WorldWideScience

Sample records for cathodic arc deposition

  1. Plasma distribution of cathodic ARC deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Raoux, S.; Krishnan, K.; MacGill, R.A.; Brown, I.G. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    The plasma distribution using a cathodic arc plasma source with and without magnetic macroparticle filter has been determined by depositing on a transparent plastic substrate and measuring the film absorption. It was found that the width of the distribution depends on the arc current, and it also depends on the cathode material which leads to a spatial separation of the elements when an alloy cathode is used. By applying a magnetic multicusp field near the exit of the magnetic filter, it was possible to modify the plasma distribution and obtain a flat plasma profile with a constant and homogeneous elemental distribution.

  2. Filtered cathodic arc deposition apparatus and method

    Science.gov (United States)

    Krauss, Alan R.

    1999-01-01

    A filtered cathodic arc deposition method and apparatus for the production of highly dense, wear resistant coatings which are free from macro particles. The filtered cathodic arc deposition apparatus includes a cross shaped vacuum chamber which houses a cathode target having an evaporable surface comprised of the coating material, means for generating a stream of plasma, means for generating a transverse magnetic field, and a macro particle deflector. The transverse magnetic field bends the generated stream of plasma in the direction of a substrate. Macro particles are effectively filtered from the stream of plasma by traveling, unaffected by the transverse magnetic field, along the initial path of the plasma stream to a macro particle deflector. The macro particle deflector has a preformed surface which deflects macro particles away from the substrate.

  3. Cathodic arcs

    OpenAIRE

    Anders, Andre

    2003-01-01

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas stand out due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bia...

  4. Cathodic arcs

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  5. Formation of metal oxides by cathodic arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Anders, A.; Rubin, M.; Wang, Z.; Raoux, S.; Kong, F.; Brown, I.G.

    1995-03-01

    Metal oxide thin films are of interest for a number of applications. Cathodic arc deposition, an established, industrially applied technique for formation of nitrides (e.g. TiN), can also be used for metal oxide thin film formation. A cathodic arc plasma source with desired cathode material is operated in an oxygen atmosphere, and metal oxides of various stoichiometric composition can be formed on different substrates. We report here on a series of experiments on metal oxide formation by cathodic arc deposition for different applications. Black copper oxide has been deposited on ALS components to increase the radiative heat transfer between the parts. Various metal oxides such as tungsten oxide, niobium oxide, nickel oxide and vanadium oxide have been deposited on ITO glass to form electrochromic films for window applications. Tantalum oxide films are of interest for replacing polymer electrolytes. Optical waveguide structures can be formed by refractive index variation using oxide multilayers. We have synthesized multilayers of Al{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/AI{sub 2}O{sub 3}/Si as possible basic structures for passive optoelectronic integrated circuits, and Al{sub 2-x}Er{sub x}O{sub 3} thin films with a variable Er concentration which is a potential component layer for the production of active optoelectronic integrated devices such as amplifiers or lasers at a wavelength of 1.53 {mu}m. Aluminum and chromium oxide films have been deposited on a number of substrates to impart improved corrosion resistance at high temperature. Titanium sub-oxides which are electrically conductive and corrosion resistant and stable in a number of aggressive environments have been deposited on various substrates. These sub-oxides are of great interest for use in electrochemical cells.

  6. Macroparticles Reduction Using Filter Free Cathodic Vacuum Arc Deposition Method in ZnO Thin Films.

    Science.gov (United States)

    Yuvakkumar, R; Peranantham, P; Nathanael, A Joseph; Nataraj, D; Mangalaraj, D; Hong, Sun Ig

    2015-03-01

    We report a new method to reduce macroparticles in ZnO thin films using filter free cathodic vacuum arc deposition without using any cooling arrangements operated at low arc current. The detailed mechanism has been proposed to reduce macroparticles during thin film deposition. The successful reduction of macroparticles was confirmed employing FESEM-EDX studies. FESEM images of ZnO thin films deposited with cathode spot to substrate distance from 10 to 20 cm revealed that the population of the macroparticles were reduced with the increase of cathode spot to substrate distances at low arc current. The prepared ZnO films were characterised and showed good structural and optical properties.

  7. Filtered cathodic arc deposition with ion-species-selectivebias

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre; Pasaja, Nitisak; Sansongsiri, Sakon; Lim, SunnieH.N.

    2006-10-05

    A dual-cathode arc plasma source was combined with acomputer-controlled bias amplifier such as to synchronize substrate biaswith the pulsed production of plasma. In this way, bias can be applied ina material-selective way. The principle has been applied to the synthesismetal-doped diamond-like carbon films, where the bias was applied andadjusted when the carbon plasma was condensing, and the substrate was atground when the metal was incorporated. In doing so, excessive sputteringby too-energetic metal ions can be avoided while the sp3/sp2 ratio can beadjusted. It is shown that the resistivity of the film can be tuned bythis species-selective bias. The principle can be extended tomultiple-material plasma sources and complex materials

  8. ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques

    Energy Technology Data Exchange (ETDEWEB)

    Purandare, Yashodhan, E-mail: Y.Purandare@shu.ac.uk; Ehiasarian, Arutiun; Hovsepian, Papken [Nanotechnology Centre for PVD Research, Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB (United Kingdom); Santana, Antonio [Ionbond AG Olten, Industriestrasse 211, CH-4600 Olten (Switzerland)

    2014-05-15

    Zirconium nitride (ZrN) coatings were deposited on 1 μm finish high speed steel and 316L stainless steel test coupons. Cathodic Arc (CA) and High Power Impulse Magnetron Sputtering (HIPIMS) + Unbalanced Magnetron Sputtering (UBM) techniques were utilized to deposit coatings. CA plasmas are known to be rich in metal and gas ions of the depositing species as well as macroparticles (droplets) emitted from the arc sports. Combining HIPIMS technique with UBM in the same deposition process facilitated increased ion bombardment on the depositing species during coating growth maintaining high deposition rate. Prior to coating deposition, substrates were pretreated with Zr{sup +} rich plasma, for both arc deposited and HIPIMS deposited coatings, which led to a very high scratch adhesion value (L{sub C2}) of 100 N. Characterization results revealed the overall thickness of the coatings in the range of 2.5 μm with hardness in the range of 30–40 GPa depending on the deposition technique. Cross-sectional transmission electron microscopy and tribological experiments such as dry sliding wear tests and corrosion studies have been utilized to study the effects of ion bombardment on the structure and properties of these coatings. In all the cases, HIPIMS assisted UBM deposited coating fared equal or better than the arc deposited coatings, the reasons being discussed in this paper. Thus H+U coatings provide a good alternative to arc deposited where smooth, dense coatings are required and macrodroplets cannot be tolerated.

  9. Miniaturized cathodic arc plasma source

    Science.gov (United States)

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  10. Cell adhesion property of cathodic arc plasma deposited CrN thin film

    Science.gov (United States)

    Kim, Sun Kyu; Pham, Vuong Hung

    2009-09-01

    The interaction between human osteoblast cells and CrN thin film was studied in vitro. CrN thin films were produced by cathodic arc plasma deposition. The surface was characterized by atomic force microscopy. Cell adhesion on the coatings was assessed by MTT assay and visualization. Cell cytoskeleton organization was studied by analyzing microtubule and actin cytoskeleton organization. Focal contact adhesion was monitored by analyzing vinculin density. The study found that the CrN thin film is a potential candidate as a protective coating on implantable devices that require minimal cellular adhesion.

  11. Filtered pulsed cathodic arc deposition of fullerene-like carbon and carbon nitride films

    Science.gov (United States)

    Tucker, Mark D.; Czigány, Zsolt; Broitman, Esteban; Näslund, Lars-Åke; Hultman, Lars; Rosen, Johanna

    2014-04-01

    Carbon and carbon nitride films (CNx, 0 ≤ x ≤ 0.26) were deposited by filtered pulsed cathodic arc and were investigated using transmission electron microscopy and X-ray photoelectron spectroscopy. A "fullerene-like" (FL) structure of ordered graphitic planes, similar to that of magnetron sputtered FL-CNx films, was observed in films deposited at 175 °C and above, with N2 pressures of 0 and 0.5 mTorr. Higher substrate temperatures and significant nitrogen incorporation are required to produce similar FL structure by sputtering, which may, at least in part, be explained by the high ion charge states and ion energies characteristic of arc deposition. A gradual transition from majority sp3-hybridized films to sp2 films was observed with increasing substrate temperature. High elastic recovery, an attractive characteristic mechanical property of FL-CNx films, is evident in arc-deposited films both with and without nitrogen content, and both with and without FL structure.

  12. Filtered pulsed cathodic arc deposition of fullerene-like carbon and carbon nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Mark D., E-mail: martu@ifm.liu.se; Broitman, Esteban; Näslund, Lars-Åke; Hultman, Lars; Rosen, Johanna [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping (Sweden); Czigány, Zsolt [Institute for Technical Physics and Materials Science, RCNS, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary)

    2014-04-14

    Carbon and carbon nitride films (CN{sub x}, 0 ≤ x ≤ 0.26) were deposited by filtered pulsed cathodic arc and were investigated using transmission electron microscopy and X-ray photoelectron spectroscopy. A “fullerene-like” (FL) structure of ordered graphitic planes, similar to that of magnetron sputtered FL-CN{sub x} films, was observed in films deposited at 175 °C and above, with N{sub 2} pressures of 0 and 0.5 mTorr. Higher substrate temperatures and significant nitrogen incorporation are required to produce similar FL structure by sputtering, which may, at least in part, be explained by the high ion charge states and ion energies characteristic of arc deposition. A gradual transition from majority sp{sup 3}-hybridized films to sp{sup 2} films was observed with increasing substrate temperature. High elastic recovery, an attractive characteristic mechanical property of FL-CN{sub x} films, is evident in arc-deposited films both with and without nitrogen content, and both with and without FL structure.

  13. Structure of MoCN films deposited by cathodic arc evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gilewicz, A., E-mail: adam.gilewicz@tu.koszalin.pl [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland); Jedrzejewski, R.; Kochmanska, A.E. [West Pomeranian University of Technology Szczecin, Faculty of Mechanical Engineering and Mechatronics, 19 Piastów Ave., 70-313 Szczecin (Poland); Warcholinski, B. [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland)

    2015-02-27

    Molybdenum carbonitride (MoCN) coatings were deposited onto HS6-5-2 steel substrate using pure Mo targets in mixed acetylene and nitrogen atmosphere by cathodic arc evaporation. The structural properties of MoCN coatings with different carbon contents (as an effect of the C{sub 2}H{sub 2} flow rate) were investigated systematically. Phase and chemical composition evolution of the coatings were characterized both by the glancing angle of X-ray diffraction (XRD) and wavelength dispersive spectrometry, respectively. These analyses have been supplemented by estimates of grain sizes and stress in the coatings. The XRD results show that the increase in acetylene flow rate causes the formation of molybdenum carbide (MoC) hexagonal phase in the coatings, a reduction of grain size and an increase in internal stress. - Highlights: • MoN and MoCN coatings were deposited by cathodic arc evaporation in nitrogen atmosphere. • MoCN coatings were formed using different acetylene flow rates. • Phase composition evolution was observed. • Crystallite size and stress were calculated.

  14. Transparent and conductive indium doped cadmium oxide thin films prepared by pulsed filtered cathodic arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Yuankun, E-mail: yuan.kun.zhu@gmail.com [Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080 (China); Plasma Applications Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Mendelsberg, Rueben J. [Plasma Applications Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Zhu Jiaqi, E-mail: zhujq@hit.edu.cn [Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080 (China); Han Jiecai [Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080 (China); Anders, Andre [Plasma Applications Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer High quality CdO:In films were prepared on glass by pulsed filtered cathodic arc. Black-Right-Pointing-Pointer 230 nm thick films show low resistivity of 7.23 Multiplication-Sign 10{sup -5} {Omega} cm and mobility of 142 cm{sup 2}/Vs. Black-Right-Pointing-Pointer In-doping significantly improves the conductivity and extends the transparent range. Black-Right-Pointing-Pointer Film crystalline quality is maintained with increasing In concentration. Black-Right-Pointing-Pointer The pulsed arc-grown CdO:In show excellent reproducibility of film properties. - Abstract: Indium doped cadmium oxide (CdO:In) films with different In concentrations were prepared on low-cost glass substrates by pulsed filtered cathodic arc deposition (PFCAD). It is shown that polycrystalline CdO:In films with smooth surface and dense structure are obtained. In-doping introduces extra electrons leading to remarkable improvements of electron mobility and conductivity, as well as improvement in the optical transmittance due to the Burstein-Moss effect. CdO:In films on glass substrates with thickness near 230 nm show low resistivity of 7.23 Multiplication-Sign 10{sup -5} {Omega} cm, high electron mobility of 142 cm{sup 2}/Vs, and mean transmittance over 80% from 500 to 1250 nm (including the glass substrate). These high quality pulsed arc-grown CdO:In films are potentially suitable for high efficiency multi-junction solar cells that harvest a broad range of the solar spectrum.

  15. Bioactivity and cytocompatibility of zirconia (ZrO(2)) films fabricated by cathodic arc deposition.

    Science.gov (United States)

    Liu, Xuanyong; Huang, Anping; Ding, Chuanxian; Chu, Paul K

    2006-07-01

    Zirconium oxide thin films were fabricated on silicon wafers using a filtered cathodic arc system in concert with oxygen plasma. The structure and phase composition of the zirconium oxide thin films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), and transmission electron microscopy (TEM). The bioactivity was assessed by investigating the formation of apatite on the film surface after soaking in simulated body fluids. Bone marrow mesenchymal stem cells (BMMSC) were used to further evaluate the cytocompatibility of the materials. The results indicate that the films are composed of stoichiometric ZrO(2) and the composition is quite uniform throughout the thickness. Bone-like apatite can be formed on the surface of the ZrO(2) thin film in our SBF immersion experiments, suggesting that the surface is bioactive. The outermost layer of the ZrO(2) thin film comprises nano-sized particles that can be identified by AFM images taken on the thin film surface and TEM micrographs obtained from the interface between the ZrO(2) thin film and apatite layer. The nanostructured surface is believed to be the key factor that apatite is induced to precipitate on the surface. Bone marrow mesenchymal stem cells are observed to grow and proliferate in good states on the film surface. Our results show that ZrO(2) thin films fabricated by cathodic arc deposition exhibit favorable bioactivity and cytocompatibility.

  16. Antibacterial efficacy of advanced silver-amorphous carbon coatings deposited using the pulsed dual cathodic arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Endrino, J L; Anders, A; Albella, J M; Horton, J A; Horton, T H; Ayyalasomayajula, P R; Allen, M, E-mail: jlendrino@icmm.csic.es

    2010-11-01

    Amorphous carbon (a-C) also referred as diamond-like carbon (DLC) films are well known to be a biocompatible material with good chemical in ertness; this makes it a strong candidate to be used as a matrix that embeds metallic elements with an antimicrobial effect. We have deposited as et of a-C:Ag films using a dual-cathode pulsed filtered cathodic arc source, the arc pulse frequency of the silver and graphite cathodes was controlled in order to obtain samples with various silver contents. In this study, we show the deposition of silver and carbon ions using this technique and analyze the advantages of incorporating silver into a-C by studying the antimicrobial properties against staphylococcus of samples deposited on Ti{sub 6}Al{sub 4}V coupons and evaluated using 24-well tissue culture plates.

  17. Review of cathodic arc deposition technology at the start of the new millennium

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, D M; Anders, A

    2000-02-24

    The vacuum cathodic arc has been known to provide a means of producing coatings since the second half of the 19th century. This makes it one of the oldest known means for making coatings in a vacuum. In the last century it has been recognized that the copious quantities of ions produced by the process offers certain advantages in terms of coating properties. Specifically, ions can be steered and/or accelerated toward the parts to be coated. This, in turn, can provide enhanced adhesion, film density, and composition stoichiometry in the case of compound coatings. The ions generated by the cathodic arc have high ''natural'' kinetic energy values in the range 20-200 eV, leading to enhanced surface mobility during the deposition process and even ion subplantation. In many cases, dense coatings are achieved even when non-normal arrival angles are involved. The ion energy can further manipulated by the plasma immersion biasing technique. The issue of macroparticle contamination has been addressed by a variety of novel plasma filters. In spite of all of these advantages, this deposition technique has not been widely adopted in the western nations for commercial coating except in the case of enhancing the performance of cutting tools. The purpose of the this review is to explore reasons for this lack of general use of the technology and to point out some encouraging recent developments which may lead to its accelerated adoption for a much wider variety of applications in the near future.

  18. Filtered cathodic arc source

    Science.gov (United States)

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  19. Microstructure Changes of Ti-Al-C Films Deposited by Filtered Cathodic Vacuum Arc

    Directory of Open Access Journals (Sweden)

    Xianjuan Pang

    2014-01-01

    Full Text Available Nanocomposite Ti-Al-C films were deposited by filtered cathodic vacuum arc (FCVA at different CH4 flows. The deposited films were characterized in terms of elemental and phase compositions, chemical bonds, and texture as a function of CH4 flow rate by XRD, XPS, HRTEM, Raman spectroscopy, and IR spectroscopy. The results show that the TiC grain size decreases from 4.2 to 2.9 nm as the CH4 flow rate increases from 30 to 80 sccm. The analysis of XPS, HRTEM, and Raman spectroscopy shows that the microstructure of deposited films turns from a TiC dominant TiC-C film to a carbon network dominant TiAl-doped a-C film structure as the CH4 flow increases from 30 sccm to 80 sccm. IR spectroscopy shows that most of the hydrogen atoms in the deposited films are bonded to the sp3-hybridized C atoms. All the composition and microstructure change can be explained by considering the plasma conditions and the effect of CH4 flow.

  20. Energetic deposition of carbon in a cathodic vacuum arc with a biased mesh

    Science.gov (United States)

    Moafi, A.; Lau, D. W. M.; Sadek, A. Z.; Partridge, J. G.; McKenzie, D. R.; McCulloch, D. G.

    2011-04-01

    Carbon films were deposited in a filtered cathodic vacuum arc with a bias potential applied to a conducting mesh mounted in the plasma stream between the source and the substrate. We determined the stress and microstructural properties of the resulting carbon films and compared the results with those obtained using direct substrate bias with no mesh. Since the relationship between deposition energy and the stress, sp2 fraction and density of carbon are well known, measuring these film properties enabled us to investigate the effect of the mesh on the energy and composition of the depositing flux. When a mesh was used, the film stress showed a monotonic decrease for negative mesh bias voltages greater than 400V, even though the floating potential of the substrate did not vary. We explain this result by the neutralization of some ions when they are near to or passing through the negatively biased mesh. The microstructure of the films showed a change from amorphous to glassy carbonlike with increasing bias. Potential applications for this method include the deposition of carbon films with controlled stress on low conductivity substrates to form rectifying or ohmic contacts.

  1. Thermal conductivity of titanium aluminum silicon nitride coatings deposited by lateral rotating cathode arc

    Energy Technology Data Exchange (ETDEWEB)

    Samani, M.K., E-mail: majid1@e.ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); CINTRA-CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553 (Singapore); Ding, X.Z. [Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Amini, S. [School of Materials Science and Engineering. Nanyang Technological University, 50 Nanyang Avenue, Singapore (Singapore); Khosravian, N.; Cheong, J.Y. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Chen, G. [BC Photonics Technological Company, 5255 Woodwards Rd., Richmond, BC V7E 1G9 (Canada); Tay, B.K. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); CINTRA-CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553 (Singapore)

    2013-06-30

    A series of physical vapour deposition titanium aluminum silicon nitride nanocomposite coating with a different (Al + Si)/Ti atomic ratio, with a thickness of around 2.5 μm were deposited on stainless steel substrate by a lateral rotating cathode arc process in a flowing nitrogen atmosphere. The composition and microstructure of the as-deposited coatings were analyzed by energy dispersive X-ray spectroscopy, and X-ray diffraction, and cross-sectional scanning electron microscopy observation. The titanium nitride (TiN) coating shows a clear columnar structure with a predominant (111) preferential orientation. With the incorporation of Al and Si, the crystallite size in the coatings decreased gradually, and the columnar structure and (111) preferred orientation disappeared. Thermal conductivity of the as-deposited coating samples at room temperature was measured by using pulsed photothermal reflectance technique. Thermal conductivity of the pure TiN coating is about 11.9 W/mK. With increasing the (Al + Si)/Ti atomic ratio, the coatings' thermal conductivity decreased monotonously. This reduction of thermal conductivity could be ascribed to the variation of coatings' microstructure, including the decrease of grain size and the resultant increase of grain boundaries, the disruption of columnar structure, and the reduced preferential orientation. - Highlights: • A series of titanium aluminum silicon nitride with different (Al + Si)/Ti atomic ratio were deposited on Fe304. • The composition and microstructure of the as-deposited coatings were analyzed. • Thermal conductivity of the samples was measured by pulsed photothermal reflectance. • With increasing the (Al + Si)/Ti atomic ratio, thermal conductivity decreased. • Reduction of thermal conductivity is ascribed to the variation of its microstructure.

  2. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na

    2013-08-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy. Results of the plasmon excitation energy shift and through-thickness elemental concentration show a multilayered a-C film structure comprising an interface layer consisting of C, Si, and, possibly, SiC, a buffer layer with continuously increasing sp 3 fraction, a relatively thicker layer (bulk film) of constant sp 3 content, and an ultrathin surface layer rich in sp 2 hybridization. A detailed study of the C K-edge spectrum indicates that the buffer layer between the interface layer and the bulk film is due to the partial backscattering of C+ ions interacting with the heavy atoms of the silicon substrate. The results of this study provide insight into the minimum thickness of a-C films deposited by FCVA under optimum substrate bias conditions. Copyright © 2013 Materials Research Society.

  3. New ion-assisted filtered cathodic arc deposition (IFCAD) technology for producing advanced thin films on temperature-sensitive substrates

    Science.gov (United States)

    Fulton, Michael L.

    1999-10-01

    An innovative Ion-Assisted Filtered Cathodic Arc Deposition (IFCAD) system has been developed for low temperature production of thin-film coatings. The IFCAD system employs electro-magnetic and mechanical filtering techniques to remove unwanted macroparticles and neutral atoms from the plasma stream. Therefore, only ions within a defined energy range arrive at the substrate surface, depositing thin-films with excellent mechanical and optical properties. Ion- Assisted-Deposition is coupled with Filtered Cathodic Arc technology to enhance and modify the arc deposited thin- films. Using an advanced computer controlled plasma beam scanning system, high quality, large area, uniform IFCAD multi-layer film structures are attained. Amorphous Diamond- Like-Carbon films (up to 85% sp3 bonded carbon; and micro- hardness greater than 50 GPa) have been deposited in multi- layer thin-film combinations with other IFCAD source materials (such as: Al2O3) for optical and tribological applications. Rutile TiO2 (refractive index of 2.8 at 500 nm) has been deposited with this technology for advanced optical filter applications. The new IFCAD technology has been included in development programs, such as: plastic and glass lens coatings for optical systems; wear resistant coatings on various metal substrates, ultra smooth, durable, surface hydrophobic coatings for aircraft windows; EUV coatings for space instrumentation; transparent conductive coatings; and UV protective coatings for solar cell concentrator plastic Fresnel lens elements for space power.

  4. Microstructure and mechanical properties of nanocomposite coatings deposited by cathodic arc evaporation

    Directory of Open Access Journals (Sweden)

    K. Lukaszkowicz

    2010-09-01

    Full Text Available Purpose: The main aim of the this research was the investigation of the structure and the mechanical properties of the nanocomposite TiAlSiN, CrAlSiN, AlTiCrN coatings deposited by cathodic arc evaporation method onto hot work tool steel substrate.Design/methodology/approach: The surfaces’ topography and the structure of the PVD coatings were observed on the scanning electron microscopy. Diffraction and thin film structure were tested with the use of the transmission electron microscopy. The microhardness tests were made on the dynamic ultra-microhardness tester. Tests of the coatings’ adhesion to the substrate material were made using the scratch test.Findings: It was found that the structure of the PVD coatings consisted of fine crystallites, while their average size fitted within the range of 11-25 nm, depending on the coating type. The coatings demonstrated columnar structure and dense cross-section morphology as well as good adhesion to the substrate. The critical load LC2 lies within the range of 46-54 N, depending on the coating and substrate type. The coatings demonstrate a high hardness (~40 GPa.Practical implications: In order to evaluate with more detail the possibility of applying these surface layers in tools, further investigations should be concentrated on the determination of the thermal fatigue resistance of the coatings. The very good mechanical properties of the nanocomposite coatings make them suitable in industrial applications.Originality/value: The investigation results will provide useful information to applying the nanocomposite coatings for the improvement of mechanical properties of the hot work tool steels.

  5. Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, Emma, E-mail: emma.harkonen@helsinki.fi [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Tervakangas, Sanna; Kolehmainen, Jukka [DIARC-Technology Inc., Espoo (Finland); Díaz, Belén; Światowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe [Laboratoire de Physico-Chimie des Surfaces, CNRS (UMR 7075) – Chimie ParisTech (ENSCP), F-75005 Paris (France); Fenker, Martin [FEM Research Institute, Precious Metals and Metals Chemistry, D-73525 Schwäbisch Gmünd (Germany); Tóth, Lajos; Radnóczi, György [Research Centre for Natural Sciences HAS, (MTA TKK), Budapest (Hungary); Ritala, Mikko [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland)

    2014-10-15

    Sublayers grown with filtered cathodic arc deposition (FCAD) were added under atomic layer deposited (ALD) oxide coatings for interface control and improved corrosion protection of low alloy steel. The FCAD sublayer was either Ta:O or Cr:O–Ta:O nanolaminate, and the ALD layer was Al{sub 2}O{sub 3}–Ta{sub 2}O{sub 5} nanolaminate, Al{sub x}Ta{sub y}O{sub z} mixture or graded mixture. The total thicknesses of the FCAD/ALD duplex coatings were between 65 and 120 nm. Thorough analysis of the coatings was conducted to gain insight into the influence of the FCAD sublayer on the overall coating performance. Similar characteristics as with single FCAD and ALD coatings on steel were found in the morphology and composition of the duplex coatings. However, the FCAD process allowed better control of the interface with the steel by reducing the native oxide and preventing its regrowth during the initial stages of the ALD process. Residual hydrocarbon impurities were buried in the interface between the FCAD layer and steel. This enabled growth of ALD layers with improved electrochemical sealing properties, inhibiting the development of localized corrosion by pitting during immersion in acidic NaCl and enhancing durability in neutral salt spray testing. - Highlights: • Corrosion protection properties of ALD coatings were improved by FCAD sublayers. • The FCAD sublayer enabled control of the coating-substrate interface. • The duplex coatings offered improved sealing properties and durability in NSS. • The protective properties were maintained during immersion in a corrosive solution. • The improvements were due to a more ideal ALD growth on the homogeneous FCAD oxide.

  6. Effects of incidence angle on the structure and properties of cathodic vacuum arc deposition MgO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, D.Y., E-mail: zhudy@gdut.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Experiment Teaching Department, Guangdong University of Technology, Guangzhou 510006 (China); Liu, Y. [College of Physics Science and Technology, Shenzhen University, Shenzhen 518060 (China); Zheng, C.X.; Wang, M.D.; Chen, D.H. [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); He, Z.H., E-mail: stshzh@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2012-06-15

    MgO thin films, as the protective layers for plasma display panels (PDP), were prepared by using cathodic vacuum arc deposition technique. The influences of deposition angle between -60 Degree-Sign and 60 Degree-Sign on film structure and properties were investigated. X-ray diffraction (XRD), ellipsometer, thermal field emission environment scanning electron microscopy (SEM) and UV-Visible spectrophotometry were used to study the properties of MgO thin films like crystallization, surface structures, thicknesses and refraction indices. Our results show that the thickness of MgO thin film decreases with the increase of incidence angle. This is confirmed by the transmittance spectra as well. The film deposited at 0 Degree-Sign shows sharper diffraction peaks and smaller FWHMs (full width at half maximum) of both MgO (200) and (220), which means better crystallization quality of the film. The higher packing density is achieved on the 0 Degree-Sign deposited film as well. - Highlights: Black-Right-Pointing-Pointer The thickness of MgO thin film decreases with the increase of incidence angle. Black-Right-Pointing-Pointer Low-angle deposition can increase film deposition rate and improve its crystallinity. Black-Right-Pointing-Pointer Multi-arc setting or rotating substrate is necessary for uniform deposition.

  7. Cathodic micro-arc electro-deposition of ZrO2 coatings in an aqueous solution containing colloidal particles

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By a novel technique-cathodic micro-arc electro-deposition (CMED), ZrO2 coatings were deposited on an FeCrAl alloy. Experimental results show that the necessary conditions for obtaining ZrO2 coatings are to apply a pulse peak voltage over a critical value and add moderate amounts of ZrO2 colloidal particles and Zr(NO3)4 in the aqueous solution. The as-deposited coatings are porous because hydrogen, water, and other vapors are generated and released from the coatings to the solution during the spark reaction. The coatings contain monoclinic and tetragonal crystalline ZrO2with certain degree of amorphous structure. The processing parameters and mechanism of CMED were discussed.

  8. Deposition of TiN Films by Novel Filter Cathodic Arc Technique

    Institute of Scientific and Technical Information of China (English)

    NIU Er-Wu; FAN Song-Hua; LI Li; L(U) Guo-Hua; FENG Wen-Ran; ZHANG Gu-Ling; YANG Si-Ze

    2006-01-01

    A straight magnetic filtering arc source is used to deposit thin films of titanium nitride.The properties of thefilms depend strongly on the deposition process.TiN films can be deposited directly onto heated substrates in anitrogen atmosphere or onto unbiased substrates by condensing the Ti+ ion beam in about 300 eV N2+ nitrogen ionbombardment.In the latter case.the film stoichiometry is varied from an N:Ti ratio of 0.6-1.1 by controlling thearrival rates of Ti and nitrogen ions.Meanwhile,simple models are used to describe the evolution of compressivestress as function of the arrival ratio and the composition of the ion-assisted TiN films.

  9. The effect of substrate bias on titanium carbide/amorphous carbon nanocomposite films deposited by filtered cathodic vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: zhangxu@bnu.edu.cn [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University (China); Liang, Hong [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University (China); Wu, Zhenglong [Analytical and Testing Center, Beijing Normal University (China); Wu, Xiangying; Zhang, Huixing [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University (China)

    2013-07-15

    The titanium carbide/amorphous carbon nanocomposite films have been deposited on silicon substrate by filtered cathodic vacuum arc (FCVA) technology, the effects of substrate bias on composition, structures and mechanical properties of the films are studied by scanning electron spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy and nano-indentation. The results show that the Ti content, deposition rate and hardness at first increase and then decrease with increasing the substrate bias. Maximum hardness of the titanium carbide/amorphous carbon nanocomposite film is 51 Gpa prepared at −400 V. The hardness enhancement may be attributed to the compressive stress and the fraction of crystalline TiC phase due to ion bombardment.

  10. Effects of filtered cathodic vacuum arc deposition (FCVAD) conditions on photovoltaic TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Aramwit, C. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Intarasiri, S. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Bootkul, D. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Department of General Science, Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Supsermpol, B.; Seanphinit, N. [Department of General Science, Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Western Digital Thailand Co. Ltd., Ayutthaya 13160 (Thailand); Ruangkul, W. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-08-15

    Highlights: • Titanium dioxide films were synthesized using the FCVAD technique. • Various FCVAD conditions were tested. • The TiO{sub 2} films were characterized. • The FCVAD condition effects on the film characteristics were studied. • The O{sub 2} pressure had the most important effect on the film quality. - Abstract: Titanium dioxide (TiO{sub 2}) films for photovoltaic applications were synthesized using filtered cathodic vacuum arc deposition (FCVAD) technique. Various deposition conditions were tested for an optimal film formation. The conditions included the oxygen (O{sub 2}) pressure which was varied from a base pressure 10{sup −5} to 10{sup −4}, 10{sup −3}, 10{sup −2} and 10{sup −1} Torr, sample holder bias varied using 0 or −250 V, deposition time varied from 10, 20 to 30 min, and deposition distance varied from 1 to 3 cm. The deposited films were also annealed and compared with unannealed ones. The films under various conditions were characterized using optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS) and Raman spectroscopy techniques. The film transparency increased and thickness decreased to a nanoscale with increasing of the O{sub 2} pressure. The transparent deposited films contained stoichiometric titanium and oxygen under the medium O{sub 2} pressure. The as-deposited films were TiO{sub 2} containing some rutile but no anatase which needed annealing to form.

  11. X-ray reflectivity analysis of titanium dioxide thin films grown by cathodic arc deposition.

    Science.gov (United States)

    Kleiman, A; Lamas, D G; Craievich, A F; Márquez, A

    2014-05-01

    TiO2 thin films deposited by a vacuum arc on a glass substrate were characterized by X-ray reflectivity (XRR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Several thin films with different amounts of deposited TiO2 mass and different deposition and annealing temperatures were studied. A qualitative analysis of the XRD patterns indicated the presence of the anatase and/or rutile crystalline phases in most of the studied samples. From the analysis of the experimental XRR curves--which exhibited a wide angular range of oscillatory behavior--the thickness, mass density and interface roughness were determined. All XRR patterns were well fitted by modeled curves that assume the presence of a single and homogeneous TiO2 layer over which a very thin H2O layer is adsorbed. The thickest H2O adsorption layers were developed in films with the highest anatase content. Our overall results of the XRR analyses are consistent with those derived from the imaging techniques (SEM and AFM).

  12. Friction properties of amorphous carbon ultrathin films deposited by filtered cathodic vacuum arc and radio-frequency sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Matlak, J.; Komvopoulos, K., E-mail: kyriakos@me.berkeley.edu

    2015-03-31

    The friction properties of ultrathin films of amorphous carbon (a-C) deposited on Si(100) substrates by filtered cathodic vacuum arc and radio-frequency sputtering were investigated by surface force microscopy. Deposition parameters yielding a-C films with high sp{sup 3} content were used to deposit films of thickness between 5 and 35 nm. The coefficient of friction of both types of a-C films was measured with a 1-μm-radius conical diamond tip and normal loads in the range of 20–640 μN. The results show a strong dependence of the friction properties on the surface roughness, thickness, and structure of the a-C films, which are influenced by the intricacies of the deposition method. The dependence of the coefficient of friction on normal load and the dominance of adhesion and plowing friction mechanisms are interpreted in terms of the through-thickness variation of carbon atom hybridization of the a-C films. - Highlights: • Comparison of nanoscale friction properties of ultrathin amorphous carbon films. • Friction dependence on film roughness, thickness, and structure (hybridization). • Effect of through-thickness changes in carbon atom hybridization on film friction. • Explanation of film friction trends in terms of competing friction mechanisms.

  13. Effect of high substrate bias and hydrogen and nitrogen incorporation on filtered cathodic vacuum arc deposited tetrahedral amorphous carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S. [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India)], E-mail: ospanwar@mail.nplindia.ernet.in; Khan, Mohd. Alim [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Kumar, Mahesh; Shivaprasad, S.M. [Surface Physics and Nanostructures Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Satyanarayana, B.S. [MIT Innovation Centre and Electronics and Communication Department, Manipal Institute of Technology, Manipal-579104 (India); Dixit, P.N. [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Bhattacharyya, R. [Emeritus Scientist, National Physical Laboratory, New Delhi-110012 (India); Khan, M.Y. [Department of Physics, Jamia Millia Islamia, Central University, New Delhi-110025 (India)

    2008-02-29

    The application of a sufficiently high negative substrate bias, during the growth of tetrahedral amorphous carbon (ta-C), is usually associated with low sp{sup 3} bonding configuration and stressed films. However, in an effort to understand and utilize the higher pseudo thermo dynamical conditions during the film growth, at high negative substrate bias (- 300 V), reported here is a study on ta-C films grown under different hydrogen and nitrogen concentration. As grown ta-C films were studied under different negative substrate bias conditions. The variation of the sp{sup 3} content and sp{sup 3}/sp{sup 2} ratio in the ta-C films exhibits a trend similar to those reported in literature, with a subtle variation in this report being the substrate bias voltage, which was observed to be around - 200 V, for obtaining the highest sp{sup 3} (80%) bonding and sp{sup 3}/sp{sup 2} (3.95) ratio. The hydrogen and nitrogen incorporated ta-C films studied, at a bias of - 300 V, show an increase in sp{sup 3} (87-91%) bonding and sp{sup 3}/sp{sup 2} (7-10) ratio in the range of studies reported. The inference is drawn on the basis of the set of data obtained from measurements carried out using X-ray photoelectron spectroscopy, X-ray induced Auger electron spectroscopy and Raman spectroscopy of as grown and hydrogen and nitrogen incorporated ta-C films deposited using an S bend filtered cathodic vacuum arc system. The study indicates the possibility of further tailoring ta-C film properties and also extending capabilities of the cathodic arc system for developing carbon based films for electronics and tribological applications.

  14. Influence of deposition temperature and bias voltage on the crystalline phase of Er{sub 2}O{sub 3} thin films deposited by filtered cathodic arc

    Energy Technology Data Exchange (ETDEWEB)

    Adelhelm, Christoph, E-mail: christoph.adelhelm@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, Materials Research, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Pickert, Thomas [Max-Planck-Institut fuer Plasmaphysik, Materials Research, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Koch, Freimut, E-mail: freimut.koch@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, Materials Research, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Balden, Martin; Jahn, Stephan [Max-Planck-Institut fuer Plasmaphysik, Materials Research, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany); Rinke, Monika [Forschungszentrum Karlsruhe, Institute for Materials Research I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Maier, Hans [Max-Planck-Institut fuer Plasmaphysik, Materials Research, EURATOM Association, Boltzmannstrasse 2, 85748 Garching (Germany)

    2011-10-01

    Er{sub 2}O{sub 3} thin films on Eurofer steel substrates were produced by a filtered cathodic arc device, varying the substrate temperature (RT - 700 deg. C) and sample bias (0 to -450 V). The crystallographic phase was analyzed by X-ray diffraction and Raman spectroscopy. Deposition at {>=}600 deg. C without bias lead to solely formation of the cubic Er{sub 2}O{sub 3} phase. Thin films of the uncommon, monoclinic B-phase were prepared with a negative bias voltage of {>=}100 V at RT, and at temperatures {<=}500 deg. C for -250 V bias. The B-phase films exhibit a strongly textured film structure. Residual stress measurements show high compressive stress for B-phase films deposited at RT.

  15. Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc

    Energy Technology Data Exchange (ETDEWEB)

    Samani, M.K., E-mail: majid1@e.ntu.edu.sg [Novitas, Nanoelectronics Centre of Excellence, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Ding, X.Z. [Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Khosravian, N. [Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Amin-Ahmadi, B. [Electron Microscopy for materials Science (EMAT), Department of Physics, University of Antwerpen, Groenenborgerlan 171, B-2020 Antwerpen (Belgium); Yi, Yang [Data Storage Institute, A*STAR (Agency for Science, Technology and Research), 117608 (Singapore); Chen, G. [BC Photonics Technological Company, 5255 Woodwards Rd., Richmond, BC V7E 1G9 (Canada); Neyts, E.C.; Bogaerts, A. [Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Tay, B.K. [Novitas, Nanoelectronics Centre of Excellence, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-03-02

    A series of [TiN/TiAlN]{sub n} multilayer coatings with different bilayer numbers n = 5, 10, 25, 50, and 100 were deposited on stainless steel substrate AISI 304 by a lateral rotating cathode arc technique in a flowing nitrogen atmosphere. The composition and microstructure of the coatings have been analyzed by using energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and conventional and high-resolution transmission electron microscopy (HRTEM). XRD analysis shows that the preferential orientation growth along the (111) direction is reduced in the multilayer coatings. TEM analysis reveals that the grain size of the coatings decreases with increasing bilayer number. HRTEM imaging of the multilayer coatings shows a high density misfit dislocation between the TiN and TiAlN layers. The cross-plane thermal conductivity of the coatings was measured by a pulsed photothermal reflectance technique. With increasing bilayer number, the multilayer coatings' thermal conductivity decreases gradually. This reduction of thermal conductivity can be ascribed to increased phonon scattering due to the disruption of columnar structure, reduced preferential orientation, decreased grain size of the coatings and present misfit dislocations at the interfaces. - Highlights: • TiN/TiAlN multilayer coatings with different bilayer number were deposited on SS. • The composition and microstructure of the as-deposited coatings were analyzed. • Thermal conductivity of the coatings was measured by pulsed photothermal reflectance. • Thermal conductivity depends on the coatings' microstructure and number of layers. • With increasing the bilayer number, thermal conductivity decreased.

  16. Density changes with substrate negative bias for ta-C films deposited by filter cathode vacuum arc

    Institute of Scientific and Technical Information of China (English)

    TAN Man-lin; ZHU Jia-qi; HAN Jie-cai; MENG Song-he

    2004-01-01

    Specular X-ray reflectivity (XRR) measurements were used to study the density and cross-section information of tetrahedral amorphous carbon (ta-C) films deposited by filter cathode vacuum arc(FCVA) system at different substrate bias. According to the correlation between density and substrate negative bias, it is found that the value of density reaches a maximum at -80 V bias. As the substrate bias increases or decreases, the density tends to lower gradually. Based on the density of diamond and graphite, sp3 bonding ratio of ta-C films was obtained from their corresponding density according to a simple equation between the two. And a similar parabolic variation was observed for ta-C films with the sp3 content changes with substrate negative bias. The mechanical properties such as hardness and elastic modulus were also measured and compared with the corresponding density for ta-C films. From the distribution of data points, a linear proportional correlation between them was found, which shows that the density is a critical parameter to characterize the structure variation for ta-C films.

  17. Annealing effect of thermal spike in MgO thin film prepared by cathodic vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Daoyun, E-mail: zhudy@gdut.edu.cn [Experiment Teaching Department, Guangdong University of Technology, Guangzhou 510006 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Zhao, Shoubai [School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510400 (China); Zheng, Changxi; Chen, Dihu [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); He, Zhenhui, E-mail: stshzh@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2013-12-16

    MgO films were prepared by using pulsed cathodic vacuum arc deposition technique. The substrate bias voltage was in the range of −150 to −750 V. Film structure was investigated by X-ray diffraction (XRD). The annealing effect of thermal spike produced by the impacting of energetic ions was analyzed. The calculated results showed that the lifetime of a thermal spike generated by an energetic ion with the energy of 150 eV was less than one picosecond and it was sufficient to allow Mg{sup 2+} or O{sup 2-} to move one bond length to satisfy the intrinsic stress relief in the affected volume. The MgO(200) lattice spacings of the films deposited at different bias voltages were all larger than the ideal value of 2.1056 Å. As the bias amplitude increased the lattice spacing decreased, which indicated that the compressive stress in the film was partially relieved with increasing impacting ion energy. The stress relief also could be reflected from the film orientation with bias voltage. The biaxial elastic modulus for MgO(100), MgO(110) and MgO(111) planes were calculated and they were M{sub (100)} = 199 GPa, M{sub (110)} = 335 GPa and M{sub (111)} = 340 GPa, respectively. The M values indicated that the preferred orientation will be MgO(200) due to the minimum energy configuration when the lattice strain was large. It was confirmed by the XRD results in our experiments. - Highlights: • MgO thin films with preferred orientation were obtained by CVAD technique. • Annealing effect of a thermal spike in MgO film was discussed. • Lattice spacing of MgO film decreased with the increase of bias voltage. • Film preferred orientation changed from (200) to (220) as the bias voltage increased.

  18. Properties of low-temperature deposited ZnO thin films prepared by cathodic vacuum arc technology on different flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Cheng-Tang [Department of Mechanical and Electron-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan (China); Yang, Ru-Yuan, E-mail: ryyang@mail.npust.edu.tw [Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung County 912, Taiwan (China); Weng, Min-Hang [Medical Devices and Opto-Electronics Equipment Department, Metal Industries Research and Development Center, Kaohsiung City 821, Taiwan (China); Huang, Chien-Wei [Department of Mechanical and Electron-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan (China)

    2013-07-31

    Un-doped zinc oxide (ZnO) films were deposited on three different substrates (polyethylene terephthalate (PET), polyvinyl butyral (PVB) and polyimide (PI)) at a low temperature (< 75 °C) by cathode vacuum arc deposition. The microstructure, optical and electrical properties of the deposited films were investigated and discussed. All the deposited films reveal a preferred orientation with the c-axis perpendicular to the substrate, and an average transmittance of over 85% in the visible region. The calculated optical band gaps are around 2.6, 3.14 and 3.18 eV, respectively, for the ZnO films deposited on the PI, PVB and PET substrates. The lowest resistivity and the highest Hall mobility are 5.31 × 10{sup −3} Ω-cm and 15.16 cm{sup 2}/V-s for the ZnO film deposited on the PET substrate. - Highlights: • Polyethylene terephthalate, polyvinyl butyral and polyimide were used as substrates. • ZnO films were prepared by cathodic arc plasma deposition. • ZnO films have different properties due to different substrates. • The microstructure control of ZnO film on polymer substrate is important.

  19. Effect of substrate bias in nitrogen incorporated amorphous carbon films with embedded nanoparticles deposited by filtered cathodic jet carbon arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Amorphous and Microcrystalline Silicon Solar Cell Group, Physics of Energy Harvesting Division, National Physical Laboratory (C.S.I.R.), Dr. K.S. Krishnan Road, New Delhi-110012 (India); Kumar, Sushil; Ishpal,; Srivastava, A.K.; Chouksey, Abhilasha; Tripathi, R.K.; Basu, A. [Amorphous and Microcrystalline Silicon Solar Cell Group, Physics of Energy Harvesting Division, National Physical Laboratory (C.S.I.R.), Dr. K.S. Krishnan Road, New Delhi-110012 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer a-C: N films having nanoparticles were deposited by filtered cathodic jet carbon arc (FCJCA) technique. Black-Right-Pointing-Pointer The effect of negative substrate bias on the properties of a-C: N films embedded with nanoparticles have been studied. Black-Right-Pointing-Pointer The properties of a-C: N films deposited by FCJCA technique have been compared with ta-C: N films deposited by FCVA process. - Abstract: The properties of nitrogen incorporated amorphous carbon (a-C: N) films with embedded nanoparticles, deposited using a filtered cathodic jet carbon arc technique, are reported. X-ray diffraction, high resolution transmission electron microscope and Raman spectroscopy measurements reveal an amorphous structure, but on closer examination the presence of clusters of nanocarbon single crystals with d-spacing close to diamond cubic-phase have also been identified. The effect of substrate bias on the microstructure, conductivity, activation energy, optical band gap, optical constants, residual stress, hardness, elastic modulus, plastic index parameter, percentage elastic recovery and density of states of a-C: N films have been studied and the properties obtained are found to depend on the substrate bias.

  20. Nitrogen doping for adhesion improvement of DLC film deposited on Si substrate by Filtered Cathodic Vacuum Arc (FCVA) technique

    Energy Technology Data Exchange (ETDEWEB)

    Bootkul, D., E-mail: mo_duangkhae@hotmail.com [Department of General Science, Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Supsermpol, B.; Saenphinit, N. [Western Digital Company, Ayutthaya 13160 (Thailand); Aramwit, C. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50202 (Thailand); Intarasiri, S., E-mail: saweat@gmail.com [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50202 (Thailand)

    2014-08-15

    Diamond-like carbon (DLC) films have been used in many applications due to their attractive combination of properties including chemical inertness, corrosion protection, biocompatibility, high hardness, and low wear rates. However, they still have some limitations such as high internal stresses and low toughness which lead to poor adhesion of films. Synthesis of nitrogen-doped DLC (N-DLC) offers the possibility of overcoming these limitations. In this study, DLC films, namely tetrahedral amorphous carbon (ta-C) and nitrogen doped tetrahedral amorphous carbon (ta-C:N) were deposited on single crystalline Si wafer substrates using the Filtered Cathodic Vacuum Arc (FCVA) technique. Film characterizations were carried out by Raman spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), triboindenter tester and nano-scratch tester. Measurement results showed that intentionally doping with nitrogen reduced the carbon sp{sup 3} content and increased the surface roughness in comparison with that of pure ta-C films. The hardness measurement confirmed the Raman and AFM analyses that adding nitrogen in ta-C films decreased the hardness, especially with high nitrogen content. However, the nano-scratch test revealed the increasing of the critical load with nitrogen. This work, then, extended its scope to investigate the properties of double-layer ta-C films which were composed of ta-C:N interlayer of various thickness around 10–30 nm and ta-C top-layer with thickness of around 80 nm. Microstructure characterization demonstrated that a ta-C:N interlayer gradually decreased the sp{sup 3} fraction in the films and increased film roughness whenever the ta-C:N interlayer thickness increased. In this structure, the tribological property in terms of adhesion to the Si substrate was significantly improved by about 20–90%, but the mechanical property in terms of hardness was gradually degraded by about 2–10%, compared to pure ta-C film, when the ta

  1. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.

    2012-07-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical and experimental results. The thickness of a-C films deposited at different incidence angles was investigated in the light of Monte Carlo simulations, and the calculated depth profiles were compared with those obtained from high-resolution transmission electron microscopy (TEM). The topography and structure of the a-C films were studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The film thickness decreased with the increase of the incidence angle, while the surface roughness increased and the content of tetrahedral carbon hybridization (sp 3) decreased significantly with the increase of the incidence angle above 45° , measured from the surface normal. TEM, AFM, and XPS results indicate that the smoothest and thinnest a-C films with the highest content of sp 3 carbon bonding were produced for an incidence angle of 45°. The findings of this study have direct implications in ultrahigh-density magnetic recording, where ultrathin and smooth a-C films with high sp 3 contents are of critical importance. © 2012 IEEE.

  2. Low-temperature deposited ZnO thin films on the flexible substrate by cathodic vacuum arc technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ru-Yuan, E-mail: ryyang@mail.npust.edu.tw [Department of Materials Engineering, National Ping-Tung University of Science and Technology, Taiwan (China); Weng, Min-Hang [Medical Devices and Opto-electronics Equipment Department, Metal Industries Research and Development Center, Taiwan (China); Pan, Cheng-Tang [Department of Mechanical and Electron-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung County 804, Taiwan (China); Hsiung, Chin-Min; Huang, Chun-Chih [Department of Mechanical Engineering, National Ping-Tung University of Science and Technology, Taiwan (China)

    2011-06-01

    In this paper, un-doped zinc oxide (ZnO) films with various thicknesses (150, 250, 350, 450 and 550 nm) were successfully prepared onto PET substrates using cathodic vacuum arc technique at low-temperature (<40 deg. C). Their microstructure, optical and electrical properties were investigated and discussed. The films showed (0 0 2) peaks, an average transmittance over 80% in the visible region. Calculated values of the band gap are around 3.29-3.33 eV when the film thickness increased, indicating a slight blue shift of optical transmission spectra. The lowest resistivity about 5.26 x 10{sup -3} {Omega} cm could be achieved for the un-doped ZnO film with thickness of 550 nm.

  3. Achieving high mobility ZnO : Al at very high growth rates by dc filtered cathodic arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsberg, R J; Lim, S H N; Wallig, J; Anders, A [Lawrence Berkeley National Laboratory, Plasma Applications Group, Berkeley, CA (United States); Zhu, Y K [Harbin Institute of Technology, Harbin (China); Milliron, D J, E-mail: aanders@lbl.gov [Lawrence Berkeley National Laboratory, Molecular Foundry, Berkeley, CA (United States)

    2011-06-15

    Achieving a high growth rate is paramount for making large-area transparent conducting oxide coatings at a low cost. Unfortunately, the quality of thin films grown by most techniques degrades as the growth rate increases. Filtered dc cathodic arc is a lesser known technique which produces a stream of highly ionized plasma, in stark contrast to the neutral atoms produced by standard sputter sources. Ions bring a large amount of potential energy to the growing surface which is in the form of heat, not momentum. By minimizing the distance from cathode to substrate, the high ion flux gives a very high effective growth temperature near the film surface without causing damage from bombardment. The high surface temperature is a direct consequence of the high growth rate and allows for high-quality crystal growth. Using this technique, 500-1300 nm thick and highly transparent ZnO : Al films were grown on glass at rates exceeding 250 nm min{sup -1} while maintaining resistivity below 5 x 10{sup -4} {Omega} cm with electron mobility as high as 60 cm{sup 2} V{sup -1} s{sup -1}. (fast track communication)

  4. Effect of O2/Ar Gas Flow Ratios on Properties of Cathodic Vacuum Arc Deposited ZnO Thin Films on Polyethylene Terephthalate Substrate

    Directory of Open Access Journals (Sweden)

    Chien-Wei Huang

    2016-01-01

    Full Text Available Cathodic vacuum arc deposition (CVAD can obtain a good quality thin film with a low growth temperature and a high deposition rate, thus matching the requirement of film deposition on flexible electronics. This paper reported the room-temperature deposition of zinc oxide (ZnO thin films deposited by CVAD on polyethylene terephthalate (PET substrate. Microstructure, optical, and electrical measurements of the deposited ZnO thin films were investigated with various O2/Ar gas flow ratios from 6 : 1 to 10 : 1. The films showed hexagonal wurtzite crystal structure. With increasing the O2/Ar gas flow ratios, the c-axis (002 oriented intensity decreased. The crystal sizes were around 16.03 nm to 23.42 nm. The average transmittance values in the visible range of all deposited ZnO films were higher than 83% and the calculated band gaps from the absorption data were found to be around 3.1 to 3.2 eV. The resistivity had a minimum value in the 3.65 × 10−3 Ω·cm under the O2/Ar gas flow ratio of 8 : 1. The luminescence mechanisms of the deposited film were also investigated to understand the defect types of room-temperature grown ZnO films.

  5. Structural, nanomechanical and variable range hopping conduction behavior of nanocrystalline carbon thin films deposited by the ambient environment assisted filtered cathodic jet carbon arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Rawal, Ishpal; Tripathi, R.K. [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Srivastava, A.K. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Kumar, Mahesh [Ultrafast Opto-Electronics and Tetrahertz Photonics Group, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India)

    2015-04-15

    Highlights: • Nanocrystalline carbon thin films are grown by filtered cathodic jet carbon arc process. • Effect of gaseous environment on the properties of carbon films has been studied. • The structural and nanomechanical properties of carbon thin films have been studied. • The VRH conduction behavior in nanocrystalline carbon thin films has been studied. - Abstract: This paper reports the deposition and characterization of nanocrystalline carbon thin films by filtered cathodic jet carbon arc technique assisted with three different gaseous environments of helium, nitrogen and hydrogen. All the films are nanocrystalline in nature as observed from the high resolution transmission electron microscopic (HRTEM) measurements, which suggests that the nanocrystallites of size ∼10–50 nm are embedded though out the amorphous matrix. X-ray photoelectron spectroscopic studies suggest that the film deposited under the nitrogen gaseous environment has the highest sp{sup 3}/sp{sup 2} ratio accompanied with the highest hardness of ∼18.34 GPa observed from the nanoindentation technique. The film deposited under the helium gaseous environment has the highest ratio of the area under the Raman D peak to G peak (A{sub D}/A{sub G}) and the highest conductivity (∼2.23 S/cm) at room temperature, whereas, the film deposited under the hydrogen environment has the lowest conductivity value (2.27 × 10{sup −7} S/cm). The temperature dependent dc conduction behavior of all the nanocrystalline carbon thin films has been analyzed in the light of Mott’s variable range hopping (VRH) conduction mechanism and observed that all the films obey three dimension VRH conduction mechanism for the charge transport.

  6. A pulsed cathodic arc spacecraft propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, P R C; Bilek, M M M; Tarrant, R N; McKenzie, D R [School of Physics, University of Sydney, NSW 2006 Australia (Australia)

    2009-11-15

    We investigate the use of a centre-triggered cathodic arc as a spacecraft propulsion system that uses an inert solid as a source of plasma. The cathodic vacuum arc produces almost fully ionized plasma with a high exhaust velocity (>10{sup 4} m s{sup -1}), giving a specific impulse competitive with other plasma or ion thrusters. A centre trigger design is employed that enables efficient use of cathode material and a high pulse-to-pulse repeatability. We compare three anode geometries, two pulse current profiles and two pulse durations for their effects on impulse generation, energy and cathode material usage efficiency. Impulse measurement is achieved through the use of a free-swinging pendulum target constructed from a polymer material. Measurements show that impulse is accurately controlled by varying cathode current. The cylindrical anode gave the highest energy efficiency. Cathode usage is optimized by choosing a sawtooth current profile. There is no requirement for an exhaust charge neutralization system.

  7. Influence of pulsed substrate bias on the structure and properties of Ti-Al-N films deposited by cathodic vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G.P., E-mail: princeterry@163.com [Institute of Physics, Chinese Academy of Science, Beijing 100080 (China); Gao, G.J. [Changchun University of Science and Technology, College of Science, Changchun 130000 (China); Wang, X.Q.; Lv, G.H.; Zhou, L.; Chen, H.; Pang, H.; Yang, S.Z. [Institute of Physics, Chinese Academy of Science, Beijing 100080 (China)

    2012-07-15

    Ti-Al-N films were deposited by cathodic vacuum arc (CVA) technique in N{sub 2} atmosphere with different pulsed substrate bias. The influence of pulsed substrate bias (0 to -800 V) on the deposition rate, surface morphology, crystal structure, and mechanical properties of the Ti-Al-N films were systematically investigated. Increasing pulsed bias voltage resulted in the decrease of deposition rate but the increase of surface roughness. It was found that there was a strong correlation between the pulsed bias and film structure. All the films studied in this paper were composed of TiN, AlN, and Ti-Al-N ternary phases. The grains changed from equiaxial to columnar and exhibited preferred orientation when the pulsed bias increased. With the increase of pulsed bias voltage, the atomic ratio of Ti to Al element increased gradually, while the N to (Ti + Al) ratio decreased. The composite films present an enhanced nanohardness compared with binary TiN and ZrN films. The film deposited with pulsed bias of -200 V possessed the maximum scratch critical load and nanohardness. The minimum friction coefficient with pulsed bias of -300 V was obtained.

  8. Seed layer stimulated growth of crystalline high Al containing (Al,Cr){sub 2}O{sub 3} coatings deposited by cathodic arc evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Pohler, M., E-mail: markus.pohler@stud.unileoben.ac.at [Christian Doppler Laboratory for Advanced Hard Coatings at the Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Straße 18, A-8700 Leoben (Austria); Franz, R. [Christian Doppler Laboratory for Advanced Hard Coatings at the Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Straße 18, A-8700 Leoben (Austria); Ramm, J. [OC Oerlikon Balzers AG, Iramali 18, 9469 Balzers (Liechtenstein); Polcik, P. [PLANSEE Composite Materials GmbH, Siebenbürgerstraße 23, 86983 Lechbruck am See (Germany); Mitterer, C. [Christian Doppler Laboratory for Advanced Hard Coatings at the Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Straße 18, A-8700 Leoben (Austria)

    2014-01-01

    Single layer and dual layer (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} coatings were synthesised by cathodic arc evaporation with different Al contents to study their growth characteristics. It was demonstrated that variations in the Al content, the energy of incident particles and the coating thickness control the crystallinity and the coating texture. Analysis by X-ray diffraction revealed a distinct (110) out of plane orientation after transition from a fine grained nucleation zone to a columnar growth mode. Furthermore, the impact of (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} seed layers with x = 0.25 and 0.5 on the growth of (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} top layers with x = 0.7 and 0.85 was evaluated in detail. According to X-ray diffraction and transmission electron microscopy, the development of the corundum-type crystal structure of the top layer was promoted by local epitaxy if the low Al containing seed layer exhibited a pronounced columnar structure. In this way, crystalline corundum-type coatings with an Al content up to x = 0.85 were obtained. - Highlights: • Industrial scale cathodic arc deposition of corundum type (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} coatings • Discussion of the growth characteristics for different Al/Cr ratios • Characterisation of growth regimes in dual layer coatings • Template stimulated growth of crystalline corundum-type (Al{sub 0.85}Cr{sub 0.15}){sub 2}O{sub 3} coatings • Influence of bias voltage and seed layer thickness on the template effect.

