes (NCNTs) by combining ALD subcycles of Fe2O3 (ferrocene-ozone) and POx (trimethyl phosphate-water) at 200 – 350 °C. The thickness of iron phosphate thin films depends linearly on the ALD cycle, indicating their self-limiting growth behavior. The growth per cycle of iron phosphate thin films was determined to be ∼ 0.2, 0.4, 0.6, and 0.5 Å, at 200, 250, 300, and 350 °C, respectively. Characterization by SEM, TEM, and HRTEM techniques revealed uniform and conformal coating of amorphous iron phosphates on the surface of NCNTs. XANES analysis confirmed Fe−O−P bonding in the iron phosphates prepared by ALD. Furthermore, electrochemical measurement verified the high electrochemical activity of the amorphous iron phosphate as a cathode material in lithium-ion batteries. It is expected that the amorphous iron phosphate prepared by this facile and cost-effective ALD approach will find applications in the next generation of lithium-ion batteries and thin film batteries as either cathode materials or surface coating materials

  13. The deposition of titanium dioxide nanoparticles by means of a hollow cathode plasma jet in dc regime

    Science.gov (United States)

    Perekrestov, R.; Kudrna, P.; Tichý, M.

    2015-06-01

    TiO2 nanoparticles are being investigated in this work. Nanoparticles were obtained in Ar plasma on monocrystaline Si(111) substrate by means of a gas-phase deposition using a low pressure hollow cathode plasma jet. The material of the cathode is pure titanium. Oxygen was introduced separately from argon through an inlet in the chamber. The nanoparticle growth mechanism is qualitatively discussed. The morphology of the surfaces of thin films was investigated by an atomic force microscope. The chemical composition of the thin films was investigated by means of an energy-dispersive x-ray analysis and x-ray photoelectron spectroscopy. A cylindrical Langmuir probe and a fiber optic thermometer was used for measurements of plasma parameters and neutral gas temperature respectively. The relationship between plasma parameters and the films’ morphology is particularly explained.

  14. Deposition of thin layers of boron nitrides and hydrogenated microcrystalline silicon assisted by high current direct current arc plasma

    International Nuclear Information System (INIS)

    In the frame of this thesis, a high current direct current arc (HCDCA) used for the industrial deposition of diamond, has been adapted to study the deposition of two types of coatings: a) boron nitride, whose cubic phase is similar to diamond, for tribological applications, b) hydrogenated microcrystalline silicon, for applications in the semiconductor fields (flat panel displays, solar cells,...). For the deposition of these coatings, the substrates were placed in the diffusion region of the arc. The substrate heating is mainly due to atomic species recombining on its surface. The deposition temperature, varying from 300 to 900 oC according to the films deposited, is determined by the substrate position, the arc power and the injected gas fluxes, without the use of any external heating or cooling system. Measurements performed on the arc plasma show that the electronic temperature is around 2 eV (23'000 K) while the gas temperature is lower than 5500 K. Typical electronic densities are in the range of 1012-101'3 cm-3. For the deposition of boron nitride films, different boron precursors were used and a wide parameter range was investigated. The extreme difficulty of synthesising cubic boron nitride films by chemical vapour deposition (CVD) did not allow to stabilize the cubic phase of boron nitride in HCDCA. Coatings resulted in hexagonal or amorphous boron nitride with a chemical composition close to stoichiometric. The presence of hydrogen leads to the deposition of rough and porous films. Negative biasing of the samples, for positive ion bombardment, is commonly used to stabilize the cubic phase. In HCDCA and in our biasing range, only a densification of the films could be observed. A boron nitride deposition plasma study by infrared absorption spectroscopy in a capacitive radio frequency reactor has demonstrated the usefulness of this diagnostic for the understanding of the various chemical reactions which occur in this kind of plasma. Diborane dissociation

  15. Cathodic cage plasma deposition of TiN and TiO{sub 2} thin films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Romulo R. M. de [Department of Mechanics, Federal Institute of Education, Science, and Technology of Piaui, Praça da Liberdade, 1597, CEP 64000-040 Teresina, Piaui, Brazil and Department of Mechanical Engineering, Federal University of Piaui, Campus Min. Petronio Portela, Ininga, CEP 64049-550 Teresina, Piaui (Brazil); Sato, Patricia S.; Nascente, Pedro A. P., E-mail: nascente@ufscar.br [Department of Materials Engineering, Federal University of Sao Carlos, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, Sao Paulo (Brazil); Viana, Bartolomeu C. [Department of Physics, Federal University of Piaui, Campus Min. Petronio Portela, Ininga, CEP 64049-550 Teresina, Piaui (Brazil); Alves, Clodomiro [Department of Exact and Natural Sciences, Federal Rural University of Semi Arido, Avenida Francisco Mota, 572, CEP 59625-900 Mossoro, Rio Grande do Norte (Brazil); Nishimoto, Akio [Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2015-07-15

    Cathodic cage plasma deposition (CCPD) was used for growing titanium nitride (TiN) and titanium dioxide (TiO{sub 2}) thin films on silicon substrates. The main advantages of the CCPD technique are the uniformity, tridimensionality, and high rate of the film deposition that occurs at higher pressures, lower temperatures, and lower treatment times than those used in conventional nitriding treatments. In this work, the influence of the temperature and gas atmosphere upon the characteristics of the deposited films was investigated. The TiN and TiO{sub 2} thin films were characterized by x-ray diffraction, scanning electron microscopy, and Raman spectroscopy to analyze their chemical, structural, and morphological characteristics, and the combination of these results indicates that the low-cost CCPD technique can be used to produce even and highly crystalline TiN and TiO{sub 2} films.

  16. Nanoporous silver cathode surface treated by atomic layer deposition of CeO(x) for low-temperature solid oxide fuel cells.

    Science.gov (United States)

    Neoh, Ke Chean; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Choi, Hyung Jong; Park, Suk Won; Shim, Joon Hyung

    2016-05-01

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO(x)) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C-450 °C. Our work confirms that ALD CeO(x) treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO(x) surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO(x) treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO(x)-treated Ag cathodes related to the microstructure of the layers. PMID:27008979

  17. Nanoporous silver cathode surface treated by atomic layer deposition of CeO x for low-temperature solid oxide fuel cells

    Science.gov (United States)

    Chean Neoh, Ke; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Jong Choi, Hyung; Park, Suk Won; Shim, Joon Hyung

    2016-05-01

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO x ) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C-450 °C. Our work confirms that ALD CeO x treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO x surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO x treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO x -treated Ag cathodes related to the microstructure of the layers.

  18. Electrochemical properties of Atomic layer deposition processed CeO2 as a protective layer for the molten carbonate fuel cell cathode

    International Nuclear Information System (INIS)

    Highlights: • Nano-structured CeO2-coated Ni by Atomic Layer Deposition, crystalline as-deposited. • Progressive transformation into a complex surface stable in molten carbonates. • Lower Ni solubility with CeO2 protective coating. • Feasibility of CeO2 coating in Molten Carbonate Fuel Cell cathode conditions. - Abstract: In order to increase the lifetime and performance of the molten carbonate fuel cell, it is compulsory to control the corrosion and dissolution of the state of the art porous nickel oxide cathode. A protective coating constituted by more stable oxides appears to be the best approach. Previous research on CeO2 coatings obtained by DC reactive magnetron sputtering to protect the Molten carbonate fuel cell cathode gave promising results but it was necessary to improve the coating adhesion. In this paper Atomic Layer Deposition, producing high quality, homogeneous and conformal layers, was used to obtain thin layers of CeO2 (20 nm and 120 nm) deposited over porous nickel. CeO2-Ni coated samples were tested as cathodes in Li2CO3-K2CO3 (62-38 mol %) eutectic mixture under standard cathode atmosphere (CO2/air 30:70 vol. %). Structural and morphological characterizations of the nickel coated cathode before and after electrochemical tests in the molten carbonate melt are reported together with the Open Circuit Potential evolution all over 230 h for both the bare porous nickel and the CeO2-coated samples

  19. The effect of antimony presence in anodic copper on kinetics and mechanism of anodic dissolution and cathodic deposition of copper

    Directory of Open Access Journals (Sweden)

    Stanković Z.D.

    2008-01-01

    Full Text Available The influence of the presence of Sb atoms, as foreign metal atoms in anode copper, on kinetics, and, on the mechanism of anodic dissolution and cathodic deposition of copper in acidic sulfate solution has been investigated. The galvanostatic single-pulse method has been used. Results indicate that presence of Sb atoms in anode copper increase the exchange current density as determined from the Tafel analysis of the electrode reaction. It is attributed to the increase of the crystal lattice parameter determined from XRD analysis of the electrode material.

  20. Natural Deposit Coatings on Steel during Cathodic Protection and Hydrogen Ingress

    OpenAIRE

    Wayne R. Smith; Shiladitya Paul

    2015-01-01

    The calcareous coating formed during cathodic protection (CP) in seawater is known to reduce the current demand by hindering the transport of species required to support the cathodic reactions and, thereby, improve the economic performance of CP systems. There is, however, uncertainty as to whether the coating reduces hydrogen uptake or indeed enhances it. To ascertain this, two sets of samples were polarized at −1.1 V (standard calomel electrode, SCE) in 3.5% w/v NaCl and synthetic seawater ...

  1. Weld metal microstructures of hardfacing deposits produced by self-shielded flux-cored arc welding

    International Nuclear Information System (INIS)

    The molten pool weld produced during self-shielded flux-cored arc welding (SSFCAW) is protected from gas porosity arising from oxygen and nitrogen by reaction ('killing') of these gases by aluminium. However, residual Al can result in mixed micro-structures of δ-ferrite, martensite and bainite in hardfacing weld metals produced by SSFCAW and therefore, microstructural control can be an issue for hardfacing weld repair. The effect of the residual Al content on weld metal micro-structure has been examined using thermodynamic modeling and dilatometric analysis. It is concluded that the typical Al content of about 1 wt% promotes δ-ferrite formation at the expense of austenite and its martensitic/bainitic product phase(s), thereby compromising the wear resistance of the hardfacing deposit. This paper also demonstrates how the development of a Schaeffler-type diagram for predicting the weld metal micro-structure can provide guidance on weld filler metal design to produce the optimum microstructure for industrial hardfacing applications.

  2. Simulation of Magnetically Dispersed Arc Plasma

    Institute of Scientific and Technical Information of China (English)

    白冰; 查俊; 张晓宁; 王城; 夏维东

    2012-01-01

    Magnetically dispersed arc plasma exhibits typically dispersed uniform arc column as well as diffusive cathode root and diffusive anode root. In this paper magnetically dispersed arc plasma coupled with solid cathode is numerically simulated by the simplified cathode sheath model of LOWKE . The numerical simulation results in argon show that the maximum value of arc root current density on the cathode surface is 3.5×10^7 A/m^2), and the maximum value of energy flux on the cathode surface is 3× 10^7 J/m^2, both values are less than the average values of a contracted arc, respectively.

  3. Anomalous isotopic distribution of elements deposited on palladium induced by cathodic electrolysis

    International Nuclear Information System (INIS)

    It was confirmed by several analytic methods that reaction products with atomic number ranging from 20 to 28, 46 to 54, and 72 to 82 are detected in palladium cathodes subjected to electrolysis in a heavy water solution at high pressure, high temperature and by high current density for one month. Isotopic distributions were radically different from the natural ones. (author)

  4. Deposition of SiC thin films using pulsed sputtering of a hollow cathode

    Czech Academy of Sciences Publication Activity Database

    Soukup, R. J.; Ianno, N.J.; Huguenin-Love, J.L.; Lauer, N.T.; Hubička, Zdeněk

    2009-01-01

    Roč. 3, č. 8 (2009), s. 1-4. ISSN 1934-8959 R&D Projects: GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : hollow cathode * pulsed sputtering * 4H SiC Subject RIV: BH - Optics, Masers, Lasers

  5. Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hans, M., E-mail: hans@mch.rwth-aachen.de; Baben, M. to; Music, D.; Ebenhöch, J.; Schneider, J. M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Primetzhofer, D. [Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, S-75120 Uppsala (Sweden); Kurapov, D.; Arndt, M.; Rudigier, H. [Oerlikon Balzers Coating AG, Iramali 18, LI-9496 Balzers, Principality of Liechtenstein (Liechtenstein)

    2014-09-07

    Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies. Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds.

  6. Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering

    International Nuclear Information System (INIS)

    Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies. Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds

  7. Optimization of Weld Bead Parameters of Nickel Based Overlay Deposited by Plasma Transferred Arc Surfacing with Adequacy Test

    Directory of Open Access Journals (Sweden)

    Bhaskarananda Dasgupta

    2014-07-01

    Full Text Available Plasma Transferred Arc surfacing is a kind of Plasma Transferred Arc Welding process. Plasma Transferred Arc surfacing (PTA is increasingly used in applications where enhancement of wear, corrosion and heat resistance of materials surface is required. The shape of weld bead geometry affected by the PTA Welding process parameters is an indication of the quality of the weld. In this paper the analysis and optimization of weld bead parameters, during deposition of a Nickel based alloy Colmonoy on stainless steel plate by plasma transferred arc surfacing, are made and values of process parameters to produce optimal weld bead geometry are estimated. The experiments are conducted based on a five input process parameters and mathematical models are developed using multiple regression technique. The direct effects of input process parameters on weld bead geometry are discussed using graphs. Finally, optimization of the weld bead parameters, that is minimization of penetration and maximization of reinforcement and weld bead width, are made with a view to economize the input process parameters to achieve the desirable welding joint.

  8. Plasma chemistry fluctuations in a reactive arc plasma in the presence of magnetic fields

    International Nuclear Information System (INIS)

    The effect of a magnetic field on the plasma chemistry and pulse-to-pulse fluctuations of cathodic arc ion charge state distributions in a reactive environment were investigated. The plasma composition was measured by time-of-flight charge-to-mass spectrometry. The fluctuation of the concentrations of Al+, Al2+, and Al3+ was found to increase with an increasing magnetic field strength. We suggest that this is caused by magnetic field dependent fluctuations of the energy input into cathode spots as seen through fluctuations of the cathode potential. These results are qualitatively consistent with the model of partial local Saha equilibrium and are of fundamental importance for the evolution of the structure of films deposited by reactive cathodic arc deposition

  9. Ion current to a substrate in the pulsed dc hollow cathode plasma jet deposition system

    Czech Academy of Sciences Publication Activity Database

    Virostko, Petr; Hubička, Zdeněk; Čada, Martin; Tichý, M.

    2010-01-01

    Roč. 43, č. 12 (2010), s. 1-7. ISSN 0022-3727 R&D Projects: GA AV ČR KAN301370701; GA ČR GP202/09/P159; GA ČR GA202/09/0800 Grant ostatní: AVČR(CZ) M100100915 Institutional research plan: CEZ:AV0Z10100522 Keywords : plasma * pulsed DC * ion flux * hollow cathode Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.105, year: 2010 http://stacks.iop.org/JPhysD/43/124019

  10. Deposition and characterization of thin films of materials with application in cathodes for lithium rechargeable micro batteries

    International Nuclear Information System (INIS)

    In this thesis work is reported the deposition and characterization of thin films of materials of the type LiMO2, with M=Co and Ni, which have application in cathodes for micro-batteries of lithium ions. In the last years some investigators have reported that the electrochemical operation of the lithium ions batteries it can improve recovering the cathode, in bundle form, with some metal oxides as the Al2O3; for that the study of the formation of thin films in bilayer form LiMO2/AI2O3 is of interest in the development of lithium ions micro batteries. The thin films were deposited using the laser ablation technique studying the effect of some deposit parameters in the properties of the one formed material, as: laser fluence, substrate temperature and working atmosphere, with the purpose of optimizing it. In the case of the LiCoO2 it was found that to use an inert atmosphere of argon allows to obtain the material with the correct composition. Additionally, with the use of a temperature in the substrate of 150 C is possible to obtain to the material with certain crystallinity grade that to the subjected being to a post-deposit thermal treatment at 300 C for three hours, it gives as result a totally crystalline material. In the case of the thin films of LiNiO2, it was necessary to synthesize the oxide starting from a reaction of solid state among nickel oxide (NiO) and lithium oxide (Li2O) obtaining stoichiometric LiNiO2. For the formation of the thin films of LiNiO2 it was used an argon atmosphere and the laser fluence was varied, the deposits were carried out to two different substrates temperatures, atmosphere and 160 C. In both cases the material it was recovered with an alumina layer, found that this layer didn't modify the structural properties of the base oxide (LiCoO2 and LiNiO2). (Author)

  11. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    International Nuclear Information System (INIS)

    We report GaN thin film transistors (TFT) with a thermal budget below 250 °C. GaN thin films are grown at 200 °C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3 nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (ION/IOFF) of 103 and sub-threshold swing of 3.3 V/decade. The entire TFT device fabrication process temperature is below 250 °C, which is the lowest process temperature reported for GaN based transistors, so far.

  12. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    International Nuclear Information System (INIS)

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N2/H2 PA-ALD based GaN channels are observed to have improved stability and transfer characteristics with respect to NH3 PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N2:H2 ambient

  13. Cascadia subducting plate fluids channelled to fore-arc mantle corner: ETS and silica deposition

    Science.gov (United States)

    Hyndman, R. D.; McCrory, P. A.; Wech, A.; Kao, H.; Ague, J.

    2015-06-01

    In this study we first summarize the constraints that on the Cascadia subduction thrust, there is a 70 km gap downdip between the megathrust seismogenic zone and the Episodic Tremor and Slip (ETS) that lies further landward; there is not a continuous transition from unstable to conditionally stable sliding. Seismic rupture occurs mainly offshore for this hot subduction zone. ETS lies onshore. We then suggest what does control the downdip position of ETS. We conclude that fluids from dehydration of the downgoing plate, focused to rise above the fore-arc mantle corner, are responsible for ETS. There is a remarkable correspondence between the position of ETS and this corner along the whole margin. Hydrated mineral assemblages in the subducting oceanic crust and uppermost mantle are dehydrated with downdip increasing temperature, and seismic tomography data indicate that these fluids have strongly serpentinized the overlying fore-arc mantle. Laboratory data show that such fore-arc mantle serpentinite has low permeability and likely blocks vertical expulsion and restricts flow updip within the underlying permeable oceanic crust and subduction shear zone. At the fore-arc mantle corner these fluids are released upward into the more permeable overlying fore-arc crust. An indication of this fluid flux comes from low Poisson's Ratios (and Vp/Vs) found above the corner that may be explained by a concentration of quartz which has exceptionally low Poisson's Ratio. The rising fluids should be silica saturated and precipitate quartz with decreasing temperature and pressure as they rise above the corner.

  14. Thermally Sprayed Aluminum (TSA) with Cathodic Protection as Corrosion Protection for Steel in Natural Seawater : Characterization of Properties on TSA and Calcareous Deposit

    OpenAIRE

    Egtvedt, Solveig

    2011-01-01

    Cathodic protection is an effective corrosion protection for structures submerged in seawater. In addition to applying the current need to lower the metal below the protection potential, a resulting increase in interfacial pH leads to precipitation of calcareous deposit. This deposited layer act as a barrier against oxygen diffusion on the surface, hence lowering the current demand of the structure. However, this layer will also hinder the thermal conductivity, and is therefore unwanted at th...

  15. Complex technology of vacuum-arc processing of structural material surface

    Science.gov (United States)

    Arustamov, V. N.; Ashurov, Kh. B.; Kadyrov, Kh. Kh.; Khudoikulov, I. Kh.

    2015-08-01

    The development of environmentally friendly and energy-resource-saving technologies based on vacuum arc discharge is a topical problem in science and engineering. In view of their unique properties, cathode spots of a vacuum arc induce cleaning of the surface of an article (cathode) from various contaminations and pulsed thermal action on the surface layers. These processes occur in complex with vacuum-arc deposition of coatings in the same technological cycle, which makes it possible to considerably increase the efficiency of methods for changing physical, mechanical, and chemical properties of the surface of steel articles, which considerably increase their service life. Analysis of the formation of the temperature regime of the surface during vacuum arc action and of the parameters of the deposited coating will make it possible to optimize the regimes of complex treatment of the surfaces of articles and is of considerable theoretical and practical importance.

  16. Cathodic electrolysis method of depositing cerium conversion films on industrial pure aluminum

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Two two-step techniques, called TS2/TS7 and TS3/TS7, respectively, have been developed to form cerium conversion films on the surface of industrial pure aluminum. The tested material was cathodically electrolyzed in the alkaline solution containing cerium salt, and uniform films containing cerium were obtained after the two-step treatment. It is found that the films obtained by TS2/TS7 and TS3/TS7 techniques are about 4.0 and 3.0 m in thickness, respectively. The material has better corrosion resistance in the chloride solution after the two-step electrolysis treatment compared with the one-step treated and naked specimens.

  17. A method for monitoring deposition at a solid cathode in an electro-refiner for a two-species system using electrode potentials

    International Nuclear Information System (INIS)

    Currently, process monitoring of spent nuclear fuel electrorefining relies upon sampling and destructive analysis methods coupled with extrapolated thermodynamic process models for non-interrupted operations. An 'inverse' model was developed to predict the product deposition rates on a cathode using the cell current, cathode potential, and fundamental relations of electrochemistry. The model was applied to the following cases: pure uranium deposition, co-deposition of uranium and plutonium, and co-deposition of uranium and zirconium. The deposition rates predicted by this 'inverse' model were compared to those of a 'forward' model, ERAD. On average, the predicted deposition rates had relative errors of 3.88 % and 2.84 % for U and Pu, respectively, in the case of U/Pu co-deposition and 4.16 % and 7.44 % for U and Zr, respectively, in the case of U/Zr co-deposition. Thus, the 'inverse' model was able to predict the deposition rates without requiring information regarding the feed and salt composition, as the forward model, ERAD, does

  18. Critical Analysis of Moving Heat Source Shape for ARC Welding Process of High Deposition Rate

    Czech Academy of Sciences Publication Activity Database

    Ghosh, A.; Hloch, Sergej; Chattopadhyaya, S.

    2014-01-01

    Roč. 21, č. 1 (2014), s. 95-98. ISSN 1330-3651 Institutional support: RVO:68145535 Keywords : Gaussian heat distribution * oval heat source shape * Submerged Arc Welding Subject RIV: JQ - Machines ; Tools Impact factor: 0.579, year: 2014 http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=172337

  19. InGaN thin film deposition on Si(100) and glass substrates by termionic vacuum arc

    Science.gov (United States)

    Erdoğan, E.; Kundakçı, M.; Mantarcı, A.

    2016-04-01

    Group-III nitride semiconductors covering infrared, visible and ultraviolet spectral range has direct band gaps changing from 0,7 eV (InN) to 3,4 eV (GaN). LEDs emit red, blue, green light, ultraviolet (UV) laser diodes (LD), UV light detectors and high power electronic devices are obtained and commercialized based on group-III nitride materials. InGaN semiconductor can be deposited by different techniques such as molecular beam epitaxy (MBE), metal organic chemical vapor deposition (MOCVD). In this study, InGaN thin films were prepared on Si and glass substrates as well as on GaN layer by termionic vacuum arc (TVA) which is a plasma asisted thin film deposition technique. The film was deposited at 10-6 torr working pressure, 18A filament current. Plasma was produced at 200 V with 0,6A plasma current. The purpose of this research is to investigate the properties of InGaN thin films. X-ray diffraction (XRD) spectrophotometer was used to analyze microstructure of the deposited films. Scanning electon microscopy (SEM) were used for surface morphology characterizations. Compositional analysis was done by energy dispersive X-ray spectroscopy (EDAX).

  20. Characterization of the Be-Ag interfacial region of silver films deposited onto beryllium using a hot hollow cathode discharge

    International Nuclear Information System (INIS)

    Silver films are physically vapor deposited onto beryllium substrates using a hot hollow cathode discharge. To obtain high Be-Ag adhesion strengths, an atomically 'clean' surface is obtained by ion bombardment cleaning. In this investigation, the relationship of the ion cleaning parameters to contaminants in the Be-Ag interfacial region and their effect on adhesion strength were evaluated. Specimens were ion cleaned at various bombardment parameters and then flash coated with silver. In-depth film profiles were taken by sputter etching in argon and monitoring the Auger electron peak-to-peak heights. The interface was also analyzed by taking a complete spectrum at the edge of the sputter crater. Impurities found at the interface were tantalum, copper and oxygen. The results for adhesion strengths showed that a small amount of oxygen (about 2 at.%) left in the Be-Ag interface will reduce the adhesion strength of the coating. Silver films deposited in an air leak that was greater than a leak which is easily detectable by residual gas analysis contained only about 0.5 at.% O with no reduction in film adherence strengths. (Auth.)

  1. Optimization of the basic parameters of cathodic deposition of Ce-conversion coatings on D16 am clad alloy

    International Nuclear Information System (INIS)

    Full text: The present research work is investigation on the probabilities for application of a new cerium compound, for cathodic electrodeposition of cerium based conversion coatings (CeCC) for protection of D16 AM alloy against corrosion. For the purpose of the present study, diammonium pentanitrocerate (NH4)2Ce(NO3)5 was used, where the cerium is represented in the anionic moiety, instead of the electrolytes used up to nowadays. The barrier ability and durability against corrosion of all coatings were evaluated by electrochemical methods - Linear Sweep Voltammetry (LSV) and Electrochemical Impedance Spectroscopy (EIS). Additionally, selected specimens underwent morphological characterization by means of Optical Metallographic Microscopy (OMM) and Scanning Electronic Microscopy (SEM) combined with Energy Dispersive X-ray spectroscopy (EDX). As a result, various parameters and conditions of deposition, such as the preliminary treatment, concentration of the basic substance and additives, density of the applied electric current and duration of deposition were elucidated. key words: corrosion protection, aluminium alloy CeCC, EIS, LSV, SEM, EDS

  2. Physical characteristics, structure and stress state of vacuum-arc TiN coating, deposition on the substrate when applying high-voltage pulse during the deposition

    International Nuclear Information System (INIS)

    Method of vacuum-arc deposition with ion implantation, (mode PBIID) obtained by coating of titanium nitride with a hardness of 62 GPa and reaches a high resistance to wear during the cutting. Submission of high-voltage pulses results in the formation of a stable structural state of titanium with cubic mononitride (structural type NaCl) crystal lattice. Comparison of the structure and stress state of titanium nitride coatings obtained in the usual way without additional supply of high-voltage pulses to the substrate during the deposition and the imposition of such pulses, shows that the influence of the pulse characteristics are a significant decrease in crystallite size and undirected growth at low significance of potential bias on substrate (from the 'floating' around -5 to -40 V), and a significant reduction of internal stresses.

  3. Effect of electrolytes on cataphoretically deposited LaB6 cathodes

    Science.gov (United States)

    Khairnar, Rajendra S.; Joag, D. S.; Kulkarni, S. K.; Nigavekar, A. S.; Kanitkar, P. L.

    1984-09-01

    Various electrolytes were used to deposit LaB6 on carburized tantalum by the cataphoretic method. The effect of four electrolytes viz., HCl, NH4NO3, La(NO3)3, and HNO3 on LaB6 coatings has been investigated. It is observed that use of HCl as an electrolyte provides LaB6 coatings with small grain size, low porosity, good adhesion, and ability to withstand a large number of thermal shocks. These properties make HCl the most suitable electrolyte for cataphoretic deposition of LaB6 for thermionic emission.

  4. Influence of iodine concentration on microstructure and oxidation resistance of SiB6–MoSi2 coating deposited by pulse arc discharge deposition

    International Nuclear Information System (INIS)

    Highlights: • A SiB6–MoSi2 coating was prepared by pulse arc discharge deposition (PADD). • The coating can protect C/C composites from oxidation at 1773 K for 168 h. • Influence of iodine concentration on oxidation resistance was investigated. • The failure of the oxidation resistant coating was investigated. - Abstract: To improve the oxidation resistance of carbon/carbon (C/C) composites, a SiB6–MoSi2 coating was prepared by a novel pulse arc discharge deposition (PADD). The influence of iodine concentration on thickness, compactness and oxidation resistance of the multilayer coatings were investigated. Results show that the oxidation resistance of the multilayer coatings was improved with the increase of iodine concentration from 2.0 to 3.0 g L−1. The SiB6–MoSi2 coating prepared at iodine concentration of 3.0 g L−1 can protect C/C composites from oxidation at 1773 K in air for 168 h with a weight loss of 1.98%. The failure of the multilayer coatings is due to the volatilization of the multilayer coatings and the escape of CO and CO2

  5. Structural and optical characteristics of filtered vacuum arc deposited N:TiO{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Çetinörgü-Goldenberg, E., E-mail: edacetinorgu@gmail.com [Electrical Discharge and Plasma Laboratory, Tel Aviv University, POB 39040, Tel Aviv 69978 (Israel); Burstein, L. [Wolfson Applied Materials Research Center, Tel Aviv University, POB 39040, Tel Aviv 69978 (Israel); Chayun-Zucker, I.; Avni, R.; Boxman, R.L. [Electrical Discharge and Plasma Laboratory, Tel Aviv University, POB 39040, Tel Aviv 69978 (Israel)

    2013-06-30

    Nitrogen doped titanium oxide (N:TiO{sub x}) thin films were deposited using filtered vacuum arc deposition. The X-ray diffraction patterns of the TiO{sub 2} thin films deposited in a pure oxygen environment indicated that films were polycrystalline in the anatase phase, while films deposited in an atmosphere in which the N{sub 2} fraction was greater than 9% were amorphous, for substrate temperatures up to 500 °C. Annealing at 400 °C in N{sub 2} for 1 h generated polycrystalline films with anatase phase, independent of %N{sub 2} during deposition. Film surface roughness increased from 0.5 up to 3.2 nm when the substrate temperature was increased from room temperature to 500 °C for films deposited in a 41%N{sub 2}. X-ray photoelectron spectroscopy analysis indicated that all films deposited in pure oxygen were stoichiometric TiO{sub 2}. N content in the films increased with %N{sub 2} in the deposition atmosphere, however the N-content in the film, 1-5 at.% N, was much less than that in the gas mixture (9–69%N{sub 2}). Annealing decreased the N-content in these films to < 1 at.%. In addition, the data revealed that all N:TiO{sub x} films had two main N 1s components, at 396–397 eV and at 399–400 eV, associated with substitutional and interstitial nitrogen, respectively. Transmission data indicated that the average transmission of films deposited at lower N{sub 2} partial pressures (< 41%) was approximately 80%, and it decreased to ∼ 50% for higher %N{sub 2}. The absorption edge of the films shifted to longer wavelengths with increased substrate temperature and %N{sub 2}, from ∼ 380 nm up to ∼ 485 nm for films deposited with 41%N{sub 2} and a substrate temperature of 500 °C. - Highlights: • Amorphous films were deposited in N{sub 2} atmosphere (> 9%). • Film surface roughness decreased with %N{sub 2} in the total deposition pressure. • Two main N 1s peaks associated with substitutional and interstitial nitrogen. • Absorption edge shifted to

  6. Radio frequency magnetron sputter-deposited indium tin oxide for use as a cathode in transparent organic light-emitting diode

    International Nuclear Information System (INIS)

    Indium tin oxide (ITO) films were prepared by radio frequency magnetron sputtering at room temperature, for use as a cathode in a transparent organic light-emitting diode (TOLED). To minimize damage to the TOLED by the ITO sputtering process, the target-to-substrate distance was increased to 20 cm. An ITO film deposited at the optimum oxygen partial pressure exhibited an electrical resistivity as low as 4.06 x 10-4 Ω cm and a high optical transmittance of 91% in the visible range. The film was used as a transparent cathode for a TOLED with structure of an ITO coated glass substrate / Naphthylphenyldiamide (60 nm) / Tris-(8-hydroxyquinoline) aluminum (60 nm) / LiF (1 nm) / Al (2 nm) / Ag (8 nm) / ITO cathode (100 nm). A maximum luminance of 37,000 cd/m2 was obtained. The device performance was comparable to a conventional OLED

  7. Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Hu, J., E-mail: hujin@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ding, Z.K.; Wang, C. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-01-01

    In order to improve the bioactivity of the micro-arc oxidized magnesium, a calcium phosphate coating was formed on the surface of micro-arc oxidized magnesium using a chemical method. The microstructures of the substrate and the calcium phosphate coating before and after the simulated body fluids (SBF) incubation were characterized by X-ray diffraction, Fourier-transformed infrared spectroscopy and scanning electron microscopy. The results showed that the calcified coating was composed of calcium deficient hydroxyapatite (HA) and dicalcium phosphate dihydrate (DCPD). After SBF incubation, some new apatite formation on the calcified coating surface from SBF could be found. The corrosion behaviours of the samples in SBF were also investigated by potentiodynamic polarization curves and immersion tests. The results showed that calcium phosphate coating increased the corrosion potential, and decreased the hydrogen gas release.

  8. Ion-plasma deposition of aluminium and beryllium coatings on inner surfaces of hollow cylindrical cathodes

    International Nuclear Information System (INIS)

    Application of metal coatings to inner surfaces of hollow cylindrical products of small diameter is simulated and practically realized by ion-plasma deposition method. In the modes proposed and with the cylinder diameter being 10-20 mm, a uniform coating of aluminium and beryllium is provided for at the length equal to (3-4) d, which has not been possible to be realized previously. 11 refs.; 2 tabs

  9. Deposition and current conduction of mixed hexagonal and cubic phases of AlN/p-Si films prepared by vacuum arc discharge: Effect of deposition temperature

    International Nuclear Information System (INIS)

    Cubic and hexagonal AlN films have been prepared by vacuum arc discharge technique at different deposition temperatures 100, 200 and 300 °C. The depositions were carried out from pure aluminum targets under nitrogen gas on p-type Si substrates, with Al forming the gate in a metal–insulator–semiconductor configuration. Preferential orientations (111) and (002) of the cubic and hexagonal phases have been affirmed by X-ray diffraction analysis. The Fourier transform infrared spectra revealed the manifestation of the two phases as well. The effect of deposition temperature on the crystalline quality and texture of the films has been also investigated and the grain size of which, has been evaluated as a function of temperature. The best crystalline quality i.e., largest grain size was found to be at 200 °C. The composition and stoichiometry of the films have been determined by the time-of-flight elastic recoil detection analysis (TOF-ERDA) and Rutherford backscattering techniques. The Al/N ratio was found to be around 1, while the O content was less than 1.8%. Scanning electron microscopy and TOF-ERDA measurements demonstrated films thickness of 260 nm. Current density versus electric field and capacitance–voltage (C–V) measurements were also investigated to reveal the field emission and conduction mechanism of the Al/AlN/p-Si devices. Schottky, Pool–Frenkel and Fowler–Nordheim conduction have been found to contribute to the electron transport, and the best emission properties were manifested at 200 °C with a highest current density 525 μA/cm2 at a field 71 V/μm. From C–V curves, the density of traps has been estimated to be 18 × 109 cm−2 eV−1 indicating a good quality of the deposited films. - Highlights: • AlN films containing its cubic phase were deposited by vacuum arc discharge. • MIS capacitors of these films of (111) preferential orientation were fabricated. • The best crystalline quality was found to be at 200 °C deposition

  10. Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X-70 steel in near-neutral pH solution

    Energy Technology Data Exchange (ETDEWEB)

    Meng, G.Z. [Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 1N4 (Canada); College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Zhang, C. [Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Center of Corrosion and Protection, University of Science and Technology Beijing, Beijing 100083 (China); Cheng, Y.F. [Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 1N4 (Canada)], E-mail: fcheng@ucalgary.ca

    2008-11-15

    The effects of corrosion product deposit on the subsequent anodic and cathodic reactions of X-70 steel in a near-neutral pH solution were investigated by localized electrochemical impedance spectroscopy (LEIS), scanning vibrating micro-electrode (SVME) and macroscopic EIS measurements as well as surface analysis technique. It is found that the deposit layer formed on the steel surface is porous, non-compact in nature. The presence of a corrosion product layer would enhance adsorption, but significantly inhibit absorption and permeation of hydrogen atoms into steel. It is due to the porous structure of the deposit that generates a spatial separation of cathodic and anodic reaction sites, resulting in an increased effective surface area for hydrogen adsorption and, simultaneously, a 'blocking' effect on hydrogen absorption and permeation. The deposit enhances greatly anodic dissolution of the steel, which is attributed to the adsorption of the intermediate species and the resultant 'self-catalytic' mechanism for corrosion of the steel in near-neutral pH solution. In the presence of corrosion product deposit on the pipeline steel surface, pipeline corrosion, especially pitting corrosion, is expected to be enhanced. Stress corrosion cracks could initiate from the corrosion pits that form under deposit. However, deposit does not contribute to hydrogen permeation, although the hydrogen evolution is enhanced.

  11. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bolat, Sami, E-mail: bolat@ee.bilkent.edu.tr; Tekcan, Burak [Department of Electrical and Electronics Engineering, Bilkent University, 06800, Ankara, Turkey and UNAM, National Nanotechnology Research Center, Bilkent University, 06800, Ankara (Turkey); Ozgit-Akgun, Cagla; Biyikli, Necmi [UNAM, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey and Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara (Turkey); Okyay, Ali Kemal, E-mail: aokyay@ee.bilkent.edu.tr [Department of Electrical and Electronics Engineering, Bilkent University, 06800, Ankara (Turkey); UNAM, National Nanotechnology Research Center, Bilkent University, 06800, Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara (Turkey)

    2015-01-15

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N{sub 2}/H{sub 2} PA-ALD based GaN channels are observed to have improved stability and transfer characteristics with respect to NH{sub 3} PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N{sub 2}:H{sub 2} ambient.

  12. Microhardness study of Ti(C, N films deposited on stainless steel 316 by the hallow cathode discharge gun

    Directory of Open Access Journals (Sweden)

    A.J. Novinrooz

    2005-12-01

    Full Text Available Purpose: The micro hardness properties of Titanium Carbonitride composite coated on SS-316 substrates were studied to achieve a desired harden surfaces.Design/methodology/approach: Hollow Cathode Discharge gun (HCD–gun was employed for deposition of the Ti(C, N on SS-316. The evaporated and ionized metal (Ti was coated as an under layer with 0.5 ampere beam current and 100 volt bias voltage. The reactant nitrogen and methane gasses were fed through inlet in to the chamber containing Ti element to form Ti (C, N matrix with an optimized ratio.Findings: In this work, Glow Discharge Optical emission Spectroscopy (GDOS used for compositional analysis of the content elements. On the bases of this operation it was revealed the existence of Ti, C, N elements, X-ray diffraction (XRD technique was utilized to investigate films crystalline structure. The investigation showed that samples with different stoichiometry have a fcc structure with (111 plan of reflection. The atomic ratio of carbon and nitrogen were measured using energy dispersive X-ray (EDX analysis. The optimized value was funned to be TiC0.87 N0.13. The atomic force microscopy (AFM and scanning electron microscopy (SEM were employed to study the films microstructure. A hardness of 3250 HV was obtained in the carbon content C/C+ N atomic ratio of 9 to 1 using a Vickers microhardness tester.Research limitations/implications: As the study was carried out on a limited surfaces, we shall endeavor further attempt on large area deposition.Practical implications: The tools coated in titanium accompanied by nitride and carbide has shown significant improvement. Good compatibility of Ti (C, N compound makes these composite suitable in various technical and industrial applications.Originality/value: It may be remarked that, the hardness obtained in this work is very encouraging and therefore, it is convenient to regard this as a privileged step taken in tool manufacturing aspect.

  13. Effect of Sample Configuration on Droplet-Particles of TiN Films Deposited by Pulse Biased Arc Ion Plating

    Institute of Scientific and Technical Information of China (English)

    Yanhui Zhao; Guoqiang Lin; Jinquan Xiao; Chuang Dong; Lishi Wen

    2009-01-01

    Orthogonal experiments are used to design the pulsed bias related parameters, including bias magnitude, duty cycle and pulse frequency, during arc ion deposition of TiN films on stainless steel substrates in the case of samples placing normal to the plasma flux. The effect of these parameters on the amount and the size distribution of droplet-particles are investigated, and the results have provided sufficient evidence for the physical model, in which particles reduction is due to the case that the particles are negatively charged and repulsed from negative pulse electric field. The effect of sample configuration on amount and size distribution of the particles are analyzed. The results of the amount and size distribution of the particles are compared to those in the case of samples placing parallel to the plasma flux.

  14. Deposition and optimization of thin lead layers for superconducting accelerator photocathodes

    CERN Document Server

    Lorkiewicz, J; Barlak, M; Mirowski, R; Bartnik, A; Kostecki, J; Sekutowicz, J; Malinowska, A; Kneisel, P; Witkowski, J

    2014-01-01

    A combination of a ultra high vacuum arc deposition system and a recrystallization method was used to optimize the smoothness and thickness of thin-layer lead cathodes for superconducting niobium electron injectors. A non-filtered arc system was chosen to deposit Pb films on niobium. The films then underwent melting and recrystallization by treating them with pulsed argon ion beams in a rod plasma injector.

  15. Investigation of firing properties of a vacuum arcs triggered by plasma injection

    Energy Technology Data Exchange (ETDEWEB)

    Bernardet, H.; Godechot, X.; Riviere, C. [SODERN, Limeil-Brevannes (France)

    1996-08-01

    The firing characteristic of a vacuum arc, by means of plasma injection, is described. In this method, a plasma, created from a trigger device, plumes away to the space between the cathode and anode. As the plasma is quasi-neutral, the electrostatic field is concentrated across the sheath at the surface of the cathode, thus, creating a high electrical field. As a result, a vacuum arc fires between the cathode and anode. The authors have investigated the firing rate as a function of the trigger cathode distance, trigger current, the anode-cathode distance and voltage. They found a firing rate between 90 to 100% for a trigger current in the range of 400-1200 A, the trigger pulse length was 4 ps, and the trigger-cathode distance was 1.6 to 3.6 cm. The anode cathode gap length changes the firing rate to a low extent for values between 2 to 5 cm. The anode cathode voltage do not change the firing rate. The effect of a magnetic field applied axially over the trigger have also been investigated. Using a version of a highly reliable trigger, the authors were able to deposit stainless steel, copper, carbon and molybdenum, thin films.

  16. A Method for Monitoring Deposition at a Solid Cathode in an Electrorefiner for a Two-Species System Using Electrode Potentials

    Energy Technology Data Exchange (ETDEWEB)

    D.S. Rappleye; M.-S. Yim; M.F. Simpson; R.M. Cumberland

    2013-10-01

    Currently, process monitoring of spent nuclear fuel electrorefining relies upon sampling and destructive analysis methods coupled with extrapolative thermodynamic process models for non-interrupted operations. Corrections to those models are performed infrequently, jeopardizing both the control of the process and safeguarding of nuclear material. Furthermore, the timeliness of obtaining the results is inadequate for application of international safeguards protocol. Alternatively, a system that dynamically utilizes electrical data such as electrode potentials and cell current can hypothetically be used to achieve real-time process monitoring and more robust control as well as improved safeguards. Efforts to develop an advanced model of the electrorefiner to date have focused on a forward modeling approach by using feed and salt compositions to determine the product composition, cell current and electrode potential response. Alternatively, an inverse model was developed, and reported here, to predict the product deposition rates on a cathode using the cell current, cathode potential, and fundamental relations of electrochemistry. The model was applied to the following cases: pure uranium deposition, co-deposition of uranium and plutonium, and co-deposition of uranium and zirconium. The deposition rates predicted by the inverse model were compared to those of a forward model, ERAD.

  17. Ion energy distribution and basic characteristics of plasma flows of nonself-sustained arc discharge

    International Nuclear Information System (INIS)

    Experimental results on study of the nonself-sustained arc discharge basic characteristics at currents up to 35 A are presented. The ion energy distributions and dynamics of the directed motion average energy of plasma flow ions are studied. Floating potentials in the plasma flows are measured. Ionization coefficients of the generated plasma flows and their dependence on the discharge current are studied. It is shown that at the discharge currents equal 20...30 A the vacuum arc discharge in anode material vapors can effectively create dropless and highly ionized plasma flows of different metals and provides films deposition rates, which are comparable to possibilities of the cathode vacuum arc discharge

  18. Nanomechanical properties of TiCN and TiCN/Ti coatings on Ti prepared by Filtered Arc Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yong [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Yu, Hailiang [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); School of Mechanical Engineering, Shenyang University, Shenyang 110044 (China); Kiet Tieu, A.; Su, Lihong; Zhao, Yue; Zhu, Hongtao [School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Kong, Charlie [Electron Microscope Unit, University of New South Wales, Sydney, NSW 2052 (Australia)

    2015-02-11

    Monolayer TiCN and multilayer TiCN/Ti coatings were deposited on the surface of Ti using the Filtered Arc Deposition System (FADS). Nanoindentation tests were performed on both coatings. The multilayer TiCN/Ti coating exhibited better ductility than the monolayer TiCN coating. The lattice constants of the coatings were characterized by X-ray diffraction. Transmission Electron Microscopy (TEM) was used to investigate the fracture behavior of the coatings. Inter-columnar, inclined and lateral cracks were found to be the dominant crack modes in the monolayer TiCN coatings while small bending crack and radial crack were the dominant crack modes in the multilayer TiCN/Ti coatings. The Finite Element Method (FEM) was used to simulate the indentation process. It was found that the Ti interlayer in the multilayer TiCN/Ti coating could efficiently suppress the fracture, which is responsible for the improved ductility of the multilayer TiCN/Ti coating.

  19. Nanomechanical properties of TiCN and TiCN/Ti coatings on Ti prepared by Filtered Arc Deposition

    International Nuclear Information System (INIS)

    Monolayer TiCN and multilayer TiCN/Ti coatings were deposited on the surface of Ti using the Filtered Arc Deposition System (FADS). Nanoindentation tests were performed on both coatings. The multilayer TiCN/Ti coating exhibited better ductility than the monolayer TiCN coating. The lattice constants of the coatings were characterized by X-ray diffraction. Transmission Electron Microscopy (TEM) was used to investigate the fracture behavior of the coatings. Inter-columnar, inclined and lateral cracks were found to be the dominant crack modes in the monolayer TiCN coatings while small bending crack and radial crack were the dominant crack modes in the multilayer TiCN/Ti coatings. The Finite Element Method (FEM) was used to simulate the indentation process. It was found that the Ti interlayer in the multilayer TiCN/Ti coating could efficiently suppress the fracture, which is responsible for the improved ductility of the multilayer TiCN/Ti coating

  20. An easy and innovative method based on spray-pyrolysis deposition to obtain high efficiency cathodes for Solid Oxide Fuel Cells

    Science.gov (United States)

    dos Santos-Gómez, L.; Porras-Vázquez, J. M.; Martín, F.; Ramos-Barrado, J. R.; Losilla, E. R.; Marrero-López, D.

    2016-07-01

    A novel electrode preparation method based on the spray-pyrolysis deposition of metal nitrate solutions onto a porous electrolyte scaffold is proposed. This method has been proved with different cathode materials, usually used in Solid Oxide Fuel Cells, such as La0.8Sr0.2MnO3-δ and La0.6Sr0.4Co1-xFexO3-δ (x = 0, 0.2, 0.8 and 1). The electrode microstructure is composed by two layers; the inner layer is a porous electrolyte scaffold homogeneously coated by cathode nanoparticles, providing an increased number of triple phase boundary sites for oxygen reduction, whereas, the top layer is formed by only cathode nanoparticles and acts mainly as a current collector. Polarization resistance values as low as 0.07 and 1.0 Ω cm2 at 600 and 450 °C, respectively, are obtained at open circuit voltage. This alternative approach has several advantages with respect to the traditional wet infiltration method for large area electrode fabrication, such as higher reproducibility, shorter preparation time in a single thermal deposition step, and easy implementation at industrial scale as a continuous process.

  1. Geochemistry of metalliferous, hydrothermal deposits in the Aeolian arc (Tyrrhenian Sea)

    Science.gov (United States)

    Savelli, C.; Marani, M.; Gamberi, F.

    1999-03-01

    In shallow-water areas of the submerged volcanic complex around the island of Panarea (Aeolian archipelago), hydrothermal precipitation of both low-temperature Fe-oxyhydroxide-rich red muds and crusts, and high-temperature, sediment-hosted massive sulfides was discovered during an integrated, high-resolution survey. Iron-rich crusts were also found on the bathymetric high of Secca del Capo, north of Salina island. The exhalative iron-rich sediments occur in small (closed) depressions or in proximity to faults and scarps at water depths ranging from 55 to 285 m. The principal chemical characteristics of these deposits are high, but variable, Fe content ranging from 12.2 to 45%, and low contents of the transition elements Mn, Cu, Zn, Ni and Co. The low contents of Cu, Ni and Co suggest a hydrothermal origin. The Fe-oxyhydroxide deposits are enriched in light rare earth element (REE) (35-110×chondrite) compared to heavy REE (10-25×chondrite). Their REE patterns are similar to those of associated calc-alkaline volcanics: negative slope of light REE and a horizontal distribution of the heavy ones. This contrasts with the pattern for iron and manganese oxides of hydrogenous origin, which have tilted trends of heavy REE paralleling that of seawater. The mineralogy of the polymetallic sulfide deposits consists of galena, sphalerite, pyrite and barite in the form of silt-sand grains and decimeter-sized fragments disseminated in clay, 30 cm below the seabed, at a waterdepth of 80 m. The chemistry of the Aeolian iron-rich, low-temperature deposits and of the high-temperature, Ba-rich Pb and Zn sulfides suggests that they are genetically analogous to, respectively, the kuroko-type iron formation (`tetsusekiei') and the black ore exposed in the Miocene Hokuroku district of Japan.

  2. Formation of hydrothermal deposits at Kings Triple Junction, northern Lau back-arc basin, SW Pacific: The geochemical perspectives

    Science.gov (United States)

    Paropkari, Anil L.; Ray, Durbar; Balaram, V.; Surya Prakash, L.; Mirza, Imran H.; Satyanarayana, M.; Gnaneshwar Rao, T.; Kaisary, Sujata

    2010-04-01

    An inactive hydrothermal field was discovered near Kings Triple Junction (KTJ) in northern Lau back-arc basin during 19th cruise of R/V Akademik Mstislav Keldysh in 1990. The field consisted of a large elongated basal platform 'the pedestal' with several 'small' chimneys on its periphery and one 'main mound' superposed over it. The surrounding region is carpeted with lava pillows having ferromanganese 'precipitate' as infillings. The adjoining second field consisted of small chimney like growths termed as 'Christmas Tree' Field. The basal pedestal, the peripheral chimneys and small 'Christmas Tree' like growths (samples collected by MIR submersibles), though parts of the same hydrothermal field, differ significantly in their mineralogy and elemental composition indicating different history of formation. The pedestal slab consisting of chalcopyrite and pyrite as major minerals and rich in Cu is likely to have formed at higher temperatures than sphalerite dominated peripheral chimney. Extremely low concentration of high field strength elements (e.g. Zr, Hf, Nb and Ta) and enrichment of light REE in these sulfides indicate prominent influence of aqueous arc-magma, rich in subduction components. The oxide growths in the 'Christmas Tree' Field have two distinct layers, Fe rich orange-red basal part which seems to have formed at very low temperature as precipitates from diffused hydrothermal flows from the seafloor whereas Mn rich black surface coating is formed from hydrothermal fluids emanated from the seafloor during another episode of hydrothermal activity. Perhaps this is for the first time such unique hydrothermal oxide growths are being reported in association with hydrothermal system. Here, we discuss the possible processes responsible for the formation of these different hydrothermal deposits based on their mineralogy and geochemistry.

  3. Factors affecting the hydrogen content of weld metal deposited by flux cored arc welding consumables

    International Nuclear Information System (INIS)

    This paper present the results of an investigation of weld metal diffusible hydrogen levels in a range of flux cored wired suitable for welding of C and C-Mn steels. Both basis and rutile wires have been investigated to assess the effect of the heat input (achieved by altering welding current and traverse speed), the contact-tip to workpiece distance (CTWD), the shielding gas type and the atmospheric exposure of the wires. The main focus of the project is to expand the current knowledge of hydrogen assisted cold cracking (HACC) in flux cored wires. The paper reports the results of diffusible hydrogen levels in single run bead-on-plate welds as a function of welding conditions. This work is a contribution to the aim of defining industrial welding conditions which minimise or eliminate the risk of HACC in weld metal deposited by flux cored wires

  4. A mechanism that triggers double arcing during plasma arc cutting

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, Valerian, E-mail: nemchinsky@bellsouth.ne [Keiser University, Fort Lauderdale, FL 33309 (United States)

    2009-10-21

    Double arcing (DA) is a phenomenon when a transferred arc, flowing inside an electrically insulated nozzle, breaks into two separate arcs: one that connects the cathode and the nozzle and another that connects the nozzle and a work-piece. It is a commonly accepted opinion that the reason for DA is high voltage drop in the plasma inside the nozzle. However, the specific mechanism that triggers the DA development is not clear. In this paper, we propose such a mechanism. Dielectric films deposited inside the nozzle's orifice play the key role in this mechanism. These films are charged by ion current from plasma. A strong electric field is created inside the film and at the boundary of the film and clean metal of the nozzle. This gives rise to a thermo-field electron emission from the clean metal that borders the film. Emitted electrons are accelerated at the voltage drop between the nozzle and plasma. These electrons produce extra ions, which in turn move back to the film and additionally charge it. This sequence of events leads to explosive instability if the voltage drop inside the nozzle is high enough. Experiments to check the proposed mechanism are suggested.

  5. Wire + Arc Additive Manufacturing

    OpenAIRE

    Williams, Stewart W.; Martina, Filomeno; Addison, Adrian C.; Ding, Jialuo; Pardal, Goncalo; Colegrove, Paul A.

    2016-01-01

    Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to ...

  6. Parametric Study on Arc Behavior of Magnetically Diffused Arc

    Science.gov (United States)

    Chen, Tang; Li, Hui; Bai, Bing; Liao, Mengran; Xia, Weidong

    2016-01-01

    A model coupling the plasma with a cathode body is applied in the simulation of the diffuse state of a magnetically rotating arc. Four parametric studies are performed: on the external axial magnetic field (AMF), on the cathode shape, on the total current and on the inlet gas velocity. The numerical results show that: the cathode attachment focuses in the center of the cathode tip with zero AMF and gradually shifts off the axis with the increase of AMF; a larger cathode conical angle corresponds to a cathode arc attachment farther away off axis; the maximum values of plasma temperature increase with the total current; the plasma column in front of the cathode tip expands more severely in the axial direction, with a higher inlet speed; the cathode arc attachment shrinks towards the tip as the inlet speed increases. The various results are supposed to be explained by the joint effect of coupled cathode surface heating and plasma rotating flow. supported by National Natural Science Foundation of China (Nos. 11475174, 11035005 and 50876101)

  7. Oxygen-Plasma-Treated Indium-Tin-Oxide Films on Nonalkali Glass Deposited by Super Density Arc Plasma Ion Plating

    Science.gov (United States)

    Kim, Soo Young; Hong, Kihyon; Son, Jun Ho; Jung, Gwan Ho; Lee, Jong-Lam; Choi, Kyu Han; Song, Kyu Ho; Ahn, Kyung Chul

    2008-02-01

    The effects of O2 plasma treatment on both the chemical composition and work function of an indium-tin-oxide (ITO) film were investigated. ITO films were deposited on non-alkali glass substrate by super density arc plasma ion plating for application in active-matrix organic light-emitting diodes (OLEDs). The water contact angle decreased from 38 to 11° as the ITO films were treated with O2 plasma for 60 s at a plasma power of 150 W, indicating an increase in the hydrophilicity of the surface. It was found that there were no distinct changes in the microstructure or electrical properties of the ITO films with O2 plasma treatment. Synchrotron radiation photoemission spectroscopy data revealed that O2 plasma treatment decreased the amount of carbon contamination and increased the number of unscreened states of In3+ and (O2)2- peroxo species. This played the role of increasing the work function of the ITO films by 1.7 eV. As a result, the turn-on voltage of the OLED decreased markedly from 24 to 8 V and the maximum luminance value of the OLED increased to 2500 cd/m2.

  8. Microstructural and mechanical properties evolutions of plasma transferred arc deposited Norem02 hardfacing alloy at high temperature

    International Nuclear Information System (INIS)

    Highlights: → Norem02 microstructure constituted with austenite, ferrite, M7C3 and MC carbides. → Microstructure after a reheating thermal treatment as a function of temperature. → High temperature and long time are needed to perturb the microstructure. → No phase transformations detected from 20 deg. C up to 1000 deg. C. → Mechanical properties show linear evolution with temperature. - Abstract: Plasma-transferred-arc welded Norem02, an iron-based hard-facing alloy, was characterised. Its microstructure and chemical composition were investigated using optical microscopy, scanning electron microscopy (with electron probe microanalysis), electron backscattering diffraction, and X-ray diffraction. The microstructure of the as-deposit alloy consists of a dendritic austenite structure with ferrite islets at dendrites centres, with an interdendritic eutectic region containing austenite, M7C3 and M23C6 carbides and zones containing Mo-rich precipitates. Tensile behaviour of Norem02 was characterised and completed by dilatometry tests in welding process temperature range. No significant phase transformation was detectable during mechanical testing. Different heat treatment cycles of ageing at high temperatures (until 1100 deg. C) were carried out for different durations. The microstructure of Norem02 heated at 1100 deg. C was not significantly affected by a short time (15 s) treatment whereas changes were observed for longer durations (2 h), although hardness remains almost unchanged. This work tends to demonstrate that for this alloy metallurgical evolution during the welding process has very little influence on mechanical properties.

  9. Diagnostic of a Hollow Cathode Radio-Frequency Plasma Excited in Organosilicon HMDSO, used for Barrier Anti Corrosion Thin Films Deposition

    International Nuclear Information System (INIS)

    In this work, remote hollow cathode RF plasma, generated from the monomer hexamethyledisiloxane (HMDSO), as a precursor, and argon as a feed gas, and the plasma mixture HMDSO/O2 have been studied, as a function of different plasma parameters such as: RF applied power (100-300 W), HMDSO flow rate (2-32 sccm), time deposition (5-20 minutes), and oxygen fraction in HMDSO/O2 mixture (0-0.9). Plasma diagnostic and prepared thin films characterization have been investigated. (author)

  10. Deposition of Ba.sub.x./sub.Sr.sub.1-x./sub.TiO.sub.3./sub. thin films by double RF hollow cathode plasma jet system

    Czech Academy of Sciences Publication Activity Database

    Hubička, Zdeněk; Virostko, Petr; Olejníček, Jiří; Deyneka, Alexander; Adámek, Petr; Valvoda, V.; Jastrabík, Lubomír; Šícha, Miloš; Tichý, M.

    Praha: Institute of Plasma Physics AS CR, 2007 - (Schmidt, J.; Šimek, M.; Pekárek, S.; Prukner, V.), 765-768 ISBN 978-80-87026-01-4. [International conference on phenomena in ionized gases - ICPIG /28./. Praha (CZ), 15.07.2007-20.07.2007] R&D Projects: GA AV ČR KAN301370701; GA AV ČR 1QS100100563; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : BSTO * thin films * plasma deposition * hollow cathode * plasma jet Subject RIV: BL - Plasma and Gas Discharge Physics

  11. Electrical probe diagnostics of the hollow cathode plasma jet system for deposition of TiO.sub.x./sub. thin films

    Czech Academy of Sciences Publication Activity Database

    Virostko, Petr; Hubička, Zdeněk; Čada, Martin; Adámek, Petr; Kment, Štěpán; Tichý, M.; Jastrabík, Lubomír

    2008-01-01

    Roč. 48, 5-7 (2008), s. 527-533. ISSN 0863-1042 R&D Projects: GA AV ČR KAN301370701; GA AV ČR KJB100100707; GA MŠk(CZ) 1M06002; GA AV ČR KAN400720701; GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z10100522; CEZ:AV0Z10100521 Keywords : hollow cathode * plasma jet * probe diagnostics * deposition of thin films Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.250, year: 2008

  12. Arcing and its role in PFC erosion and dust production in DIII-D

    Science.gov (United States)

    Rudakov, D. L.; Chrobak, C. P.; Doerner, R. P.; Krasheninnikov, S. I.; Moyer, R. A.; Umstadter, K. R.; Wampler, W. R.; Wong, C. P. C.

    2013-07-01

    Two types of arc tracks are observed on the plasma-facing components (PFCs) in DIII-D. "Unmagnetized" random walk tracks are produced during glow discharges; they are rare and have no importance for PFC erosion but may degrade diagnostic mirrors. "Magnetized" scratch-like type II tracks are produced by unipolar arcs during plasma operations; they are formed by "retrograde BxJ" motion of the cathode spot and are roughly perpendicular to the local magnetic field. Type II arcs cause measurable erosion of graphite, but based on the evidence available they are relatively small contributors to the total erosion of carbon in DIII-D compared to other mechanisms such as physical and chemical sputtering and ablation from leading edges. Erosion by arcing of tungsten films deposited on graphite samples was observed in Divertor Material Evaluation System (DiMES) experiments. New DiMES experiments aimed at time-resolved arc measurements are proposed.