  9. Effect of modulation periods on the microstructure and mechanical properties of DLC/TiC multilayer films deposited by filtered cathodic vacuum arc method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhaoying [Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China); State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Pangang Group Research Institute Co., Ltd., Panzhihua 617000, Sichuan (China); Sun, H. [Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China); Leng, Y.X., E-mail: yxleng@263.net [Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China); Li, Xueyuan; Yang, Wenmao [Institute of Mechanical Manufacturing Technology, China Academy of Engineering Physics, Mianyang 621900, Sichuan (China); Huang, N. [Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan (China)

    2015-02-15

    Highlights: • DLC/TiC multilayer films with different modulation periods at same modulation ratio 1:1 were deposited by FCVA. • The residual stress of DLC/TiC multilayer films decreases with the modulation periods decrease. • The hardness of the multilayer DLC films decreases with modulation periods increasing. - Abstract: The high stress of diamond-like carbon (DLC) film limits its thickness and adhesion on substrate. Multilayer structure is one approach to overcome this disadvantage. In this paper, the DLC/TiC multilayer films with different modulation periods (80 nm, 106 nm or 160 nm) at same modulation ratio of 1:1 were deposited on Si(1 0 0) wafer and Ti-6Al-4V substrate by filtered cathodic vacuum arc (FCVA) technology. X-ray diffraction (XRD), transmission electron microscopy (TEM), nanoindention and wear test were employed to investigate the effect of modulation periods on the microstructure and mechanical properties of the multilayer films. The results showed that the residual stress of the DLC/TiC multilayer films could be effectively reduced and the residual stress decreased with the modulation periods decreasing. The hardness of the DLC/TiC multilayer films increased with modulation periods decreasing. The DLC/TiC multilayer film with modulation period of 106 nm had the best wear resistance due to the good combination of hardness, ductility and low compressive stress.

  10. Effect of pulsed bias on the properties of ZrN/TiZrN films deposited by a cathodic vacuum arc

    Institute of Scientific and Technical Information of China (English)

    Zhang Guo-Ping; Wang Xing-Quan; Lü Guo-Hua; Zhou Lan; Huang Jun; Chen Wei; Yang Si-Ze

    2013-01-01

    .ZrN/TiZrN multilayers are deposited by using the cathodic vacuum arc method with different substrate bias (from 0 to-800 V),using Ti and Zr plasma flows in residual N2 atmosphere,combined with ion bombardment of sample surfaces.The effect of pulsed bias on the structure and properties of films is investigated.Microstructure of the coating is analyzed by X-ray diffraction (XRD),and scanning electron microscopy (SEM).In addition,nanohardness,Young's modulus,and scratch tests are performed.The experimental results show that the films exhibit a nanoscale multilayer structure consisting of TiZrN and ZrN phases.Solid solutions are formed for component TiZrN films.The dominant preferred orientation of TiZrN films is (111) and (220).At a pulsed bias of-200 V,the nanohardness and the adhesion strength of the ZrN/TiZrN multilayer reach a maximum of 38 GPa,and 78 N,respectively.The ZrN/TiZrN multilayer demonstrates an enhanced nanohardness compared with binary TiN and ZrN films deposited under equivalent conditions.

  11. Cathodic Vacuum Arc Plasma of Thallium

    OpenAIRE

    Yushkov, Georgy Yu.; Anders, Andre

    2006-01-01

    Thallium arc plasma was investigated in a vacuum arc ion source. As expected from previous consideration of cathode materials in the Periodic Table of the Elements, thallium plasma shows lead-like behavior. Its mean ion charge state exceeds 2.0 immediately after arc triggering, reaches the predicted 1.60 and 1.45 after about 100 microsec and 150 microsec, respectively. The most likely ion velocity is initially 8000 m/s and decays to 6500 m/s and 6200 m/s after 100 microsec and 150 micros...

  12. Effect of Silane Flow Rate on Structure and Corrosion Resistance of Ti-Si-N Thin Films Deposited by a Hybrid Cathodic Arc and Chemical Vapour Process

    Institute of Scientific and Technical Information of China (English)

    YIN Long-Cheng; LUAN Sen; LV Guo-Hua; WANG Xing-Quan; HUANG Jun; JIN Hui; FENG Ke-Cheng; YANG Si-Ze

    2008-01-01

    Ti-Si-N thin films with different silicon contents are deposited by a cathodic arc technique in an Ar+N2+SiH4mixture atmosphere. With the increase of silane flow rate, the content of silicon in the Ti-Si-N films varies from2.0 at. % to 12.2 at.%. Meanwhile, the cross-sectional morphology of these films changes from an apparent columnar microstructure to a dense fine-grained structure. The x-ray diffractometer (XRD) and x-ray photoelectron spectroscopy (XPS) results show that the Ti-Si-N film consists of TiN crystallites and SiNx amorphous phase.The corrosion resistance is improved with the increase of silane flow rate. Growth defects in the films produced play a key role in the corrosion process, especially for the local corrosion. The porosity of the films decreases from 0.13% to 0.00032% by introducing silane at the flow rate of 14 sccm.

  13. Phase transitions of doped carbon in CrCN coatings with modified mechanical and tribological properties via filtered cathodic vacuum arc deposition

    Science.gov (United States)

    Guan, J. J.; Wang, H. Q.; Qin, L. Z.; Liao, B.; Liang, H.; Li, B.

    2017-04-01

    The CrCN coatings were fabricated onto Si (1 1 1) wafers and SUS304 stainless steel plates using filtered cathodic vacuum arc deposition (FCVAD) technique under different flow ratios of N2/C2H2 gas mixture. The morphology, crystalline structure and chemical composition of the coatings were characterized. It was found that the grain size reduce with increasing carbon content, which makes the CrCN coatings refined and smooth. The quasi-one-dimensional carbolite phase was also found in CrN host lattice with C2H2 content ranging from 5% to 20%, and it will be evolved into amorphous carbon and amorphous CNx phases as C2H2 content exceeds 20%. Moreover, we examined the mechanical and tribological properties of the CrCN coatings, and the experimental results confirmed that the friction coefficient of the coatings descend to the lowest value as 0.39 with 30% C2H2 content, due to the graphite (sp2 Csbnd C) phase embed in CrN host lattice; while the chromium carbon (Cr3C2) and diamond (sp3 Csbnd C) phases may give rise to the increase of the coating hardness with the highest value at 23.97 GPa under 20% C2H2 content.

  14. Effect of cathode model on arc attachment for short high-intensity arc on a refractory cathode

    Science.gov (United States)

    Javidi Shirvan, Alireza; Choquet, Isabelle; Nilsson, Håkan

    2016-12-01

    Various models coupling the refractory cathode, the cathode sheath and the arc at atmospheric pressure exist. They assume a homogeneous cathode with a uniform physical state, and differ by the cathode layer and the plasma arc model. However even the most advanced of these models still fail in predicting the extent of the arc attachment when applied to short high-intensity arcs such as gas tungsten arcs. Cathodes operating in these conditions present a non-uniform physical state. A model taking into account the first level of this non-homogeneity is proposed based on physical criteria. Calculations are done for 5 mm argon arcs with a thoriated tungsten cathode. The results obtained show that radiative heating and cooling of the cathode surface are of the same order. They also show that cathode inhomogeneity has a significant effect on the arc attachment, the arc temperature and pressure. When changing the arc current (100 A, 200 A) the proposed model allows predicting trends observed experimentally that cannot be captured by the homogeneous cathode model unless restricting a priori the size of the arc attachment. The cathode physics is thus an important element to include to obtain a comprehensive and predictive arc model.

  15. Characterization of Zr-Si-N films deposited by cathodic vacuum arc with different N{sub 2}/SiH4 flow rates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G.P., E-mail: princeterry@163.com [Institute of Physics, Chinese Academy of Science, Beijing 100080 (China); Niu, E.W.; Wang, X.Q.; Lv, G.H.; Zhou, L.; Pang, H.; Huang, J.; Chen, W.; Yang, S.Z. [Institute of Physics, Chinese Academy of Science, Beijing 100080 (China)

    2012-02-01

    Zr-Si-N films were deposited on silicon and steel substrates by cathodic vacuum arc with different N{sub 2}/SiH{sub 4} flow rates. The N{sub 2}/SiH{sub 4} flow rates were adjusted at the range from 0 to 12 sccm. The films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), hardness and wear tests. The structure and the mechanical properties of Zr-Si-N films were compared to those of ZrN films. The results of XRD and XPS showed that Zr-Si-N films consisted of ZrN crystallites and SiN{sub x} amorphous phase. With increasing N{sub 2}/SiH{sub 4} flow rates, the orientation of Zr-Si-N films became to a mixture of (1 1 1) and (2 0 0). The column width became smaller, and then appeared to vanish with the increase in N{sub 2}/SiH{sub 4} flow rates. The hardness and Young's modulus of Zr-Si-N films increased with the N{sub 2}/SiH{sub 4} flow rates, reached a maximum value of 36 GPa and 320 GPa at 9 sccm, and then decreased 32 GPa and 305 GPa at 12 sccm, respectively. A low and stable of friction coefficient was obtained for the Zr-Si-N films. Friction coefficient was about 0.1.

  16. Assistant Anode in a Cathodic Arc Plasma Source

    Institute of Scientific and Technical Information of China (English)

    张涛; Paul K. Chu; 张荟星; Ian G. Brown

    2001-01-01

    The performance and characteristics of a cathodic arc plasma source, consisting of a titanium cathode, an anode with and without a tungsten mesh, and a coil producing a focusing magnetic field between the anode and cathode,are investigated. The high transparency and large area of the mesh allow a high plasma flux to penetrate the anode from the cathodic arc. The mesh helps to decrease the arc resistance and the ignition voltage of the cathodic arc in the focusing magnetic field, and to increase the life of the source, which means that the source makes the cathodic arc easily and greatly stabilized during the operation when a focusing magnetic field exists in the source.

  17. Cathodic ARC surface cleaning prior to brazing

    Energy Technology Data Exchange (ETDEWEB)

    Dave, V. R. (Vivek R.); Hollis, K. J. (Kendall J.); Castro, R. G. (Richard G.); Smith, F. M. (Frank M.); Javernick, D. A. (Daniel A.)

    2002-01-01

    Surface cleanliness is one the critical process variables in vacuum furnace brazing operations. For a large number of metallic components, cleaning is usually accomplished either by water-based alkali cleaning, but may also involve acid etching or solvent cleaning / rinsing. Nickel plating may also be necessary to ensure proper wetting. All of these cleaning or plating technologies have associated waste disposal issues, and this article explores an alternative cleaning process that generates minimal waste. Cathodic arc, or reserve polarity, is well known for welding of materials with tenacious oxide layers such as aluminum alloys. In this work the reverse polarity effect is used to clean austenitic stainless steel substrates prior to brazing with Ag-28%Cu. This cleaning process is compared to acid pickling and is shown to produce similar wetting behavior as measured by dynamic contact angle experiments. Additionally, dynamic contact angle measurements with water drops are conducted to show that cathodic arc cleaning can remove organic contaminants as well. The process does have its limitations however, and alloys with high titanium and aluminum content such as nickel-based superalloys may still require plating to ensure adequate wetting.

  18. Study on nanocomposite Ti-Al-Si-Cu-N films with various Si contents deposited by cathodic vacuum arc ion plating

    Energy Technology Data Exchange (ETDEWEB)

    Shi, J. [State Key Laboratory of Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Strasse 9-11, Siegen 57076 (Germany); Muders, C.M.; Kumar, A. [Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Strasse 9-11, Siegen 57076 (Germany); Jiang, X., E-mail: xin.jiang@uni-siegen.de [Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Strasse 9-11, Siegen 57076 (Germany); Pei, Z.L.; Gong, J. [State Key Laboratory of Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Sun, C., E-mail: csun@imr.ac.cn [State Key Laboratory of Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer XRD peaks show a tendency of decreasing intensity with increasing Si content. Black-Right-Pointing-Pointer Ti-Al-Si-Cu-N films present different microstructure with increasing Si content. Black-Right-Pointing-Pointer Films with 6 at.% Si content obtain the highest hardness, elastic modulus and H{sup 3}/E{sup 2}. Black-Right-Pointing-Pointer The wear rate decreases with an increase in hardness. - Abstract: In this study, nanocomposite Ti-Al-Si-Cu-N films were deposited on high speed steel substrates by the vacuum cathode arc ion plating (AIP) technique. By virtue of X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM), the influence of silicon content on the film microstructure and characteristics was investigated systematically, including the chemical composition, crystalline structure as well as cross-section morphologies. With increasing the silicon content, a deterioration of the preferred orientation and a dense globular structure were detected. In the meanwhile, atomic force microscopy (AFM), nano-indentation, Rockwell indenter and reciprocating test were also utilized to analyze the hardness, elastic modulus, H{sup 3}/E{sup 2}, friction coefficient, adhesive strength and wear rate of the Ti-Al-Si-Cu-N films. The results showed that an optimal silicon content correlated with the best mechanical and tribological properties of the presented Ti-Al-Si-Cu-N films existed. With increasing the silicon content, the hardness, elastic modulus and the ratio H{sup 3}/E{sup 2} first were improved gradually, and then were impaired sharply again. When the silicon content reached to 6 at.%, the film possessed the highest hardness, elastic modulus and ratio H{sup 3}/E{sup 2} of approximately 24 GPa, 218 GPa and 0.31, respectively. Besides, films containing both 6 at.% and 10 at.% Si contents obtained a relatively low friction coefficient and a good adhesive

  19. Effect of negative substrate bias on the microstructure and mechanical properties of Ti-Si-N films deposited by a hybrid filtered cathodic arc and ion beam sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yujuan, E-mail: cnzhangyujuan@yahoo.com.cn [Laboratory of Special Functional Materials, Henan University, Kaifeng 475004 (China); Yang Yingze; Zhai Yuhao; Zhang Pingyu [Laboratory of Special Functional Materials, Henan University, Kaifeng 475004 (China)

    2012-07-01

    A hybrid cathodic arc and ion beam sputtering method was employed to synthesize Ti-Si-N films. The influence of negative substrate bias on the structure and mechanical properties was investigated by using XRD, XPS, HRTEM, nanoindentor and so on. With the increasing of negative bias there is a decrease in the TiN crystallite size from 36 nm to 10 nm. Negative substrate bias promoted the conformation of nc-TiN/a-Si{sub 3}N{sub 4} nanocomposite structure with complete phase separation and uniform crystallite size. Superhard TiSiN films with a maximum hardness of 46 GPa were successfully synthesized under 100 V negative bias. Severe oxidation occurred in films deposited under 200 V and 300 V negative substrate bias due to the decreasing of deposition rate, which led to the hardness of films reduced to the value of 26 GPa and 22 GPa respectively.

  20. Composition demixing effect on cathodic arc ion plating

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The composition demixing effect has been found often in alloy coatings deposited by cathodic arc ion plating using various alloy cathode targets.The characteristics of composition demixing phenomena were summarized.Beginning with the ionization zone near the surface of the cathode target, a physical model in terms of the ions generated in the ionization zone and their movement in the plating room modified by bias electric field was proposed.Based on the concept of electric charge state, the simulation calculation of the composition demixing effect was carried out.The percentage of atoms of an element in coating and from the alloy target was demonstrated by direct comparison.The influences of the composition change of the alloy target and the bias electric field on the composition demixing effect were discussed in detail.It is also proposed that the average charge states of the elements may be used to calculate the composition demixing effect and to design the composition of the alloy target.

  1. Characterization of plasma chemistry and ion energy in cathodic arc plasma from Ti-Si cathodes of different compositions

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, A. O.; Zhirkov, I.; Dahlqvist, M.; Jensen, J.; Hultman, L.; Rosen, J. [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2013-04-28

    Arc plasma from Ti-Si compound cathodes with up to 25 at. % Si was characterized in a DC arc system with respect to chemistry and charge-state-resolved ion energy. The plasma ion composition showed a lower Si content, diverging up to 12 at. % compared to the cathode composition, yet concurrently deposited films were in accordance with the cathode stoichiometry. Significant contribution to film growth from neutrals is inferred besides ions, since the contribution from macroparticles, estimated by scanning electron microscopy, cannot alone account for the compositional difference between cathode, plasma, and film. The average ion charge states for Ti and Si were higher than reference data for elemental cathodes. This result is likely related to TiSi{sub x} phases of higher cohesive energies in the compound cathodes and higher effective electron temperature in plasma formation. The ion energy distributions extended up to {approx}200 and {approx}130 eV for Ti and Si, respectively, with corresponding average energies of {approx}60 and {approx}30 eV. These averages were, however, not dependent on Si content in the cathode, except for 25 at. % Si where the average energies were increased up to 72 eV for Ti and 47 eV for Si.

  2. Unusual Cathode Erosion Patterns Observed for Steered Arc Sources

    CERN Document Server

    Kolbeck, Jonathan

    2014-01-01

    A cathodic arc source with a magnetron-type magnetic field was investigated for stability, erosion, and compatibility with a linear macroparticle filter. Here we report about unusual arc spot erosion patterns, which were narrow (~ 2 mm) with periodic pits when operating in argon, and broad (~ 10 mm) with periodic groves and ridges when operating in an argon and oxygen mixtures. These observations can be correlated with the ignition probability for type 2 and type 1 arc spots, respectively.

  3. Regression Analysis of the Effect of Bias Voltage on Nano- and Macrotribological Properties of Diamond-Like Carbon Films Deposited by a Filtered Cathodic Vacuum Arc Ion-Plating Method

    Directory of Open Access Journals (Sweden)

    Shojiro Miyake

    2014-01-01

    Full Text Available Diamond-like carbon (DLC films are deposited by bend filtered cathodic vacuum arc (FCVA technique with DC and pulsed bias voltage. The effects of varying bias voltage on nanoindentation and nanowear properties were evaluated by atomic force microscopy. DLC films deposited with DC bias voltage of −50 V exhibited the greatest hardness at approximately 50 GPa, a low modulus of dissipation, low elastic modulus to nanoindentation hardness ratio, and high nanowear resistance. Nanoindentation hardness was positively correlated with the Raman peak ratio Id/Ig, whereas wear depth was negatively correlated with this ratio. These nanotribological properties highly depend on the films’ nanostructures. The tribological properties of the FCVA-DLC films were also investigated using a ball-on-disk test. The average friction coefficient of DLC films deposited with DC bias voltage was lower than that of DLC films deposited with pulse bias voltage. The friction coefficient calculated from the ball-on-disk test was correlated with the nanoindentation hardness in dry conditions. However, under boundary lubrication conditions, the friction coefficient and specific wear rate had little correlation with nanoindentation hardness, and wear behavior seemed to be influenced by other factors such as adhesion strength between the film and substrate.

  4. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation.

    Science.gov (United States)

    Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J

    2015-09-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (<1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (<11°), allowing large areas of reciprocal space to be imaged with a 2D detector. The system has been designed for use on the 1-tonne, ultra-high load, high-resolution hexapod at the P07 High Energy Materials Science beamline at PETRA III at the Deutsches Elektronen-Synchrotron in Hamburg, Germany. The deposition system includes standard features of a typical UHV deposition system plus a range of special features suited for synchrotron radiation studies and industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument.

  5. Structural, optical and electrical properties of N-doped ZnO thin films prepared by thermal oxidation of pulsed filtered cathodic vacuum arc deposited Zn{sub x}N{sub y} films

    Energy Technology Data Exchange (ETDEWEB)

    Erdogan, N.H.; Kara, K.; Ozdamar, H. [Physics Department, Cukurova University, 01330 Adana (Turkey); Kavak, H., E-mail: hkavak@cu.edu.tr [Physics Department, Cukurova University, 01330 Adana (Turkey); Esen, R. [Physics Department, Cukurova University, 01330 Adana (Turkey); Karaagac, H. [Physics Department, Middle East Technical University, 06531 Ankara (Turkey)

    2011-09-08

    Graphical abstract: Highlights: > Thermal oxidation of Zn{sub x}N{sub y} method is used to obtain N doped ZnO. > N acceptors in ZnO is not sufficiently activated at oxidation temperature below 350 deg. C. > Oxidation treatment at 450 deg. C activates more N acceptors in ZnO. > Oxidation treatment at high temperatures above 550 deg. C reduces the N concentration in the ZnO thin film. - Abstract: In this study, N-doped ZnO thin films were fabricated by oxidation of Zn{sub x}N{sub y} films. The Zn{sub x}N{sub y} thin films were deposited on glass substrates by pulsed filtered cathodic vacuum arc deposition (PFCVAD) using metallic zinc wire (99.999%) as a cathode target in pure nitrogen plasma. The influence of oxidation temperature, on the electrical, structural and optical properties of N-doped ZnO films was investigated. P-type conduction was achieved for the N-doped ZnO obtained at 450 deg. C by oxidation of Zn{sub x}N{sub y}, with a resistivity of 16.1 {Omega} cm, hole concentration of 2.03 x 10{sup 16} cm{sup -3} and Hall mobility of 19 cm{sup 2}/V s. X-ray photoelectron spectroscopy (XPS) analysis confirmed the incorporation of N into the ZnO films. X-ray diffraction (XRD) pattern showed that the films as-deposited and oxidized at 350 deg. C were amorphous. However, the oxidized films in air atmosphere at 450-550 deg. C were polycrystalline without preferential orientation. In room temperature photoluminescence (PL) spectra, an ultraviolet (UV) peak was seen for all the samples. In addition, a broad deep level emission was observed.

  6. Neutral beam dump with cathodic arc titanium gettering.

    Science.gov (United States)

    Smirnov, A; Krivenko, A S; Murakhtin, S V; Savkin, V Ya; Korepanov, S A; Putvinski, S

    2011-03-01

    An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features a new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 × 10(17) H∕(cm(2) s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is ∼0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.

  7. Cathode erosion in high-current high-pressure arc

    CERN Document Server

    Nemchinsky, V A

    2003-01-01

    Cathode erosion rate was experimentally investigated for two types of arcs: one with tungsten cathode in nitrogen atmosphere and one with hafnium cathode in oxygen atmosphere. Conditions were typical for plasma arc cutting systems: gas pressure from 2 to 5 atm, arc current from 200 to 400 A, gas flow rate from 50 to 130 litre min sup - sup 1. It was found that the actual cathode evaporation rate G is much lower than G sub 0 , the evaporation rate that follows from the Hertz-Knudsen formula: G = nu G sub 0. The difference is because some of the evaporated particles return back to the cathode. For conditions of our experiments, the factor nu could be as low as 0.01. It was shown experimentally that nu depends strongly on the gas flow pattern close to the cathode. In particular, swirling the gas increases nu many times. To explain the influence of gas swirling, model calculations of gas flows were performed. These calculations revealed difference between swirling and non-swirling flows: swirling the gas enhances...

  8. Cathodic Arcs From Fractal Spots to Energetic Condensation

    CERN Document Server

    Anders, Andre

    2009-01-01

    Emphasizes the fractal character of cathode spots, and describes strongly fluctuating plasma properties such as the presence of multiply charged ions that move with supersonic velocity. This book also deals with issues, such as arc source construction, and macroparticle removal. It is intended for scientists, practitioners, and students alike

  9. The fractal nature of vacuum arc cathode spots

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2005-05-27

    Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f {sup 2}, where f is frequency, supporting a fractal spot model associated with Brownian motion.

  10. Ion source based on the cathodic arc

    Science.gov (United States)

    Sanders, David M.; Falabella, Steven

    1994-01-01

    A cylindrically symmetric arc source to produce a ring of ions which leave the surface of the arc target radially and are reflected by electrostatic fields present in the source to a point of use, such as a part to be coated. An array of electrically isolated rings positioned in the source serves the dual purpose of minimizing bouncing of macroparticles and providing electrical insulation to maximize the electric field gradients within the source. The source also includes a series of baffles which function as a filtering or trapping mechanism for any macroparticles.

  11. Macroparticle generation in DC arc discharge from a WC cathode

    Science.gov (United States)

    Zhirkov, Igor; Polcik, Peter; Kolozsvári, Szilard; Rosen, Johanna

    2017-03-01

    We have studied macroparticle generation from a tungsten carbide cathode used in a dc vacuum arc discharge. Despite a relatively high decomposition/melting point (˜3100 K), there is an intensive generation of visible particles with sizes in the range 20-35 μm. Visual observations during the discharge and scanning electron microscopy of the cathode surface and of collected macroparticles indicate a new mechanism for particle formation and acceleration. Based on the W-C phase diagram, there is an intensive sublimation of carbon from the melt resulting from the cathode spot. The sublimation supports the formation of a sphere, which is accelerated upon an explosion initiated by Joule heating at the critical contact area between the sphere and the cathode body. The explosive nature of the particle acceleration is confirmed by surface features resembling the remains of a splash on the droplet surface.

  12. Silicon etch with chromium ions generated by a filtered or non-filtered cathodic arc discharge.

    Science.gov (United States)

    Scopece, Daniele; Döbeli, Max; Passerone, Daniele; Maeder, Xavier; Neels, Antonia; Widrig, Beno; Dommann, Alex; Müller, Ulrich; Ramm, Jürgen

    2016-01-01

    The pre-treatment of substrate surfaces prior to deposition is important for the adhesion of physical vapour deposition coatings. This work investigates Si surfaces after the bombardment by energetic Cr ions which are created in cathodic arc discharges. The effect of the pre-treatment is analysed by X-ray diffraction, Rutherford backscattering spectroscopy, scanning electron microscopy and in-depth X-ray photoemission spectroscopy and compared for Cr vapour produced from a filtered and non-filtered cathodic arc discharge. Cr coverage as a function of ion energy was also predicted by TRIDYN Monte Carlo calculations. Discrepancies between measured and simulated values in the transition regime between layer growth and surface removal can be explained by the chemical reactions between Cr ions and the Si substrate or between the substrate surface and the residual gases. Simulations help to find optimum and more stable parameters for specific film and substrate combinations faster than trial-and-error procedure.

  13. Cathodic micro-arc electrodeposition of yttrium stabilized zirconia (YSZ) coatings on FeCrAl alloy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The formation of ceramic coatings on metal substrate by cathodic electrolytic deposition (CELD) has received more attention in recent years. But only thin films can be prepared via CELD. Yttrium stabilized zirconia (YSZ) ceramic coatings were deposited on FeCrAl alloy by a novel technique--cathodic micro-arc electrodeposition (CMED). The result shows that, when a high pulse electric field is applied to the cathode which was pre-deposited with a thin YSZ film, dielectric breakdown occurs and micro-arc discharges appear. Coatings with reasonably thickness of ~300μm and crystalline structure can be deposited on the cathode by utilizing the energy of the micro-arc. The thickness of the as-deposited coating is dominated by the voltage and the frequency. Y2O3 is co-deposited with ZrO2 when Y(NO3)3 was added to the electrolyte, which stabilize t-phase, t′- phase and c-phase of ZrO2 at room temperature. The amount of the m-ZrO2 in the coating is diminished by increasing the concentration of Y(NO3)3 in the electrolyte. This report describes the processing of CMED and studies the microstructure of the deposited YSZ coatings.

  14. Account of near-cathode sheath in numerical models of high-pressure arc discharges

    Science.gov (United States)

    Benilov, M. S.; Almeida, N. A.; Baeva, M.; Cunha, M. D.; Benilova, L. G.; Uhrlandt, D.

    2016-06-01

    Three approaches to describing the separation of charges in near-cathode regions of high-pressure arc discharges are compared. The first approach employs a single set of equations, including the Poisson equation, in the whole interelectrode gap. The second approach employs a fully non-equilibrium description of the quasi-neutral bulk plasma, complemented with a newly developed description of the space-charge sheaths. The third, and the simplest, approach exploits the fact that significant power is deposited by the arc power supply into the near-cathode plasma layer, which allows one to simulate the plasma-cathode interaction to the first approximation independently of processes in the bulk plasma. It is found that results given by the different models are generally in good agreement, and in some cases the agreement is even surprisingly good. It follows that the predicted integral characteristics of the plasma-cathode interaction are not strongly affected by details of the model provided that the basic physics is right.

  15. The influence of cathode excavation of cathodic arc evaporator on thickness uniformity and erosion products angle distribution

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2014-01-01

    Full Text Available Cathodic arc evaporators are used for coating with functional films. Prolonged or buttend evaporators may be used for this purposes. In butt-end evaporator the cathode spots move continuously on the cathode work surface and evaporate cathode material. High depth excavation profile forms on the cathode work surface while the thick coating precipitation (tens or hundreds of microns. The cathode excavation profile is shaped like a “cup” with high walls for electrostatic discharge stabilization systems with axial magnetic fields. Cathode spots move on the bottom of the “cup”. It is very likely that high “cup” walls are formed as a result of lasting work time influence on the uniformity of precipitated films.In the present work the influence of excavation profile walls height on the uniformity of precipitated coating was carried out. The high profile walls are formed due to lasting work of DC vacuum arc evaporator. The cathode material used for tests was 3003 aluminum alloy. The extended substrate was placed parallel to the cathode work surface. Thickness distribution along the substrate length with the new cathode was obtained after 6 hours and after 12 hours of continuous operation.The thickness distribution of precipitated coating showed that the cathode excavation has an influence on the angular distribution of the matter escaping the cathode. It can be clearly seen from the normalized dependence coating thickness vs the distance from the substrate center. Also the angular distribution of the matter flow from the cathode depending on the cathode working time was obtained. It was shown that matter flow from the cathode differs from the LambertKnudsen law. The more the cathode excavation the more this difference.So, cathode excavation profile has an influence on the uniformity of precipitated coating and it is necessary to take in account the cathode excavation profile while coating the thick films.

  16. Characteristics of Single Cathode Cascaded Bias Voltage Arc Plasma

    Science.gov (United States)

    Ou, Wei; Deng, Baiquan; Zeng, Xianjun; Gou, Fujun; Xue, Xiaoyan; Zhang, Weiwei; Cao, Xiaogang; Yang, Dangxiao; Cao, Zhi

    2016-06-01

    A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber, instead of the previous copper chambers, to provide better diagnostic observation and access to the plasma optical emission. The cathode chamber cooling scheme is also modified to be naturally cooled only by light emission without cooling water to improve the optical thin performance in the optical path. A single-parameter physical model has been developed to describe the power dissipated in the cascaded bias voltage arc discharge argon plasmas, which have been investigated by utilizing optical emission spectroscopy (OES) and Langmuir probe. In the experiments, discharge currents from 50 A to 100 A, argon flow rates from 800 sccm to 2000 sccm and magnetic fields of 0.1 T and 0.2 T were chosen. The results show: (a) the relationship between the averaged resistivity and the averaged current density exhibits an empirical scaling law as \\barη \\propto \\bar {j}-0.63369 and the power dissipated in the arc has a strong relation with the filling factor; (b) through the quartz, the argon ions optical emission lines have been easily observed and are dominating with wavelengths between 340 nm and 520 nm, which are the emissions of Ar+-434.81 nm and Ar+-442.60 nm line, and the intensities are increasing with the arc current and decreasing with the inlet argon flow rate; and (c) the electron density and temperature can reach 2.0 × 1019 m-3 and 0.48 eV, respectively, under the conditions of an arc current of 90 A and a magnetic field of 0.2 T. The half-width of the ne radial profile is approximatively equal to a few Larmor radii of electrons and can be regarded as the diameter of the plasma jet in the experiments. supported by the International Thermonuclear Experimental Reactor (ITER) Program Special of Ministry of Science and Technology (No. 2013GB114003), and National Natural Science Foundation of China (Nos. 11275135, 11475122)

  17. Synthesis and characterization of zirconium nitride coatings by cathodic arc sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Sarwar, M.N.; Awan, M.S.; Akbar, S. [ISIT, Islamabad (Pakistan)

    2014-11-15

    Polycrystalline zirconium nitride films (560 nm) were deposited on stainless steel (SS-316) substrates using the multi-target cathodic arc sputtering technique. Deposition was carried out under N{sub 2} reactive atmosphere (4 x 10{sup -3} mbar) at two different temperatures, 150 and 200 C. X-ray diffraction studies show that reflections from planes changed from (111) to (200) for deposition temperatures of 150 C and 200 C, respectively. Films deposited at 150 C and 200 C bear a critical load of 6.4 N and 6.8 N respectively, showing better adherence at higher temperature. This may be the result of film-substrate diffusion at the interface.

  18. Effect of Surface Treatment by Cathode Spot of Low Pressure Arc on Bonding Strength of Spraying Film by APPS

    Science.gov (United States)

    Hara, Masayuki; Ogura, Hirosi; Maezono, Satoru; Kubo, Yuya; Iwao, Toru; Tobe, Shogo; Inaba, Tsuginori

    Cathode spots of a low pressure arc can remove the oxide layer and evaporate impurities on the metal surface. The removal of the oxide layer by using the cathode spots in the low pressure is expected to solve the serious problems of the chemical and mechanical cleaning methods. The phenomena of the cathode spots in the low pressure for pre-treatment of Atmospheric Pressure Plasma Spray (APPS) have been investigated. In this paper, the surface shape of oxide work pieces was treated by using the cathode spots in the low pressure arc then compared with the grit-blasted surface. As a result, it is possible to improve the bonding strength of the spray deposit by making arithmetical mean height Ra large and average length of outline curve element Rsm small. Cathode spots of a low-pressure arc can be used for pre-treatment of APPS as the alternative technology of the blast. it is possible to obtain Ra larger an Rsm smaller than the blast only by cathode spots after the blast. But the treatment must be restricted not to destroy projection ones which were formed with melting.

  19. Erosion behaviour of composite Al-Cr cathodes in cathodic arc plasmas in inert and reactive atmospheres

    CERN Document Server

    Franz, Robert; Hawranek, Gerhard; Polcik, Peter

    2015-01-01

    Al$_{x}$Cr$_{1-x}$ composite cathodes with Al contents of x = 0.75, 0.5 and 0.25 were exposed to cathodic arc plasmas in Ar, N$_2$ and O$_2$ atmospheres and their erosion behaviour was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by X-ray diffraction analysis. Cathode poisoning effects in the reactive N$_2$ and O$_2$ atmospheres were non-uniform as a result of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded centre region of the cathodes.

  20. Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Qiwen, E-mail: fanqiwen0926@163.com [Department of Nuclear Physics, China Institute of Atomic Energy, P.O. Box 275(62), Beijing 102413 (China); Du, Yinghui; Zhang, Rong; Xu, Guoji [Department of Nuclear Physics, China Institute of Atomic Energy, P.O. Box 275(62), Beijing 102413 (China)

    2013-04-21

    Thin diamond-like carbon (DLC) stripper foils ∼5μg/cm{sup 2} in thickness were produced and evaluated as heavy-ion strippers for the Beijing HI-13 Tandem Accelerator. The DLC layers ∼4μg/cm{sup 2} in thickness were produced by the filtered cathodic vacuum arc technology onto glass slides coated with betaine–saccharose as releasing agent, which were previously covered with evaporated carbon layers ∼1μg/cm{sup 2} in thickness by the controlled ac arc-discharge method. Irradiation lifetimes of the DLC stripper foils were tested using the heavy-ion beams at the terminal of the Beijing HI-13 Tandem Accelerator, and compared with those of the standard carbon stripper foils made by the combined dc and ac arc-discharge method. The measurements indicate that the DLC stripper foils outlast the standard combined dc and ac arc-discharge carbon stripper foils by a factor of at least 13 and 4 for the {sup 197}Au{sup −} (∼9MeV, ∼1μA) and {sup 63}Cu{sup −} (∼9MeV, ∼1μA) ion beams, respectively. The structure and properties of the DLC foils deposited onto silicon substrates by the filtered cathodic vacuum arc technology were also evaluated and analyzed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy images show that the DLC foils contain hardly droplets through the double 90° filters. The X-ray photoelectron spectrum indicates that sp{sup 3} bonds of the DLC foils exceed 70%. The integral intensity ratio of the D peak to the G peak (I{sub D}/I{sub G}) measured by the Raman spectroscopy is 0.78.

  1. Influence of thermal heating on diamond-like carbon film properties prepared by filtered cathodic arc

    Energy Technology Data Exchange (ETDEWEB)

    Khamnualthong, N., E-mail: nattapornkh@gmail.com [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok, 10140 (Thailand); Western Digital Thailand Co. Ltd, Ayutthaya, 13160 (Thailand); Siangchaew, K. [Western Digital Thailand Co. Ltd, Ayutthaya, 13160 (Thailand); Limsuwan, P. [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok, 10140 (Thailand); Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand)

    2013-10-01

    Tetrahedral amorphous diamond-like carbon (ta-DLC) films were deposited on magnetic recording heads using the filtered cathodic arc method. The deposited film thickness was on the order of several nanometers. The DLC films were then annealed to 100 °C–300 °C for 30 and 60 min, and the structure of the ta-DLC films was investigated using Raman spectroscopy, where the gross changes were observed in the Raman D and G peaks. Detailed interpretation concluded that there was sp{sup 2} clustering as a function of temperature, and there was no sp{sup 3}-to-sp{sup 2} conversion after heating up to 300 °C. Furthermore, X-ray photoelectron spectroscopy suggested that oxidation of both the ta-DLC film and the adhesion layer occurs at 300 °C. Additionally, more film wear was observed with heating as measured by a nanoindenter. - Highlights: • Tetrahedral-amorphous diamond-like carbon (ta-DLC) by filtered cathodic arc • ta-DLC used in magnetic recording head as head overcoat • ta-DLC thickness range of less than 2 nm • ta-DLC property dependence on heating • Temperature effect range of up to 300 °C.

  2. Transition characteristics from radio-frequency discharge to arc in hollow cathode configuration

    Institute of Scientific and Technical Information of China (English)

    许建平; 巩春志; 吴明忠; 田修波

    2014-01-01

    The technique ofglow discharges in radio frequency configuration was applied to ignite hollow cathode vacuum arc discharge.The effect of discharge parameters on the building up of hollow cathode arc discharge was investigated.The emission spectrum during the vacuum arc ignition process was measured to disclose the discharge dynamics.There exists a threshold radio frequency power (300 W),beyond which hollow cathode is in γmode discharge status while radio frequency discharge changes into the arc discharge.With the increase of the radio frequency power,the plasma temperature and electronic density increase,and the discharge mode transits more rapidly.The ignition time ofhollow cathode vacuum arc discharge is less than 4 s with a radio frequency power of700 W.

  3. Modeling of mixing and interaction of multi-cathode spot vacuum arc jets

    Science.gov (United States)

    Wang, Lijun; Qin, Kang; Deng, Jie; Jia, Shenli

    2016-12-01

    Vacuum arc consists of cathode spot and mixing zone, arc column and anode zone. The separate jets and the mixing zone should be considered in the model of diffuse arc. Moreover, the interaction between the plasma jets in multi-cathode spot vacuum arc also is very important. In this paper, mixing and interaction of multi-cathode spot vacuum arc jets were studied through simulation. To completely investigate the mixing and interaction of vacuum arc jets, a steady 3D Magneto-Hydro-Dynamic (MHD) modeling was established. In order to find out the influence of different parameters on mixing and interaction of vacuum arc jets, simulations with different parameters such as currents, angel of vacuum arc jets, with or without electromagnetic equations, tilted jets and different height of mixing zone were conducted. The simulation results show that the densities of ion number and plasma pressure as well as ion temperature increase with the increase of arc current, while the plasma velocity decreases. The jet center is more deviated from the cathode center with the increase of angle of tilted jets.

  4. Growth of single and bilayer graphene by filtered cathodic vacuum arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Kesarwani, A. K.; Panwar, O. S., E-mail: ospanwar@mail.nplindia.ernet.in; Bisht, Atul [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012, India and Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, New Delhi 110012 (India); Dhakate, S. R. [Physics and Engineering of Carbon Materials, Division of Materials Physics and Engineering, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012, India and Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, New Delhi 110012 (India); Rakshit, R. K. [Quantum Phenomena and Applications Group, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012, India and Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, New Delhi 110012 (India); Singh, V. N. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012, India and Academy of Scientific and Innovative Research (AcSIR), CSIR Campus, New Delhi 110012 (India); Kumar, Ashish [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2016-03-15

    The authors present a viable process to grow the high quality graphene films with control over number of layers by the filtered cathodic vacuum arc (FCVA) technique. In the FCVA process, the different carbon concentrations can be controlled by precisely tuning the arc time (1–4 s). The arc generated carbon was deposited on the nickel catalyst at 800 °C, annealed for 10 min, and cooled down to room temperature in the presence of hydrogen gas, resulting in the graphene films with control over number of layers. Prior to arcing, hydrogen etching of nickel was carried out to clean the surface of the substrate. A growth model to prepare the high quality graphene has also been proposed. The as-grown graphene films were transferred to different substrates and are characterized by Raman spectroscopy, optical microscopy, high resolution transmission electron microscopy, and atomic force microscopy to determine the number of layers present in these films. Raman spectra of the prepared graphene films exhibit change in the G peak position from 1582.4 to 1578.1 cm{sup −1}, two-dimensional (2D) peak shifts from 2688.5 to 2703.8 cm{sup −1}, the value of I{sub 2D}/I{sub G} increased from 0.38 to 3.82, and the full width at half maxima of 2D peak changed from 41 to 70 cm{sup −1}, for different layers of graphene films. The high resolution transmission electron microscopy image revealed that the graphene films prepared for 1 and 2 s arc times have single and bi- or trilayered structures, respectively.

  5. Hydrodynamics of the molten metal in a vacuum arc cathode spot at near-threshold currents

    Science.gov (United States)

    Mesyats, G. A.; Zubarev, N. M.

    2013-05-01

    The extrusion of the molten metal from a microcrater formed on a metal cathode during the operation of a vacuum arc is considered. The problem is thought to be similar to the classical hydrodynamic problem of a liquid drop impact on a solid surface. Based on this analogy, the conditions are analyzed under which the liquid will change its regular behavior (spreading over the cathode surface) into a singular behavior (formation of microjets and droplets). It is shown that the conditions realized in vacuum arc cathode spots at near-threshold currents are close to the threshold conditions for splashing of the molten metal. This points to a considerable contribution of hydrodynamic processes to the self-sustained operation of a vacuum arc and, in particular, gives grounds to relate the existence of a threshold arc current to the existence of a splashing threshold for liquid metal.

  6. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  7. Raman Spectroscopy of DLC/a-Si Bilayer Film Prepared by Pulsed Filtered Cathodic Arc

    Directory of Open Access Journals (Sweden)

    C. Srisang

    2012-01-01

    Full Text Available DLC/a-Si bilayer film was deposited on germanium substrate. The a-Si layer, a seed layer, was firstly deposited on the substrate using DC magnetron sputtering and DLC layer was then deposited on the a-Si layer using pulsed filtered cathodic arc method. The bilayer films were deposited with different DLC/a-Si thickness ratios, including 2/2, 2/6, 4/4, 6/2, and 9/6. The effect of DLC/a-Si thickness ratios on the sp3 content of DLC was analyzed by Raman spectroscopy. The results show that a-Si layer has no effect on the structure of DLC film. Furthermore, the upper shift in G wavenumber and the decrease in ID/IG inform that sp3 content of the film is directly proportional to DLC thickness. The plot modified from the three-stage model informed that the structural characteristics of DLC/a-Si bilayer films are located close to the tetrahedral amorphous carbon. This information may be important for analyzing and developing bilayer protective films for future hard disk drive.

  8. Erosion behavior of composite Al-Cr cathodes in cathodic arc plasmas in inert and reactive atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Franz, Robert, E-mail: robert.franz@unileoben.ac.at; Mendez Martin, Francisca; Hawranek, Gerhard [Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700 Leoben (Austria); Polcik, Peter [Plansee Composite Materials GmbH, Siebenbürgerstrasse 23, 86983 Lechbruck am See (Germany)

    2016-03-15

    Al{sub x}Cr{sub 1−x} composite cathodes with Al contents of x = 0.75, 0.5, and 0.25 were exposed to cathodic arc plasmas in Ar, N{sub 2}, and O{sub 2} atmospheres and their erosion behavior was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by x-ray diffraction analysis. Cathode poisoning effects in the reactive N{sub 2} and O{sub 2} atmospheres were nonuniform as a result of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded center region of the cathodes.

  9. Joule heat generation in thermionic cathodes of high-pressure arc discharges

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M. S.; Cunha, M. D. [Departamento de Fisica, CCCEE, Universidade da Madeira, Largo do Municipio, 9000 Funchal (Portugal)

    2013-02-14

    The nonlinear surface heating model of plasma-cathode interaction in high-pressure arcs is extended to take into account the Joule effect inside the cathode body. Calculation results are given for different modes of current transfer to tungsten cathodes of different configurations in argon plasmas of atmospheric or higher pressures. Special attention is paid to analysis of energy balances of the cathode and the near-cathode plasma layer. In all the cases, the variation of potential inside the cathode is much smaller than the near-cathode voltage drop. However, this variation can be comparable to the volt equivalent of the energy flux from the plasma to the cathode and then the Joule effect is essential. Such is the case of the diffuse and mixed modes on rod cathodes at high currents, where the Joule heating causes a dramatic change of thermal and electrical regimes of the cathode. The Joule heating has virtually no effect over characteristics of spots on rod and infinite planar cathodes.

  10. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.

    Science.gov (United States)

    Zhu, Wei; Teel, George; O'Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium's osseointegration involves inducing bio-mimetic nanotopography to enhance cell-implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications.

  11. Vacuum arc cathode spot motion in oblique magnetic fields: An interpretation of the Robson experiment

    Science.gov (United States)

    Beilis, I. I.

    2016-09-01

    A model was developed of vacuum arc cathode spot motion in a magnetic field that obliquely intercepts the cathode surface. The model takes into account a force under an electric field caused by retrograde spot motion across the normal component of the magnetic field, producing a drift velocity component in the direction of the acute angle between the magnetic field and the cathode surface. The relationship between velocity of the retrograde direction and drift velocity of the cathode spot motion to the acute angle was developed. The dependencies of the drift angle θ on the acute angle φ, magnetic field strength B, and arc current I were calculated. It was found that the calculated θ increased with φ, B, and I in accordance with Robson's measurements.

  12. Purification of carbon nanotubes from cathode deposit by means of different oxidation rates

    Energy Technology Data Exchange (ETDEWEB)

    Ikazaki, Fumikazu; Uchida, Kunio; Ohshima, Satoshi; Kuriki, Yasunori [National Inst. of Materials and Chemical Research, Ibaraki (Japan)] [and others

    1996-10-01

    Two purification methods of nanotubes from a cathode deposit by an arc plasma were conducted by means of different oxidation rates of various graphites. One was chemical and the other physical method. Both could purify nanotubes at their optimum conditions. In the former, the catalytic oxidation was used of graphitic materials by copper. Copper supported graphite was prepared by the intercalation of copper chloride and by the reduction to metal copper. The catalytic oxidation decomposed the graphite at 773 K. The temperature was 200 K lower than the oxidation temperature of graphite, which enabled purification. In the latter, dispersion, comminution and filtration of a cathode deposit in ethanol were used to separate coarse graphite. The rate of weight loss by oxidation increased with the decrease of size of the graphite. Nanotubes were more slowly oxidized from the edges than the graphite of the same size. This could purify nanotubes.

  13. Purification of carbon nanotubes from cathode deposit by means of different oxidation rates

    Energy Technology Data Exchange (ETDEWEB)

    Ikazaki, F.; Uchida, K.; Ohshima, S. [National Institute of Materials and Chemical Research, Tsukuba, Ibaraki (Japan)] [and others

    1996-12-31

    Two purification methods of nanotubes from a cathode deposit by an arc plasma were conducted by means of different oxidation rates of various graphites. One was chemical and the other physical method. Both could purify nanotubes at their optimum conditions. In the former, the catalytic oxidation was used of graphite materials by copper. Copper supported graphite was prepared by the intercalation of copper chloride and by the reduction to metal copper. The catalytic oxidation decomposed the graphite at 773 K and less. The temperature was significantly lower than the oxidation temperature former reported of graphite, which enabled purification. In the latter, dispersion, comminution and filtration of a cathode deposit in ethanol were used to separate coarse graphite. The rate of weight loss by oxidation increased with the decrease of size of the graphite. Nanotubes were more slowly oxidized from the edges than the graphite of the same size. This could purify nanotubes.

  14. The evolution of ion charge states in cathodic vacuum arc plasmas: a review

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2011-12-18

    Cathodic vacuum arc plasmas are known to contain multiply charged ions. 20 years after “Pressure Ionization: its role in metal vapour vacuum arc plasmas and ion sources” appeared in vol. 1 of Plasma Sources Science and Technology, it is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the “noise” in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges putting decades of experimentation and modeling in perspective.

  15. Dynamics of cathode spots in low-pressure arc plasma removing oxide layer on steel surfaces

    Science.gov (United States)

    Tang, Z. L.; Yang, K.; Liu, H. X.; Zhang, Y. C.; Li, H.; Zhu, X. D.

    2016-03-01

    The dynamics of cathode spots has been investigated in low-pressure arc plasma for removing oxide layer on low carbon steel surfaces. The motion of cathode spots was observed with a high speed camera, and the arc voltage was analyzed by fast Fourier transform. The spots move on clean steel surface as a random walk, and the low-frequency components dominated the voltage waveform. However, the spots on steel surfaces with oxide layer tend to burn on the rim of the eroded area formed in the previous arcing, and the low-frequency components decrease correspondingly. The "color" of the colored random noise for arc voltage varies from the approximate brown noise for clean steel surface to pink noise for thick oxide layer, where the edge effect of boundary is considered to play a significant role.

  16. Influence of Jet Angle and Ion Density of Cathode Side on Low Current Vacuum Arc Characteristics

    Institute of Scientific and Technical Information of China (English)

    WANG Lijun; JIA Shenli; SHI Zongqian

    2008-01-01

    In this study, the influence of the initial jet angles (IJAs) and ion number densities (INDs) at the cathode side on the low current vacuum arc (LCVA) characteristics is simulated and analysed. The results show that the ion temperature, electron temperature, ion number density, axial current density and plasma pressure all decrease with the increase of the cathode IJAs. It is also shown that LCVA can cause a current constriction for lower cathode IND, and the anode sheath potential is more nonuniform, which is mainly related to the nonuniform distribution of the axial current density at the anode side.

  17. Arc discharge deposition of stainless steel coatings at different nitrogen pressures

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, J. [VTT Manufacturing Technology (Finland); Torri, P. [Helsinki Univ. (Finland). Dept. of Physics; Hirvonen, J.P. [VTT Manufacturing Technology (Finland); Mahiout, A. [VTT Manufacturing Technology (Finland); Stanishevsky, A. [Plasmoteg Engineering Centre, Minsk (Belarus)

    1996-03-01

    A filtered arc discharge process was employed to deposit stainless steel films using an AISI316 cathode. In this procedure, macroparticles and droplets, which are the most serious drawback of arc deposition processes especially in corrosion applications, are mostly filtered out. Films were deposited in vacuum or in the presence of a nitrogen plasma at different partial pressures. Low carbon steel and silicon single crystals were employed as substrates. Rutherford backscattering spectrometry (RBS), nuclear reaction analysis (NRA) and X-ray diffraction (XRD) were used to characterize the films. The corrosion properties were examined using electrochemical polarization measurements. The corrosion current density was clearly lower than that of bulk steel, but higher than that of bulk AISI316. Increasing the film thickness and nitrogen content lowered the corrosion current density. (orig.)

  18. Lifetime of hydrogenated composite cathodes in a vacuum arc ion source

    Energy Technology Data Exchange (ETDEWEB)

    Savkin, K. P., E-mail: savkin@opee.hcei.tsc.ru; Frolova, V. P.; Nikolaev, A. G.; Yushkov, G. Yu. [Institute of High Current Electronics SB RAS, Tomsk 634055 (Russian Federation); Oks, E. M. [Institute of High Current Electronics SB RAS, Tomsk 634055 (Russian Federation); Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Barengolts, S. A. [Prokhorov General Physics Institute RAS, Moscow 119991 (Russian Federation)

    2016-02-15

    The paper reports on a study of the mass-charge state of the plasma produced in a vacuum arc discharge with composite cathodes which were copper-disk coated with a hydrogenated Zr film of thicknesses 9, 22, and 35 μm. The cathodes allow the generation of multicomponent gas and metal ion beams with a hydrogen ion content from several to several tens of percent. Also investigated is the dependence of the H ion fraction in a beam on the Zr film thickness during erosion to the point of disappearance of Zr peaks in mass-charge spectra. The ability of the vacuum arc system to produce H ions is analyzed by analyzing the cathode lifetime as a function of the film thickness and pulse repetition frequency.

  19. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium

    Directory of Open Access Journals (Sweden)

    Zhu W

    2015-12-01

    Full Text Available Wei Zhu,1 George Teel,1 Christopher M O’Brien,1 Taisen Zhuang,1 Michael Keidar,1 Lijie Grace Zhang1–3 1Department of Mechanical and Aerospace Engineering, 2Department of Biomedical Engineering, 3Department of Medicine, The George Washington University, Washington, DC, USA Abstract: Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium’s osseointegration involves inducing biomimetic nanotopography to enhance cell–implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications

  20. QE data for Pb/Nb deposited photo cathode samples

    CERN Document Server

    Sekutowicz, J

    2010-01-01

    This report outlines progress in the development of photo-cathodes for a hybrid lead/niobium (Pb/Nb) superconducting SRF electron injector. We have coated eight Nb samples with lead to study and determine deposition conditions leading to high quality emitting area. The results show that the oxide layer significantly influences the quantum efficiency (QE) of all measured cathodes. In addition, we learned that although the laser cleaning enhanced the QE substantially, the film morphology was strongly modified. That observation convinced us to make the coatings thicker and therefore more robust.

  1. Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique

    Energy Technology Data Exchange (ETDEWEB)

    Onder, Sakip [Department of Metallurgical and Materials Engineering, Istanbul Technical University, 34469, Maslak, Istanbul (Turkey); Molecular Biology-Genetics and Biotechnology Program (MOBGAM), Istanbul Technical University, 34469, Maslak, Istanbul (Turkey); Kok, Fatma Nese [Molecular Biology-Genetics and Biotechnology Program (MOBGAM), Istanbul Technical University, 34469, Maslak, Istanbul (Turkey); Department of Molecular Biology and Genetics, Istanbul Technical University, 34469, Maslak, Istanbul (Turkey); Kazmanli, Kursat, E-mail: kursat@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, 34469, Maslak, Istanbul (Turkey); Urgen, Mustafa [Department of Metallurgical and Materials Engineering, Istanbul Technical University, 34469, Maslak, Istanbul (Turkey)

    2013-10-15

    In this study, formation of magnesium substituted hydroxyapatite (Ca{sub 10−x}Mg{sub x}(PO{sub 4}){sub 6}(OH){sub 2}) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti{sub 1−x},Mg{sub x})N (x = 0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37 °C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. - Highlights: • Mg incorporated in (Ti,Mg)N coating structure and did not form a separate phase • Mg dissolution in SBF solution facilitated Mg-substituted hydroxyapatite formation • (Ti,Mg)N acted as Mg-source for Mg-substituted hydroxyapatite formation in SBF.

  2. Synthesis and characterization of CrCN–DLC composite coatings by cathodic arc ion-plating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, R.Y. [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Wang, L.L. [Key Laboratory of Artificial Nanomaterials and Nanostructure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Liu, H.D. [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Yan, S.J. [Key Laboratory of Artificial Nanomaterials and Nanostructure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Chen, Y.M. [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Fu, D.J. [Key Laboratory of Artificial Nanomaterials and Nanostructure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yang, B., E-mail: toyangbing@163.com [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China)

    2013-07-15

    CrCN–DLC composite coatings were deposited onto silicon (1 0 0) and cemented carbides substrates using pure Cr targets under C{sub 2}H{sub 2} ambient by cathodic arc ion plating system. The influence of C{sub 2}H{sub 2} flow rate on the structure and mechanical properties of the coatings was investigated systemically. The coatings structure and bonding state were characterized by XRD, Raman and X-ray photoelectron spectroscopy. The chemical composition was measured by EDS. The mechanical performance and tribological behaviour of the coatings were studied by a hardness tester and ball-on-disc wear tester. The results showed that with increasing C{sub 2}H{sub 2} flow rate from 50 to 100 sccm, the corresponding hardness of coatings increased firstly and then decreased with further addition of C{sub 2}H{sub 2} flow rate. The coatings deposited at lower C{sub 2}H{sub 2} flow rate (less than 200 sccm) exhibited a relatively higher hardness value (more than HV{sub 0.025}2000) and then the hardness decrease with increasing C{sub 2}H{sub 2} flow rate. The friction coefficient also exhibited similar variation trend, when the C{sub 2}H{sub 2} flow rate was higher than 100 sccm, the friction coefficient decreased and then maintained in a relatively lower value from 0.18 to 0.24, which may be attribute to the increasing carbon content and the coating exhibited more diamond-like structure.

  3. Distribution of Cathode Spots in Vacuum Arc Under Nonuniform Axial Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    SHI Zong-qian; JIA Shen-li; WANG Li-jun; LI Xing-wen; WANG Zheng

    2007-01-01

    Recent results on the distribution of vacuum arc cathode spots (CSs) in nonuniform axial magnetic field (AMF) are presented.Based on previous studies,we deem that two contrary influences of AMF,inward effect and outward effect,are attributed to CSs distribution.With this notion,we have analyzed the controlling effectiveness of nonuniform AMF on CSs distribution. Experiments were conducted in a detachable vacuum chamber with iron-style AMF electrodes.Images of vacuum arc column and the distribution of CSs were photographed with a high-speed charge coupled device (CCD) camera. Experimental results agreed well with the theoretical analysis.

  4. Contamination due to memory effects in filtered vacuum arc plasma deposition systems

    CERN Document Server

    Martins, D R; Verdonck, P; Brown, I G

    2002-01-01

    Thin film synthesis by filtered vacuum arc plasma deposition is a widely used technique with a number of important emerging technological applications. A characteristic feature of the method is that during the deposition process not only is the substrate coated by the plasma, but the plasma gun itself and the magnetic field coil and/or vacuum vessel section constituting the macroparticle filter are also coated to some extent. If then the plasma gun cathode is changed to a new element, there can be a contamination of the subsequent film deposition by sputtering from various parts of the system of the previous coating species. We have experimentally explored this effect and compared our results with theoretical estimates of sputtering from the SRIM (Stopping and Range of Ions in Matter) code. We find film contamination of order 10-4 - 10-3, and the memory of the prior history of the deposition hardware can be relatively long-lasting.

  5. Composition Control of Alloy Coatings and Composition Designof Cathode Targets in Multi-Arc Ion Plating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The composition from alloy cathode target to alloy coating generally changes to some extentin multi-arc ion plating. This demixing effect leads to the difficulties in the control of alloycomposition of coating and in the design of composition of alloy cathode target. A new simple formula,is proposed in present work to deal with the problem. According to this formula, the composition of alloy coating can be calculated bymeans of the degrees of ionization of alloy elements. The results of calculation agree with theexperimental ones within very limited error range. Modifying the formula into another form,the design for alloy composition of cathode target can be conveniently carried out, and the ideal composition of alloy coating can be obtained.

  6. Properties of TiAlCrN coatings prepared by vacuum cathodic arc ion plating

    Institute of Scientific and Technical Information of China (English)

    RU Qiang; HU Shejun; HUANG Nacan; ZHAO Lingzhi; QIU Xiuli; HU Xianqi

    2008-01-01

    TiAlCrN coatings were deposited by means of vacuum cathodic arc ion plating technique on TC11 (Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3Si) titanium alloy substrates. The composition, phase structure, mechanical performance, and oxidation-resistance of the nitride coatings were investigated by scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), auger electron spectroscopy (AES), and X-ray photoelectron microscopy (XPS). A new process for preparing protective coatings of the titanium alloy is successfully acquired. The experimental results indicate that the added element chromium in the TiAlN coatings make a contribution to form the (220) preferred direction. The phases of the coatings are composed of (Ti, Al)N and (Ti, Cr)N. After 700℃ and 800℃ oxidation, AES analysis shows that the diffusion distribution of the TiAlCrN coatings emerges a step shape. From the outside to the inner, the concentrations of O, Al, and Cr reduce, but those of Ti and N increase. The Al-rich oxide is formed on the surface of the coatings, and the mixed structure of Ti-rich and Cr-rich oxides is formed in the internal layer. The oxidation resistance of the TiAlCrN coatings is excellent at the range of 700 to 800℃. Adhesion wear is the dominant mechanical characteristic for the titanium alloy at room temperature, and the protective coatings with high hardness can improve the mechanical properties of the titanium alloy. The wear resistance of the TC11 alloy is considerably improved by the TiAlCrN coatings.