  13. Plasma plume characterization of a vacuum arc thruster

    Science.gov (United States)

    Sekerak, Michael James

    A Vacuum Arc Thruster (VAT) is a thruster that uses the plasma created in a vacuum arc, an electrical discharge in a vacuum that creates high velocity and highly ionized plasmas, as the propellant without additional acceleration. A VAT would be a small and inexpensive low thrust ion thruster, ideal for small satellites and formation flying spacecraft. The purpose of this thesis was to quantitatively and qualitatively examine the VAT plasma plume to determine operating characteristics and limitations. A VAT with a titanium cathode was operated in two regimes: (A) single ˜100mus pulse, discharge current JD=510A, and (B) multiple ˜1500mus pulses at f=40.8Hz, JD=14A. The cathode was 3.18mm diameter Ti rod, surrounded by a 0.80mm thick alumina insulator, set in a molybdenum anode. Three Configurations were tested: Cfg1 (Regime A, cathode recessed 3.00mm from anode), Cfg2 (Regime A, cathode and anode flush), Cfg3 (Regime B, cathode recessed 3.00mm). A semi-empirical model was derived for VAT performance based on the MHD equation of motion using data for ion velocity, ion charge state distribution, ion current fraction (F), and ion current density distribution (ICDD). Additional performance parameters were a2, the peak ion current density angular offset from the cathode normal, and a3, the width of the ion current distribution. Measurements were taken at 162 points on a plane in the plasma plume using a custom faraday probe, and the ICDD empirical form was determined to be a Gaussian. The discharge voltage (VD) and F were Cfg1: VD=25.5V, F=0.025-0.035; Cfg2: VD=40.7V, F=0.08-0.10; Cfg3: VD=14.9V, F=0.006-0.021. For Cfg1, a2 started 15° off-axis while a2˜0 for Cfg2 and 3. In Cfg1, a 3=0.7-0.6, and in Cfg2 a3=1.0-1.1, so the recessed cathode focused the plasma more. However, F is more important for VAT performance because upper and lower bounds for thrust, specific impulse, thrust-to-power, and efficiency were calculated and Cfg2 had the highest performance. High

  14. Preparation of solid-solution type Fe-Co nanoalloys by synchronous deposition of Fe and Co using dual arc plasma guns.

    Science.gov (United States)

    Sadakiyo, Masaaki; Heima, Minako; Yamamoto, Tomokazu; Matsumura, Syo; Matsuura, Masashi; Sugimoto, Satoshi; Kato, Kenichi; Takata, Masaki; Yamauchi, Miho

    2015-09-28

    We succeeded in the efficient preparation of well-dispersed Fe-Co nanoalloys (NAs) using the arc plasma deposition method. Synchronous shots of dual arc plasma guns were applied to a carbon support to prepare the solid-solution type Fe-Co NAs having an approximately 1 : 1 atomic ratio. The alloy structures with and without a reductive thermal treatment under a hydrogen atmosphere were examined using X-ray powder diffraction, scanning transmission electron microscopy (STEM) combined with energy-dispersive X-ray analysis, high resolution STEM, and magnetic measurements, suggesting that highly crystalline spherical particles of ordered B2-type Fe-Co NAs form by the thermal treatment of the deposited grains. PMID:26293826

  15. Superhard carbon deposited by pulsed high-current arc as protective nanocoating for magnetic hard disks; Superharter Kohlenstoff abgeschieden mit gepulstem Hochstrombogen als Nanoschutzschicht fuer Magnetspeicherplatten

    Energy Technology Data Exchange (ETDEWEB)

    Neuhaeuser, M.; Hilgers, H. [IBM Mainz (Germany). Abt. 4627; Witke, T. [Infenion Dresden (Germany). Bereich PVD; Siemroth, P. [Fraunhofer-Institut fuer Werkstoffphysik und Schichttechnologie (IWS), Dresden (Germany)

    2001-08-01

    Superhard amorphous carbon films (ta-C) deposited by pulsed high-current arc (HCA) possess a good perspective to be used as future ultrathin protective coatings for magnetic hard disks. The ta-C coatings meet all demands concerning the mechanical, chemical and tribological properties required for corrosion and wear protective coatings with thicknesses of 2-3 nm. From the current point of view the deposition technique also qualifies for an industrial mass production. Consequently there is a very good prospect that in near future the high-current arc technique will be the method of choice for carbon deposition in industrial hard disk drive production. (orig.) [German] Superharte amorphe Kohlenstoffschichten (ta-C), die mit gepulstem Hochstrombogen (high-current arc, HCA) abgeschieden werden, besitzen ein hohes Potential als zukuenftige ultraduenne Schutzschichten fuer Magnetspeicherplatten. Die ta-C-Schichten erfuellen alle wesentlichen Anforderungen, die in mechanischer, chemischer und tribologischer Hinsicht an 2-3 nm dicke Verschleiss- und Korrosionsschutzschichten gestellt werden. Auch die Beschichtungstechnik ist aus jetziger Sicht fuer die Massenproduktion geeignet. Damit bestehen sehr gute Aussichten, dass in naher Zukunft die Hochstrombogenverdampfung die Methode der Wahl fuer die Kohlenstoffabscheidung in der industriellen Festplattenproduktion darstellt. (orig.)

  16. In-situ observation of a dendrite growth in an aqueous condition and a uranium deposition into a liquid cadmium cathode in an electrowinning system

    International Nuclear Information System (INIS)

    A zinc-gallium system was setup to observe the growth process of dendrites and to compare the performance of the stirrers which would prevent a dendrite formation. In a no-stirring condition, zinc was easily deposited on a liquid gallium cathode in the form of dendrites. It was difficult for a paddle stirrer to directly fracture the zinc dendrites to fine particles. However, a harrow stirrer was observed to fracture the dendrite to some extent at high speeds. Not only their rotation speed but also the length of their blades needed to be properly adjusted to enhance their performance. In the uranium-cadmium experiment, the diffusion coefficient of the uranium species was obtained by the cyclic voltammetry method, which is around 1 x 10-5 cm2/s. In a no-stirring condition, most of the uranium deposited at the current densities of 35, 100 and 200 mA/cm2 did not sink into the liquid cadmium cathode

  17. Cathodic electrochemical deposition of Magnéli phases TinO2n−1 thin films at different temperatures in acetonitrile solution

    International Nuclear Information System (INIS)

    Highlights: • TiOx films were prepared by cathodic electrodeposition in acetonitrile. • One-step electrodeposition of TiOx films without heat treatment process. • Different crystalline TinO2n−1 films (γTi3O5, λTi3O5, Ti4O7, Ti5O9) were obtained. - Abstract: The Magnéli phase titanium oxide films prepared by cathodic electrodeposition on indium–tin-oxide coated glass substrates from saturated peroxo-titanium solution in acetonitrile. Electrodeposited brownish semi-conductor thin films were identified via X-ray diffraction, Raman spectroscopy, UV–vis spectroscopy and scanning electron microscopy (SEM). The effects of different potentials and temperatures on the crystallinity of the thin films have been discussed. Ti3O5, Ti4O7 and Ti5O9 as the most favorable forms of the TinO2n−1 were electrodeposited on ITO electrode at electrochemical deposition potentials and different temperatures. The present investigation reveals that the electrochemical deposition of crystalline TinO2n−1 films by a simple one-step electrodeposition method (without any heat treatment) in acetonitrile solution is possible and very promising as a preparation method for electrochemical applications

  18. Spray deposition of LiMn{sub 2}O{sub 4} nanoparticle-decorated multiwalled carbon nanotube films as cathode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hong, H.P. [Department of Control and Instrumentation Engineering, Korea University, Jochiwon, 339-700 (Korea, Republic of); Kim, M.S. [Department of Advanced Materials Chemistry, BK21 Research Team, Korea University, Jochiwon, 339-700 (Korea, Republic of); Lee, Y.H. [Department of Biomicrosystem Technology, Korea University, Seoul, 136-701 (Korea, Republic of); Yu, J.S. [Department of Advanced Materials Chemistry, BK21 Research Team, Korea University, Jochiwon, 339-700 (Korea, Republic of); Lee, C.J. [School of Electrical Engineering, Korea University, Seoul, 136-710 (Korea, Republic of); Min, N.K., E-mail: nkmin@korea.ac.kr [Department of Control and Instrumentation Engineering, Korea University, Jochiwon, 339-700 (Korea, Republic of)

    2013-11-29

    We prepared LiMn{sub 2}O{sub 4} nanoparticle-decorated multiwalled carbon nanotube (MWCNT) films as a cathode electrode for lithium-ion batteries using a spray-deposition method. The surface morphologies and structures of the films were characterized using scanning electron microscopy and X-ray diffraction analysis. The results revealed that fairly homogeneous spinel LiMn{sub 2}O{sub 4} nanopowder-based films with the grain size of 20–50 nm were successfully formed on the surface of the MWCNTs. Cyclic voltammetry confirmed the presence of typical spinel LiMn{sub 2}O{sub 4} structure on the MWCNTs with showing stronger oxidative peaks of better reversibility as compared to a pure LiMn{sub 2}O{sub 4} electrode. The spray-deposited LiMn{sub 2}O{sub 4}-decorated MWCNT film was also found to have a higher discharge capacity (97.2 mAh/g) than the as-deposited LiMn{sub 2}O{sub 4} film (75.2 mAh/g) as well as excellent cycling stability. These characteristics are due to the fact that MWCNTs provide the cathode with multiple electron tunneling pathways and a mechanically strong framework. - Highlights: • This study discusses LiMn{sub 2}O{sub 4}(LM)-coated multiwalled carbon nanotube film (MWCNT) • LM-coated MWCNT electrodes are deposited using spray-coating methods. • LM-coated MWCNT electrodes show high discharge capacity. • LM-coated MWCNT electrodes show cycle stability. • MWCNT framework maintains the structure of LM during the electrochemical reaction.

  19. Spray deposition of LiMn2O4 nanoparticle-decorated multiwalled carbon nanotube films as cathode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    We prepared LiMn2O4 nanoparticle-decorated multiwalled carbon nanotube (MWCNT) films as a cathode electrode for lithium-ion batteries using a spray-deposition method. The surface morphologies and structures of the films were characterized using scanning electron microscopy and X-ray diffraction analysis. The results revealed that fairly homogeneous spinel LiMn2O4 nanopowder-based films with the grain size of 20–50 nm were successfully formed on the surface of the MWCNTs. Cyclic voltammetry confirmed the presence of typical spinel LiMn2O4 structure on the MWCNTs with showing stronger oxidative peaks of better reversibility as compared to a pure LiMn2O4 electrode. The spray-deposited LiMn2O4-decorated MWCNT film was also found to have a higher discharge capacity (97.2 mAh/g) than the as-deposited LiMn2O4 film (75.2 mAh/g) as well as excellent cycling stability. These characteristics are due to the fact that MWCNTs provide the cathode with multiple electron tunneling pathways and a mechanically strong framework. - Highlights: • This study discusses LiMn2O4(LM)-coated multiwalled carbon nanotube film (MWCNT) • LM-coated MWCNT electrodes are deposited using spray-coating methods. • LM-coated MWCNT electrodes show high discharge capacity. • LM-coated MWCNT electrodes show cycle stability. • MWCNT framework maintains the structure of LM during the electrochemical reaction

  20. Age and geochemistry of host rocks of the Cobre Panama porphyry Cu-Au deposit, central Panama: Implications for the Paleogene evolution of the Panamanian magmatic arc

    Science.gov (United States)

    Baker, Michael J.; Hollings, Peter; Thompson, Jennifer A.; Thompson, Jay M.; Burge, Colin

    2016-04-01

    The Cobre Panama porphyry Cu-Au deposit, located in the Petaquilla district of central Panama, is hosted by a sequence of medium- to high-K calc-alkaline volcanic and sub-volcanic rocks. New crystallisation ages obtained from a granodiorite Petaquilla batholith and associated mineralised diorite to granodiorite porphyry stocks and dikes at Cobre Panama indicate that the batholith was emplaced as a multi-phase intrusion, over a period of ~ 4 million years from 32.20 ± 0.76 Ma to 28.26 ± 0.61 Ma, while the porphyritic rocks were emplaced over a ~ 2 million year period from 28.96 ± 0.62 Ma to 27.48 ± 0.68 Ma. Both the volcanic to sub-volcanic host rocks and intrusive rocks of the Cobre Panama deposit evolved via fractional crystallisation processes, as demonstrated by the major elements (e.g. Al2O3, Fe2O3, TiO2 and MgO) displaying negative trends with increasing SiO2. The Petaquilla intrusive rocks, including the diorite-granodiorite porphyries and granodiorite batholith, are geochemically evolved and appear to have formed from more hydrous magmas than the preceding host volcanic rocks, as evidenced by the presence of hornblende phenocrysts, higher degrees of large-ion lithophile element (LILE) and light rare earth element (LREE) enrichment and heavy rare earth element (HREE) depletion, and higher Sr/Y and La/Yb values. However, the degree of LREE enrichment, HREE depletion and La/Yb values are insufficient for the intrusive rocks to be considered as adakites. Collectively, the volcanic and intrusive rocks have LILE, REE and mobile trace element concentrations similar to enriched Miocene-age Cordilleran arc magmatism found throughout central and western Panama. Both the Petaquilla and Cordilleran arc magmatic suites are geochemically more evolved than the late Cretaceous to Eocene Chagres-Bayano arc magmas from northeastern Panama, as they display higher degrees of LILE and LREE enrichment. The geochemical similarities between the Petaquilla and Cordilleran arc

  1. Effect of zirconium and niobium on process of uranium dioxide cathodic deposition in molten alkali metal chlorides

    International Nuclear Information System (INIS)

    The process of electrocrystallization of uranium dioxide from molten chloride electrolytes in the presence of tetravalent and pentavalent niobium has been studied by voltammetric method. it has been ascertained that tetravalent zirconium interacts according o exchange mechanism with uranium dioxide with formation of solid solutions (1-x)UO2·xZrO2. Pentavalent niobium is reduced to tetravalent one on the cathode with formation of solid solution (1-y)UO2·NbO2. In simultaneous presence in electrolyte of Zr(4) and Nb(5) ternary solid solutions (1-y-x)UO2·xZrO2·NbO2 are formed on the cathode. 12 refs., 4 figs

  2. Structural evolution of Ti destroyable interlayer in large-size diamond film deposition by DC arc plasma jet

    Science.gov (United States)

    Guo, Jianchao; Li, Chengming; Liu, Jinlong; Wei, Junjun; Chen, Liangxian; Hua, Chenyi; Yan, Xiongbo

    2016-05-01

    The addition of titanium (Ti) interlayer was verified to reduce the residual stress of diamond films by self-fracturing and facilitate the harvest of a crack-free free-standing diamond film prepared by direct current (DC) arc plasma jet. In this study, the evolution of the Ti interlayer between large-area diamond film and substrate was studied and modeled in detail. The evolution of the interlayer was found to be relevant to the distribution of the DC arc plasma, which can be divided into three areas (arc center, arc main, and arc edge). The formation rate of titanium carbide (TiC) in the arc main was faster than in the other two areas and resulted in the preferred generation of crack in the diamond film in the arc main during cooling. Sandwich structures were formed along with the growth of TiC until the complete transformation of the Ti interlayer. The interlayer released stress via self-fracture. Avoiding uneven fragile regions that formed locally in the interlayer and achieving cooperatively released stress are crucial for the preparation of large crack-free diamond films.

  3. Purging means and method for Xenon arc lamps

    Science.gov (United States)

    Miller, C. G. (Inventor)

    1973-01-01

    High pressure Xenon short-arc lamp with two reservoirs which are selectively connectable to the lamp's envelope is described. One reservoir contains an absorbent which will absorb both Xenon and contaminant gases such as CO2 and O2. The absorbent temperature is controlled to evacuate the envelope of both the Xenon and the contaminant gases. The temperature of the absorbent is then raised to desorb only clean Xenon while retaining the contaminant gases, thereby clearing the envelope of the contaminant gases. The second reservoir contains a gas whose specific purpose is, to remove the objectional metal film which deposits gradually on the interior surface of the lamp envelope during normal arc operation. The origin of the film is metal transferred from the cathode of the arc lamp by sputtering or other gas transfer processes.

  4. Investigation of PVD coatings deposited on the Si3N4 and sialon tool ceramics

    OpenAIRE

    D. Pakuła; L.A. Dobrzański; Kriz, A; M. Staszuk

    2010-01-01

    Purpose: The paper presents investigation results of the structure and properties of the coatings deposited by cathodic arc evaporation - physical vapour deposition (CAE-PVD) techniques on the Si3N4 and sialon tool ceramics. The Ti(B,N), Ti(C,N), (Ti,Zr)N and (Ti,Al)N coatings were investigated.Design/methodology/approach: The structural investigation includes the metallographic analysis on the scanning electron microscope. Examinations of the chemical compositions of the deposited coatings w...

  5. Deposition of thin layers of boron nitrides and hydrogenated microcrystalline silicon assisted by high current direct current arc plasma; Deposition assistee par un plasma a arc a haut courant continu de couches minces de Nitrure de Bore et de Silicium microcristallin hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Franz, D. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    1999-09-01

    In the frame of this thesis, a high current direct current arc (HCDCA) used for the industrial deposition of diamond, has been adapted to study the deposition of two types of coatings: a) boron nitride, whose cubic phase is similar to diamond, for tribological applications, b) hydrogenated microcrystalline silicon, for applications in the semiconductor fields (flat panel displays, solar cells,...). For the deposition of these coatings, the substrates were placed in the diffusion region of the arc. The substrate heating is mainly due to atomic species recombining on its surface. The deposition temperature, varying from 300 to 900 {sup o}C according to the films deposited, is determined by the substrate position, the arc power and the injected gas fluxes, without the use of any external heating or cooling system. Measurements performed on the arc plasma show that the electronic temperature is around 2 eV (23'000 K) while the gas temperature is lower than 5500 K. Typical electronic densities are in the range of 10{sup 12}-10{sup 1'}3 cm{sup -3}. For the deposition of boron nitride films, different boron precursors were used and a wide parameter range was investigated. The extreme difficulty of synthesising cubic boron nitride films by chemical vapour deposition (CVD) did not allow to stabilize the cubic phase of boron nitride in HCDCA. Coatings resulted in hexagonal or amorphous boron nitride with a chemical composition close to stoichiometric. The presence of hydrogen leads to the deposition of rough and porous films. Negative biasing of the samples, for positive ion bombardment, is commonly used to stabilize the cubic phase. In HCDCA and in our biasing range, only a densification of the films could be observed. A boron nitride deposition plasma study by infrared absorption spectroscopy in a capacitive radio frequency reactor has demonstrated the usefulness of this diagnostic for the understanding of the various chemical reactions which occur in this kind

  6. Effect of deposition parameters on mechanical properties of TiN films coated on 2A12 aluminum alloys by arc ion plating (AIP)

    Institute of Scientific and Technical Information of China (English)

    AWAD Samir Hamid; QIAN Han-cheng

    2005-01-01

    TiN films were deposited on 2A12 aluminum alloy by arc ion plating (AIP). The Vickers hardness of the films deposited at different bias voltages and different nitrogen gas pressures, and that of the substrate were measured. The surface roughness of the TiN films diposited at -30 V and -80 V respectively and at different nitrogen gas pressure was measured also. The mass loss of TiN films deposited at 0 V, -30 V and -80 V respectively were analyzed in dry sand rubber wheel abrasive wear tests and wet ones in comparison with uncoated Al alloy and austenitic stainless steel (AISI 316L). It is revealed that the highest hardness of the TiN film is obtained at a bias voltage of -30 V and a N2 gas pressure of 0.5 Pa. The surface roughness of the film is larger at -80 V than that at -30 V and reduces as the increase of the N2 gas pressure. The mass loss of TiN-film coated 2A12 aluminum alloy is remarkably less than that of uncoated Al alloy and also that of AISI 316L, which indicates that the abrasive wear rate is greatly reduced by the application of TiN coating. TiN coating deposited by arc ion plating (AIP) technique on aluminum alloy can be a potential coating for machine parts requiring preciseness and lightness.

  7. The influence of nitrogen pressure on the structure of condensates, obtained at vacuum-arc deposition from high entropy alloy AlCrTiZrNbY

    International Nuclear Information System (INIS)

    The possibilities of structural engineering of vacuum-arc coatings based on the high entropy alloy AlCrTiZrNbY have been studied by means of electron microscopy with energy dispersion element analysis, X-ray diffractometry and microidentation methods. It was found, that the coatings formed by means of vacuum-arc method are two-phase objects. The change of nitrogen pressure from 2.0 centre dot 10-4 to 5.0 centre dot 10-4 Torr during the deposition increases the contents of its atoms in the condensate from 2.7 to 21.62%, and this is accompanied by the transfer from nanocrystallic and claster to nanocrystallic two phase state (combination of bcc and fcc structures) and leads to hardness increase from 6.7 to 7.6 GPa. The observed structure changes are explained by the formation of defects of packaging in fcc crystal lattice at low nitrogen content.

  8. Diagnosis of gas phase near the substrate surface in diamond film deposition by high-power DC arc plasma jet CVD

    Institute of Scientific and Technical Information of China (English)

    Zuyuan Zhou; Guangchao Chen; Bin Li; Weizhong Tang; Fanxiu Lv

    2007-01-01

    Optical emission spectroscopy (OES) was used to study the gas phase composition near the substrate surface during diamond deposition by high-power DC arc plasma jet chemical vapor deposition (CVD). C2 radical was determined as the main carbon radical in this plasma atmosphere. The deposition parameters, such as substrate temperature, anode-substrate distance, methane concentration, and gas flow rate, were inspected to find out the influence on the gas phase. A strong dependence of the concentrations and distribution of radicals on substrate temperature was confirmed by the design of experiments (DOE). An explanation for this dependence could be that radicals near the substrate surface may have additional ionization or dissociation and also have recombination,or are consumed on the substrate surface where chemical reactions occur.

  9. A study of the ion flux during deposition of titanium thin films by hollow cathode plasma jet

    Czech Academy of Sciences Publication Activity Database

    Virostko, Petr; Hubička, Zdeněk; Čada, Martin; Kment, Štěpán; Jastrabík, Lubomír; Tichý, M.

    2009-01-01

    Roč. 8, - (2009), 719-723. ISSN 1883-9630. [Proceedings of the 14th International Congress on Plasma Physics (ICPP2008). Fukuoka, 08.09.2008-12.09.2008] R&D Projects: GA AV ČR KJB100100707; GA AV ČR KJB100100805; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : ion flux * plasma jet * hollow cathode * plasma diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics http://www.jspf.or.jp/JPFRS/PDF/Vol8/jpfrs2009_08-0719.pdf

  10. Electric probe diagnostics of the hollow cathode plasma jet system for TiO.sub.x./sub. thin films deposition

    Czech Academy of Sciences Publication Activity Database

    Virostko, Petr; Hubička, Zdeněk; Kment, Štěpán; Adámek, Petr; Jastrabík, Lubomír; Tichý, M.

    Praha : Institute of Plasma Physics AS CR, 2007 - (Schmidt, J.; Šimek, M.; Pekárek, S.; Prukner, V.), s. 783-786 ISBN 978-80-87026-01-4. [International conference on phenomena in ionized gases - ICPIG /28./. Praha (CZ), 15.07.2007-20.07.2007] R&D Projects: GA AV ČR KAN400720701; GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z10100522 Keywords : probe diagnostics * Langmuir probe * hollow cathode * plasma jet Subject RIV: BL - Plasma and Gas Discharge Physics

  11. Substrate temperature influence on the properties of GaN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    International Nuclear Information System (INIS)

    Gallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N2/H2 plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties, the chemical composition, E1(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature

  12. Substrate temperature influence on the properties of GaN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Gungor, Neşe [Department of Physics, Faculty of Arts and Sciences, Marmara University, Goztepe, 34722 Istanbul (Turkey); Haider, Ali; Kizir, Seda; Leghari, Shahid A.; Biyikli, Necmi, E-mail: biyikli@unam.bilkent.edu.tr [Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, 06800 Ankara, Turkey and National Nanotechnology Research Center (UNAM), Bilkent University, Bilkent, 06800 Ankara (Turkey)

    2016-01-15

    Gallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N{sub 2}/H{sub 2} plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties, the chemical composition, E{sub 1}(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature.

  13. Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al2O3 films and Al2O3/a-SiNx:H stacks

    International Nuclear Information System (INIS)

    Al2O3 thin films synthesized by plasma-enhanced atomic layer deposition (ALD) at room temperature (25 deg. C) have been tested as water vapor permeation barriers for organic light emitting diode devices. Silicon nitride films (a-SiNx:H) deposited by plasma-enhanced chemical vapor deposition served as reference and were used to develop Al2O3/a-SiNx:H stacks. On the basis of Ca test measurements, a very low intrinsic water vapor transmission rate of ≤ 2 x 10-6 g m-2 day-1 and 4 x 10-6 g m-2 day-1 (20 deg. C/50% relative humidity) were found for 20-40 nm Al2O3 and 300 nm a-SiNx:H films, respectively. The cathode particle coverage was a factor of 4 better for the Al2O3 films compared to the a-SiNx:H films and an average of 0.12 defects per cm2 was obtained for a stack consisting of three barrier layers (Al2O3/a-SiNx:H/Al2O3).

  14. Fabrication of ceramic coatings on NIFS-HEAT by arc-source plasma-assisted deposition method for fusion blanket application

    International Nuclear Information System (INIS)

    Al2O3 coatings and AlN coatings were fabricated by filtered arc-source plasma assisted deposition method on a low activation vanadium alloy NIFS-HEAT-2' for self-cooled liquid blanket application. The AlN coating had a low electrical resistivity due to relatively large amount of Al deposited in the coatings than that of N. Al2O3 bulk specimens and the Al2O3 coating were sintered in Li20-Sn80 and Flibe. They showed a high compatibility in the Li20-Sn80 at 823 K for 1 day. In the Flibe at 823 K for 2 days, on the contrast, slight mass decreases of the bulk specimens were observed and the coatings disappeared. (author)

  15. Development of data processing system for regional geophysical and geochemical exploration of sandstone-hosted uranium deposits based on ArcGIS Engine

    International Nuclear Information System (INIS)

    According to the data processing need of geophysical and geochemical exploration of sandstone-hosted uranium deposits, the function design of the regional geophysical and geochemical data processing system is completed in the paper. The geophysical and geochemical data processing software with powerful functions is also developed based on ArcGIS Engine which remedies the shortage of GIS software for performing the geophysical and geochemical data processing. The development technique route of system software and key techniques are introduced, and the development processes of system software are showed through some development examples. Application practices indicate that the interface of developed system software with friendly interface and utility functions, may quickly perform the data processing of regional geophysical and geochemical exploration and provide the helpful deep information for predicting metallogenic prospective areas of sandstone-hosted uranium deposits. The system software is of a great application foreground. (authors)

  16. Deep oxidation of methane on particles derived from YSZ-supported Pd-Pt-(O) coatings synthesized by pulsed filtered cathodic arc

    Energy Technology Data Exchange (ETDEWEB)

    Horwat, D.; Endrino, J.L.; Boreave, A.; Karoum,R.; Pierson, J.F.; Weber, S.; Anders, A.; Vernoux, Ph.

    2008-12-12

    Methane conversion tests were performed on Pd, PdOy, Pd0.6Pt0.4Oy and Pd0.4Pt0.6Oy thin films deposited on yttria stabilized zirconia (YSZ) substrates. Pt containing films exhibited poor activity and high reducibility. As-deposited Pd and PdOy films showed good activity and transformed, during the cycling process, to particles dispersed on the YSZ substrates. The higher reaction rate of initially PdOy films was explained by a better dispersion of the catalyst. A drop of the reaction rate was observed when the temperature exceeded 735oC and 725oC for initially Pd and PdOy, respectively, which can be associated with the high-temperature reduction of PdO into Pd.

  17. Magneto-plasma-dynamic arc thruster

    Science.gov (United States)

    Burkhart, J. A. (Inventor)

    1973-01-01

    The performance of a magnetoplasmadynamic arc thruster, in the 600 to 2,100 seconds specific impulse range, was improved by locating its cathode in the exhaust beam downstream of the anode and main propellant injection point.

  18. Fabrication of LiCoO 2 cathode powder for thin film battery by aerosol flame deposition

    Science.gov (United States)

    Lee, Taewon; Cho, Kihyun; Oh, Jangwon; Shin, Dongwook

    Crystalline LiCoO 2 nano-particles for thin film battery were synthesized and deposited by aerosol flame deposition (AFD). The aqueous precursor solution of the lithium nitrate and cobalt acetate was atomized with an ultrasonic vibrator and subsequently carried into the central tube of the torch by flowing dry Ar gas. LiCoO 2 were formed by oxy-hydrogen flame and deposited on a substrate placed in a heating stage. The deposited soot film composed of nano-sized particles was subsequently consolidated into a dense film by high temperature heat treatment at 500-800 °C for 5 h and characterized by SEM, XRD, and Raman spectroscopy. The crystalline carbonates and oxide were first formed by the deposition and the subsequent heat treatment converted those to LiCoO 2. The FWHMs of the XRD peaks were reduced and their intensity increased as the heat treatment temperature increased, which is due to improved crystallinity. When judged from the low enough cation mixing and well-developed layered structure, it is believed that the LiCoO 2 film satisfied the quality standard for the real application. SEM measurements showed that LiCoO 2 were nano-crystalline structure with the average particle size thickness of thin film LiCoO 2 before the consolidation process was about 15 μm and reduced to about 4 μm after sintering.

  19. Electrical conduction and dielectric relaxation properties of AlN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    Science.gov (United States)

    Altuntas, Halit; Bayrak, Turkan; Kizir, Seda; Haider, Ali; Biyikli, Necmi

    2016-07-01

    In this study, aluminum nitride (AlN) thin films were deposited at 200 °C, on p-type silicon substrates utilizing a capacitively coupled hollow-cathode plasma source integrated atomic layer deposition (ALD) reactor. The structural properties of AlN were characterized by grazing incidence x-ray diffraction, by which we confirmed the hexagonal wurtzite single-phase crystalline structure. The films exhibited an optical band edge around ∼5.7 eV. The refractive index and extinction coefficient of the AlN films were measured via a spectroscopic ellipsometer. In addition, to investigate the electrical conduction mechanisms and dielectric properties, Al/AlN/p-Si metal-insulator-semiconductor capacitor structures were fabricated, and current density–voltage and frequency dependent (7 kHz–5 MHz) dielectric constant measurements (within the strong accumulation region) were performed. A peak of dielectric loss was observed at a frequency of 3 MHz and the Cole–Davidson empirical formula was used to determine the relaxation time. It was concluded that the native point defects such as nitrogen vacancies and DX centers formed with the involvement of Si atoms into the AlN layers might have influenced the electrical conduction and dielectric relaxation properties of the plasma-assisted ALD grown AlN films.

  20. High current density cathode for electrorefining in molten electrolyte

    Science.gov (United States)

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  1. Atomic layer deposition of NiS and its application as cathode material in dye sensitized solar cell

    International Nuclear Information System (INIS)

    Nickel sulfide (NiS) is grown by atomic layer deposition (ALD) using sequential exposures of bis(2,2,6,6-tetramethylheptane-3,5-dionate)nickel(II) [Ni(thd)2] and hydrogen sulfide (H2S) at 175 °C. Complementary combinations of in situ and ex situ characterization techniques are used to understand the deposition chemistry and the nature of film growth. The saturated growth rate of ca. 0.21 Å per ALD cycle is obtained, which is constant within the ALD temperature window (175–250 °C). As deposited films on glass substrates are found polycrystalline without any preferred orientation. Electrical transport measurement reveals degenerative/semimetallic characteristics with a carrier concentration of ca. 9 × 1022 cm−3 at room temperature. The ALD grown NiS thin film demonstrates high catalytic activity for the reduction of I−/I3− electrolyte that opens its usage as cost-effective counter electrode in dye sensitized solar cells, replacing Pt

  2. Atomic layer deposition of NiS and its application as cathode material in dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mahuli, Neha [Center for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Sarkar, Shaibal K., E-mail: shaibal.sarkar@iitb.ac.in [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-01-15

    Nickel sulfide (NiS) is grown by atomic layer deposition (ALD) using sequential exposures of bis(2,2,6,6-tetramethylheptane-3,5-dionate)nickel(II) [Ni(thd){sub 2}] and hydrogen sulfide (H{sub 2}S) at 175 °C. Complementary combinations of in situ and ex situ characterization techniques are used to understand the deposition chemistry and the nature of film growth. The saturated growth rate of ca. 0.21 Å per ALD cycle is obtained, which is constant within the ALD temperature window (175–250 °C). As deposited films on glass substrates are found polycrystalline without any preferred orientation. Electrical transport measurement reveals degenerative/semimetallic characteristics with a carrier concentration of ca. 9 × 10{sup 22} cm{sup −3} at room temperature. The ALD grown NiS thin film demonstrates high catalytic activity for the reduction of I{sup −}/I{sub 3}{sup −} electrolyte that opens its usage as cost-effective counter electrode in dye sensitized solar cells, replacing Pt.

  3. Vacuum arc under axial magnetic fields: experimental and simulation research

    International Nuclear Information System (INIS)

    Axial magnetic field (AMF) technology is a most important control method of vacuum arc, particularly for high-current vacuum arcs in vacuum interrupters. In this paper, a review of the state of current research on vacuum arcs under AMF is presented. The major aspects of vacuum arc in an AMF such as arc voltage, the motion of cathode spots, and anode activities are discussed, and the most recent progress both of experimental and simulation research is presented. (topical review)

  4. Preparation of nanocomposite thoriated tungsten cathode by swaging technique

    Institute of Scientific and Technical Information of China (English)

    王发展; 诸葛飞; 张晖; 丁秉钧

    2002-01-01

    By using the high energy ball milling method,the nanosized ThO2 powders were obtained.Through mixing powders,sintering and hot swaging processing,a nanocomposite thoriated tungsten cathode was fabricated.The relative density of the nanocomposite material is near 100%.The microstructure of nanocomposite cathode is quite different from that of conventional thoriated tungsten cathode.Most of thoria particles are less than 100 nm in diameter,and distribute on the boundaries of tungsten grains.The nanocomposite cathode shows a much lower arc starting field than that of conventional cathode,which will improve the performance of the cathode significantly.

  5. Structure and properties of selected cemented carbides and cermets covered with TiN/(Ti,Al,SiN/TiN coatings obtained by the cathodic arc evaporation process

    Directory of Open Access Journals (Sweden)

    Leszek A. Dobrzañski

    2005-06-01

    Full Text Available This study presents the results of microstructural examinations, mechanical tests and service performance tests carried out on thin TiN/(Ti,Al,SiN/TiN wear resistance coatings obtained by the CAE process on cermet and cemented carbide substrates. Microstructural examinations of the applied coatings and the substrate were made with an OPTON DSM 940 SEM and a LEICA MEF4A light microscope. Adhesion of the coatings on cemented carbides and cermets was measured using the scratch test. The cutting properties of the materials were determined from service tests in which continuous machining of C45E steel was carried out. The hardness of the substrate and the microhardness of the coatings were determined with a DUH 202 SHIMADZU ultra microhardness tester with a load of 70 mN. Roughness tests were also carried out before applying the coatings and after the PVD process. Cutting tests confirmed the advantages of the TiN/(Ti,Al,SiN/TiN type coatings obtained using the PVD method in the CAE mode on cemented carbides and cermets, as a material that undergoes very low abrasive, thermal and adhesion wear. These coatings extend tool life compared to commercially available uncoated tools with single and multi-layer coatings deposited using PVD/CVD methods.

  6. Arc Plasma Torch Modeling

    CERN Document Server

    Trelles, J P; Vardelle, A; Heberlein, J V R

    2013-01-01

    Arc plasma torches are the primary components of various industrial thermal plasma processes involving plasma spraying, metal cutting and welding, thermal plasma CVD, metal melting and remelting, waste treatment and gas production. They are relatively simple devices whose operation implies intricate thermal, chemical, electrical, and fluid dynamics phenomena. Modeling may be used as a means to better understand the physical processes involved in their operation. This paper presents an overview of the main aspects involved in the modeling of DC arc plasma torches: the mathematical models including thermodynamic and chemical non-equilibrium models, turbulent and radiative transport, thermodynamic and transport property calculation, boundary conditions and arc reattachment models. It focuses on the conventional plasma torches used for plasma spraying that include a hot-cathode and a nozzle anode.

  7. Synthesis of Large Quantity Single-Walled Carbon Nanotubes by Arc Discharge

    Institute of Scientific and Technical Information of China (English)

    李振华; 王淼; 王新庆; 朱海滨; 卢焕明; 安藤义则

    2002-01-01

    We report on a new method to prepare large quantity single-walled carbon nanotubes (SWCNTs) with high purity.Using a Y-Ni powder composite graphite rod as an anode, at a given angle with the high-purity graphite cathode rod, a cloth-like deposit can be obtained by dc arc discharge in helium at high temperature, which contains about 60% SWCNTs. In this way, we can obtain a deposit of more than one gram in ten minutes. Transmission electron microscopy and Raman scattering have been used to observe the structure and morphology of the SWCNTs.

  8. Resistance to cyclic oxidation of Al-Si diffusion coatings deposited by Arc-PVD on TiAlCrNb alloy

    International Nuclear Information System (INIS)

    One of the candidates to replace superalloys in some engine applications is γ-(TiAl) which is characterized by a density almost half of that of superalloys. Titanium aluminides exhibit a strong TiO2 forming tendency rather than formation of the protective Al2O3 at high temperatures. The oxidation resistance is further reduced with decreasing Al content. The article presents research results of cyclic oxidation of γ-(TiAl) alloy with Al-Si coatings and without coatings. Protective coatings were deposited by Arc-PVD method in two steps. In the first one AlSi layer was deposited. In the second step the temperature of samples in vacuum chamber was increased and diffusion Ti AlSi coating was formed. After coating deposition the heat treatment of samples in vacuum was made. The temperature of heat treatment was 950 oC and the time 2 hours. At temperature of 950 oC cyclic oxidation tests were carried out. The time of reaching the temperature and cooling was 5 minutes. Mass changes of the specimens were recorded every 100 cycles. The total number of cycles amounted to 2400. Phase composition, morphology and the distribution of elements were defined by EDX, XRD and SEM in AlSi layers as well as in the scale. (author)

  9. Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries.

    Science.gov (United States)

    Mohanty, Debasish; Dahlberg, Kevin; King, David M; David, Lamuel A; Sefat, Athena S; Wood, David L; Daniel, Claus; Dhar, Subhash; Mahajan, Vishal; Lee, Myongjai; Albano, Fabio

    2016-01-01

    The energy density of current lithium-ion batteries (LIBs) based on layered LiMO2 cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO2) and alumina (Al2O3) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al2O3 coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/-1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al2O3 coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al2O3-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs. PMID:27226071

  10. Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries

    Science.gov (United States)

    Mohanty, Debasish; Dahlberg, Kevin; King, David M.; David, Lamuel A.; Sefat, Athena S.; Wood, David L.; Daniel, Claus; Dhar, Subhash; Mahajan, Vishal; Lee, Myongjai; Albano, Fabio

    2016-05-01

    The energy density of current lithium-ion batteries (LIBs) based on layered LiMO2 cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO2) and alumina (Al2O3) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al2O3 coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/‑1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al2O3 coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al2O3-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs.

  11. Titanium oxide:fullerene composite films as electron collector layer in organic solar cells and the use of an easy-deposition cathode

    Science.gov (United States)

    Pérez-Gutiérrez, Enrique; Maldonado, José-Luis; Nolasco, Jairo; Ramos-Ortíz, Gabriel; Rodríguez, Mario; Torre, Ulises Mendoza-De la; Meneses-Nava, Marco-Antonio; Barbosa-García, Oracio; García-Ortega, Héctor; Farfán, Norberto; Granados, Giovana; Santillan, Rosa; Juaristi, Eusebio

    2014-06-01

    Here is reported the use of a titanium oxide:fullerene (TiOx:PC71BM) composite film as electron collector layer in organic photovoltaic devices (OPV cells). OPV cells were fabricated under the bulk heterojunction architecture: the active layer was a blend of either the photoconductor polymer MEH-PPV or P3HT with the fullerene derivative PC71BM. As cathode the eutectic alloy of Bi, In and Sn, known as Field’s metal, was used. The melting point of this alloy is above 62 °C, which makes it suitable for a vacuum-free deposition process and easy and fast device test. Cell fabrication and testing were carried out at normal room conditions. For OPV cells based on MEH-PPV, the composite thin electron collector layer improved the power conversion efficiency (η) from 1.12% to 2.07%, thus the η increase was about 85%. Meanwhile, for devices based on P3HT the use of the composite film improved the photocurrent in almost 1 mA/cm2 and the efficiency slightly increase from 2.48% to 2.68%.

  12. Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries

    Science.gov (United States)

    Mohanty, Debasish; Dahlberg, Kevin; King, David M.; David, Lamuel A.; Sefat, Athena S.; Wood, David L.; Daniel, Claus; Dhar, Subhash; Mahajan, Vishal; Lee, Myongjai; Albano, Fabio

    2016-01-01

    The energy density of current lithium-ion batteries (LIBs) based on layered LiMO2 cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO2) and alumina (Al2O3) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al2O3 coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/−1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al2O3 coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al2O3-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs. PMID:27226071

  13. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    International Nuclear Information System (INIS)

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osteointegration and reduce Ni ion release in vitro

  14. Nanoporous silver cathodes surface-treated by atomic layer deposition of Y:ZrO2 for high-performance low-temperature solid oxide fuel cells

    Science.gov (United States)

    Li, You Kai; Choi, Hyung Jong; Kim, Ho Keun; Chean, Neoh Ke; Kim, Manjin; Koo, Junmo; Jeong, Heon Jae; Jang, Dong Young; Shim, Joon Hyung

    2015-11-01

    We report high-performance solid-oxide fuel cells (SOFCs) with silver cathodes surface-treated using yttria-stabilized zirconia (YSZ) nano-particulates fabricated by atomic layer deposition (ALD). Fuel cell tests are conducted on gadolinia-doped ceria electrolyte pellets with a platinum anode at 250-450 °C. In our tests, the fuel cell performance of the SOFCs with an optimized ALD YSZ surface treatment is close to that of SOFCs with porous Pt, which is known as the best performing catalyst in the low-temperature regime. Electrochemical impedance spectroscopy confirms that the performance enhancement is due to improved electrode kinetics by the increase in charge transfer reaction sites between the surface of supporting silver and the ALD-YSZ particulates. Fuel cell durability tests shows that the ALD YSZ surface treatment improves the long-term stability. X-ray photoelectron spectroscopy also confirms that the ALD YSZ capping prevents reduction of the surface silver oxide and destruction of the mesh morphology.

  15. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    Science.gov (United States)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  16. Study of the phase composition of silicide coatings, based on layered Nb-Mo structures, obtained by vacuum-arc deposition

    Science.gov (United States)

    Lozovan, A. A.; Betsofen, S. Ya; Lenkovets, A. S.

    2016-07-01

    A multilayer composite ∼1000 μm in thickness, formed by niobium and molybdenum layers (number of layers n = 230), is obtained by vacuum-arc deposition with subsequent siliconization of the surface layers at a temperature of 1200 °C. Layer-by-layer phase analysis is performed by X-ray diffraction and scanning electron microscopy. It is found that in the surface layers ∼130 μm in thickness, single-phase silicides (Nb x Mo1- x )Si2 are formed with the hexagonal C40 structure (Strukturbericht designations). Alternating layers of solid solutions based on niobium and molybdenum with a body-centered cubic (BCC) lattice are observed within the composite. The formation of solid solutions caused by heating of the coating leads to convergence of the values of the linear thermal expansion coefficient and Young's modulus at the interface between the layers.

  17. Effect of arc spraying power on the microstructure and mechanical properties of Zn-Al coating deposited onto carbon fiber reinforced epoxy composites

    International Nuclear Information System (INIS)

    This paper investigates the effect of arc spraying power on the microstructure and mechanical properties of Zn-Al coatings deposited on carbon fiber reinforced epoxy composites (CFRE composites). The bond strength between the Zn-Al coatings and the substrates was tested on a RGD-5 tensile testing machine. The microstructures and phase composition of the as-sprayed coatings were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results showed that both the melting extent of Zn-Al particles and the bond strength of the coatings were evidently improved by increasing the spraying power. Moreover, the content of crystalline Zn-Al coatings was slightly changed. Observation of fracture surfaces showed that the Zn-Al coatings could bond well with the carbon fiber bundles using 40 kW spraying power.

  18. Time-Resolved Spectroscopic Observation of Deposition Processes of Ultrananocrystalline Diamond/Amorphous Carbon Composite Films by Using a Coaxial Arc Plasma Gun

    Science.gov (United States)

    Hanada, Kenji; Yoshitake, Tsuyoshi; Nishiyama, Takashi; Nagayama, Kunihito

    2010-08-01

    The deposition of ultrananocrystalline diamond (UNCD)/amorphous carbon composite films using a coaxial arc plasma gun in vacuum and, for comparison, in a 53.3 Pa hydrogen atmosphere was spectroscopically observed using a high-speed camera equipped with narrow-band-pass filters. UNCD crystallites with diameters of approximately 1.6 nm were formed even in vacuum. These extremely small crystallites imply that the formation is predominantly due to nucleation without the subsequent growth. Even in vacuum, emissions from C+ ions, C atoms, and C2 dimers lasted for approximately 100 µs, although the emission lifetimes of these species are generally 10 ns. We consider that the nucleation is due to the supersaturated environment containing excited carbon species with large number densities.

  19. In Vitro Analysis of Electrophoretic Deposited Fluoridated Hydroxyapatite Coating on Micro-arc Oxidized AZ91 Magnesium Alloy for Biomaterials Applications

    Science.gov (United States)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat

    2015-03-01

    Magnesium (Mg) alloys have been recently introduced as a biodegradable implant for orthopedic applications. However, their fast corrosion, low bioactivity, and mechanical integrity have limited their clinical applications. The main aim of this research was to improve such properties of the AZ91 Mg alloy through surface modifications. For this purpose, nanostructured fluoridated hydroxyapatite (FHA) was coated on AZ91 Mg alloy by micro-arc oxidation and electrophoretic deposition method. The coated alloy was characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, in vitro corrosion tests, mechanical tests, and cytocompatibility evaluation. The results confirmed the improvement of the corrosion resistance, in vitro bioactivity, mechanical integrity, and the cytocompatibility of the coated Mg alloy. Therefore, the nanostructured FHA coating can offer a promising way to improve the properties of the Mg alloy for orthopedic applications.

  20. Effect of partial pressure of reactive gas on chromium nitride and chromium oxide deposited by arc ion plating

    Institute of Scientific and Technical Information of China (English)

    LI Ming-sheng; FENG Chang-jie; WANG Fu-hui

    2006-01-01

    The effects of reactive gas partial pressure on droplet formation,deposition rate and change of preferred orientation of CrN and Cr2O3 coatings were studied. For CrN coatings,as nitrogen partial pressure increases,the number and size of droplets increases,the deposition rate initially increases obviously and then slowly,and the preferred orientation of CrN changes from high-index plane to low-index one. For Cr2O3 coatings,with the increase of oxygen partial pressure,the number and size of droplets decreases,the deposition rate decreases and the (300) becomes the preferred orientation. These differences are ascribed to the formation of CrN (with a lower melting point) and Cr2O3 (with a higher melting point) on the surface of Cr target during the deposition of CrN and Cr2O3. Complete coatings CrN or Cr2O3 film can be formed when reactive gas partial pressure gets up to 0.1 Pa. The optimized N2 partial pressure for CrN deposition is about 0.1-0.2 Pa in order to suppress the formation of droplets and the suitable O2 partial pressure for Cr2O3 deposition is approximately 0.1 Pa for the attempt to prevent the peel of the coating.

  1. Preparation and characterization of magnetic nanostructures based on FeCo / IrMn deposited by cathode sputtering

    International Nuclear Information System (INIS)

    Spintronic devices based in the transport of spin polarized current, spin's torque and other related phenomena represent big promises in the scenery of the technological miniaturization of current electronic devices. Magnetic materials of great technological relevance for different areas deal with, despite some exceptions, films and multilayered structures with high complexity. Advances on these fields require the control of those structures in atomic scale, in order to be able to tailor their physical properties. The purpose of this work is the preparation of multilayered structures by sputtering, as well the study of magnetic phenomena involved in this structures. The aim is to produce a spin valve. This is a multilayer structure composed of two ferromagnetic layers, separated by a non magnetic spacer. The magnetisation of one of the ferromagnetic layers is free to rotate under the effect of small external fields, whilst the magnetisation of the other ferromagnetic layer remains fixed by means exchange coupling to a antiferromagnetic layer. The structure is tailored to allow the small applied magnetic fields to switch the magnetisation of the ferromagnetic layers from antiparallel state to a parallel state resulting in the variation of the electrical resistivity of the structure (GMR effect). Optimization of deposition conditions was required to obtain structures with exchange bias coupling, and antiferromagnetic coupling through a non magnetic spacer. The correlation between the deposition conditions and the magnetic properties of the films was studied. The work presented in this dissertation has contributed to the characterisation of both magnetic thin films, which can be used on the production of magnetic sensors, and the new sputtering system assembled in the Applied Physics Laboratory of CDTN. (author)

  2. Improving the electrochemical properties of Li1.2Mn0.52Co0.08Ni0.2O2 cathode material by uniform surface nanocoating with samarium fluoride through depositional-hydrothermal route

    International Nuclear Information System (INIS)

    Graphical abstract: Li1.2Mn0.52Co0.08Ni0.2O2 cathode material uniformly nanocoated with samarium fluoride (SmF3) has been successfully synthesized through a chemical deposition method followed by low-temperature hydrothermal treatment. The surface modified cathode shows a significantly improved cycling stability and rate capability. - Highlights: • Samarium fluoride is originally used as coating material of Li-rich layered cathode. • Low-temperature hydrothermal treatment is employed to establish uniform surface coating. • Cathode nanocoated with SmF3 shows improved rate capability and cycling stability. • Coating material suppresses the side reaction between electrode and electrolyte. - Abstract: Surface nanocoating of lithium-rich layered Li1.2Mn0.52Co0.08Ni0.2O2 with samarium fluoride (SmF3) has been performed through a chemical deposition route combined with a low-temperature hydrothermal treatment. The surface-modified Li1.2Mn0.52Co0.08Ni0.2O2 particles are uniformly and completely covered by an amorphous SmF3 protective layer with a thin thickness of ∼20 nm. After surface modification, the coated Li1.2Mn0.52Co0.08Ni0.2O2 as cathode shows a significantly improved cycling stability, keeping a capacity retention of 84.5% after 150 cycles at 2 C, much higher than 68.9%forits uncoated counterpart. Moreover, the coated sample delivers an enhanced rate capability with an average capacity of ∼132.3 mA h g−1 when charged at 5 C and discharged at 0.2 C, while the uncoated counterpart only exhibits a capacity of ∼111.4 mA h g−1 under the same conditions. Our results reveal that the remarkably improved electrochemical performance of the surface-modified cathode is attributed to the presence of uniform, robust, and nanoscale SmF3 coating layer, which not only suppresses the growth of SEI layer by reducing the side reaction between cathode and electrolyte solution, but also strengthens the structure stability of the Li-rich layered cathode materials

  3. Structural and Physical Characteristics of Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Deposited Using a Coaxial Arc Plasma Gun

    Science.gov (United States)

    Yoshitake, Tsuyoshi; Nakagawa, You; Nagano, Akira; Ohtani, Ryota; Setoyama, Hiroyuki; Kobayashi, Eiichi; Sumitani, Kazushi; Agawa, Yoshiaki; Nagayama, Kunihito

    2010-01-01

    Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) films were formed without initial nucleation using a coaxial arc plasma gun. The UNCD crystallite diameters estimated from the X-ray diffraction peaks were approximately 2 nm. The Fourier transform infrared absorption spectrum exhibited an intense sp3-CH peak that might originate from the grain boundaries between UNCD crystallites whose dangling bonds are terminated with hydrogen atoms. A narrow sp3 peak in the photoemission spectrum implied that the film comprises a large number of UNCD crystallites. Large optical absorption coefficients at photon energies larger than 3 eV that might be due to the grain boundaries are specific to the UNCD/a-C:H films.

  4. Mechanical properties and phase structure of (TiAlZr)N films deposited by multi arc ion plating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jun, E-mail: zhjun88@126.co [Department of Materials Science and Engineering, Shenyang University, Shenyang 110044 (China) and State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian 116024 (China); Guo Wenying [Department of Materials Science and Engineering, Shenyang University, Shenyang 110044 (China); Zhang Yu [Department of Physics, Applied Science School, University of Science and Technology Beijing, Beijing, 100083 (China); Guo Qiang; Wang Chuang; Zhang Lipeng [Department of Materials Science and Engineering, Shenyang University, Shenyang 110044 (China)

    2009-07-01

    A series of Ti-Al-Zr alloy targets with the atomic ratio of (Al + Zr)/(Ti + Al + Zr) from 0.29 to 0.40 were used directly to prepare (Ti,Al,Zr)N multi component hard reactive films on high speed steel substrates by multi arc ion plating (MAIP) technology. The surface morphology, the cross-fracture microstructure, the surface compositions and the phase structure of the (Ti,Al,Zr)N films were investigated by scanning electronic microscope (SEM) and X-ray diffraction (XRD). The dense columnar microstructure was obtained in all of the (Ti,Al,Zr)N films, though micro-droplets evidently existed on the surface of the films. The XRD analysis revealed f.c.c. structure only existing in all of the (Ti,Al,Zr)N films. The lattice parameter was changed with varying the Al and Zr contents in alloy targets. The micro-hardness of film surface and the adhesive property of film/substrate were measured. All the (Ti,Al,Zr)N films displayed excellent mechanical properties. The adhesive strength, in terms of critical load, was larger than 100N and the hardness was bigger than 3000Kg(f)/mm{sup 2}. The (Ti,Al,Zr)N film displayed the highest micro-hardness as the atomic ratio of (Al + Zr)/(Ti + Al + Zr) in Ti-Al-Zr alloy target reached 0.40. The present results suggest the expectant substitution of (Ti,Al,Zr)N films for TiN, (Ti,Al)N and (Ti,Zr)N hard films in industrial application and the technical advantage of Ti-Al-Zr alloy targets in preparing (Ti,Al,Zr)N hard films by multi arc ion plating.

  5. The Effect of Counterpart Material on the Sliding Wear of TiAlN Coatings Deposited by Reactive Cathodic Pulverization

    Directory of Open Access Journals (Sweden)

    Michell Felipe Cano Ordoñez

    2015-11-01

    Full Text Available This work aims to study the effect of the counterpart materials (100Cr6, Al2O3 and WC-Co on the tribological properties of TiAlN thin films deposited on AISI H13 steel substrate by reactive magnetron co-sputtering. The structural characterization of the TiAlN films, performed by X-ray diffraction, showed (220 textured fcc crystalline structure. The values of hardness and elastic modulus obtained by nanoindentation were 27 GPa and 420 GPa, respectively, which resulted in films with a relatively high resistance to plastic deformation. Ball-on-disk sliding tests were performed using normal loads of 1 N and 3 N, and 0.10 m/s of tangential velocity. The wear coefficient of the films was determined by measuring the worn area using profilometry every 1000 cycles. The mechanical properties and the chemical stability of the counterpart material, debris formation and the contact stress influences the friction and the wear behavior of the studied tribosystems. Increasing the hardness of the counterpart decreases the coefficient of friction (COF due to lower counterpart material transference and tribofilm formation, which is able to support the contact pressure. High shear stress concentration at the coating/substrate interface was reported for higher load promoting failure of the film-substrate system for all tribopairs

  6. Influence of modulation period and modulation ratio on structure and mechanical properties of TiBN/CrN coatings deposited by multi-arc ion plating

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, S.Y.; Yan, S.J.; Han, B. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, 430072 Wuhan (China); Yang, B. [School of Power and Mechanical Engineering, Wuhan University, 430072 Wuhan (China); Lin, B.Z.; Zhang, Z.D.; Ai, Z.W. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, 430072 Wuhan (China); Pelenovich, V.O. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, 430072 Wuhan (China); Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, 700135 Tashkent (Uzbekistan); Fu, D.J., E-mail: djfu@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, 430072 Wuhan (China)

    2015-10-01

    Highlights: • TiBN/CrN multilayers were synthesized with varied modulation period and ratio. • The maximum hardness of 38.6 GPa is observed at Λ = 11.7 nm and R = 5:1. • The lowest multilayer COF of 0.32 is lower than that of CrN (0.56). • The wear rate of the coatings is improved and related to H/E and H{sup 3}/E{sup *2} ratios. - Abstract: TiBN/CrN multilayered superlattice coatings with modulation periods Λ (bilayer thickness) ranging from 22.5 to 4.2 nm and modulation ratio R (the thickness ratio of CrN and TiBN layers) ranging from 6:1 to 3:1 were synthesized using an industrial-scale cathodic arc ion plating system in an Ar–N{sub 2} gas mixture. X-ray diffraction (XRD), transmission electron microscopy (TEM) and nanoindention were employed to investigate the influence of modulation period and ratio on microstructure and mechanical properties of the multilayers. The sharp interfaces and nanoscale multilayered modulation were confirmed by TEM. TiBN/CrN multilayer coatings were crystallized with orientations at the (1 1 1), (2 0 0) and (2 2 0) crystallographic planes and the microstructure was strengthened at (2 0 0) preferred orientation. The maximum hardness of 38.6 GPa and elastic modulus of 477 GPa were obtained at Λ = 11.7 nm and R = 5:1. The lowest value of the friction coefficient at 0.32 sliding against a WC-Co ball was obtained at a bilayer period of 11.7 nm, compared to those of the coatings with other modulation periods and monolithic coatings. The wear rate of the multilayered coatings was also lower than those of the monolithic CrN and TiBN coatings.

  7. Influence of modulation period and modulation ratio on structure and mechanical properties of TiBN/CrN coatings deposited by multi-arc ion plating

    International Nuclear Information System (INIS)

    Highlights: • TiBN/CrN multilayers were synthesized with varied modulation period and ratio. • The maximum hardness of 38.6 GPa is observed at Λ = 11.7 nm and R = 5:1. • The lowest multilayer COF of 0.32 is lower than that of CrN (0.56). • The wear rate of the coatings is improved and related to H/E and H3/E*2 ratios. - Abstract: TiBN/CrN multilayered superlattice coatings with modulation periods Λ (bilayer thickness) ranging from 22.5 to 4.2 nm and modulation ratio R (the thickness ratio of CrN and TiBN layers) ranging from 6:1 to 3:1 were synthesized using an industrial-scale cathodic arc ion plating system in an Ar–N2 gas mixture. X-ray diffraction (XRD), transmission electron microscopy (TEM) and nanoindention were employed to investigate the influence of modulation period and ratio on microstructure and mechanical properties of the multilayers. The sharp interfaces and nanoscale multilayered modulation were confirmed by TEM. TiBN/CrN multilayer coatings were crystallized with orientations at the (1 1 1), (2 0 0) and (2 2 0) crystallographic planes and the microstructure was strengthened at (2 0 0) preferred orientation. The maximum hardness of 38.6 GPa and elastic modulus of 477 GPa were obtained at Λ = 11.7 nm and R = 5:1. The lowest value of the friction coefficient at 0.32 sliding against a WC-Co ball was obtained at a bilayer period of 11.7 nm, compared to those of the coatings with other modulation periods and monolithic coatings. The wear rate of the multilayered coatings was also lower than those of the monolithic CrN and TiBN coatings

  8. Cathodic protection to control microbiologically influenced corrosion

    International Nuclear Information System (INIS)

    Information about the cathodic protection performance in environments with microbiologically influenced corrosion (MIC) effects is very fragmented and often contradictory. Not enough is known about the microbial effects on cathodic protection effectiveness, criteria, calcareous deposits, corrosion rates and possible hydrogen embrittlement of titanium and some stainless steel condenser tubes. This paper presents a review of cathodic protection systems, describes several examples of cathodic protection in environments with MIC effects and provides preliminary conclusions about cathodic protection design parameters, criteria and effectiveness in MIC environments. 30 refs

  9. Studies of steered arc motion and macroparticle production in PVD processing

    Energy Technology Data Exchange (ETDEWEB)

    Craven, A.L

    2000-03-01

    During the past decade the production industry has constantly strived to improve performance and cut costs, this has been aided by the development of high performance tools. The advancement of these tools has been accomplished by the application of hard wearing, low friction, coatings. A key process in the production of such coatings is Physical Vapour Deposition (PVD). Interest in such thin films has led to much research effort, both academic and industrial, being devoted to the area. In order that these advancements in technology continue, research into the fundamental aspects of PVD is required. This thesis describes research and experimental studies which have been performed to study the effect of 'steering' an electric arc on various aspects of its behaviour. 'Steering' of the arc is achieved by applying external magnetic fields which allow the guidance of the path of the arc. Work by earlier authors has aimed to control the arc more fully. The research presented here is based of a novel electromagnetic three coil steering array of cylindrical geometry. With such coils it is possible to vary the field profiles to a greater degree than has been previously achieved, permitting a greater range of steering arrangements/fields to be applied. The research presented is divided into two distinct areas: Firstly a number of experiments were performed to assess the effectiveness of the new steering coils on the motion of the arc. A personal computer was used here along with new arc motion monitoring electronics. This enabled the simultaneous measurement of the orbital transit times and also the degree of travel perpendicular to the steered direction of motion of the arc, as it traversed the surface of the cathode. Such information was then used to produce values for standard deviation of the arc from its steered path, velocity of the arc and a diffusion constant related to the motion of the are. Such values then allowed evaluation of the stochastic

  10. Studies of steered arc motion and macroparticle production in PVD processing

    International Nuclear Information System (INIS)

    During the past decade the production industry has constantly strived to improve performance and cut costs, this has been aided by the development of high performance tools. The advancement of these tools has been accomplished by the application of hard wearing, low friction, coatings. A key process in the production of such coatings is Physical Vapour Deposition (PVD). Interest in such thin films has led to much research effort, both academic and industrial, being devoted to the area. In order that these advancements in technology continue, research into the fundamental aspects of PVD is required. This thesis describes research and experimental studies which have been performed to study the effect of 'steering' an electric arc on various aspects of its behaviour. 'Steering' of the arc is achieved by applying external magnetic fields which allow the guidance of the path of the arc. Work by earlier authors has aimed to control the arc more fully. The research presented here is based of a novel electromagnetic three coil steering array of cylindrical geometry. With such coils it is possible to vary the field profiles to a greater degree than has been previously achieved, permitting a greater range of steering arrangements/fields to be applied. The research presented is divided into two distinct areas: Firstly a number of experiments were performed to assess the effectiveness of the new steering coils on the motion of the arc. A personal computer was used here along with new arc motion monitoring electronics. This enabled the simultaneous measurement of the orbital transit times and also the degree of travel perpendicular to the steered direction of motion of the arc, as it traversed the surface of the cathode. Such information was then used to produce values for standard deviation of the arc from its steered path, velocity of the arc and a diffusion constant related to the motion of the are. Such values then allowed evaluation of the stochastic model of arc motion

  11. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    Science.gov (United States)

    Xiong, Ying; Lu, Chao; Wang, Chao; Song, Renguo

    2014-12-01

    A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO2 and ZrO2 nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO2 and ZrO2 peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants.