  7. A centre-triggered magnesium fuelled cathodic arc thruster uses sublimation to deliver a record high specific impulse

    Science.gov (United States)

    Neumann, Patrick R. C.; Bilek, Marcela; McKenzie, David R.

    2016-08-01

    The cathodic arc is a high current, low voltage discharge that operates in vacuum and provides a stream of highly ionised plasma from a solid conducting cathode. The high ion velocities, together with the high ionisation fraction and the quasineutrality of the exhaust stream, make the cathodic arc an attractive plasma source for spacecraft propulsion applications. The specific impulse of the cathodic arc thruster is substantially increased when the emission of neutral species is reduced. Here, we demonstrate a reduction of neutral emission by exploiting sublimation in cathode spots and enhanced ionisation of the plasma in short, high-current pulses. This, combined with the enhanced directionality due to the efficient erosion profiles created by centre-triggering, substantially increases the specific impulse. We present experimentally measured specific impulses and jet power efficiencies for titanium and magnesium fuels. Our Mg fuelled source provides the highest reported specific impulse for a gridless ion thruster and is competitive with all flight rated ion thrusters. We present a model based on cathode sublimation and melting at the cathodic arc spot explaining the outstanding performance of the Mg fuelled source. A further significant advantage of an Mg-fuelled thruster is the abundance of Mg in asteroidal material and in space junk, providing an opportunity for utilising these resources in space.

  8. Porous nickel MCFC cathode coated by potentiostatically deposited cobalt oxide

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, M.J.; Gonzalez, T.; Daza, L. [Dpto. Energia, CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Mendoza, L.; Cassir, M. [Instituto de Catalisis y Petroleoquimica (CSIC), Campus Cantoblanco, 28049 Madrid (Spain)

    2006-10-06

    Cobalt oxide was deposited on porous nickel by an electrodeposition technique as precursor of a novel MCFC cathode. The behavior of this cathode in molten (Li{sub 0.52}Na{sub 0.48}){sub 2}CO{sub 3} eutectics at 650{sup o}C under an atmosphere of CO{sub 2}:air (30:70) was studied before and after 50h of exposure by different techniques. Before the exposure, the deposit of cobalt corresponded to a Co{sub 3}O{sub 4} thin layer of. This crystalline structure was identified by XRD and Raman spectroscopy. After its exposure in the eutectic melt a loss of cobalt was observed by XRD, Raman spectroscopy, XPS, EDS and ICP-AES. The change in the Co{sub 3}O{sub 4} structure into lithium-cobalt-nickel oxide (LiCo{sub 1-y}Ni{sub y}O{sub 2}) was observed by Raman spectroscopy. The SEM micrographs for Co{sub 3}O{sub 4}-coated porous nickel showed different angular shapes with respect to porous Ni. The nickel solubility for the coated porous nickel, measured by ICP-AES, decreased with respect to uncoated nickel. The Co{sub 3}O{sub 4}-coated porous nickel cathode showed, after its immersion in the molten carbonate melt, a similar porosity but a higher pore size. LiCo{sub 1-y}Ni{sub y}O{sub 2}-coated NiO offers interesting features which combine the properties of nickel, lithium and cobalt in molten carbonate. This could be a promising novel MCFC cathode material. (author)

  9. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A. G.; Vizir, A. V.; Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation)

    2016-02-15

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereas for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.

  10. Arc-related porphyry molybdenum deposit model: Chapter D in Mineral deposit models for resource assessment

    Science.gov (United States)

    Taylor, Ryan D.; Hammarstrom, Jane M.; Piatak, Nadine M.; Seal, Robert R., II

    2012-01-01

    This report provides a descriptive model for arc-related porphyry molybdenum deposits. Presented within are geological, geochemical, and mineralogical characteristics that differentiate this deposit type from porphyry copper and alkali-feldspar rhyolite-granite porphyry molybdenum deposits. The U.S. Geological Survey's effort to update existing mineral deposit models spurred this research, which is intended to supplement previously published models for this deposit type that help guide mineral-resource and mineral-environmental assessments.

  11. The improvement of all-solid-state electrochromic devices fabricated with the reactive sputter and cathodic arc technology

    Science.gov (United States)

    Wang, Min-Chuan; Chen, Yung-Chih; Hsieh, Ming-Hao; Li, Yu-Chen; Wang, Jen-Yuan; Wu, Jin-Yu; Tsai, Wen-Fa; Jan, Der-Jun

    2016-11-01

    The all-solid-state electrochromic device (ECD) with the one substrate structure fabricated by the reactive dc magnetron sputtering (DCMS) and cathodic vacuum arc plasma (CVAP) technology has been developed for smart electrochromic (EC) glass application. The EC layer and ion conductor layer were deposited by reactive DCMS and CVAP technology, respectively. The ion conductor layer Ta2O5 deposited by the CVAP technology has provided the better porous material structure for ion transportation and showed 1.76 times ion conductivity than devices with all sputtering process. At the same time, the EC layer WO3 and NiO deposited by the reactive DCMS have also provided the high quality and uniform characteristic to overcome the surface roughness effect of the CVAP ion conductor layer in multilayer device structure. The all-solid-state ECD with the CVAP ion conductor layer has demonstrated a maximum transmittance variation (Δ T ) of 55% at 550nm and a faster-switching speed. Furthermore, the lower equipment cost and higher deposition rate could be achieved by the application of CVAP technology.

  12. The improvement of all-solid-state electrochromic devices fabricated with the reactive sputter and cathodic arc technology

    Directory of Open Access Journals (Sweden)

    Min-Chuan Wang

    2016-11-01

    Full Text Available The all-solid-state electrochromic device (ECD with the one substrate structure fabricated by the reactive dc magnetron sputtering (DCMS and cathodic vacuum arc plasma (CVAP technology has been developed for smart electrochromic (EC glass application. The EC layer and ion conductor layer were deposited by reactive DCMS and CVAP technology, respectively. The ion conductor layer Ta2O5 deposited by the CVAP technology has provided the better porous material structure for ion transportation and showed 1.76 times ion conductivity than devices with all sputtering process. At the same time, the EC layer WO3 and NiO deposited by the reactive DCMS have also provided the high quality and uniform characteristic to overcome the surface roughness effect of the CVAP ion conductor layer in multilayer device structure. The all-solid-state ECD with the CVAP ion conductor layer has demonstrated a maximum transmittance variation (ΔT of 55% at 550nm and a faster-switching speed. Furthermore, the lower equipment cost and higher deposition rate could be achieved by the application of CVAP technology.

  13. Mathematical modeling of the temperature distribution under the cathode spot of the vacuum arc

    Science.gov (United States)

    Kuznetsov, V. G.; Babushkina, E. S.

    2016-07-01

    We present a solution to the problem of the temperature distribution under the cathode spot of taking into account melting and spare deposits of metal, brought to boiling temperature on the surface of the cathode spot. The process of heat transfer in the metal is described by the unsteady three dimensional heat conduction equation in Cartesian coordinate system. Similarly, we present a solution to the problem of the temperature distribution in the presence of the pores in the surface layer of the metal. To solve this task we used a numerical method to finite differences and variable directions. We present the calculated data on the distribution of temperature under the cathode spot for different values of spot diameters and speeds its movement.

  14. Three Filtered Vacuum Arc Plasma Sources Deposition & Implantation System

    Institute of Scientific and Technical Information of China (English)

    WU Xian-ying; ZHANG Hui-xing; LI Qiang

    2004-01-01

    A deposition & implantation system, which includes three filtered vacuum arc plasma sources, has been built. Vacuum arc discharge is used to produce high-density metal plasma; Curved magnetic filtering technique is used to transfer the plasma into out-of-sight vacuum chamber and reduce macro-particles from the vacuum arc plasma in order to drastically reduce the macro-particles contamination of the films. The up to 30 kV negative bias applied to the target can be used for ion implantation in order to improve the film adhesion; or for ion sputtering to clear the substrate surface. The 0 to 300 V negative bias can be used to adjust the ion energy which forming films. The system is designed for various thin films synthesizing, such as single-layer, compound layer, multi-layer films. It's principle, components and applications are described in the literature.

  15. Experimental study and modeling of the deuterium releasing quantity in a pulsed vacuum arc discharge with a metal deuteride cathode

    Science.gov (United States)

    Liu, Fei-Xiang; Long, Ji-Dong; Zheng, Le; Dong, Pan; Li, Chen; Chen, Wei

    2017-04-01

    The pulsed vacuum arc discharge using a metal deuteride cathode is widely applied as a deuterium ion source, where the upper limit of the deuterium ion yield is largely determined by the deuterium releasing quantity (DRQ) from the cathode. This work aims to measure the DRQ at various discharge conditions, and meanwhile develop a simple thermoelectric model to evaluate the deuterium liberation from different sources, such as the crater vicinity during the arc power-on phase and the hot crater in the afterglow. The calculated DRQ are in accordance with the experimental results obtained by measuring the D2 pressure evolution in the early afterglow using a quadrupole mass spectrometer. Furthermore, the model reveals that at low arc current (<10 A), the DRQ orginates dominantly from the crater vicinity, leading to a low conversion efficiency of the released deuterium to ions and a high D:Ti elemental ratio in the released cathode vapor.

  16. FUNDAMENTAL PROBLEMS IN PULSED-BIAS ARC DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    G.Q.Lin; Z.F.Ding; D.Qi; N.H.Wang; M.D.Huang; D.Z.Wang; Y.N.Wang; C.Dong; L.S.Wen

    2002-01-01

    Arc deposition, a widely used surface coating technique, has disadvantages such aslarge droplet size and high deposition temperature. Recent trend in its renovation isthe introduction of pulsed bias at the substrate. The present paper attempts to describethe deposition process of TiN films using this technique with emphasis laid on theunderstanding of the basic problems such as discharge plasma properties, temperaturecalculation, and droplet size reduction. We show that this technique improves thefilm microstructure and quality, lowers deposition temperature, and allows coatingson insulating substrates. After analyzing load current oscillation behaviors, we havedetermined that the plasma load is of capacitance nature due to plasma sheath and thatit is equivalent to a circuit element consisting of parallel capacitance and resistance.At last, we point out the remaining problems and future development of the pulsed-biasarc deposition technique.

  17. Mechanical properties and scratch resistance of filtered-arc-deposited titanium oxide thin films on glass

    Energy Technology Data Exchange (ETDEWEB)

    Borrero-Lopez, Oscar, E-mail: oborlop@unex.es [Departamento de Ingenieria Mecanica, Energetica y de los Materiales, Universidad de Extremadura, 06071, Badajoz (Spain); School of Materials Science and Engineering, University of New South Wales NSW 2052, Sydney (Australia); Hoffman, Mark [School of Materials Science and Engineering, University of New South Wales NSW 2052, Sydney (Australia); Bendavid, Avi; Martin, Phil J. [CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield NSW 2070 (Australia)

    2011-09-01

    The mechanical properties and the scratch resistance of titanium oxide (TiO{sub 2}) thin films on a glass substrate have been investigated. Three films, with crystalline (rutile and anatase) and amorphous structures, were deposited by the filtered cathodic vacuum arc deposition technique on glass, and characterized by means of nanoindentation and scratch tests. The different damage modes (arc-like, longitudinal and channel cracks in the crystalline films; Hertzian cracks in the amorphous film) were assessed by means of optical and focused ion beam microscopy. In all cases, the deposition of the TiO{sub 2} film improved the contact-mechanical properties of uncoated glass. Crystalline films were found to possess a better combination of mechanical properties (i.e. elastic modulus up to 221 GPa, hardness up to 21 GPa, and fracture strength up to 3.6 GPa) than the amorphous film. However, under cyclic sliding contact above the critical fracture load, the amorphous film was found to withstand a higher number of cycles. The results are expected to provide useful insight for the design of optical coatings with improved contact-damage resistance.

  18. Low pressure arc discharges with hollow cathodes and their using in plasma generators and charged particle sources

    CERN Document Server

    Vintizenko, L G; Koval, N N; Tolkachev, V S; Lopatin, I V; Shchanin, P M

    2001-01-01

    Paper presents the results of investigation into arc discharges with a hollow cathode generating 10 sup 1 sup 0 -10 sup 1 sup 2 concentration gas-discharge plasma in essential (approx 1 m sup 3) volumes at low (10 sup - sup 2 -1 Pa) pressures and up to 200 A discharge currents. One studied design of discharge systems with heated and cold cathodes their peculiar features, presented the parameters of plasma generators and of charged particle sources based on arc discharges and discussed, as well, the problems of more rational application of those systems in the processes for surface modification of solids

  19. Vacuum arc with a distributed cathode spot as a plasma source for plasma separation of spent nuclear fuel and radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Amirov, R. Kh., E-mail: ravus46@yandex.ru; Vorona, N. A.; Gavrikov, A. V.; Lizyakin, G. D.; Polishchuk, V. P.; Samoilov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    Results from experimental studies of a vacuum arc with a distributed cathode spot on the heated cathode are presented. Such an arc can be used as a plasma source for plasma separation of spent nuclear fuel and radioactive waste. The experiments were performed with a gadolinium cathode, the properties of which are similar to those of an uranium arc cathode. The heat flux from the plasma to the cathode (and its volt equivalent) at discharge voltages of 4-15 V and discharge currents of 44-81 A, the radial distribution of the emission intensity of gadolinium atoms and singly charged ions in the arc channel at a voltage of 4.3 V, and the plasma electron temperature behind the anode were measured. The average charge of plasma ions at arc voltages of 3.5-8 V and a discharge current of 52 A and the average rate of gadolinium evaporation in the discharge were also determined.

  20. Properties of boron and phosphorous incorporated tetrahedral amorphous carbon films grown using filtered cathodic vacuum arc process

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Plasma Processed Materials Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Khan, Mohd Alim [Plasma Processed Materials Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Satyanarayana, B.S. [40, Sreeniketan, NDSE 24, New Delhi 110096 (India); Kumar, Sushil; Ishpal [Plasma Processed Materials Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2010-04-15

    This paper reports the electrical, mechanical, structural and field emission properties of as grown and also boron and phosphorous incorporated tetrahedral amorphous carbon (ta-C) films, deposited using a filtered cathodic vacuum arc process. The effect of varying boron and phosphorous content (up to 2.0 at.% in to ta-C) on the conductivity ({sigma}{sub D}), activation energy ({Delta}E{sub 1}), hardness, microstructure, emission threshold (E{sub turn-ON}) and emission current density (J) at 12.5 V/{mu}m of ta-C: B and ta-C: P films deposited at a high negative substrate bias of -300 V are reported. It is observed that both boron and phosphorous incorporation leads to a nearly an order increase in {sigma}{sub D} and corresponding decrease in {Delta}E{sub 1} and a slight increase in hardness as compared to as grown ta-C films. In the case of field assisted electron emission, it is observed that E{sub turn-ON} increases and J decreases. The changes are attributed to the changes in the sp{sup 3}/sp{sup 2} ratio of the films due to boron and phosphorous incorporation. The effect of boron on ta-C is to give a p-type effect whereas the effect of phosphorous gives n-type doping effect.

  1. Characterization of SiC in DLC/a-Si films prepared by pulsed filtered cathodic arc using Raman spectroscopy and XPS

    Energy Technology Data Exchange (ETDEWEB)

    Srisang, C. [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Western Digital (Thailand) Company Limited, Ayuthaya 13160 (Thailand); Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand); Asanithi, P. [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Siangchaew, K. [Western Digital (Thailand) Company Limited, Ayuthaya 13160 (Thailand); Pokaipisit, A. [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand); Limsuwan, P., E-mail: opticslaser@yahoo.com [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand)

    2012-05-15

    DLC/a-Si films were deposited on germanium substrates. a-Si film was initially deposited as a seed layer on the substrate using DC magnetron sputtering. DLC film was then deposited on the a-Si layer via a pulsed filtered cathodic arc (PFCA) system. In situ ellipsometry was used to monitor the thicknesses of the growth films, allowing a precise control over the a-Si and DLC thicknesses of 6 and 9 nm, respectively. It was found that carbon atoms implanting on a-Si layer act not only as a carbon source for DLC formation, but also as a source for SiC formation. The Raman peak positions at 796 cm{sup -1} and 972 cm{sup -1} corresponded to the LO and TO phonon modes of SiC, respectively, were observed. The results were also confirmed using TEM, XPS binding energy and XPS depth profile analysis.

  2. The mechanism of liquid metal jet formation in the cathode spot of vacuum arc discharge

    Science.gov (United States)

    Gashkov, M. A.; Zubarev, N. M.; Mesyats, G. A.; Uimanov, I. V.

    2016-08-01

    We have theoretically studied the dynamics of molten metal during crater formation in the cathode spot of vacuum arc discharge. At the initial stage, a liquid-metal ridge is formed around the crater. This process has been numerically simulated in the framework of the two-dimensional axisymmetric heat and mass transfer problem in the approximation of viscous incompressible liquid. At a more developed stage, the motion of liquid metal loses axial symmetry, which corresponds to a tendency toward jet formation. The development of azimuthal instabilities of the ridge is analyzed in terms of dispersion relations for surface waves. It is shown that maximum increments correspond to instability of the Rayleigh-Plateau type. Estimations of the time of formation of liquid metal jets and their probable number are obtained.

  3. Device quality ZnO grown using a Filtered Cathodic Vacuum Arc

    Energy Technology Data Exchange (ETDEWEB)

    Elzwawi, Salim, E-mail: salim.elzwawi@pg.canterbury.ac.nz [Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, Canterbury (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Kim, Hyung Suk, E-mail: david.kim@pg.canterbury.ac.nz [Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, Canterbury (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Heinhold, Robert, E-mail: robert.heinhold@pg.canterbury.ac.nz [Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, Canterbury (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Lynam, Max, E-mail: mfl38@uclive.ac.nz [Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, Canterbury (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Turner, Gary, E-mail: gary.turner@canterbury.ac.nz [Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, Canterbury (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Partridge, Jim G., E-mail: jim.partridge@canterbury.ac.nz [Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, Canterbury (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); McCulloch, Dougal G., E-mail: dougal.mcculloch@rmit.edu.au [Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, VIC 3001 (Australia)

    2012-08-01

    In this paper we report on the structural, electrical and optical characteristics of unintentionally doped ZnO films grown on a-plane sapphire substrates using the Filtered Cathodic Vacuum Arc (FCVA) technique. The resulting films showed considerable promise for device applications with properties including high transparency, moderate intrinsic carrier concentrations (10{sup 17}-10{sup 19} cm{sup -3}), electron mobilities up to 30 cm{sup 2}/Vs, low surface roughness (typically <2% of film thickness) and well-structured photoluminescence. Post-annealing in oxygen at temperatures up to 800 Degree-Sign C produced significant improvements in the properties of these films. Silver oxide Schottky diodes fabricated on FCVA ZnO showed ideality factors as low as 1.20 and good sensitivity to ultraviolet light.

  4. Structure and properties of Mo-containing diamond-like carbon films produced by ion source assisted cathodic arc ion-plating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.L. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 China (China); Wang, R.Y. [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Yan, S.J.; Zhang, R. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 China (China); Yang, B. [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Zhang, Z.D.; Huang, Z.H. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 China (China); Fu, D.J., E-mail: djfu@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 China (China)

    2013-12-01

    Ion source assisted cathodic arc ion-plating was used to synthesize molybdenum containing diamond-like carbon films. The element of molybdenum is uniformly distributed in our sample as analyzed by Rutherford backscattering spectroscopy. The surface morphology of the films was analyzed by scanning electron microscope and atomic force microscope. The structure and bond state of the molybdenum containing diamond-like carbon films were characterized by X-ray diffraction, high resolution transmission electron microscopy, Raman spectra, and X-ray photoelectron spectroscopy. The Mo content in the films was controlled by varying of the acetylene gas flow rates. The root-mean square roughness of the as-deposited sample was found in the range of 1.5 nm. The hardness of 35 GPa has been achieved at the optimum conditions of synthesis. This can be attributed to formation multilayer structure during deposition process and the formation of hard molybdenum carbide phase with C=Mo bonding. The results show that ion source assisted cathodic arc ion-plating is an effective technique to fabricate metal-containing carbon films with controlled metal contents.

  5. Formation of carbon deposits from coal in an arc plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.; Tian, Y.; Zhang, Y.; Zhu, S.; Lu, Y.; Zhang, Y.; Xie, K. [Taiyuan University of Technology, Taiyuan (China)

    2007-07-01

    The issue of deposited carbon (DC) on a reactor wall during the production of acetylene by the coal/arc plasma process is a potential obstacle for the industrialization process. The formation mechanism of DC is very difficult to reveal because the high complexity of coal and the volatile matter. Combining with quenching technique, the methane, liquid petroleum gas and benzene were employed as the model materials to roughly act as the light gas, chain and aromatic subcomponents of volatile matter, and then the reasonable formation mechanism of DC was subtly speculated accordingly.

  6. Microstructures and friction-wear behaviors of cathodic arc ion plated CrC coating at high temperatures

    Science.gov (United States)

    Dejun, Kong; Shouyu, Zhu

    2016-11-01

    A CrC coating was deposited on YT14 cemented carbide cutting tools by a CAIP (cathodic arc ion plating). The surface and interface morphologies, chemical composition, and phases of the obtained coating were analyzed with a field emission scanning electronic microscope (FESEM), energy dispersive spectroscope (EDS), and x-ray diffraction (XRD), respectively. The COFs (coefficient of frictions) and worn morphologies of the CrC coating at 300 °C, 400 °C, and 500 °C were investigated by using a high temperature tribometer, the effects of wear temperatures on the friction-wear properties of the CrC coating were discussed. The results show that the CrC coating exhibits fine dense structure, and the lattice constants of CrC coatings are dependent on processing parameters. The C and Cr elements in the coating are mutually diffused with the W, Co, and Ti in the substrate. The average COF of the coating at 300 °C, 400 °C, and 500 °C is 0.64, 0.63, and 0.40, respectively. The Cr2O3 layer formed on the CrC coating at 500 °C has excellent oxidation resistance, which improves lubrication and wear performance, the wear mechanism is abrasive wear and oxidation wear.

  7. Nanodiamond embedded ta-C composite film by pulsed filtered vacuum arc deposition from a single target

    Science.gov (United States)

    Iyer, Ajai; Etula, Jarkko; Ge, Yanling; Liu, Xuwen; Koskinen, Jari

    2016-11-01

    Detonation Nanodiamonds (DNDs) are known to have sp3 core, sp2 shell, small size (few nm) and are gaining importance as multi-functional nanoparticles. Diverse methods have been used to form composites, containing detonation nanodiamonds (DNDs) embedded in conductive and dielectric matrices for various applications. Here we show a method, wherein DND-ta-C composite film, consisting of DNDs embedded in ta-C matrix have been co-deposited from the same cathode by pulsed filtered cathodic vacuum arc method. Transmission Electron Microscope analysis of these films revel the presence of DNDs embedded in the matrix of amorphous carbon. Raman spectroscopy indicates that the presence of DNDs does not adversely affect the sp3 content of DND-ta-C composite film compared to ta-C film of same thickness. Nanoindentation and nanowear tests indicate that DND-ta-C composite films possess improved mechanical properties in comparison to ta-C films of similar thickness.

  8. Ultrathin diamond-like carbon films deposited by filtered carbon vacuum arcs

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre; Fong, Walton; Kulkarni, Ashok; Ryan, Francis W.; Bhatia, C. Singh

    2001-07-13

    Ultrathin (< 5 nm) hard carbon films are of great interest to the magnetic storage industry as the areal density approaches 100 Gbit/in{sup 2}. These films are used as overcoats to protect the magnetic layers on disk media and the active elements of the read-write slider. Tetrahedral amorphous carbon films can be produced by filtered cathodic arc deposition, but the films will only be accepted by the storage industry only if the ''macroparticle'' issue has been solved. Better plasma filters have been developed over recent years. Emphasis is put on the promising twist filter system - a compact, open structure that operates with pulsed arcs and high magnetic field. Based on corrosion tests it is shown that the macroparticle reduction by the twist filter is satisfactory for this demanding application, while plasma throughput is very high. Ultrathin hard carbon films have been synthesized using S-filter and twist filter systems. Film properties such as hardness, elastic modulus, wear, and corrosion resistance have been tested.

  9. Dense and high-stability Ti2AlN MAX phase coatings prepared by the combined cathodic arc/sputter technique

    Science.gov (United States)

    Wang, Zhenyu; Liu, Jingzhou; Wang, Li; Li, Xiaowei; Ke, Peiling; Wang, Aiying

    2017-02-01

    Ti2AlN belongs to a family of ternary nano-laminate alloys known as the MAX phases, which exhibit a unique combination of metallic and ceramic properties. In the present work, the dense and high-stability Ti2AlN coating has been successfully prepared through the combined cathodic arc/sputter deposition, followed by heat post-treatment. It was found that the as-deposited Ti-Al-N coating behaved a multilayer structure, where (Ti, N)-rich layer and Al-rich layer grew alternately, with a mixed phase constitution of TiN and TiAlx. After annealing at 800 °C under vacuum condition for 1.5 h, although the multilayer structure still was found, part of multilayer interfaces became indistinct and disappeared. In particular, the thickness of the Al-rich layer decreased in contrast to that of as-deposited coating due to the inner diffusion of the Al element. Moreover, the Ti2AlN MAX phase emerged as the major phase in the annealed coatings and its formation mechanism was also discussed in this study. The vacuum thermal analysis indicated that the formed Ti2AlN MAX phase exhibited a high-stability, which was mainly benefited from the large thickness and the dense structure. This advanced technique based on the combined cathodic arc/sputter method could be extended to deposit other MAX phase coatings with tailored high performance like good thermal stability, high corrosion and oxidation resistance etc. for the next protective coating materials.

  10. Ion angular distribution in plasma of vacuum arc ion source with composite cathode and elevated gas pressure.

    Science.gov (United States)

    Nikolaev, A G; Savkin, K P; Yushkov, G Yu; Oks, E M

    2014-02-01

    The Metal Vapor Vacuum Arc (MEVVA) ion sources are capable of generating ion beams of almost all metals of the periodic table. For this kind of ion source, a combination of gas feeding with magnetic field allows the simultaneous generation of both metal and gaseous ions. That makes the MEVVA ion source an excellent instrument for science and application. This work presents results of investigation for ion angular distributions in vacuum arc plasma of Mevva-V.Ru ion source for composite cathodes and for elevated gas pressure. It was shown that for all the cathode materials, singly charged ions have wider angular distribution than multiply charged ions. Increasing the working gas pressure leads to a significant change in the angular distribution of gaseous ions, while with the distribution of metal ions gas remains practically unchanged. The reasons for such different influences are discussed.

  11. Charge-state and element-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    CERN Document Server

    Franz, Robert; Anders, André

    2014-01-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al$^{+}$ regardless of the background gas species, whereas Cr$^{2+}$ ions were dominating in Ar and N$_2$ and Cr$^{+}$ in O$_2$ atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were mainly thermalised. In addition to the positively charged metal and gas ions, negatively charged oxygen an...

  12. Langmuir probe study of a titanium pulsed filtered cathodic arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Andruczyk, D [School of Physics, University of Sydney, NSW 2006 (Australia); Tarrant, R N [School of Physics, University of Sydney, NSW 2006 (Australia); James, B W [School of Physics, University of Sydney, NSW 2006 (Australia); Bilek, M M M [School of Physics, University of Sydney, NSW 2006 (Australia); Warr, G B [School of Physics, University of Sydney, NSW 2006 (Australia)

    2006-08-01

    A Langmuir probe has been used to make measurements of plasma parameters as a function of time at the substrate position in a magnetically-filtered pulsed cathodic arc discharge. Electron density, n{sub e}, and effective electron temperature, T{sub eff}, were calculated as a function of time from the I-V curves. The Druyvesteyn method was used to determine the electron energy distribution. Ion density was calculated using the assumption of plasma quasi-neutrality and an average ion charge state. Results show that over the plateau region (350-600 {mu}s) of the pulse, the electron energy distribution is Maxwellian with T{sub eff} = T{sub e} = (10 {+-} 1) eV. During the rise and fall times of the pulse, the electron energy distribution is non-Maxwellian with an effective temperature of up to 15 to 20 eV during the rise time and {approx}7 eV during the fall time. The electron density during the plateau is n{sub e} = (3.0-6.0 {+-} 0.5) x 10{sup 17} m{sup -3}.

  13. Kinetics of Zn cathodic deposition in alkaline zincate solution

    Institute of Scientific and Technical Information of China (English)

    PENG Wen-jie; WANG Yun-yan

    2006-01-01

    Kinetic parameters of the electrode reactions were measured by investigating steady-state current-potential behaviors. The Tafel slopes of cathodic and anodic processes are -0.113 8 V and -0.041 18 V, the anodic and cathodic apparent transfer coefficients are 0.519 3 and 1.435 2, respectively, and the stoichiometric number of rate-determining step is 1. The theoretical kinetics equation of electrode reaction was deduced, from which the dynamic parameters can be calculated as follows: the cathodic and anodic Tafel slopes are -0.118 V and -0.039 4 V, respectively, consisting with the experimental values. Finally, the correctness of the mechanism was further demonstrated using apparent transfer coefficient according to the electrochemical dynamic equation of multi-electron reaction.

  14. Nanostructured (Ti-Zr-NbN Coatings Obtained by Vacuum-arc Deposition Method: Structure and Properties

    Directory of Open Access Journals (Sweden)

    О.V. Maksakova

    2015-12-01

    Full Text Available In the article discusses the results of the deposition of nanostructured coatings obtained by vacuum arc deposition of cathode (Ti-Zr-Nb, and analyzes their structure, morphology, elemental composition, and tribological properties (friction, wear and adhesion. The structural analysis showed the formation of an FCC phase and BCC phase in a small amount (at a chamber pressure Р = 4×10 – 3 Тоrr. The results of tribological tests showed that the friction coefficient varies from 0.61 to 0.491, and Vickers hardness from 37 to 44.57 GPa when changing (increasing the pressure in the chamber. The analysis of the elements in the tracks of friction was studied.

  15. Cathodoluminescence of Cr-doped diamond-like carbon film by filtered cathodic vacuum arc plasma

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Meng-Wen; Jao, Jui-Yun [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan (China); Lin, Chun-Chun; Hsieh, Wei-Jen; Yang, Yu-Hsiang [Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 300, Taiwan (China); Cheng, Li-Shin; Shieu, F.S. [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan (China); Shih, Han C., E-mail: hcshih@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan (China); Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 300, Taiwan (China); Institute of Materials Science and Nanotechnology, Chinese Culture University, 55 Hwa Kang Road, Yang Ming Shan, Taipei 111, Taiwan (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The formation of the DLC:Cr films dependent on the flow rates of C{sub 2}H{sub 2}/Ar have been achieved in our FCVA plasma. Black-Right-Pointing-Pointer The amorphous DLC:Cr have high sp{sup 2} content can be completely converted to nanocrystalline Cr{sub 3}C{sub 2}. Black-Right-Pointing-Pointer The effect of doping with Cr is apparently to change the band structure of the DLC and its consequent cathodoluminescence property. - Abstract: Cr doped diamond-like carbon (DLC:Cr) film was synthesized in various flow rates of C{sub 2}H{sub 2}/Ar under a substrate voltage of -50 V at 500 Degree-Sign C by a filtered cathodic vacuum arc plasma. This work has found that the structure of the films was correlated to the flow rate of C{sub 2}H{sub 2}/Ar but the luminescence properties are similar. The cathodoluminescence spectra of DLC:Cr films obtained at 1.9-2.4 eV verifies that the luminescence from the films is in the visible region. The incorporation of Cr into the carbon network results in red emission shifted to 1.99 eV and the orange emission (2.03 eV) also appeared due to the transitions between chromium-related electron levels and {sigma}* states. The peak at 2.10 eV may result from the defects of the structures in DLC:Cr films.

  16. Comparative study of titanium carbide and nitride coatings grown by cathodic vacuum arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Devia, D.M. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al aeropuerto Campus La Nubia, Manizales (Colombia); Universidad Tecnologica de Pereira, Pereira (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al aeropuerto Campus La Nubia, Manizales (Colombia); PCM Computational Applications, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al aeropuerto Campus La Nubia, Manizales (Colombia); Arango, P.J. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al aeropuerto Campus La Nubia, Manizales (Colombia)

    2011-11-15

    Titanium nitride (TiN), titanium carbide (TiC) thin films and TiC/TiN bilayers have been deposited on AISI 304 stainless steel substrates by plasma assisted physical vapor deposition technique - reactive pulsed vacuum arc method. The coatings were characterized in terms of crystalline structure, microstructure and chemical nature by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. Tribological behavior was investigated using ball on disc technique. The average coefficient of friction was measured, showing lower values for the TiN/TiC bilayer. Dynamic wear curves were performed for each coating, observing a better wear resistance for TiN/TiC bilayers, compared to TiN and TiC monolayers. On the other hand, the TiCN formation in the TiN/TiC bilayer was observed, being attributed to the interdiffusion between TiN and TiC at the interface. Moreover, the substrate temperature influence was analysing observing a good behavior at T{sub S} = 115 Degree-Sign C.

  17. Simulation of the atomic and ionic densities in the ionization layer of a plasma arc with a binary cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, D; Marin, J A Sillero; Munoz-Serrano, E; Casado, E, E-mail: f92orhed@uco.e [Departamento de Fisica, Universidad de Cordoba, 14071 Cordoba (Spain)

    2009-04-21

    A physical model was developed to study the behaviour of the cathode material evaporated from a thoriated tungsten cathode of an atmospheric-pressure argon plasma arc. The densities of tungsten and thorium atoms and ions in the ionization layer were obtained, and the influence of the different physical processes on the evaporated cathode material was established. It was found that almost all of the neutral atoms evaporated from the cathode are ionized near the beginning of the ionization layer, i.e. near the boundary between the sheath and the ionization layer. Thorium ions are concentrated in a 4 {mu}m region near the beginning of this layer, while tungsten ions are found in a region of 9 {mu}m. The contribution of the electric force to the velocity of ions is the dominant contribution only near the beginning of the ionization layer. At a distance from the interface between the sheath and the ionization layer greater than 3.8 {mu}m in the case of thorium ions, and greater than 5 {mu}m in the case of tungsten ions, the contributions of the density gradient forces and the frictional forces are more important than the electric force contribution.

  18. Application of Taguchi method for the characterization of calcareous deposits formed by pulse cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Zamanzade, M.; Shahrabi, T. [Department of Materials Science and Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran (Iran); Gharacheh, E.A. [Department of Industrial Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran (Iran)

    2007-09-15

    In this study, the Taguchi method, a powerful tool to design optimization for quality, is used to find the optimal process parameters of pulse cathodic protection system for the calcareous deposits' formation. An orthogonal array, main effect and the signal-to-noise (S/N) ratio are employed to investigate the process parameters in order to achieve optimum final current density. Through this study also the main process parameters that affect the calcareous deposits' formation can be found. Experiments were carried out to confirm the effectiveness of this approach. From the results, chronoamperometric measurements have been used to evaluate the influence of pulse cathodic protection on decreasing the required cathodic current for protection and also decreasing the surface coverage. The morphology of the formed deposits has been evaluated through scanning electron microscopy (SEM) and chemical analysis of the formed deposits has been performed using X-ray diffraction (XRD). It is found that the different environmental conditions, i.e., Ca{sup 2+} concentration, Mg{sup 2+} concentration, rotation speed, and temperature significantly affect the final required current density of the pulse cathodic protection. The optimum levels of parameters at different frequencies are also presented. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  19. Investigations of the cathode region of an argon arc plasma by degenerate four-wave mixing laser spectroscopy and optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dzierzega, K [Marian Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Cracow (Poland); Pokrzywka, B [Mt. Suhora Observatory, Cracow Pedagogical University, ul. Podchorazych 2, 30-083 Cracow (Poland); Pellerin, S [LASEP, Universite d' Orleans-Centre Universitaire de Bourges, Rue Gaston Berger BP 4043, 18028 Bourges (France)

    2004-07-07

    Degenerate four-wave mixing (DFWM) laser spectroscopy was used in local studies of atmospheric pressure argon plasma generated in a free-burning arc. The results of plasma diagnostics using the DFWM method were compared to the results obtained with optical emission measurements. In the cathode region of the arc the maxima of both the DFWM signal and the emission coefficient for the 696.5 nm Ar I line depend on the distance from the cathode tip. This effect proves the departure of the plasma state from local thermal equilibrium (LTE) as it has been reported by many authors. On the other hand the Stark shifts of the 696.5 nm Ar I line determined by the DFWM method in relation to plasma diagnostic results show no deviations from LTE on the arc axis down to 1.0 mm from the cathode tip.

  20. Ion sources with arc-discharge plasma box driven by directly heated LaB(6) electron emitter or cold cathode.

    Science.gov (United States)

    Ivanov, Alexander A; Davydenko, Vladimir I; Deichuli, Petr P; Shulzhenko, Grigori I; Stupishin, Nikolay V

    2008-02-01

    In the Budker Institute, Novosibirsk, an ion source with arc-discharge plasma box has been developed in the recent years for application in thermonuclear devices for plasma diagnostics. Several modifications of the ion source were provided with extracted current ranging from 1 to 7 A and pulse duration of up to 4 s. Initially, the arc-discharge plasma box with cold cathode was used, with which pulse duration is limited to 2 s by the cathode overheating and sputtering in local arc spots. Recently, a directly heated LaB(6) electron emitter was employed instead, which has extended lifetime compared to the cold cathode. In the paper, characteristics of the beam produced with both arrangements of the plasma box are presented.

  1. The characteristics of arc beam shaping in hybrid plasma and laser deposition manufacturing

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Hai'ou; QIAN; Yingping; WANG; Guilan; ZHENG; Qiguang

    2006-01-01

    As a new direct metal prototyping technology,the hybrid plasma and laser deposition manufacturing (PLDM) is proposed in this paper. In order to figure out the characteristics of plasma arc beam and mould in the PLDM process of high temperature alloy, the high speed CCD camera is used to obtain the picture around the plasma arc. Afterwards the sketch of picture is clearly obtained. And the effect of laser parameter, such as average power, pulse width, pulse repetition frequency and the angle between laser beam and plasma arc beam on the plasma arc appearance, is studied experimentally. The results show that the modality of plasma arc beam is markedly influenced by laser beam. And the improvements of shape precision and surface state of the layer deposited by PLDM are confirmed.

  2. Large area deposition of field emission cathodes for flat panel displays

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, J; Hayes, J; Jankowski, A F; Morse, J

    1999-02-11

    The convention for field emission cathode (FEC) synthesis involves coating with a very-high tolerance in thickness uniformity using a planetary substrate fixture and a large source-to-substrate separation. New criteria for a deposition process must facilitate a reduction in the operating voltage by increasing the density of emitters through a reduction of cathode size and spacing. The objective of scaling the substrate size from small (less than 30 cm{sup 2}) to large (greater than 500 cm{sup 2}) areas further compounds manufacturing requirements to a point beyond that easily obtained by modifications to the convention for FEC deposition. A new patented approach to design, assemble, and operate a coating system enables FEC deposition over large areas through process control of source divergence coupled to incremental substrate positioning.

  3. The optimization of molybdenum back contact films for Cu(In,Ga)Se{sub 2} solar cells by the cathodic arc ion plating method

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Ki, E-mail: choyk@kitech.re.kr [Heat Treatment and Surface Engineering R and D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Gang Sam; Song, Young Sik; Lim, Tae Hong [Heat Treatment and Surface Engineering R and D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Jung, Donggeun [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2013-12-02

    Molybdenum back contact films for Cu(In,Ga)Se{sub 2} (CIGS) solar cells have been deposited using DC magnetron sputtering methods. The electronic pathway properties of the molybdenum film have been highly dependent on the working gas pressure in magnetron sputtering, which should be carefully controlled to obtain high conductivity and adhesion. A coating method, cathodic arc ion plating, was used for molybdenum back contact electrode fabrication. The aim of this work was to find a metallization method for CIGS solar cells, which has less sensitivity on the working pressure. The resistivity, grain size, growth structures, stress, and efficiency of the films in CIGS solar cells were investigated. The results reveal that the growth structures of the molybdenum films mainly affect the conductivity. The lowest electrical resistivity of the ion-plated molybdenum films was 6.9 μΩ-cm at a pressure of 0.7 Pa. The electrical resistivity variation showed a gently increasing slope with linearity under a working gas pressure of 13.3 Pa. However, a high value of the residual stress of over 1.3 GPa was measured. In order to reduce stress, titanium film was selected as the buffer layer material, and the back contact films were optimized by double-layer coating of two kinds of hetero-materials with arc ion plating. CIGS solar cells prepared molybdenum films to measure the efficiency and to examine the effects of the back contact electrode. The resistivity, grain size, and surface morphology of molybdenum films were measured by four-point probe, X-ray diffraction, and a scanning electron microscope. The residual stress of the films was calculated from differences in bending curvatures measured using a laser beam. - Highlights: • Molybdenum back contact films for Cu(In,Ga)Se{sub 2} solar cells were prepared by the cathodic arc ion plating. • The lowest electrical resistivity of molybdenum film was 6.9 μΩ-cm. • Titanium buffer layer reduced the compressive residual stress

  4. Synthesis of aluminium nanoparticles by arc evaporation of an aluminium cathode surface

    Indian Academy of Sciences (India)

    M Gazanfari; M Karimzadeh; S Ghorbani; M R Sadeghi; G Azizi; H Karimi; N Fattahi; Z Karimzadeh

    2014-06-01

    Aluminium nanoparticles (Al Nps) are synthesized using arc discharge method by applying direct current between aluminium electrodes in liquid environment without any use of vacuum equipment, heat exchangers, high temperatures furnaces and inert gases. After synthesis of Al Nps, in situ coating process on the nanoparticles was performed immediately. The effects of media on the yield and morphology of aluminium nanoparticles were investigated. Analysis result of the samples indicated that particle size was less than 30 nm, when 120 A/cm2 arc current was used. In addition, coating agent can affect arc velocity, arc stability, morphology and composition of the nanoparticles. Resultant nanoparticles were identified using X-ray powder diffraction (XRD), also their surface morphology was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and finally the accuracy of coating was assessed with infrared (IR) spectroscopy.

  5. High-rate and low-temperature growth of ZnO:Ga thin films by steered cathodic arc plasma evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chih-Hao [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Wang, Wei-Lin [Nano Materials Center, ITRI South, Industrial Technology Research Institute, Tainan, Taiwan (China); Hwang, Weng-Sing, E-mail: wshwang@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer ZnO:Ga (GZO) films are deposited on glass by steered cathodic arc plasma evaporation. Black-Right-Pointing-Pointer GZO films are grown at a high growth rate (220 nm/min) and low temperature (120 Degree-Sign C). Black-Right-Pointing-Pointer Films with low strain show low resistivity and high transparency. Black-Right-Pointing-Pointer Droplet size is reduced when a high-melting-point GZO ceramic target is adopted. Black-Right-Pointing-Pointer Metal-like conductivity indicates GZO films became degenerated semiconductors. - Abstract: Ga-doped ZnO (GZO) thin films with various thicknesses (120-520 nm) are deposited on the glass substrate at a high growth rate of 220 nm/min and a low temperature of 120 Degree-Sign C by a steered cathodic arc plasma evaporation (steered CAPE). The growth mechanism, microstructure, residual stress, surface morphology, electrical and optical properties, chemical states, electron transport behaviors and thickness effect of the GZO films are investigated. The film stress is gradually relaxed from -0.516 GPa to -0.090 GPa with thickness increasing. Transmission electron microscopy (TEM) images show that the GZO microstructure consists of c-axis textured columnar grains accompanied by some embedded nanodroplets. The droplet size is significantly reduced when a high-melting-point (1975 Degree-Sign C) GZO ceramic target is adopted. High-resolution TEM image shows the GZO crystallites nucleated directly onto the amorphous substrate. The electrical properties improve with increasing thickness. The lowest resistivity (4.72 Multiplication-Sign 10{sup -4} {Omega} cm) is achieved at the thickness of 520 nm, with a corresponding transmittance of 89% in the visible region. Temperature-dependent resistivity measurements show that metal-semiconductor transition temperature increases from 136 K to 225 K when decreasing the thickness, which is due to the increasing the localized states caused by the defects and

  6. Preparation of TiOx Films by Cathode Multi Arc Ion and Its Performance%TiO薄膜的多弧离子制备及表征

    Institute of Scientific and Technical Information of China (English)

    范多进; 范多旺; 王成龙; 刘红忠

    2007-01-01

    @@ Experimental Procedure Fig. 1 shows the custom-made Cathode Multi Arc Ion equipment, which is made up of three pars:CCS(computer contral system, Fig. 1's left part), Vacuum Chamber (Fig. 1's middle part) and Air Pump parts(Fig. 1's right part).

  7. ELECTRIC ARC WELDING DEPOSITION OF METALLIC SURFACES BY VIBRATING ELECTRODE IN PROTECTIVE GAS MEDIUM

    OpenAIRE

    N. Spiridonov; A. Кudina; V. Кurash

    2013-01-01

    The paper presents methods for obtaining qualitative metallic surfaces by electric arc welding deposition while using consumable electrode in a protective gas medium and executing regularized drop transfer of electrode metal. The drop transfer efficiency of electrode metal and productivity of welding deposition are significantly increased due to excitation of lateral vibrations in the consumable electrode with preset amplitude. The paper describes a method and a device for welding deposition ...

  8. Surface energy evaluation of unhydrogenated DLC thin film deposited by thermionic vacuum arc (TVA) method

    Science.gov (United States)

    Vladoiu, R.; Dinca, V.; Musa, G.

    2009-08-01

    The aim of this paper is concerned with the surface energy evaluation by contact angle measurements of DLC films deposited by thermionic vacuum arc (TVA) on different substrates: glass plate, zinc foil, stainless steel and alumina foil. TVA is an original method based on a combination of the evaporation by electron bombardment and anodic arc. The evaluation of the surface free energy has been carried out by surface energy evaluation system (SEE System). The influence of the experimental conditions is also investigated.

  9. Atmospheric pressure arc discharge with ablating graphite anode

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, V. A. [Keiser University, Fort Lauderdale Campus, FL, 33309, USA; Raitses, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2015-05-18

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  10. The current efficiency during the cathodic period of reversing current in copper powder deposition and the overall current efficiency

    Directory of Open Access Journals (Sweden)

    N. D. NIKOLIC

    2003-09-01

    Full Text Available The current efficiency during the cathodic period of reversing current in copper powder deposition was determined by measuring the quantity of hydrogen evolved. The diagrams from which the instantaneous and average current efficiencies for copper deposition can be extracted for any deposition time up to 30 min are given. A procedure for the calculation of the overall current efficiency is proposed.

  11. Porous nickel MCFC cathode coated by potentiostatically deposited cobalt oxide. III. Electrochemical behaviour in molten carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, M.J.; Gonzalez-Ayuso, T. [Dpto. Energia, CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Ringuede, A.; Cassir, M. [Ecole Nationale Superieure de Chimie de Paris, Laboratoire d' Electrochimie et de Chimie Analytique, UMR 7575 CNRS, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Daza, L. [Dpto. Energia, CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica, CSIC, Campus Cantoblanco, 28049 Madrid (Spain)

    2007-09-27

    A cobalt oxide coating was deposited on porous nickel by a potentiostatic electrochemical technique and studied in molten (Li{sub 0.52}Na{sub 0.48}){sub 2}CO{sub 3} eutectics at 650 C under an atmosphere of CO{sub 2}:Air (30:70). The structural and morphological characteristics of this coating before and after immersion in the molten electrolyte were described in a previous paper, showing that the initial Co{sub 3}O{sub 4} layer is rapidly transformed into LiCoO{sub 2} and afterwards probably into LiCo{sub 1-y}Ni{sub y}O{sub 2}. In the present part, the electrical and electrochemical behaviour of this promising novel MCFC cathode material was thoroughly analysed during 50 h by impedance spectroscopy. A porous nickel cathode was tested in the same conditions and taken as a reference. The oxidation and lithiation reactions are accelerated by the presence of cobalt. The charge transfer resistance is higher with the coated cathode but the diffusion resistance through this new material is lower in comparison with the state-of-the-art cathode. (author)

  12. A Study of Calcareous Deposits on Cathodically Protected Mild Steel in Artificial Seawater

    Directory of Open Access Journals (Sweden)

    Yuanfeng Yang

    2015-03-01

    Full Text Available Calcareous deposits were formed on steel under conditions of cathodic protection in artificial seawater at applied constant current densities ranging from 50 to 400 mA·m−2. The calcareous layers were characterized using a Field Emission Gun Scanning Electron Microscope (FEG SEM in conjunction with Energy Dispersive X-Ray Analysis (EDX, and Electrochemical Impedance Spectroscopy (EIS. At cathodic current densities of 50–100 mA·m−2 where corrosion was still occurring, a clear correlation existed between the iron containing corrosion product and the overlying magnesium hydroxide layer. This revealed that the mapping of magnesium rich areas on a steel surface can be used in the identification of local corrosion sites. At current densities of 150–200 mA·m−2, a layered deposit was shown to occur consisting of an inner magnesium-containing layer and an outer calcium-containing layer. At current densities of 300–400 mA·m−2, intense hydrogen bubbling through macroscopic pores in the deposits gave rise to cracking of the deposited film. Under such conditions deposits do not have a well-defined double layer structure. There is also preferential formation of magnesium-rich compounds near the steel surface at the early stages of polarisation and within the developing pores and cracks of calcareous deposits later on. Based on SEM/EDX investigation of calcareous depositions the impedance model was proposed and used to monitor in situ variations in steel corrosion resistance, and to calculate the thickness of formed deposits using the length of oxygen diffusion paths.

  13. Particle-in-cell and Monte Carlo collision simulations of the cathode sheath in an atmospheric direct-current arc discharge

    Science.gov (United States)

    Zhou, Wen; Guo, Heng; Jiang, Wei; Li, He-Ping; Li, Zeng-Yao; Lapenta, Giovanni

    2016-10-01

    A sheath is the transition region from plasma to a solid surface, which also plays a critical role in determining the behaviors of many lab and industrial plasmas. However, the cathode sheath properties in arc discharges are not well understood yet due to its multi-scale and kinetic features. In this letter, we have adopted an implicit particle-in-cell Monte Carlo collision (PIC-MCC) method to study the cathode sheath in an atmospheric arc discharge plasma. The cathode sheath thickness, number densities and averaged energies of electrons and ions, the electric field distribution, as well as the spatially averaged electron energy probability function (EEPF), are predicted self-consistently by using this newly developed kinetic model. It is also shown that the thermionic emission at the hot cathode surface is the dominant electron emission process to sustain the arc discharges, while the effects from secondary and field electron emissions are negligible. The present results verify the previous conjectures and experimental observations.

  14. Study of the feasibility of distributed cathodic arc as a plasma source for development of the technology for plasma separation of SNF and radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Amirov, R. Kh.; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A., E-mail: ravus46@yandex.ru; Yartsev, I. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-12-15

    One of the key problems in the development of plasma separation technology is designing a plasma source which uses condensed spent nuclear fuel (SNF) or nuclear wastes as a raw material. This paper covers the experimental study of the evaporation and ionization of model materials (gadolinium, niobium oxide, and titanium oxide). For these purposes, a vacuum arc with a heated cathode on the studied material was initiated and its parameters in different regimes were studied. During the experiment, the cathode temperature, arc current, arc voltage, and plasma radiation spectra were measured, and also probe measurements were carried out. It was found that the increase in the cathode heating power leads to the decrease in the arc voltage (to 3 V). This fact makes it possible to reduce the electron energy and achieve singly ionized plasma with a high degree of ionization to fulfill one of the requirements for plasma separation of SNF. This finding is supported by the analysis of the plasma radiation spectrum and the results of the probe diagnostics.

  15. Phase composition of cathodic deposits synthesized in flinak-k2taf7-kbf4 melt

    Directory of Open Access Journals (Sweden)

    Makarova O.V.

    2003-01-01

    Full Text Available The phase composition of cathodic deposits synthesized from FLINAK-K2TaF7-KBF4 melt has been studied by the X-ray diffraction method. It is shown that boron content in the electrodeposit grows as the cathodic potential is increased from peak R1 to peak R4 in the voltammogram. The scheme of changes in the phase composition depending on the increasing current density is given as follows: {β-Ta + Ta2B}R1 → {β-Ta + (Ta3B4 TaB}R2 → {TaB2}R3 → {TaB2 + B}R4.

  16. Effect of deposition parameters on the photocatalytic activity and bioactivity of TiO2 thin films deposited by vacuum arc on Ti-6Al-4V substrates.

    Science.gov (United States)

    Lilja, Mirjam; Welch, Ken; Astrand, Maria; Engqvist, Håkan; Strømme, Maria

    2012-05-01

    This article evaluates the influence of the main parameters in a cathodic arc deposition process on the microstructure of titanium dioxide thin coatings and correlates these to the photocatalytic activity (PCA) and in vitro bioactivity of the coatings. Bioactivity of all as deposited coatings was confirmed by the growth of uniform layers of hydroxyapatite (HA) after 7 days in phosphate buffered saline at 37°C. Comparison of the HA growth after 24 h indicated enhanced HA formation on coatings with small titanium dioxide grains of rutile and anatase phase. The results from the PCA studies showed that coatings containing a mixed microstructure of both anatase and rutile phases, with small grain sizes in the range of 26-30 nm and with a coating thickness of about 250 nm, exhibited enhanced activity as compared with other microstructures and higher coating thickness. The results of this study should be valuable for the development of new bioactive implant coatings with photocatalytically induced on-demand antibacterial properties.

  17. Structure and sliding wear behavior of 321 stainless steel/Al composite coating deposited by high velocity arc spraying technique

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-xiong; XU Bin-shi; LIU Yan; LIANG Xiu-bing; XU Yi

    2008-01-01

    A typical 321 stainless steel/aluminum composite coating (321/Al coating) was prepared by high velocity arc spraying technique (HVAS) with 321 stainless steel wire as the anode and aluminum wire as the cathode.The traditional 321 stainless steel coating was also prepared for comparison.Tribological properties of the coatings were evaluated with the ring-block wear tester under different conditions.The structure and worn surface of the coatings were analyzed by scanning electron microscopy (SEM),X-ray diffractometry (XRD) and energy dispersion spectroscopy (EDS).The results show that,except for aluminum phase addition in tne 321/Al coating,no other phases are created compared with the 321 coating.However,due to the addition of aluminum,the 321/Al coating forms a type of "ductile/hard phases inter-deposited" structure and performs quite different tribological behavior.Under the dry sliding condition,the anti-wear property of 321/Al coating is about 42% lower than that of 321 coating.Butunder the oil lubricated conditions with or without 32h oil-dipping pretreatment,the anti-wear property of 321/Al coating is about 9% and 5% higher than that of 321 coating,respectively.The anti-wear mechanism of the composite coating is mainly relevant to the decrease of oxide impurities and the strengthening action resulted from the "ductile/hard phases inter-deposited" coating structure.

  18. Ultra-small platinum and gold nanoparticles by arc plasma deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Hoon, E-mail: kim_sh@kist.re.kr [Center for Materials Architecturing, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Jeong, Young Eun; Ha, Heonphil; Byun, Ji Young [Center for Materials Architecturing, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Kim, Young Dok [Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-04-01

    Highlights: • Ultra-small (<2 nm) and bigger platinum and gold nanoparticles were produced by arc plasma deposition (APD). • Size and coverage of deposited nanoparticles were easily controlled with APD parameters. • Crystalline structures of deposited nanoparticles emerged only when the particle size was bigger than ∼2 nm. - Abstract: Ultra-small (<2 nm) nanoparticles of platinum and gold were produced by arc plasma deposition (APD) in a systematic way and the deposition behavior was studied. Nanoparticles were deposited on two dimensional amorphous carbon and amorphous titania thin films and characterized by transmission electron microscopy (TEM). Deposition behavior of nanoparticles by APD was studied with discharge voltage (V), discharge condenser capacitance (C), and the number of plasma pulse shots (n) as controllable parameters. The average size of intrinsic nanoparticles generated by APD process was as small as 0.9 nm and deposited nanoparticles began to have crystal structures from the particle size of about 2 nm. V was the most sensitive parameter to control the size and coverage of generated nanoparticles compared to C and n. Size of APD deposited nanoparticles was also influenced by the nature of evaporating materials and substrates.

  19. Cadmium cathodic deposition on polycrystalline p-selenium: Dark and photoelectrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Ragoisha, G.A., E-mail: ragoishag@bsu.b [Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya 14, Minsk 220030 (Belarus); Streltsov, E.A.; Rabchynski, S.M.; Ivanou, D.K. [Chemistry Department, Belarusian State University, Minsk 220030 (Belarus)

    2011-04-01

    Cathodic reduction of Cd{sup 2+} on p-Se proceeds at low overpotential in the dark and results in bulk Cd, while the underpotential deposition is kinetically inhibited. Cadmium adlayer is photoelectrochemically deposited on illuminated electrode 0.7 V above E(Cd{sup 2+}/Cd). The adlayer cathodic deposition under illumination proceeds with simultaneous formation of CdSe nanoparticles. Potentiodynamic electrochemical impedance spectroscopy has discriminated the two products of the photoelectrochemical reaction both by their potentials of anodic oxidation and by characteristic dependences of impedance on potential. Anodic oxidation of CdSe nanoparticles gives a sharp peak of real impedance in low frequencies close to the corresponding anodic current peak in cyclic voltammogram. The impedance peak appears below a threshold frequency f{sub t}. The latter separates two modes of diffusion in anodic dissolution of CdSe nanoparticles. The diffusion proceeds independently at different particles above f{sub t} and turns to cooperative mode below the threshold frequency. Due to this effect, information on spatial distribution of growing nuclei on electrode surface in early stages of electrodeposition can be obtained from potentiodynamic impedance spectra.

  20. Natural Deposit Coatings on Steel during Cathodic Protection and Hydrogen Ingress

    Directory of Open Access Journals (Sweden)

    Wayne R. Smith

    2015-11-01

    Full Text Available The calcareous coating formed during cathodic protection (CP in seawater is known to reduce the current demand by hindering the transport of species required to support the cathodic reactions and, thereby, improve the economic performance of CP systems. There is, however, uncertainty as to whether the coating reduces hydrogen uptake or indeed enhances it. To ascertain this, two sets of samples were polarized at −1.1 V (standard calomel electrode, SCE in 3.5% w/v NaCl and synthetic seawater (ASTM D1141 at 20 °C and the diffusible hydrogen content measured over a period of 530 h. Under such conditions reports suggest a deposit with two distinct layers, comprising an initial brucite layer followed by an aragonite layer. Contrary to other findings, a fine initial layer containing Ca and Mg followed by a brucite layer was deposited with a few specks of Ca-containing zones in synthetic seawater. The hydrogen uptake was found to occur within the initial 100 h of exposure in synthetic seawater whilst it continued without the benefit of a deposit coating, i.e., in 3.5 wt % NaCl solution.

  1. Synthesis of thick diamond films by direct current hot-cathode plasma chemical vapour deposition

    CERN Document Server

    Jin Zeng Sun; Bai Yi Zhen; Lu Xian Yi

    2002-01-01

    The method of direct current hot-cathode plasma chemical vapour deposition has been established. A long-time stable glow discharge at large discharge current and high gas pressure has been achieved by using a hot cathode in the temperature range from 1100 degree C to 1500 degree C and non-symmetrical configuration of the poles, in which the diameter of the cathode is larger than that of anode. High-quality thick diamond films, with a diameter of 40-50 mm and thickness of 0.5-4.2 mm, have been synthesized by this method. Transparent thick diamond films were grown over a range of growth rates between 5-10 mu m/h. Most of the thick diamond films have thermal conductivities of 10-12 W/K centre dot cm. The thick diamond films with high thermal conductivity can be used as a heat sink of semiconducting laser diode array and as a heat spreading and isolation substrate of multichip modules. The performance can be obviously improved

  2. Hollow cathode sustained plasma microjets: Characterization and application to diamond deposition

    Science.gov (United States)

    Sankaran, R. Mohan; Giapis, Konstantinos P.