  12. The effect of nitrogen pressure during vacuum-arc tin coatings deposition on the erosion resistance in plasma of magnetron type discharges

    International Nuclear Information System (INIS)

    The erosion process was investigated of TiN coatings which were made with the vacuum-arc sputtering of Ti at the different nitrogen pressures (10-4...5X10-3 Torr). The erosion rates were measured by the weighting on analytical balance before and after treatment by plasmas of magnetron type, axial symmetrical discharges in nitrogen atmosphere, at the temperatures of 500...1100 C. It was shown that an erosion rate of TiN coatings deposited at low pressures (approx 1X10-4 Torr) is essentially (up to 1.5 times) lower than that for coatings produced at the more high pressures (5X10-3 Torr). For samples produced in the regime with high voltage pulses supply on substrate the erosion is lower than for coatings deposited in the regime without pulses supply. Taking into account the results of X-ray diffraction measurements, the physical mechanisms are suggested to explain such character of erosion behavior.

  13. Hydrogenation effects on carrier transport in boron-doped ultrananocrystalline diamond/amorphous carbon films prepared by coaxial arc plasma deposition

    International Nuclear Information System (INIS)

    Boron-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films were deposited by coaxial arc plasma deposition with a boron-blended graphite target at a base pressure of <10−3 Pa and at hydrogen pressures of ≤53.3 Pa. The hydrogenation effects on the electrical properties of the films were investigated in terms of chemical bonding. Hydrogen-scattering spectrometry showed that the maximum hydrogen content was 35 at. % for the film produced at 53.3-Pa hydrogen pressure. The Fourier-transform infrared spectra showed strong absorptions by sp3 C–H bonds, which were specific to the UNCD/a-C:H, and can be attributed to hydrogen atoms terminating the dangling bonds at ultrananocrystalline diamond grain boundaries. Temperature-dependence of the electrical conductivity showed that the films changed from semimetallic to semiconducting with increasing hydrogen pressure, i.e., with enhanced hydrogenation, probably due to hydrogenation suppressing the formation of graphitic bonds, which are a source of carriers. Carrier transport in semiconducting hydrogenated films can be explained by a variable-range hopping model. The rectifying action of heterojunctions comprising the hydrogenated films and n-type Si substrates implies carrier transport in tunneling

  14. Ti+C+N FILM PREPARATION AND ITS PROPERTIES BY LOW ENERGY CO-DEPOSITION ON STEEL

    Institute of Scientific and Technical Information of China (English)

    Z.Z.Yi; X.Zhang; T.H.Zhang; Z.S.Xiao

    2002-01-01

    The Ti+C+N film was co-deposited on H13 steel by Filtered Vacuum Arc PlasmaDeposition (FVAPD) operated with a modified cathode. The co-deposited layer waseffective for the improvement of surface hardness and corrosion resistance. The nano-hardness value of the co-deposited film is 1.3 times more than that of undepositedsample. The corrosion behavior measurement shows that the corrosion resistance foracid corrosion and pitting corrosion was improved greatly. It is owing to the formationof the new ternary ceramic phase TiCo.7 No.3 in the co-deposited layer. The mechanismof property improvement is discussed.

  15. Cathode scraper system and method of using the same for removing uranium

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Mark A; Wiedmeyer, Stanley G; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2015-02-03

    Embodiments include a cathode scraper system and/or method of using the same for removing uranium. The cathode scraper system includes a plurality of cathode assemblies. Each cathode assembly includes a plurality of cathode rods. The cathode scraper system also includes a cathode scraper assembly configured to remove purified uranium deposited on the plurality of cathode rods. The cathode scraper assembly includes a plurality of scrapers arranged in a lattice, and each scraper of the plurality of scrapers is arranged to correspond to a different cathode rod.

  16. Surface-Regulated Nano-SnO2/Pt3Co/C Cathode Catalysts for Polymer Electrolyte Fuel Cells Fabricated by a Selective Electrochemical Sn Deposition Method.

    Science.gov (United States)

    Nagasawa, Kensaku; Takao, Shinobu; Nagamatsu, Shin-ichi; Samjeské, Gabor; Sekizawa, Oki; Kaneko, Takuma; Higashi, Kotaro; Yamamoto, Takashi; Uruga, Tomoya; Iwasawa, Yasuhiro

    2015-10-14

    We have achieved significant improvements for the oxygen reduction reaction activity and durability with new SnO2-nanoislands/Pt3Co/C catalysts in 0.1 M HClO4, which were regulated by a strategic fabrication using a new selective electrochemical Sn deposition method. The nano-SnO2/Pt3Co/C catalysts with Pt/Sn = 4/1, 9/1, 11/1, and 15/1 were characterized by STEM-EDS, XRD, XRF, XPS, in situ XAFS, and electrochemical measurements to have a Pt3Co core/Pt skeleton-skin structure decorated with SnO2 nanoislands at the compressive Pt surface with the defects and dislocations. The high performances of nano-SnO2/Pt3Co/C originate from efficient electronic modification of the Pt skin surface (site 1) by both the Co of the Pt3Co core and surface nano-SnO2 and more from the unique property of the periphery sites of the SnO2 nanoislands at the compressive Pt skeleton-skin surface (more active site 2), which were much more active than expected from the d-band center values. The white line peak intensity of the nano-SnO2/Pt3Co/C revealed no hysteresis in the potential up-down operations between 0.4 and 1.0 V versus RHE, unlike the cases of Pt/C and Pt3Co/C, resulting in the high ORR performance. Here we report development of a new class of cathode catalysts with two different active sites for next-generation polymer electrolyte fuel cells. PMID:26412503

  17. Effect of negative bias voltage on CrN films deposited by arc ion plating. II. Film composition, structure, and properties

    International Nuclear Information System (INIS)

    Chromium nitride (CrN) films were deposited on Si wafers by arc ion plating at various negative bias voltages and several groups of N2/Ar gas flux ratios and chamber gas pressures. The authors systematically investigated the influence of negative bias voltage on the synthesis, composition, microstructure, and properties of the arc ion plating (AIP) CrN films. In this article, the authors investigated the influence of negative bias voltage on the chemical composition, structure, and mechanical properties of the CrN films. The results showed that the chemical composition and phase structure of the AIP CrN films were greatly altered by application of negative bias voltage. Due to the selective resputtering effect, substoichiometric CrN films were obtained. With increase in bias voltages, the main phases in the films transformed from Cr+CrN to Cr2N at low N2/Ar flow ratios, whereas the films at high N2/Ar flow ratios retained the CrN phase structure. The CrN films experienced texture transformation from CrN (200) to CrN (220), and Cr2N (300) to Cr2N(300)+Cr2N(110). Increase in negative bias voltage also resulted in microstructure evolution of coarse columnar grains→fine columnar grains→quasiamorphous microstructure→recrystallized structures. From the experimental results, the authors proposed a new structure zone model based on enhanced bombardment of incident ions by application of negative bias voltage. The influence of negative bias voltage on the microhardness and residual stresses of the films and the inherent mechanisms were also explored

  18. Nd-nickelate solid oxide fuel cell cathode sensitivity to Cr and Si contamination

    Science.gov (United States)

    Andreas Schuler, J.; Lübbe, Henning; Hessler-Wyser, Aïcha; Van herle, Jan

    2012-09-01

    The stability of Nd-nickelate, considered as an alternative solid oxide fuel cell (SOFC) cathode material, was evaluated in this work on its tolerance towards contaminants. Symmetrical cells with Nd1.95NiO4+δ (NNO) electrodes sintered on gadolinia-doped ceria electrolyte supports were monitored over time-spans of 1000 h at 700 °C under polarization in an air-flux with deliberate chromium contamination. Impedance spectroscopy pointed out a polarization increase with time by the growth of the low frequency arc describing the electrode's oxygen reduction and incorporation processes. Post-test observations revealed polluted cathode regions with increasing amounts of Cr accumulations towards the electrolyte/cathode interface. Cr deposits were evidenced to surround active nickelate grain surfaces forming Nd-containing Cr oxides. In addition to exogenous Cr contamination, endogenous contamination was revealed. Silicon, present as impurity material in the raw NNO powder (introduced by milling during powder processing), reacts during sintering steps to form Nd-silicate phases, which decreases the active cathode surface. Nd-depletion of the nickelate, as a result of secondary phase formation with the contaminants Cr and Si (NdCrO4 and Nd4Si3O12), then triggers the thermally-induced decomposition of NNO into stoichiometric Nd2NiO4+δ and NiO. Summarized, the alternative Nd-nickelate cathode also suffers from degradation caused by pollutant species, like standard perovskites.

  19. The structure and mechanical properties of multilayer nanocrystalline TiN/ZrN coatings obtained by vacuum-arc deposition

    Directory of Open Access Journals (Sweden)

    A.V. Demchyshyn

    2007-12-01

    Full Text Available TiN/ZrN multilayered condensates on BK-8 carbide tips substrates (62 HRC were produced by the vacuumarc deposition technique, using Ti and Zr plasma flows in reactive nitrogen gas medium with working pressure of 6.6·10–1 Pa. The TiN/ZrN multilayered condensates consist of TiN and ZrN sublayers, which have a thickness of ~100 nm, controlled by the processing parameters of the used deposition technique. The obtained coatings have hardness of 45 GPa and Young’s modulus of 320 GPa. The obtained results show that mechanical properties of such multilayered composites are considerably improved in comparison to those for the single-component coatings, TiN and ZrN. The dependence of hardness and Young’s modulus of the composites on sublayer thickness within a range of 100 nm was determined. The investigated structure and improved mechanical properties of the TiN/ZrN multilayered condensates would be very good platform for finding their industrial application, such as hard coatings with different purposes.

  20. 电泳沉积制备平行栅碳纳米管场发射阴极的研究%Study on field emission cathode based on planar-gate triode with carbon nanotubes by electrophoretic deposition

    Institute of Scientific and Technical Information of China (English)

    张永爱; 林金阳; 吴朝兴; 郑泳; 林志贤; 郭太良

    2011-01-01

    Field emission arrays (FEAs) were fabricated by magnetron sputtering,photolithography,wet etching technique and electrophoretic deposition. The CNTs cathodes were characterized by the optical microscopy,field emission scanning electron microscopy (FESEM) and Raman spectra. And then,its field emission characteristics based on planar-gate triode with CNTs emitters were also investigated. The optical microscopy and field emission scanning electron microscopy (FESEM) image indicates that the cathode electrodes and gate electrodes were interdigitated and paralleled on the same plane and CNTs emitters were selectively defined on the cathode in this triode structure. Its field emission performance shows that the turn-on voltage of planar-gate triod field e-mission cathode with CNTs emitters was about 155 V and the emission current came to 286μA. The field emission properties were completely modulated by gate voltage. In addition,field emission properties of EPD CNTs and scrren printed CNTs cathode were compared. The results indicate that the EPD CNTs cathode has lower turn-on voltage and higer luminescence uniformity than that of the screen printed CNTs cathode.%利用磁控溅射、光刻、湿法刻蚀和电泳技术在玻璃基片上成功制备平行栅场发射阴极阵列,用光学显微镜、场发射扫描电镜和拉曼光谱观察了碳纳米管的形貌和结构,并测试所制备的平行栅碳纳米管阴极的场发射性能.光学显微镜和场发射电子显微镜测试表明,平行栅结构阴极和栅极交替地分布,同一个平面内,CNTs有选择性地沉积在平行栅结构中的阴极表面.场发射测试表明,平行栅CNTs场发射阴极的开启电压为 155V,发射电流高达268μA,场发射特性完全由栅压控制;此外,其场发射特性与丝网印刷工艺制备的阴极有相似甚至更佳的性能,开启电压更低,发光均匀性更好,具有更好的发射特性.

  1. The Porgera gold deposit, Papua, New Guinea, 1: association with alkalic magmatism in a continent-island-arc collision zone

    International Nuclear Information System (INIS)

    The meso thermal to epithermal Porgera gold deposit is spatially and temporally associated with shallow level (≤ 2 km emplacement depth) stocks and dykes of the Porgera Intrusive Complex (PIC). Gold mineralization immediately followed emplacement of the PIC, and is dated between 5 and 6 Ma ago. The Porgera intrusive suite is comprised of fine- to medium-grained, porphyritic to euhedral granular, volatile-rich, sodic alkali basalts/gabbros, hawaiites, and mugearites (TAS chemical classification scheme). The rocks display chemical and isotopic characteristics similar to those of intra plate alkalic basalts, but their unusually high volatile contents result in stabilization of hornblende as a phenocryst and intergranular phase in more evolved rock types. The observed order of cotectic crystallization is olivine - clinopyroxene - hornblende -plagioclase, with ubiquitous spinel (chromite/magnetite) and fluor-apatite. (author)

  2. Properties of Cr(C,N) hard coatings deposited in Ar-C2H2-N2 plasma

    International Nuclear Information System (INIS)

    Several chromium carbonitride (Cr-(C,N)) coatings were prepared with different C:N ratios by varying the N2 and C2H2 flow. Chromium nitride (Cr-N) and chromium carbide (Cr-C) coatings were also prepared for comparison. The coatings were deposited in two different ion-plating systems: by reactive evaporation in BAI730M (Balzers) apparatus at high temperature (450 deg. C) and by reactive sputtering in plasma-beam Sputron (Balzers) apparatus at low temperature (200 deg. C). Among mechanical properties microhardness, adhesion (measured by scratch test) and surface roughness were evaluated. Oxidation of the coatings was carried out by heating the samples at temperatures of 750-900 deg. C in an oxygen atmosphere. Crystal structure and microstructure were studied by XRD, TEM and SEM. Chemical State of the elements was observed by XPS. The concentration and depth profiles of the samples oxidized at various temperatures were measured by AES, EDX and GDOES

  3. Use of a Low-Pressure Non-Self-Sustained Arc Discharge for Plasma Ion Treatment of Materials

    International Nuclear Information System (INIS)

    An efficient method for producing low-temperature gas plasmas in large vacuum volumes is based on the initiation and operation of a low-pressure non-self-sustained arc discharge with a combined cathode including a hot cathode and a hollow cathode. For this type of a discharge, the inner walls of the working vacuum chamber play the role of a hollow anode. In the range from 10-1 to 1 Pa, this method makes it possible to produce plasmas of both inert and reactive gases of density 109 - 1010 cm-3 uniform within 20% with respect to the average value in volumes of about 1 m3. This paper describes major applications of this type of plasma in technological processes, such as: finish surface cleaning of materials and articles in vacuum; plasma ion nitriding of steels and alloys; plasma-assisted deposition of functional coatings on materials and articles. (author)

  4. Analysis of cathode geometry to minimize cathode erosion in direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Causa, Federica [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Universita degli studi di Messina, 98122 Messina (Italy); Ghezzi, Francesco; Caniello, Roberto; Grosso, Giovanni [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dellasega, David [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2012-12-15

    Microplasma jets are now widely used for deposition, etching, and materials processing. The present study focuses on the investigation of the influence of cathode geometry on deposition quality, for microplasma jet deposition systems in low vacuum. The interest here is understanding the influence of hydrogen on sputtering and/or evaporation of the electrodes. Samples obtained with two cathode geometries with tapered and rectangular cross-sections have been investigated experimentally by scanning electron microscopy and energy dispersion X-ray spectroscopy. Samples obtained with a tapered-geometry cathode present heavy contamination, demonstrating cathode erosion, while samples obtained with a rectangular-cross-section cathode are free from contamination. These experimental characteristics were explained by modelling results showing a larger radial component of the electric field at the cathode inner wall of the tapered cathode. As a result, ion acceleration is larger, explaining the observed cathode erosion in this case. Results from the present investigation also show that the ratio of radial to axial field components is larger for the rectangular geometry case, thus, qualitatively explaining the presence of micro-hollow cathode discharge over a wide range of currents observed in this case. In the light of the above findings, the rectangular cathode geometry is considered to be more effective to achieve cleaner deposition.

  5. TiN+gradient or multi(Ti,Al,Si)N+TiN coatings deposited on cermets by CAE process: characteristic of structure and properties

    OpenAIRE

    L.A. Dobrzański; K. Gołombek

    2005-01-01

    Purpose: It has been demonstrated in the paper that deposition of the multilayer and gradient coatings with the PVD method in the Cathodic Arc Evaporation CAE process on tools made from cermets.Design/methodology/approach: Structural examinations are presented of the applied coatings and their substrate made on the TEM, SEM and on the light microscope. Evaluation of the adhesion of the deposited coatings onto the cermets was made using the scratch test. Cutting properties of the investigated ...

  6. Physical model and experimental results of cathode erosion related to power supply ripple

    Science.gov (United States)

    Harris, W. J.; O'Hair, E. A.; Hatfield, L. L.; Kristiansen, M.

    1992-01-01

    This paper discusses the physical effects of power supply ripple on cathode erosion and cathode arc attachment in a water-cooled, 30 kW nitrogen arcjet. Experimental results are presented for 2 percent thoriated tungsten, which show that the long-term cathode erosion rate is a decreasing function of current ripple over the range 1-13 percent. Above this range, the cathode discharge becomes unstable, and the erosion rate rapidly increases. A qualitative model of this effect is given in terms of a magnetically induced radial motion of the arc column, and an overall increase in the cathode spot radius due to the higher peak current associated with higher ripple. The most important effect of power supply ripple is therefore shown to be its ability to collectively drive the cathode attachment away from the cathode center. This leads to an increase in the cathode attachment area, and a subsequent decrease in the cathode erosion rate.

  7. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    International Nuclear Information System (INIS)

    Highlights: • Adding CeO2/ZrO2 nano-particles to modify the properties of n-MAO coating. • A bio-ceramic n-MAO/EPD composite coating was prepared by two-step methods. • The n-MAO/EPD composite coating with HA has a favorable anti-corrosion effect. - Abstract: A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO2 and ZrO2 nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO2 and ZrO2 peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants

  8. Comparative study of the structure and corrosion behavior of Zr-20%Cr and Zr-20%Ti alloy films deposited by multi-arc ion plating technique

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Farhat, E-mail: ilatahraf@yahoo.com [National Centre for Nanotechnology, Department of Metallurgy and Materials Engineering (DMME), Pakistan Institute of Engineering and Applied Sciences (PIEAS), PO Nilore, Islamabad 45650 (Pakistan); Mehmood, Mazhar, E-mail: mazhar@pieas.edu.pk [National Centre for Nanotechnology, Department of Metallurgy and Materials Engineering (DMME), Pakistan Institute of Engineering and Applied Sciences (PIEAS), PO Nilore, Islamabad 45650 (Pakistan); Qasim, Abdul Mateen; Ahmad, Jamil; Naeem-ur-Rehman [National Centre for Nanotechnology, Department of Metallurgy and Materials Engineering (DMME), Pakistan Institute of Engineering and Applied Sciences (PIEAS), PO Nilore, Islamabad 45650 (Pakistan); Iqbal, Muhammad [Physics Division, Pakistan Institute of Science and Technology (PINSTECH), Islamabad 45650 (Pakistan); Qureshi, Ammad H. [Materials Division, Pakistan Institute of Science and Technology (PINSTECH), Islamabad 45650 (Pakistan)

    2014-08-01

    The primary focus of the present work was to perform comparative study of the structure as well as corrosion behavior of two Zr-rich alloy films, i.e. Zr-20%Cr and Zr-20%Ti, as well as metallic Ti, Cr and Zr films, formed by multi-arc ion plating technique. The required alloy film composition was obtained by co-deposition with proper choice of current for the targets of the constituent metals. The deposited alloy film composition was determined by energy dispersion X-ray spectroscopy, X-ray fluorescence and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) techniques, which were in close agreement with each other. The film thickness lied in the range of 550-620 nm. The crystal structure was studied by X-ray diffraction, which revealed the formation of nanocrystalline and semi-amorphous structures. The corrosion rates of the films were determined through weight loss measurement in 1 M, 6 M and 12 M hydrochloric acid (HCl) by ICP-AES analysis of the solution after immersion for 200-350 h. Anodic (potentiodynamic) polarization was also performed. Zr-20%Cr alloy film exhibited the best corrosion resistance, and its dissolution rate was less than 0.5 μm/year in 6 M HCl and about 4 μm/year in 12 M HCl. - Highlights: • Fine control over the stoichiometry of each alloy film • Development of either nano-crystalline or semi-amorphous alloy films • Development of highly corrosion resistant films.

  9. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2014-12-15

    Highlights: • Adding CeO{sub 2}/ZrO{sub 2} nano-particles to modify the properties of n-MAO coating. • A bio-ceramic n-MAO/EPD composite coating was prepared by two-step methods. • The n-MAO/EPD composite coating with HA has a favorable anti-corrosion effect. - Abstract: A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO{sub 2} and ZrO{sub 2} nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO{sub 2} and ZrO{sub 2} peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants.

  10. In situ composite coating of titania-hydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yu [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Kyoung-A. [Department of Oral and Maxillofacial Radiology, School of Dentistry and Institute of Oral Bio Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Park, Il Song, E-mail: ilsong@chonbuk.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Sook Jeong [Neural Injury Research Lab, Department of Neurology, Asan life Science Institute, University, of Ulsan, College of Medicine, Seoul 138-736 (Korea, Republic of); Bae, Tae Sung [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Min Ho, E-mail: mh@jbnu.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-09-15

    Highlights: {center_dot} HA/TiO{sub 2} coating were prepared by a MAO and EPD technique. {center_dot} The NaOH electrolyte solution containing HA particles is employed. {center_dot} MAO and EPD treatment enhances the corrosion resistance and bioactivity of titanium. - Abstract: In situ composite coating of hydroxyapatite (HA)/TiO{sub 2} were produced on titanium (Ti) substrate by micro-arc oxidation coupled with electrophoretic deposition (MAO and EPD) technique with different concentrations of HA particles in the 0.2 M NaOH electrolyte solution. The surface morphology and chemical composition of the hybrid coating were effected by HA concentration. The amount of HA particles incorporated into coating layer increased with increasing HA concentration used in the electrolyte solution. The corrosion behavior of the coating layer in simulated body fluids (SBF) was evaluated using a potentiodynamic polarization test. The corrosion resistance of the coated sample was increased compared to the untreated Ti sample. The in vitro bioactivity assessment showed that the MAO and EPD treated Ti substrate possessed higher apatite-forming ability than the untreated Ti. Moreover, the apatite-forming ability had a positive correlation with HA concentration. In addition, the cell behavior was also examined using cell proliferation assay and alkaline phosphatase ability. The coating formed at HA concentration of 5 g/L exhibited the highest cell ability.

  11. Effect of negative bias voltage on CrN films deposited by arc ion plating. I. Macroparticles filtration and film-growth characteristics

    International Nuclear Information System (INIS)

    Chromium nitride (CrN) films were deposited on Si wafers by arc ion plating (AIP) at various negative bias voltages and several groups of N2/Ar gas flux ratios and chamber gas pressures. The authors systematically investigated the influence of negative bias voltage on the synthesis, composition, microstructure, and properties of the AIP CrN films. In this part (Part I), the investigations were mainly focused on the macroparticle distributions and film-growth characteristics. The results showed that macroparticle densities on the film surfaces decreased greatly by applying negative bias voltage, which can be affected by partial pressure of N2 and Ar gases. From the statistical analysis of the experimental results, they proposed a new hybrid mechanism of ion bombardment and electrical repulsion. Also, the growth of the AIP CrN films was greatly altered by applying negative bias voltage. By increasing the bias voltage, the film surfaces became much smoother and the films evolved from apparent columnar microstructures to an equiaxed microstructure. The impinging high-energy Cr ions accelerated by negative bias voltages were deemed the inherent reason for the evolution of growth characteristics

  12. Measurement of total ion flux in vacuum Arc discharges

    OpenAIRE

    Anders, Andre; Oks, Efim M.; Yushkov, Georgy Yu.; Brown, Ian G.

    2004-01-01

    A vacuum arc ion source was modified allowing us to collect ions from arc plasma streaming through an anode mesh. The mesh had a geometric transmittance of 60 percent, which was taken into account as a correction factor. The ion current from twenty-two cathode materials was measured at an arc current of 100 A. The ion current normalized by the arc current was found to depend on the cathode material, with valuesin the range from 5 percent to 11 percent. The normalized ion current is gener...

  13. Abundances of platinum group elements in native sulfur condensates from the Niuatahi-Motutahi submarine volcano, Tonga rear arc: Implications for PGE mineralization in porphyry deposits

    Science.gov (United States)

    Park, Jung-Woo; Campbell, Ian H.; Kim, Jonguk

    2016-02-01

    Some porphyry Cu-Au deposits, which are enriched in Pd, are potentially an economic source of Pd. Magmatic volatile phases are thought to transport the platinum group elements (PGEs) from the porphyry source magma to the point of deposition. However, the compatibilities of the PGEs in magmatic volatile phases are poorly constrained. We report PGE and Re contents in native sulfur condensates and associated altered dacites from the Niuatahi-Motutahi submarine volcano, Tonga rear arc, in order to determine the compatibility of PGEs and Re in magmatic volatile phases, and their mobility during secondary hydrothermal alteration. The native sulfur we analyzed is the condensate of a magmatic volatile phase exsolved from the Niuatahi-Motutahi magma. The PGEs are moderately enriched in the sulfur condensates in comparison to the associated fresh dacite, with enrichment factors of 11-285, whereas Au, Cu and Re are strongly enriched with enrichment factors of ∼20,000, ∼5000 and ∼800 respectively. Although the PGEs are moderately compatible into magmatic volatile phases, their compatibility is significantly lower than that of Au, Cu and Re. Furthermore, the compatibility of PGEs decrease in the order: Ru > Pt > Ir > Pd. This trend is also observed in condensates and sublimates from other localities. PGE mineralization in porphyry Cu-Au deposits is characterized by substantially higher Pd/Pt (∼7-60) and Pd/Ir (∼100-10,500) than typical orthomagmatic sulfide deposits (e.g. Pd/Pt ∼0.6 and Pd/Ir ∼20 for the Bushveld). It has previously been suggested that the high mobility of Pd, relative to the other PGEs, may account for the preferential enrichment of Pd in porphyry Cu-Au deposits. However, the low compatibility of Pd in the volatile phase relative to the other PGEs, shown in this study, invalidates this explanation. We suggest that the PGE geochemistry of Pd-rich Cu-Au deposits is principally derived from the PGE characteristics of the magma from which the ore

  14. Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition

    International Nuclear Information System (INIS)

    GaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor

  15. Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr [Department of Physics, Marmara University, Göztepe Kadıköy, 34722 İstanbul (Turkey); Haider, Ali; Kizir, Seda; Leghari, Shahid A.; Biyikli, Necmi, E-mail: biyikli@unam.bilkent.edu.tr [Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, 06800 Ankara, Turkey and National Nanotechnology Research Center (UNAM), Bilkent University, Bilkent, 06800 Ankara (Turkey)

    2016-01-15

    GaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor.

  16. Structure of TiBN coatings deposited onto cemented carbides and sialon tool ceramics

    OpenAIRE

    L.A. Dobrzański; M. Staszuk; J. Konieczny; W. Kwaśny; M. Pawlyta

    2009-01-01

    Purpose: The aim of this paper was investigated structure of sintered carbides WC-Co type and sialon tool ceramics with wear resistance ternary coatings TiBN type deposited by cathodes arc evaporation process (CAE-PVD).Design/methodology/approach: Observation of fracture and topography studied coatings were done by scanning electron microscope. Chemical composition was determine by energy dispersive spectrometry (EDS) method. Thin foils of substrates and coatings by transmission electron micr...

  17. Room Temperature Oxide Deposition Approach to Fully Transparent, All-Oxide Thin-Film Transistors.

    Science.gov (United States)

    Rembert, Thomas; Battaglia, Corsin; Anders, André; Javey, Ali

    2015-10-28

    A room temperature cathodic arc deposition technique is used to produce high-mobility ZnO thin films for low voltage thin-film transistors (TFTs) and digital logic inverters. All-oxide, fully transparent devices are fabricated on alkali-free glass and flexible polyimide foil, exhibiting high performance. This provides a practical materials platform for the low-temperature fabrication of all-oxide TFTs on virtually any substrate. PMID:26455916

  18. Properties of Ti(B,N) coatings deposited onto cemented carbides and sialon tool ceramics

    OpenAIRE

    M. Pancielejko; K. Gołombek; M. Staszuk; L.A. Dobrzański

    2010-01-01

    Purpose: The aim of this paper was to investigate mechanical properties both of sintered carbides WC-Co type and sialon tool ceramics with wear resistance ternary coatings Ti(B,N) type deposited by the cathodic arc evaporation process (CAE-PVD).Design/methodology/approach: The microhardness tests of coatings were made using the ultra microhardness tester. The grain size of investigated coatings was determined by the Scherrer method. Tests of the coatings adhesion to a substrate material were ...

  19. Development of plasma cathode electron guns

    Science.gov (United States)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  20. Investigation of the life-time of drills covered with the anti-wear Cr(C,N complex coatings, deposited by means of Arc-PVD technique

    Directory of Open Access Journals (Sweden)

    J. Kusinski

    2009-03-01

    Full Text Available Purpose: This research was done to study the tribological behavior of twist HS6-5-2 drills covered with Cr/CrN/CrN+Cr2N/Cr(C, N and Cr/CrN/ Cr(C, N coatings as well as to obtain detailed information about microstructure and properties of investigated coatings.Design/methodology/approach: The coatings were deposited by the ARC-PVD process and examined revealing their microstructure: with the use of SEM and TEM microscopy and composition: chemical (EDS microanalysis and phase (XRD. Also microhardness, Young’s modulus and adhesion were measured using NHT CSEM hardness tester and scratch tester.Findings: The electron energy disspersive (EDS analysis of coatings showed higher concentration of nitrogen (in the internal coating-zone and carbon (in the external coating-zone. The X-ray diffractometry showed that coatings are mainly composed of CrN and Cr2N nitrides. The TEM analysis revealed that coating crystallization starts with nanometric Cr2N nitrides coherent with the ferrite matrix grains. The coatings turned out to improve the lifetime of the drills (much better than that of un-coated ones.Practical implications: The main aim of this work is to determine properties of multilayer and multi-component coatings on basis of Cr, C and N, which are potential candidates for replacing TiN coatings in certain applications.Originality/value: The paper contributes to better understanding of microstructure and properties of the coatings (chemical and phase composition, microhardness, Young’s modulus, adhesion, as well as lifetime of the coated drills.

  1. Structure of propagating arc in a magneto-hydrodynamic rail plasma actuator

    Science.gov (United States)

    Gray, Miles D.; Choi, Young-Joon; Sirohi, Jayant; Raja, Laxminarayan L.

    2016-01-01

    The spatio-temporal evolution of a magnetically driven arc in a rail plasma flow actuator has been characterized with high-speed imaging, electrical measurements, and spectroscopy. The arc draws a peak current of ~1 kA. High-speed framing cameras were used to observe the complex arc propagation phenomenon. In particular, the anode and cathode roots were observed to have different modes of transit, which resulted in distinct types of electrode degradation on the anode and cathode surfaces. Observations of the arc electrical properties and induced magnetic fields are used to explain the transit mechanism of the arc. Emission spectroscopy revealed the arc temperature and species composition as a function of transit distance of the arc. The results obtained offer significant insights into the electromagnetic properties of the arc-rail system as well as arc-surface interaction phenomena in a propagating arc.

  2. Effect of high-temperature plasma-deposited nano-overlays on the properties of long-period gratings written with UV and electric arc in non-hydrogenated fibers

    International Nuclear Information System (INIS)

    This work presents the effect of both high temperature (∼350 °C) and nano-overlay deposition on the performance of the long-period gratings (LPGs) written in non-hydrogenated standard fiber (Corning SMF28) and in photosensitive fibers (Fibercore PS1250/1500 and Nufern GF1) using UV exposure and electric arc discharge. Silicon nitride (SiNx) nano-coatings were deposited on LPGs at high temperature in a radio-frequency plasma-enhanced chemical-vapor-deposition process. The effect is discussed from a point of view of application of the gratings as platforms for high-temperature overlay deposition to enhance sensing properties of such LPGs. Our experiment shows that when deep resonances (∼20 dB) are desired only arc-induced gratings are suitable for high-temperature coating deposition or high temperature processing up to 350 °C. It is shown that the temperature-induced degradation effect for UV-written LPGs does not depend on composition of the core of the fiber and takes place for both photosensitive fibers. For some applications, where a resonance notch of only several dB is sufficient, high-temperature coating deposition and processing can still be applied to UV-written gratings. For the LPG written in GF1, a very low temperature sensitivity has been found. Moreover, our experimental results and simulations demonstrate that plasma-deposited high-refractive-index SiNx film (n = 2.37 @ λ = 1550 nm) with a thickness below only 80 nm can successfully tune the sensitivity of LPGs to a pre-designed external refractive index. Such deposition processes take typically only several minutes. (paper)

  3. Concept for lightweight spaced-based deposition technology

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, Michael; Anders, Andre

    2006-02-28

    In this contribution we will describe a technology path to very high quality coatings fabricated in the vacuum of space. To accomplish the ambitious goals set out in NASA's Lunar-Mars proposal, advanced thin-film deposition technology will be required. The ability to deposit thin-film coatings in the vacuum of lunar-space could be extremely valuable for executing this new space mission. Developing lightweight space-based deposition technology (goal:<300 g, including power supply) will enable the future fabrication and repair of flexible large-area space antennae and fixed telescope mirrors for lunar-station observatories. Filtered Cathodic Arc (FCA) is a proven terrestrial energetic thin-film deposition technology that does not need any processing gas but is well suited for ultra-high vacuum operation. Recently, miniaturized cathodic arcs have already been developed and considered for space propulsion. It is proposed to combine miniaturized pulsed FCA technology and robotics to create a robust, enabling space-based deposition system for the fabrication, improvement, and repair of thin films, especially of silver and aluminum, on telescope mirrors and eventually on large area flexible substrates. Using miniature power supplies with inductive storage, the typical low-voltage supply systems used in space are adequate. It is shown that high-value, small area coatings are within the reach of existing technology, while medium and large area coatings are challenging in terms of lightweight technology and economics.

  4. Arcing and its role in PFC erosion and dust production in DIII-D

    International Nuclear Information System (INIS)

    Two types of arc tracks are observed on the plasma-facing components (PFCs) in DIII-D. “Unmagnetized” random walk tracks are produced during glow discharges; they are rare and have no importance for PFC erosion but may degrade diagnostic mirrors. “Magnetized” scratch-like type II tracks are produced by unipolar arcs during plasma operations; they are formed by “retrograde BxJ” motion of the cathode spot and are roughly perpendicular to the local magnetic field. Type II arcs cause measurable erosion of graphite, but based on the evidence available they are relatively small contributors to the total erosion of carbon in DIII-D compared to other mechanisms such as physical and chemical sputtering and ablation from leading edges. Erosion by arcing of tungsten films deposited on graphite samples was observed in Divertor Material Evaluation System (DiMES) experiments. New DiMES experiments aimed at time-resolved arc measurements are proposed

  5. Effect of a focusing electric field on the formation of arc generated carbon nanotubes

    Science.gov (United States)

    Karmakar, Soumen; Nagar, Harshada; Pasricha, R.; Seth, T.; Sathe, V. G.; Bhoraskar, S. V.; Das, A. K.

    2006-12-01

    The effect of a focusing electric field on the formation of carbon nanotubes in a direct current arc-plasma is investigated. The hard deposits on the surface of the cathode are the main products, rich in multi-walled carbon nanotubes. It is seen that the focusing electric field has a distinct influence on the yield, purity and morphology of the nanotubes. The yield of the carbon nanotubes under the 'focused field condition' has been found to be higher than that derived from the normal electrode configuration. It has been observed that the deposition of carbonaceous soot on the reactor wall is considerably reduced on application of the focusing electric field. Transmission electron microscopy has been used to determine the morphology of the nanotubes. In addition, Raman spectroscopy has helped in distinguishing the graphene-like structures from the disordered carbon networks and helped in analysing the morphology of the tubes. Thermal analysis gave a qualitative estimation of the relative yield of carbon nanotubes within the cathode deposits and their thermal stabilities. The crystalline nature of the samples has been confirmed by x-ray diffraction analysis. The results clearly indicate that the focusing electric field confines the positively charged carbon precursors within the cathode-anode space causing high relative yield and purity and has a distinct effect on controlling the inner diameter of the as-synthesized carbon nanotubes.

  6. Deposition of hematite Fe.sub.2./sub.O.sub.3./sub. thin film by DC pulsed magnetron and DC pulsed hollow cathode sputtering system

    Czech Academy of Sciences Publication Activity Database

    Hubička, Zdeněk; Kment, Štěpán; Olejníček, Jiří; Čada, Martin; Kubart, T.; Brunclíková, Michaela; Kšírová, Petra; Adámek, Petr; Remeš, Zdeněk

    2013-01-01

    Roč. 549, Dec (2013), s. 184-191. ISSN 0040-6090 R&D Projects: GA ČR GAP108/12/2104; GA MŠk LH12043 Grant ostatní: AVČR(CZ) M100101215 Institutional support: RVO:68378271 Keywords : HIPIMS * thin films * hollow cathode Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.867, year: 2013

  7. Driven Motion and Instability of an Atmospheric Pressure Arc

    International Nuclear Information System (INIS)

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes

  8. Driven Motion and Instability of an Atmospheric Pressure Arc

    Energy Technology Data Exchange (ETDEWEB)

    Max Karasik

    1999-12-01

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes.

  9. Modeling Multi-Arc Spraying Systems

    Science.gov (United States)

    Bobzin, K.; Öte, M.

    2016-06-01

    The use of plasma as energy source in thermal spraying enables among others the processing of feed stock materials with very high melting temperatures as coating materials. New generation multi-arc plasma spraying systems are widely spread and promise several advantages in comparison to the conventional single-arc systems. Numerical modeling of multi-arc plasma spraying offers the possibility to increase the understanding about this process. This study focuses on the numerical modeling of three-cathode spraying systems, introducing the recent activities in this field and discussing the numerical aspects which influence the prediction power of the models.

  10. Secondary arc description on satellite solar generators

    OpenAIRE

    Crispel, Pierre; Degond, Pierre; Vignal, Marie-Helene; Roussel, Jean-Francois; Amorim, Emmanuel; Payan, Denis; Cho, Mengu

    2005-01-01

    In this paper, we propose a quasi-neutral model with non-vanishing current describing the expansion of a plasma in an inter-cellular gap on a satellite solar array. Moreover, an electric arc cathode spot model is proposed in order to give suitable boundary conditions for the expansion model.

  11. Fourth-generation plasma immersion ion implantation and deposition facility for hybrid surface modification layer fabrication.

    Science.gov (United States)

    Wang, Langping; Huang, Lei; Xie, Zhiwen; Wang, Xiaofeng; Tang, Baoyin

    2008-02-01

    The fourth-generation plasma immersion ion implantation and deposition (PIIID) facility for hybrid and batch treatment was built in our laboratory recently. Comparing with our previous PIIID facilities, several novel designs are utilized. Two multicathode pulsed cathodic arc plasma sources are fixed on the chamber wall symmetrically, which can increase the steady working time from 6 h (the single cathode source in our previous facilities) to about 18 h. Meanwhile, the inner diameter of the pulsed cathodic arc plasma source is increased from the previous 80 to 209 mm, thus, large area metal plasma can be obtained by the source. Instead of the simple sample holder in our previous facility, a complex revolution-rotation sample holder composed of 24 shafts, which can rotate around its axis and adjust its position through revolving around the center axis of the vacuum chamber, is fixed in the center of the vacuum chamber. In addition, one magnetron sputtering source is set on the chamber wall instead of the top cover in the previous facility. Because of the above characteristic, the PIIID hybrid process involving ion implantation, vacuum arc, and magnetron sputtering deposition can be acquired without breaking vacuum. In addition, the PIIID batch treatment of cylinderlike components can be finished by installing these components on the rotating shafts on the sample holder. PMID:18315292

  12. Fourth-generation plasma immersion ion implantation and deposition facility for hybrid surface modification layer fabrication

    International Nuclear Information System (INIS)

    The fourth-generation plasma immersion ion implantation and deposition (PIIID) facility for hybrid and batch treatment was built in our laboratory recently. Comparing with our previous PIIID facilities, several novel designs are utilized. Two multicathode pulsed cathodic arc plasma sources are fixed on the chamber wall symmetrically, which can increase the steady working time from 6 h (the single cathode source in our previous facilities) to about 18 h. Meanwhile, the inner diameter of the pulsed cathodic arc plasma source is increased from the previous 80 to 209 mm, thus, large area metal plasma can be obtained by the source. Instead of the simple sample holder in our previous facility, a complex revolution-rotation sample holder composed of 24 shafts, which can rotate around its axis and adjust its position through revolving around the center axis of the vacuum chamber, is fixed in the center of the vacuum chamber. In addition, one magnetron sputtering source is set on the chamber wall instead of the top cover in the previous facility. Because of the above characteristic, the PIIID hybrid process involving ion implantation, vacuum arc, and magnetron sputtering deposition can be acquired without breaking vacuum. In addition, the PIIID batch treatment of cylinderlike components can be finished by installing these components on the rotating shafts on the sample holder

  13. Low-temperature atomic layer deposited Al2O3 thin film on layer structure cathode for enhanced cycleability in lithium-ion batteries

    International Nuclear Information System (INIS)

    The deposition of Al2O3 on LiCoO2 electrodes using a low-temperature atomic layer deposition has been investigated. Scanning electron microscopy confirms that Al2O3 films can be homogeneously deposited on LiCoO2 particles of porous electrodes at 120 deg. C. The results of X-ray photoelectron spectroscopy show that the Al2O3 preferentially deposits on the LiCoO2. Furthermore, the results of cycling stability tests show that the cells with Al2O3-coated LiCoO2 electrodes have enhanced performance.

  14. Deposition of Ba.sub.x./sub.Sr.sub.1-x./sub.TiO.sub.3./sub. thin films by double RF hollow cathode plasma jet system

    Czech Academy of Sciences Publication Activity Database

    Hubička, Zdeněk; Virostko, Petr; Tichý, M.; Čada, Martin; Adámek, Petr; Olejníček, Jiří; Deyneka, Alexander; Churpita, Olexandr; Valvoda, V.; Jastrabík, Lubomír

    2008-01-01

    Roč. 48, 5-7 (2008), s. 515-520. ISSN 0863-1042 R&D Projects: GA AV ČR KAN301370701; GA AV ČR KJB100100707; GA AV ČR 1QS100100563; GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z10100522 Keywords : BSTO * ferroelectric films * hollow cathode * Langmuir probe * optical emission spectroscopy * plasma jet Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.250, year: 2008

  15. Deposition and characterization of thin films of materials with application in cathodes for lithium rechargeable micro batteries; Deposito y caracterizacion de peliculas delgadas de materiales con aplicacion en catodos para microbaterias recargables de litio

    Energy Technology Data Exchange (ETDEWEB)

    Lopez I, J. [UAEM, Facultad de Quimica, 50000 Toluca, Estado de Mexico (Mexico)

    2007-07-01

    In this thesis work is reported the deposition and characterization of thin films of materials of the type LiMO{sub 2}, with M=Co and Ni, which have application in cathodes for micro-batteries of lithium ions. In the last years some investigators have reported that the electrochemical operation of the lithium ions batteries it can improve recovering the cathode, in bundle form, with some metal oxides as the Al{sub 2}O{sub 3}; for that the study of the formation of thin films in bilayer form LiMO{sub 2}/AI{sub 2}O{sub 3} is of interest in the development of lithium ions micro batteries. The thin films were deposited using the laser ablation technique studying the effect of some deposit parameters in the properties of the one formed material, as: laser fluence, substrate temperature and working atmosphere, with the purpose of optimizing it. In the case of the LiCoO{sub 2} it was found that to use an inert atmosphere of argon allows to obtain the material with the correct composition. Additionally, with the use of a temperature in the substrate of 150 C is possible to obtain to the material with certain crystallinity grade that to the subjected being to a post-deposit thermal treatment at 300 C for three hours, it gives as result a totally crystalline material. In the case of the thin films of LiNiO{sub 2}, it was necessary to synthesize the oxide starting from a reaction of solid state among nickel oxide (NiO) and lithium oxide (Li{sub 2}O) obtaining stoichiometric LiNiO{sub 2}. For the formation of the thin films of LiNiO{sub 2} it was used an argon atmosphere and the laser fluence was varied, the deposits were carried out to two different substrates temperatures, atmosphere and 160 C. In both cases the material it was recovered with an alumina layer, found that this layer didn't modify the structural properties of the base oxide (LiCoO{sub 2} and LiNiO{sub 2}). (Author)

  16. Dual Torch Plasma Arc Furnace for Medical Waste Treatment

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; M.KIKUCHI; LI Heping; T.IWAO; T.INABA

    2007-01-01

    In this paper,characteristics of a dual torch plasma arc used for hazardous waste treatment and operated at atmospheric pressure are studied,and also compared with those of the multi-torch plasma arc and the single torch plasma arc.The dual torch plasma arc is generated between the cathode and anode with argon as the working gas.The temperature distributions of the plasma arc are measured using a spectroscope and line pair method with the assumption of local thermodynamic equilibrium (LTE) for the DC arc current I = 100 A and argon flow rate Q = 15 slpm.The measurements show that the temperatures of the dual torch arc plasma in the regions near the cathode,the anode and the center point are 10,000 K,11,000 K and 9,000 K,respectively.And the high temperature region of the multi torch plasma arc is of double or much wider size than that of a conventional dual torch plasma arc and single plasma torch.Based on the preceding studies,a dual torch plasma arc furnace is developed in this study.The measured gas temperature at the center region of the argon arc is about 11,000 K for the case of I = 200 A and Q = 30 slpm operated in atmosphere.

  17. Arc Statistics

    CERN Document Server

    Meneghetti, M; Dahle, H; Limousin, M

    2013-01-01

    The existence of an arc statistics problem was at the center of a strong debate in the last fifteen years. With the aim to clarify if the optical depth for giant gravitational arcs by galaxy clusters in the so called concordance model is compatible with observations, several studies were carried out which helped to significantly improve our knowledge of strong lensing clusters, unveiling their extremely complex internal structure. In particular, the abundance and the frequency of strong lensing events like gravitational arcs turned out to be a potentially very powerful tool to trace the structure formation. However, given the limited size of observational and theoretical data-sets, the power of arc statistics as a cosmological tool has been only minimally exploited so far. On the other hand, the last years were characterized by significant advancements in the field, and several cluster surveys that are ongoing or planned for the near future seem to have the potential to make arc statistics a competitive cosmo...

  18. Effect of the deposition temperature on the electrochemical properties of La0.6Sr0.4Co0.8Fe0.2O3-δ cathode prepared by conventional spray-pyrolysis

    Science.gov (United States)

    Marrero-López, D.; Romero, R.; Martín, F.; Ramos-Barrado, J. R.

    2014-06-01

    La0.6Sr0.4Co0.8Fe0.2O3-δ (LSCF) cathodes have been deposited by conventional spray pyrolysis on Ce0.8Gd0.2O1.9 (CGO) electrolytes at different temperatures between 250 and 450 °C, obtaining electrodes with different microstructure and porosity. Highly porous and macroporous electrodes are obtained at deposition temperatures of 250 °C and 450 °C, respectively, with an average grain size of 30-50 nm. The influence of the post-annealing treatment on the microstructure and on the electrochemical properties is investigated by scanning electron microscopy and impedance spectroscopy in air and as a function of the oxygen partial pressure to identify the different contributions to the polarization. Samples annealed at 650 °C show similar values of area specific resistance 0.04-0.06 Ω cm2 at a measured temperature of 650 °C. However, after annealing the samples at 850 °C, the ASR values increase up to 0.1-0.6 Ω cm2 with the lowest value corresponding to the film deposited at 250 °C due to the large porosity and surface area of this film. The performance degradation upon annealing is attributed to decreasing reaction sites induced by grain growth and densification.

  19. Auxiliary-Arc Electrodes for MHD Systems

    International Nuclear Information System (INIS)

    The important role of electrode phenomena in the operation of magneto aerodynamic machines is well known. In particular, the voltage drops which occur in the boundary layer in the immediate neighbourhood of the electrode may reduce the output of the apparatus. These voltage drops are caused partly by the increased resistance presented by the boundary layer in the neighbourhood of the electrode when the latter is appreciably colder than the gas, and partly by the fact that the electrode is not at a temperature sufficient to be emissive. Auxiliary-arc electrodes that have been constructed and tested seem to provide a solution both of the cold boundary layer problem and of the cathode emissivity problem. For this purpose an arc is established between a refractory metal cathode placed behind and clear of the generator wall and an anode forming part of the wall. The arc column can be activated by a rotational movement under the effect of a magnetic field, which may be that of the machine itself. The mechanical arrangement of the electrodes is such that, with a weak flow of gas (argon for example), it is possible to maintain a protective atmosphere around the arc cathode, while the arc anode is strongly cooled by the wall. The gas flow also has the effect of forcing the arc column towards the stream, thus increasing the conductivity of the boundary layer. Furthermore, the arc column behaves as a virtual cathode, from which a sizeable electron current can be extracted. Electrodes constructed on this principle have been tested on gas streams composed of fuel-oil combustion products. By using them as cathodes it has been possible to extract a current of 5 A without the voltage drop between the electrode and the gas exceeding 10 V. Comparative tests have been carried out with cooled metal electrodes, in which case the voltage drop is of the order of 120 V. The arc electrodes tested have operated for several hours without any apparent damage. In spite of the energy which has

  20. Modeling Arcs

    CERN Document Server

    Insepov, Zeke; Veitzer, Seth; Mahalingam, Sudhakar

    2011-01-01

    Although vacuum arcs were first identified over 110 years ago, they are not yet well understood. We have since developed a model of breakdown and gradient limits that tries to explain, in a self-consistent way: arc triggering, plasma initiation, plasma evolution, surface damage and gra- dient limits. We use simple PIC codes for modeling plasmas, molecular dynamics for modeling surface breakdown, and surface damage, and mesoscale surface thermodynamics and finite element electrostatic codes for to evaluate surface properties. Since any given experiment seems to have more variables than data points, we have tried to consider a wide variety of arcing (rf structures, e beam welding, laser ablation, etc.) to help constrain the problem, and concentrate on common mechanisms. While the mechanisms can be comparatively simple, modeling can be challenging.

  1. Erratum to 'Comments on: The phase-shift method for determining Langmuir adsorption isotherms of over-potentially deposited hydrogen for the cathodic H{sub 2} evolution reaction at poly-Re/aqueous electrolyte interfaces [International Journal of Hydrogen Energy (2005) 485-99]'

    Energy Technology Data Exchange (ETDEWEB)

    Lasia, Andrzej [Departement de Chimie, Universite de Sherbrooke, Que. (Canada)

    2005-12-01

    Erratum to 'The phase-shift method for determining Langmuir adsorption isotherms of over-potentially deposited hydrogen for the cathodic H2 evolution reaction at poly-Re/aqueous electrolyte interfaces, International Journal of Hydrogen Energy, Volume 30, Issue 5, April 2005, Pages 485-499'. (author)

  2. Development of artificial surface layers for thin film cathode materials

    OpenAIRE

    Carrillo Solano, Mercedes Alicia

    2016-01-01

    The present work was based on the investigation of different thin film components of Li ion batteries. A first part was dedicated to the deposition of cathodes in thin film form of a known material, LiCoO2, and an alternative one, Li(NiMnCo)O2 employing physical vapor deposition (PVD) and chemical vapor deposition (CVD), respectively. A second part was focused on the cathode-electrolyte interface for three case studies: 1) as deposited LiCoO2 cathode thin film, 2) ZrO2 coated LiCoO2 thin...

  3. Investigations of the structure and properties of PVD coatings deposited onto sintered tool materials

    OpenAIRE

    D. Pakuła; M. Staszuk; L.A. Dobrzański

    2012-01-01

    Purpose: The paper presents investigation results of the structure and properties of the coatings deposited by cathodic arc evaporation - physical vapour deposition (CAE-PVD) techniques on the sialon tool ceramics. The Ti(B,N), Ti(C,N), (Ti,Zr)N, (Ti,Al)N and multilayer (Al,Cr)N+(Ti,Al)N, (Ti,Al)N+(Al,Cr)N coatings were investigated.Design/methodology/approach: The structural investigation includes the metallographic analysis on the scanning electron microscope. Examinations of the chemical c...

  4. The double sheath on cathodes of discharges burning in cathode vapour

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M S; Benilova, L G [Departamento de Fisica, Universidade da Madeira, Largo do MunicIpio, 9000 Funchal (Portugal)

    2010-09-01

    The model of a collisionless near-cathode space-charge sheath with ionization of atoms emitted by the cathode surface is considered. Numerical calculations showed that the mathematical problem is solvable and its solution is unique. In the framework of this model, the sheath represents a double layer with a potential maximum, with the ions which are produced before the maximum returning to the cathode surface and those produced after the maximum escaping into the plasma. Numerical results are given in a form to be readily applicable in analysis of discharges burning in cathode vapour, such as vacuum arcs. In particular, the results indicate that the ion backflow coefficient in such discharges exceeds 0.5, in agreement with values extracted from the experiment.

  5. Barium-Dispenser Thermionic Cathode

    Science.gov (United States)

    Wintucky, Edwin G.; Green, M.; Feinleib, M.

    1989-01-01

    Improved reservoir cathode serves as intense source of electrons required for high-frequency and often high-output-power, linear-beam tubes, for which long operating lifetime important consideration. High emission-current densities obtained through use of emitting surface of relatively-low effective work function and narrow work-function distribution, consisting of coat of W/Os deposited by sputtering. Lower operating temperatures and enhanced electron emission consequently possible.

  6. Behavior of mammalian cells on magnesium substituted bare and hydroxyapatite deposited (Ti,Mg)N coatings.

    Science.gov (United States)

    Onder, Sakip; Calikoglu-Koyuncu, Ayse Ceren; Kazmanli, Kursat; Urgen, Mustafa; Torun Kose, Gamze; Kok, Fatma Nese

    2015-12-25

    TiN and (Ti,Mg)N thin film coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition (arc-PVD) technique with magnesium contents of 0, 4.24 at% (low Mg) and 10.42 at% (high Mg). The presence of magnesium on both normal (hFOB) and cancer (SaOS-2) osteoblast cell behavior was investigated in (Ti,Mg)N surfaces with or without prior hydroxyapatite (HA) deposition (in simulated body fluid, SBF). Mg incorporation on TiN films was found to have no apparent effect on the cell proliferation in bare surfaces but cell spreading was better on low Mg content surface for hFOB cells. SaOS-2 cells, on the other hand, showed an increased extra cellular matrix (ECM) deposition on low Mg surfaces but ECM deposition almost disappeared when Mg content was increased above 10 at%. HA deposited surfaces with high Mg content was shown to cause a significant decrease in cell viability. While the cells were flattened, elongated and spread over the surface in contact with each other via cellular extensions on unmodified and low Mg doped surfaces, unhealthy morphologies of cells with round shape with a limited number of extended arms was visualized on high Mg containing samples. In summary, Mg incorporation into the TiN coatings by arc-PVD technique and successive HA deposition led to promising cell responses on low Mg content surfaces for a better osteointegration performance. PMID:25556119

  7. Simulating different modes of current transfer to thermionic cathodes in a wide range of conditions

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M S; Cunha, M D; Faria, M J [Departamento de Fisica, Universidade da Madeira, Largo do MunicIpio, 9000 Funchal (Portugal)

    2009-07-21

    Changes in the pattern of steady-state modes of current transfer to thermionic cathodes induced by variations of the cathode geometry and temperature of the cooling fluid are studied numerically. For some combinations of control parameters, only one stable mode in a wide current range exists, which combines features of spot and diffuse modes. This mode, when attached to an elongated protrusion on the cathode surface, may be identified with the so-called super spot mode observed in experiments on low-current arcs. There is also reasonable agreement between the modelling and the experiment on cathodes of high-current arcs operating in the diffuse mode. The conclusions on existence under certain conditions of only one stable mode in a wide current range and of a minimum of the dependence of the temperature of the hottest point of the cathode on the arc current, manifested by this mode, may have industrial importance and admit a straightforward experimental verification.

  8. Investigations on the determination of some rare earth elements (Ce, Pr, Nd, Tb) in lanthanum oxide by emission spectrography in d.c. arc

    International Nuclear Information System (INIS)

    The evaporation and excitation of traces of rare earths elements Ce, Pr, Nd and Tb and of the matrix La2O3 by the d.c. arc were investigated in different atmospheres with different methods (intensity-time-diagrams, indication of temperatures and determination of temperatures of the axis of the arc by CN-rotational lines and voltage-curves). On the cathode were found deposits which evaporate with difficulty. The composition of these deposits and their evaporation were investigated. Differences for the intensity-time diagrams of atomic lines and of ionic lines were found. The differences were explained by combination of the physical and chemical matrix effects. The detection limits of the optimized determinations are: Ce-40 ppm; Pr-25 ppm; Nd-25 ppm; Tb-42 ppm in 20 mg of La2O3. (author)

  9. Electrode voltage fall and total voltage of a transient arc

    Science.gov (United States)

    Valensi, F.; Ratovoson, L.; Razafinimanana, M.; Masquère, M.; Freton, P.; Gleizes, A.

    2016-06-01

    This paper deals with an experimental study of the components of a transient arc total voltage with duration of a few tens of ms and a current peak close to 1000 A. The cathode tip is made of graphite whereas the flat anode is made either of copper or of graphite; the electrodes gap is a few mm. The analysis of the electrical parameters is supported and validated by fast imaging and by two models: the first one is a 2D physical model of the arc allowing to calculate both the plasma temperature field and the arc voltage; the second model is able to estimate the transient heating of the graphite electrode. The main aim of the study was to detect the possible change of the cathode voltage fall (CVF) during the first instants of the arc. Indeed it is expected that during the first ms the graphite cathode is rather cool and the main mechanism of the electron emission should be the field effect emission, whereas after several tens of ms the cathode is strongly heated and thermionic emission should be predominant. We have observed some change in the apparent CVF but we have shown that this apparent change can be attributed to the variation of the solid cathode resistance. On the other hand, the possible change of CVF corresponding to the transition between a ‘cold’ and a ‘hot’ cathode should be weak and could not be characterized considering our measurement uncertainty of about 2 V. The arc column voltage (ACV) was estimated by subtracting the electrode voltage fall from the total arc voltage. The experimental transient evolution of the ACV is in very good agreement with the theoretical variation predicted by the model, showing the good ability of the model to study this kind of transient arc.