    2002-09-01

    Extending the principle of operation of hollow cathode microdischarges to a tube geometry has allowed the formation of stable, high-pressure plasma microjets in a variety of gases including Ar, He, and H2. Direct current discharges are ignited between stainless steel capillary tubes (d=178 mum) which are operated as the cathode and a metal grid or plate that serves as the anode. Argon plasma microjets can be sustained in ambient air with plasma voltages as low as 260 V for cathode-anode gaps of 0.5 mm. At larger operating voltage, this gap can be extended up to several millimeters. Using a heated molybdenum substrate as the anode, plasma microjets in CH4/H2 mixtures have been used to deposit diamond crystals and polycrystalline films. Micro-Raman spectroscopy of these films shows mainly sp3 carbon content with slight shifting of the diamond peak due to internal stresses. Optical emission spectroscopy of the discharges used in the diamond growth experiments confirms the presence of atomic hydrogen and CH radicals.

  3. ELECTRIC ARC WELDING DEPOSITION OF METALLIC SURFACES BY VIBRATING ELECTRODE IN PROTECTIVE GAS MEDIUM

    Directory of Open Access Journals (Sweden)

    N. Spiridonov

    2013-01-01

    Full Text Available The paper presents methods for obtaining qualitative metallic surfaces by electric arc welding deposition while using consumable electrode in a protective gas medium and executing regularized drop transfer of electrode metal. The drop transfer efficiency of electrode metal and productivity of welding deposition are significantly increased due to excitation of lateral vibrations in the consumable electrode with preset amplitude. The paper describes a method and a device for welding deposition of metallic surfaces by vibrating  electrode where vibrations are excited by ultrasound.

  4. Diamond-Like Carbon Film Deposition Using DC Ion Source with Cold Hollow Cathode

    Directory of Open Access Journals (Sweden)

    E. F. Shevchenko

    2014-01-01

    Full Text Available Carbon diamond-like thin films on a silicon substrate were deposited by direct reactive ion beam method with an ion source based on Penning direct-current discharge system with cold hollow cathode. Deposition was performed under various conditions. The pressure (12–200 mPa and the plasma-forming gas composition consisting of different organic compounds and hydrogen (C3H8, CH4, Si(CH32Cl2, H2, the voltage of accelerating gap in the range 0.5–5 kV, and the substrate temperature in the range 20–850°C were varied. Synthesized films were researched using nanoindentation, Raman, and FTIR spectroscopy methods. Analysis of the experimental results was made in accordance with a developed model describing processes of growth of the amorphous and crystalline carbon materials.

  5. Growth and characteristics of tantalum oxide thin films deposited using thermionic vacuum arc technology

    Science.gov (United States)

    Vladoiu, Rodica; Ciupina, Victor; Mandes, Aurelia; Dinca, Virginia; Prodan, Madalina; Musa, Geavit

    2010-11-01

    Tantalum pentoxide (Ta2O5) thin films were synthesized using thermionic vacuum arc (TVA) technology. TVA is an original deposition method using a combination of anodic arc and electron gun system for the growth of thin films from solid precursors under vacuum of 10-6 Torr. The properties of the deposited Ta2O5 thin films were investigated in terms of wettability, refractive index, morphology, and structure. The surface free energy was determined by means of surface energy evaluation system indicating a hydrophilic character and the refractive index was measured by Filmetrics F20 device. The morphology was determined from bright field transmission electron microscopy (TEM) image performed by Philips CM 120 ST TEM system. It exhibits nanoparticles of 3-6 nm diameter smoothly distributed. Selected area electron diffraction pattern revealed the contrast fringes given by complex polycrystalline particles included in the amorphous film. The measured fringes could be indexed using monoclinic structure of Ta2O5.

  6. Structure and properties of protective coatings produced by vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Leontiev, S.A. [Leningradsky Metallitchesky Zavod, St. Petersburg (Russian Federation); Kuznetsov, V.G. [Machine Research Problems Institute, Russian Academy of Sciences V.O., Bolshoy pr. 61, 199178 St. Petersburg (Russian Federation); Rybnikov, A.I. [Polzunov Central Boiler and Turbine Institute (NPO TsKTI), Polytechnicheskaya 24, 194021 St. Petersburg (Russian Federation); Burov, I.V. [Machine Research Problems Institute, Russian Academy of Sciences V.O., Bolshoy pr. 61, 199178 St. Petersburg (Russian Federation)

    1995-11-01

    CoCrAlY, NiCrWTi and CoCrAlY/ZrO{sub 2}+8wt.%Y{sub 2}O{sub 3} coatings were deposited by vacuum arc evaporation. Coatings were deposited onto specimens for metallographic analysis, corrosion resistance testing, thermal fatigue testing, high-frequency fatigue and onto gas turbine blades. It has been shown by testing that the developed procedures ensure gas turbine blade coatings of high quality comparable with those manufactured by electron beam procedures. (orig.)

  7. Wear Resistance of Deposited Layer Using Nickel-Based Composite Powders by Plasma-Arc Surfacing

    Institute of Scientific and Technical Information of China (English)

    DONG Li-hong; ZHU Sheng; XU Bin-shi; DU Ze-yu

    2004-01-01

    Nickel-based composite alloy powders were deposited on the surface of Q235 steel by plasma-arc surfacing in this work. Optimal proportions of elements intensifying the composite powders were ascertained by orthogonal design of three factors and three levels and orthogonal polynomial regression analysis , which Cr , Mn , W were 10% ,4% and 7 % respectively.Phase and structure of deposited materials were characterized by optical microscope and X- ray diffraction. Hardness tests and wear resistance tests were carried out to determine the performance of the deposited layers. The results show that the microstructure of deposited layers of composite powders mainly consist of γ-( Ni, Fe ) , γ- Ni, WC, W2 C, Mn31Si12, Cr23 C6,Cr7 C3, Cr, NiB, Ni2B etc. Wear resistance and hardness of the surface increased evidently.

  8. Plasma environment during hot cathode direct current discharge plasma chemical vapor deposition of diamond films

    Institute of Scientific and Technical Information of China (English)

    朱晓东; 詹如娟; 周海洋; 胡敏; 温晓辉; 周贵恩; 李凡庆

    1999-01-01

    The plasma characteristics have been investigated in situ by using optical emission spectroscopy (OES) and the Langmuir probe during hot cathode direct current discharge plasma chemical vapor deposition of diamond films. The changes of atomic H and CH radical in the ground state have been calculated quantitatively according to the results of OES and the Langmuir probe measurement as discharge current density varied. It is shown that atomic H and CH radicals both in the ground state and in the excited state increase with the enhancement of the discharge current density in the plasma. The electron density and CH emission intensity increase linearly with the enhancement of discharge current densities. The generation of different carbon-containing radicals is related to the elevation of electron temperature. Combining the growth process of diamond films and the diagnostic results, it is shown that atomic H in the excited state may improve the diamond growth efficiently, and the increase of electron temperat

  9. The Chahnaly low sulfidation epithermal gold deposit, western Makran volcanic arc, southeastern Iran

    Science.gov (United States)

    Sholeh, Ali; Rastad, Ebrahim; Huston, David L.; Gemmell, J. Bruce; Taylor, Ryan D.

    2016-01-01

    The Chahnaly low-sulfidation epithermal Au deposit and nearby Au prospects are located northwest of the intermittently active Bazman stratovolcano on the western end of the Makran volcanic arc, which formed as the result of subduction of the remnant Neo-Tethyan oceanic crust beneath the Lut block. The arc hosts the Siah Jangal epithermal and Kharestan porphyry prospects, near Taftan volcano, as well as the Saindak Cu-Au porphyry deposit and world-class Reko Diq Cu-Au porphyry deposit, near Koh-i-Sultan volcano to the east-northeast in Pakistan. The host rocks for the Chahnaly deposit include early Miocene andesite and andesitic volcaniclastic rocks that are intruded by younger dacitic domes. Unaltered late Miocene dacitic ignimbrites overlie these rocks. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb zircon geochronology data yield ages between 21.8 and 9.9 Ma for the acidic-intermediate regional volcanism. The most recent volcanic activity of the Bazman stratovolcano involved extrusion of an olivine basalt during Pliocene to Quaternary times. Interpretation of geochemical data indicate that the volcanic rocks are synsubduction and calc-alkaline to subalkaline. The lack of a significant negative Eu anomaly, a listric-shaped rare earth element pattern, and moderate La/Yb ratios of host suites indicate a high water content of the source magma.

  10. Corrosion Resistance Behavior of Single-Layer Cathodic Arc PVD Nitride-Base Coatings in 1M HCl and 3.5 pct NaCl Solutions

    Science.gov (United States)

    Adesina, Akeem Yusuf; Gasem, Zuhair M.; Madhan Kumar, Arumugam

    2017-01-01

    The electrochemical behavior of single-layer TiN, CrN, CrAlN, and TiAlN coatings on 304 stainless steel substrate, deposited using state-of-the-art and industrial size cathodic arc PVD machine, were evaluated in 1M HCl and 3.5 pct NaCl solutions. The corrosion behavior of the blank and coated substrates was analyzed by electrochemical impedance spectroscopy (EIS), linear polarization resistance, and potentiodynamic polarization. Bond-coat layers of pure-Ti, pure-Cr, alloyed-CrAl, and alloyed-TiAl for TiN, CrN, CrAlN, and TiAlN coatings were, respectively, first deposited for improved coating adhesion before the actual coating. The average coating thickness was about 1.80 µm. Results showed that the corrosion potentials (E corr) of the coated substrates were shifted to more noble values which indicated improvement of the coated substrate resistance to corrosion susceptibility. The corrosion current densities were lower for all coated substrates as compared to the blank substrate. Similarly, EIS parameters showed that these coatings possessed improved resistance to defects and pores in similar solution compared to the same nitride coatings developed by magnetron sputtering. The charge transfer resistance (R ct) can be ranked in the following order: TiAlN > CrN > TiN > CrAlN in both media except in NaCl solution where R ct of TiN is lowest. While the pore resistance (R po) followed the order: CrAlN > CrN > TiAlN > TiN in HCl solution and TiAlN > CrN > CrAlN > TiN in NaCl solution. It is found that TiAlN coating has the highest protective efficiencies of 79 and 99 pct in 1M HCl and 3.5 pct NaCl, respectively. SEM analysis of the corroded substrates in both media was also presented.

  11. Corrosion Resistance Behavior of Single-Layer Cathodic Arc PVD Nitride-Base Coatings in 1M HCl and 3.5 pct NaCl Solutions

    Science.gov (United States)

    Adesina, Akeem Yusuf; Gasem, Zuhair M.; Madhan Kumar, Arumugam

    2017-04-01

    The electrochemical behavior of single-layer TiN, CrN, CrAlN, and TiAlN coatings on 304 stainless steel substrate, deposited using state-of-the-art and industrial size cathodic arc PVD machine, were evaluated in 1M HCl and 3.5 pct NaCl solutions. The corrosion behavior of the blank and coated substrates was analyzed by electrochemical impedance spectroscopy (EIS), linear polarization resistance, and potentiodynamic polarization. Bond-coat layers of pure-Ti, pure-Cr, alloyed-CrAl, and alloyed-TiAl for TiN, CrN, CrAlN, and TiAlN coatings were, respectively, first deposited for improved coating adhesion before the actual coating. The average coating thickness was about 1.80 µm. Results showed that the corrosion potentials ( E corr) of the coated substrates were shifted to more noble values which indicated improvement of the coated substrate resistance to corrosion susceptibility. The corrosion current densities were lower for all coated substrates as compared to the blank substrate. Similarly, EIS parameters showed that these coatings possessed improved resistance to defects and pores in similar solution compared to the same nitride coatings developed by magnetron sputtering. The charge transfer resistance ( R ct) can be ranked in the following order: TiAlN > CrN > TiN > CrAlN in both media except in NaCl solution where R ct of TiN is lowest. While the pore resistance ( R po) followed the order: CrAlN > CrN > TiAlN > TiN in HCl solution and TiAlN > CrN > CrAlN > TiN in NaCl solution. It is found that TiAlN coating has the highest protective efficiencies of 79 and 99 pct in 1M HCl and 3.5 pct NaCl, respectively. SEM analysis of the corroded substrates in both media was also presented.

  12. Comparative study of structural and electro-optical properties of ZnO:Ga films grown by steered cathodic arc plasma evaporation and sputtering on plastic and their application on polymer-based organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chih-Hao, E-mail: dataman888@hotmail.com [R& D Division, Walsin Technology Corporation, Kaohsiung, Taiwan (China); Hsiao, Yu-Jen [National Nano Device Laboratories, National Applied Research Laboratories, Tainan, Taiwan (China); Hwang, Weng-Sing [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2016-08-01

    Ga-doped ZnO (GZO) films with various thicknesses (105–490 nm) were deposited on PET substrates at a low temperature of 90 °C by a steered cathodic arc plasma evaporation (steered CAPE), and a GZO film with a thickness of 400 nm was deposited at 90 °C by a magnetron sputtering (MS) for comparison. The comparative analysis of the microstructure, residual stress, surface morphology, electrical and optical properties, chemical states, and doping efficiency of the films produced by the steered CAPE and MS processes was performed, and the effect of thickness on the CAPE-grown GZO films was investigated in detail. The results showed that the GZO films grown by steered CAPE exhibited higher crystallinity and lower internal stress than those deposited by MS. The transmittance and electrical properties were also enhanced for the steered CAPE-grown films. The figure of merit (Φ = T{sup 10}/R{sub s}, where T is the transmittance and R{sub s} is the sheet resistance in Ω/□). was used to evaluate the performance of the electro-optical properties. The GZO films with a thickness of 400 nm deposited by CAPE had the highest Φ value, 1.94 × 10{sup −2} Ω{sup −1}, a corresponding average visible transmittance of 88.8% and resistivity of 6.29 × 10{sup −4} Ω·cm. In contrast, the Φ value of MS-deposited GZO film with a thickness of 400 nm is only 1.1 × 10{sup −3} Ω{sup −1}. This can be attributed to the increase in crystalline size, [0001] preferred orientation, decrease in stacking faults density and Ar contamination in steered CAPE-grown films, leading to increases in the Hall mobility and carrier density. In addition, the power conversion efficiency (PCE) of organic solar cells was significantly improved by using the CAPE-grown GZO electrode, and the PCE values were 1.2% and 1.7% for the devices with MS-grown and CAPE-grown GZO electrodes, respectively. - Highlights: • ZnO:Ga (GZO) films were grown on PET by steered cathodic arc plasma evaporation (CAPE

  13. Deposition of titanium nitride layers by electric arc - Reactive plasma spraying method

    Energy Technology Data Exchange (ETDEWEB)

    Serban, Viorel-Aurel [University ' Politehnica' of Timisoara, Faculty of Mechanical Engineering, No. 1 Mihai Viteazu Boulevard, 300222 Timisoara (Romania); Rosu, Radu Alexandru, E-mail: raduniz@gmail.com [University ' Politehnica' of Timisoara, Faculty of Mechanical Engineering, No. 1 Mihai Viteazu Boulevard, 300222 Timisoara (Romania); Bucur, Alexandra Ioana [National Institute for Research and Development in Electrochemistry and Condensed Matter Timisoara, Analysis and Characterization Department, No. 1 P Andronescu Street, Timisoara 300224 (Romania); Pascu, Doru Romulus [Romania National Research and Development Institute for Welding and Material Testing Timisoara, No. 30 Mihai Viteazu Boulevard, 300222 Timisoara (Romania)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Titanium nitride layers deposited by electric arc - reactive plasma spraying method. Black-Right-Pointing-Pointer Deposition of titanium nitride layers on C45 steel at different spraying distances. Black-Right-Pointing-Pointer Characterization of the coatings hardness as function of the spraying distances. Black-Right-Pointing-Pointer Determination of the corrosion behavior of titanium nitride layers obtained. - Abstract: Titanium nitride (TiN) is a ceramic material which possesses high mechanical properties, being often used in order to cover cutting tools, thus increasing their lifetime, and also for covering components which are working in corrosive environments. The paper presents the experimental results on deposition of titanium nitride coatings by a new combined method (reactive plasma spraying and electric arc thermal spraying). In this way the advantages of each method in part are combined, obtaining improved quality coatings in the same time achieving high productivity. Commercially pure titanium wire and C45 steel as substrate were used for experiments. X-ray diffraction analysis shows that the deposited coatings are composed of titanium nitride (TiN, Ti{sub 2}N) and small amounts of Ti{sub 3}O. The microstructure of the deposited layers, investigated both by optical and scanning electron microscopy, shows that the coatings are dense, compact, without cracks and with low porosity. Vickers microhardness of the coatings presents maximum values of 912 HV0.1. The corrosion tests in 3%NaCl solution show that the deposited layers have a high corrosion resistance compared to unalloyed steel substrate.

  14. High photoelectron emission from Co-diffused MgO deposited using arc plasma gun

    Science.gov (United States)

    Yamamoto, Shin-ichi; Kosuga, Hiroki

    2015-08-01

    MgO has several advantageous characteristics and has been applied in various fields. In this study, we deposited Co nanoparticles in an island pattern on a Si substrate using an arc plasma gun (APG). We subsequently formed a MgO thin film on this substrate by metal-organic decomposition (MOD), which enables the formation of films in the atmosphere, thereby yielding a double-layer structure. The MgO thin film formed on Co nanoparticles deposited using the APG with 500 pulses of arc discharge exhibited improved crystallinity and photoelectron emission at least threefold higher than that of a MgO thin film formed directly without depositing Co nanoparticles. Although the transmittance of the specimen formed by depositing Co nanoparticles was initially 30% or lower, it increased to greater than 90% after the formation of the MgO thin film and the dispersion of the Co nanoparticles in the MgO thin film during heat treatment at 900 °C. Our results clarify that the characteristics of MgO thin films are markedly improved by depositing Co nanoparticles before forming the films. The results of Kelvin probe force microscopy (KPFM) indicate that the outermost surface of the Co material had become CoO (cobalt oxide) with the dispersion of Co nanoparticles in the MgO thin film. The lattice parameter of CoO nanoparticles (an-axis lattice parameter of 4.2615 Å) after heating matches well with that of MgO (4.2126 Å). The MgO thin films that grew in conjunction with the CoO nanoparticles were highly crystallized. We successfully established a high-performance, cost-effective bottom-up process that requires no ion injection by dispersing Co nanoparticles in a MgO thin film through heat treatment.

  15. Cathodic electrophoretic deposition of bismuth oxide (Bi{sub 2}O{sub 3}) coatings and their photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaogang [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Li, Xueming, E-mail: xueminglicqu@126.com [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Lai, Chuan [School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000 (China); Li, Wulin [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Key Laboratory of Optoelectronic Technology and Systems (Education Ministry of China), Chongqing University, 400044 (China); Zhang, Daixiong [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Xiong, Zhongshu [School of Foreign Languages and Literature, Chongqing Normal University, Chongqing 401331 (China)

    2015-03-15

    Graphical abstract: Bismuth oxide (Bi{sub 2}O{sub 3}) coating has been prepared by cathodic electrophoretic deposition method and exhibits high photocatalytic activities for the degradation of Rhodamine B. - Highlights: • The nano-Bi{sub 2}O{sub 3} coatings have been firstly successfully fabricated by EPD method. • The EPD deposition mechanism of Bi{sub 2}O{sub 3} coatings is firstly given. • Deposition dynamics are investigated by regulating different deposition times and applied field strengths in detail. • Obtained coating show great photocatalytic activities for the degradation of Rhodamine B. - Abstract: In this study, cathodic electrophoretic deposition (EPD), a low cost, one-step and flexible method, has been successfully developed to prepare bismuth oxide (Bi{sub 2}O{sub 3}) coatings. Stable suspensions consisted of isopropyl alcohol and trace additive-polyethyleneimine. Deposition was achieved on the cathode at applied field strengths of 5–25 V mm{sup −1} using a total solids loading of 0.5–2 g L{sup −1} at ambient temperature and pressure. The deposition mechanism of Bi{sub 2}O{sub 3} coatings was firstly given, and deposition kinetics were investigated in detail. The deposits were characterized qualitatively by field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDS) observation, atomic force microscope (AFM), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) analysis, respectively. Moreover, the photocatalytic activities of obtained coatings were evaluated through degradation of Rhodamine B under ultraviolet and visible light irradiation.

  16. Cell adhesion to cathodic arc plasma deposited CrAlSiN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Kyu, E-mail: skim@ulsan.ac.kr [School of Materials Science and Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Pham, Vuong-Hung [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Chong-Hyun [Department of Food Science, Cornell University, Ithaca, NY 14853 (United States)

    2012-07-01

    Osteoblast cell response (cell adhesion, actin cytoskeleton and focal contact adhesion as well as cell proliferation) to CrN, CrAlSiN and Ti thin films was evaluated in vitro. Cell adhesion and actin stress fibers organization depended on the film composition significantly. Immunofluorescent staining of vinculin in osteoblast cells showed good focal contact adhesion on the CrAlSiN and Ti thin films but not on the CrN thin films. Cell proliferation was significantly greater on the CrAlSiN thin films as well as on Ti thin films than on the CrN thin films.

  17. Structural investigation of two carbon nitride solids produced by cathodic arc deposition and nitrogen implantation

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, A.R.; McCulloch, D.; McKenzie, D.R.; Yin, Y.; Gerstner, E.G. [New South Wales Univ., Kensington, NSW (Australia)

    1996-12-31

    Carbon nitride materials have been the focus of research efforts worldwide. Most materials studied have been amorphous, with only a few groups claiming to have found a crystalline material. In this paper, carbon nitride materials prepared by two different techniques are analysed, and found to be remarkably similar in bonding and structure. The materials appear to have a primarily sp{sup 2} bonded carbon structure with a lower bond length than found in an amorphous carbon. This is explained by nitrogen substituting into `rings` to a saturation level of about one nitrogen per three carbon atoms. No evidence was found for a crystalline structure of formula C{sub 3}N{sub 4}, or any amorphous derivative of it. 16 refs., 1 tab., 5 figs.

  18. Microstructural Evolution and Mechanical Properties of Inconel 625 Alloy during Pulsed Plasma Arc Deposition Process

    Institute of Scientific and Technical Information of China (English)

    Fujia Xu; Yaohui Lv; Yuxin Liu; Fengyuan Shu; Peng He; Binshi Xu

    2013-01-01

    Pulsed plasma arc deposition (PPAD),which combines pulsed plasma cladding with rapid prototyping,is a promising technology for manufacturing near net shape components due to its superiority in cost and convenience of processing.In the present research,PPAD was successfully used to fabricate the Ni-based superalloy Inconel 625 components.The microstructures and mechanical properties of deposits were investigated by scanning electron microscopy (SEM),optical microscopy (OM),transmission electron microscopy (TEM) with energy dispersive spectrometer (EDS),microhardness and tensile testers.It was found that the as-deposited structure exhibited homogenous columnar dendrite structure,which grew epitaxially along the deposition direction.Moreover,some intermetallic phases such as Laves phase,minor MC (NbC,TiC) carbides and needle-like δ-Ni3Nb were observed in γ-Ni matrix.Precipitation mechanism and distribution characteristics of these intermetallic phases in the as-deposited 625 alloy sample were analyzed.In order to evaluate the mechanical properties of the deposits,microhardness was measured at various location (including transverse plane and longitudinal plane).The results revealed hardness was in the range of 260-285 HVo.2.In particular,microhardness at the interface region between two adjacent deposited layers was slightly higher than that at other regions due to highly refined structure and the disperse distribution of Laves particles.Finally,the influence of precipitation phases and fabrication strategies on the tensile properties of the as-deposited samples was investigated.The failure modes of the tensile specimens were analyzed with fractography.

  19. NiCrSiB Coatings Deposited by Plasma Transferred Arc on Different Steel Substrates

    Science.gov (United States)

    Reinaldo, P. R.; D'Oliveira, A. S. C. M.

    2013-02-01

    Colmonoy 6 (NiCrSiB) is a Ni-based alloy recognized for its superior mechanical properties, attributed to the presence of a dispersion of hard carbides and borides, which is strongly dependent on processing technique. This work gathered microstructure data from the literature and analyzed Colmonoy 6 coatings deposited by plasma transferred arc hardfacing. The aim of the study was to determine the influence of PTA deposition parameters and substrate chemical composition on NiCrSiB coating characteristics. Coatings were characterized in terms of their hardness, dilution, and microstructure, as well as mass loss during abrasive sliding wear tests. The results showed that coating performance is strongly dependent on the chemical composition of the substrate. Carbon steel substrate yielded coatings with greater wear resistance. Processing parameters also alter the performance of coatings, and the lower current and lower travel speed result in reduced mass loss.

  20. Effects of deposition parameters on microstructure and thermal conductivity of diamond films deposited by DC arc plasma jet chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    QU Quan-yan; QIU Wan-qi; ZENG De-chang; LIU Zhong-wu; DAI Ming-jiang; ZHOU Ke-song

    2009-01-01

    The uniform diamond films with 60 mm in diameter were deposited by improved DC arc plasma jet chemical vapor deposition technique. The structure of the film was characterized by scanning electronic microcopy(SEM) and laser Raman spectrometry. The thermal conductivity was measured by a photo thermal deflection technique. The effects of main deposition parameters on microstructure and thermal conductivity of the films were investigated. The results show that high thermal conductivity, 10.0 W/(K-cm), can be obtained at a CH4 concentration of 1.5% (volume fraction) and the substrate temperatures of 880-920 ℃ due to the high density and high purity of the film. A low pressure difference between nozzle and vacuum chamber is also beneficial to the high thermal conductivity.

  1. Enhancing Micro-Cathode Arc Thruster (muCAT) Plasma Generation to Analyze Magnetic Field Angle Effects on Sheath Formation in Hall Thrusters

    Science.gov (United States)

    Lukas, Joseph Nicholas

    Using a Delta IV or Atlas V launch vehicle to send a payload into Low Earth Orbit can cost between 13,000 and 14,000 per kilogram. With payloads that utilize a propulsion system, maximizing the efficiency of that propulsion system would not only be financially beneficial, but could also increase the range of possible missions and allow for a longer mission lifetime. This dissertation looks into efficiency increases in the Micro-Cathode Arc Thruster (muCAT) and Hall Thruster. The muCAT is an electric propulsion device that ablates solid cathode material, through an electrical arc discharge, to create plasma and ultimately produce thrust. About 90% of the arc discharge current is conducted by electrons, which go toward heating the anode and contribute very little to thrust, with only the remaining 10% going toward thrust in the form of ion current. I will discuss the results of an experiment in which electron heating on a low melting point anode was shown to increase ion current, which theoretically should increase thrust levels at low frequencies. Another feature of the muCAT is the use of an external magnetic solenoid which increases thrust, ion current, and causes uniform cathode erosion. An experiment has shown that efficiency can also be increased by removing the external magnetic field power supply and, instead, utilizing the residual arc current to power the magnetic solenoid. A Hall Thruster is a type of electric propulsion device that accelerates ions across an electric potential between an anode and magnetically trapped electrons. The limiting factor in Hall Thruster operation is the lifetime of the wall material. During operation, a positively charged layer forms over the surface of the walls, known as a plasma sheath, which contributes to wall erosion. Therefore, by reducing or eliminating the sheath layer, Hall Thruster operational lifetime can increase. Computational modeling has shown that large magnetic field angles and large perpendicular electric

  2. Unified model to the Tungsten inert Gas welding process including the cathode, the plasma and the anode; Modele couple cathode-plasma-piece en vue de la simulation du procede de soudage a l'arc TIG

    Energy Technology Data Exchange (ETDEWEB)

    Brochard, M.

    2009-06-15

    During this work, a 2D axially symmetric model of a TIG arc welding process had been developed in order to predict for given welding parameters, the needed variables for a designer of welded assembly: the heat input on the work piece, the weld pool geometry,... The developed model, using the Cast3M finite elements software, deals with the physical phenomena acting in each part of the process: the cathode, the plasma, the work piece with a weld pool, and the interfaces between these parts. To solve this model, the thermohydraulics equations are coupled with the electromagnetic equations that are calculated in part using the least squares finite element method. The beginning of the model validation consisted in comparing the results obtained with the ones available in the scientific literature. Thus, this step points out the action of each force in the weld pool, the contribution of each heat flux in the energy balance. Finally, to validate the model predictiveness, experimental and numerical sensitivity analyses were conducted using a design of experiments approach. The effects of the process current, the arc gap and the electrode tip angle on the weld pool geometry and the energy transferred to the work piece and the arc efficiency were studied. The good agreement obtained by the developed model for these outputs shows the good reproduction of the process physics. (author)

  3. Cold test results for the test cavities w/out the deposited lead photo cathode

    CERN Document Server

    Sekutowicz, J

    2013-01-01

    In this report we present tests of a 1.5-cell superconducting photo-injector cavity, which was built in the frame of Task 4. The cavity was tested twice: without the cathode (baseline test) and with the lead photo-cathode. The result of tests was very encouraging and the decision was made to continue the experiment, beyond scope of the task, at HZB in Berlin to learn more about quality of the cathode.

  4. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis

    Directory of Open Access Journals (Sweden)

    Grzegorz Raniszewski

    2017-02-01

    Full Text Available One of the most common methods of carbon nanotubes (CNTs synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs. It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.

  5. Magmatism and Epithermal Gold-Silver Deposits of the Southern Ancestral Cascade Arc, Western Nevada and Eastern California

    Science.gov (United States)

    John, David A.; du Bray, Edward A.; Henry, Christopher D.; Vikre, Peter

    2015-01-01

    Many epithermal gold-silver deposits are temporally and spatially associated with late Oligocene to Pliocene magmatism of the southern ancestral Cascade arc in western Nevada and eastern California. These deposits, which include both quartz-adularia (low- and intermediate-sulfidation; Comstock Lode, Tonopah, Bodie) and quartz-alunite (high-sulfidation; Goldfield, Paradise Peak) types, were major producers of gold and silver. Ancestral Cascade arc magmatism preceded that of the modern High Cascades arc and reflects subduction of the Farallon plate beneath North America. Ancestral arc magmatism began about 45 Ma, continued until about 3 Ma, and extended from near the Canada-United States border in Washington southward to about 250 km southeast of Reno, Nevada. The ancestral arc was split into northern and southern segments across an inferred tear in the subducting slab between Mount Shasta and Lassen Peak in northern California. The southern segment extends between 42°N in northern California and 37°N in western Nevada and was active from about 30 to 3 Ma. It is bounded on the east by the northeast edge of the Walker Lane. Ancestral arc volcanism represents an abrupt change in composition and style of magmatism relative to that in central Nevada. Large volume, caldera-forming, silicic ignimbrites associated with the 37 to 19 Ma ignimbrite flareup are dominant in central Nevada, whereas volcanic centers of the ancestral arc in western Nevada consist of andesitic stratovolcanoes and dacitic to rhyolitic lava domes that mostly formed between 25 and 4 Ma. Both ancestral arc and ignimbrite flareup magmatism resulted from rollback of the shallowly dipping slab that began about 45 Ma in northeast Nevada and migrated south-southwest with time. Most southern segment ancestral arc rocks have oxidized, high potassium, calc-alkaline compositions with silica contents ranging continuously from about 55 to 77 wt%. Most lavas are porphyritic and contain coarse plagioclase

  6. Electrochemical Deposition and Characterization of Ni-Mo Alloys as Cathode for Alkaline Water Electrolysis

    Science.gov (United States)

    Manazoğlu, Mert; Hapçı, Gökçe; Orhan, Gökhan

    2016-01-01

    In this study, Ni-Mo alloy coatings were electrochemically deposited on a copper plate in citrate solutions. The effects of Ni/Mo mole ratio in the electrolyte and pH value on hydrogen evolution reaction (HER) as well as the electrochemical stability were investigated in the alkaline solution for electrodeposited NiMo. The electrocatalytic activity of the fabricated NiMo alloys for HER in alkaline solutions was investigated by the polarization measurements and electrochemical impedance spectroscopy techniques. The morphology and chemical composition of the electrodeposited Ni-Mo were investigated using SEM and EDS analyses. It was found that NiMo electrode with the highest molybdenum content (ca. 38 wt.%) and high surface area show high electrocatalytic activity in the HER. This was produced from a bath with a pH of 9.5, Ni/Mo ratio of 1/10 and 0.5 M sodium citrate concentration. The stability of this coating was tested by polarization measurements after different anodic and cathodic treatment in 1 M NaOH solution. The open circuit potential ( E ocp) of the electrode as a function of immersion time was also measured.

  7. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  8. Deposition of titanium nitride layers by electric arc - Reactive plasma spraying method

    Science.gov (United States)

    Şerban, Viorel-Aurel; Roşu, Radu Alexandru; Bucur, Alexandra Ioana; Pascu, Doru Romulus

    2013-01-01

    Titanium nitride (TiN) is a ceramic material which possesses high mechanical properties, being often used in order to cover cutting tools, thus increasing their lifetime, and also for covering components which are working in corrosive environments. The paper presents the experimental results on deposition of titanium nitride coatings by a new combined method (reactive plasma spraying and electric arc thermal spraying). In this way the advantages of each method in part are combined, obtaining improved quality coatings in the same time achieving high productivity. Commercially pure titanium wire and C45 steel as substrate were used for experiments. X-ray diffraction analysis shows that the deposited coatings are composed of titanium nitride (TiN, Ti2N) and small amounts of Ti3O. The microstructure of the deposited layers, investigated both by optical and scanning electron microscopy, shows that the coatings are dense, compact, without cracks and with low porosity. Vickers microhardness of the coatings presents maximum values of 912 HV0.1. The corrosion tests in 3%NaCl solution show that the deposited layers have a high corrosion resistance compared to unalloyed steel substrate.

  9. La2Zr2O7 TBCs toughened by Pt particles prepared by cathode plasma electrolytic deposition

    Science.gov (United States)

    Deng, Shun-jie; Wang, Peng; He, Ye-dong; Zhang, Jin

    2016-06-01

    La2Zr2O7 thermal barrier coatings (TBCs) with dispersed Pt particles were prepared by cathode plasma electrolytic deposition (CPED) with ceramic balls added to the cathode region. Compared with the conventional CPED, when ceramic balls are used in the cathode region, the plasma discharge ignition current density decreases approximately 62-fold and the stable plasma discharges occur at the whole cathode surface. Such TBCs with a thickness of 100 μm exhibit a crack-free surface and are composed of pyrochlore-structured La2Zr2O7. Cyclic oxidation, scratching, and thermal insulation capability tests show that such TBCs not only exhibit high resistance to oxidation and spallation but also provide good thermal insulation. These beneficial effects are attributed to the excellent properties of TBCs, such as good thermal insulation because of low thermal conductivity, high-temperature oxidation resistance because of low-oxygen diffusion rate, and good mechanical properties because of the toughening effect of Pt particles.

  10. Preparation and tribological properties of DLC/Ti film by pulsed laser arc deposition

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhen-Yu; Lu Xin-Chun; Luo Jian-Bin; Shao Tian-Min; Qing Tao; Zhang Chen-Hui

    2006-01-01

    This paper reports that DLC (diamond like carbon)/Ti and DLC films were prepared by using pulsed laser arc deposition. R-ray diffraction, Auger electron spectroscopy, Raman spectroscopy, atomic force microscopy, nanoindenter, spectroscopic ellipsometer, surface profiler and micro-tribometer were employed to study the structure and tribological properties of DLC/Ti and DLC films. The results show that DLC/Ti film, with I(D)/I(G) 0.28 and corresponding to 76% sp3 content calculated by Raman spectroscopy, uniform chemical composition along depth direction, 98 at% content of carbon, hardness 8.2 GPa and Young's modulus 110.5 GPa, compressive stress 6.579 GPa, thickness 46 nm,coefficient of friction 0.08, and critical load 95mN, exhibits excellent mechanical and tribological properties.

  11. Electrochemical Effects of Atomic Layer Deposition on Cathode Materials for Lithium Batteries

    Science.gov (United States)

    Scott, Isaac David

    One of the greatest challenges of modern society is to stabilize a consistent energy supply that will meet our growing energy demand while decreasing the use of fossil fuels and the harmful green house gases which they produce. Developing reliable and safe solutions has driven research into exploring alternative energy sources for transportation including fuel cells, hydrogen storage, and lithium-ion batteries (LIBs). For the foreseeable future, though, rechargeable batteries appear to be the most practically viable power source. To deploy LIBs in next-generation vehicles, it is essential to develop electrodes with durability, high energy density, and high power. Unfortunately, the power capability of LIBs is generally hindered by Li+-ion diffusion in micrometer-sized materials and the formation of an insulating solid electrolyte interface (SEI) layer on the surface of the active material. In addition, degradation of the battery material due to chemical and electrochemical reactions with the electrolyte lead to both capacity fade and safety concerns both at room and higher temperatures. The current study focuses on mitigating these issues for high voltage cathode materials by both using nanoscale particles to improve Li+-ion diffusion and using ultrathin nanoscale coatings to protect the battery materials from undesirable side reactions. The electrode material is coated with Al2O3 using atomic layer deposition (ALD), which is a method to grow conformal thin films with atomic thickness (angstrom level control) using sequential, self-limiting surface reactions. First, nano-LiCoO 2 is employed to demonstrate the effectiveness of ALD coatings and demonstrates a profound increase in rate performance (>250% improvement) over generally employed micrometer-sized particles. Second, the cathode materials LiNi 0.8Co0.15Al0.05O2, LiNi0.33Mn 0.33Co0.33O2, LiMn2O4, and LiNi0.5Mn1.5O4 were used to demonstrate the benefits ALD coatings have on thermal runaway. The results show a

  12. Nanoporous silver cathode surface treated by atomic layer deposition of CeO(x) for low-temperature solid oxide fuel cells.

    Science.gov (United States)

    Neoh, Ke Chean; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Choi, Hyung Jong; Park, Suk Won; Shim, Joon Hyung

    2016-05-06

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO(x)) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C-450 °C. Our work confirms that ALD CeO(x) treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO(x) surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO(x) treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO(x)-treated Ag cathodes related to the microstructure of the layers.

  13. Cathodic cage plasma deposition of TiN and TiO{sub 2} thin films on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Romulo R. M. de [Department of Mechanics, Federal Institute of Education, Science, and Technology of Piaui, Praça da Liberdade, 1597, CEP 64000-040 Teresina, Piaui, Brazil and Department of Mechanical Engineering, Federal University of Piaui, Campus Min. Petronio Portela, Ininga, CEP 64049-550 Teresina, Piaui (Brazil); Sato, Patricia S.; Nascente, Pedro A. P., E-mail: nascente@ufscar.br [Department of Materials Engineering, Federal University of Sao Carlos, Via Washington Luis km 235, CEP 13565-905 Sao Carlos, Sao Paulo (Brazil); Viana, Bartolomeu C. [Department of Physics, Federal University of Piaui, Campus Min. Petronio Portela, Ininga, CEP 64049-550 Teresina, Piaui (Brazil); Alves, Clodomiro [Department of Exact and Natural Sciences, Federal Rural University of Semi Arido, Avenida Francisco Mota, 572, CEP 59625-900 Mossoro, Rio Grande do Norte (Brazil); Nishimoto, Akio [Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2015-07-15

    Cathodic cage plasma deposition (CCPD) was used for growing titanium nitride (TiN) and titanium dioxide (TiO{sub 2}) thin films on silicon substrates. The main advantages of the CCPD technique are the uniformity, tridimensionality, and high rate of the film deposition that occurs at higher pressures, lower temperatures, and lower treatment times than those used in conventional nitriding treatments. In this work, the influence of the temperature and gas atmosphere upon the characteristics of the deposited films was investigated. The TiN and TiO{sub 2} thin films were characterized by x-ray diffraction, scanning electron microscopy, and Raman spectroscopy to analyze their chemical, structural, and morphological characteristics, and the combination of these results indicates that the low-cost CCPD technique can be used to produce even and highly crystalline TiN and TiO{sub 2} films.

  14. Diamond-like a-C:H coatings deposited in a non-self-sustained discharge with plasma cathode

    Science.gov (United States)

    Gavrilov, N. V.; Mamaev, A. S.; Kaĭigorodov, A. S.

    2009-01-01

    Hydrogenated amorphous carbon (a-C:H) coatings have been obtained by means of acetylene decomposition in a non-self-sustained periodic pulse discharge (2A, 50 kHz, 10 μs) with hollow cathode. The discharge operation was maintained by plasma cathode emission with grid stabilization based on dc glow discharge. Using the proposed method, it is possible to control the deposition conditions (total pressure of the Ar + C2H2 mixture, partial pressure of C2H2, ion current density, carbon ion energy) within broad limits, to apply a-C:H coatings onto large-area articles, and to perform deposition in one technological cycle with ion etching and ion implantation treatments aimed at improving the adhesion of coatings to substrates (Ti, Al, stainless steel, VK8 hard alloy) at temperatures below 150°C. Results of determining the deposition rate (1-8 μm), the nanohardness of coatings (up to 70 GPa), and the fraction of sp 3 bonds (25-70%) in the diamond-like coating material are presented.

  15. Effect of C{sub 2}H{sub 2} flow rate on microstructure and properties of nc–Cu/a–C:H nanocomposite films prepared by filtered cathodic vaccum arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haiqiang; Chen, Yiming; Liao, Bin; Wu, Xianying; Zhang, Huixing [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Zhang, Xu, E-mail: zhangxu@bnu.edu.cn [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)

    2013-07-15

    Nc–Cu/a–C:H nanocomposite films are deposited by filtered cathodic vaccum arc (FCVA) technique using C{sub 2}H{sub 2} as the precursor. The effects of C{sub 2}H{sub 2} flow rate on the microstructure, composition and properties of nc–Cu/a–C:H films have been studied by Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and nanoindentation test. In these films, copper nanoparticles (3.5–15 nm) are embedded in the amorphous carbon matrix, which could be confirmed by XRD analysis. Raman spectroscopy and XPS results confirm the decrease of sp{sup 3} content with the increasing copper fraction, which could be a result of more severe thermalization on carbon matrix owing to the presence of copper. The compressive stresses of these films, calculated by Stoney’s equation, are found to be as low as 0.5 Gpa, declining with the increasing copper content. Nanoindentation measurements reveal that the film hardness falls monotonically as the Cu content in the films increases.

  16. The effect of antimony presence in anodic copper on kinetics and mechanism of anodic dissolution and cathodic deposition of copper

    Directory of Open Access Journals (Sweden)

    Stanković Z.D.

    2008-01-01

    Full Text Available The influence of the presence of Sb atoms, as foreign metal atoms in anode copper, on kinetics, and, on the mechanism of anodic dissolution and cathodic deposition of copper in acidic sulfate solution has been investigated. The galvanostatic single-pulse method has been used. Results indicate that presence of Sb atoms in anode copper increase the exchange current density as determined from the Tafel analysis of the electrode reaction. It is attributed to the increase of the crystal lattice parameter determined from XRD analysis of the electrode material.

  17. A comparative study of the structural, mechanical and tribological characteristics of TiSiC-Cr coatings prepared in CH4 and C2H2 reactive atmosphere by cathodic vacuum arc

    Science.gov (United States)

    Braic, Mariana; Vladescu, Alina; Balaceanu, Mihai; Luculescu, Catalin; Padmanabhan, Sibu C.; Constantin, Lidia; Morris, Michael A.; Braic, Viorel; Ana Grigorescu, Cristiana Eugenia; Ionescu, Paul; Dracea, Maria Diana; Logofatu, Constantin

    2017-04-01

    TiSiC-Cr coatings, with Cr and Si as additional elements, were deposited on Si, C 45 and 316 L steel substrates via cathodic arc evaporation. Two series of coatings with thicknesses in the range of 3.6-3.9 μm were produced, using either CH4 or C2H2 as carbon containing gas. For each series, different coatings were prepared by varying the carbon rich gas flow rate between 90 and 130 sccm, while maintaining constant cathode currents (110 and 100 A at TiSi and Cr cathodes, respectively), substrate bias (-200 V) and substrate temperature (∼320 °C). The coatings were analyzed for their mechanical characteristics (hardness, adhesion) and tribological performance (friction, wear), along with their elemental and phase composition, chemical bonds, crystalline structure and cross-sectional morphology. The coatings were found to be formed with nano-scale composite structures consisting of carbide crystallites (grain size of 3.1-8.2 nm) and amorphous hydrogenated carbon. The experimental results showed significant differences between the two coating series, where the films formed from C2H2 exhibited markedly superior characteristics in terms of microstructure, morphology, hardness, friction behaviour and wear resistance. For the coatings prepared using CH4, the measured values of crystallite size, hardness, friction coefficient and wear rate were in the ranges of 7.2-8.2 nm, 26-30 GPa, 0.3-0.4 and 2.1-4.8 × 10-6 mm3 N-1 m-1, respectively, while for the coatings grown in C2H2, the values of these characteristics were found to be in the ranges of 3.1-3.7 nm, 41-45 GPa, 0.1-0.2 and 1.4-3.0 × 10-6 mm3 N-1 m-1, respectively. Among the investigated coatings, the one produced using C2H2 at the highest flow rate (130 sccm) exhibited the highest hardness (45.1 GPa), the lowest friction coefficient (0.10) and the best wear resistance (wear rate of 1.4 × 10-6 mm3 N-1 m-1).

  18. Cathodic electrophoretic deposition ofα-Fe2O3 coating

    Institute of Scientific and Technical Information of China (English)

    马莉; 常通; 李小斌; 李志友; 张斗; 周科朝

    2015-01-01

    Submicroα-Fe2O3 coatings were formed using electrophoretic deposition (EPD) technique in aqueous media. The zeta potentials of differentα-Fe2O3 suspensions with different additives were measured as a function of pH to identify the optimum suspension condition for deposition. Electrophoretic depositions ofα-Fe2O3 coatings under different applied electric fields and deposition time were studied and the effects of applied voltages and deposition time on deposition rates and thicknesses were investigated. The particle packing densities of the deposits at various applied voltages and deposition time were also analyzed by a scanning electron microscope (SEM). The results show that crack-freeα-Fe2O3 coatings with uniform microstructure and good adherence to the nickel substrates are successfully obtained. Electrophoretic depositedα-Fe2O3 coating from aqueous suspension is a feasible, low-cost and environmental friendly method.

  19. Generation of porphyry copper deposits by gas-brine reaction in volcanic arcs

    Science.gov (United States)

    Blundy, Jon; Mavrogenes, John; Tattitch, Brian; Sparks, Steve; Gilmer, Amy

    2014-05-01

    Porphyry copper deposits (PCDs) are characterised by a close spatial and temporal association with small, hypabyssal intrusions of silicic magmas in volcanic arcs. PCD formation requires elevated chlorine and water to concentrate copper in magmatic hypersaline liquids (or brines), and elevated sulphur to precipitate copper-rich sulphides. These twin requirements are hard to reconcile with experimental and petrological evidence that voluminous chlorine-rich, hydrous silicic magmas, of the variety favourable to copper enrichment, lack sufficient sulphur to precipitate directly the requisite quantities of sulphides. These features are, however, consistent with observations of active volcanic arcs whereby PCDs can be viewed as roots of dome volcanoes above shallow reservoirs where silicic magmas accumulate over long time spans. During protracted periods of dormancy metal-enriched dense brines accumulate in and above the silicic reservoir through slow, low-pressure degassing. Meanwhile cogenetic volatile-rich mafic magmas and their exsolved, sulphur and CO2-rich fluids accumulate in deeper reservoirs. Periodic destabilisation of these reservoirs leads to short-lived bursts of volcanism liberating sulphurous gases, which react with the shallow-stored brines to form copper-rich sulphides and acidic vapours. We test this hypothesis with a novel set of 'porphyry in a capsule' experiments designed to simulate low-pressure (1-2 kbar) interaction of basalt-derived, sulphur-rich gases with brine-saturated, copper-bearing, but sulphur-free, granite. Experiments were run at 720-850 ° C in cold-seal apparatus with basaltic andesite, loaded with H2O and S, situated below dacite, loaded with H2O, Cl and Cu. At run conditions both compositions are substantially degassed and crystallized. S-rich gas from the basaltic andesite ascends to react with Cu-rich brines exsolved from the dacite, Our experiments reveal the direct precipitation of copper-sulphide minerals, in vugs and veins

  20. Sunlight-enhanced calcareous deposition on cathodic stainless steel in natural seawater

    Digital Repository Service at National Institute of Oceanography (India)

    Eashwar, M.; SathishKumar, P.; Ravishankar, R.; Subramanian, G.

    the one formed in the dark. The light-enhanced deposit also possessed better scale properties, as suggested by X-ray analysis and electrochemical measurements. Sunlight enhancement of calcareous deposition looked all the more conspicuous when day and night...

  1. SOFC Cathode Mechanisms

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Zachau-Christiansen, Birgit; Bay, Lasse

    1996-01-01

    The transient response of SOFC oxygen cathodes shows a characteristic inductive hysteresis and correspondingly the impedance diagram combines one or two capacitive arcs with a low frequency inductive arc. These features are discussed on the basis of a three step reaction sequence taken from...

  2. Optical and Surface Characteristics of Mg-Doped GaAs Nanocrystalline Thin Film Deposited by Thermionic Vacuum Arc Technique

    Science.gov (United States)

    Pat, Suat; Özen, Soner; Şenay, Volkan; Korkmaz, Şadan

    2017-01-01

    Magnesium (Mg) is the most promising p-type dopant for gallium arsenide (GaAs) semiconductor technology. Mg-doped GaAs nanocrystalline thin film has been deposited at room temperature by the thermionic vacuum arc technique, a rapid deposition method for production of doped GaAs material. The microstructure and surface and optical properties of the deposited sample were investigated by x-ray diffraction analysis, scanning electron microscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, ultraviolet-visible spectrophotometry, and interferometry. The crystalline direction of the deposited sample was determined to be (220) plane and (331) plane at 44.53° and 72.30°, respectively. The Mg-doped GaAs nanocrystalline sample showed high transmittance.

  3. Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hans, M., E-mail: hans@mch.rwth-aachen.de; Baben, M. to; Music, D.; Ebenhöch, J.; Schneider, J. M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Primetzhofer, D. [Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, S-75120 Uppsala (Sweden); Kurapov, D.; Arndt, M.; Rudigier, H. [Oerlikon Balzers Coating AG, Iramali 18, LI-9496 Balzers, Principality of Liechtenstein (Liechtenstein)

    2014-09-07

    Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies. Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds.

  4. The study of micro-arc discharges during cathodic plasma electrolysis of refractory metals using the spectral line shape of Na I lines

    Science.gov (United States)

    Jovović, Jovica; Stojadinović, Stevan; Tadić, Nenad; Vasilić, Rastko; Šišović, Nikola M.

    2016-03-01

    The micro-arc discharges during cathodic plasma electrolysis of refractory metals (Zr, Ti, Ta) are studied by means of optical emission spectroscopy. The fitting procedure based on three mutually shifted profiles is developed to analyze the complex line shape of Na I 568.64 nm and 615.86 nm doublets. Each profile includes effects of instrumental, Doppler, Stark, van der Waals and resonance broadening. The results show the existence of three discharge zones with electron number density values Ne1=7× 1014 \\text{cm}-3 , Ne2=(0.5\\text{--}1)× 1016 \\text{cm}-3 and Ne3= (1.5\\text{--}2.8)× 1016 \\text{cm}-3 while those of sodium ground-state atoms are Ng1=1.4×1017 \\text{cm}-3 , Ng2=3.6×1017 \\text{cm}-3 and Ng3=(1.7\\text{--}3.7)×1018 \\text{cm}-3 .

  5. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings

    Science.gov (United States)

    Groves, David I.; Goldfarb, Richard J.; Santosh, M.

    2016-01-01

    It is quite evident that it is not anomalous metal transport, nor unique depositional conditions, nor any single factor at the deposit scale, that dictates whether a mineral deposit becomes a giant or not. A hierarchical approach thus is required to progressively examine controlling parameters at successively decreasing scales in the total mineral system to understand the location of giant gold deposits in non-arc environments. For giant orogenic, intrusion-related gold systems (IRGS) and Carlin-type gold deposits and iron oxide-copper-gold (IOCG) deposits, there are common factors among all of these at the lithospheric to crustal scale. All are sited in giant gold provinces controlled by complex fundamental fault or shear zones that follow craton margins or, in the case of most Phanerozoic orogenic giants, define the primary suture zones between tectonic terranes. Giant provinces of IRGS, IOCG, and Carlin-type deposits require melting of metasomatized lithosphere beneath craton margins with ascent of hybrid lamprophyric to granitic magmas and associated heat flux to generate the giant province. The IRGS and IOCG deposits require direct exsolution of volatile-rich magmatic-hydrothermal fluids, whereas the association of such melts with Carlin-type ores is more indirect and enigmatic. Giant orogenic gold provinces show no direct relationship to such magmatism, forming from metamorphic fluids, but show an indirect relationship to lamprophyres that reflect the mantle connectivity of controlling first-order structures.

  6. Porous-Al2O3 thermal barrier coatings with dispersed Pt particles prepared by cathode plasma electrolytic deposition

    Institute of Scientific and Technical Information of China (English)

    Jin Zhang

    2016-01-01

    Porousa-Al2O3 thermal barrier coatings (TBCs) containing dispersed Pt particles were prepared by cathode plasma electrolytic deposition (CPED). The influence of the Pt particles on the microstructure of the coatings and the CPED process were studied. The prepared coatings were mainly composed ofα-Al2O3. The average thickness of the coatings was approximately 100μm. Such single-layer TBCs ex-hibited not only excellent high-temperature cyclic oxidation and spallation resistance, but also good thermal insulation properties. Porousa-Al2O3 TBCs inhibit further oxidation of alloy substrates because of their extremely low oxygen diffusion rate, provide good thermal insu-lation because of their porous structure, and exhibit excellent mechanical properties because of the toughening effect of the Pt particles and because of stress relaxation induced by deformation of the porous structure.

  7. Identification by force modulation microscopy of nanoparticles generated in vacuum arcs Identification by force modulation microscopy of nanoparticles generated in vacuum arcs

    OpenAIRE

    M. Arroyave Franco

    2006-01-01

    An alternative method based on force modulation microscopy (FMM) for identification of nanoparticles produced in the plasma generated by the cathode spots of vacuum arcs is presented. FMM technique is enabled for the detection of variations in the mechanical properties of a surface with high sensitiveness. Titanium nitride (TiN) coatings deposited on oriented silicon by pulsed vacuum arc process have been analyzed. AFM (Atomic Force Microscopy) and FMM images were simultaneously obtained, and...

  8. Cascadia subducting plate fluids channelled to fore-arc mantle corner: ETS and silica deposition

    Science.gov (United States)

    Hyndman, R. D.; McCrory, P. A.; Wech, A.; Kao, H.; Ague, J.

    2015-06-01

    In this study we first summarize the constraints that on the Cascadia subduction thrust, there is a 70 km gap downdip between the megathrust seismogenic zone and the Episodic Tremor and Slip (ETS) that lies further landward; there is not a continuous transition from unstable to conditionally stable sliding. Seismic rupture occurs mainly offshore for this hot subduction zone. ETS lies onshore. We then suggest what does control the downdip position of ETS. We conclude that fluids from dehydration of the downgoing plate, focused to rise above the fore-arc mantle corner, are responsible for ETS. There is a remarkable correspondence between the position of ETS and this corner along the whole margin. Hydrated mineral assemblages in the subducting oceanic crust and uppermost mantle are dehydrated with downdip increasing temperature, and seismic tomography data indicate that these fluids have strongly serpentinized the overlying fore-arc mantle. Laboratory data show that such fore-arc mantle serpentinite has low permeability and likely blocks vertical expulsion and restricts flow updip within the underlying permeable oceanic crust and subduction shear zone. At the fore-arc mantle corner these fluids are released upward into the more permeable overlying fore-arc crust. An indication of this fluid flux comes from low Poisson's Ratios (and Vp/Vs) found above the corner that may be explained by a concentration of quartz which has exceptionally low Poisson's Ratio. The rising fluids should be silica saturated and precipitate quartz with decreasing temperature and pressure as they rise above the corner.

  9. Ca, Mg deposit under cathodic protection: action of natural sulpho-genic bacteria; Formation du depot calco-magnesien sous protection cathodique, action des bacteries sulfurogenes naturelles

    Energy Technology Data Exchange (ETDEWEB)

    Godart, C.; Dagbert, C.; Galland, J. [Ecole Centrale de Paris, Lab. Corrosion Fragilisation Hydrogene, 92 - Chatenay-Malabry (France)

    2002-07-01

    The application of the cathodic protection, as well as the formation of the Ca, Mg deposit that results, are currently very defined but solely in marine environment exempt of bacteria, the open ocean. The investigation in natural sea water, in presence of sulpho-genic bacteria, achieved on long terms (two months) are infrequent. The calcareous deposit evolution is mainly function of different parameters: the cathodic protective potential, the application time of this one, the yield Mg/ca of the middle, its microbial load and the organic matter presence dissolved. In artificial sea water, the deposit now presents some features known, so magnesium appears solely for very cathodic potentials, returning the pH favorable to its precipitation. As for the calcium, il can be formed down to weaker pH. However, for kinetics reasons, magnesium can appear earlier. In sea water to weak bacterial pollution, magnesium appears little for potentials cathodic since -800 mV/ECS. However, more the application time increases (until two months) more the quantity of calcium increases and cover magnesium. In sea water where the bacterial concentration (at least 10{sup 8} Bacteria reducing sulphate and thio-sulphate.ml{sup -1}) is important, the features of the deposit remain the same. Only the compactness and the density of the deposit are different: they increase in presence of bacteria. This survey shows that: the bacterial presence and more especially the bacteria sulfuro-genes, the chemical composition of the sea water and the concentration in dissolved oxygen, are factors influencing the formation and the evolution of the deposit calcareous more or less. (authors)

  10. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings

    Institute of Scientific and Technical Information of China (English)

    David I. Groves; Richard J. Goldfarb; M. Santosh

    2016-01-01

    It is quite evident that it is not anomalous metal transport, nor unique depositional conditions, nor any single factor at the deposit scale, that dictates whether a mineral deposit becomes a giant or not. A hierarchical approach thus is required to progressively examine controlling parameters at successively decreasing scales in the total mineral system to understand the location of giant gold deposits in non-arc environments. For giant orogenic, intrusion-related gold systems (IRGS) and Carlin-type gold deposits and iron oxide-copper-gold (IOCG) deposits, there are common factors among all of these at the litho-spheric to crustal scale. All are sited in giant gold provinces controlled by complex fundamental fault or shear zones that follow craton margins or, in the case of most Phanerozoic orogenic giants, define the primary suture zones between tectonic terranes. Giant provinces of IRGS, IOCG, and Carlin-type deposits require melting of metasomatized lithosphere beneath craton margins with ascent of hybrid lamp-rophyric to granitic magmas and associated heat flux to generate the giant province. The IRGS and IOCG deposits require direct exsolution of volatile-rich magmatic-hydrothermal fluids, whereas the associa-tion of such melts with Carlin-type ores is more indirect and enigmatic. Giant orogenic gold provinces show no direct relationship to such magmatism, forming from metamorphic fluids, but show an indirect relationship to lamprophyres that reflect the mantle connectivity of controlling first-order structures. In contrast to their province scale similarities, the different giant gold deposit styles show contrasting critical controls at the district to deposit scale. For orogenic gold deposits, the giants appear to have formed by conjunction of a greater number of parameters to those that control smaller deposits, with resultant geometrical and lithostratigraphic complexity as a guide to their location. There are few giant IRGS due to their inferior fluid

  11. An activated carbon fiber cathode for the degradation of glyphosate in aqueous solutions by the Electro-Fenton mode: Optimal operational conditions and the deposition of iron on cathode on electrode reusability.