  10. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

    Institute of Scientific and Technical Information of China (English)

    LI Tianming; Sooseok CHOI; Takayuki WATANABE

    2012-01-01

    A water plasma was generated by DC arc discharge with a hafnium embedded rodtype cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process.

  11. Zeolite occurrence and genesis in the Late-Cretaceous Cayo arc of Coastal Ecuador: Evidence for zeolite formation in cooling marine pyroclastic flow deposits

    OpenAIRE

    Machiels, L.; Garces, D. (D.); Snellings, R.; Vilema, W.; Morante, F.; C Paredes; ELSEN, J

    2014-01-01

    This paper describes the quantitative mineralogy, the mineral chemistry and the distribution of natural zeolites over the outcrop area of the Late Cretaceous Cayo Formation of Coastal Ecuador (>1000 km(2)) and develops a model for zeolite alteration in the Cayo volcanic arc. Different zeolite types were identified: Ca-heulandite-type zeolites (clinoptilolite and heulandite), mordenite, laumontite, analcime, stilbite, epistilbite, chabazite, thomsonite and erionite. Zeolites occur over nearly ...

  12. Measurements of the total ion flux from vacuum arc cathodespots

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre; Oks, Efim M.; Yushkov, Georgy Yu; Savkin,Konstantin P.; Brown, Ian G.; Nikolaev, Alexey G.

    2005-05-25

    The ion flux from vacuum arc cathode spots was measured in two vacuum arc systems. The first was a vacuum arc ion source which was modified allowing us to collect ions from arc plasma streaming through an anode mesh. The second discharge system essentially consisted of a cathode placed near the center of a spherically shaped mesh anode. In both systems, the ion current streaming through the mesh was measured by a biased collector. The mesh anodes had geometric transmittances of 60 percent and 72 percent, respectively, which were taken into account as correction factors. The ion current from different cathode materials was measured for 50-500 A of arc current. The ion current normalized by the arc current was found to depend on the cathode material, with values in the range from 5 percent to 19 percent. The normalized ion current is generally greater for elements of low cohesive energy. The ion erosion rates were determined from values of ion current and ion charge states, which were previously measured in the same ion source. The absolute ion erosion rates range from 16-173 mu g/C.

  13. Is this an arc or a glow discharge?

    International Nuclear Information System (INIS)

    A well known criterion for distinguishing an arc discharge from a glow discharge is a low voltage drop (10--30 V) and a high current density that varies from a few tens to 106 A/cm2 depending on arc type. The high current density is an attribute of arcs with cathode spots. The authors report here a study of the mechanism of emission in cathode spot arc where they realized a spotless discharge with a low voltage drop (30--50 V) and a high mean current density (104--106 A/cm2). The discharge was initiated between a broad cathode and point anode. The cathode was a smooth tungsten sphere electrode of about 100 μm in diameter. The point anode was made of various materials (Mo, Cu, Cd) with initial radius 1 μm. Before the experiment the cathode was cleaned by heating at 2,000 K at high vacuum (10-8 Torr). The discharge was initiated by self-breakdown when electrodes under the voltage 200--500 V were brought to close proximity with each other. The cathode-anode spacing d at the moment of breakdown was estimated to be < 1 μm. The discharge current was varied within 1--3 A by changing the applied voltage and impedance of coaxial cable generator. The discharge burned during 100--1,000 ns. After the single discharge the cathode and anode were examined with a scanning electron microscope. The cathode surface exposed to the discharge was smooth, i.e. no erosion pits similar to arc craters were found on the cathode surface. The anode was shortened after discharge by 5--50 μm depending on current, material and cone angle. A high current density and low voltage drop implies that this is an arc discharge, while the cold cathode and the absence f cathode spot trace are pertinent to a dense glow discharge. The mechanism of emission involving secondary electron emission is to be discussed

  14. Molten carbonate fuel cell cathode with mixed oxide coating

    Science.gov (United States)

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  15. Tectonostratigraphy and depositional history of the Neoproterozoic volcano-sedimentary sequences in Kid area, southeastern Sinai, Egypt: Implications for intra-arc to foreland basin in the northern Arabian-Nubian Shield

    Science.gov (United States)

    Khalaf, E. A.; Obeid, M. A.

    2013-09-01

    This paper presents a stratigraphic and sedimentary study of Neoproterozoic successions of the South Sinai, at the northernmost segment of the Arabian-Nubian Shield (ANS), including the Kid complex. This complex is composed predominantly of thick volcano-sedimentary successions representing different depositional and tectonic environments, followed by four deformational phases including folding and brittle faults (D1-D4). The whole Kid area is divisible from north to south into the lower, middle, and upper rock sequences. The higher metamorphic grade and extensive deformational styles of the lower sequence distinguishes them from the middle and upper sequences. Principal lithofacies in the lower sequence include thrust-imbricated tectonic slice of metasediments and metavolcanics, whereas the middle and upper sequences are made up of clastic sediments, intermediate-felsic lavas, volcaniclastics, and dike swarms. Two distinct Paleo- depositional environments are observed: deep-marine and alluvial fan regime. The former occurred mainly during the lower sequence, whereas the latter developed during the other two sequences. These alternations of depositional conditions in the volcano-sedimentary deposits suggest that the Kid area may have formed under a transitional climate regime fluctuating gradually from warm and dry to warm and humid conditions. Geochemical and petrographical data, in conjunction with field relationships, suggest that the investigated volcano-sedimentary rocks were built from detritus derived from a wide range of sources, ranging from Paleoproterozoic to Neoproterozoic continental crust. Deposition within the ancient Kid basin reflects a complete basin cycle from rifting and passive margin development, to intra-arc and foreland basin development and, finally, basin closure. The early phase of basin evolution is similar to various basins in the Taupo volcanics, whereas the later phases are similar to the Cordilleran-type foreland basin. The

  16. Experimental investigation and numerical simulation of triggered vacuum arc behavior under TMF/RMF-AMF contact

    Science.gov (United States)

    Wang, Lijun; Deng, Jie; Qin, Kang; Zhang, Xiao; Jia, Shenli

    2016-06-01

    A series of triggering experiments was carried out to investigate the characteristics of vacuum arc controlled by TMF/RMF-AMF contacts. During all the experiments, the current ranged from 5–20 kA (rms) and both the arc appearance and behavior of cathode spots were captured by high-speed camera with corresponding arc current and arc voltage. A 3D steady magnetohydrodynamics (MHD) model was built to simulate and analyze the vacuum arc behavior under TMF/RMF-AMF contacts, and arc plasma parameters were calculated based on the above model. The experimental results showed that arc deflection was visible under both low and high current. Under high current, arc core formed, which meant the arc contracted significantly. In addition, the anode became much more active under high current. The behavior of the cathode spots showed that they split themselves into other new cathode spots. Under high current, the bulk of the spots rotated along a clockwise direction on a transverse magnetic field (TMF) plate, which caused much noise and oscillation in the arc voltage. The simulation results show that ions are likely to gather on the branches of the TMF plate on the anode plane, as a result of the effects between the electromagnetic force and pressure gradient of the arc plasma. The current contracts in the center of the TMF plate on the cathode which was due to the thin connecting rod there. The anode contraction of the current is caused by the Hall effect. Ions move along a clockwise direction on the TMF plate, which is driven by Ampere force. The current contraction resulted in significant melting in the center of the cathode surface while the other region suffered from uniform melting. The melting caused by the anode contraction is more significant than that of the cathode.

  17. Variation of chemical composition of high strength low alloy steels with different groove sizes in multi-pass conventional and pulsed current gas metal arc weld depositions

    Directory of Open Access Journals (Sweden)

    K. Devakumaran

    2015-06-01

    Full Text Available 25 mm thick micro-alloyed HSLA steel plate is welded by multi-pass GMAW and P-GMAW processes using conventional V-groove and suitably designed narrow gap with 20 mm (NG-20 and 13 mm (NG-13 groove openings. The variation of weld metal chemistry in the multi pass GMA and P-GMA weld depositions are studied by spark emission spectroscopy. It is observed that the narrow groove GMA weld joint shows significant variation of weld metal chemistry compared to the conventional V-groove GMA weld joint since the dilution of base metal extends from the deposit adjacent to groove wall to weld center through dissolution by fusion and solid state diffusion. Further, it is noticed that a high rate of metal deposition along with high velocity of droplet transfer in P-GMAW process enhances the dilution of weld deposit and accordingly varies the chemical composition in multi-pass P-GMA weld deposit. Lower angle of attack to the groove wall surface along with low heat input in NG-13 weld groove minimizes the effect of dissolution by fusion and solid state diffusion from the deposit adjacent to groove wall to weld center. This results in more uniform properties of NG-13 P-GMA weld in comparison to those of NG-20 and CG welds.

  18. Phenomenology of plasma engine cathodes at high current rates and low pressures

    Science.gov (United States)

    Huegel, H.; Kruelle, G.

    1984-01-01

    The effects of low surrounding pressures on cathodes of arc jet engines with electromagnetic acceleration are investigated for pressure and current energies of 20 to 100 Torr. and 400 to 1000 A. Experiments with 50 mm long and 8 mm diameter tungsten-thorium cathode in a coaxial gas flow show that pre-heating of the cathode reduces the duration of the instable arc discharge and thus material loss. The use of lighter gases also reduces instability effects, as well as the use of increased pressures and a massive gas influx.

  19. A novel corrosion and abrasion resistant internal coating method with improved adhesion using hollow cathode PECVD (Plasma Enhanced Chemical Vapor Deposition) technology

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, B.; Boinapally, K.; Casserly, T.; Upadhyaya, D.; Gupta, M.; Dornfest, C. [SubOne Technology, Pleasanton, CA (United States)

    2008-07-01

    A new enabling technology for coating the internal surfaces of pipes with a hard, corrosion, wear resistant diamond-like-carbon (DLC) coating is described. The importance of proper surface preparation and optimized interface and adhesion layer is shown. Corrosion resistance is measured based on exposure to HCl, NaCl environments and autoclave with H{sub 2}S. Mechanical properties include high hardness, high adhesion, and excellent wear resistance including sand abrasion resistance. The coating is optimized for high hardness and deposition rate based on selection on the proper hydrocarbon precursor. This new technology enables wide spread use of DLC based coating to increase component life in applications where internal surface of pipes are exposed to corrosive and abrasive environment especially in the oil and gas industry. (author)

  20. Improving the electrochemical properties of Li{sub 1.2}Mn{sub 0.52}Co{sub 0.08}Ni{sub 0.2}O{sub 2} cathode material by uniform surface nanocoating with samarium fluoride through depositional-hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chao; Wu, Hao, E-mail: hao.wu@scu.edu.cn; Chen, Baojun; Liu, Heng; Zhang, Yun, E-mail: y_zhang@scu.edu.cn

    2015-06-15

    Graphical abstract: Li{sub 1.2}Mn{sub 0.52}Co{sub 0.08}Ni{sub 0.2}O{sub 2} cathode material uniformly nanocoated with samarium fluoride (SmF{sub 3}) has been successfully synthesized through a chemical deposition method followed by low-temperature hydrothermal treatment. The surface modified cathode shows a significantly improved cycling stability and rate capability. - Highlights: • Samarium fluoride is originally used as coating material of Li-rich layered cathode. • Low-temperature hydrothermal treatment is employed to establish uniform surface coating. • Cathode nanocoated with SmF{sub 3} shows improved rate capability and cycling stability. • Coating material suppresses the side reaction between electrode and electrolyte. - Abstract: Surface nanocoating of lithium-rich layered Li{sub 1.2}Mn{sub 0.52}Co{sub 0.08}Ni{sub 0.2}O{sub 2} with samarium fluoride (SmF{sub 3}) has been performed through a chemical deposition route combined with a low-temperature hydrothermal treatment. The surface-modified Li{sub 1.2}Mn{sub 0.52}Co{sub 0.08}Ni{sub 0.2}O{sub 2} particles are uniformly and completely covered by an amorphous SmF{sub 3} protective layer with a thin thickness of ∼20 nm. After surface modification, the coated Li{sub 1.2}Mn{sub 0.52}Co{sub 0.08}Ni{sub 0.2}O{sub 2} as cathode shows a significantly improved cycling stability, keeping a capacity retention of 84.5% after 150 cycles at 2 C, much higher than 68.9%forits uncoated counterpart. Moreover, the coated sample delivers an enhanced rate capability with an average capacity of ∼132.3 mA h g{sup −1} when charged at 5 C and discharged at 0.2 C, while the uncoated counterpart only exhibits a capacity of ∼111.4 mA h g{sup −1} under the same conditions. Our results reveal that the remarkably improved electrochemical performance of the surface-modified cathode is attributed to the presence of uniform, robust, and nanoscale SmF{sub 3} coating layer, which not only suppresses the growth of SEI layer

  1. Relative work function, surface composition and topography of ``pedigreed'' impregnated tungsten dispenser cathodes

    Science.gov (United States)

    Tomich, D. H.; Mescher, J. A.; Wittberg, T. N.; Grant, J. T.

    1985-12-01

    A study has been made of the variation in work function, surface composition, and topography of 5:3:2 impregnated tungsten dispenser cathodes made under carefully controlled conditions (pedigreed cathodes). Despite these conditions several cathodes had unexpected deposits on their emitting surfaces, and one showed a variation in work function and composition across the surface during activation.

  2. Studies of diamond-like carbon and diamond-like carbon polymer hybrid coatings deposited with filtered pulsed arc discharge method for biomedical applications

    OpenAIRE

    Soininen, Antti

    2015-01-01

    Hydrogen free diamond-like carbon (DLC) coatings have been the subject of investigation all around the world for the last 30 years. One of the major problems in producing of thick high-quality DLC coatings has been the inadequate adhesion of the deposited film to the substrate. This obstacle is finally overcome by depositing an intermediate adhesion layer produced with high energy (>2 keV) carbon plasma before application of a high-quality coating produced with a low energy unit. To the best ...

  3. Arc saw development report

    International Nuclear Information System (INIS)

    The arc saw is one of the key components of the Contaminated Equipment Volume Reduction (CEVR) Program. This report describes the progress of the arc saw from its inception to its current developmental status. History of the arc saw and early contributors are discussed. Particular features of the arc saw and their advantages for CEVR are detailed. Development of the arc saw including theory of operation, pertinent experimental results, plans for the large arc saw and advanced control systems are covered. Associated topics such as potential applications for the arc saw and other arc saw installations in the world is also touched upon

  4. Study of Metal and Ceramic Thermionic Vacuum arc Discharges

    Institute of Scientific and Technical Information of China (English)

    Tamer AKAN; Serdar DEMIRKOL; Naci EKEM; Suat PAT; Geavit MUSA

    2007-01-01

    The thermionic vacuum arc (TVA) is a new type of plasma source, which generates a pure metal and ceramic vapour plasma containing ions with a directed energy. TVA discharges can be ignited in high vacuum conditions between a heated cathode (electron gun) and an anode (tungsten crucible) containing the material. The accelerated electron beam, incident on the anode, heats the crucible, together with its contents, to a high temperature. After establishing a steady-state density of the evaporating anode material atoms, and when the voltage applied is high enough, a bright discharge is ignited between the electrodes. We generated silver and AI2O3 TVA discharges in order to compare the metal and ceramic TVA discharges. The electrical and optical characteristics of silver and AI2O3 TVA discharges were analysed. The TVA is also a new technique for the deposition of thin films. The film condenses on the sample from the plasma state of the vapour phase of the anode material, generated by a TVA. We deposited silver and AI2O3 thin films onto an aluminium substrate layer-by-layer using their TVA discharges, and produced micro and/or nano-layer Ag-Ab2O3 composite samples. The composite samples using scanning electron microscopy was also analysed.

  5. Ti Coating on Magnesium Alloy by Arc-Added Glow Discharge Plasma Penetrating Technique

    Institute of Scientific and Technical Information of China (English)

    CUICai-e; MIAOQiang; PANJun-de; ZHANGPing-ze; ZHANGGao-hui

    2004-01-01

    Arc-added glow discharge plasma penetrating technique is a new surface coating method. With the help of vacuum arc discharge, a cold cathode arc source continually emits ion beams of coating elements with high currency density and high ionizing ratio. As the ion bombard and diffusion working on, the surface of the parts form deposited layer, penetrated layer and hybrid layer. Under lab condition, a commercial magnesium alloy Az91 had been coated with Ti film layer with the aim of improving its' anti-corrosion performance. This paper mainly summarized our studies on the testing and analyzing of the coating layer. The composition and microstructure of the coating layer had been analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the surface appearance had been surveyed by scanning electronic microscope (SEM). The adhesion strength between film and matrix had been evaluated by experiments of sticking-tearing. The results indicated that the coated layer on magnesium alloy were homogeneous, dense and robustly adhered.

  6. Measurement and modeling of a diamond deposition reactor: Hydrogen atom and electron number densities in an Ar/H2 arc jet discharge

    International Nuclear Information System (INIS)

    A combination of experiment [optical emission and cavity ring-down spectroscopy (CRDS) of electronically excited H atoms] and two-dimensional (2D) modeling has enabled a uniquely detailed characterization of the key properties of the Ar/H2 plasma within a ≤10-kW, twin-nozzle dc arc jet reactor. The modeling provides a detailed description of the initial conditions in the primary torch head and of the subsequent expansion of the plasma into the lower pressure reactor chamber, where it forms a cylindrical plume of activated gas comprising mainly of Ar, Ar+, H, ArH+, and free electrons. Subsequent reactions lead to the formation of H2 and electronically excited atoms, including H(n=2) and H(n=3) that radiate photons, giving the plume its characteristic intense emission. The modeling successfully reproduces the measured spatial distributions of H(n>1) atoms, and their variation with H2 flow rate, FH20. Computed H(n=2) number densities show near-quantitative agreement with CRDS measurements of H(n=2) absorption via the Balmer-β transition, successfully capturing the observed decrease in H(n=2) density with increased FH20. Stark broadening of the Balmer-β transition depends upon the local electron density in close proximity to the H(n=2) atoms. The modeling reveals that, at low FH20, the maxima in the electron and H(n=2) atom distributions occur in different spatial regions of the plume; direct analysis of the Stark broadening of the Balmer-β line would thus lead to an underestimate of the peak electron density. The present study highlights the necessity of careful intercomparisons between quantitative experimental data and model predictions in the development of a numerical treatment of the arc jet plasma. The kinetic scheme used here succeeds in describing many disparate observations--e.g., electron and H(n=2) number densities, spatial distributions of optical emission from the plume, the variation of these quantities with added flow of H2 and, when CH4 is added

  7. Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells

    KAUST Repository

    Xie, Xing

    2011-01-01

    A carbon nanotube (CNT)-textile-Pt cathode for aqueous-cathode microbial fuel cells (MFCs) was prepared by electrochemically depositing Pt nanoparticles on a CNT-textile. An MFC equipped with a CNT-textile-Pt cathode revealed a 2.14-fold maximum power density with only 19.3% Pt loading, compared to that with a commercial Pt coated carbon cloth cathode. © 2011 The Royal Society of Chemistry.

  8. Cathodic Protection Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs Navy design and engineering of ship and submarine impressed current cathodic protection (ICCP) systems for underwater hull corrosion control and...

  9. Properties of weld deposit for butt weldings of reactor components

    International Nuclear Information System (INIS)

    Mechanical properties of weld deposit type MnNiMo from submerged arc- and manual shielded arc weldings for reactor components, influence of chemical composition and heat treatment condition, proposal for the testing of mechanical properties for weld deposit. (orig.)

  10. Evaluation of pulsed laser deposited SrNb0.1Co0.9O3-δ thin films as promising cathodes for intermediate-temperature solid oxide fuel cells

    Science.gov (United States)

    Chen, Dengjie; Chen, Chi; Gao, Yang; Zhang, Zhenbao; Shao, Zongping; Ciucci, Francesco

    2015-11-01

    SrNb0.1Co0.9O3-δ (SNC) thin films prepared on single-crystal yttria-stabilized zirconia (YSZ) electrolytes are evaluated as promising cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Geometrically well-defined polycrystalline SNC thin films with low surface roughness and high surface oxygen vacancy concentration are successfully fabricated by pulsed laser deposition. The thin films are characterized by basic techniques, e.g., X-ray diffraction for phase structure identification, scanning electron microscopy and atomic force microscopy for microstructures measurement, and X-ray photoelectron spectroscopy for elements quantification. Electrochemical impedance spectroscopy (EIS) is used to investigate oxygen reduction reaction activities of SNC thin films in symmetric electrochemical cells. Current collectors (Ag paste, Ag strip, and Au strip) are found to have negligible impact on polarization resistances. A slight decrease of the electrode polarization resistances is observed after adding a samarium doped ceria (SDC) buffer layer between SNC and YSZ. SNC thin-film electrodes exhibit low electrode polarization resistances, e.g., 0.237 Ω cm2 (SNC/SDC/YSZ/SDC/SNC) and 0.274 Ω cm2 (SNC/YSZ/SNC) at 700 °C and 0.21 atm, demonstrating the promise of SNC materials for IT-SOFCs. An oxygen reduction reaction mechanism of SNC thin films is also derived by analyzing EIS at temperature of 550-700 °C under oxygen partial pressure range of 0.04-1 atm.

  11. Plasma processes inside dispenser hollow cathodes

    Science.gov (United States)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Polk, James E.; Jameson, Kristina K.

    2006-06-01

    deposited at the emitter surface by returning electrons is found to be twice that deposited by ions. A previous study suggested that the computed particle flux and energy of ions to the emitter of the 1.5cm cathode were not high enough to change the barium evaporation rate compared to thermally induced evaporation. The same suggestion is made here for the 0.635cm cathode. The peak ion flux to the emitter is found to be 1.2A/cm2 (7.6×1018/scm2), and the corresponding peak sheath drop is 2.9V. Consequently, once the emitter operating temperature is known it is possible to determine directly the barium depletion-limited life of these cathodes using existing vacuum-cathode data.

  12. Plasma processes inside dispenser hollow cathodes

    International Nuclear Information System (INIS)

    power deposited at the emitter surface by returning electrons is found to be twice that deposited by ions. A previous study suggested that the computed particle flux and energy of ions to the emitter of the 1.5 cm cathode were not high enough to change the barium evaporation rate compared to thermally induced evaporation. The same suggestion is made here for the 0.635 cm cathode. The peak ion flux to the emitter is found to be 1.2 A/cm2 (7.6x1018/s cm2), and the corresponding peak sheath drop is 2.9 V. Consequently, once the emitter operating temperature is known it is possible to determine directly the barium depletion-limited life of these cathodes using existing vacuum-cathode data

  13. Variation of chemical composition of high strength low alloy steels with different groove sizes in multi-pass conventional and pulsed current gas metal arc weld depositions

    OpenAIRE

    K. Devakumaran; M.R. Ananthapadmanaban; P. K. Ghosh

    2015-01-01

    25 mm thick micro-alloyed HSLA steel plate is welded by multi-pass GMAW and P-GMAW processes using conventional V-groove and suitably designed narrow gap with 20 mm (NG-20) and 13 mm (NG-13) groove openings. The variation of weld metal chemistry in the multi pass GMA and P-GMA weld depositions are studied by spark emission spectroscopy. It is observed that the narrow groove GMA weld joint shows significant variation of weld metal chemistry compared to the conventional V-groove GMA weld joint ...

  14. Improved Dispenser Cathodes

    Science.gov (United States)

    Ives, R. Lawrence; Falce, Lou

    2006-01-01

    Variations in emission current from dispenser cathodes can be caused by variations in temperature and work function over the surface. This paper described research to reduce these variations using improved mechanical designs and controlled porosity cathodes made from sintered tungsten wires. The program goal is to reduce current emission variations to less than 5% over the surface of magnetron injection guns operating temperature limited.

  15. Atomic Layer Deposition of Al2O3-Ga2O3 Alloy Coatings for Li[Ni0.5Mn0.3Co0.2]O2 Cathode to Improve Rate Performance in Li-Ion Battery.

    Science.gov (United States)

    Laskar, Masihhur R; Jackson, David H K; Guan, Yingxin; Xu, Shenzhen; Fang, Shuyu; Dreibelbis, Mark; Mahanthappa, Mahesh K; Morgan, Dane; Hamers, Robert J; Kuech, Thomas F

    2016-04-27

    Metal oxide coatings can improve the electrochemical stability of cathodes and hence, their cycle-life in rechargeable batteries. However, such coatings often impose an additional electrical and ionic transport resistance to cathode surfaces leading to poor charge-discharge capacity at high C-rates. Here, a mixed oxide (Al2O3)1-x(Ga2O3)x alloy coating, prepared via atomic layer deposition (ALD), on Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathodes is developed that has increased electron conductivity and demonstrated an improved rate performance in comparison to uncoated NMC. A "co-pulsing" ALD technique was used which allows intimate and controlled ternary mixing of deposited film to obtain nanometer-thick mixed oxide coatings. Co-pulsing allows for independent control over film composition and thickness in contrast to separate sequential pulsing of the metal sources. (Al2O3)1-x(Ga2O3)x alloy coatings were demonstrated to improve the cycle life of the battery. Cycle tests show that increasing Al-content in alloy coatings increases capacity retention; whereas a mixture of compositions near (Al2O3)0.5(Ga2O3)0.5 was found to produce the optimal rate performance. PMID:27035035

  16. Two-dimensional model of evolution in the DC arc plasma generator

    International Nuclear Information System (INIS)

    A time dependent, two-dimensional model for simulating the plasma evolution in the DC arc plasma generator is conducted. The governing equations of a set of electrostatic magneto hydrodynamic (MHD) equations are solved by employing an efficient finite difference method. Up-wind schemes and uniform meshes in space are used in numerical simulation. the distributions and evolution of the density, velocity, temperature, electric potential, current density, etc. of the arc plasmas of two kinds of cathode model are computed. The influence of the cathode shape in are plasma generator is investigated. The results show that the conical cathode produces bigger current density and ionizes more efficiently than rod cathode in same geometry and operating conditions. But the former easily bring on the computing instability. The simulating results can be used to address designing the device for big current arc plasma generator. (authors)

  17. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    Science.gov (United States)

    John, D.A.; Sisson, T.W.; Breit, G.N.; Rye, R.O.; Vallance, J.W.

    2008-01-01

    Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8??km3 Osceola Mudflow (5600??y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a hydrothermal alteration minerals that are exposed in the avalanche headwall of Sunset Amphitheater, reflecting progressive incision into deeper near-conduit alteration products that formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1??km of the edifice axis, developed chiefly in porous breccias. The edifice was capped by a steam-heated alteration zone, most

  18. Deposition and Damping Property of Arc Ion Plated NiCrAlY Coatings%基底偏压对电弧离子镀NiCrAlY涂层阻尼性能的影响

    Institute of Scientific and Technical Information of China (English)

    杜广煜; 谭祯; 孙伟; 柴昊; 巴德纯; 韩清凯

    2012-01-01

    The NiCrAlY coatings were deposited by arc ion plating on stainless steel substrates. The effects of the deposition conditions, such as the pressure, substrate bias, and arc current, on damping property of the NiCrAlY coatings were evaluated. The rnicrostructures and damping property were characterized with X-ray diffraction, scanning electron microscopy and dynamic mechanical analyzer. The results show that the substrate bias significantly improves the damping properties of the NiCrAlY coating. For example, the damping factor of the NiCrAlY coated stainless steel substrate increased with an increase of the bias voltage. The fairly smooth, compact NiCrAlY coatings mainly consisted of γ-Ni, α-NiAl,γ-Ni3Al,and α- Cr phases.%采用电弧离子镀方法在不锈钢基片上制备了NiCrAlY涂层,在制备过程中改变基底偏压分别取50,100,200,300V.对涂层样品分别进行物相分析,表面形貌观察,测定微区化学成分,并利用动态机械分析仪(DMA)对涂层样品的阻尼性能进行测试.结果表明,利用电弧离子镀的方法可以在不锈钢基底上获得均匀的NiCrAlY涂层.涂层为晶态结构,主要由γ-Ni相,β-NiAl相,γ'-Ni3Al相和α-Cr组成.制备过程中的偏压变化对涂层的表面形貌有明显影响,对涂层的化学成分影响不大.DMA结果表明NiCrAlY涂层能明显地提高基底材料的阻尼性能,同时随着偏压增大,涂层样品的阻尼因子有所提高.

  19. The Arc Model in SiO2 Current-limiting Fuse

    Institute of Scientific and Technical Information of China (English)

    王念春; 季幼章

    2001-01-01

    An arc model in SiO2 current-limiting fuse has been put forward. Through taking into account the comprehensive effects such as: fundamental action process among particles of arc column, geometrical and external circuit characteristics of arc column, physical procedure in arc column and in cathode and anode, and power equilibrium in arc column plasma et al., parameters such as the temperature, length, volumn, pressure, arc voltage, arc current et al. in the arc column can be obtained by the model. In view of the serious nonlinearity and huge difference among parameters in the equation set of the model, via analysis on these equations, two solution methods for the equations of the model have been presented with a basic accordance between calculated results and test results.``

  20. Measurement of total ion flux in vacuum Arc discharges

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre; Oks, Efim M.; Yushkov, Georgy Yu.; Brown, Ian G.

    2004-04-12

    A vacuum arc ion source was modified allowing us to collections from arc plasma streaming through an anode mesh. The mesh had ageometric transmittance of 60 percent, which was taken into account as acorrection factor. The ion current from twenty-two cathode materials wasmeasured at an arc current of 100 A. The ion current normalized by thearc current was found to depend on the cathode material, with valuesinthe range from 5 percent to 11 percent. The normalized ion current isgenerally greater for light elements than for heavy elements. The ionerosion rates were determined fromvalues of ion currentand ion chargestates, which were previously measured in the same experimental system.The ion erosion rates range from 12-94 mu g/C.

  1. Note: Triggering behavior of a vacuum arc plasma source

    Science.gov (United States)

    Lan, C. H.; Long, J. D.; Zheng, L.; Dong, P.; Yang, Z.; Li, J.; Wang, T.; He, J. L.