    Science.gov (United States)

    Lan, Huachun; He, Wenjing; Wang, Aimin; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui; Huang, C P

    2016-11-15

    An activated carbon fiber (ACF) cathode was fabricated and used to treat glyphosate containing wastewater by the Electro-Fenton (EF) process. The results showed that glyphosate was rapidly and efficiently degraded and the BOD5/COD ratio was increased to >0.3 implying the feasibility of subsequent treatment of the treated wastewater by biological methods. The results of ion chromatography and HPLC measurements indicated that glyphosate was completely decomposed. Effective OH generation and rapid recycling/recovery of the Fe(2+) ions at the cathode were responsible primarily for the high performance of the ACF-EF process. Factors such as inlet oxygen gas flow rate, Fe(2+) dosage, initial glyphosate concentration, applied current intensity, and solution pH that may affect the efficiency of the ACF-EF process were further studied and the optimum operation condition was established. Results of SEM/EDX, BET and XPS analysis showed the deposition of highly dispersed fine Fe2O3 particles on the ACF surface during the EF reaction. The possibility of using the Fe2O3-ACF as iron source in the EF process was assessed. Results showed that the Fe2O3-ACF electrode was effective in degrading glyphosate in the EF process. The deposition of Fe2O3 particles on the ACF electrode had no adverse effect on the reusability of the ACF cathode.

  12. Microstructure and thermal stability of corundum-type (Al{sub 0.5}Cr{sub 0.5}){sub 2}O{sub 3} solid solution coatings grown by cathodic arc evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Edlmayr, V.; Pohler, M. [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben (Austria); Letofsky-Papst, I. [Institute for Electron Microscopy, University of Technology Graz, Steyrergasse 17, A-8010 Graz (Austria); Mitterer, C., E-mail: christian.mitterer@unileoben.ac.at [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben (Austria)

    2013-05-01

    Corundum-type (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} coatings were grown by reactive cathodic arc evaporation in an oxygen atmosphere using AlCr targets with an Al/Cr atomic ratio of 1. Since the (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} solid solution shows a miscibility gap below 1300 °C, where spinodal decomposition is predicted, the microstructural changes upon annealing were investigated by a combination of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and differential scanning calorimetry. The as-deposited coating consists primarily of the corundum-type (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} solid solution, with smaller fractions of cubic (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3}. An additional Al-rich amorphous phase and a Cr-rich crystalline phase stem from the droplets incorporated. The corundum-type (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} solid solution is still present after vacuum annealing at 1050 °C for 2 h, whereas the cubic (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} phase has transformed to corundum-type (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3}. Cr and Cr{sub 2}O{sub 3} have been detected in the annealed coating, the latter most probably originating from the partial oxidation of Cr-rich droplets. Upon crystallization of the amorphous phase fractions present, γ-Al{sub 2}O{sub 3} is formed, which then transforms into α-Al{sub 2}O{sub 3}. No evidence for decomposition of the corundum-type (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} solid solution could be found within the temperature range up to 1400 °C. - Highlights: ► (Al{sub 0.5}Cr{sub 0.5}){sub 2}O{sub 3} hard coatings grown by reactive cathodic evaporation ► Corundum and minor fraction of cubic (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} in the as-deposited state ► No evidence for spinodal decomposition of corundum-type (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} up to 1400 °C ► Cubic (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} transforms into corundum-type (Al{sub x}Cr{sub 1

  13. Microhardness study of Ti(C, N films deposited on stainless steel 316 by the hallow cathode discharge gun

    Directory of Open Access Journals (Sweden)

    A.J. Novinrooz

    2005-12-01

    Full Text Available Purpose: The micro hardness properties of Titanium Carbonitride composite coated on SS-316 substrates were studied to achieve a desired harden surfaces.Design/methodology/approach: Hollow Cathode Discharge gun (HCD–gun was employed for deposition of the Ti(C, N on SS-316. The evaporated and ionized metal (Ti was coated as an under layer with 0.5 ampere beam current and 100 volt bias voltage. The reactant nitrogen and methane gasses were fed through inlet in to the chamber containing Ti element to form Ti (C, N matrix with an optimized ratio.Findings: In this work, Glow Discharge Optical emission Spectroscopy (GDOS used for compositional analysis of the content elements. On the bases of this operation it was revealed the existence of Ti, C, N elements, X-ray diffraction (XRD technique was utilized to investigate films crystalline structure. The investigation showed that samples with different stoichiometry have a fcc structure with (111 plan of reflection. The atomic ratio of carbon and nitrogen were measured using energy dispersive X-ray (EDX analysis. The optimized value was funned to be TiC0.87 N0.13. The atomic force microscopy (AFM and scanning electron microscopy (SEM were employed to study the films microstructure. A hardness of 3250 HV was obtained in the carbon content C/C+ N atomic ratio of 9 to 1 using a Vickers microhardness tester.Research limitations/implications: As the study was carried out on a limited surfaces, we shall endeavor further attempt on large area deposition.Practical implications: The tools coated in titanium accompanied by nitride and carbide has shown significant improvement. Good compatibility of Ti (C, N compound makes these composite suitable in various technical and industrial applications.Originality/value: It may be remarked that, the hardness obtained in this work is very encouraging and therefore, it is convenient to regard this as a privileged step taken in tool manufacturing aspect.

  14. SEM study on the deposition of coal pyrolysis in arc plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y.J.; Chen, H.G.; Yan, Y.L.; Lu, Y.K.; Li, F.; Xie, K.C. [Taiyuan University of Technology, Taiyuan (China). Shanxi Key Lab of Coal Science and Technology

    1999-07-01

    During coal pyrolysis in hydrogen plasma, residue was deposited on the reactor wall. Scanning electron microscopy indicated that metaplast were formed during the process. The mechanism of formation of deposits, their morphology, porosity and mechanical properties are discussed. It was shown that particles do not blend with plasma under these operation conditions. 4 refs., 5 figs., 2 tabs.

  15. The effect of bi presence as impurities in anodic copper on kinetics and mechanism of anodic dissolution and cathodic deposition of copper

    Directory of Open Access Journals (Sweden)

    Stanković Zvonimir D.

    2010-01-01

    Full Text Available The influence of Bi, as foreign metal atoms in anode copper, on kinetics and mechanism of anodic dissolution and cathodic deposition of copper in acidic sulfate solution was investigated using the galvanostatic single-pulse method. Results indicate that presence of Bi atoms in anode copper increases the exchange current density, as determined from the Tafel analysis of the electrode reaction, which is attributed to the increase of the crystal lattice parameter determined from XRD analysis of the electrode material.

  16. Optical characteristics of nanocrystalline Al{sub x}Ga{sub 1−x}N thin films deposited by hollow cathode plasma-assisted atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, Eda, E-mail: goldenberg@unam.bilkent.edu.tr [UNAM – National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Ozgit-Akgun, Cagla; Biyikli, Necmi [Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Kemal Okyay, Ali [Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800 (Turkey)

    2014-05-15

    Gallium nitride (GaN), aluminum nitride (AlN), and Al{sub x}Ga{sub 1−x}N films have been deposited by hollow cathode plasma-assisted atomic layer deposition at 200 °C on c-plane sapphire and Si substrates. The dependence of film structure, absorption edge, and refractive index on postdeposition annealing were examined by x-ray diffraction, spectrophotometry, and spectroscopic ellipsometry measurements, respectively. Well-adhered, uniform, and polycrystalline wurtzite (hexagonal) GaN, AlN, and Al{sub x}Ga{sub 1−x}N films were prepared at low deposition temperature. As revealed by the x-ray diffraction analyses, crystallite sizes of the films were between 11.7 and 25.2 nm. The crystallite size of as-deposited GaN film increased from 11.7 to 12.1 and 14.4 nm when the annealing duration increased from 30 min to 2 h (800 °C). For all films, the average optical transmission was ∼85% in the visible (VIS) and near infrared spectrum. The refractive indices of AlN and Al{sub x}Ga{sub 1−x}N were lower compared to GaN thin films. The refractive index of as-deposited films decreased from 2.33 to 2.02 (λ = 550 nm) with the increased Al content x (0 ≤ x ≤ 1), while the extinction coefficients (k) were approximately zero in the VIS spectrum (>400 nm). Postdeposition annealing at 900 °C for 2 h considerably lowered the refractive index value of GaN films (2.33–1.92), indicating a significant phase change. The optical bandgap of as-deposited GaN film was found to be 3.95 eV, and it decreased to 3.90 eV for films annealed at 800 °C for 30 min and 2 h. On the other hand, this value increased to 4.1 eV for GaN films annealed at 900 °C for 2 h. This might be caused by Ga{sub 2}O{sub 3} formation and following phase change. The optical bandgap value of as-deposited Al{sub x}Ga{sub 1−x}N films decreased from 5.75 to 5.25 eV when the x values decreased from 1 to 0.68. Furthermore, postdeposition annealing did not

  17. Investigation of firing properties of a vacuum arcs triggered by plasma injection

    Energy Technology Data Exchange (ETDEWEB)

    Bernardet, H.; Godechot, X.; Riviere, C. [SODERN, Limeil-Brevannes (France)

    1996-08-01

    The firing characteristic of a vacuum arc, by means of plasma injection, is described. In this method, a plasma, created from a trigger device, plumes away to the space between the cathode and anode. As the plasma is quasi-neutral, the electrostatic field is concentrated across the sheath at the surface of the cathode, thus, creating a high electrical field. As a result, a vacuum arc fires between the cathode and anode. The authors have investigated the firing rate as a function of the trigger cathode distance, trigger current, the anode-cathode distance and voltage. They found a firing rate between 90 to 100% for a trigger current in the range of 400-1200 A, the trigger pulse length was 4 ps, and the trigger-cathode distance was 1.6 to 3.6 cm. The anode cathode gap length changes the firing rate to a low extent for values between 2 to 5 cm. The anode cathode voltage do not change the firing rate. The effect of a magnetic field applied axially over the trigger have also been investigated. Using a version of a highly reliable trigger, the authors were able to deposit stainless steel, copper, carbon and molybdenum, thin films.

  18. Effect of Sample Configuration on Droplet-Particles of TiN Films Deposited by Pulse Biased Arc Ion Plating

    Institute of Scientific and Technical Information of China (English)

    Yanhui Zhao; Guoqiang Lin; Jinquan Xiao; Chuang Dong; Lishi Wen

    2009-01-01

    Orthogonal experiments are used to design the pulsed bias related parameters, including bias magnitude, duty cycle and pulse frequency, during arc ion deposition of TiN films on stainless steel substrates in the case of samples placing normal to the plasma flux. The effect of these parameters on the amount and the size distribution of droplet-particles are investigated, and the results have provided sufficient evidence for the physical model, in which particles reduction is due to the case that the particles are negatively charged and repulsed from negative pulse electric field. The effect of sample configuration on amount and size distribution of the particles are analyzed. The results of the amount and size distribution of the particles are compared to those in the case of samples placing parallel to the plasma flux.

  19. A Method for Monitoring Deposition at a Solid Cathode in an Electrorefiner for a Two-Species System Using Electrode Potentials

    Energy Technology Data Exchange (ETDEWEB)

    D.S. Rappleye; M.-S. Yim; M.F. Simpson; R.M. Cumberland

    2013-10-01

    Currently, process monitoring of spent nuclear fuel electrorefining relies upon sampling and destructive analysis methods coupled with extrapolative thermodynamic process models for non-interrupted operations. Corrections to those models are performed infrequently, jeopardizing both the control of the process and safeguarding of nuclear material. Furthermore, the timeliness of obtaining the results is inadequate for application of international safeguards protocol. Alternatively, a system that dynamically utilizes electrical data such as electrode potentials and cell current can hypothetically be used to achieve real-time process monitoring and more robust control as well as improved safeguards. Efforts to develop an advanced model of the electrorefiner to date have focused on a forward modeling approach by using feed and salt compositions to determine the product composition, cell current and electrode potential response. Alternatively, an inverse model was developed, and reported here, to predict the product deposition rates on a cathode using the cell current, cathode potential, and fundamental relations of electrochemistry. The model was applied to the following cases: pure uranium deposition, co-deposition of uranium and plutonium, and co-deposition of uranium and zirconium. The deposition rates predicted by the inverse model were compared to those of a forward model, ERAD.

  20. An easy and innovative method based on spray-pyrolysis deposition to obtain high efficiency cathodes for Solid Oxide Fuel Cells

    Science.gov (United States)

    dos Santos-Gómez, L.; Porras-Vázquez, J. M.; Martín, F.; Ramos-Barrado, J. R.; Losilla, E. R.; Marrero-López, D.

    2016-07-01

    A novel electrode preparation method based on the spray-pyrolysis deposition of metal nitrate solutions onto a porous electrolyte scaffold is proposed. This method has been proved with different cathode materials, usually used in Solid Oxide Fuel Cells, such as La0.8Sr0.2MnO3-δ and La0.6Sr0.4Co1-xFexO3-δ (x = 0, 0.2, 0.8 and 1). The electrode microstructure is composed by two layers; the inner layer is a porous electrolyte scaffold homogeneously coated by cathode nanoparticles, providing an increased number of triple phase boundary sites for oxygen reduction, whereas, the top layer is formed by only cathode nanoparticles and acts mainly as a current collector. Polarization resistance values as low as 0.07 and 1.0 Ω cm2 at 600 and 450 °C, respectively, are obtained at open circuit voltage. This alternative approach has several advantages with respect to the traditional wet infiltration method for large area electrode fabrication, such as higher reproducibility, shorter preparation time in a single thermal deposition step, and easy implementation at industrial scale as a continuous process.

  1. Unexpected high power performance of atomic layer deposition coated Li[Ni1/3Mn1/3Co1/3]O2 cathodes

    Science.gov (United States)

    Kim, Ji Woo; Travis, Jonathan J.; Hu, Enyuan; Nam, Kyung-Wan; Kim, Seul Cham; Kang, Chan Soon; Woo, Jae-Ha; Yang, Xiao-Qing; George, Steven M.; Oh, Kyu Hwan; Cho, Sung-Jin; Lee, Se-Hee

    2014-05-01

    Electric-powered transportation requires an efficient, low-cost, and safe energy storage system with high energy density and power capability. Despite its high specific capacity, the current commercially available cathode material for today's state-of-art Li-ion batteries, lithium nickel-manganese-cobalt oxide Li[Ni1/3 Mn1/3Co1/3]O2 (NMC), suffers from poor cycle life for high temperature operation and marginal rate capability resulting from irreversible degradation of the cathode material upon cycling. Using an atomic-scale surface engineering, the performance of Li[Ni1/3Mn1/3Co1/3]O2 in terms of rate capability and high temperature cycle-life is significantly improved. The Al2O3 coating deposited by atomic layer deposition (ALD) dramatically reduces the degradation in cell conductivity and reaction kinetics. This durable ultra-thin Al2O3-ALD coating layer also improves stability for the NMC at an elevated temperature (55 °C). The experimental results suggest that a highly durable and safe cathode material enabled by atomic-scale surface modification could meet the demanding performance and safety requirements of next-generation electric vehicles.

  2. Anodic dissolution of gold in a solution of 1,3-diaminopropane with the formation of a cathodic deposit and a colloidal solution of Au

    Science.gov (United States)

    Vedenyapina, M. D.; Ubushieva, G. Ts.; Kuznetsov, V. V.; Makhova, N. N.; Vedenyapin, A. A.

    2016-11-01

    The corrosion of a Au anode in a solution of 1,3-diaminopropane (DAP) is studied by means of gravimetry. It is found that the products of corrosion of Au electrode in galvanostatic conditions are reduced on a Pt cathode with the formation of either an electrolytic Au deposit or a colloidal solution of metallic Au, depending on the current strength. The kinetics of the dissolution of Au in the presence of DAP is investigated. The formation of a complex of Au with DAP is observed, and a structure for it is proposed.

  3. Geochronology of the Hongniu-Hongshan porphyry and skarn Cu deposit, northwestern Yunnan province, China: Implications for mineralization of the Zhongdian arc

    Science.gov (United States)

    Peng, Hui-juan; Mao, Jing-wen; Pei, Rong-fu; Zhang, Chang-qing; Tian, Guang; Zhou, Yunman; Li, Jianxin; Hou, Lin

    2014-01-01

    The Hongniu-Hongshan porphyry and skarn copper deposit is located in the Triassic Zhongdian island arc, northwestern Yunnan province, China. Single-zircon laser ablation inductively coupled plasma mass spectrometry U-Pb dating suggests that the diorite porphyry and the quartz monzonite porphyry in the deposit area formed at 200 Ma and 77 Ma, respectively. A Re-Os isotopic date of molybdenite from the ore is 78.9 Ma, which indicates that in addition to the known Triassic Cu-(Au) porphyry systems, a Late Cretaceous porphyry Cu-Mo mineralization event also exists in the Zhongdian arc. The quartz monzonite porphyry shows characteristics of a magnetite series intrusion, with a high concentration of Al, K, Rb, Ba, and Pb, low amount of Ta, Ti, Y, and Yb, and a high ratio of Sr/Y (average 26.42). The Cretaceous porphyry also shows a strong fractionation between light and heavy rare earth elements (average (La/Yb)N 37.9), which is similar to those of the Triassic subduction-related diorite porphyry in the Hongniu-Hongshan deposit and the porphyry hosting the Pulang copper deposit. However, in contrast to the older intrusions, the quartz monzonite porphyry contains higher concentrations of large ion lithophile elements and Co, and lesser Sr and Zr. Therefore, whereas the Triassic porphyry Cu-(Au) mineralization is related to slab subduction slab in an arc setting, the quartz monzonite porphyry in the Hongniu-Hongshan deposit formed by the remelting of the residual oceanic slab combined with contributions from subduction-modified arc lithosphere and continental crust, which provided the metals for the Late Cretaceous mineralization.

  4. Wire + Arc Additive Manufacturing

    OpenAIRE

    Williams, Stewart W.; Martina, Filomeno; Addison, Adrian C.; Ding, Jialuo; Pardal, Goncalo; Colegrove, Paul A.

    2016-01-01

    Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to ...

  5. Cathodic Deposition of Components in BiSbTe Ternary Compounds as Thermoelectric Films Using Choline-Chloride-Based Ionic Liquids

    Science.gov (United States)

    Golgovici, Florentina; Cojocaru, Anca; Nedelcu, Marin; Visan, Teodor

    2010-09-01

    This paper reports electrodeposition of BiTe, SbTe, and BiSbTe films using ionic liquids based on choline chloride (ChCl) and malonic acid mixtures (1:1 moles) at 80°C to 85°C. The electrolyte contained bismuth and/or antinomy species and tellurium species with 1.5 mM to 50 mM concentrations; Pt sheet, Pt mesh, and Pt wire were used for working, auxiliary, and quasireference electrodes, respectively. Cyclic voltammograms revealed the beginning and cathodic peak of pure Te deposition; at more negative potentials simultaneous codeposition of binary or ternary compounds as limiting currents or a series of peaks were observed. Correspondingly, two or three dissolution (stripping) anodic peaks were observed. Nyquist and Bode impedance spectra show differences in Pt behavior due to its polarization at various cathodic potentials. Equivalent-circuit components providing the best fit to the data were calculated. Deposition of BiSbTe films on copper plates was also performed by electrolysis at controlled potentials or current pulses. Some measurements of Seebeck coefficients of the obtained films were carried out.

  6. Remelting of Neoproterozoic relict volcanic arcs in the Middle Jurassic: Implication for the formation of the Dexing porphyry copper deposit, Southeastern China

    Science.gov (United States)

    Liu, Xuan; Fan, Hong-Rui; Santosh, M.; Hu, Fang-Fang; Yang, Kui-Feng; Li, Qiu-Li; Yang, Yue-Heng; Liu, Yongsheng

    2012-10-01

    The Dexing copper deposit in southeastern China is a typical non-arc porphyry deposit, the origin of which has been a topic of debate for several decades. Here we present new results from U-Pb geochronology, whole-rock chemistry and Sr-Nd-Hf-O isotopic investigations on the ore-forming granodioritic porphyry. LA-ICPMS zircon U-Pb data suggest that the granodioritic porphyry was formed in the Middle Jurassic (ca. 172.5 Ma) probably associated with lithospheric thinning driven by either sub-continental lithospheric mantle delamination or asthenospheric upwelling. The porphyry displays both arc-like and adakitic trace element signatures. The adakitic features suggest that HREE (heavy rare earth elements)-rich minerals such as garnet and hornblende, in the absence of plagioclase resided in the source region. The arc-like signatures are broadly comparable with those of the proximal Neoproterozoic island arc rocks including the keratophyre from Shuangxiwu Group and associated granitoids indicating a potential genetic relationship. The porphyry has chondritic ɛNd(t) of - 0.28 to 0.25 and radiogenic ɛHf(t) of 2 to 7, and correspondingly, uniform two stage depleted mantle Nd model ages of 940-980 Ma and Hf model ages of 800-1100 Ma (mean ~ 920 Ma). On Nd and Hf isotopic evolution diagrams, these values are markedly similar to those of the adjacent Neoproterozoic arc rocks when calculated forward to the Mid-Jurassic. Zircons of the porphyry show mantle-like oxygen isotope characters with δ18O values clustering in the range of 4.7-5.9‰, similar to the values for the Neoproterozoic arc rocks mentioned above. The geochemical and isotopic features recorded in our study suggest mantle-derived magmas with no significant supracrustal input for the source of the porphyry. With regard to the source of the Cu ore, we consider a model involving the remelting of sulfide-bearing arc-related lower crustal source. Furthermore, the occurrence of a Neoproterozoic VMS (volcanic massive

  7. Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics

    Directory of Open Access Journals (Sweden)

    Ritu Sharma

    2015-12-01

    Full Text Available In this paper, multi-walled carbon nanotubes are synthesized by arc-discharge and chemical vapor decomposition methods. Multi-walled carbon nanotubes are synthesized on thin film of nickel sputtered on silicon substrate by thermal chemical vapor deposition of acetylene at a temperature of 750°C. The flow of current in arc-discharge method varies in the range 50–200 A. Further arc-synthesized carbon nanotubes are characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and the results are compared with nanotubes grown by chemical vapor deposition method. XRD result shows a characteristic peak (0 0 2 at 26.54° corresponding to the presence of carbon nanotubes. SEM and TEM results give morphology of as-synthesized multi-walled nanotubes. TEM results indicate synthesis of well-graphitized carbon nanotubes by arc-discharge method. Dispersion of arc-synthesized nanotubes in SDS solution under the effect of different sonication times is studied. Dispersion of nanotubes in SDS solution is analyzed using UV–vis–NIR spectroscopy and it shows an absorption peak at 260 nm. It was found that with the increase in sonication time, the absorption peak in UV–vis–NIR spectra will increase and optimum sonication time was 2 hours. Functionalization of synthesized carbon nanotubes by H2SO4 and HNO3 acids has been studied and analysis of functionalized groups has been done using FT-IR spectroscopy and compared and the results are reported in this paper. FT-IR spectroscopy verifies the presence of carboxylic groups attached to carbon nanotubes. These functional groups may change properties of carbon nanotubes and may be used in vast applications of carbon nanotubes.

  8. Anode- electrolyte- cathode sets of unitary SOFC with electro-catalysts deposited on previously sintered porous support

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, L.F.V.; Souza, F.M.B.; Fiuza, R.P.; Alencar, M.G.F.; Silva, M.A.; Boaventura, J.S. [Chemistry Inst., Salvador (Brazil). Dept. of Physical Chemistry

    2009-07-01

    The solid oxide fuel cell (SOFC) can be used in a broad range of applications. YSZ (yttria stabilized zirconia) and GDC (gadolinia doped ceria) are components of the anode/electrolyte set and LSM (manganite of strontium and lanthanum) ink are components of the cathode. In this study, different combinations of sodium bicarbonate, graphite and citric acid were used to form the electrocatalyst on nickel and iron. After sintering, the set was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and surface area by BET. The pellets had good porosity and the anode-cathode-electrolyte interfaces had good inter-layer adherence. The catalyst was evenly dispersed on the support. The final porous structure did not have any surface area loss compared to the original powder. The mixed agents were found to be good pore formatting agents, with characteristics that were favourable for achieving good sets of anode-cathode-electrolytes. The final structure had good pore distribution and formation. The anode had good surface area and good tack from the interface anode/electrolyte.

  9. Age and geochemistry of host rocks of the Cobre Panama porphyry Cu-Au deposit, central Panama: Implications for the Paleogene evolution of the Panamanian magmatic arc

    Science.gov (United States)

    Baker, Michael J.; Hollings, Peter; Thompson, Jennifer A.; Thompson, Jay M.; Burge, Colin

    2016-04-01

    The Cobre Panama porphyry Cu-Au deposit, located in the Petaquilla district of central Panama, is hosted by a sequence of medium- to high-K calc-alkaline volcanic and sub-volcanic rocks. New crystallisation ages obtained from a granodiorite Petaquilla batholith and associated mineralised diorite to granodiorite porphyry stocks and dikes at Cobre Panama indicate that the batholith was emplaced as a multi-phase intrusion, over a period of ~ 4 million years from 32.20 ± 0.76 Ma to 28.26 ± 0.61 Ma, while the porphyritic rocks were emplaced over a ~ 2 million year period from 28.96 ± 0.62 Ma to 27.48 ± 0.68 Ma. Both the volcanic to sub-volcanic host rocks and intrusive rocks of the Cobre Panama deposit evolved via fractional crystallisation processes, as demonstrated by the major elements (e.g. Al2O3, Fe2O3, TiO2 and MgO) displaying negative trends with increasing SiO2. The Petaquilla intrusive rocks, including the diorite-granodiorite porphyries and granodiorite batholith, are geochemically evolved and appear to have formed from more hydrous magmas than the preceding host volcanic rocks, as evidenced by the presence of hornblende phenocrysts, higher degrees of large-ion lithophile element (LILE) and light rare earth element (LREE) enrichment and heavy rare earth element (HREE) depletion, and higher Sr/Y and La/Yb values. However, the degree of LREE enrichment, HREE depletion and La/Yb values are insufficient for the intrusive rocks to be considered as adakites. Collectively, the volcanic and intrusive rocks have LILE, REE and mobile trace element concentrations similar to enriched Miocene-age Cordilleran arc magmatism found throughout central and western Panama. Both the Petaquilla and Cordilleran arc magmatic suites are geochemically more evolved than the late Cretaceous to Eocene Chagres-Bayano arc magmas from northeastern Panama, as they display higher degrees of LILE and LREE enrichment. The geochemical similarities between the Petaquilla and Cordilleran arc

  10. Structural evolution of Ti destroyable interlayer in large-size diamond film deposition by DC arc plasma jet

    Science.gov (United States)

    Guo, Jianchao; Li, Chengming; Liu, Jinlong; Wei, Junjun; Chen, Liangxian; Hua, Chenyi; Yan, Xiongbo

    2016-05-01

    The addition of titanium (Ti) interlayer was verified to reduce the residual stress of diamond films by self-fracturing and facilitate the harvest of a crack-free free-standing diamond film prepared by direct current (DC) arc plasma jet. In this study, the evolution of the Ti interlayer between large-area diamond film and substrate was studied and modeled in detail. The evolution of the interlayer was found to be relevant to the distribution of the DC arc plasma, which can be divided into three areas (arc center, arc main, and arc edge). The formation rate of titanium carbide (TiC) in the arc main was faster than in the other two areas and resulted in the preferred generation of crack in the diamond film in the arc main during cooling. Sandwich structures were formed along with the growth of TiC until the complete transformation of the Ti interlayer. The interlayer released stress via self-fracture. Avoiding uneven fragile regions that formed locally in the interlayer and achieving cooperatively released stress are crucial for the preparation of large crack-free diamond films.

  11. Deposition of thin layers of boron nitrides and hydrogenated microcrystalline silicon assisted by high current direct current arc plasma; Deposition assistee par un plasma a arc a haut courant continu de couches minces de Nitrure de Bore et de Silicium microcristallin hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Franz, D. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    1999-09-01

    In the frame of this thesis, a high current direct current arc (HCDCA) used for the industrial deposition of diamond, has been adapted to study the deposition of two types of coatings: a) boron nitride, whose cubic phase is similar to diamond, for tribological applications, b) hydrogenated microcrystalline silicon, for applications in the semiconductor fields (flat panel displays, solar cells,...). For the deposition of these coatings, the substrates were placed in the diffusion region of the arc. The substrate heating is mainly due to atomic species recombining on its surface. The deposition temperature, varying from 300 to 900 {sup o}C according to the films deposited, is determined by the substrate position, the arc power and the injected gas fluxes, without the use of any external heating or cooling system. Measurements performed on the arc plasma show that the electronic temperature is around 2 eV (23'000 K) while the gas temperature is lower than 5500 K. Typical electronic densities are in the range of 10{sup 12}-10{sup 1'}3 cm{sup -3}. For the deposition of boron nitride films, different boron precursors were used and a wide parameter range was investigated. The extreme difficulty of synthesising cubic boron nitride films by chemical vapour deposition (CVD) did not allow to stabilize the cubic phase of boron nitride in HCDCA. Coatings resulted in hexagonal or amorphous boron nitride with a chemical composition close to stoichiometric. The presence of hydrogen leads to the deposition of rough and porous films. Negative biasing of the samples, for positive ion bombardment, is commonly used to stabilize the cubic phase. In HCDCA and in our biasing range, only a densification of the films could be observed. A boron nitride deposition plasma study by infrared absorption spectroscopy in a capacitive radio frequency reactor has demonstrated the usefulness of this diagnostic for the understanding of the various chemical reactions which occur in this kind

  12. Effect of deposition parameters on mechanical properties of TiN films coated on 2A12 aluminum alloys by arc ion plating (AIP)

    Institute of Scientific and Technical Information of China (English)

    AWAD Samir Hamid; QIAN Han-cheng

    2005-01-01

    TiN films were deposited on 2A12 aluminum alloy by arc ion plating (AIP). The Vickers hardness of the films deposited at different bias voltages and different nitrogen gas pressures, and that of the substrate were measured. The surface roughness of the TiN films diposited at -30 V and -80 V respectively and at different nitrogen gas pressure was measured also. The mass loss of TiN films deposited at 0 V, -30 V and -80 V respectively were analyzed in dry sand rubber wheel abrasive wear tests and wet ones in comparison with uncoated Al alloy and austenitic stainless steel (AISI 316L). It is revealed that the highest hardness of the TiN film is obtained at a bias voltage of -30 V and a N2 gas pressure of 0.5 Pa. The surface roughness of the film is larger at -80 V than that at -30 V and reduces as the increase of the N2 gas pressure. The mass loss of TiN-film coated 2A12 aluminum alloy is remarkably less than that of uncoated Al alloy and also that of AISI 316L, which indicates that the abrasive wear rate is greatly reduced by the application of TiN coating. TiN coating deposited by arc ion plating (AIP) technique on aluminum alloy can be a potential coating for machine parts requiring preciseness and lightness.

  13. Cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) removal and hydrogen evolution in bioelectrochemical systems.

    Science.gov (United States)

    Wang, Qiang; Huang, Liping; Pan, Yuzhen; Zhou, Peng; Quan, Xie; Logan, Bruce E; Chen, Hongbo

    2016-01-01

    Bioelectrochemical systems (BESs) were first operated in microbial fuel cell mode for recovering Cu(II), and then shifted to microbial electrolysis cells for Cd(II) reduction on the same cathodes of titanium sheet (TS), nickel foam (NF) or carbon cloth (CC). Cu(II) reduction was similar to all materials (4.79-4.88mg/Lh) whereas CC exhibited the best Cd(II) reduction (5.86±0.25mg/Lh) and hydrogen evolution (0.35±0.07m(3)/m(3)d), followed by TS (5.27±0.43mg/Lh and 0.15±0.02m(3)/m(3)d) and NF (4.96±0.48mg/Lh and 0.80±0.07m(3)/m(3)d). These values were higher than no copper controls by factors of 2.0 and 5.0 (TS), 4.2 and 2.0 (NF), and 1.8 and 7.0 (CC). These results demonstrated cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) reduction and hydrogen production in BESs, providing an alternative approach for efficiently remediating Cu(II) and Cd(II) co-contamination with simultaneous hydrogen production.

  14. Diagnosis of gas phase near the substrate surface in diamond film deposition by high-power DC arc plasma jet CVD

    Institute of Scientific and Technical Information of China (English)

    Zuyuan Zhou; Guangchao Chen; Bin Li; Weizhong Tang; Fanxiu Lv

    2007-01-01

    Optical emission spectroscopy (OES) was used to study the gas phase composition near the substrate surface during diamond deposition by high-power DC arc plasma jet chemical vapor deposition (CVD). C2 radical was determined as the main carbon radical in this plasma atmosphere. The deposition parameters, such as substrate temperature, anode-substrate distance, methane concentration, and gas flow rate, were inspected to find out the influence on the gas phase. A strong dependence of the concentrations and distribution of radicals on substrate temperature was confirmed by the design of experiments (DOE). An explanation for this dependence could be that radicals near the substrate surface may have additional ionization or dissociation and also have recombination,or are consumed on the substrate surface where chemical reactions occur.

  15. Substrate temperature influence on the properties of GaN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Gungor, Neşe [Department of Physics, Faculty of Arts and Sciences, Marmara University, Goztepe, 34722 Istanbul (Turkey); Haider, Ali; Kizir, Seda; Leghari, Shahid A.; Biyikli, Necmi, E-mail: biyikli@unam.bilkent.edu.tr [Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, 06800 Ankara, Turkey and National Nanotechnology Research Center (UNAM), Bilkent University, Bilkent, 06800 Ankara (Turkey)

    2016-01-15

    Gallium nitride films were grown by hollow cathode plasma-assisted atomic layer deposition using triethylgallium and N{sub 2}/H{sub 2} plasma. An optimized recipe for GaN film was developed, and the effect of substrate temperature was studied in both self-limiting growth window and thermal decomposition-limited growth region. With increased substrate temperature, film crystallinity improved, and the optical band edge decreased from 3.60 to 3.52 eV. The refractive index and reflectivity in Reststrahlen band increased with the substrate temperature. Compressive strain is observed for both samples, and the surface roughness is observed to increase with the substrate temperature. Despite these temperature dependent material properties, the chemical composition, E{sub 1}(TO), phonon position, and crystalline phases present in the GaN film were relatively independent from growth temperature.

  16. STUDY ON DEPOSITION OF MAGNETIC FILMS USING ARC ION PLATING%电弧离子镀沉积磁性薄膜的研究

    Institute of Scientific and Technical Information of China (English)

    常正凯; 肖金泉; 陈育秋; 刘山川; 宫骏; 孙超

    2012-01-01

    Arc ion plating (AIP) has been widely used for depositing various kinds of coatings due to the excellent characteristics of high deposition rate, convenient parameter control, high degree of ionization in the target material, good coating-substrate adhesion, flexibility of target arrangements and merits of producing coatings with high packing density. Magnetic films, with a few micrometers or less, could be utilized in the electronics industry, such as magnetic recording, magnetic microelectrome-chanical systems, magneto optical modulator, and so on. In AIP process, due to magnetic shielding and self-induced magnetic field, arc spot on the surface of the magnetic target moved outside all the time, and the erosion of the magnetic target could not be stable. In this study, arc spot outside moving and unstable erosion of the magnetic target in arc ion plating have been investigated. The distribution of the magnetic field of the nonmagnetic target and the magnetic target under an additional magnetic field was simulated by the finite element method (FEM). The effect of magnetic field on the arc spot movement was researched. With the physical mechanism of the arc spot discharge, the feasibility on the solution of the application problem of the magnetic target has been discussed by the program of the composited structure target, which were composed of magnetic target materials and target shell of low saturation vapor pressure metal, target shell of insulating ceramics, or target shell of soft magnetic metal. The results showed that all these solutions could solve the problem of arc spot outside moving efficiently. In the study, the transition temperature is (136.6±23.0) ℃ in the solutions of the target shell of low saturation vapor pressure metal or insulating ceramics, during which the arc striking frequently transformed to the controlled movement of arc spot.%研究了电弧离子镀磁性靶材使用过程中发生“跑弧”并导致靶材无法稳定刻蚀的问

  17. Energy Deposition and Quench Level Calculations for Millisecond and Steady-State Quench Tests of LHC Arc Quadrupoles at 4 TeV

    CERN Document Server

    Shetty, N V; Chetvertkova, V; Lechner, A; Priebe, A; Sapinski, M; Verweij, A; Wollmann, D

    2014-01-01

    In 2013, beam-induced quench tests with 4 TeV protons were performed to probe the quench level of LHC arc quadrupole magnets at timescales corresponding to millisecond beam losses and steady-state losses. As the energy deposition in magnet coils cannot be measured directly, this study presents corresponding FLUKA simulations as well as estimates of quench levels derived with the QP3 code. Furthermore, beam loss monitor (BLM) signals were simulated and benchmarked against the measurements. Simulated and measured BLM signals are generally found to agree within 30 percent.

  18. High current density cathode for electrorefining in molten electrolyte

    Science.gov (United States)

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  19. Deposition of duplex Al 2O 3/aluminum coatings on steel using a combined technique of arc spraying and plasma electrolytic oxidation

    Science.gov (United States)

    Gu, Weichao; Shen, Dejiu; Wang, Yulin; Chen, Guangliang; Feng, Wenran; Zhang, Guling; Fan, Songhua; Liu, Chizi; Yang, Size

    2006-02-01

    Plasma electrolytic oxidation (PEO) is a cost-effective technique that can be used to prepare ceramic coatings on metals such as Ti, Al, Mg, Nb, etc., and their alloys, but this promising technique cannot be used to modify the surface properties of steels, which are the most widely used materials in engineering. In order to prepare metallurgically bonded ceramic coatings on steels, a combined technique of arc spraying and plasma electrolytic oxidation (PEO) was adopted. In this work, metallurgically bonded ceramic coatings on steels were obtained using this method. We firstly prepared aluminum coatings on steels by arc spraying, and then obtained the metallurgically bonded ceramic coatings on aluminum coatings by PEO. The characteristics of duplex coatings were analyzed by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The corrosion and wear resistance of the ceramic coatings were also studied. The results show that, duplex Al 2O 3/aluminum coatings have been deposited on steel substrate after the combined treatment. The ceramic coatings are mainly composed of α-Al 2O 3, γ-Al 2O 3, θ-Al 2O 3 and some amorphous phase. The duplex coatings show favorable corrosion and wear resistance properties. The investigations indicate that the combination of arc spraying and plasma electrolytic oxidation proves a promising technique for surface modification of steels for protective purposes.

  20. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    In contrast to their province scale similarities, the different giant gold deposit styles show contrasting critical controls at the district to deposit scale. For orogenic gold deposits, the giants appear to have formed by conjunction of a greater number of parameters to those that control smaller deposits, with resultant geometrical and lithostratigraphic complexity as a guide to their location. There are few giant IRGS due to their inferior fluid-flux systems relative to orogenic gold deposits, and those few giants are essentially preservational exceptions. Many Carlin-type deposits are giants due to the exceptional conjunction of both structural and lithological parameters that caused reactive and permeable rocks, enriched in syngenetic gold, to be located below an impermeable cap along antiformal “trends”. Hydrocarbons probably played an important role in concentrating metal. The supergiant Post-Betze deposit has additional ore zones in strain heterogeneities surrounding the pre-gold Goldstrike stock. All unequivocal IOCG deposits are giant or near-giant deposits in terms of gold-equivalent resources, partly due to economic factors for this relatively poorly understood, low Cu-Au grade deposit type. The supergiant Olympic Dam deposit, the most shallowly formed deposit among the larger IOCGs, probably owes its origin to eruption of volatile-rich hybrid magma at surface, with formation of a large maar and intense and widespread brecciation, alteration and Cu-Au-U deposition in a huge rock volume.

  1. Electrical conduction and dielectric relaxation properties of AlN thin films grown by hollow-cathode plasma-assisted atomic layer deposition

    Science.gov (United States)

    Altuntas, Halit; Bayrak, Turkan; Kizir, Seda; Haider, Ali; Biyikli, Necmi

    2016-07-01

    In this study, aluminum nitride (AlN) thin films were deposited at 200 °C, on p-type silicon substrates utilizing a capacitively coupled hollow-cathode plasma source integrated atomic layer deposition (ALD) reactor. The structural properties of AlN were characterized by grazing incidence x-ray diffraction, by which we confirmed the hexagonal wurtzite single-phase crystalline structure. The films exhibited an optical band edge around ˜5.7 eV. The refractive index and extinction coefficient of the AlN films were measured via a spectroscopic ellipsometer. In addition, to investigate the electrical conduction mechanisms and dielectric properties, Al/AlN/p-Si metal-insulator-semiconductor capacitor structures were fabricated, and current density-voltage and frequency dependent (7 kHz-5 MHz) dielectric constant measurements (within the strong accumulation region) were performed. A peak of dielectric loss was observed at a frequency of 3 MHz and the Cole-Davidson empirical formula was used to determine the relaxation time. It was concluded that the native point defects such as nitrogen vacancies and DX centers formed with the involvement of Si atoms into the AlN layers might have influenced the electrical conduction and dielectric relaxation properties of the plasma-assisted ALD grown AlN films.

  2. Formation of hydrothermal deposits at Kings Triple Junction, northern Lau back-arc basin, SW Pacific: The geochemical perspectives

    Digital Repository Service at National Institute of Oceanography (India)

    Paropkari, A.L.; Ray, D.; Balaram, V.; Prakash, L.S.; Mirza, I.H.; Satyanarayana, M.; Rao, T.G.; Kaisary, S.

    An inactive hydrothermal field was discovered near Kings Triple Junction (KTJ) in northern Lau back-arc basin during 19th cruise of R/V Akademik Mstislav Keldysh in 1990. The field consisted of a large elongated basal platform ‘the pedestal...

  3. Deep oxidation of methane on particles derived from YSZ-supported Pd-Pt-(O) coatings synthesized by pulsed filtered cathodic arc

    Energy Technology Data Exchange (ETDEWEB)

    Horwat, D.; Endrino, J.L.; Boreave, A.; Karoum,R.; Pierson, J.F.; Weber, S.; Anders, A.; Vernoux, Ph.

    2008-12-12

    Methane conversion tests were performed on Pd, PdOy, Pd0.6Pt0.4Oy and Pd0.4Pt0.6Oy thin films deposited on yttria stabilized zirconia (YSZ) substrates. Pt containing films exhibited poor activity and high reducibility. As-deposited Pd and PdOy films showed good activity and transformed, during the cycling process, to particles dispersed on the YSZ substrates. The higher reaction rate of initially PdOy films was explained by a better dispersion of the catalyst. A drop of the reaction rate was observed when the temperature exceeded 735oC and 725oC for initially Pd and PdOy, respectively, which can be associated with the high-temperature reduction of PdO into Pd.

  4. Fabrication of LiCoO 2 cathode powder for thin film battery by aerosol flame deposition

    Science.gov (United States)

    Lee, Taewon; Cho, Kihyun; Oh, Jangwon; Shin, Dongwook

    Crystalline LiCoO 2 nano-particles for thin film battery were synthesized and deposited by aerosol flame deposition (AFD). The aqueous precursor solution of the lithium nitrate and cobalt acetate was atomized with an ultrasonic vibrator and subsequently carried into the central tube of the torch by flowing dry Ar gas. LiCoO 2 were formed by oxy-hydrogen flame and deposited on a substrate placed in a heating stage. The deposited soot film composed of nano-sized particles was subsequently consolidated into a dense film by high temperature heat treatment at 500-800 °C for 5 h and characterized by SEM, XRD, and Raman spectroscopy. The crystalline carbonates and oxide were first formed by the deposition and the subsequent heat treatment converted those to LiCoO 2. The FWHMs of the XRD peaks were reduced and their intensity increased as the heat treatment temperature increased, which is due to improved crystallinity. When judged from the low enough cation mixing and well-developed layered structure, it is believed that the LiCoO 2 film satisfied the quality standard for the real application. SEM measurements showed that LiCoO 2 were nano-crystalline structure with the average particle size <70 nm and the particle size increased with the increase of heat treatment temperature. The thickness of thin film LiCoO 2 before the consolidation process was about 15 μm and reduced to about 4 μm after sintering.

  5. Plasma backflow phenomenon in high-current vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lijun [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Jia Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang Ling [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Shi Zongqian [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Yang Dingge [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Gentils, Francois [Schneider Electric SAS, 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France); Jusselin, BenoIt [Schneider Electric SAS, 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France)

    2007-10-07

    Based on the two-temperature magnetohydrodynamic model, a high-current vacuum arc (HCVA) in vacuum interrupters is simulated and analysed. The phenomenon of plasma backflow in arc column is found, which is ultimately ascribed to the strong magnetic pinch effect of HCVA. Due to plasma backflow, the maximal value of ion density at the cathode side is not located at the centre of the cathode side, but at the paraxial region of the cathode side, that is to say, ion density appears to sag at the centre of the cathode side (arc column seems to be divided into two parts). The sag of light intensity is also found by experiments.

  6. Preparation of nanocomposite thoriated tungsten cathode by swaging technique

    Institute of Scientific and Technical Information of China (English)

    王发展; 诸葛飞; 张晖; 丁秉钧

    2002-01-01

    By using the high energy ball milling method,the nanosized ThO2 powders were obtained.Through mixing powders,sintering and hot swaging processing,a nanocomposite thoriated tungsten cathode was fabricated.The relative density of the nanocomposite material is near 100%.The microstructure of nanocomposite cathode is quite different from that of conventional thoriated tungsten cathode.Most of thoria particles are less than 100 nm in diameter,and distribute on the boundaries of tungsten grains.The nanocomposite cathode shows a much lower arc starting field than that of conventional cathode,which will improve the performance of the cathode significantly.

  7. Atomic layer deposition of NiS and its application as cathode material in dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mahuli, Neha [Center for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Sarkar, Shaibal K., E-mail: shaibal.sarkar@iitb.ac.in [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-01-15

    Nickel sulfide (NiS) is grown by atomic layer deposition (ALD) using sequential exposures of bis(2,2,6,6-tetramethylheptane-3,5-dionate)nickel(II) [Ni(thd){sub 2}] and hydrogen sulfide (H{sub 2}S) at 175 °C. Complementary combinations of in situ and ex situ characterization techniques are used to understand the deposition chemistry and the nature of film growth. The saturated growth rate of ca. 0.21 Å per ALD cycle is obtained, which is constant within the ALD temperature window (175–250 °C). As deposited films on glass substrates are found polycrystalline without any preferred orientation. Electrical transport measurement reveals degenerative/semimetallic characteristics with a carrier concentration of ca. 9 × 10{sup 22} cm{sup −3} at room temperature. The ALD grown NiS thin film demonstrates high catalytic activity for the reduction of I{sup −}/I{sub 3}{sup −} electrolyte that opens its usage as cost-effective counter electrode in dye sensitized solar cells, replacing Pt.

  8. Enhanced performance of sulfur-infiltrated bimodal mesoporous carbon foam by chemical solution deposition as cathode materials for lithium sulfur batteries

    Science.gov (United States)

    Jeong, Tae-Gyung; Chun, Jinyong; Cho, Byung-Won; Lee, Jinwoo; Kim, Yong-Tae

    2017-02-01

    The porous carbon matrix is widely recognized to be a promising sulfur reservoir to improve the cycle life by suppressing the polysulfide dissolution in lithium sulfur batteries (LSB). Herein, we synthesized mesocellular carbon foam (MSUF-C) with bimodal mesopore (4 and 30 nm) and large pore volume (1.72 cm2/g) using MSUF silica as a template and employed it as both the sulfur reservoir and the conductive agent in the sulfur cathode. Sulfur was uniformly infiltrated into MSUF-C pores by a chemical solution deposition method (MSUF-C/S CSD) and the amount of sulfur loading was achieved as high as 73% thanks to the large pore volume with the CSD approach. MSUF-C/S CSD showed a high capacity (889 mAh/g after 100 cycles at 0.2 C), an improved rate capability (879 mAh/g at 1C and 420 mAh/g at 2C), and a good capacity retention with a fade rate of 0.16% per cycle over 100 cycles.

  9. Enhanced performance of sulfur-infiltrated bimodal mesoporous carbon foam by chemical solution deposition as cathode materials for lithium sulfur batteries

    Science.gov (United States)

    Jeong, Tae-Gyung; Chun, Jinyong; Cho, Byung-Won; Lee, Jinwoo; Kim, Yong-Tae

    2017-01-01

    The porous carbon matrix is widely recognized to be a promising sulfur reservoir to improve the cycle life by suppressing the polysulfide dissolution in lithium sulfur batteries (LSB). Herein, we synthesized mesocellular carbon foam (MSUF-C) with bimodal mesopore (4 and 30 nm) and large pore volume (1.72 cm2/g) using MSUF silica as a template and employed it as both the sulfur reservoir and the conductive agent in the sulfur cathode. Sulfur was uniformly infiltrated into MSUF-C pores by a chemical solution deposition method (MSUF-C/S CSD) and the amount of sulfur loading was achieved as high as 73% thanks to the large pore volume with the CSD approach. MSUF-C/S CSD showed a high capacity (889 mAh/g after 100 cycles at 0.2 C), an improved rate capability (879 mAh/g at 1C and 420 mAh/g at 2C), and a good capacity retention with a fade rate of 0.16% per cycle over 100 cycles. PMID:28165041

  10. Titanium oxide:fullerene composite films as electron collector layer in organic solar cells and the use of an easy-deposition cathode

    Science.gov (United States)

    Pérez-Gutiérrez, Enrique; Maldonado, José-Luis; Nolasco, Jairo; Ramos-Ortíz, Gabriel; Rodríguez, Mario; Torre, Ulises Mendoza-De la; Meneses-Nava, Marco-Antonio; Barbosa-García, Oracio; García-Ortega, Héctor; Farfán, Norberto; Granados, Giovana; Santillan, Rosa; Juaristi, Eusebio

    2014-06-01

    Here is reported the use of a titanium oxide:fullerene (TiOx:PC71BM) composite film as electron collector layer in organic photovoltaic devices (OPV cells). OPV cells were fabricated under the bulk heterojunction architecture: the active layer was a blend of either the photoconductor polymer MEH-PPV or P3HT with the fullerene derivative PC71BM. As cathode the eutectic alloy of Bi, In and Sn, known as Field’s metal, was used. The melting point of this alloy is above 62 °C, which makes it suitable for a vacuum-free deposition process and easy and fast device test. Cell fabrication and testing were carried out at normal room conditions. For OPV cells based on MEH-PPV, the composite thin electron collector layer improved the power conversion efficiency (η) from 1.12% to 2.07%, thus the η increase was about 85%. Meanwhile, for devices based on P3HT the use of the composite film improved the photocurrent in almost 1 mA/cm2 and the efficiency slightly increase from 2.48% to 2.68%.

  11. Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries.

    Science.gov (United States)

    Mohanty, Debasish; Dahlberg, Kevin; King, David M; David, Lamuel A; Sefat, Athena S; Wood, David L; Daniel, Claus; Dhar, Subhash; Mahajan, Vishal; Lee, Myongjai; Albano, Fabio

    2016-05-26

    The energy density of current lithium-ion batteries (LIBs) based on layered LiMO2 cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO2) and alumina (Al2O3) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al2O3 coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/-1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al2O3 coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al2O3-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs.

  12. Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries

    Science.gov (United States)

    Mohanty, Debasish; Dahlberg, Kevin; King, David M.; David, Lamuel A.; Sefat, Athena S.; Wood, David L.; Daniel, Claus; Dhar, Subhash; Mahajan, Vishal; Lee, Myongjai; Albano, Fabio

    2016-05-01

    The energy density of current lithium-ion batteries (LIBs) based on layered LiMO2 cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO2) and alumina (Al2O3) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al2O3 coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/-1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al2O3 coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al2O3-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs.

  13. ZrO2 and ZrO2-Y2O3 coatings deposited by double pulsed plasma arc

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel surface technique has been developed to produce ZrO2 and ZrO2-Y2O3 coatings on the surface of alloys by using double pulsed plasma arc to react with a solution film containing nano-oxide particles. These coatings exhibit smooth surface and excellent adhesion with substrate. The morphologies of the ceramic coatings and phases were analyzed. It was shown that the oxidation resistance of l8-8 stainless steel was markedly improved by applying ZrO2 and ZrO2-Y2O3 coatings.

  14. Structure and properties of selected cemented carbides and cermets covered with TiN/(Ti,Al,SiN/TiN coatings obtained by the cathodic arc evaporation process

    Directory of Open Access Journals (Sweden)

    Leszek A. Dobrzañski

    2005-06-01

    Full Text Available This study presents the results of microstructural examinations, mechanical tests and service performance tests carried out on thin TiN/(Ti,Al,SiN/TiN wear resistance coatings obtained by the CAE process on cermet and cemented carbide substrates. Microstructural examinations of the applied coatings and the substrate were made with an OPTON DSM 940 SEM and a LEICA MEF4A light microscope. Adhesion of the coatings on cemented carbides and cermets was measured using the scratch test. The cutting properties of the materials were determined from service tests in which continuous machining of C45E steel was carried out. The hardness of the substrate and the microhardness of the coatings were determined with a DUH 202 SHIMADZU ultra microhardness tester with a load of 70 mN. Roughness tests were also carried out before applying the coatings and after the PVD process. Cutting tests confirmed the advantages of the TiN/(Ti,Al,SiN/TiN type coatings obtained using the PVD method in the CAE mode on cemented carbides and cermets, as a material that undergoes very low abrasive, thermal and adhesion wear. These coatings extend tool life compared to commercially available uncoated tools with single and multi-layer coatings deposited using PVD/CVD methods.

  15. Preparation, characterization and PEGylation of superparamagnetic Fe3O4 nanoparticles from ethanol medium via cathodic electrochemical deposition (CED) method

    Science.gov (United States)

    Karimzadeh, Isa; Rezagholipour Dizaji, Hamid; Aghazadeh, Mustafa

    2016-09-01

    In this study, we report a practical and effective synthetic method for preparation of naked and polymer coated SPIONs. In this method, naked SPIONs with proper superparamagnetic properties (Ms = 62.9 emu g-1, Mr = 0.75 emu g-1 and Hc = 2.3 Oe) were electrochemically deposited by adjusting optimum electrochemical conditions. Then, polyethylene glycol (PEG) was in situ coated on the SPIONs surface during their electrochemical preparation process. The PEG coat of SPIONs was confirmed by FT-IR, DLS and DSC-TG analyses. The magnetic analysis via VSM revealed that the PEGylated SPIONs have suitable superparamagnetic behavior (Ms = 37.5 emu g-1, Mr = 0.27 emu g-1 and Hc = 1.4 Oe). Based on the obtained results, it was stated that this electrochemical strategy opens a great window for preparation of SPIONs coated with various biocompatible polymers.

  16. Arc Plasma Torch Modeling

    CERN Document Server

    Trelles, J P; Vardelle, A; Heberlein, J V R

    2013-01-01

    Arc plasma torches are the primary components of various industrial thermal plasma processes involving plasma spraying, metal cutting and welding, thermal plasma CVD, metal melting and remelting, waste treatment and gas production. They are relatively simple devices whose operation implies intricate thermal, chemical, electrical, and fluid dynamics phenomena. Modeling may be used as a means to better understand the physical processes involved in their operation. This paper presents an overview of the main aspects involved in the modeling of DC arc plasma torches: the mathematical models including thermodynamic and chemical non-equilibrium models, turbulent and radiative transport, thermodynamic and transport property calculation, boundary conditions and arc reattachment models. It focuses on the conventional plasma torches used for plasma spraying that include a hot-cathode and a nozzle anode.

  17. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment.

    Science.gov (United States)

    Lin, Jianjun; Lv, Yaohui; Liu, Yuxin; Sun, Zhe; Wang, Kaibo; Li, Zhuguo; Wu, Yixiong; Xu, Binshi

    2017-05-01

    Plasma arc additive manufacturing (PAM) is a novel additive manufacturing (AM) technology due to its big potential in improving efficiency, convenience and being cost-savings compared to other AM processes of high energy bea\\m. In this research, several Ti-6Al-4V thin walls were deposited by optimized weld wire-feed continuous PAM process (CPAM), in which the heat input was gradually decreased layer by layer. The deposited thin wall consisted of various morphologies, which includes epitaxial growth of prior β grains, horizontal layer bands, martensite and basket weave microstructure, that depends on the heat input, multiple thermal cycles and gradual cooling rate in the deposition process. By gradually reducing heat input of each bead and using continuous current in the PAM process, the average yield strength (YS), ultimate tensile strength (UTS) and elongation reach about 877MPa, 968MPa and 1.5%, respectively, which exceed the standard level of forging. The mechanical property was strengthened and toughened due to weakening the aspect ratio of prior β grains and separating nano-dispersoids among α lamellar. Furthermore, this research demonstrates that the CPAM process has a potential to manufacture or remanufacture in AM components of metallic biomaterials without post-processing heat treatment.

  18. One-step approach for hydroxyapatite-incorporated TiO{sub 2} coating on titanium via a combined technique of micro-arc oxidation and electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yu [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Ducjin, Jeonju 561-756 (Korea, Republic of); Park, Il Song, E-mail: ilsong@chonbuk.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Ducjin, Jeonju 561-756 (Korea, Republic of); Lee, Sook Jeong [Neural Injury Research Lab, Department of Neurology, Asan life Science Institute, University of Ulsan, College of Medicine, Seoul 138-736 (Korea, Republic of); Bae, Tae Sung [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Ducjin, Jeonju 561-756 (Korea, Republic of); Duncan, Warwick; Swain, Michael [Department of Oral Sciences, University of Otago, Dunedin, Otago (New Zealand); Lee, Min Ho, E-mail: lmh@chonbuk.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Ducjin, Jeonju 561-756 (Korea, Republic of)

    2011-05-15

    A porous hydroxyapatite (HA) - incorporated TiO{sub 2} coating layer was deposited on the titanium substrate using a combination of micro-arc oxidation and electrophoretic deposition. The size of the synthesized HA nano-particles was approximately 10-20 nm in width and 30-40 nm in length. The microstructure, as well as elemental and phase composition of the coating layers were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). XRD showed that the coating layers were composed mainly of HA and anatase phases. The composition and surface morphologies were strongly dependent on the applied voltages. The amount of HA deposited into the coating increased with increasing applied voltage. The corrosion behavior of the coating layers in the simulated body fluids (SBF) was evaluated using a potentiodynamic polarization test. The corrosion resistance of the coated sample was higher than that of the untreated titanium sample. Moreover, the corrosion resistance of the coated samples also showed a positive correlation with the applied voltage. In addition, the in vitro cellular responses to the coated samples were assessed to investigate the proliferation, differentiation and morphology of the osteoblast cell line.

  19. Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China

    Science.gov (United States)

    Zhang, Nannan; Zhou, Kefa; Du, Xishihui

    2017-04-01

    Mineral prospectivity mapping (MPM) is a multi-step process that ranks promising target areas for further exploration. Fuzzy logic and fuzzy analytical hierarchy process (AHP) are knowledge-driven MPM approaches. In this study, both approaches were used for data processing, based on which MPM was performed for porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang. The results of the two methods were then compared. The two methods combined expert experience and the Studentized contrast (S(C)) values of the weights-of-evidence approach to calculate the weights of 15 layers, and these layers were then integrated by the gamma operator (γ). Through prediction-area (P-A) plot analysis, the optimal γ for fuzzy logic and fuzzy AHP was determined as 0.95 and 0.93, respectively. The thresholds corresponding to different levels of metallogenic probability were defined via concentration-area (C-A) fractal analysis. The prediction performances of the two methods were compared on this basis. The results showed that in MPM based on fuzzy logic, the area under the receiver operating characteristic (ROC) curve was 0.806 and 81.48% of the known deposits were predicted, whereas in MPM based on fuzzy AHP, the area under the ROC curve was 0.862 and 92.59% of the known deposits were predicted. Therefore, prediction based on fuzzy AHP is more accurate and can provide directions for future prospecting.

  20. Microstructural Characterization and Wear Properties of Fe-Based Amorphous-Crystalline Coating Deposited by Twin Wire Arc Spraying

    Directory of Open Access Journals (Sweden)

    Ana Arizmendi-Morquecho

    2014-01-01

    Full Text Available Twin wire arc spraying (TWAS was used to produce an amorphous crystalline Fe-based coating on AISI 1018 steel substrate using a commercial powder (140MXC in order to improve microhardness and wear properties. The microstructures of coating were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM as well as the powder precursor. Analysis in the coating showed the formation of an amorphous matrix with boron and tungsten carbides randomly dispersed. At high amplifications were identified boron carbides at interface boron carbide/amorphous matrix by TEM. This kind of carbides growth can be attributed to partial crystallization by heterogeneous nucleation. These interfaces have not been reported in the literature by thermal spraying process. The measurements of average microhardness on amorphous matrix and boron carbides were 9.1 and 23.85 GPa, respectively. By contrast, the microhardness values of unmelted boron carbide in the amorphous phase were higher than in the substrate, approaching 2.14 GPa. The relative wear resistance of coating was 5.6 times that of substrate. These results indicate that the twin wire arc spraying is a promising technique to prepare amorphous crystalline coatings.

  1. Effect of partial pressure of reactive gas on chromium nitride and chromium oxide deposited by arc ion plating

    Institute of Scientific and Technical Information of China (English)

    LI Ming-sheng; FENG Chang-jie; WANG Fu-hui

    2006-01-01

    The effects of reactive gas partial pressure on droplet formation,deposition rate and change of preferred orientation of CrN and Cr2O3 coatings were studied. For CrN coatings,as nitrogen partial pressure increases,the number and size of droplets increases,the deposition rate initially increases obviously and then slowly,and the preferred orientation of CrN changes from high-index plane to low-index one. For Cr2O3 coatings,with the increase of oxygen partial pressure,the number and size of droplets decreases,the deposition rate decreases and the (300) becomes the preferred orientation. These differences are ascribed to the formation of CrN (with a lower melting point) and Cr2O3 (with a higher melting point) on the surface of Cr target during the deposition of CrN and Cr2O3. Complete coatings CrN or Cr2O3 film can be formed when reactive gas partial pressure gets up to 0.1 Pa. The optimized N2 partial pressure for CrN deposition is about 0.1-0.2 Pa in order to suppress the formation of droplets and the suitable O2 partial pressure for Cr2O3 deposition is approximately 0.1 Pa for the attempt to prevent the peel of the coating.

  2. Study of the phase composition of silicide coatings, based on layered Nb-Mo structures, obtained by vacuum-arc deposition

    Science.gov (United States)

    Lozovan, A. A.; Betsofen, S. Ya; Lenkovets, A. S.

    2016-07-01

    A multilayer composite ∼1000 μm in thickness, formed by niobium and molybdenum layers (number of layers n = 230), is obtained by vacuum-arc deposition with subsequent siliconization of the surface layers at a temperature of 1200 °C. Layer-by-layer phase analysis is performed by X-ray diffraction and scanning electron microscopy. It is found that in the surface layers ∼130 μm in thickness, single-phase silicides (Nb x Mo1- x )Si2 are formed with the hexagonal C40 structure (Strukturbericht designations). Alternating layers of solid solutions based on niobium and molybdenum with a body-centered cubic (BCC) lattice are observed within the composite. The formation of solid solutions caused by heating of the coating leads to convergence of the values of the linear thermal expansion coefficient and Young's modulus at the interface between the layers.

  3. Chemical bonding structural analysis of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films prepared by coaxial arc plasma deposition

    Science.gov (United States)

    Gima, Hiroki; Zkria, Abdelrahman; Katamune, Yūki; Ohtani, Ryota; Koizumi, Satoshi; Yoshitake, Tsuyoshi

    2017-01-01

    Nitrogen-doped ultra-nanocrystalline diamond/hydrogenated amorphous carbon composite films prepared in hydrogen and nitrogen mixed-gas atmospheres by coaxial arc plasma deposition with graphite targets were studied electrically and chemical-bonding-structurally. The electrical conductivity was increased by nitrogen doping, accompanied by the production of n-type conduction. From X-ray photoemission, near-edge X-ray absorption fine-structure, hydrogen forward-scattering, and Fourier transform infrared spectral results, it is expected that hydrogen atoms that terminate diamond grain boundaries will be partially replaced by nitrogen atoms and, consequently, π C–N and C=N bonds that easily generate free electrons will be formed at grain boundaries.

  4. Time-Resolved Spectroscopic Observation of Deposition Processes of Ultrananocrystalline Diamond/Amorphous Carbon Composite Films by Using a Coaxial Arc Plasma Gun

    Science.gov (United States)

    Hanada, Kenji; Yoshitake, Tsuyoshi; Nishiyama, Takashi; Nagayama, Kunihito

    2010-08-01

    The deposition of ultrananocrystalline diamond (UNCD)/amorphous carbon composite films using a coaxial arc plasma gun in vacuum and, for comparison, in a 53.3 Pa hydrogen atmosphere was spectroscopically observed using a high-speed camera equipped with narrow-band-pass filters. UNCD crystallites with diameters of approximately 1.6 nm were formed even in vacuum. These extremely small crystallites imply that the formation is predominantly due to nucleation without the subsequent growth. Even in vacuum, emissions from C+ ions, C atoms, and C2 dimers lasted for approximately 100 µs, although the emission lifetimes of these species are generally 10 ns. We consider that the nucleation is due to the supersaturated environment containing excited carbon species with large number densities.

  5. The Effect of Counterpart Material on the Sliding Wear of TiAlN Coatings Deposited by Reactive Cathodic Pulverization

    Directory of Open Access Journals (Sweden)

    Michell Felipe Cano Ordoñez

    2015-11-01

    Full Text Available This work aims to study the effect of the counterpart materials (100Cr6, Al2O3 and WC-Co on the tribological properties of TiAlN thin films deposited on AISI H13 steel substrate by reactive magnetron co-sputtering. The structural characterization of the TiAlN films, performed by X-ray diffraction, showed (220 textured fcc crystalline structure. The values of hardness and elastic modulus obtained by nanoindentation were 27 GPa and 420 GPa, respectively, which resulted in films with a relatively high resistance to plastic deformation. Ball-on-disk sliding tests were performed using normal loads of 1 N and 3 N, and 0.10 m/s of tangential velocity. The wear coefficient of the films was determined by measuring the worn area using profilometry every 1000 cycles. The mechanical properties and the chemical stability of the counterpart material, debris formation and the contact stress influences the friction and the wear behavior of the studied tribosystems. Increasing the hardness of the counterpart decreases the coefficient of friction (COF due to lower counterpart material transference and tribofilm formation, which is able to support the contact pressure. High shear stress concentration at the coating/substrate interface was reported for higher load promoting failure of the film-substrate system for all tribopairs

  6. Structural and Physical Characteristics of Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Deposited Using a Coaxial Arc Plasma Gun

    Science.gov (United States)

    Yoshitake, Tsuyoshi; Nakagawa, You; Nagano, Akira; Ohtani, Ryota; Setoyama, Hiroyuki; Kobayashi, Eiichi; Sumitani, Kazushi; Agawa, Yoshiaki; Nagayama, Kunihito

    2010-01-01

    Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) films were formed without initial nucleation using a coaxial arc plasma gun. The UNCD crystallite diameters estimated from the X-ray diffraction peaks were approximately 2 nm. The Fourier transform infrared absorption spectrum exhibited an intense sp3-CH peak that might originate from the grain boundaries between UNCD crystallites whose dangling bonds are terminated with hydrogen atoms. A narrow sp3 peak in the photoemission spectrum implied that the film comprises a large number of UNCD crystallites. Large optical absorption coefficients at photon energies larger than 3 eV that might be due to the grain boundaries are specific to the UNCD/a-C:H films.

  7. Hot Corrosion Behavior of Arc-Sprayed Highly Dense NiCr-Based Coatings in Chloride Salt Deposit

    Science.gov (United States)

    Qin, Enwei; Yin, Song; Ji, Hua; Huang, Qian; Liu, Zekun; Wu, Shuhui

    2017-03-01

    To make cities more environmentally friendly, combustible wastes tend to be incinerated in waste-to-energy power plant boilers. However, release of chlorine gas (Cl2) during incineration causes serious problems related to hot corrosion of boiler tubes and poses a safety threat for such plants. In this study, a pseudo-de Laval nozzle was employed in a twin-wire arc spray system to enhance the velocity of in-flight particles. Highly dense NiCr-based coatings were obtained using the modified nozzle gun. The coating morphology was characterized by optical microscopy and scanning electron microscopy, and hot corrosion testing was carried out in a synthetic molten chloride salt environment. Results showed that the dense NiCr-based coatings exhibited high resistance against corrosion by chlorine, which can be related to the typical splat lamellar microstructure and chemical composition as well as minor alloying elements such as Ti and Mo.

  8. Influence of modulation period and modulation ratio on structure and mechanical properties of TiBN/CrN coatings deposited by multi-arc ion plating

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, S.Y.; Yan, S.J.; Han, B. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, 430072 Wuhan (China); Yang, B. [School of Power and Mechanical Engineering, Wuhan University, 430072 Wuhan (China); Lin, B.Z.; Zhang, Z.D.; Ai, Z.W. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, 430072 Wuhan (China); Pelenovich, V.O. [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, 430072 Wuhan (China); Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, 700135 Tashkent (Uzbekistan); Fu, D.J., E-mail: djfu@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-Materials of Ministry of Education and School of Physics and Technology, Wuhan University, 430072 Wuhan (China)

    2015-10-01

    Highlights: • TiBN/CrN multilayers were synthesized with varied modulation period and ratio. • The maximum hardness of 38.6 GPa is observed at Λ = 11.7 nm and R = 5:1. • The lowest multilayer COF of 0.32 is lower than that of CrN (0.56). • The wear rate of the coatings is improved and related to H/E and H{sup 3}/E{sup *2} ratios. - Abstract: TiBN/CrN multilayered superlattice coatings with modulation periods Λ (bilayer thickness) ranging from 22.5 to 4.2 nm and modulation ratio R (the thickness ratio of CrN and TiBN layers) ranging from 6:1 to 3:1 were synthesized using an industrial-scale cathodic arc ion plating system in an Ar–N{sub 2} gas mixture. X-ray diffraction (XRD), transmission electron microscopy (TEM) and nanoindention were employed to investigate the influence of modulation period and ratio on microstructure and mechanical properties of the multilayers. The sharp interfaces and nanoscale multilayered modulation were confirmed by TEM. TiBN/CrN multilayer coatings were crystallized with orientations at the (1 1 1), (2 0 0) and (2 2 0) crystallographic planes and the microstructure was strengthened at (2 0 0) preferred orientation. The maximum hardness of 38.6 GPa and elastic modulus of 477 GPa were obtained at Λ = 11.7 nm and R = 5:1. The lowest value of the friction coefficient at 0.32 sliding against a WC-Co ball was obtained at a bilayer period of 11.7 nm, compared to those of the coatings with other modulation periods and monolithic coatings. The wear rate of the multilayered coatings was also lower than those of the monolithic CrN and TiBN coatings.

  9. Ti+C+N FILM PREPARATION AND ITS PROPERTIES BY LOW ENERGY CO-DEPOSITION ON STEEL

    Institute of Scientific and Technical Information of China (English)

    Z.Z.Yi; X.Zhang; T.H.Zhang; Z.S.Xiao

    2002-01-01

    The Ti+C+N film was co-deposited on H13 steel by Filtered Vacuum Arc PlasmaDeposition (FVAPD) operated with a modified cathode. The co-deposited layer waseffective for the improvement of surface hardness and corrosion resistance. The nano-hardness value of the co-deposited film is 1.3 times more than that of undepositedsample. The corrosion behavior measurement shows that the corrosion resistance foracid corrosion and pitting corrosion was improved greatly. It is owing to the formationof the new ternary ceramic phase TiCo.7 No.3 in the co-deposited layer. The mechanismof property improvement is discussed.

  10. Ecton mechanism for the generation of ion flows in a vacuum arc

    CERN Document Server

    Mesyats, G A

    2001-01-01

    Physical substantiation of the parameters of the ion flow, generated by the vacuum arc cathode spots is given for the first time in this work. The main characteristics of the vacuum arc cathode plasma generation process (the ion erosion, the ions average charge) are considered within the frames, of the ecton model of the vacuum arc cathode spot. According to this model the vacuum arc cathode spot consists of separate cells, emitting ectons. The ions parameter evaluations, obtained within the frames of the ecton model, qualitatively and quantitatively agree with the experimental data

  11. Ecton mechanism of ion flow generation in vacuum arc

    CERN Document Server

    Mesyats, G A

    2001-01-01

    The basic characteristics of cathode plasma generation in vacuum arc (ion erosion, ion average charge) were studied from the point of an ecton model of a cathode spot in vacuum arc. The estimates of ion parameters obtained for a single cell of a cathode spot show qualitative conformity with the experimental data. One introduces the following mechanism of cathode plasma generation in vacuum arc. In case of explosion-like destruction of a cathode segment under the effect of the Joule heating the cathode matter changes sequentially its state: condensed one, nonideal and ideal plasma ones. During this change one observes formation of plasma charge composition and ion acceleration under the effect of plasma pressure gradient

  12. High-Temperature Erosion Resistance of FeBSiNb Amorphous Coatings Deposited by Arc Spraying for Boiler Applications

    Science.gov (United States)

    Cheng, J. B.; Liang, X. B.; Chen, Y. X.; Wang, Z. H.; Xu, B. S.

    2013-06-01

    Erosive high-temperature wear in boilers is one of the main causes of downtime and one of the principal engineering problems in these installations. This article discusses the use of FeBSiNb amorphous coatings synthesized by arc spraying to improve elevated-temperature erosion resistance for boiler applications. The influence of test temperature, velocity, and impact angle on material wastage was revealed using air solid particle erosion rig. The experimental results showed that moderate degradation of the coating was predominant at lower impact velocity and impact angles, while severe damage arose for higher velocities and impact angles. The erosion behavior of the coating was sensitive to test temperature. The erosion rates of the coating decreased as a function of environment temperature. The relationship between microstructure and erosion resistance of the coating was also analyzed in details. The FeBSiNb coating had excellent elevated-temperature erosion resistance at temperatures at least up to 600 °C during service.

  13. Surface morphology and tribological properties of TiN film deposited with different arc currents%不同弧源电流TiN薄膜的表面形貌及其摩擦学性能研究

    Institute of Scientific and Technical Information of China (English)

    史新伟

    2013-01-01

    TiN films were prepared on Si and stainless steel substrates with different arc currents by the AIP-01 multi-arc ion plating equipment. The hardness, surface morphology and friction coefficient of the as-deposited films were tested.The effect of arc current on the micro-paricles (MP) was analyzed from the perspective of physical mechanism of arc deposition. The results show that with the increasing of arc current,the deposition rate was improved and the hardness was enhanced.But the number and size of the MPs and the friction coefficient increased. So the arc current control is a key problem to get TiN films with good properties.%本文使用AIP-01型国产多弧离子镀膜设备,采用不同的弧源电流在不锈钢衬底及Si片上制备了TiN薄膜,对其硬度、表面形貌以及摩擦系数等进行了测试,从电弧沉积的物理机制角度详细分析了弧源电流对TiN薄膜表面熔滴的影响,结果表明:随着弧源电流的增大,薄膜沉积速率增大、硬度提高,但薄膜表面熔滴(MP)数量增多、尺寸变大,表面粗糙,摩擦系数增大,因此控制最佳弧源电流来获得最好的薄膜性能是离子镀TiN薄膜的关键问题之一.

  14. Analysis of cathode geometry to minimize cathode erosion in direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Causa, Federica [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Universita degli studi di Messina, 98122 Messina (Italy); Ghezzi, Francesco; Caniello, Roberto; Grosso, Giovanni [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dellasega, David [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2012-12-15

    Microplasma jets are now widely used for deposition, etching, and materials processing. The present study focuses on the investigation of the influence of cathode geometry on deposition quality, for microplasma jet deposition systems in low vacuum. The interest here is understanding the influence of hydrogen on sputtering and/or evaporation of the electrodes. Samples obtained with two cathode geometries with tapered and rectangular cross-sections have been investigated experimentally by scanning electron microscopy and energy dispersion X-ray spectroscopy. Samples obtained with a tapered-geometry cathode present heavy contamination, demonstrating cathode erosion, while samples obtained with a rectangular-cross-section cathode are free from contamination. These experimental characteristics were explained by modelling results showing a larger radial component of the electric field at the cathode inner wall of the tapered cathode. As a result, ion acceleration is larger, explaining the observed cathode erosion in this case. Results from the present investigation also show that the ratio of radial to axial field components is larger for the rectangular geometry case, thus, qualitatively explaining the presence of micro-hollow cathode discharge over a wide range of currents observed in this case. In the light of the above findings, the rectangular cathode geometry is considered to be more effective to achieve cleaner deposition.

  15. The structure and mechanical properties of multilayer nanocrystalline TiN/ZrN coatings obtained by vacuum-arc deposition

    Directory of Open Access Journals (Sweden)

    A.V. Demchyshyn

    2007-12-01

    Full Text Available TiN/ZrN multilayered condensates on BK-8 carbide tips substrates (62 HRC were produced by the vacuumarc deposition technique, using Ti and Zr plasma flows in reactive nitrogen gas medium with working pressure of 6.6·10–1 Pa. The TiN/ZrN multilayered condensates consist of TiN and ZrN sublayers, which have a thickness of ~100 nm, controlled by the processing parameters of the used deposition technique. The obtained coatings have hardness of 45 GPa and Young’s modulus of 320 GPa. The obtained results show that mechanical properties of such multilayered composites are considerably improved in comparison to those for the single-component coatings, TiN and ZrN. The dependence of hardness and Young’s modulus of the composites on sublayer thickness within a range of 100 nm was determined. The investigated structure and improved mechanical properties of the TiN/ZrN multilayered condensates would be very good platform for finding their industrial application, such as hard coatings with different purposes.

  16. Characterization and Optimization of Ni-WC Composite Weld Matrix Deposited by Plasma-Transferred Arc Process

    Science.gov (United States)

    Tahaei, Ali; Horley, Paul; Merlin, Mattia; Torres-Torres, David; Garagnani, Gian Luca; Praga, Rolando; Vázquez, Felipe J. García; Arizmendi-Morquecho, Ana

    2017-01-01

    This work is dedicated to optimization of carbide particle system in a weld bead deposited by PTAW technique over D2 tool steel with high chromium content. The paper reports partial melting of the original carbide grains of the Ni-based filling powder, and growing of the secondary carbide phase (Cr, Ni)_3 W_3 C in the form of dendrites with wide branches that enhanced mechanical properties of the weld. The optimization of bead parameters was made with design of experiment methodology complemented by a complex sample characterization including SEM, EDXS, XRD, and nanoindentation measurements. It was shown that the preheat of the substrate to a moderate temperature 523 K (250° C) establishes linear pattern of metal flow in the weld pool, resulting in the most homogeneous distribution of the primary carbides in the microstructure of weld bead.

  17. Characterization and Optimization of Ni-WC Composite Weld Matrix Deposited by Plasma-Transferred Arc Process

    Science.gov (United States)

    Tahaei, Ali; Horley, Paul; Merlin, Mattia; Torres-Torres, David; Garagnani, Gian Luca; Praga, Rolando; Vázquez, Felipe J. García; Arizmendi-Morquecho, Ana

    2017-03-01

    This work is dedicated to optimization of carbide particle system in a weld bead deposited by PTAW technique over D2 tool steel with high chromium content. The paper reports partial melting of the original carbide grains of the Ni-based filling powder, and growing of the secondary carbide phase (Cr, Ni)_3W_3C in the form of dendrites with wide branches that enhanced mechanical properties of the weld. The optimization of bead parameters was made with design of experiment methodology complemented by a complex sample characterization including SEM, EDXS, XRD, and nanoindentation measurements. It was shown that the preheat of the substrate to a moderate temperature 523 K (250° C) establishes linear pattern of metal flow in the weld pool, resulting in the most homogeneous distribution of the primary carbides in the microstructure of weld bead.

  18. Impedance of porous IT-SOFC LSCF:CGO composite cathodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jacobsen, Torben; Wandel, Marie

    2011-01-01

    performing cathodes showed a slightly suppressed Gerischer impedance, while the impedance spectra of the well performing cathodes showed the presence of an arc due to oxygen gas diffusion. The overall impedance of the well performing cathodes could be described with a slightly suppressed Gerischer impedance...

  19. Room Temperature Oxide Deposition Approach to Fully Transparent, All-Oxide Thin-Film Transistors.

    Science.gov (United States)

    Rembert, Thomas; Battaglia, Corsin; Anders, André; Javey, Ali

    2015-10-28

    A room temperature cathodic arc deposition technique is used to produce high-mobility ZnO thin films for low voltage thin-film transistors (TFTs) and digital logic inverters. All-oxide, fully transparent devices are fabricated on alkali-free glass and flexible polyimide foil, exhibiting high performance. This provides a practical materials platform for the low-temperature fabrication of all-oxide TFTs on virtually any substrate.

  20. Structure of TiBN coatings deposited onto cemented carbides and sialon tool ceramics

    OpenAIRE

    L.A. Dobrzański; M. Staszuk; J. Konieczny; W. Kwaśny; M. Pawlyta

    2009-01-01

    Purpose: The aim of this paper was investigated structure of sintered carbides WC-Co type and sialon tool ceramics with wear resistance ternary coatings TiBN type deposited by cathodes arc evaporation process (CAE-PVD).Design/methodology/approach: Observation of fracture and topography studied coatings were done by scanning electron microscope. Chemical composition was determine by energy dispersive spectrometry (EDS) method. Thin foils of substrates and coatings by transmission electron micr...

  1. Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr [Department of Physics, Marmara University, Göztepe Kadıköy, 34722 İstanbul (Turkey); Haider, Ali; Kizir, Seda; Leghari, Shahid A.; Biyikli, Necmi, E-mail: biyikli@unam.bilkent.edu.tr [Institute of Materials Science and Nanotechnology, Bilkent University, Bilkent, 06800 Ankara, Turkey and National Nanotechnology Research Center (UNAM), Bilkent University, Bilkent, 06800 Ankara (Turkey)

    2016-01-15

    GaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor.

  2. Comparative study of the structure and corrosion behavior of Zr-20%Cr and Zr-20%Ti alloy films deposited by multi-arc ion plating technique

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Farhat, E-mail: ilatahraf@yahoo.com [National Centre for Nanotechnology, Department of Metallurgy and Materials Engineering (DMME), Pakistan Institute of Engineering and Applied Sciences (PIEAS), PO Nilore, Islamabad 45650 (Pakistan); Mehmood, Mazhar, E-mail: mazhar@pieas.edu.pk [National Centre for Nanotechnology, Department of Metallurgy and Materials Engineering (DMME), Pakistan Institute of Engineering and Applied Sciences (PIEAS), PO Nilore, Islamabad 45650 (Pakistan); Qasim, Abdul Mateen; Ahmad, Jamil; Naeem-ur-Rehman [National Centre for Nanotechnology, Department of Metallurgy and Materials Engineering (DMME), Pakistan Institute of Engineering and Applied Sciences (PIEAS), PO Nilore, Islamabad 45650 (Pakistan); Iqbal, Muhammad [Physics Division, Pakistan Institute of Science and Technology (PINSTECH), Islamabad 45650 (Pakistan); Qureshi, Ammad H. [Materials Division, Pakistan Institute of Science and Technology (PINSTECH), Islamabad 45650 (Pakistan)

    2014-08-01

    The primary focus of the present work was to perform comparative study of the structure as well as corrosion behavior of two Zr-rich alloy films, i.e. Zr-20%Cr and Zr-20%Ti, as well as metallic Ti, Cr and Zr films, formed by multi-arc ion plating technique. The required alloy film composition was obtained by co-deposition with proper choice of current for the targets of the constituent metals. The deposited alloy film composition was determined by energy dispersion X-ray spectroscopy, X-ray fluorescence and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) techniques, which were in close agreement with each other. The film thickness lied in the range of 550-620 nm. The crystal structure was studied by X-ray diffraction, which revealed the formation of nanocrystalline and semi-amorphous structures. The corrosion rates of the films were determined through weight loss measurement in 1 M, 6 M and 12 M hydrochloric acid (HCl) by ICP-AES analysis of the solution after immersion for 200-350 h. Anodic (potentiodynamic) polarization was also performed. Zr-20%Cr alloy film exhibited the best corrosion resistance, and its dissolution rate was less than 0.5 μm/year in 6 M HCl and about 4 μm/year in 12 M HCl. - Highlights: • Fine control over the stoichiometry of each alloy film • Development of either nano-crystalline or semi-amorphous alloy films • Development of highly corrosion resistant films.

  3. Effects of Y2O3 on the microstructure and wear resistance of cobalt-based alloy coatings deposited by plasma transferred arc process

    Institute of Scientific and Technical Information of China (English)

    HOU Qingyu; HUANG Zhenyi; GAO Jiasheng

    2007-01-01

    Cobalt-based alloys with different Y2O3 contents were deposited on Q235A-carbon steel using plasma transferred arc (PTA) welding machine. The effect of Y2O3 on the microstructure and wear resistance properties of the cobalt-based alloys were investigated using an optical microscope, a scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that a cobalt-based solid solution with a face-centered cubic crystal structure was presented accompanied by the secondary phase M7C3 with a hexagonal crystal structure in the Y2O3-free cobalt-based alloy coating. Several stacking faults exist in the cobalt-based solid solution. The addition of Y2O3leads to the existence of the Y2O3 phase in the Y2O3-modified coatings. Though stacking fault exists in the Y2O3-modified coatings, its density increases. The addition of Y2O3 can refine the microstructure and can increase the wear resistance properties when its contents are less than or equal to 0.8 wt.%. However, further increase of its contents will lead to the agglomeration of undissolved Y2O3 particles at the γ-Co grain boundary, and will lead to a coarse microstructure and lower wear resistance properties.

  4. Oligocene-to-Early Miocene depositional and structural evolution of the Calabria-Peloritani Arc southern terrane (Italy) and geodynamic correlations with the Spain Betics and Morocco Rif

    Science.gov (United States)

    Bonardi, Glauco; de Capoa, Paola; Di Staso, Angelida; Estévez, Antonio; Martín-Martín, Manuél; Martín-Rojas, Iván; Perrone, Vincenzo; Tent-Manclús, José Enrique

    2003-11-01

    The Calabria-Peloritani Arc southern terrane is a stack of crystalline basement nappes, some of them provided with a widely outcropping Alpine sedimentary cover, sealed by clastics of the Stilo-Capo d'Orlando Formation (SCOF). New field observations in the Stilo area lead to define a Pignolo Formation as a sedimentary cycle predating the emplacement of the uppermost nappe (Stilo Unit) of the tectonic pile. It includes the well-known Lithothamnium and larger foraminifers bearing calcarenites, previously interpreted as a basal member of the SCOF. The biostratigraphic revision of both formations, together with recently published data about other preorogenic deposits, point to a stacking of the whole terrane between the Aquitanian and the middle-late Burdigalian. A comparison between the sedimentary cycles characterising the Calabria-Peloritani southern terrane during the Oligocene-Early Miocene and those almost coeval of the Betic-Rifian internal units highlights their quite similar evolution. Thus it is reliable that both the orogenic belts originated from contiguous paleogeographic realms. These considerations confirm that the present western Mediterranean Chains were originally segments of a continuous orogenic belt disrupted by the opening of the Balearic and Tyrrhenian basins.

  5. Development of plasma cathode electron guns

    Science.gov (United States)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  6. SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Mogensen, Mogens Bjerg

    2011-01-01

    The cause of the degradation effect of moisture during operation of LSM cathode based SOFCs has been investigated by means of a detailed impedance characterization on LSM:YSZ composite cathode based SOFCs. Further the role of YSZ as cathode composite material was studied by measurements on SOFCs...... with a LSM:CGO composite cathode on a CGO interdiffusion barrier layer. It was found that both types of cathodes showed similar electrochemical characteristics towards the presence of moisture during operation. Upon addition and removal of moisture in the fed air the impedance study showed a change...... in the high frequency cathode arc, which is associated with the charge transport/transfer at the LSM/YSZ interface. On prolonged operation with the presence of moisture an ongoing increase in the high frequency cathode arc resulted in a permanent loss of cathode/electrolyte contact and thus increase...

  7. Synthesis and evaluation of nano-size lanthanum strontium manganite-yttria-stablized zirconia composite powders as cathodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jungdeok; Zou, Jing [Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-Dong, Nam-Gu, Pohang 790-784 (Korea); Chung, Jongshik [Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-Dong, Nam-Gu, Pohang 790-784 (Korea); School of Environmental Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-Dong, Nam-Gu, Pohang 790-784 (Korea)

    2010-08-01

    Nano-sized (50 nm) lanthanum strontium manganite (La{sub 0.8}Sr{sub 0.2}MnO{sub 3}, LSM) particles are deposited on yttria-stablized zirconia (8YSZ) by synthesizing LSM particles in situ in an YSZ-dispersed solution. As the LSM content is decreased from 80 to 25 wt.%, 50 wt.% powder shows the best microstructure and phase connectivity. This composite, when used as a cathode in a button cell, also has the highest power density of 791 mW cm{sup -2} at 800 C and the lowest values of the cathode polarization resistance and high-frequency arc (0.315 and 0.120 {omega} cm{sup 2}, respectively). Initially, the low-frequency arc shows a rapid decrease as the LSM content is reduced from 80 to 60 wt.%. After this, an abrupt drop at 50 wt.% LSM content is followed by a slow decrease in the low-frequency arc with further decrease in the LSM content. The results suggest that the high-frequency arc is related to charge transfer and the low-frequency arc to the site density of the triple-phase boundary (TPB). A new parameter, the charge-transfer efficiency of the TPB site, is defined and used to explain further the observed effect of LSM content on YSZ. (author)

  8. Concept for lightweight spaced-based deposition technology

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, Michael; Anders, Andre

    2006-02-28

    In this contribution we will describe a technology path to very high quality coatings fabricated in the vacuum of space. To accomplish the ambitious goals set out in NASA's Lunar-Mars proposal, advanced thin-film deposition technology will be required. The ability to deposit thin-film coatings in the vacuum of lunar-space could be extremely valuable for executing this new space mission. Developing lightweight space-based deposition technology (goal:<300 g, including power supply) will enable the future fabrication and repair of flexible large-area space antennae and fixed telescope mirrors for lunar-station observatories. Filtered Cathodic Arc (FCA) is a proven terrestrial energetic thin-film deposition technology that does not need any processing gas but is well suited for ultra-high vacuum operation. Recently, miniaturized cathodic arcs have already been developed and considered for space propulsion. It is proposed to combine miniaturized pulsed FCA technology and robotics to create a robust, enabling space-based deposition system for the fabrication, improvement, and repair of thin films, especially of silver and aluminum, on telescope mirrors and eventually on large area flexible substrates. Using miniature power supplies with inductive storage, the typical low-voltage supply systems used in space are adequate. It is shown that high-value, small area coatings are within the reach of existing technology, while medium and large area coatings are challenging in terms of lightweight technology and economics.

  9. Study on Ceramic Cutting by Plasma Arc

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Engineering ceramics are typical difficult-to-machine materials because of high hardness and brittleness. PAC (Plasma Arc Cutting) is a very important thermal cutting process and has been successfully used in cutting stainless steel and other difficult-to-machine alloys. PAC's application in cutting ceramics, however, is still limited because the most ceramics are not good electronic conducts, and transferred plasma arc cannot be produced between cathode and work-piece. So we presented a method of plasma ...

  10. Cathode encapsulation of OLEDs by atomic layer deposited Al2O3 films and Al2O3/a-SiNx:H stacks

    NARCIS (Netherlands)

    Keuning, W.; Van de Weijer, P.; Lifka, H.; Kessels, W.M.M.; Creatore, M.

    2011-01-01

    Al2O3 thin films synthesized by plasma-enhanced atomic layer deposition(ALD) at room temperature (25 ºC) have been tested as water vapor per-meation barriers for OLED devices. Silicon nitride films (a-SiNx:H)deposited by plasma-enhanced chemical vapor deposition (PE-CVD) servedas reference and were

  11. Cathode Erosion of Graphite and Cu/C Materials in Airarcs

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chengyu; QIAO Shengru; LIU Yiwen; YANG Zhimao; WANG Yaping; GUO Yong

    2012-01-01

    Cathode erosion of graphite and Cu/C was studied in direct current arcs,which were ignited between two electrodes comprised of two kinds of carbon materials and a tungsten anode in air.The arced zones on the cathode surface were investigated by a scanning electron microscope.Also,the cathode erosion rates of the investigated materials were measured.The results show that two distinct zone can be seen on both cathodes.The eroded area was located at the zone just opposite to the anode and surrounded by a white zone.The arced surface on the Cu/C containing 9.3 % Cu is rougher than that of the pure graphite.Many particles with various sizes distributed on the Cu/C.The vaporization of Cu can lower the surface temperature and reduce the cathode erosion.Therefore,the cathode erosion rate of the Cu/C is lower than that of the pure graphite.

  12. 电弧离子镀法制备高硬度Cr-Si-C-N薄膜%Cr-Si-C-N HARD FILMS PREPARED BY ARC ION DEPOSITION METHOD

    Institute of Scientific and Technical Information of China (English)

    聂朝胤; Akiro Ando; 卢春灿; 贾晓芳

    2009-01-01

    采用电弧离子反应沉积技术在SCM415渗碳淬火钢基片上沉积了Cr-Si-C-N薄膜,三甲基硅烷(TMS)反应气体作为Si和C掺杂源,通过改变TMS流量实现了薄膜中si和C含量的调节.利用XPS,XRD,HRTEM和显微硬度计研究了Cr-Si-C-N薄膜的化学状态、显微组织和显微硬度.Cr-Si-C-N薄膜中的Si和C含量随TMS流量的增加而单调增加.在TMS流鼍小于:90 mL/min时,薄膜中Si和C含量较少,薄膜由Cr(C,N)纳米晶与Si_3N_4非品(nc-Cr(C,N)/a-Si_3N_4)组成,薄膜硬度随流量的增加而单调增大,最大至4500 HK.硬度的增加源于固溶强化及薄膜中纳米晶/非晶复合结构的形成;当TMS流量大于90 mL/min时,薄膜中Si和C含量较多,多余的C以游离态形式存在,且随TMS流量的增加而增多,薄膜硬度下降.%PVD or CVD Me-Si N nanocomposite films synthesized by doping Si element in metallic nitride matrix have exhibited good oxidation resistance and wear resistance. As melting the alloy target containing Si is not easy, it is difficulty to dope much more Si in the fihns by PVD techniques. In addition, the Me-Si-N films do not have enough lubrication. In this paper, Cr-Si-C-N films were prepared by cathode arc ion deposition technique, in which tetramethylsilane (TMS) was used as Si and C sources, and their concentrations in the Cr-Si-C-N fihns can be controlled by TMS flow. The state of chemical bonding, microstructure and microhardncss were investigated by XPS, XRD, HRTEM and microindentation hardness tester. Results show that the Si and C contents increase monotonicly with the increase of TMS flow. When the TMS flow is lower than 90 mL/min, the Cr-Si-C-N fihn has a composite structure of Cr(C, N) nanocrystals dispersing in the amorphous Si_3N_4 (nc-Cr(C, N)/a-Si_3N_4), and the microhardness increases to 4500 HK with increas-ing TMS flow. Such high hardness originates from the solid solution hardening of the doping fewer element and the Veprek nanocompositc structure

  13. Driven Motion and Instability of an Atmospheric Pressure Arc

    Energy Technology Data Exchange (ETDEWEB)

    Max Karasik

    1999-12-01

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes.

  14. Microwave Plasma Chemical Vapor Deposition of Carbon Coatings on LiNi1/3Co1/3Mn1/3O2 for Li-Ion Battery Composite Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, M.M.; Kostecki, R.; Marcinek, M.; Wilcoc, J.D.

    2008-12-10

    In this paper, we report results of a novel synthesis method of thin film conductive carbon coatings on LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} cathode active material powders for lithium-ion batteries. Thin layers of graphitic carbon were produced from a solid organic precursor, anthracene, by a one-step microwave plasma chemical vapor deposition (MPCVD) method. The structure and morphology of the carbon coatings were examined using SEM, TEM, and Raman spectroscopy. The composite LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} electrodes were electrochemically tested in lithium half coin cells. The composite cathodes made of the carbon-coated LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} powder showed superior electrochemical performance and increased capacity compared to standard composite LiNi{sub 1/3}Co{sub 1/3}Mn{sub 1/3}O{sub 2} electrodes.

  15. Deposition and characterization of thin films of materials with application in cathodes for lithium rechargeable micro batteries; Deposito y caracterizacion de peliculas delgadas de materiales con aplicacion en catodos para microbaterias recargables de litio

    Energy Technology Data Exchange (ETDEWEB)

    Lopez I, J. [UAEM, Facultad de Quimica, 50000 Toluca, Estado de Mexico (Mexico)

    2007-07-01

    In this thesis work is reported the deposition and characterization of thin films of materials of the type LiMO{sub 2}, with M=Co and Ni, which have application in cathodes for micro-batteries of lithium ions. In the last years some investigators have reported that the electrochemical operation of the lithium ions batteries it can improve recovering the cathode, in bundle form, with some metal oxides as the Al{sub 2}O{sub 3}; for that the study of the formation of thin films in bilayer form LiMO{sub 2}/AI{sub 2}O{sub 3} is of interest in the development of lithium ions micro batteries. The thin films were deposited using the laser ablation technique studying the effect of some deposit parameters in the properties of the one formed material, as: laser fluence, substrate temperature and working atmosphere, with the purpose of optimizing it. In the case of the LiCoO{sub 2} it was found that to use an inert atmosphere of argon allows to obtain the material with the correct composition. Additionally, with the use of a temperature in the substrate of 150 C is possible to obtain to the material with certain crystallinity grade that to the subjected being to a post-deposit thermal treatment at 300 C for three hours, it gives as result a totally crystalline material. In the case of the thin films of LiNiO{sub 2}, it was necessary to synthesize the oxide starting from a reaction of solid state among nickel oxide (NiO) and lithium oxide (Li{sub 2}O) obtaining stoichiometric LiNiO{sub 2}. For the formation of the thin films of LiNiO{sub 2} it was used an argon atmosphere and the laser fluence was varied, the deposits were carried out to two different substrates temperatures, atmosphere and 160 C. In both cases the material it was recovered with an alumina layer, found that this layer didn't modify the structural properties of the base oxide (LiCoO{sub 2} and LiNiO{sub 2}). (Author)

  16. Highly zone-dependent synthesis of different carbon nanostructures using plasma-enhanced arc discharge technique

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajesh, E-mail: rajeshbhu1@gmail.com [Yonsei University, Department of Materials Science & Engineering (Korea, Republic of); Singh, Rajesh Kumar, E-mail: rksbhu@gmail.com [Banaras Hindu University, Department of Applied Physics, Indian Institute of Technology (India); Dubey, Pawan Kumar [University of Allahabad, Nanotechnology Application Centre (India); Yadav, Ram Manohar [Rice University, Department of Materials Science and Nano Engineering (United States); Singh, Dinesh Pratap [Universidad de Santiago de Chile, Departamento de Física (Chile); Tiwari, R. S.; Srivastava, O. N. [Banaras Hindu University, Department of Physics (India)

    2015-01-15

    Three kinds of carbon nanostructures, i.e., graphene nanoflakes (GNFs), multi walled carbon nanotubes (MWCNTs), and spherical carbon nanoparticles (SCNPs) were comparatively investigated in one run experiment. These carbon nanostructures are located at specific location inside the direct current plasma-assisted arc discharge chamber. These carbon nanomaterials have been successfully synthesized using graphite as arcing electrodes at 400 torr in helium (He) atmosphere. The SCNPs were found in the deposits formed on the cathode holder, in which highly curled graphitic structure are found in majority. The diameter varies from 20 to 60 nm and it also appears that these particles are self-assembled to each other. The MWCNTs with the diameter of 10–30 nm were obtained which were present inside the swelling portion of cathode deposited. These MWCNTs have 14–18 graphitic layers with 3.59 Å interlayer spacing. The GNFs have average lateral sizes of 1–5 μm and few of them are stacked layers and shows crumpled like structure. The GNFs are more stable at low temperature (low mass loss) but SCNPs have low mass loss at high temperature.

  17. Lipon coatings for high voltage and high temperature Li-ion battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Dudney, Nancy J.; Liang, Chengdu; Nanda, Jagjit; Veith, Gabriel M.; Kim, Yoongu; Martha, Surendra Kumar

    2017-02-14

    A lithium ion battery includes an anode and a cathode. The cathode includes a lithium, manganese, nickel, and oxygen containing compound. An electrolyte is disposed between the anode and the cathode. A protective layer is deposited between the cathode and the electrolyte. The protective layer includes pure lithium phosphorus oxynitride and variations that include metal dopants such as Fe, Ti, Ni, V, Cr, Cu, and Co. A method for making a cathode and a method for operating a battery are also disclosed.

  18. Gliding arc triggered microwave plasma arc at atmospheric pressure for coal gasification application

    Science.gov (United States)

    Jain, Vishal; Visani, A.; Patil, C.; Patel, B. K.; Sharma, P. K.; John, P. I.; Nema, S. K.

    2014-08-01

    Plasma torch is device that efficiently converts electrical energy in to thermal energy for various high temperature applications. The conventional plasma torch comprises of consumable electrodes namely anode and cathode electrodes. The replacement of these electrodes is a complex process owing to its cooling and process shut down requirements. However, microwave plasma arc is electrode-less plasma arc system that is an alternative method to conventional arc technology for generating plasma arc. In this technique, microwave power is efficiently coupled to generate plasma arc by using the property of polar molecule to absorb microwave power. The absorption of microwave power is in form of losses due to intermolecular friction and high collisions between the molecules. This is an efficient method because all microwave power can be absorbed by plasma arc. The main feature of microwave plasma arc is its large uniform high temperature column which is not possible with conventional arc discharge methods. Such type of plasma discharge is very useful in applications where sufficient residence time for treat materials is required. Microwave arc does not require any consumable electrodes and hence, it can be operated continuously that makes it very useful for hazardous effluent treatment applications. Further, microwave cannot ionize neutral particles at atmospheric pressure and hence, a gliding arc is initiated between two thin electrodes in the cavity by applying very low power high voltage (3kV) AC source. In this report, the method for generating microwave arc of 1kW power using commercial microwave oven is elaborated.

  19. A structure zone diagram including plasma based deposition and ion etching

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2009-10-14

    An extended structure zone diagram is proposed that includes energetic deposition, characterized by a large flux of ions typical for deposition by filtered cathodic arcs and high power impulse magnetron sputtering. The axes are comprised of a generalized homologous temperature, the normalized kinetic energy flux, and the net film thickness, which can be negative due to ion etching. It is stressed that the number of primary physical parameters affecting growth by far exceeds the number of available axes in such a diagram and therefore it can only provide an approximate and simplified illustration of the growth condition?structure relationships.

  20. The double sheath on cathodes of discharges burning in cathode vapour

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M S; Benilova, L G [Departamento de Fisica, Universidade da Madeira, Largo do MunicIpio, 9000 Funchal (Portugal)

    2010-09-01

    The model of a collisionless near-cathode space-charge sheath with ionization of atoms emitted by the cathode surface is considered. Numerical calculations showed that the mathematical problem is solvable and its solution is unique. In the framework of this model, the sheath represents a double layer with a potential maximum, with the ions which are produced before the maximum returning to the cathode surface and those produced after the maximum escaping into the plasma. Numerical results are given in a form to be readily applicable in analysis of discharges burning in cathode vapour, such as vacuum arcs. In particular, the results indicate that the ion backflow coefficient in such discharges exceeds 0.5, in agreement with values extracted from the experiment.

  1. Thermal and electrical influences from bulk plasma in cathode heating modeling

    Science.gov (United States)

    Chen, Tang; Wang, Cheng; Zhang, Xiao-Ning; Zhang, Hao; Xia, Wei-Dong

    2017-02-01

    In this paper, a numerical calculation is performed for the purpose of estimating the thermal and electrical influences from bulk plasma in cathode heating modeling, in other words researching the necessity of a coupling bulk plasma in near-cathode layer modeling. The proposed model applied in the present work is an improved one from previous work. In this model, the near-cathode region is divided into two parts: the sheath and the ionization layer. The Schottky effect at the cathode surface is considered based on the analytic solution of a 1D sheath model. It is noted that the arc column is calculated simultaneously in the near-cathode region and the cathode bulk. An application is presented for an atmospheric free burning argon arc with arc currents of 50 A-600 A. The modeling results show three interesting points: (1) at the cathode surface, energy transport due to heat conduction of heavy particles and electrons is comparable to total heating flux, no matter whether the arc discharge is performed in a high (400 A) or low current (50 A) situation; (2) the electrical influence from bulk plasma on the cathode heating modeling becomes obvious in a high current situation (>400 A) for the spot mode; (3) the near-cathode layer voltage drop ({{U}\\text{tot}} ) is larger in the diffuse mode than in the spot mode for the same current, which is just the opposite to that for decoupled modeling.

  2. Porous NASICON-Type Li3Fe2(PO4)3 Thin Film Deposited by RF Sputtering as Cathode Material for Li-Ion Microbatteries.

    Science.gov (United States)

    Sugiawati, Vinsensia Ade; Vacandio, Florence; Eyraud, Marielle; Knauth, Philippe; Djenizian, Thierry

    2016-12-01

    We report the electrochemical performance of porous NASICON-type Li3Fe2(PO4)3 thin films to be used as a cathode for Li-ion microbatteries. Crystalline porous NASICON-type Li3Fe2(PO4)3 layers were obtained by radio frequency sputtering with an annealing treatment. The thin films were characterized by XRD, SEM, and electrochemical techniques. The chronoamperometry experiments showed that a discharge capacity of 88 mAhg(-1) (23 μAhcm(-2)) is attained for the first cycle at C/10 to reach 65 mAhg(-1) (17 μAhcm(-2)) after 10 cycles with a good stability over 40 cycles.

  3. Porous NASICON-Type Li3Fe2(PO4)3 Thin Film Deposited by RF Sputtering as Cathode Material for Li-Ion Microbatteries

    Science.gov (United States)

    Sugiawati, Vinsensia Ade; Vacandio, Florence; Eyraud, Marielle; Knauth, Philippe; Djenizian, Thierry

    2016-08-01

    We report the electrochemical performance of porous NASICON-type Li3Fe2(PO4)3 thin films to be used as a cathode for Li-ion microbatteries. Crystalline porous NASICON-type Li3Fe2(PO4)3 layers were obtained by radio frequency sputtering with an annealing treatment. The thin films were characterized by XRD, SEM, and electrochemical techniques. The chronoamperometry experiments showed that a discharge capacity of 88 mAhg-1 (23 μAhcm-2) is attained for the first cycle at C/10 to reach 65 mAhg-1 (17 μAhcm-2) after 10 cycles with a good stability over 40 cycles.

  4. Preliminary Results of Field Emission Cathode Tests

    Science.gov (United States)

    Sovey, James S.; Kovaleski, Scott D.

    2001-01-01

    Preliminary screening tests of field emission cathodes such as chemical vapor deposited (CVD) diamond, textured pyrolytic graphite, and textured copper were conducted at background pressures typical of electric thruster test facilities to assess cathode performance and stability. Very low power electric thrusters which provide tens to hundreds micronewtons of thrust may need field emission neutralizers that have a capability of tens to hundreds of microamperes. From current voltage characteristics, it was found that the CVD diamond and textured metals cathodes clearly satisfied the Fowler-Nordheim emission relation. The CVD diamond and a textured copper cathode had average current densities of 270 and 380 mA/sq cm, respectively, at the beginning-of-life. After a few hours of operation the cathode emission currents degraded by 40 to 75% at background pressures in the 10(exp -5) Pa to 10(exp -4) Pa range. The textured pyrolytic graphite had a modest current density at beginning-of-life of 84 mA/sq cm, but this cathode was the most stable of all. Extended testing of the most promising cathodes is warranted to determine if current degradation is a burn-in effect or whether it is a long-term degradation process. Preliminary experiments with ferroelectric emission cathodes, which are ceramics with spontaneous electric polarization, were conducted. Peak current densities of 30 to 120 mA/sq cm were obtained for pulse durations of about 500 ns in the 10(exp -4) Pa pressure range.

  5. Arc Statistics

    CERN Document Server

    Meneghetti, M; Dahle, H; Limousin, M

    2013-01-01

    The existence of an arc statistics problem was at the center of a strong debate in the last fifteen years. With the aim to clarify if the optical depth for giant gravitational arcs by galaxy clusters in the so called concordance model is compatible with observations, several studies were carried out which helped to significantly improve our knowledge of strong lensing clusters, unveiling their extremely complex internal structure. In particular, the abundance and the frequency of strong lensing events like gravitational arcs turned out to be a potentially very powerful tool to trace the structure formation. However, given the limited size of observational and theoretical data-sets, the power of arc statistics as a cosmological tool has been only minimally exploited so far. On the other hand, the last years were characterized by significant advancements in the field, and several cluster surveys that are ongoing or planned for the near future seem to have the potential to make arc statistics a competitive cosmo...

  6. Comparison of the PVD gradient coatings deposited onto X40CrMoV5-1 and HS6-5-2 tool steel substrate

    OpenAIRE

    K. Lukaszkowicz; L.A. Dobrzański; M. Staszuk; M. Pancielejko

    2008-01-01

    Purpose: The main aim of this research was investigation and comparison of selected properties of gradient coatings TiCN and AlSiCrN. In this paper both coatings were deposited by cathode arc evaporation physical vapour deposition (CAE-PVD) method onto high speed steel HS6-5-2 and hot work tool steel X40CrMoV5-1.Design/methodology/approach: Observations of surface and structures of the deposited coatings were carried out on cross sections in the scanning electron microscope. The phase composi...

  7. High-performance cathode elements for gas-discharge light sources

    Directory of Open Access Journals (Sweden)

    Sevastyanov V. V.

    2009-02-01

    Full Text Available Application of cathode elements of the arc-discharge activator made on the basis of developed material — alloy of iridium and rare-earth metals (of cerium group — has been suggested. The working samples of arc lamps have been produced and tested. The location of metal-alloy cathode has been optimized. The tests demonstrated, that after 4500 hours of work the lighting-up and glowing parameters of such lamps remained stable.

  8. Electrode voltage fall and total voltage of a transient arc

    Science.gov (United States)

    Valensi, F.; Ratovoson, L.; Razafinimanana, M.; Masquère, M.; Freton, P.; Gleizes, A.

    2016-06-01

    This paper deals with an experimental study of the components of a transient arc total voltage with duration of a few tens of ms and a current peak close to 1000 A. The cathode tip is made of graphite whereas the flat anode is made either of copper or of graphite; the electrodes gap is a few mm. The analysis of the electrical parameters is supported and validated by fast imaging and by two models: the first one is a 2D physical model of the arc allowing to calculate both the plasma temperature field and the arc voltage; the second model is able to estimate the transient heating of the graphite electrode. The main aim of the study was to detect the possible change of the cathode voltage fall (CVF) during the first instants of the arc. Indeed it is expected that during the first ms the graphite cathode is rather cool and the main mechanism of the electron emission should be the field effect emission, whereas after several tens of ms the cathode is strongly heated and thermionic emission should be predominant. We have observed some change in the apparent CVF but we have shown that this apparent change can be attributed to the variation of the solid cathode resistance. On the other hand, the possible change of CVF corresponding to the transition between a ‘cold’ and a ‘hot’ cathode should be weak and could not be characterized considering our measurement uncertainty of about 2 V. The arc column voltage (ACV) was estimated by subtracting the electrode voltage fall from the total arc voltage. The experimental transient evolution of the ACV is in very good agreement with the theoretical variation predicted by the model, showing the good ability of the model to study this kind of transient arc.

  9. In situ characterization of charge rate dependent stress and structure changes in V2O5 cathode prepared by atomic layer deposition

    Science.gov (United States)

    Jung, Hyun; Gerasopoulos, Konstantinos; Talin, A. Alec; Ghodssi, Reza

    2017-02-01

    The insertion/extraction of lithium into/from various host materials is the basic process by which lithium-ion batteries reversible store charge. This process is generally accompanied by strain in the host material, inducing stress which can lead to capacity loss. Therefore, understanding of both the structural changes and the associated stress - investigated almost exclusively separate to date - is a critical factor for developing high-performance batteries. Here, we report an in situ method, which utilizes Raman spectroscopy in parallel with optical interferometry to study effects of varying charging rates (C-rates) on the structure and stress in a V2O5 thin film cathode. Abrupt stress changes at specific crystal phase transitions in the Lisbnd Vsbnd O system are observed and the magnitude of the stress changes with the amount of lithium inserted into the electrode are correlated. A linear increase in the stress as a function of x in LixV2O5 is observed, indicating that C-rate does not directly contribute to larger intercalation stress. However, a more rapid increase in disorder within the LixV2O5 layers is correlated with higher C-rate. Ultimately, these experiments demonstrate how the simultaneous stress/Raman in situ approach can be utilized as a characterization platform for investigating various critical factors affecting lithium-ion battery performance.

  10. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

    Institute of Scientific and Technical Information of China (English)

    LI Tianming; Sooseok CHOI; Takayuki WATANABE

    2012-01-01

    A water plasma was generated by DC arc discharge with a hafnium embedded rodtype cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process.

  11. CrAlTiN及CrAlTiSiN纳米多层复合涂层的制备及力学性能%CrAlTiN and CrAlTiSiN Nanocomposite Coatings Deposited by Multi-arc Plasma Deposition

    Institute of Scientific and Technical Information of China (English)

    付酮程; 闫少健; 田灿鑫; 杨兵; 黄志宏; 付德君

    2013-01-01

    以金属Cr和AlTi合金为靶材料,在沉积过程中引入SiH4气体,用自行设计的多靶阴极电弧离子镀系统在单晶硅和硬质合金衬底上沉积了CrAlTiN和CrAlTiSiN硬质涂层.通过X射线衍射(XRD)和透射电镜(TEM)分析涂层的组织和形貌,结果表明:衬底偏压和反应气体流量对膜层的力学性能有较大影响,在优化条件下得到CrAlTiN涂层的硬度为29 GPa.且CrAlTiSiN涂层为CrSiN和AlTiSiN组成的纳米多层复合涂层,随着SiH4流量的增加,薄膜中的硅含量明显增加,在优化条件下,涂层的显微硬度达到37 GPa,摩擦因数为0.58.刀具涂层检测试验表明,涂覆CrAlTiN涂层的铣刀使用寿命可提高3倍,而CrAlTiSiN涂层较CrAlTiN涂层还会进一步提高刀具使用寿命.%CrAlTiN and CrAlTiSiN nanocomposite coatings were synthesized on cemented carbide and Si substrate through a home-made cathodic multi-arc plasma deposition system with Cr and AITi alloy targets. The structural characteristics, morphology were obtained by X-ray diffraction (XRD), scanning electron microscope (SEM). Results show that the bias voltage and flow rate of reactant gas significantly affect mechanical properties of the films, and the microhardness of CrAlTiN reaches 29 GPa at optimized conditions. The CrAlTiSiN coatings consisting of multilayer composite with CrSiN and AlTiSiN from the figures of XRD patterns and TEM morphologies. With the increase of SiH4 flow rate, the content of Si elevats and the microhardness reaches the 37 GPa with fricition coefficient of 0. 58 at the most optimized parameters. The cutting experiment illustrated that the milling cutter with CrAlTiN coatings is three times longer than that of common tools, while the CrAlTiSiN coatings can further improve the working life the cutter compared with the CrAlTiN.

  12. Arc tracks on nanostructured surfaces after microbreakdowns

    Science.gov (United States)

    Sinelnikov, D.; Bulgadaryan, D.; Hwangbo, D.; Kajita, S.; Kolodko, D.; Kurnaev, V.; Ohno, N.

    2016-09-01

    Studying of initial steps of unipolar arc ignition process is important for reduction of probability of arcing between the plasma and the wall in thermonuclear devices. Tungsten nano-fuzz surface formed by helium plasma irradiation at high fluences and temperatures is a perfect material for arc ignition. Snowflake-like craters were detected on the fuzzy surfaces after short micro-breakdowns. Such sort of craters have not been observed before on any other metallic surfaces. These specific traces are formed due to unique properties of the fuzz structure. The nano-fuzz could be easily melted and vaporized by micro-breakdown current, due to its porosity and bad thermal conductivity, and formation of low conducting metallic vapour under the cathode spot causes discharge movement to the nearest place. Thus, even low current arc can easily move and leave traces, which could be easily observed by a secondary electron microscope.

  13. Experimental investigation and numerical simulation of triggered vacuum arc behavior under TMF/RMF-AMF contact

    Science.gov (United States)

    Wang, Lijun; Deng, Jie; Qin, Kang; Zhang, Xiao; Jia, Shenli

    2016-06-01

    A series of triggering experiments was carried out to investigate the characteristics of vacuum arc controlled by TMF/RMF-AMF contacts. During all the experiments, the current ranged from 5-20 kA (rms) and both the arc appearance and behavior of cathode spots were captured by high-speed camera with corresponding arc current and arc voltage. A 3D steady magnetohydrodynamics (MHD) model was built to simulate and analyze the vacuum arc behavior under TMF/RMF-AMF contacts, and arc plasma parameters were calculated based on the above model. The experimental results showed that arc deflection was visible under both low and high current. Under high current, arc core formed, which meant the arc contracted significantly. In addition, the anode became much more active under high current. The behavior of the cathode spots showed that they split themselves into other new cathode spots. Under high current, the bulk of the spots rotated along a clockwise direction on a transverse magnetic field (TMF) plate, which caused much noise and oscillation in the arc voltage. The simulation results show that ions are likely to gather on the branches of the TMF plate on the anode plane, as a result of the effects between the electromagnetic force and pressure gradient of the arc plasma. The current contracts in the center of the TMF plate on the cathode which was due to the thin connecting rod there. The anode contraction of the current is caused by the Hall effect. Ions move along a clockwise direction on the TMF plate, which is driven by Ampere force. The current contraction resulted in significant melting in the center of the cathode surface while the other region suffered from uniform melting. The melting caused by the anode contraction is more significant than that of the cathode.

  14. Superparamagnetic Iron Oxide (Fe3O4 Nanoparticles Coated with PEG/PEI for Biomedical Applications: A Facile and Scalable Preparation Route Based on the Cathodic Electrochemical Deposition Method

    Directory of Open Access Journals (Sweden)

    Isa Karimzadeh

    2017-01-01

    Full Text Available Cathodic electrochemical deposition (CED is introduced as an efficient and effective method for synthesis and surface coating of superparamagnetic iron oxide nanoparticles (SPIONs. In this way, bare Fe3O4 nanoparticles were electrosynthesized through CED method from aqueous solution Fe3+ : Fe2+ chloride (molar ratio of 2 : 1. In the next step, the surface of NPs was coated with polyethyleneimine (PEI and polyethylene glycol (PEG during the CED procedure, and PEG/PEI coated SPIONs were obtained. The prepared NPs were evaluated by powder X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, dynamic light scattering (DLS, vibrating sample magnetometer (VSM, and field-emission scanning electron microscopy (FE-SEM. The pure magnetite phase and nanosize (about 15 nm of the prepared NPs were confirmed by XRD and FE-SEM. The presence of two coats (i.e., PEG and PEI on the surface of electrosynthesized NPs was proved via FTIR results. The percentage of polymer coat (37.5% on the NPs surface was provided by TGA analysis. The high magnetization value, negligible coercivity, and remanence measured by VSM indicate the superparamagnetic nature of both prepared NPs. The obtained results confirmed that the prepared Fe3O4 nanoparticles have suitable physicochemical and magnetic properties for biomedical applications.

  15. Phenomenology of plasma engine cathodes at high current rates and low pressures

    Science.gov (United States)

    Huegel, H.; Kruelle, G.