    2016-08-01

    Axial symmetry of discharge is very important for application of vacuum arc plasma. It is discovered that the triggering method is a significant factor that would influence the symmetry of arc discharge at the final stable stage. Using high-speed multiframe photography, the transition processes from cathode-trigger discharge to cathode-anode discharge were observed. It is shown that the performances of the two triggering methods investigated are quite different. Arc discharge triggered by independent electric source can be stabilized at the center of anode grid, but it is difficult to achieve such good symmetry through resistance triggering. It is also found that the triggering process is highly correlated to the behavior of emitted electrons.

  2. Operational characteristics of a metal vapor vacuum arc ion source

    International Nuclear Information System (INIS)

    The MEVVA ion source can produce high current pulsed beams of metallic ions using a metal vapor vacuum arc discharge as the plasma medium from which the ions are extracted. In this study, the operational characteristics of the MEVVA IV ion source are summarized. Results are presented of measurements of the ion beam current as a function of arc current over a range of extraction voltage. Ti, Ta and Pb were examined as the cathode materials. The arc current ranged from 50A to 250A and the extraction voltage from 10kV to 80kV. The ion beam current was measured at two different distances from the ion source using Faraday cups, so as to investigate the beam divergence. Additionally, the cathode erosion rates were measured. Optimum operating conditions of the MEVVA ion source were determined. 10 refs., 6 figs

  3. The motion of a vacuum arc in a transvers magnetic field

    International Nuclear Information System (INIS)

    On two rail electrodes vacuum arc is driven by transverse magnetic field induced by self conduction current. Experiments was conducted in a vacuum chamber, and chamber pressure was usually under 10-4 pa. With cupper rail electrodes, at the center of a cathode the arc is triggered. Main ark current is supplied by Pulse Forming Network, and current shape is roughly rectangular with pulse width about 10 ms. When the arc current is under 45-50A, arc moves to retrograde direction from the triggered point. From 50A to 1000A, arc at first moves to forward direction for some distance, then it moves to the retrograde direction. As the arc current increases, forward moving distance increases. It is reported, that over several thousand Ampers, the arc always move to forward direction. On the cathode surface, the start point is concentrated in one spot, and as it moves to forward direction, it spreads and separates to many small cathode spots. The decisive factor of moving derection is considered to the shape of the cathode spot, and this mechanism will be explained by applying Drouet's model. (J.P.N.)

  4. Synthesis of branched, nano channeled, ultrafine and nano carbon tubes from PET wastes using the arc discharge method

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Berkmans, A.; Jagannatham, M. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu (India); Priyanka, S. [Department of Electrical and Electronics Engineering, MS Ramaiah Institute of Technology, Bangalore 560054, Karnataka (India); Haridoss, Prathap, E-mail: prathap@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu (India)

    2014-11-15

    Highlights: • Polymer wastes are converted into ultrafine and nano carbon tubes and spheres. • Simple process with a minimal processing time. • It is a catalyst free and solvent free approach. • This process forms branched ultrafine carbon tubules with nano channels. - Abstract: Upcycling polymer wastes into useful, and valuable carbon based materials, is a challenging process. We report a novel catalyst-free and solvent-free technique for the formation of nano channeled ultrafine carbon tubes (NCUFCTs) and multiwalled carbon nanotubes (MWCNTs) from polyethylene terephthalate (PET) wastes, using rotating cathode arc discharge technique. The soot obtain from the anode contains ultrafine and nano-sized solid carbon spheres (SCS) with a mean diameter of 221 nm and 100 nm, respectively, formed at the lower temperature region of the anode where the temperature is approximately 1700 °C. The carbon spheres are converted into long “Y” type branched and non-branched NCUFCTs and MWCNTs at higher temperature regions where the temperature is approximately 2600 °C, with mean diameters of 364 nm and 95 nm, respectively. Soot deposited on the cathode is composed of MWCNTs with a mean diameter of 20 nm and other nanoparticles. The tubular structures present in the anode are longer, bent and often coiled with lesser graphitization compared to the nanotubes in the soot on the cathode.

  5. Focused cathode design to reduce anode heating during vircator operation

    Science.gov (United States)

    Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A.

    2013-10-01

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

  6. Focused cathode design to reduce anode heating during vircator operation

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A. [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-10-15

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

  7. Focused cathode design to reduce anode heating during vircator operation

    International Nuclear Information System (INIS)

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages

  8. Numerical investigation of the double-arcing phenomenon in a cutting arc torch

    Energy Technology Data Exchange (ETDEWEB)

    Mancinelli, B. R., E-mail: bmancinelli@frvt.utn.edu.ar [Grupo de Descargas Eléctricas, Departamento Ingeniería Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651 (2600) Venado Tuerto, Santa Fe (Argentina); Minotti, F. O.; Kelly, H. [Grupo de Descargas Eléctricas, Departamento Ingeniería Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651 (2600) Venado Tuerto, Santa Fe (Argentina); Instituto de Física del Plasma (CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina); Prevosto, L. [Instituto de Física del Plasma (CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina)

    2014-07-14

    A numerical investigation of the double-arcing phenomenon in a cutting arc torch is reported. The dynamics of the double-arcing were simulated by using a two-dimensional model of the gas breakdown development in the space-charge layer contiguous to the nozzle of a cutting arc torch operated with oxygen. The kinetic scheme includes ionization of heavy particles by electron impact, electron attachment, electron detachment, electron–ion recombination, and ion–ion recombination. Complementary measurements during double-arcing phenomena were also conducted. A marked rise of the nozzle voltage was found. The numerical results showed that the dynamics of a cathode spot at the exit of the nozzle inner surface play a key role in the raising of the nozzle voltage, which in turn allows more electrons to return to the wall at the nozzle inlet. The return flow of electrons thus closes the current loop of the double-arcing. The increase in the (floating) nozzle voltage is due to the fact that the increased electron emission at the spot is mainly compensated by the displacement current (the ions do not play a relevant role due to its low-mobility) until that the stationary state is achieved and the electron return flow fully-compensates the electron emission at the spot. A fairly good agreement was found between the model and the experiment for a spot emission current growth rate of the order of 7 × 10{sup 4} A/s.

  9. Numerical investigation of the double-arcing phenomenon in a cutting arc torch

    International Nuclear Information System (INIS)

    A numerical investigation of the double-arcing phenomenon in a cutting arc torch is reported. The dynamics of the double-arcing were simulated by using a two-dimensional model of the gas breakdown development in the space-charge layer contiguous to the nozzle of a cutting arc torch operated with oxygen. The kinetic scheme includes ionization of heavy particles by electron impact, electron attachment, electron detachment, electron–ion recombination, and ion–ion recombination. Complementary measurements during double-arcing phenomena were also conducted. A marked rise of the nozzle voltage was found. The numerical results showed that the dynamics of a cathode spot at the exit of the nozzle inner surface play a key role in the raising of the nozzle voltage, which in turn allows more electrons to return to the wall at the nozzle inlet. The return flow of electrons thus closes the current loop of the double-arcing. The increase in the (floating) nozzle voltage is due to the fact that the increased electron emission at the spot is mainly compensated by the displacement current (the ions do not play a relevant role due to its low-mobility) until that the stationary state is achieved and the electron return flow fully-compensates the electron emission at the spot. A fairly good agreement was found between the model and the experiment for a spot emission current growth rate of the order of 7 × 104 A/s.

  10. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  11. Cathodes - Technological review

    International Nuclear Information System (INIS)

    Lithium cobalt oxide (LiCoO2) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO2 is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO2. Electrochemical and structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented

  12. Plasma distribution prop erties of vacuum ribb on-like catho dic arc plasma fliter and Raman studies of diamond-like carb on films p erpared by it%带状真空电弧磁过滤器等离子体分布特性及制备类金刚石膜研究∗

    Institute of Scientific and Technical Information of China (English)

    李刘合; 刘红涛; 罗辑; 许亿

    2016-01-01

    As is well known, most filtered cathodic vacuum arc deposition technology adopts filters with various geometries to remove macro particles in the last three decades, but almost all of them have a circular cross-section. Compared with the traditional toroidal duct filters, the rectangular graphite cathodic arc source can have a larger area which can be an arc source of a ribbon-like cathodic arc plasma filter, which has a higher coating efficiency due to its larger area arc source and may be more suitable for a larger scale industrial production. Thus, the research on the plasma distribution properties within the vacuum ribbon-like cathodic arc plasma filter is of great significance. In this paper, a rectangular graphite cathodic arc source is used to produce the ribbon-like cathodic arc plasma. Within the filter, a 90◦ curved magnetic duct with a rectangular cross-section is used as the arc filter. The ribbon-like cathodic arc plasma is transmitted from cathode to the deposition area along the magnetic line produced by external coils. A Faraday cup ion energy analyzer and a Langmuir probe are used to characterize the distribution properties of the filtered plasma at 15 places on the exit plane. Ion energies and ion density at these positions are obtained. For the special “retrograde”motion of the cathode spot on the rectangular target surface, the ion energies and ion density data are not stable. In order to obtain representative values, the net results are the average value of 3 measurements. Diamond-like carbon (DLC) films are deposited by the ribbon-like cathodic arc plasma filter at the same exit plane and their structures are characterized by Raman shift. To compare the distinctness of the 15 Raman spectrums, each Raman spectrum of the DLC films is normalized and shown in a figure. Meanwhile, the thicknesses of all the DLC films are measured by step profiler. Results show that the ion energies are of Maxwell distributions at all the 15 places on the exit

  13. Measurement and modeling of Ar/H2/CH4 arc jet discharge chemical vapor deposition reactors II: Modeling of the spatial dependence of expanded plasma parameters and species number densities

    International Nuclear Information System (INIS)

    Detailed methodology and results are presented for a two-dimensional (r,z) computer model applicable to dc arc jet reactors operating on argon/hydrogen/hydrocarbon gas mixtures and used for chemical vapor deposition of micro- and nanocrystalline diamond and diamondlike carbon films. The model incorporates gas activation, expansion into the low pressure reactor chamber, and the chemistry of the neutral and charged species. It predicts the spatial variation of temperature, flow velocities and number densities of 25 neutral and 14 charged species, and the dependence of these parameters on the operating conditions of the reactor such as flows of H2 and CH4 and input power. Selected outcomes of the model are compared with experimental data in the accompanying paper [C. J. Rennick et al., J. Appl. Phys. 102, 063309 (2007)]. Two-dimensional spatial maps of the number densities of key radical and molecular species in the reactor, derived from the model, provide a summary of the complicated chemical processing that occurs. In the vortex region beyond the plume, the key transformations are CH4→CH3↔C2H2↔large hydrocarbons; in the plume or the transition zone to the cooler regions, the chemical processing involves C2Hx↔(CHy and CHz), C3Hx↔(CHy and C2Hz), (C2Hy and C2Hz)↔C4Hx↔(CHy and C3Hz). Depending on the local gas temperature Tg and the H/H2 ratio, the equilibria of H-shifting reactions favor C, CH, and C2 species (in the hot, H-rich axial region of the plume) or CH2, C2H, and C2H2 species (at the outer boundary of the transition zone). Deductions are drawn about the most abundant C-containing radical species incident on the growing diamond surface (C atoms and CH radicals) within this reactor, and the importance of chemistry involving charged species is discussed. Modifications to the boundary conditions and model reactor geometry allow its application to a lower power arc jet reactor operated and extensively studied by Jeffries and co-workers at SRI

  14. The Late Cambrian Takaka Terrane, NW Nelson, New Zealand: Accretionary-prism development and arc collision followed by extension and fan-delta deposition at the SE margin of Gondwana

    Science.gov (United States)

    Pound, K. S.

    2013-12-01

    Re-evaluation of field and lab data indicates that the Cambrian portion of the Takaka Terrane in the Cobb Valley area of NW Nelson, New Zealand preserves the remnants of an accretionary prism complex, across which the Lockett Conglomerate fan-delta was deposited as a consequence of extension. Previous work has recognized that the structurally disrupted lower Takaka Terrane rocks present an amalgam of sedimentary and igneous rocks generated prior to convergence (Junction Formation) or during convergence (Devil River Volcanics Group, Haupiri Group), including arc-related and MORB components. Portions of the sequence have in the past been loosely described as an accretionary prism. Reevaluation of the detailed mapping, sedimentological and provenance studies shows that remnants of a stratigraphic sequence (Junction Formation, Devil River Volcanics Group, Haupiri Group) can be traced through 10 fault-bounded slices, which include a mélange-dominated slice (Balloon Mélange). These slices are the remnants of the accretionary prism; the stratigraphy within each slice generally youngs to the east, and the overall pattern of aging (based on relative age from provenance studies, sparse fossils, stratigraphic relations, and limited isotopic data) indicates that the older rocks generally dominate fault slices to the east, and younger rocks dominate fault slices to the west, delineating imbricate slices within an eastward-dipping subduction zone, in which the faults record a complex history of multi-phase reactivation. The Lockett Conglomerate is a ~500-m thick fan-delta conglomerate that is the preserved within one of the fault slices, where it is stratigraphically and structurally highest unit in the lower Takaka Terrane; it is also present as blocks within the Balloon Melange. The Lockett Conglomerate is marine at its base and transitions upwards to fluvial facies. The Lockett Conglomerate has previously been interpreted to result from erosion consequent on continued

  15. Verification of high efficient broad beam cold cathode ion source.

    Science.gov (United States)

    Abdel Reheem, A M; Ahmed, M M; Abdelhamid, M M; Ashour, A H

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition. PMID:27587108

  16. Device for film deposition and implantation of ions inside pipes of low diameter

    International Nuclear Information System (INIS)

    Two principally new devices, which can be applied to deposit coatings inside the pipes of low diameter, have been developed. The thickness of coatings and films can be varied. To deposit coatings of a low thickness (about 2 nm) on inside pipe walls using a vacuum-arc source and a sputtering device, which is composed of the pipe applied for anode cooling, the constant magnet, the magnetic circuit, the anode, the cathode, the pipe subjected for coating deposition, the cathode holder, etc. Using this device, we have deposited TiC, Ta, Cr, TiN coatings of various thickness ranging from scores of nano-meters to several micro-meters and with very good adhesion to the substrate. To increase adhesion, we applied 10 to 20 kV voltage during ion implantation to the substrate. To study element and structure composition, we applied RBS, TEM, SEM, XRD analyses, micro-hardness, wear resistance tests and also those for corrosion resistance in acid media. Another version of the source was based on the pulsed plasma-detonation technology and applied an evaporating electrode (for implantation) and a powder, which was injected into a plasma jet. The jet velocity reached several kilometers per second. Current of several kilo-amps passed through the plasma jet and increased its energy. The produced in this way coating thickness reached 30 to 400 micro-meter. Application of the vacuum-arc source for subsequent coating deposition allowed us to improve the servicing characteristics of surface layers. We have deposited NiAl, CoAl, A12O3, WC-Co, Hastelloy and stainless steel SS316L

  17. Rotating arc spark plug

    Science.gov (United States)

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  18. Vacuum arc velocity and erosion rate measurements on nanostructured plasma and HVOF spray coatings

    International Nuclear Information System (INIS)

    Arc velocity and erosion rate measurements were performed on nanostructured pure Cu cathodes in 10-5 Torr vacuum (1.3324 m Pa), in an external magnetic field of 0.04 T. Five different kinds of nanostructured cathodes were produced by spraying pure Cu powders of three different sizes, on Cu coupons by atmospheric pressure plasma spraying and high velocity oxygen fuel spraying techniques. The erosion rates of these electrodes were obtained by measuring the weight loss of the electrode after igniting as many as 135 arc pulses, each of which was 500 μs long at an arc current of 125 A. The arc erosion values measured on three kinds of nanostructured coatings were 50% lower than the conventional pure massive Cu cathodes. Microscopic analyses of the arc traces on these nanostructured coatings show that the craters formed on these coatings were smaller than those formed on conventional Cu (<1 μm in diameter compared with 7-12 μm diameter on conventional Cu). It was concluded that nanostructured cathodes had lower erosion rates than conventional pure Cu cathodes

  19. Cathode materials review

    International Nuclear Information System (INIS)

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research

  20. Simple filtered repetitively pulsed vacuum arc plasma source

    International Nuclear Information System (INIS)

    A very simple design of cathodic filtered vacuum arc plasma source is proposed. The source without filter has only four components and none of them require precise machining. The source operates in a repetitively pulsed regime, and for laboratory experiments it can be used without water cooling. Despite the simple construction, the source provides high ion current at the filter outlet reaching 2.5% of 400 A arc current, revealing stable operation in a wide pressure range from high vacuum to oxygen pressure up to more than 10-2 mbar. There is no need in complicated power supply system for this plasma source, only one power supply can be used to ignite the arc, to provide the current for the arc itself, to generate the magnetic field in the filter, and provide its positive electric biasing without any additional high power resistance.

  1. The effect of arc velocity on cold electrode erosion

    International Nuclear Information System (INIS)

    Results of experimental investigations of copper cathode erosion in a magnetically driven arc versus arc rotation velocity v are presented. The erosion rate measurements were carried out with the arc burning in air, for magnetic induction values B in the range of 0.005-0.386 T, axial air gas velocity of 7.65 ms-1, and current of 292 A. It is shown that in the range of small values of v and B, the mass erosion rate diminishes with v and B. Then, the erosion remains constant for a certain range of v and B, and, subsequently, begins to grow. This information is very important for the correct use of magnetic fields to decrease erosion in arc heaters

  2. Arc-Discharge Ion Sources for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    A miniature multiple beamlet approach to an injector system was recently proposed in order to reduce the size, cost, and power requirements of the injector. The beamlets of very high current density are needed to meet the brightness requirement. Besides vacuum arc ion sources, cold-cathode gas ion sources are candidates for this application. Vacuum-arc metal ion sources and vacuum-arc-like gas ion sources are discussed. Experiments are presented that focus on the short-pulse plasma composition and ion charge state distribution. Mg and Sr have been identified as the most promising metals leading to mono-species beams when 20 μs arc pulses are used. It is shown that the efficient production of gas ions requires the presence of a magnetic field

  3. Gas-discharge sources with charged particle emission from the plasma of glow discharge with a hollow cathode

    CERN Document Server

    Semenov, A P

    2001-01-01

    One studied properties of a magnetron discharge with a cold hollow and uncooled rod cathodes. One demonstrated the dominant effect of thermoelectron emission of a rod cathode heated in a discharge on characteristics of discharge and on emission properties of a gas-discharge plasma and the possibility pf a smooth transition of glow discharge to diffusion mode of arc discharge combustion. Paper describes sources of ions and electrons with improved physical and generalized design and engineering parameters. One shows the promise of the electrode structure of a hollow cathode magnetron discharge to be used as a source, in particular, of the atomic hydrogen and of atom flow of a working rod cathode

  4. Mathematical models of pre-arcing and arcing phenomena in vacuum circuit breakers

    International Nuclear Information System (INIS)

    The main aim of this paper is to show that properties of electrical contact materials are responsible for the metallic vapour pressure at contact closure. Dynamic phenomena accompanying electrical contacts closure in vacuum circuit breakers are considered as consecutive stages, including breakdown, touch, penetration, restitution, bridging and arcing at bouncing. The hybrid mathematical model is elaborated to describe dynamics of the arc and forces acting in contact gap. It includes experimental oscillograms of current, voltage and contact displacement and nonlinear equations for arc, anode and cathode temperature fields and contact motion. Experiments are carried out using a standard vacuum circuit breaker with laser sensors for measurement of contact gap. The special difference path method techniques was applied to take into account oscillations of a fixed contact. The axisymmetrical Stefan problem with two free boundaries corresponding to melting and evaporation interfaces is solved to find dynamics of contact evaporation. It is shown theoretically and confirmed experimentally that in the range of high current the force of metallic vapour pressure at arcing in vacuum is comparable with magnetic repulsion force and should be taken into consideration. Two mechanisms of vapour pressure formation and evolution are discussed, which occur due to explosion of micro-asperities at contact touch or due to arcing after bridge rupture at contact bouncing. (author)

  5. Barium Depletion in Hollow Cathode Emitters

    Science.gov (United States)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  6. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    Science.gov (United States)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-01

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H-) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H- current at higher frequency of cathode heating current.

  7. Characterization of the arc ion-plated CrN coatings oxidized at elevated temperatures

    International Nuclear Information System (INIS)

    Microstructure and chemistry of the arc ion-plated CrN coatings oxidized in air at temperatures ranging from 300 to 800 deg. C for 60 min were analyzed by x-ray diffraction (XRD), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and Auger electron spectroscopy (AES). The CrN coatings were prepared by cathodic arc ion plating deposition on a type 304 stainless steel with a Cr interlayer. The XRD result shows that oxidation of the CrN-coated steel above 500 deg. C produces two new phases, Cr2O3 and β-Cr2N, and the amount of both phases increases with the oxidation temperature. Cross-section TEM shows three distinct regions including the steel substrate, the Cr interlayer, and the CrN coating in the as-deposited specimen, in which the CrN layer exhibits a columnar structure and preferred orientation. Oxidation of the CrN-coated steel at high temperatures produces an oxide layer, Cr2O3, on the coating surface, and the underlayer is a mixture of CrN and β-Cr2N phases. Unlike the as-deposited specimen, the dual phase layer in the oxidized specimens has an equiaxed grain structure and the average grain size of the layer increases with the oxidation temperature. In addition, pronounced grain growth in the dual phase layer near the coating surface is observed in the specimen heat-treated at 800 deg. C. Elemental analyses of the CrN coating near the free surface by EELS and AES reveal that the O/N ratio of the coating and the thickness of the oxide layer increase with the oxidation temperature

  8. Determination of work functions near melting points of refractory metals by using a direct-current arc

    Science.gov (United States)

    Gordon, W. A.; Chapman, G. B., II

    1972-01-01

    Effective work functions of refractory metals at temperatures near their melting points were determined by using a direct-current arc. A metal wire connected as the cathode was melted by striking an arc discharge in an argon atmosphere. A melted sphere was formed with a definite emitting area which was calculated from the sphere diameter measured after terminating the arc. Effective work functions were calculated from the Richardson-Dushman equation by using this emission area. The procedure is experimentally advantageous because surface cleanliness of the specimen is not critical, high vacuum is not required, and the anode-cathode spacing is not critical.

  9. Barium depletion in hollow cathode emitters

    International Nuclear Information System (INIS)

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al2O3 source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values

  10. Barium depletion in hollow cathode emitters

    Energy Technology Data Exchange (ETDEWEB)

    Polk, James E., E-mail: james.e.polk@jpl.nasa.gov; Mikellides, Ioannis G.; Katz, Ira [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Capece, Angela M. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States)

    2016-01-14

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al{sub 2}O{sub 3} source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values.

  11. Barium depletion in hollow cathode emitters

    Science.gov (United States)

    Polk, James E.; Mikellides, Ioannis G.; Capece, Angela M.; Katz, Ira

    2016-01-01

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al2O3 source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values.

  12. A review-application of physical vapor deposition (PVD) and related methods in the textile industry

    Science.gov (United States)

    Shahidi, Sheila; Moazzenchi, Bahareh; Ghoranneviss, Mahmood

    2015-09-01

    Physical vapor deposition (PVD) is a coating process in which thin films are deposited by the condensation of a vaporized form of the desired film material onto the substrate. The PVD process is carried out in a vacuum. PVD processes include different types, such as: cathode arc deposition, electron beam physical vapor deposition, evaporative deposition, sputtering, ion plating and enhanced sputtering. In the PVD method, the solid coating material is evaporated by heat or by bombardment with ions (sputtering). At the same time, a reactive gas is also introduced; it forms a compound with the metal vapor and is deposited on the substrate as a thin film with highly adherent coating. Such coatings are used in a wide range of applications such as aerospace, automotive, surgical, medical, dyes and molds for all manner of material processing, cutting tools, firearms, optics, thin films and textiles. The objective of this work is to give a comprehensive description and review of the science and technology related to physical vapor deposition with particular emphasis on their potential use in the textile industry. Physical vapor deposition has opened up new possibilities in the modification of textile materials and is an exciting prospect for usage in textile design and technical textiles. The basic principle of PVD is explained and the major applications, particularly sputter coatings in the modification and functionalization of textiles, are introduced in this research.

  13. Simulation and Experimental Study of Arc Column Expansion After Ignition in Low-Voltage Circuit Breakers

    Institute of Scientific and Technical Information of China (English)

    MA Qiang; RONG Mingzhe; WU Yi; XU Tiejun; SUN Zhiqiang

    2008-01-01

    The dynamicprocess of arc pressure and corresponding arc column expansion, which is the main feature after arc ignition and has a significant effect on the breaking behaviour of low -voltage circuit breakers, is studied. By constructing a three dimensional mathematical model of air arc plasma and adopting the Control Volume Method, the parameters of arc plasma including temperature and pressure axe obtained. The variations of pressure field and temperature field with time are simulated. The result indicates that there are six stages for the process of arc column expansion according to the variation of pressure in arc chamber. In the first stage, the maximal pressure locates in the region close to cathode, and in the second stage the maximal pressure shifts to the region close to the anode. In the third stage, the pressure difference between the middle of arc column and the ambient gas is very large, so the arc column begins to expand apparently. In the fourth stage, the pressure wave propagates towards both ends and the maximal pressure appears at the two ends when the pressure wave reaches both sidewalls. In the fifth stage, the pressure wave is reflected and collides in the middle of the arc chamber. In the last stage, the propagation and reflection of pressure wave will repeat several times until a steady burning state is reached. In addition, the experimental results of arc column expansion, corresponding to the arc pressure variation, are presented to verify the simulation results.

  14. Highly Efficient Micro Cathode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Company, Inc. proposes to develop a micro thermionic cathode that requires extremely low power and provides long lifetime. The basis for the cathode is a...

  15. Advanced Cathode Electrolyzer (ACE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a static, cathode-fed, 2000 psi, balanced-pressure Advanced Cathode Electrolyzer (ACE) based on PEM electrolysis technology. It...

  16. Observation of the glow-to-arc transitions

    Science.gov (United States)

    Watanabe, Shigeru; Saito, Shigeki; Takahashi, Kunio; Onzawa, Tadao

    2002-10-01

    Researches of the glow-to-arc transitions have been required for a new development of the welding technology in low current. It is important to clarify the characteristics of plasma in the transitions because there have been few reports investigated the transitions in detail. The glow-to-arc transitions were observed in argon at atmospheric pressure. The Th-W electrodes of 1 mm in a diameter are used. Both of the electrodes are needle-shaped and set in a quartz tube coaxially. Plasma is generated between the electrodes with the gap spacing of 1 mm. A DC power supply has been applying constant voltage of 600 V during the discharge. A high-speed camera is used to record the images of plasma in the transitions with the measurement of voltage and current between the electrodes. As a result, two things were confirmed for the behavior of the glow-to-arc transition. First, plasma extended over the cathode surface in the transition from the glow to the arc. Second, temperature in the tip of the cathode would increase gradually during the glow and decrease during the arc.

  17. Investigation of the flickering of La2O3 and ThO2 doped tungsten cathodes

    International Nuclear Information System (INIS)

    Short-arc lamps are equipped with tungsten electrodes due to their ability to withstand a high thermal load during operation. Nominal currents of more than one hundred amperes lead to a cathode tip temperature near the melting point of tungsten. To reduce the electrode temperature and, thereby, to increase the maintenance of such lamps, ThO2 or tentatively La2O3 are added to the electrode material. They generate a reduced work function by establishing a monolayer of emitter atoms on the tungsten surface. Emitter enrichments on the lateral surface of doped cathodes are formed. They are traced back to transport mechanisms of emitter oxides in the interior of the electrode and on the electrode surface in dependence of the electrode temperature and to the redeposition of vaporized and ionized emitter atoms onto the cathode tip by the electric field in front. The investigation is undertaken by means of glow discharge mass spectrometry, scanning electron microscope images, energy dispersive x-ray spectroscopy, and through measurements of the optical surface emissivity. The effect of emitter enrichments on the stability of the arc attachment is presented by means of temporally resolved electrode temperature measurements and by measurements of the luminous flux from the cathode-near plasma. They show that the emitter enrichments on the lateral surface of the cathode are attractive for the arc attachment if the emitter at the cathode tip is depleted. In this case, it moves along the lateral surface from the cathode tip to sections of the cathode with a reduced work function. It induces a temporary variation of the cathode tip temperature and of the light intensity from the cathode-near plasma, a so-called flickering. In particular, in case of lanthanated cathodes, strong flickering is observed

  18. Investigation of the flickering of La2O3 and ThO2 doped tungsten cathodes

    Science.gov (United States)

    Hoebing, T.; Hermanns, P.; Bergner, A.; Ruhrmann, C.; Traxler, H.; Wesemann, I.; Knabl, W.; Mentel, J.; Awakowicz, P.

    2015-07-01

    Short-arc lamps are equipped with tungsten electrodes due to their ability to withstand a high thermal load during operation. Nominal currents of more than one hundred amperes lead to a cathode tip temperature near the melting point of tungsten. To reduce the electrode temperature and, thereby, to increase the maintenance of such lamps, ThO2 or tentatively La2O3 are added to the electrode material. They generate a reduced work function by establishing a monolayer of emitter atoms on the tungsten surface. Emitter enrichments on the lateral surface of doped cathodes are formed. They are traced back to transport mechanisms of emitter oxides in the interior of the electrode and on the electrode surface in dependence of the electrode temperature and to the redeposition of vaporized and ionized emitter atoms onto the cathode tip by the electric field in front. The investigation is undertaken by means of glow discharge mass spectrometry, scanning electron microscope images, energy dispersive x-ray spectroscopy, and through measurements of the optical surface emissivity. The effect of emitter enrichments on the stability of the arc attachment is presented by means of temporally resolved electrode temperature measurements and by measurements of the luminous flux from the cathode-near plasma. They show that the emitter enrichments on the lateral surface of the cathode are attractive for the arc attachment if the emitter at the cathode tip is depleted. In this case, it moves along the lateral surface from the cathode tip to sections of the cathode with a reduced work function. It induces a temporary variation of the cathode tip temperature and of the light intensity from the cathode-near plasma, a so-called flickering. In particular, in case of lanthanated cathodes, strong flickering is observed.

  19. Peek Arc Consistency

    CERN Document Server

    Bodirsky, Manuel

    2008-01-01

    This paper studies peek arc consistency, a reasoning technique that extends the well-known arc consistency technique for constraint satisfaction. In contrast to other more costly extensions of arc consistency that have been studied in the literature, peek arc consistency requires only linear space and quadratic time and can be parallelized in a straightforward way such that it runs in linear time with a linear number of processors. We demonstrate that for various constraint languages, peek arc consistency gives a polynomial-time decision procedure for the constraint satisfaction problem. We also present an algebraic characterization of those constraint languages that can be solved by peek arc consistency, and study the robustness of the algorithm.

  20. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.