    1984-01-01

    The effects of low surrounding pressures on cathodes of arc jet engines with electromagnetic acceleration are investigated for pressure and current energies of 20 to 100 Torr. and 400 to 1000 A. Experiments with 50 mm long and 8 mm diameter tungsten-thorium cathode in a coaxial gas flow show that pre-heating of the cathode reduces the duration of the instable arc discharge and thus material loss. The use of lighter gases also reduces instability effects, as well as the use of increased pressures and a massive gas influx.

  16. Variation of chemical composition of high strength low alloy steels with different groove sizes in multi-pass conventional and pulsed current gas metal arc weld depositions

    Directory of Open Access Journals (Sweden)

    K. Devakumaran

    2015-06-01

    Full Text Available 25 mm thick micro-alloyed HSLA steel plate is welded by multi-pass GMAW and P-GMAW processes using conventional V-groove and suitably designed narrow gap with 20 mm (NG-20 and 13 mm (NG-13 groove openings. The variation of weld metal chemistry in the multi pass GMA and P-GMA weld depositions are studied by spark emission spectroscopy. It is observed that the narrow groove GMA weld joint shows significant variation of weld metal chemistry compared to the conventional V-groove GMA weld joint since the dilution of base metal extends from the deposit adjacent to groove wall to weld center through dissolution by fusion and solid state diffusion. Further, it is noticed that a high rate of metal deposition along with high velocity of droplet transfer in P-GMAW process enhances the dilution of weld deposit and accordingly varies the chemical composition in multi-pass P-GMA weld deposit. Lower angle of attack to the groove wall surface along with low heat input in NG-13 weld groove minimizes the effect of dissolution by fusion and solid state diffusion from the deposit adjacent to groove wall to weld center. This results in more uniform properties of NG-13 P-GMA weld in comparison to those of NG-20 and CG welds.

  17. Dual arc penning ion source gas flow experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, E.D.; Lord, R.S.; Mallory, M.L.; Antaya, T.A.

    1984-01-01

    Support gas, when added directly to an arc or admitted to an auxiliary chamber of a two-arc chamber ion source, increases the beam intensity for multicharged ions such as /sup 16/O/sup 5 +/. To clarify the mechanism of this intensity increase, gas flow rates from the auxiliary chamber to the main chamber have been measured by using the ORIC cyclotron as a mass spectrometer. The results show that only about three percent of the gas admitted to the auxiliary chamber reaches the main chamber. One can then infer that the improved operation probably results from the stabilizing effect of heating the common cathodes with the auxiliary arc and/or the more favorable distribution of the support gas to the part of the main arc close to the cathodes.

  18. Microgranular enclaves in island-arc andesites: A possible link between known epithermal Au and potential porphyry Cu-Au deposits in the Tulasu ore cluster, western Tianshan, Xinjiang, China

    Science.gov (United States)

    Zhao, Xiaobo; Xue, Chunji; Symons, David T. A.; Zhang, Zhaochong; Wang, Honggang

    2014-05-01

    The successful exploration for porphyry copper deposit in western Tianshan, Xinjiang, faces great challenge. Tulasu basin is an important epithermal gold ore cluster in western Tianshan, which was formed in a southwest-Pacific-type island-arc setting during the late Paleozoic by the southward subduction of the North Tianshan ocean beneath the Yili plate. Porphyry Cu-Au deposits are possibly to be found at depth or adjacent to these epithermal gold deposits. Some sulfide-mineralized microgranular enclaves of monzonite porphyry and microdiorite were found in andesites of the Tawuerbieke gold district, Tulasu basin. The enclaves are randomly distributed, with generally round or subangular shape and commonly clearly defined within their host andesite, and have a chilled surrounding margin of andesite. The monzonite porphyry enclaves (MPE) exhibit porphyritic texture with the phenocrysts of plagioclase and K-feldspar. The microdiorite enclaves (MDE) are mainly composed of plagioclase and hornblende with an aplitic texture and massive structure. The host andesites show porphyritic texture, with the phenocrysts major of plagioclase, minor of hornblende and clinopyroxene. The groundmass consists of short-column plagioclase and minor clinopyroxene with a hyalopilitic texture. Zircon grains from a MPE sample yield a weighted 206Pb/238U age of 356.2 ± 4.3 Ma (n = 13, MSWD = 1.11), which is effectively coincident with the 360.5 ± 3.4 Ma (n = 20, MSWD = 0.61) of an andesite sample within analytical error, indicating that they were coeval. In addition, the MPE, MDE and the andesite samples share similar normalized incompatible element and rare earth element patterns that are characterized by a pronounced enrichment of large ion lithophile elements and a deficit of high field strength elements. Moreover, the samples show similar Nd isotope compositions to the contemporary andesites and basaltic andesites. Detailed petrology, geochronology and geochemistry studies suggest that

  19. Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells

    KAUST Repository

    Xie, Xing

    2011-01-01

    A carbon nanotube (CNT)-textile-Pt cathode for aqueous-cathode microbial fuel cells (MFCs) was prepared by electrochemically depositing Pt nanoparticles on a CNT-textile. An MFC equipped with a CNT-textile-Pt cathode revealed a 2.14-fold maximum power density with only 19.3% Pt loading, compared to that with a commercial Pt coated carbon cloth cathode. © 2011 The Royal Society of Chemistry.

  20. Planar-Focusing Cathodes

    CERN Document Server

    Lewellen, J W

    2005-01-01

    Conventional pi-mode rf photoinjectors typically use magnetic solenoids for emittance compensation. This provides independent focusing strength, but can complicate rf power feed placement, introduce asymmetries (due to coil crossovers), and greatly increase the cost of the photoinjector. Cathode-region focusing can also provide for a form of emittance compensation. Typically this method strongly couples focusing strength to the field gradient on the cathode, however, and also requires altering the longitudinal position of the cathode to change the focusing. We propose a new method for achieving cathode-region variable-strength focusing for emittance compensation. The new method reduces the coupling to the gradient on the cathode, and does not require a change in the longitudinal position of the cathode. Expected performance for an S-band system is similar to conventional solenoid-based designs. This paper presents the results of rf cavity and beam dynamics simulations of the new design.

  1. Study of Metal and Ceramic Thermionic Vacuum arc Discharges

    Institute of Scientific and Technical Information of China (English)

    Tamer AKAN; Serdar DEMIRKOL; Naci EKEM; Suat PAT; Geavit MUSA

    2007-01-01

    The thermionic vacuum arc (TVA) is a new type of plasma source, which generates a pure metal and ceramic vapour plasma containing ions with a directed energy. TVA discharges can be ignited in high vacuum conditions between a heated cathode (electron gun) and an anode (tungsten crucible) containing the material. The accelerated electron beam, incident on the anode, heats the crucible, together with its contents, to a high temperature. After establishing a steady-state density of the evaporating anode material atoms, and when the voltage applied is high enough, a bright discharge is ignited between the electrodes. We generated silver and AI2O3 TVA discharges in order to compare the metal and ceramic TVA discharges. The electrical and optical characteristics of silver and AI2O3 TVA discharges were analysed. The TVA is also a new technique for the deposition of thin films. The film condenses on the sample from the plasma state of the vapour phase of the anode material, generated by a TVA. We deposited silver and AI2O3 thin films onto an aluminium substrate layer-by-layer using their TVA discharges, and produced micro and/or nano-layer Ag-Ab2O3 composite samples. The composite samples using scanning electron microscopy was also analysed.

  2. Water-vortex-stabilized electric arc: III. Radial energy transport, determination of water-vapour-boundary and arc performance

    Science.gov (United States)

    Jenista, Jirí

    2003-12-01

    This paper is concerned with numerical modelling of an electric arc stabilized by a water vortex. The two-dimensional axisymmetric model presented includes the arc discharge area between the cathode and the outlet nozzle of the water plasma torch. The aims of the numerical simulations are: (1) to assess the influence of radial position of the water-vapour-boundary in the discharge chamber on arc performance and overall radial energy transport within the arc; (2) to determine the most probable mass flow rates and radii of the water-vapour-boundary in the discharge chamber for a prescribed current; (3) to demonstrate arc performance for two radiation models involved; and (4) to estimate validity of local thermodynamic equilibrium (LTE) conditions within the arc column. The rate of evaporation of water is calculated from the conduction and radiation heat fluxes at the water vapour surface for the specified mass flow rate. The behaviour of such an arc has been studied for a range of current 300-600 A. It is shown that changes of bulk magnitudes of different terms in the momentum and energy equations within the arc column as a function of arc radius enable us to reveal transitions of temperature and velocity fields from one steady state to a qualitatively different one. The best fit between experiment and numerical simulation for all currents exists for the mean arc radius ~3.3 mm. Deviations from LTE within the arc column are estimated with the criteria for kinetic equilibrium and spatial temperature gradients.

  3. Cathodic Protection Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs Navy design and engineering of ship and submarine impressed current cathodic protection (ICCP) systems for underwater hull corrosion control and...

  4. Highly stable Na2/3 (Mn0.54 Ni0.13 Co0.13 )O2 cathode modified by atomic layer deposition for sodium-ion batteries.

    Science.gov (United States)

    Kaliyappan, Karthikeyan; Liu, Jian; Lushington, Andrew; Li, Ruying; Sun, Xueliang

    2015-08-10

    For the first time, atomic layer deposition (ALD) of Al2 O3 was adopted to enhance the cyclic stability of layered P2-type Na2/3 (Mn0.54 Ni0.13 Co0.13 )O2 (MNC) cathodes for use in sodium-ion batteries (SIBs). Discharge capacities of approximately 120, 123, 113, and 105 mA h g(-1) were obtained for the pristine electrode and electrodes coated with 2, 5, and 10 ALD cycles, respectively. All electrodes were cycled at the 1C discharge current rate for voltages between 2 and 4.5 V in 1 M NaClO4 electrolyte. Among the electrodes tested, the Al2 O3 coating from 2 ALD cycles (MNC-2) exhibited the best electrochemical stability and rate capability, whereas the electrode coated by 10 ALD cycles (MNC-10) displayed the highest columbic efficiency (CE), which exceeded 97 % after 100 cycles. The enhanced electrochemical stability observed for ALD-coated electrodes could be a result of the protection effects and high band-gap energy (Eg =9.00 eV) of the Al2 O3 coating layer. Additionally, the metal-oxide coating provides structural stability against mechanical stresses occurring during the cycling process. The capacity, cyclic stability, and rate performance achieved for the MNC electrode coated with 2 ALD cycles of Al2 O3 reveal the best results for SIBs. This study provides a promising route toward increasing the stability and CE of electrode materials for SIB application.

  5. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Science.gov (United States)

    Xu, J. L.; Xiao, Q. F.; Mei, D. D.; Zhong, Z. C.; Tong, Y. X.; Zheng, Y. F.; Li, L.

    2017-03-01

    Amorphous SiO2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the "coral reef" like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 μm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO2 and a few amorphous Fe2O3 and Nd2O3. The amorphous SiO2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees.

  6. Atomic Layer Deposition of Al2O3-Ga2O3 Alloy Coatings for Li[Ni0.5Mn0.3Co0.2]O2 Cathode to Improve Rate Performance in Li-Ion Battery.

    Science.gov (United States)

    Laskar, Masihhur R; Jackson, David H K; Guan, Yingxin; Xu, Shenzhen; Fang, Shuyu; Dreibelbis, Mark; Mahanthappa, Mahesh K; Morgan, Dane; Hamers, Robert J; Kuech, Thomas F

    2016-04-27

    Metal oxide coatings can improve the electrochemical stability of cathodes and hence, their cycle-life in rechargeable batteries. However, such coatings often impose an additional electrical and ionic transport resistance to cathode surfaces leading to poor charge-discharge capacity at high C-rates. Here, a mixed oxide (Al2O3)1-x(Ga2O3)x alloy coating, prepared via atomic layer deposition (ALD), on Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathodes is developed that has increased electron conductivity and demonstrated an improved rate performance in comparison to uncoated NMC. A "co-pulsing" ALD technique was used which allows intimate and controlled ternary mixing of deposited film to obtain nanometer-thick mixed oxide coatings. Co-pulsing allows for independent control over film composition and thickness in contrast to separate sequential pulsing of the metal sources. (Al2O3)1-x(Ga2O3)x alloy coatings were demonstrated to improve the cycle life of the battery. Cycle tests show that increasing Al-content in alloy coatings increases capacity retention; whereas a mixture of compositions near (Al2O3)0.5(Ga2O3)0.5 was found to produce the optimal rate performance.

  7. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    Science.gov (United States)

    John, D.A.; Sisson, T.W.; Breit, G.N.; Rye, R.O.; Vallance, J.W.

    2008-01-01

    Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8??km3 Osceola Mudflow (5600??y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1??km of the edifice axis, developed chiefly in porous breccias. The edifice was capped by a steam-heated alteration zone, most of which resulted from condensation of fumarolic vapor and oxidation of H2S in the unsaturated zone above the water table. Weakly developed smectite-pyrite alteration extended into the west and east

  8. Study on the vibrational scraping of uranium product from a solid cathode of electrorefiner

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Bin; Kang, Young Ho; Hwang, Sung Chan; Lee, Han Soo; Paek, Seung Woo; Ahn, Do Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    A high-throughput electrorefiner has been developed for commercialization use by enhancing the uranium recovery from the reduced metal which is produced from the oxide reduction process. It is necessary to scrap and effectively collect uranium dendrites from the surface of the solid cathode for high yield. When a steel electrode is used as the cathode in the electrorefining process, uranium is deposited and regularly stuck to the steel cathode during electrorefining. The sticking coefficient of a steel cathode is very high. In order to decrease the sticking coefficient of the steel cathode effectively, vibration mode was applied to the electrode in this study. Uranium dendrites were scraped and fell apart from the steel cathode by a vibration force. The vibrational scraping of the steel cathode was compared to the self-scraping of the graphite cathode. Effects of the applied current density and the vibration stroke on the scraping of the uranium dendrites were also investigated.

  9. 电化学阴极沉积制备氧化钴/CNTs复合电极的准电容特性%Pseudo-capacitive Behavior of Cobalt Hydroxidre/Carbon Nanotubes Composite Prepared by Cathodic Deposition

    Institute of Scientific and Technical Information of China (English)

    王晓峰; 阮殿波; 尤政

    2006-01-01

    采用电化学阴极沉积还原Co(NO3)2的方法制备了具有准电容特性的氧化钻电极材料,其比容量达到280 F/g,采用CNTs作为电极基体,在其表面均匀的沉积了纳米钴化镍颗粒并由此制备了氧化钴碳纳米管复合电极材料.采用循环伏安,恒流充放电,交流阻抗及扫描电镜等方法考察了复合电极材料的容量特性、阻抗特性、自放电特性以及电极表观特征.实验表明复合电极具有良旱牡CNTs基体在明显降低氧化镍材料的阻抗的同时还提高了电极材料的电化学容量并拓宽了电极材料的有效工作电位窗,复合电极在1 mol/L KOH电解液中比容量达到322 F/g且表现了良好的电化学可逆性.并分别采用氧化钴/CNTs复合电极作为正极,活性炭纤维作为负极制备了复合型电化学电容器,其工作电压达到1.4 V,电容器质量比容量达到47 F/g.在0.1 A/cm2放电时,复合型电容器的能量密度达到10 Wh/kg,兼具高能量特性和优良的大电流放电特性.%A novel type of composite electrode based on multiwalled carbon nanotubes coated with sheet-like cobalt hydroxide particles was used in supercapacitors. Cobalt hydroxide cathodically deposited from Co(NO3)2 solution with carbon nanotubes as matrix exhibited large pseudo-capacitance of 322 F/g in 1 mol/L KOH. To characterize the cobalt hydroxide nanocomposite electrode, a charge-discharge cycling test, cyclic voltammetry, and an impedance test were done. This cobalt hydroxide composite exhibiting excellent pseudo-capacitive behavior (i.e. high reversibility, high specific capacitance, low impedance), was demonstrated to be a candidate for the application of electrochemical supercapacitors. A combined capacitor consisting of cobalt hydroxide composite as a cathode and activated carbon fiber as an anode was reported. The electrochemical performance of the combined capacitor was characterized by cyclic voltammetry and a dc charge/discharge test. The

  10. The Effects of Carbide Characteristics on the Performance of Tungsten Carbide-Based Composite Overlays, Deposited by Plasma-Transferred Arc Welding

    Science.gov (United States)

    Fisher, G.; Wolfe, T.; Meszaros, K.

    2013-06-01

    In Alberta, there are huge quantities of ore processed to remove bitumen from oil sands deposits. The scale of production generates very aggressive tribocorrosive conditions during the mining, extraction, and upgrading processes. It is common to apply tungsten carbide-based composite overlays to improve the reliability and extend service lives of equipment and components. The performance of the applied overlays is largely dependent on the selection of the carbide type and the wear environment. This paper will evaluate overlays containing macrocrystalline, angular eutectic, and spherical eutectic tungsten carbides and discuss the performance of the overlays with a focus on carbide properties and the interactions between the service conditions and the composite material. This discussion will demonstrate how effective selection of protective materials can improve the reliability of oil sands equipment.

  11. Synthesis of branched, nano channeled, ultrafine and nano carbon tubes from PET wastes using the arc discharge method

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Berkmans, A.; Jagannatham, M. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu (India); Priyanka, S. [Department of Electrical and Electronics Engineering, MS Ramaiah Institute of Technology, Bangalore 560054, Karnataka (India); Haridoss, Prathap, E-mail: prathap@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu (India)

    2014-11-15

    Highlights: • Polymer wastes are converted into ultrafine and nano carbon tubes and spheres. • Simple process with a minimal processing time. • It is a catalyst free and solvent free approach. • This process forms branched ultrafine carbon tubules with nano channels. - Abstract: Upcycling polymer wastes into useful, and valuable carbon based materials, is a challenging process. We report a novel catalyst-free and solvent-free technique for the formation of nano channeled ultrafine carbon tubes (NCUFCTs) and multiwalled carbon nanotubes (MWCNTs) from polyethylene terephthalate (PET) wastes, using rotating cathode arc discharge technique. The soot obtain from the anode contains ultrafine and nano-sized solid carbon spheres (SCS) with a mean diameter of 221 nm and 100 nm, respectively, formed at the lower temperature region of the anode where the temperature is approximately 1700 °C. The carbon spheres are converted into long “Y” type branched and non-branched NCUFCTs and MWCNTs at higher temperature regions where the temperature is approximately 2600 °C, with mean diameters of 364 nm and 95 nm, respectively. Soot deposited on the cathode is composed of MWCNTs with a mean diameter of 20 nm and other nanoparticles. The tubular structures present in the anode are longer, bent and often coiled with lesser graphitization compared to the nanotubes in the soot on the cathode.

  12. Note: Triggering behavior of a vacuum arc plasma source.

    Science.gov (United States)

    Lan, C H; Long, J D; Zheng, L; Dong, P; Yang, Z; Li, J; Wang, T; He, J L

    2016-08-01

    Axial symmetry of discharge is very important for application of vacuum arc plasma. It is discovered that the triggering method is a significant factor that would influence the symmetry of arc discharge at the final stable stage. Using high-speed multiframe photography, the transition processes from cathode-trigger discharge to cathode-anode discharge were observed. It is shown that the performances of the two triggering methods investigated are quite different. Arc discharge triggered by independent electric source can be stabilized at the center of anode grid, but it is difficult to achieve such good symmetry through resistance triggering. It is also found that the triggering process is highly correlated to the behavior of emitted electrons.

  13. Numerical and experimental study of transferred arcs in argon

    Energy Technology Data Exchange (ETDEWEB)

    Bini, R [Department of Mechanical Engineering, Politecnico di Milano, Via Bonardi 9, 20133 Milan (Italy); Monno, M [Department of Mechanical Engineering, Politecnico di Milano, Via Bonardi 9, 20133 Milan (Italy); Boulos, M I [Centre de Recherche en Energie, Plasma et Electrochimie (CREPE), Department de Genie Chimique Universite de Sherbrooke, 2500 Boul. Universite, Sherbrooke, J1K1R2 (Canada)

    2006-08-07

    The bidimensional model of the electric arc is enhanced with the plasma-electrodes interaction to predict the properties and the energy distribution of an argon arc operating with current intensities between 100 and 200 A and electrode gaps of 10 and 20 mm. An adaptive numerical insulation is applied to the cathode, to properly simulate its thermionic emission mechanism and overcome the dependence on empirical distributions of the current density at its tip. The numerical results are quantitatively compared with the data obtained from calorimetric and spectroscopical measurements, performed on a device which generates a transferred arc between a water cooled copper anode and a thoriated tungsten cathode enclosed in a stainless steel chamber. The calculation of the heat fluxes towards the electrodes permits to determine the amount of power delivered to each component of the arc system (the anode, the cathode assembly and the chamber) and to evaluate the overall efficiency of the process for different configurations. The agreement between theory and data, over the range of parameters investigated, is sensible both in the temperature profiles and in the energy distributions. In such configurations, the conduction from the hot gas is the most relevant term in the overall heat transferred to the anode, but it is the electron transfer which rules the heat transfer in the arc attachment zone. The arc attachment radius is also dependent on the process parameters and increases with the arc current (from approximately 5 mm at 100 A to 7 mm at 200 A) and the arc length. However the maximum heat flux reached on the axis decreases increasing the gap between the electrodes, although more power is delivered to the anode due to the radial spreading of the plasma. A 10 mm 200 A argon arc releases to the anode about 2.6 kW, which corresponds to 75% of the total arc power available. If the arc is extended to 20 mm the power transferred rises by nearly 350 W, but the overall

  14. Exploration on Ag Film Deposition by Magnetic Filtration Arc Ion Plating%直流磁过滤电弧源制备银膜的工艺参数研究

    Institute of Scientific and Technical Information of China (English)

    弥谦; 冯晓

    2013-01-01

    为了探索电弧离子镀技术制备银薄膜中相关的工艺参数,利用直流磁过滤电弧源在K9玻璃和硅片上制备了银膜,通过白光干涉仪和剥离实验对所制备银膜的厚度、表面粗糙度和附着力进行检测,分析靶电流、基片偏压和过渡层对银薄膜沉积速率、粗糙度及附着力等特性的影响.实验结果表明:当靶电流为90.0 A 时,沉积速率为1.84 nm/s ,在偏压为+10 V时,得到膜层粗糙度为0.5355 nm ;利用过渡层的辅助,通过电弧离子镀有效地提高了银膜的附着力.%In order to explore the influence of parameters of Ag film ,deposited by magnetic filtration arc ion plating (M FAIP) ,such as the Ag target current ,the bias of substrate and the usage of transition layer ,to the thickness ,roughness ,adhesion of Ag film ,Ag films were deposited on K9 glass and silicon substrate ,and tested by white-light interferometer and stripping test respectively .Experimental results showed that the deposition rate of Ag films was 1 .84 nm/s with the target current fixed at 90 A ,and a minimum value of 0 .535 5 nm of the surface roughness was got at a bias of + 10 V . With the introduction of the transition layer ,the adhesion of the Ag film deposited by M FAIP was obviously improved .

  15. Influence of N{sub 2} partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N{sub 2} vacuum arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M., E-mail: ascientific24@aec.org.sy [Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus (Syrian Arab Republic); Abdallah, B. [Department of Physics, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Ahmad, M. [IBA Laboratory, Department of Chemistry, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); A-Kharroub, M. [Department of Physics, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic)

    2016-08-15

    The influence of N{sub 2} partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N{sub 2} + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N{sub 2} partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N{sub 2} partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N{sub 2} partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N{sub 2} partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N{sub 2} partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N{sub 2} partial pressure.

  16. ArcGIS在东昆仑西段铁矿资源预测中的应用——以矽卡岩型铁矿为例%Application of software ArcGIS to prediction of iron ore resources in the western segment of the East Kunlun: A case study of skarn-type iron deposits

    Institute of Scientific and Technical Information of China (English)

    刘艳宾; 弓小平; 薛迎喜; 陈斌; 毛磊

    2011-01-01

    GIS在矿产预测中的应用研究日益普及和深化,在矿产勘查领域中已成为一种快速有效成矿预测方法。本文以东昆仑西段矽卡岩型铁矿为例,从研究区的地质背景和已查明的13个矽卡岩型铁矿(点)出发,基于ArcGIS平台,建立本研究区的空间数据库,结合已知矿(点)地质资料和野外验证分析,建立找矿模型与预测区提取模型,由于矽卡岩型矿床主要的共同特点与中酸性侵入体、火山岩和碳酸盐岩等有关,所以总结出本区矽卡岩型铁矿的主要控矿因素取决于:(1)断层;(2)侵入体;(3)岩石组分,从3个方面的证据图层与铁矿(化)点空间关系入手,并对其进行合成,采用证据权模型和加权Logistic回归模型进行成矿有利度评价,共圈定3个矽卡岩型铁矿预测区东昆仑西段地区具有很大的找砖:备如、%With the increasing popularization and deepening of the application research of G[S in ore prediction, GIS has become a fast and effective method for metallogenic forecast. Taking skarn type iron deposits in the western section of the East Kunlun as an example, this work is based on the ArcGIS platform to establish a spatial database in terms of the geological background and 13 known sedimentary-metamorphic iron (point) of the study area~ Combined with the known deposits, geological data and field check analysis, the prospecting and forecast area extraction models are established. Because the main common features of the skarn-type deposits are related to the intermediate-acidic intrusive mass, volcanic and carbonate, this paper concluds the main ore control factors of the skarn type iron deposits as follows : ( 1 ) fault ; ( 2 ) intrusion ; and ( 3 ) rock components. Starting fi'om the these three aspects of evidence and the spatial relationship of iron mineralization, and making synthesis to them, the evidence weight model and

  17. Gas arc constriction for plasma arc welding

    Science.gov (United States)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  18. Verification of high efficient broad beam cold cathode ion source

    Science.gov (United States)

    Abdel Reheem, A. M.; Ahmed, M. M.; Abdelhamid, M. M.; Ashour, A. H.

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.

  19. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  20. Cathodic hydrodimerization of nitroolefins

    OpenAIRE

    Michael Weßling; Hans J. Schäfer

    2015-01-01

    Nitroalkenes are easily accessible in high variety by condensation of aldehydes with aliphatic nitroalkanes. They belong to the group of activated alkenes that can be hydrodimerized by cathodic reduction. There are many olefins with different electron withdrawing groups used for cathodic hydrodimerization, but not much is known about the behaviour of the nitro group. Synthetic applications of this group could profit from the easy access to nitroolefins in large variety, the C–C bond formation...

  1. Studies on Stability of a Novel Cathode Material for MCFC

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The stability of NiO and oxidized nickel-niobium surface alloy electrode under various molten carbonate fuel cell(MCFC) cathode conditions were investigated by determination of equilibrium solubility of nickel ions in the carbonate melt of the two electrode materials.It is found that under MCFC cathode conditions the stability of NiO electrode is improved significantly by the deposition of niobium.As far as stability is concerned,oxidized nickel-niobium alloy electrode can be considered as a candidate for cathode material of MCFC.

  2. Characteristics of Plasma Spraying Torch with a Hollow Cathode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A kind of plasma spraying torch with a hollow cathode is described in this paper.The plasma torch can be used for axial powder injection in plasma spray studies. The arc characteristics of the plasma torch with various gas flowrates, different gas media, are presented. The mathematical modeling and computational method are developed for predicting the temperature and velocity field inside the plasma torch.

  3. CHARACTERISTICS OF NEW CATHODE MATERIAL FOR LTSOFC INVESTIGATED BY IMPEDANCE SPECTROSCOPY

    Institute of Scientific and Technical Information of China (English)

    彭冉冉; 杨立寨; 毛宗强; 谢晓峰

    2004-01-01

    The characteristics of a new Li-NiO cathode were investigated. The crystal structure of Li-NiO was explored by XRD. Electrochemical behaviors of Li-NiO composite cathode were revealed by impedance spectroscopy from 400℃ to 650℃. The diameter of deformed arc increased with the decrease of temperature. Above the melting point of the eutectic salt in composite electrolyte, the Li-NiO curves are similar with two deformed semicircular arcs at high frequency which partially overlaps each other and corresponds...

  4. Cathode materials review

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus, E-mail: danielc@ornl.gov; Mohanty, Debasish, E-mail: danielc@ornl.gov; Li, Jianlin, E-mail: danielc@ornl.gov; Wood, David L., E-mail: danielc@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS6472 Oak Ridge, TN 37831-6472 (United States)

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  5. Cathode materials review

    Science.gov (United States)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-06-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  6. Gas-discharge sources with charged particle emission from the plasma of glow discharge with a hollow cathode

    CERN Document Server

    Semenov, A P

    2001-01-01

    One studied properties of a magnetron discharge with a cold hollow and uncooled rod cathodes. One demonstrated the dominant effect of thermoelectron emission of a rod cathode heated in a discharge on characteristics of discharge and on emission properties of a gas-discharge plasma and the possibility pf a smooth transition of glow discharge to diffusion mode of arc discharge combustion. Paper describes sources of ions and electrons with improved physical and generalized design and engineering parameters. One shows the promise of the electrode structure of a hollow cathode magnetron discharge to be used as a source, in particular, of the atomic hydrogen and of atom flow of a working rod cathode

  7. Plasma-chemical reactor based on a low-pressure pulsed arc discharge for synthesis of nanopowders

    Science.gov (United States)

    Karpov, I. V.; Ushakov, A. V.; Lepeshev, A. A.; Fedorov, L. Yu.

    2017-01-01

    A reactor for producing nanopowders in the plasma of a low-pressure arc discharge has been developed. As a plasma source, a pulsed cold-cathode arc evaporator has been applied. The design and operating principle of the reactor have been described. Experimental data on how the movement of a gaseous mixture in the reactor influences the properties of nanopowders have been presented.

  8. 多弧离子镀TiN涂层的N2/Ar流量参数研究%Study on N2/Ar flow parameters of TiN coating deposited by multi-arc ion plating

    Institute of Scientific and Technical Information of China (English)

    陈昌浩; 金永中; 陈建; 蔡瑜; 余学金; 龙国俊

    2016-01-01

    TiN coating was deposited on the surface of cemented carbide substrate by multi-arc ion plating. The influ-ence of N2/Ar flow rate on the distribution of microparticles (MPs) and mechanical properties of TiN coating was stud-ied. The surface morphologies of TiN film were observed by scanning electron microscope. The amount and size of MPs were analyzed by ImageJ software. Scratch spectrometer and nanoindenter were used to evaluate mechanical properties of TiN coating. The results show that the maximum size and average diameter of MPs decrease with the increase of N2 flow,and the adhesion strength of TiN coating goes up,while the micro-hardness of TiN coating increases firstly and then decreases.%利用多弧离子镀在硬质合金基体上制备TiN涂层,研究了N2/Ar流量比对TiN涂层表面大颗粒分布与力学性能的影响。通过扫描电镜观察TiN涂层的表面形貌,并利用ImageJ图像处理软件对大颗粒的数量和尺寸进行了分析,通过自动划痕仪和纳米压痕仪对涂层的力学性能进行表征。结果表明:随着N2流量的增加,涂层表面沉积颗粒的最大直径和平均直径逐渐减小,涂层的附着力整体呈现增加趋势,显微硬度则先增大后减小。

  9. Barium depletion in hollow cathode emitters

    Energy Technology Data Exchange (ETDEWEB)

    Polk, James E., E-mail: james.e.polk@jpl.nasa.gov; Mikellides, Ioannis G.; Katz, Ira [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Capece, Angela M. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States)

    2016-01-14

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al{sub 2}O{sub 3} source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values.

  10. 超音速电弧喷射成形工艺参数对AgNiCu15-5沉积坯致密性的影响%The Effects of Ultrasonic Arc Spray Formation Parameters on the Density of AgNiCu15-5 Deposited Billets

    Institute of Scientific and Technical Information of China (English)

    张科; 秦国义; 许思勇; 郭锦新; 马光

    2012-01-01

    The orthogonal design approach was used to investigate the effects of technical parameters of ultrasonic arc spray formation ( UASF ) on the density of AgNiCu15_5 deposited billets. The morphology of the deposited billets was studied by SEM. The experimental results show that, under the condition of 250 mm spray length, both the arc voltage(U) and the pressure of atomization gases(P) have great effects on the density of deposited billet, whereas the arc current (I) and the substrate rotation speed ( Z) have no marked effects. The optimal process parameters of preparing the AgNiCu15-5 deposited billet are given as follows; the arc voltage is 32 V, the pressure of atomization gases is 0. 9 MPa, the arc current is 220 A, the substrate rotation speed is 800 r/min. SEM revealed that the microstructure of the deposited billets obtained under the optimal process parameters is compact.%采用正交设计方法和通过极差分析研究了超音速电弧喷射成形工艺参数对AgNiCu15-5沉积坯致密性的影响,同时采用SEM对沉积坯的组织形貌进行观察.研究结果表明,当沉积距离L为250 mm时,影响沉积坯致密性的工艺参数的主次顺序为:电弧电压U、雾化气压P、电弧电流I、沉积盘转速Z;综合分析表明,优化的沉积工艺参数为U2P2I3Z2,即U为32 V、P为0.9 MPa、I为220 A、Z为800 r/min.SEM分析表明,优化工艺参数制备的沉积坯内部组织致密,孔隙极少.

  11. Simple filtered repetitively pulsed vacuum arc plasma source

    Science.gov (United States)

    Chekh, Yu.; Zhirkov, I. S.; Delplancke-Ogletree, M. P.

    2010-02-01

    A very simple design of cathodic filtered vacuum arc plasma source is proposed. The source without filter has only four components and none of them require precise machining. The source operates in a repetitively pulsed regime, and for laboratory experiments it can be used without water cooling. Despite the simple construction, the source provides high ion current at the filter outlet reaching 2.5% of 400 A arc current, revealing stable operation in a wide pressure range from high vacuum to oxygen pressure up to more than 10-2 mbar. There is no need in complicated power supply system for this plasma source, only one power supply can be used to ignite the arc, to provide the current for the arc itself, to generate the magnetic field in the filter, and provide its positive electric biasing without any additional high power resistance.

  12. High power impulse magnetron sputtering and related discharges: scalable plasma sources for plasma-based ion implantation and deposition

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2009-09-01

    High power impulse magnetron sputtering (HIPIMS) and related self-sputtering techniques are reviewed from a viewpoint of plasma-based ion implantation and deposition (PBII&D). HIPIMS combines the classical, scalable sputtering technology with pulsed power, which is an elegant way of ionizing the sputtered atoms. Related approaches, such as sustained self-sputtering, are also considered. The resulting intense flux of ions to the substrate consists of a mixture of metal and gas ions when using a process gas, or of metal ions only when using `gasless? or pure self-sputtering. In many respects, processing with HIPIMS plasmas is similar to processing with filtered cathodic arc plasmas, though the former is easier to scale to large areas. Both ion implantation and etching (high bias voltage, without deposition) and thin film deposition (low bias, or bias of low duty cycle) have been demonstrated.

  13. Highly Efficient Micro Cathode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Company, Inc. proposes to develop a micro thermionic cathode that requires extremely low power and provides long lifetime. The basis for the cathode is a...

  14. Advanced Cathode Electrolyzer (ACE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a static, cathode-fed, 2000 psi, balanced-pressure Advanced Cathode Electrolyzer (ACE) based on PEM electrolysis technology. It...

  15. Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Materials Research and Education Center, 275 Wilmore Laboratories, Auburn University, Auburn, AL 36849 (United States)

    2007-11-15

    A major degradation mechanism in solid oxide fuel cells (SOFCs) is poisoning of the cathode by chromium from volatilization of the interconnect material. The chromium deposition has been attributed to both chemical and electrochemical mechanisms. For an electrochemical reaction, deposition can occur only where both ions and electrons are available, which, for a purely ionic conducting electrolyte and a purely electronic conducting cathode, can occur only at the three-phase gas-electrolyte-electrode interface. However, the introduction of ionic conductivity into the cathode or electronic conductivity into the electrolyte can allow deposition to occur away from this three-phase interface, and thus alter its effect on the fuel cell performance. In this paper, the chromium poisoning of SOFC cathodes is reviewed, with a focus on the effects of the transport properties of the cathode and electrolyte materials. (author)

  16. Determination of work functions near melting points of refractory metals by using a direct-current arc

    Science.gov (United States)

    Gordon, W. A.; Chapman, G. B., II

    1972-01-01

    Effective work functions of refractory metals at temperatures near their melting points were determined by using a direct-current arc. A metal wire connected as the cathode was melted by striking an arc discharge in an argon atmosphere. A melted sphere was formed with a definite emitting area which was calculated from the sphere diameter measured after terminating the arc. Effective work functions were calculated from the Richardson-Dushman equation by using this emission area. The procedure is experimentally advantageous because surface cleanliness of the specimen is not critical, high vacuum is not required, and the anode-cathode spacing is not critical.

  17. High Performance Cathodes for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  18. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  19. Plasma and Ion Assistance in Physical Vapor Deposition: AHistorical Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2007-02-28

    Deposition of films using plasma or plasma-assist can betraced back surprisingly far, namely to the 18th century for arcs and tothe 19th century for sputtering. However, only since the 1960s thecoatings community considered other processes than evaporation for largescale commercial use. Ion Plating was perhaps the first importantprocess, introducing vapor ionization and substrate bias to generate abeam of ions arriving on the surface of the growing film. Ratherindependently, cathodic arc deposition was established as an energeticcondensation process, first in the former Soviet Union in the 1970s, andin the 1980s in the Western Hemisphere. About a dozen various ion-basedcoating technologies evolved in the last decades, all characterized byspecific plasma or ion generation processes. Gridded and gridless ionsources were taken from space propulsion and applied to thin filmdeposition. Modeling and simulation have helped to make plasma and ionseffects to be reasonably well understood. Yet--due to the complex, oftennon-linear and non-equilibrium nature of plasma and surfaceinteractions--there is still a place for the experience plasma"sourcerer."

  20. Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jin

    2009-01-07

    This is the final report for project entitled 'Research and development of a new field enhanced low temperature thermionic cathode that enables fluorescent dimming and load shedding without auxiliary cathode heating', under Agreement Number: DE-FC26-04NT-42329. Under this project, a highly efficient CNT based thermionic cathode was demonstrated. This cathode is capable of emitting electron at a current density two order of magnitude stronger then a typical fluorescent cathode at same temperatures, or capable of emitting at same current density but at temperature about 300 C lower than that of a fluorescent cathode. Detailed fabrication techniques were developed including CVD growth of CNTs and sputter deposition of oxide thin films on CNTs. These are mature technologies that have been widely used in industry for large scale materials processing and device fabrications, thus, with further development work, the techniques developed in this project can be scaled-up in manufacturing environment. The prototype cathodes developed in this project were tested in lighting plasma discharge environment. In many cases, they not only lit and sustain the plasma, but also out perform the fluorescent cathodes in key parameters such like cathode fall voltages. More work will be needed to further evaluate more detailed and longer term performance of the prototype cathode in lighting plasma.

  1. Water-vortex-stabilized electric arc: III. Radial energy transport, determination of water-vapour-boundary and arc performance

    Energy Technology Data Exchange (ETDEWEB)

    Jenista, Jiri [Institute of Plasma Physics ASCR, Za Slovankou 3, PO Box 17, Prague 8, 182 21 (Czech Republic)

    2003-12-07

    This paper is concerned with numerical modelling of an electric arc stabilized by a water vortex. The two-dimensional axisymmetric model presented includes the arc discharge area between the cathode and the outlet nozzle of the water plasma torch. The aims of the numerical simulations are: (1) to assess the influence of radial position of the water-vapour-boundary in the discharge chamber on arc performance and overall radial energy transport within the arc; (2) to determine the most probable mass flow rates and radii of the water-vapour-boundary in the discharge chamber for a prescribed current; (3) to demonstrate arc performance for two radiation models involved; and (4) to estimate validity of local thermodynamic equilibrium (LTE) conditions within the arc column. The rate of evaporation of water is calculated from the conduction and radiation heat fluxes at the water vapour surface for the specified mass flow rate. The behaviour of such an arc has been studied for a range of current 300-600 A. It is shown that changes of bulk magnitudes of different terms in the momentum and energy equations within the arc column as a function of arc radius enable us to reveal transitions of temperature and velocity fields from one steady state to a qualitatively different one. The best fit between experiment and numerical simulation for all currents exists for the mean arc radius {approx} 3.3 mm. Deviations from LTE within the arc column are estimated with the criteria for kinetic equilibrium and spatial temperature gradients.

  2. Simulation and Experimental Study of Arc Column Expansion After Ignition in Low-Voltage Circuit Breakers

    Institute of Scientific and Technical Information of China (English)

    MA Qiang; RONG Mingzhe; WU Yi; XU Tiejun; SUN Zhiqiang

    2008-01-01

    The dynamicprocess of arc pressure and corresponding arc column expansion, which is the main feature after arc ignition and has a significant effect on the breaking behaviour of low -voltage circuit breakers, is studied. By constructing a three dimensional mathematical model of air arc plasma and adopting the Control Volume Method, the parameters of arc plasma including temperature and pressure axe obtained. The variations of pressure field and temperature field with time are simulated. The result indicates that there are six stages for the process of arc column expansion according to the variation of pressure in arc chamber. In the first stage, the maximal pressure locates in the region close to cathode, and in the second stage the maximal pressure shifts to the region close to the anode. In the third stage, the pressure difference between the middle of arc column and the ambient gas is very large, so the arc column begins to expand apparently. In the fourth stage, the pressure wave propagates towards both ends and the maximal pressure appears at the two ends when the pressure wave reaches both sidewalls. In the fifth stage, the pressure wave is reflected and collides in the middle of the arc chamber. In the last stage, the propagation and reflection of pressure wave will repeat several times until a steady burning state is reached. In addition, the experimental results of arc column expansion, corresponding to the arc pressure variation, are presented to verify the simulation results.

  3. Smart cathodic protection systems

    NARCIS (Netherlands)

    Polder, R.B.; Leggedoor, J.; Schuten, G.; Sajna, S.; Kranjc, A.

    2010-01-01

    Cathodic protection delivers corrosion protection in concrete structures exposed to aggressive environments, e.g. in de-icing salt and marine climates. Working lives of a large number of CP systems are at least more than 13 years and probably more than 25 years, provided a minimum level of maintenan

  4. Preparation and properties of CrN coating by arc ion deposition%电弧离子镀CrN涂层的制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    杨娟; 陈志谦; 聂朝胤

    2009-01-01

    用电弧离子镀技术在W18Cr4V高速钢试样上制备了CrN涂层,采用X射线衍射仪、扫描电镜、能谱议、显微硬度仪、磨损试验机等对涂层的表面形貌、相结构、硬度和耐磨性进行了分析.对比研究了经工艺优化后的CrN涂层和TiN、TiAlN涂层以及未涂层钻头干式钻削7075铝合金的切削性能,得出了最佳的沉积偏压和切削转速.结果表明,偏压为-50~-150 V时,涂层均由Cr2N 相和CrN相组成,随偏压增加,涂层表面粗糙度降低,硬度和耐磨性增强;偏压过高,涂层的微观质量和性能反而下降.偏压为-100 V时,涂层的硬度和耐磨性最佳.CrN涂层可显著提高高速钢刀具的切削性能,减小刀具磨损,延长刀具寿命.其钻削性能优于TiN、TiAlN涂层,明显优于未涂层.2 230 r/min为CrN涂层的最佳切削转速,经工艺优化后的CrN涂层钻头平均寿命约为未涂层钻头的5倍,其破损机制属于粘着磨损.%CrN coating was deposited by arc ion deposition technique on W18Cr4V high-speed steel samples.The surface morphology,microstructure,hardness and wear-resistance of the CrN coating were analyzed with XRD,SEM,EDS,microhardness test and abrasion test.The cutting performances of optimized CrN,TiN,and TiAlN coated as well as uncoated high-speed steel augers drilling 7075Al alloy were studied and compared.The most proper bias voltage and turning speed were obtained.The results show that CrN coating consists of Cr2N and CrN phases when bias voltage is in the range of -50 --150 V.With bias voltage increasing,the surface roughness decreases,while the hardness and wear-resistance are improved.However,the properties and the surface quality decrease poor again with excessive high bias voltage.The coating deposited under -100 V exhibits the optimum hardness and wear resistance.The CrN coating can substantially enhance the drilling properties of high speed steel tools,reduce the abrasion and prolong the service life.The drilling

  5. High-Current Cold Cathode Employing Diamond and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2014-10-22

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  6. Some features of horizontally oriented low-current electric arc in air

    Energy Technology Data Exchange (ETDEWEB)

    Tazmeev, Kh. K., E-mail: tazmeevh@mail.ru [Kazan (Volga Region) Federal University, Naberezhnye Chelny Institute (Russian Federation); Tazmeev, B. Kh., E-mail: tazmeevb@mail.ru [National Research Technical University, Naberezhnye Chelny Branch (Russian Federation)

    2016-01-15

    The properties of an electric arc operating in open air at currents of lower than 1 A were studied experimentally. The rod cathode was oriented horizontally. Cylindrical rods and plane plates either installed strictly vertically in front of the cathode end or tilted at a certain angle served as the anode. It is shown that, with such an electrode configuration, it is possible to form a discharge channel much longer than the electrode gap length. Regimes of regular oscillations are revealed, and conditions for their appearance are established. The electric field strength in the arc column and the electron temperature near the anode are calculated.

  7. Reduction in plasma potential by applying negative DC cathode bias in RF magnetron sputtering

    Science.gov (United States)

    Isomura, Masao; Yamada, Toshinori; Osuga, Kosuke; Shindo, Haruo

    2016-11-01

    We applied a negative DC bias voltage to the cathode of an RF magnetron sputtering system and successfully reduced the plasma potential in both argon plasma and hydrogen-diluted argon plasma. The crystallinity of the deposited Ge films is improved by increasing the negative DC bias voltage. It is indicated that the reduction in plasma potential is effective for reducing the plasma damage on deposited materials, caused by the electric potential between the plasma and substrates. In addition, the deposition rate is increased by the increased electric potential between the plasma and the cathode owing to the negative DC bias voltage. The present method successfully gives us higher speed and lower damage sputtering deposition. The increased electric potential between the plasma and the cathode suppresses the evacuation of electrons from the plasma and also enhances the generation of secondary electrons on the cathode. These probably suppress the electron loss from the plasma and result in the reduction in plasma potential.

  8. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  9. Characterization of the behaviour of the electric arc during VAR of a Ti alloy

    Science.gov (United States)

    Chapelle, P.; Noël, C.; Risacher, A.; Jourdan, J.; Jourdan, J.; Jardy, A.

    2016-07-01

    In this paper, we report experimental results based on the direct observation of the electric arc behaviour during vacuum arc remelting of a Ti alloy. These results were obtained in a specifically instrumented industrial furnace using high speed framing camera and optical emission spectroscopy, for a current density level of the order of 10 A/cm2 and a gap length of a few centimetres. It was observed that the arc exhibits a similar operating regime to that described in the literature for the case of Inconel 718 and Zr alloy electrodes. The arc structure corresponds essentially to that of a diffuse metal vapor arc with separate and rapidly moving cathode spots. Several critical parameters of the cathode spots, including their current, size and velocity, and of the interelectrode plasma were evaluated. Also, the interactions between the arc operation and the transfer of metal drops in the interelectrode gap were investigated. Three modes of transfer of the liquid metal drops in the interelectrode gap have been identified depending on the gap length: drop falling, drip short and drop erosion induced by the cathode spots.

  10. WSTF electrical arc projects

    Science.gov (United States)

    Linley, Larry

    1994-09-01

    The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.

  11. Electrophoretic deposition of Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} on the porous La{sub 0.8}Sr{sub 0.2}MnO{sub 3} cathode substrate for SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Tatsumi; Shimose, Kuninobu; Takita, Yusaku [Oita Univ. (Japan); Shiomitsu, Toru [NKK Corp., Kawasaki, Kanagawa (Japan). Engineering Research Center

    1995-12-31

    Preparation of YSZ film on La{sub 0.8}Sr{sub 0.2}MnO{sub 3} porous substrate was investigated using electrophoretic deposition (EPD) method. Since the electrical conductivity of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} substrate is satisfactorily high at room temperature, YSZ powders were deposited electrophoretically on La{sub 0.8}Sr{sub 0.2}MnO{sub 3} substrate without any treatment such as metal coating. Open circuit voltage of SOFC where YSZ film prepared by EPD was applied, increased by repeating the deposition and calcination cycles. 6 or more times in repetitions were required to obtain YSZ film without gas leakage. A planar type SOFC fabricated by using Ni as anode, attained an open circuit voltage and maximum power density of 1.0 V and 1.5 W/cm{sup 2}, respectively. It became evident that YSZ films without gas leakage can be prepared by the EPD method on LaMnO{sub 3} cathode substrates.

  12. The arc arises: The links between volcanic output, arc evolution and melt composition

    Science.gov (United States)

    Brandl, Philipp A.; Hamada, Morihisa; Arculus, Richard J.; Johnson, Kyle; Marsaglia, Kathleen M.; Savov, Ivan P.; Ishizuka, Osamu; Li, He

    2017-03-01

    Subduction initiation is a key process for global plate tectonics. Individual lithologies developed during subduction initiation and arc inception have been identified in the trench wall of the Izu-Bonin-Mariana (IBM) island arc but a continuous record of this process has not previously been described. Here, we present results from International Ocean Discovery Program Expedition 351 that drilled a single site west of the Kyushu-Palau Ridge (KPR), a chain of extinct stratovolcanoes that represents the proto-IBM island arc, active for ∼25 Ma following subduction initiation. Site U1438 recovered 150 m of oceanic igneous basement and ∼1450 m of overlying sediments. The lower 1300 m of these sediments comprise volcaniclastic gravity-flow deposits shed from the evolving KPR arc front. We separated fresh magmatic minerals from Site U1438 sediments, and analyzed 304 glass (formerly melt) inclusions, hosted by clinopyroxene and plagioclase. Compositions of glass inclusions preserve a temporal magmatic record of the juvenile island arc, complementary to the predominant mid-Miocene to recent activity determined from tephra layers recovered by drilling in the IBM forearc. The glass inclusions record the progressive transition of melt compositions dominated by an early 'calc-alkalic', high-Mg andesitic stage to a younger tholeiitic stage over a time period of 11 Ma. High-precision trace element analytical data record a simultaneously increasing influence of a deep subduction component (e.g., increase in Th vs. Nb, light rare earth element enrichment) and a more fertile mantle source (reflected in increased high field strength element abundances). This compositional change is accompanied by increased deposition rates of volcaniclastic sediments reflecting magmatic output and maturity of the arc. We conclude the 'calc-alkalic' stage of arc evolution may endure as long as mantle wedge sources are not mostly advected away from the zones of arc magma generation, or the rate of

  13. The design of cathode for organic photovoltaic devices

    Science.gov (United States)

    Song, De; Shi, Feng; Xia, Xuan; Li, Ye; Duanmu, Qingduo

    2016-11-01

    We have discussed the effect of the residual gas in the Al metal cathode deposition process and consequently influence the performance of organic photovoltaic devices (such as organic photoelectron detector or solar cell). We believe that the origin of degradation in Jsc and FF from the Al cathode device should be the formation of AlOx in the C60-Al interface, which contaminate the interface and plays a role like an energy barrier that block the charge collect process. To solve this problem the Ag and Alq3 layer had been inserted before the Al. Owing to the advantageous of Alq3 and Ag layer, the device which Al cathode prepared at a lower vacuum condition exhibits a comparable performance to that device which Al cathode deposited in regular situation. As an additional benefit, since the introducing of Alq3/Ag layer in the VOPc/C60 organic photovoltaic device performs a better near-infrared response, this phenomenon has been confirmed by means of both simulation and experimental data. So the design of our new cathode structure provides a degree of freedom to modulate the light absorption for organic photovoltaic devices in short-wave and long-wave.

  14. A highly reliable trigger for vacuum ARC plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Bernardet, H.; Godechot, X.; Jarjat, F. [SODERN, Limeil-Brevannes (France)

    1996-08-01

    The authors have developed a reliable electrical trigger and its associated circuitry to fire vacuum arc plasma or ion source. They tested different embodiments of the trigger device in order to get a highly reliable one, which is able to perform more than 1.2 x 10{sup 6} shots at 60 A and 6.5 ps pulse length. The evolution of the ion current emitted has been recorded as a function of the number of shots. They have also investigated in which direction the plasma jet is emitted : axially or radially. This device can be used to fire a vacuum arc plasma or ion source by plasma injection. It has obvious advantage to be placed outside the cathode and therefore would ease maintenance of vacuum arc devices.

  15. Transient Response of Arc Temperature and Iron Vapor Concentration Affected by Current Frequency with Iron Vapor in Pulsed Arc

    Science.gov (United States)

    Tanaka, Tatsuro; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    TIG arc welding is chemically a joining technology with melting the metallic material and it can be high quality. However, this welding should not be used in high current to prevent cathode melting. Thus, the heat transfer is poor. Therefore, the deep penetration cannot be obtained and the weld defect sometimes occurs. The pulsed arc welding has been used for the improvement of this defect. The pulsed arc welding can control the heat flux to anode. The convention and driving force in the weld pool are caused by the arc. Therefore, it is important to grasp the distribution of arc temperature. The metal vapor generate from the anode in welding. In addition, the pulsed current increased or decreased periodically. Therefore, the arc is affected by such as a current value and current frequency, the current rate of increment and the metal vapor. In this paper, the transient response of arc temperature and the iron vapor concentration affected by the current frequency with iron vapor in pulsed arc was elucidated by the EMTF (ElectroMagnetic Thermal Fluid) simulation. As a result, the arc temperature and the iron vapor were transient response as the current frequency increase. Thus, the temperature and the electrical conductivity decreased. Therefore, the electrical field increased in order to maintain the current continuity. The current density and electromagnetic force increased at the axial center. In addition, the electronic flow component of the heat flux increased at the axial center because the current density increased. However, the heat conduction component of the heat flux decreased.

  16. Circular-Arc Cartograms

    CERN Document Server

    Kämper, Jan-Hinrich; Nöllenburg, Martin

    2011-01-01

    We present a new circular-arc cartogram model in which countries are drawn with circular arcs instead of straight-line segments. Given a geographic map and values associated with each country in the map, the cartogram is a new map in which the areas of the countries represent the corresponding values. In the circular-arc cartogram model straight-line segments can be replaced with circular arcs in order to achieve the desired areas, while the corners of the polygons defining each country remain fixed. The countries in circular-arc cartograms have the aesthetically pleasing appearance of clouds or snowflakes, depending on whether their edges are bent outwards or inwards. This makes is easy to determine whether a country has grown or shrunk, just by its overall shape. We show that determining whether a given map and area-values can be realized with a circular-arc cartogram is an NP-hard problem. Next we describe a heuristic method for constructing circular-arc cartograms, which uses a max-flow computation on the...

  17. Characteristics of a toroidal planar hollow cathode and its use for the preparation of Bi nanoparticles

    Science.gov (United States)

    Perez, A.; Luna, A. T.; Muhl, S.

    2013-12-01

    Using ideas from the sputter deposition by gas flow hollow cathode (GFHC) we have designed a new version in the form of a toroidal planar hollow cathode. Here the flow of gas is used to entrain the sputtered atoms and nanoparticles formed by agglomeration in the gas phase, through the cathode central exit aperture towards the substrate. We have studied the characteristics of the deposit as a function of the applied pulsed dc electrical power, the argon gas pressure and flow. By varying the different operating parameters, such as pressure (6.7-267 Pa), power (40-120 W) and gas flow (20-140 sccm), it was possible to control the size of the nanoparticles (10-150 nm) and the deposition rate (0.4-4.0 nm min-1). We demonstrate that the nanoparticles are of crystalline bismuth, even though the cathode is made of graphite with small added pieces of bismuth.

  18. Synthesis method for ultrananocrystalline diamond in powder employing a coaxial arc plasma gun

    Science.gov (United States)

    Naragino, Hiroshi; Tominaga, Aki; Hanada, Kenji; Yoshitake, Tsuyoshi

    2015-07-01

    A new method that enables us to synthesize ultrananocrystalline diamond (UNCD) in powder is proposed. Highly energetic carbon species ejected from a graphite cathode of a coaxial arc plasma gun were provided on a quartz plate at a high density by repeated arc discharge in a compact vacuum chamber, and resultant films automatically peeled from the plate were aggregated and powdered. The grain size was easily controlled from 2.4 to 15.0 nm by changing the arc discharge energy. It was experimentally demonstrated that the proposed method is a new and promising method that enables us to synthesize UNCD in powder easily and controllably.

  19. Structure and Properties of Nickel-based Surfacing on Crust Breaker Deposited by Plasma Arc Welding%打壳锤头等离子堆焊镍基涂层组织和性能

    Institute of Scientific and Technical Information of China (English)

    张国栋; 李莉; 刘念; 曹红美; 毛艳

    2014-01-01

    Nickel-based alloy coatings are deposited on the surface of crust breaker made of Q235 steel through plasma arc welding with the nickel-based powders containing 50% WC, 40% WC and 30% WC+TiC, respectively. And the microstructure, chemical composition, micro-hardness, abrasive resistance and corrosion resistance are examined on the samples investigated by using optical microscope(OM), scanning electron microscope(SEM), Vickers hardness tester and friction and wear testing machine. The microstructures of the coatings are γ-Ni solid solution and hard dispersed compound particles, such as WC, (Ti, V) C, etc. The coatings with low dilution rate possess a better metallurgical bonding with the matrix metal, and better electrolytic corrosion resistance compared with the Q235 matrix. The Nickel-based alloy coating containing 30%WC+TiC has the highest wear resistance and hot corrosion resistance in comparison with the coatings containing 50%WC and 40%WC. Therefore, the Nickel-based alloy coating layer containing 30%WC+TiC has the optimum comprehensive properties and extensive application prospect.%采用等离子堆焊技术在打壳锤头基体Q235钢表面进行堆焊,堆焊材料选用分别含有50%WC、40%WC和30%WC+TiC的复合镍基粉末。借助金相显微镜、扫描电子显微镜、显微硬度仪、摩擦磨损试验仪等仪器对所得各堆焊层的显微组织、化学成分、显微硬度、耐磨性和耐蚀性进行分析。试验结果表明,三种合金堆焊层显微组织均为γ-Ni 固溶体和弥散分布的不同形态的硬质化合物相,如WC,(Ti,V)C等。三种合金堆焊层与基体界面处冶金结合良好,堆焊层稀释率低,且与基体Q235钢相比,耐电解腐蚀性显著提高。含有30%WC+TiC的镍基合金堆焊层与含有50%WC和40%WC的镍基合金堆焊层相比,具有更高的耐磨性和抗热腐蚀性。因而含有30%WC+TiC的镍基合金堆焊层综合性能最优,能够大幅度延长打壳锤头使

  20. Electromagnetic Characteristic of Twin-wire Indirect Arc Welding

    Institute of Scientific and Technical Information of China (English)

    SHI Chuanwei; ZOU Yong; ZOU Zengda; WU Dongting

    2015-01-01

    Traditional welding methods are limited in low heat input to workpiece and high welding wire melting rate. Twin-wire indirect arc(TWIA) welding is a new welding method characterized by high melting rate and low heat input. This method uses two wires:one connected to the negative electrode and another to the positive electrode of a direct-current(DC) power source. The workpiece is an independent, non-connected unit. A three dimensional finite element model of TWIA is devised. Electric and magnetic fields are calculated and their influence upon TWIA behavior and the welding process is discussed. The results show that with a 100 A welding current, the maximum temperature reached is 17 758 K, arc voltage is 14.646 V while maximum current density was 61 A/mm2 with a maximum Lorene force of 84.5mN. The above mentioned arc parameters near the cathode and anode regions are far higher than those in the arc column region. The Lorene force is the key reason for plasma velocity direction deviated and charged particles flowed in the channel formed by the cathode, anode and upper part of arc column regions. This led to most of the energy being supplied to the polar and upper part of arc column regions. The interaction between electric and magnetic fields is a major determinant in shaping TWIA as well as heat input on the workpiece. This is a first study of electromagnetic characteristics and their influences in the TWIA welding process, and it is significant in both a theoretical and practical sense.

  1. Abrasive-assisted Nickel Electroforming Process with Moving Cathode

    Science.gov (United States)

    REN, Jianhua; ZHU, Zengwei; XIA, Chunqiu; QU, Ningsong; ZHU, Di

    2017-03-01

    In traditional electroforming process for revolving parts with complex profiles, the drawbacks on surface of deposits, such as pinholes and nodules, will lead to varying physical and mechanical properties on different parts of electroformed components. To solve the problem, compositely moving cathode is employed in abrasive-assisted electroforming of revolving parts with complicated profiles. The cathode translates and rotates simultaneously to achieve uniform friction effect on deposits without drawbacks. The influences of current density and translation speed on the microstructure and properties of the electroformed nickel layers are investigated. It is found that abrasive-assisted electroforming with compound cathode motion can effectively remove the pinholes and nodules, positively affect the crystal nucleation, and refine the grains of layer. The increase of current density will lead to coarse microstructure and lower micro hardness, from 325 HV down to 189 HV. While, faster translational linear speed produces better surface quality and higher micro hardness, from 236 HV up to 283 HV. The weld-ability of the electroformed layers are also studied through the metallurgical analysis of welded joints between nickel layer and 304 stainless steel. The electrodeposited nickel layer shows fine performance in welding. The novel compound motion of cathode promotes the mechanical properties and refines the microstructure of deposited layer.

  2. Deposition of TiN coatings using ACPVD technique on AM60 alloy; Recubrimientos de TiN depositados mediante ACPVD sobre aleaciones de magnesio AM60

    Energy Technology Data Exchange (ETDEWEB)

    Pichel, M.; Candela, N.; Barea, R.; Conejero, G.; Carsi, M.

    2013-06-01

    Magnesium alloys are reaching special interest due to their good specific properties, low cost and good manufacturing properties. However, their low hardness, wear and corrosion resistance limit their applications in certain sectors of industry. These drawbacks can be solved by applying hard ceramic coatings, such as nitrides or metal carbides. TiN is one of the most used coatings due to its high adhesion, hardness, low coefficient of friction and chemical stability. Physical vapor deposition by cathodic arc CAPVD, is a versatile technique, which uses low temperatures and high ionization energies, generating homogeneous coatings. To achieve coatings with high quality, a careful control of the manufacturing parameters is required, such as bias voltage, gas flow or intensity. This paper focuses on magnesium alloys, AM60, coated with TiN using physical vapor deposition cathodic arc technique (CAPVD) at different intensity values (40A and 100A) and surface preparation (grinding up to 4000 grit and polished to 3{mu}m). It was included a final condition with an intermediate Al film. The samples were characterized by X-ray diffraction, roughness, optical microscopy and scanning electron. (Author) 28 refs.

  3. Identification by force modulation microscopy of nanoparticles generated in vacuum arcs Identification by force modulation microscopy of nanoparticles generated in vacuum arcs

    Directory of Open Access Journals (Sweden)

    M. Arroyave Franco

    2006-06-01

    Full Text Available An alternative method based on force modulation microscopy (FMM for identification of nanoparticles produced in the plasma generated by the cathode spots of vacuum arcs is presented. FMM technique is enabled for the detection of variations in the mechanical properties of a surface with high sensitiveness. Titanium nitride (TiN coatings deposited on oriented silicon by pulsed vacuum arc process have been analyzed. AFM (Atomic Force Microscopy and FMM images were simultaneously obtained, and in all cases it was possible to identify nanoparticle presence. Further X-ray Diffraction spectra of sample coating were taken. Existence of contaminant particles of 47 nanometers in diameter was reported.En este trabajo se presenta un método alternativo basado en microscopia de modulación de fuerza (FMM, para la identificación de nanogotas producidas en el plasma generado por los spots catódicos de los arcos en vacío. La técnica FMM esta habilitada para la detección de variaciones en las propiedades mecánicas de una superficie, con alta sensibilidad. Se han analizado recubrimientos de nitruro de titanio (TiN depositados sobre Silicio orientado por el proceso de arco en vacío pulsado. Se han obtenido simultáneamente imágenes de microscopia de fuerza atómica (AFM y de microscopia FMM mediante las cuales se ha podido identificar la presencia de nanogotas. Adicionalmente se han tomado espectros de difracción de rayos X (XRD de las muestras recubiertas. Se ha reportado la existencia de partículas contaminantes de 47 nanómetros de diámetro sobre los recubrimientos.

  4. Investigation of the flickering of La{sub 2}O{sub 3} and ThO{sub 2} doped tungsten cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Hoebing, T.; Hermanns, P.; Bergner, A.; Ruhrmann, C.; Mentel, J.; Awakowicz, P. [Ruhr University Bochum, Electrical Engineering and Plasma Technology, 44780 Bochum (Germany); Traxler, H.; Wesemann, I.; Knabl, W. [Plansee SE, Metallwerk-Plansee-Str. 71, 6600 Reutte (Austria)

    2015-07-14

    Short-arc lamps are equipped with tungsten electrodes due to their ability to withstand a high thermal load during operation. Nominal currents of more than one hundred amperes lead to a cathode tip temperature near the melting point of tungsten. To reduce the electrode temperature and, thereby, to increase the maintenance of such lamps, ThO{sub 2} or tentatively La{sub 2}O{sub 3} are added to the electrode material. They generate a reduced work function by establishing a monolayer of emitter atoms on the tungsten surface. Emitter enrichments on the lateral surface of doped cathodes are formed. They are traced back to transport mechanisms of emitter oxides in the interior of the electrode and on the electrode surface in dependence of the electrode temperature and to the redeposition of vaporized and ionized emitter atoms onto the cathode tip by the electric field in front. The investigation is undertaken by means of glow discharge mass spectrometry, scanning electron microscope images, energy dispersive x-ray spectroscopy, and through measurements of the optical surface emissivity. The effect of emitter enrichments on the stability of the arc attachment is presented by means of temporally resolved electrode temperature measurements and by measurements of the luminous flux from the cathode-near plasma. They show that the emitter enrichments on the lateral surface of the cathode are attractive for the arc attachment if the emitter at the cathode tip is depleted. In this case, it moves along the lateral surface from the cathode tip to sections of the cathode with a reduced work function. It induces a temporary variation of the cathode tip temperature and of the light intensity from the cathode-near plasma, a so-called flickering. In particular, in case of lanthanated cathodes, strong flickering is observed.

  5. Pulsed plasma arc cladding

    Institute of Scientific and Technical Information of China (English)

    龙; 白钢; 李振民; 张赋升; 杨思乾

    2004-01-01

    A prototype of Pulsed Plasma Arc Cladding system was developed, in which single power source supplies both transferred plasma arc (TPA) and non-transferred plasma arc (N-TPA). Both plasmas work in turn in a high frequency controlled by an IGBT connecting nozzle and workpiece. The working frequency of IGBT ranges from 50 ~ 7000Hz, in which the plasmas can work in turn smoothly. Higher than 500 Hz of working frequency is suggested for promotion of cladding quality and protection of IGBT. Drag phenomenon of TPA intensifies as the frequency goes up, which tends to increase the current proportion of TPA and suppress N-TPA. The occupation ratio of IGBT can be regulated from 5% ~ 95%, which balances the power supplies of both plasmas. An occupation ratio higher than 50% gives adequate proportion of arc current for N-TPA to preheat powder.

  6. Cathodic hydrodimerization of nitroolefins

    Directory of Open Access Journals (Sweden)

    Michael Weßling

    2015-07-01

    Full Text Available Nitroalkenes are easily accessible in high variety by condensation of aldehydes with aliphatic nitroalkanes. They belong to the group of activated alkenes that can be hydrodimerized by cathodic reduction. There are many olefins with different electron withdrawing groups used for cathodic hydrodimerization, but not much is known about the behaviour of the nitro group. Synthetic applications of this group could profit from the easy access to nitroolefins in large variety, the C–C bond formation with the introduction of two nitro groups in a 1,4-distance and the conversions of the nitro group by reduction to oximes and amines, the conversion into aldehydes and ketones via the Nef reaction and base catalyzed condensations at the acidic CH bond. Eight 1-aryl-2-nitro-1-propenes have been electrolyzed in an undivided electrolysis cell to afford 2,5-dinitro-3,4-diaryl hexanes in high yield. The 4-methoxy-, 4-trifluoromethyl-, 2-chloro- and 2,6-difluorophenyl group and furthermore the 2-furyl and 2-pyrrolyl group have been applied. The reaction is chemoselective as only the double bond but not the nitro group undergoes reaction, is regioselective as a ß,ß-coupling with regard to the nitro group and forms preferentially two out of six possible diastereomers as major products.

  7. Cathodic hydrodimerization of nitroolefins.

    Science.gov (United States)

    Weßling, Michael; Schäfer, Hans J

    2015-01-01

    Nitroalkenes are easily accessible in high variety by condensation of aldehydes with aliphatic nitroalkanes. They belong to the group of activated alkenes that can be hydrodimerized by cathodic reduction. There are many olefins with different electron withdrawing groups used for cathodic hydrodimerization, but not much is known about the behaviour of the nitro group. Synthetic applications of this group could profit from the easy access to nitroolefins in large variety, the C-C bond formation with the introduction of two nitro groups in a 1,4-distance and the conversions of the nitro group by reduction to oximes and amines, the conversion into aldehydes and ketones via the Nef reaction and base catalyzed condensations at the acidic CH bond. Eight 1-aryl-2-nitro-1-propenes have been electrolyzed in an undivided electrolysis cell to afford 2,5-dinitro-3,4-diaryl hexanes in high yield. The 4-methoxy-, 4-trifluoromethyl-, 2-chloro- and 2,6-difluorophenyl group and furthermore the 2-furyl and 2-pyrrolyl group have been applied. The reaction is chemoselective as only the double bond but not the nitro group undergoes reaction, is regioselective as a ß,ß-coupling with regard to the nitro group and forms preferentially two out of six possible diastereomers as major products.

  8. Mathematical Modeling of Metal Active Gas (MAG) Arc Welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the present paper, a numerical model for MAG (metal active gas) arc welding of thin plate has been developed. In MAG arc welding, the electrode wire is melted and supplied into the molten pool intermittently. Accordingly, it is assumed on the modeling that the thermal energy enters the base-plates through two following mechanisms, i.e., direct heating from arc plasma and “indirect” heating from the deposited metal. In the second part of the paper, MAG arc welding process is numerically analyzed by using the model, and the calculated weld bead dimension and surface profile have been compared with the experimental MAG welds on steel plate. As the result, it is made clear that the model is capable of predicting the bead profile of thin-plate MAG arc welding , including weld bead with undercutting.

  9. Improvement on Diamond Nucleation Treated by Pulsed Arc Discharge Plasma

    Institute of Scientific and Technical Information of China (English)

    马志斌; 万军; 汪建华; 张文文

    2004-01-01

    A technique of improvement on diamond nucleation based on pulsed arc discharge plasma at atmospheric pressure was developed. The pulsed arc discharge was induced respectively by nitrogen, argon and methanol gas. After the arc plasma pretreatment, a nucleation density higher than 1010 cm-2 may be obtained subsequently in chemical vapor deposition (CVD) on a mirror-polished silicon substrate without any other mechanical treatment. The effects of the arc discharge plasma on the diamond nucleation were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR) and Raman spectroscopy. The enhancement of nucleation is postulated to be a result of the formation of carbonlike phase materials or nitrogenation on the substrate surface without surface defect produced by arc discharge.

  10. An analysis of the anomalous high-current cathode emission in pseudospark and back-of-the-cathode lighted thyratron switches

    Science.gov (United States)

    Hartmann, W.; Dominic, V.; Kirkman, G. F.; Gundersen, M. A.

    1989-06-01

    An analysis of the anomalously large cathode emission recently observed in the superdense glow of pseudospark and back-lighted thyratrons is presented. These switches are low-pressure (27 PaH2) glow-discharge pulsed-power devices. After operating at peak discharge currents of 6 to 8 kA and pulse durations of 0.5 to 1 microsec., the surface surrounding the cathode hole was found to have been homogeneously melted within a radius of approx. 4 mm indicating that the discharge is a superdense glow discharge, not an arc, with a cross-sectional area on the order of 1 sq cm. This conclusion is also supported by streak camera measurements. The current density at the cathode surface under these conditions is 5 to 10 kA/sq cm, several orders of magnitude larger than that of thermionic cathodes in common thyratrons. This high-current density is explained by intense cathode heating from a high-current density ion beam produced in the cathode fall during the initial stage of current buildup. The surface heating resulting from this beam yields a significant field-enhanced thermionic emission of electrons.

  11. Electrophoretic deposition of thin SOFC-electrolyte films on porous La{sub 0,75}Sr{sub 0,2}MnO{sub 3-{delta}} cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Argirusis, C.; Damjanovic, T.; Borchardt, G. [Technische Univ. Clausthal, Fachbereich Physik, Metallurgie und Werkstoffwissenschaften, Clausthal-Zellerfeld (Germany)

    2004-07-01

    Solid oxide fuel cells with an electrode supported thin film electrolyte (electrolyte thickness 5 {mu}m < d < 20 {mu}m) are a promising alternative to electrolyte supported single cells because of decreased electrolyte resistance. The electrophoretic deposition (EPD) was performed on A-site deficient La{sub 0.75}Sr{sub 0.2}MnO{sub 3-{delta}} (ULSM) from three different suspensions: (Y{sub 2}O{sub 3}){sub 0.08}(ZrO{sub 2}){sub 0.92} (YSZ), (Ce{sub 0.9}Gd{sub 0.1})O{sub 1.955} (GDC) and La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.85} (LSGM) in acetylacetone and isopropanol. The thickness of the deposits was controlled by varying the conditions of the electrophoretic deposition. (orig.)

  12. Carbon Coating Of Copper By Arc-Discharge Pyrolysis

    Science.gov (United States)

    Ebihara, Ben T.; Jopek, Stanley

    1988-01-01

    Adherent, abrasion-resistant coat deposited with existing equipment. Carbon formed and deposited as coating on copper substrate by pyrolysis of hydrocarbon oil in electrical-arc discharges. Technique for producing carbon deposits on copper accomplished with electrical-discharge-machining equipment used for cutting metals. Applications for new coating technique include the following: solar-energy-collecting devices, coating of metals other than copper with carbon, and carburization of metal surfaces.

  13. 云南中旬岛弧带典型斑岩铜矿床围岩蚀变特征对比及其找矿意义%The comparison of the features of wall rock alteration and its prospecting significance in typical porphyry copper deposit in Zhongdian arc orogen, Yunnan

    Institute of Scientific and Technical Information of China (English)

    姜永果; 吴静; 李峰; 崔银亮; 张亚辉

    2011-01-01

    中甸岛弧带是斑岩型铜矿的矿集区,区内的斑岩铜矿床围岩蚀变强烈,蚀变分带明显,围岩蚀变与矿化关系密切.文章对分别位于中甸岛弧东、西部成矿带的春都和普朗斑岩铜矿床围岩蚀变及矿化特征进行了对比分析.研究结果表明,2个斑岩铜矿床的围岩蚀变类型主要表现形式以及蚀变分带模式基本相同,研究还得出中旬岛弧带斑岩铜矿床钾硅化带以及绢英岩化带的蚀变强度及其规模共同决定斑岩铜矿床的规模.中旬岛弧带斑岩铜矿床中,青磐岩化玢岩为找矿的间接标志,绢英岩化或钾硅化斑岩(玢岩)为找矿的直接标志.%Zhongdian arc orogen is an important centralized zone of porphyry copper, where the wall rock alteration strongly related with mineralization is fierce and alteration zones are obivious. The characteristics of the wall rock alteration and mineralization of Pulang in the eastern matollgenic belts and Chundu porphyry copper deposit in the western matollgenic belts of Zhongdian arc were compared and analysised in this article. The studies show that the wall rock alteration types and zonality of alteration are roughly the same between Pulang and Chunduin porphyry copper deposits, and that the scale of porphyry copper deposit are controlled by thestrength and scale of kali silicification zone and sericitolite zone as well. In the porphyry copper deposit of Zhongdian arc orgen belts, the propyliti-zation porphyrite is an indirect prospecting sign, while sericitolite porphyry and kali silicification are the direct prospecting signs.

  14. Computer simulation to arc spraying

    Institute of Scientific and Technical Information of China (English)

    梁志芳; 李午申; 王迎娜

    2004-01-01

    The arc spraying process is divided into two stages: the first stage is atomization-spraying stream (ASS) and the second one is spraying deposition (SD). Then study status is described of both stages' physical model and corresponding controlling-equation. Based on the analysis of study status, the conclusion as follows is got. The heat and mass transfer models with two or three dimensions in ASS stage should be established to far deeply analyses the dynamical and thermal behavior of the overheat droplet. The statistics law of overheated droplets should be further studied by connecting simulation with experiments. More proper validation experiments should be designed for flattening simulation to modify the models in SD stage.

  15. Composition Gradient Hard Coatings by Arc Ion Plating

    Institute of Scientific and Technical Information of China (English)

    CHEN Jun; LIN Guo-qiang; WANG Fu-gang

    2004-01-01

    Arc Ion Plating can be used to synthesize multi-component composition gradient hard coatings by adjusting arc currents of metal targets. The present work aims at a comprehensive description of such a technique. The examples of TiAl multi-layer alloy coatings and (Ti, M) N composition-gradient films were taken (M representing Zr, Nb etc.) for the purpose of explaining the working process and evaluating practical effects. The results show that this technique has the advantages of easy manipulation, rapid deposition, and wide composition range.Key Words: Arc Ion plating, hard coating, composition gradient coatings

  16. 微弧氧化/电化学沉积钙磷涂层纯钛种植体的骨内植入*★%Endosseous implantation of calcium phosphate coated titanium implant prepared via micro-arc oxidation/electrochemical deposition

    Institute of Scientific and Technical Information of China (English)

    马盈; 孟祥才; 王静; 李德超

    2013-01-01

      背景:近年来已有对微弧氧化/电化学沉积技术制备涂层在材料性能方面的相关报道,但对这种材料植入体内的性能研究较少见。目的:观察纯钛种植体经微弧氧化/电化学沉积处理后的骨结合和新骨形成情况。方法:通过微弧氧化/电化学沉积方法在纯钛上制备含钙磷元素的涂层,然后将该种植体和纯钛种植体分别植入羊两侧胫骨种植窝内,于动物处死前15,5 d分别进行注射四环素进行四环素标记。术后4,12周分别进行X射线、扫描电镜及激光共聚焦观察。结果与结论:两侧X射线表现相似,种植体周围均无明显阴影,骨小梁排列和骨质密度与宿主骨基本一致。术后4周时,在电镜下可观察到两组种植体和骨组织之间均有间隙,部分见骨性结合;术后12周时,微弧氧化/电化学沉积种植体组可形成新骨,并且新骨与种植体和原来骨组织结合紧密,涂层与钛基体没有明显间隙,纯钛种植体组也可见新骨生成,但可看到明显裂隙。激光共聚焦观察显示,微弧氧化/电化学沉积种植体组双标记带间距离及骨矿化沉积率均高于纯钛种植体组(P <0.05)。表明微弧氧化/电化学沉积处理可增强纯钛种植体的骨结合能力及新骨形成。%  BACKGROUND: There are studies concerning material properties of coating prepared by micro-arc oxidation and electrochemical deposition, but there are few studies addressing properties of this kind of material implanted in the body. OBJECTIVE: To observe the synostosis and new bone formation of the pure titanium implant prepared by micro-arc oxidation/electrochemical deposition. METHODS: This research produces calcium and phosphate coatings on pure titanium though micro-arc oxidation/Electrochemical deposition technology, and the sheep were implanted with micro arc-oxidation/electrochemical deposition implant and pure titanium implant

  17. Role of hydrogen diffusion in temperature-induced transformation of carbon nanostructures deposited on metallic substrates by using a specially designed fused hollow cathode cold atmospheric pressure plasma source

    Science.gov (United States)

    Sharma, Bikash; Kar, R.; Pal, Arup R.; Shilpa, R. K.; Dusane, R. O.; Patil, D. S.; Suryawanshi, S. R.; More, M. A.; Sinha, S.

    2017-04-01

    Carbon nanofibers (CNFs) and carbon nanotubes (CNTs) are grown on inconel substrates under two different experimental conditions using atmospheric pressure glow discharge radio-frequency (RF) PECVD process. A specially designed hollow cathode is used for this plasma generation. The growth is carried out at 610 and 660 °C substrate temperatures on inconel substrates. Our results show that CNFs and CNTs could be synthesized at 610 and 660 °C respectively irrespective of pre-treatment methods in either set. HRTEM results indicate that a temperature-induced transformation of CNFs into CNTs occur when the growth temperature is raised from 610 to 660 °C. With the help of characterization results and a schematic model, it is shown how an increase in hydrogen diffusion (~44% increase) plays a pivotal role in this transformation by providing a sink for hydrogen atoms. Field emission results show that most defective CNFs contribute to the maximum emission current density. This better field emission behavior is explained on the basis that the outer surfaces of CNFs are more defective due to the presence of the open edges of the graphene planes, which results in better field emission from the outer surfaces of the CNFs.

  18. Modeling of Arc Force in Plasma Arc Welding

    Institute of Scientific and Technical Information of China (English)

    GAO Zhonglin; HU Shengsun; YIN Fengliang; WANG Rui

    2008-01-01

    A three. dimensional mathematical model for the transferred-type argon arc was developed to describe arc force on the anode surface. The software ANSYS was employed to solve the model. The model includes a part of torch and tungsten electrode to achieve m ore reasonable results. The arc temperature and flow fields were derived. And the influences of welding parameters on arc force were also studied. The simulated results show that arc pressure at the anode are dependent on the welding current, plasma gas flow rate and electrode neck-in, while not sensitive to arc length.

  19. Arc generation from sputtering plasma-dielectric inclusion interactions

    CERN Document Server

    Wickersham, C E J; Fan, J S

    2002-01-01

    Arcing during sputter deposition and etching is a significant cause of particle defect generation during device fabrication. In this article we report on the effect of aluminum oxide inclusion size, shape, and orientation on the propensity for arcing during sputtering of aluminum targets. The size, shape, and orientation of a dielectric inclusion plays a major role in determining the propensity for arcing and macroparticle emission. In previous studies we found that there is a critical inclusion size required for arcing to occur. In this article we used high-speed videos, electric arc detection, and measurements of particle defect density on wafers to study the effect of Al sub 2 O sub 3 inclusion size, shape, and orientation on arc rate, intensity, and silicon wafer particle defect density. We found that the cross-sectional area of the inclusion exposed to the sputtering plasma is the critical parameter that determines the arc rate and rate of macroparticle emission. Analysis of the arc rate, particle defect...

  20. Water-vortex stabilized electric arc: I. Numerical model

    Science.gov (United States)

    Jenista, Jirí

    1999-11-01

    A numerical model for an electric arc stabilized by a water vortex has been proposed. The two-dimensional axisymmetric model includes the discharge area between the cathode and the orifice of the arc chamber. The production of water plasma, i.e. the rate of evaporation of a water wall, is taken either from experiments or is determined numerically by fitting of the outlet plasma parameters to the experimental ones. The computer results concern thermal, fluid dynamic and electrical characteristics of such arcs for the currents 300, 400, 500 and 600 A. It is found, for example, that the role of thermal diffusion within the discharge increases with current. The power losses from the arc due to radial conduction and radiation represent around 50% of the input power. Rotation of the plasma column due to the induced tangential velocity component has negligible effect on the overall arc performance. The calculated velocities, pressure drops and electrical potentials are in good agreement with experiments carried out on the water plasma torch PAL-160 operating at our Institute.

  1. Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium

    Science.gov (United States)

    Wu, Shikai; Xiao, Rongshi

    2015-04-01

    The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.

  2. Study of the Material Transfer Characteristics and Surface Morphology Due to Arc Erosion of PtIr Contact Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Saibei; XIE Ming; YANG Youcai; ZHANG Jiming; CHEN Yongtai; LIU Manmen; YANG Yunfeng; HU Jieqiong; CUI Hao

    2012-01-01

    By means of breaking tests on PtIr contact materials via a JF04C contact material testing machine,it was attempted to elucidate the characterstics of the various surface morphology and material transfer after the arc erosion process caused by break arc.The material transfer characteristics appeared in the experiments were concluded and analyzed.Meanwhile,the morphology of the anode and cathode surface were observed and analyzed by SEM.

  3. Investigation of the Solution Electrical Conductivity Effect upon the Synthesis of Carbon Nanotubes by Arc Discharge Method

    OpenAIRE

    Asieh Dehghani Kiadehi; Mohsen Jahanshahi; Mohammadreza Mozdianfard; Gholamreza Vakili-Nezhaad

    2013-01-01

    Some techniques have been developed to produce carbon nanotubes (CNTs) in sizeable quantities, including arc discharge, laser ablation and chemical vapor deposition (CVD). Arc discharge in liquid environment is a new, simple and cheap method of synthesizing CNTs. CNTs in this study were fabricated by arc discharge in liquid. The present work was undertaken to study the effect of electrical conductivity of liquid on CNTs production and was fabricated using arc discharge between two graphite el...

  4. Invited article: physical and chemical analyses of impregnated cathodes operated in a plasma environment.

    Science.gov (United States)

    Sengupta, Anita; Kulleck, James; Hill, Norm; Ohlinger, Wayne

    2008-11-01

    Destructive analyses of impregnated-cathode assemblies from an ion thruster life test were performed to characterize erosion and degradation after 30,472 h of operation. Post-test inspection of each cathode included examination of the emitter (insert), orifice plate, cathode tube, heater, anode assembly, insulator, and propellant isolator. The discharge-cathode assembly experienced significant erosion due to ion sputtering from the discharge plasma. The keeper electrode plate was removed and the heater and orifice plate were heavily eroded at the conclusion of the test. Had the test continued, these processes would likely have led to cathode failure. The discharge cathode insert experienced significant tungsten transport and temperature dependent barium oxide depletion within the matrix. Using barium depletion semiempirical relations developed by Palluel and Shroff, it is estimated that 25,000 h of operation remained in the discharge insert at the conclusion of the test. In contrast, the neutralizer insert exhibited significantly less tungsten transport and barium oxide depletion consistent with its lower current operation. The neutralizer was estimated to have 140,000 h of insert life remaining at the conclusion of the test. Neither insert had evidence of tungstate or oxide layer formation, previously known to have impeded cathode ignition and operation in similar long duration hollow-cathode tests. The neutralizer cathode was in excellent condition at the conclusion of the test with the exception of keeper tube erosion from direct plume-ion impingement, a previously underappreciated life-limiting mechanism. The most critical finding from the test was a power dependent deposition process within the neutralizer-cathode orifice. The process manifested at low-power operation and led to the production of energetic ions in the neutralizer plume, a potential life-limiting process for the neutralizer. Subsequent return of the engine and neutralizer operation to full

  5. Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Georgia Inst. of Technology, Atlanta, GA (United States); Ding, Dong [Georgia Inst. of Technology, Atlanta, GA (United States); Wei, Tao [Georgia Inst. of Technology, Atlanta, GA (United States); Liu, Meilin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-03-31

    cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions has been studied. It is found that SrO readily segregated/enriched on the LSCF surface. More severe contamination conditions cause more SrO on surface. Novel catalyst coatings through particle depositions (PrOx) or continuous thin films (PNM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized PNM (dense film and particles) infiltration process, under clean air and realistic operating conditions (3% H2O, 5% CO2 and direct Crofer contact). Both performance and durability of single cells with PNM coating has been enhanced compared with those without coating. Raman analysis of cathodes surface indicated that the intensity of SrCrO4 was significantly decreased.

  6. Hollow Cathode With Multiple Radial Orifices

    Science.gov (United States)

    Brophy, John R.

    1992-01-01

    Improved hollow cathode serving as source of electrons has multiple radial orifices instead of single axial orifice. Distributes ion current more smoothly, over larger area. Prototype of high-current cathodes for ion engines in spacecraft. On Earth, cathodes used in large-diameter ion sources for industrial processing of materials. Radial orientation of orifices in new design causes current to be dispersed radially in vicinity of cathode. Advantageous where desireable to produce plasma more nearly uniform over wider region around cathode.

  7. The phase-shift method for determining Langmuir and Temkin adsorption isotherms of over-potentially deposited hydrogen for the cathodic H{sub 2} evolution reaction at the poly-Pt/H{sub 2}SO{sub 4} aqueous electrolyte interface

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Jang H.; Jeon, Sang K.; Kim, Nam Y. [Department of Electronic Engineering, Kwangwoon University, Seoul 139-701 (Korea); Chun, Jin Y. [School of Chemical Engineering, Seoul National University, Seoul 151-744 (Korea)

    2005-11-01

    A linear relationship between the behavior (-f vs. E) of the phase shift (0{sup |}=<-f=<90{sup |}) for the optimum intermediate frequency and that ({theta} vs. E) of the fractional surface coverage (1>={theta}>=0) of over-potentially deposited hydrogen (OPD H) for the cathodic H{sub 2} evolution reaction (HER), i.e., the phase-shift method, at the poly-Pt/0.5M H{sub 2}SO{sub 4} aqueous electrolyte interface has been verified using cyclic voltammetric, differential pulse voltammetric, and ac impedance techniques. The phase-shift method for determining the suitable adsorption isotherm (Langmuir, Frumkin, Temkin) of OPD H for the cathodic HER at the interface also has been proposed. At the poly-Pt/0.5M H{sub 2}SO{sub 4} aqueous electrolyte interface, the Langmuir adsorption isotherm ({theta} vs. E) of OPD H, the equilibrium constant (K=1.3x10{sup -4}) for OPD H and the standard free energy ({delta}G{sub ads}{sup 0}=22.2kJ/mol) of OPD H are determined using the phase-shift method. At the same interface, the Temkin adsorption isotherm ({theta} vs. E) of OPD H, the equilibrium constant (1.3x10{sup -3}>=K>=1.3x10{sup -5} with {theta}, i.e., 0=<{theta}=<1) for OPD H, and the standard free energy (16.5=<{delta}G{sub {theta}}{sup 0}=<27.9kJ/mol with {theta}, i.e., 0=<{theta}=<1) of OPD H are also determined using the phase-shift method. At the intermediate values of {theta}, i.e., 0.2<{theta}<0.8, the Langmuir and Temkin adsorption isotherms of OPD H for the cathodic HER at the interface are converted to each other. The equilibrium constant (K{sub 0}) for the Temkin adsorption isotherm ({theta} vs. E) is ca. 10 times greater than that (K) for the corresponding Langmuir adsorption isotherm ({theta} vs. E). The interaction parameter (g) for the Temkin adsorption isotherm ({theta} vs. E) is ca. 4.6 greater than that (g) for the corresponding Langmuir adsorption isotherm ({theta} vs. E). These numbers (10 times and 4.6) can be taken as constant conversion factors between the

  8. Molten carbonate fuel cell reduction of nickel deposits

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James L. (Lemont, IL); Zwick, Stanley A. (Darien, IL)

    1987-01-01

    A molten carbonate fuel cell with anode and cathode electrodes and an eleolyte formed with two tile sections, one of the tile sections being adjacent the anode and limiting leakage of fuel gas into the electrolyte with the second tile section being adjacent the cathode and having pores sized to permit the presence of oxygen gas in the electrolyte thereby limiting the formation of metal deposits caused by the reduction of metal compositions migrating into the electrolyte from the cathode.

  9. The conditions for electrodeposition of insoluble hydroxides at a cathode surface

    DEFF Research Database (Denmark)

    Hansen, P.Gregers

    1959-01-01

    The pH values obtained in the vicinity of a cathode surface where hydrogen evolution takes place are discussed using the concept of a diffusion layer. It is shown that a given current density I determines a hydrogen ion concentration Cmax in the solution, above which no hydroxide deposition...... at the cathode can be expected to take place. The shape of the pH distribution makes it possible to define a hydroxyl ion layer, the thickness of which approaches zero as the hydrogen ion concentration approaches Cmax. It is found that relatively high pH values (11–13) are easily obtained at a cathode surface...

  10. On the Emission Mechanism of Barium Containing Thermionic Cathodes

    Science.gov (United States)

    1991-03-27

    easily be transported to the emissions center. From the deposited activated material to the minimum work function, we estimate the size of 13 the emission...theories were not able to explain the electrospark phenomenon. Experiments show that electrosparkz are spurts carrying positively charged atoms" . A...cathode with good conductivity shouldn’t let out electrosparks , because there is no reason for them to be able to spurt out positively charged atom groups

  11. ARc Welding (Industrial Processing Series).

    Science.gov (United States)

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  12. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  13. La2NiO4+δ Infiltration of Plasma-Sprayed LSCF Coating for Cathode Performance Improvement

    Science.gov (United States)

    Li, Ying; Zhang, Shan-Lin; Li, Cheng-Xin; Wei, Tao; Yang, Guan-Jun; Li, Chang-Jiu; Liu, Meilin

    2016-01-01

    Perovskite-structured (La0.6Sr0.4Co0.2Fe0.8O3) LSCF has been widely studied as a cathode material for intermediate-temperature solid oxide fuel cells. However, the application of LSCF cathode is likely to be limited by its sluggish surface catalytic properties and long-term stability issues. Oxygen hyper-stoichiometric La2NiO4+δ with K2NiF4 structure exhibits higher catalytic properties, ionic conductivity, and stability in comparison with LSCF cathode. Due to the good chemical compatibility of these two cathode materials, it is possible to prepare a composite cathode by the infiltration of La2NiO4+δ in the porous LSCF. This composite structure fully utilizes the advantages of the two cathodes and enhances the LSCF cathode performance. In this study, the LSCF cathode was deposited by using an atmospheric plasma spray technique, and the porous LSCF cathode was then infiltrated by La2NiO4+δ. The atmospheric plasma spray technique was used to reduce the SOFC manufacturing cost. The microstructure of coatings was characterized by SEM and EDS. The cathode polarization resistance was found to decrease by ~40% after the La2NiO4+δ infiltration. Also, the activation energy decreased from 1.53 to 1.40 eV.

  14. Liquid cathode primary batteries

    Science.gov (United States)

    Schlaikjer, Carl R.

    1985-03-01

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150 °C, and efficient discharge at moderate rates. he lithium/sulfur dioxide cell is the most efficient system at temperatures below 0 °C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60 °C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  15. Microhollow cathode discharges

    Science.gov (United States)

    Schoenbach, K. H.; Moselhy, M.; Shi, W.; Bentley, R.

    2003-07-01

    By reducing the dimensions of hollow cathodes into the hundred micrometer range, stable, direct current, high (atmospheric) pressure glow discharges in rare gases, rare gas-halide mixtures and in air could be generated. The electron energy distribution in these microdischarges is non-Maxwellian, with a pronounced high-energy tail. The high electron energy together with the high gas density, which favors three-body collisions, is the reason for an efficient excimer generation in these microplasmas. Excimer efficiencies from 1% to 9% have been measured for argon, xenon, argon fluoride, and xenon chloride direct current excimer emitters, with a radiant excimer emittance of up to 2 W/cm2 for xenon. Adding small amounts of oxygen to argon has allowed us to generate vacuum ultraviolet line radiation at 130.5 nm with an efficiency approaching 1%. Pulsing xenon discharges with nanosecond electrical pulses has led to an increase in intensity to 15 W/cm2 and to a simultaneous increase in efficiency to more than 20%. Operating the discharges in an abnormal glow mode has allowed us to generate microdischarge arrays without individual ballast. Applications of these plasma arrays are excimer lamps and plasma reactors.

  16. Liquid cathode primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schlaikjer, C.R.

    1985-01-15

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150/sup 0/C, and efficient discharge at moderate rates. The lithium/sulfur dioxide cell is the most efficient system at temperatures below 0/sup 0/C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60/sup 0/C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  17. ALICE-ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    2008-01-01

    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...

  18. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  19. Variable polarity arc welding

    Science.gov (United States)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  20. Gas tungsten arc welder

    Science.gov (United States)

    Christiansen, D.W.; Brown, W.F.

    A welder for automated closure of fuel pins by a gas tungsten arc process in which a rotating length of cladding is positioned adjacent a welding electrode in a sealed enclosure. An independently movable axial grinder is provided in the enclosure for refurbishing the used electrode between welds.

  1. Electrical characteristics of TIG arcs in argon from non-equilibrium modelling and experiment

    Science.gov (United States)

    Baeva, Margarita; Uhrlandt, Dirk; Siewert, Erwan

    2016-09-01

    Electric arcs are widely used in industrial processes so that a thorough understanding of the arc characteristics is highly important to industrial research and development. TIG welding arcs operated with pointed electrodes made of tungsten, doped with cerium oxide, have been studied in order to analyze in detail the electric field and the arc voltage. Newly developed non-equilibrium model of the arc is based on a complete diffusion treatment of particle fluxes, a generalized form of Ohm's law, and boundary conditions accounting for the space-charge sheaths within the magneto-hydrodynamic approach. Experiments have been carried out for electric currents in the range 5-200 A. The electric arc has been initiated between a WC20 cathode and a water-cooled copper plate placed 0.8 mm from each other. The arc length has been continuously increased by 0.1 mm up to 15 mm and the arc voltage has been simultaneously recorded. Modelling and experimental results will be presented and discussed.

  2. Motion of polar cap arcs

    Science.gov (United States)

    Hosokawa, K.; Moen, J. I.; Shiokawa, K.; Otsuka, Y.

    2011-01-01

    A statistics of motion of polar cap arcs is conducted by using 5 years of optical data from an all-sky imager at Resolute Bay, Canada (74.73°N, 265.07°E). We identified 743 arcs by using an automated arc detection algorithm and statistically examined their moving velocities as estimated by the method of Hosokawa et al. (2006). The number of the arcs studied is about 5 times larger than that in the previous statistics of polar cap arcs by Valladares et al. (1994); thus, we could expect to obtain more statistically significant results. Polar cap arcs are found to fall into two distinct categories: the By-dependent and By-independent arcs. The motion of the former arcs follows the rule reported by Valladares et al. (1994), who showed that stable polar cap arcs move in the direction of the interplanetary magnetic field (IMF) By. About two thirds of the arcs during northward IMF conditions belong to this category. The latter arcs always move poleward irrespective of the sign of the IMF By, which possibly correspond to the poleward moving arcs in the morning side reported by Shiokawa et al. (1997). At least one third of the arcs belong to this category. The By-dependent arcs tend to move faster when the magnitude of the IMF By is larger, suggesting that the transport of open flux by lobe reconnection from one polar cap compartment to the other controls their motion. In contrast, the speed of the By-independent arcs does not correlate with the magnitude of the By. The motions of both the By-dependent and By-independent arcs are most probably caused by the magnetospheric convection. Convection in the region of By-dependent arcs is affected by the IMF By, which indicates that their sources may be on open field lines or in the closed magnetosphere adjacent to the open-closed boundary, whereas By-independent arcs seem to be well on closed field lines. Hence, the magnetospheric source of the two types of arc may be different. This implies that the mechanisms causing the

  3. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2001-09-30

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. In this portion of study we have focused on producing YSZ films on porous LSM substrates. When using the polymer precursor there are a number of obstacles to overcome in order to form dense electrolyte layers on porous substrates (cathode or anode). Probably the most difficult problems are: (1) Extreme penetration of the polymer into the substrate must be prevented. (2) Shrinkage cracking must be avoided. (3) Film thickness in the 1 to 5{micro}m range must be achieved. We have demonstrated that cracking due to shrinkage involved during the elimination of solvents and organic matter and densification of the remaining oxide is not a problem as long as the resulting oxide film is < {approx} 0.15 {micro}m in thickness. We have also shown that we can make thicker films by making multiple depositions if the substrate is smooth (roughness {le} 0.1 {micro}m) and contains no surface pores > 0.2 {micro}m. The penetration of the polymer into the porous substrate can be minimized by increasing the viscosity of the polymer and reducing the largest pore at the surface of the substrate to {le} 0.2 {micro}m. We have shown that this can be done, but we have also shown that it is difficult to make dense films that are defect free with areas > 1 cm{sup 2}. This is because of the roughness of the substrate and the difficulty in making a substrate which does not have surface voids > 0.2 {micro}m. Thus the process works well for dense, smooth substrates for films < 1 {micro}m thick, but is difficult to apply to rough, porous surfaces and to make film thickness > 1 {micro}m. As a result of these problems, we have been addressing the issue of how to make dense films in the thickness range of 1 to 5 {micro}m on sintered porous substrates without introducing cracks and holes due to shrinkage and surface voids? These

  4. A study on consumable aided tungsten indirect arc welding

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Wang Yuxin; Feng Jicai

    2009-01-01

    A consumable aided tungsten indirect arc welding method has been studied. This method is different from the traditional TIG welding because it introduces an MIG welding torch into the traditional TIG welding system. An indirect arc is generated between the consumable electrode of the MIG welding torch and the tungsten electrode of the TIG welding torch, but not generated between the tungsten electrode of the welding torch and the base metal. Welding current flows from the consumable electrode to the tungsten electrode in the free-burning indirect arc. The consumable aided tungsten indirect arc welding not only rapidly melts the welding wire but also effectively restrains the excessive fusion of the base metal. The welding experiment and the theoretical analysis confirm that this method can obtain a high deposition rate and a low dilution ratio during the welding process.

  5. Modeling of LaB6 hollow cathode performance and lifetime

    Science.gov (United States)

    Pedrini, Daniela; Albertoni, Riccardo; Paganucci, Fabrizio; Andrenucci, Mariano

    2015-01-01

    Thermionic hollow cathodes are currently used as sources of electrons in a variety of space applications, in particular as cathodes/neutralizers of electric thrusters (Hall effect and ion thrusters). Numerical tools are needed to guide the design of new devices before their manufacturing and testing, since multiple geometrical parameters influence the cathode performance. A reduced-order, numerical model was developed to assess the performance of orificed hollow cathodes, with a focus on the operational lifetime. The importance of the lifetime prediction is tied to its impact on the operational lifetime of the thruster to which the cathode is coupled. The cathode architecture consists of a refractory metal tube with an internal electron emitter made of lanthanum hexaboride (LaB6). The choice of LaB6 accounts for the reduced evaporation rate, the low sensitivity to poisoning and the absence of an activation procedure with respect to oxide cathodes. A LaB6 emitter is thus a valuable option for long-lasting cathodes, despite its relatively high work-function and reactivity with many refractory metals at high temperatures. The suggested reduced-order model self-consistently predicts the key parameters of the cathode operation, shedding light on the power deposition processes as well as on the main erosion mechanisms. Preliminary results showed good agreement with both the experimental data collected by Alta and data available from the literature for different operating conditions and power levels. Next developments will include further comparisons between theoretical and experimental data, considering cathodes of various size and operating conditions.

  6. ALICE - ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva;

    AliEn or Alice Environment is the Gridware developed and used within the ALICE collaboration for storing and processing data in a distributed manner. ARC (Advanced Resource Connector) is the Grid middleware deployed across the Nordic countries and gluing together the resources within the Nordic...... Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...... management part and the second the job management aspect. The first aspect was solved by using dCache across NDGF to handle data. dCache provides support for several data management tools (among them for xrootd the tools used by AliEn) using the so called "doors". Therefore, we will concentrate on the second...

  7. Modeling rf breakdown arcs

    CERN Document Server

    Insepov, Zeke; Huang, Dazhang; Mahalingam, Sudhakar; Veitzer, Seth

    2010-01-01

    We describe breakdown in 805 MHz rf accelerator cavities in terms of a number of mechanisms. We devide the breakdown process into three stages: (1) we model surface failure using molecular dynamics of fracture caused by electrostatic tensile stress, (2) we model the ionization of neutrals responsible for plasma initiation and plasma growth using a particle in cell code, and (3) we model surface damage by assuming a process similar to unipolar arcing. Although unipolar arcs are strictly defined with equipotential boundaries, we find that the cold, dense plasma in contact with the surface produces very small Debye lengths and very high electric fields over a large area. These high fields produce strong erosion mechanisms, primarily self sputtering, compatible with the crater formation that we see. Results from the plasma simulation are included as a guide to experimental verification of this model.

  8. The ARCS radial collimator

    OpenAIRE

    Stone M.B.; Niedziela J.L.; Overbay M.A.; Abernathy D.L.

    2015-01-01

    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. W...

  9. Nanostructured lanthanum manganate composite cathode

    DEFF Research Database (Denmark)

    Wang, Wei Guo; Liu, Yi-Lin; Barfod, Rasmus

    2005-01-01

    Anode-supported cells were fabricated with optimized cathodes showing high power density of 1.2 W/cm(2) at 800 C under a cell voltage of 0.7 V and an active area of 4 x 4 cm. A microstructure study was performed on such cell using a field-emission gun scanning electron microscope, which revealed...... that the (La1-xSrx)(y)MnO3 +/-delta (LSM) composite cathodes consist of a network of homogenously distributed LSM, yttria-stabilized zirconia (YSZ), and pores. The individual grain size of LSM or YSZ is approximately 100 nm. The degree of contact between cathode and electrolyte is 39% on average. (c) 2005...

  10. Hypergravity synthesis of graphitic carbon nanomaterial in glide arc plasma

    NARCIS (Netherlands)

    J. Šperka; P. Soucek; J.J.W.A. van Loon; A. Dowson; C. Schwarz; J. Krause; Y. Butenko; G. Kroesen; V. Kudrle

    2014-01-01

    A nanostructured carbon material was synthesized using a methane/helium glide arc plasma under standard and increased gravity. Material analysis performed on samples collected from an effluent gas filter showed that the deposited material was present in the form of carbon nanoparticles. They exhibit

  11. Circular arc structures

    KAUST Repository

    Bo, Pengbo

    2011-07-01

    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  12. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a reservoir cathode to improve performance in both ion and Hall-effect thrusters. We propose to adapt our existing reservoir cathode technology to this...

  13. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a hollow reservoir cathode to improve performance in ion and Hall thrusters. We will adapt our existing reservoir cathode technology to this purpose....

  14. A study of vacuum arc ion velocities using a linear set of probes

    Energy Technology Data Exchange (ETDEWEB)

    Hohenbild, Stefan; Grubel, Christoph; Yushkov, Georgy Yu.; Oks, Efim M.; Anders, Andre

    2008-07-15

    The most likely velocity of ions moving away from vacuum arc cathode spots was measured using a set of probes along the path of plasma expansion. The goal was to determine how much, if any, change of the ion drift velocity occurs in the expanded plasma. The arc discharge current was perturbed to create plasma density markers whose travel is picked up by the set of probes. It was found that the perturbation with current oscillations did not result in consistent data because ion current maxima and minima are not only determined by the plasma production but by the transients of the arc pulse and by the asymmetry of the ion velocity distribution function. Perturbation with a short current spike was more conclusive. The ion velocity was measured to be slightly reduced with increasing distance from the cathode, which can be explained by collisions of ions with the background of neutrals. The ion velocity was increased when the arc current was increased, which correlated with enhanced arc voltage and power dissipation. The ion velocity could be enhanced when the plasma was produced in a non-uniform magnetic field.

  15. High-current-density, high brightness cathodes for free electron laser applications

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.C. (Varian Associates, Palo Alto, CA (USA). Palo Alto Microwave Tube Div.)

    1987-06-01

    This report discusses the following topics: brightness and emittance of electron beams and cathodes; general requirements for cathodes in high brightness electron guns; candidate cathode types; plasma and field emission cathodes; true field emission cathodes; oxide cathodes; lanthanum hexaborides cathodes; laser driven thermionic cathodes; laser driven photocathodes; impregnated porous tungsten dispenser cathodes; and choice of best performing cathode types.

  16. Cross-flow blowing of a two-dimensional stationary arc.

    Science.gov (United States)

    Bose, T. K.

    1971-01-01

    It is demonstrated in an analysis that the electrons emitted from the cathode undergo collisions with the heavy particles and are deflected in the flow direction by the component of a collisional force associated with the relative difference in flow velocities between electrons and heavy particles. The resultant motion of the electrons describing the arc is thus caused by a combined action of the collisional force that results from the externally applied electric field. An expression is given which enables computation of the arc shape to be made provided the velocity distribution of the cross-flow and the distribution of the externally applied electric field are prescribed.

  17. Mechanistic Enhancement of SOFC Cathode Durability

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, Eric [Univ. of Maryland, College Park, MD (United States)

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  18. Arc-preserving subsequences of arc-annotated sequences

    CERN Document Server

    Popov, Vladimir Yu

    2011-01-01

    Arc-annotated sequences are useful in representing the structural information of RNA and protein sequences. The longest arc-preserving common subsequence problem has been introduced as a framework for studying the similarity of arc-annotated sequences. In this paper, we consider arc-annotated sequences with various arc structures. We consider the longest arc preserving common subsequence problem. In particular, we show that the decision version of the 1-{\\sc fragment LAPCS(crossing,chain)} and the decision version of the 0-{\\sc diagonal LAPCS(crossing,chain)} are {\\bf NP}-complete for some fixed alphabet $\\Sigma$ such that $|\\Sigma| = 2$. Also we show that if $|\\Sigma| = 1$, then the decision version of the 1-{\\sc fragment LAPCS(unlimited, plain)} and the decision version of the 0-{\\sc diagonal LAPCS(unlimited, plain)} are {\\bf NP}-complete.

  19. A 10B-based neutron detector with stacked Multiwire Proportional Counters and macrostructured cathodes

    CERN Document Server

    Stefanescu, I; Birch, J; Defendi, I; Hall-Wilton, R; Hoglund, C; Hultman, L; Zee, M; Zeitelhack, K

    2013-01-01

    We present the results of the measurements of the detection efficiency for a 4.7 \\r{A} neutron beam incident upon a detector incorporating a stack of up to five MultiWire Proportional Counters (MWPC) with Boron-coated cathodes. The cathodes were made of Aluminum and had a surface exhibiting millimeter-deep V-shaped grooves of 45{\\deg}, upon which the thin Boron film was deposited by DC magnetron sputtering. The incident neutrons interacting with the converter layer deposited on the sidewalls of the grooves have a higher capture probability, owing to the larger effective absorption film thickness. This leads to a higher overall detection efficiency for the grooved cathode when compared to a cathode with a flat surface. Both the experimental results and the predictions of the GEANT4 model suggests that a 5-counter detector stack with coated grooved cathodes has the same efficiency as a 7-counter stack with flat cathodes. The reduction in the number of counters in the stack without altering the detection efficie...

  20. Silver electrodeposition on the activated carbon air cathode for performance improvement in microbial fuel cells

    Science.gov (United States)

    Pu, Liangtao; Li, Kexun; Chen, Zhihao; Zhang, Peng; Zhang, Xi; Fu, Zhou

    2014-12-01

    The present work was to study silver electrodeposition on the activated carbon (AC) air cathode for performance improvement in microbial fuel cells (MFCs). The treated cathodes were proved to be effective to enhance the performance of MFCs. The maximum power density of MFC with silver electrodeposition time of 50 s (Ag-50) cathode was 1080 ± 60 mW m-2, 69% higher than the bare AC air cathode. X-ray photoelectron spectroscopy (XPS) results showed that zero-valent, monovalent and divalent silver were present to transform mutually, which illustrated that the oxygen reduction reaction (ORR) at the cathode took place through four-electron pathway. From electrochemical impedance spectroscopy (EIS) analysis, the electrodeposition method made the total resistance of the electrodes largely reduced. Meanwhile the deposited silver had no toxic effects on anode culture but inhibited the biofilm growth of the cathodes. This kind of antimicrobial efficient cathode, prepared with a simple, fast and economical method, was of good benefit to the performance improvement of MFCs.

  1. Novel Cathodes Prepared by Impregnation Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Eduardo Paz

    2006-09-30

    (1) We showed that similar results were obtained when using various LSM precursors to produce LSM-YSZ cathodes. (2) We showed that enhanced performance could be achieved by adding LSCo to LSMYSZ cathodes. (3) We have preliminary results showing that there is a slow deactivation with LSFYSZ cathodes.

  2. Screen printed cathode for non-aqueous lithium-oxygen batteries

    Science.gov (United States)

    Jung, C. Y.; Zhao, T. S.; An, L.; Zeng, L.; Wei, Z. H.

    2015-11-01

    An issue with conventional non-aqueous Li-O2 battery cathodes that are formed by spraying/brushing/casting/coating carbon black slurries is a lack of sufficiently large pores, vulnerable to clogging by solid discharge products, and hence resulting in a low capacity. In this work, we report a novel cathode structure formed by screen-printing method. This deposition method allows the creation of evenly distributed large pores (∼10 μm). As compared with the cathode formed by slurry-coating method, the cathode formed by the present method increases the battery's capacity by two times. The cyclability is also seen a significant improvement. The improved performance may be attributed to large pores that give more appropriate distributions of discharge products and hence facilitate the transportation of oxygen during cycling.

  3. Preparation of carbon-encapsulated iron nanoparticles in high yield by DC arc discharge and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Cui, Lan; Lin, Kui [Center of Analysis, Tianjin University, Tianjin 300072 (China); Jin, Feng-min; Wang, Bin [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Shi, Shu-xiu [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Yang, De-an [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Hui [Center of Analysis, Tianjin University, Tianjin 300072 (China); He, Fei [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Chen, Xiao-ping [Center of Analysis, Tianjin University, Tianjin 300072 (China); Cui, Shen, E-mail: cuishen@tju.edu.cn [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China)

    2013-03-15

    Highlights: ► CEINPs with core–shell structure and high Fe content were prepared in high yield by DC arc discharge. ► The anode II with a mass ratio of total iron to carbon 8:1 was used in DC arc discharge. ► The possible process of formation of CEINPs is briefly discussed. ► The uniformity of composition of anode is very important for the formation of CEINPs. ► The MEF and MMF of iron element may also play an important role in the formation of CEINPs. -- Abstract: Carbon-encapsulated iron nanoparticles (CEINPs) were prepared by DC arc discharge under nitrogen atmosphere of high temperature. The products were characterized by transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM), X-ray diffractometer (XRD), energy dispersive X-ray (EDX) spectroscope, and X-ray photoelectron spectroscope (XPS), and their magnetic properties were measured by physical property measurement system (PPMS). The product B{sub I}, obtained from the anode I, contains the nanoparticles of iron and iron carbide, and carbon coating with imperfect and disordered layer structure. The product B{sub II}, obtained from the anode II, mainly consists of CEINPs, whose cores mainly consist of iron and iron carbide and shells contain about 3–7 graphitic layers. The iron contents in the products B{sub I} and B{sub II} are 44.8 and 82.6 wt.%, respectively. The products B{sub I} and B{sub II} have similar phase composition which includes carbon, iron, iron carbide, ferrous and ferric oxide, iron nitride, and carbon nitride. The saturation magnetization (Ms) of the products B{sub I} and B{sub II} are 29.35 and 88.66 emu/g and their coercivity (Hc) are 220 and 240 Oe, respectively. The total yields of all the products formed in the arc discharge chamber from anodes I and II, except for the cylinder-shaped deposits formed on the top of the cathode, are 25.8 and 22.3 wt.%, respectively. The possible process of formation of CEINPs is briefly discussed on

  4. Arc-Induced Long Period Fiber Gratings

    Directory of Open Access Journals (Sweden)

    Gaspar Rego

    2016-01-01

    Full Text Available Long period fiber gratings produced by the electric arc technique have found an increasing interest by the scientific community due to their ease to fabricate, virtually enabling the inscription in any kind of fiber, low cost, and flexibility. In 2005 we have presented the first review on this subject. Since then, important achievements have been reached such as the identification of the mechanisms responsible for gratings formation, the type of symmetry, the conditions to increase fabrication reproducibility, and their inscription in the turning points with grating periods below 200 μm. Several interesting applications in the sensing area, including those sensors working in reflection, have been demonstrated and others are expected, namely, related to the monitoring of extreme temperatures, cryogenic and high temperatures, and high sensitivity refractometric sensors resulting from combining arc-induced gratings in the turning points and the deposition of thin films in the transition region. Therefore, due to its pertinence, in this paper we review the main achievements obtained concerning arc-induced long period fiber gratings, with special focus on the past ten years.

  5. An electrochemical impedance spectroscopic study of the electronic and ionic transport properties of LiCoO2 cathode

    Institute of Scientific and Technical Information of China (English)

    ZHUANG QuanChao; XU JinMei; FAN XiaoYong; DONG QuanFeng; JIANG YanXia; HUANG Ling; SUN ShiGang

    2007-01-01

    The storage behavior and process of the first delithiation-lithiation of LiCoO2 cathode were investigated by electrochemical impedance spectroscopy (EIS). The electronic and ionic transport properties of LiCoO2 cathode along with variation of electrode potential were obtained in 1 mol.L-1 LiPF6-EC: DMC:DEC electrolyte solution. It was found that after 9 h storage of the LiCoO2 cathode in electrolyte solutions, a new arc appears in the medium frequency range in Nyquist plots of ElS, which increases with increasing the storage time. In the charge/discharge processes, the diameter of the new arc is reversibly changed with electrode potential. Such variation coincides well with the electrode potential dependence of electronic conductivity of the LiCoO2. Thus this new ElS feature is attributed to the change of electronic conductivity of LixCoO2 during storage of the LiCoO2 cathode in electrolyte solutions, as well as in processes of intercalation-deintercalationtion of lithium ions. It has been revealed that the reversible increase and decrease of the resistance of SEI film in charge-discharge processes can be also ascribed to the variation of electronic conductance of active materials of the LiCoO2 cathode.

  6. Water-vortex stabilized electric arc: II. Effect of non-uniform evaporation of water

    Science.gov (United States)

    Jenista, Jirí

    1999-11-01

    The paper deals with a numerical model of an electric arc stabilized by a water vortex. The axisymmetric model involves the area between the cathode and the output nozzle of the arc. The rate of evaporation of water (production of water plasma) is determined from radial conduction and radiation heat fluxes near the water-water-vapour phase transition. The influence of non-uniform evaporation rate along the discharge coordinate on the outlet arc parameters is studied for the currents 300 and 600 A. It is found from calculations that part of the power spent on evaporation is in the range 1.4-3.1% of the total input power. The dominant source of power losses from the arc is plasma radiation, which exceeds conduction losses by a factor of two to four. Since the majority of the arc discharge is nearly thermally fully-developed, the effect of non-uniformity of evaporation on the overall arc performance is minor. The calculated arc outlet characteristics are in good agreement with our data published previously, as well as with experiments carried out on the water plasma torch operating at our Institute.

  7. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  8. Numerical Simulation of High-current Vacuum Arc in Short Gap%Numerical Simulation of High-current Vacuum Arc in Short Gap

    Institute of Scientific and Technical Information of China (English)

    XIANG Chuan; LIAO Min-fu; DONG Hua-jun; HUANG Zhi-hui; ZOU Ji-yan

    2011-01-01

    The plasma status of vacuum arc before arc current zero, has a great influence on the interruption perform- ance of the vacuum circuit breakers. In this paper, a vacuum arc model in a short gap was established based on the magnet hydrodynamic (MHD) and a common computational fluid dynamics (CFD) software was utilized to specially investigate the properties of this arc. The spatial distributions of plasma pressure, plasma density, ion axial velocity, and axial current density in front of the anode surface of vacuum arc in this case were obtained. Simulation results in- dicate that: from the cathode to the anode, both of the plasma pressure and the plasma density increase gradually, and the plasma axial velocity decreases gradually; the axial current density in front of anode has a large radial gradient, and the maximum value is still smaller than the threshold current density for the anode-spot formation, thus, the anode is still passive. The comparison between the plasma density of simulation and the CMOS images taken by the high-speed camera indicates that they are in reasonable agreement with each other and demonstrates the feasibility of the vacuum arc model.

  9. Microhollow Cathode Discharge Excimer Lamps

    Science.gov (United States)

    Schoenbach, K. H.

    1999-11-01

    character. Reducing the diameter of the cathode hole in a hollow cathode discharge geometry to values on the order of 100 μm has allowed us to extend the pressure range of stable, direct current hollow cathode gas discharges up to atmospheric pressure. The large concentration of high-energy electrons generated in the cathode fall, in combination with the high neutral gas density favors three-body processes such as excimer formation. Excimer emission in xenon discharges peaking at 172 nm, was observed with efficiencies between 6% and 9% at pressures of several hundred Torr. Typical forward voltages are 200 V at dc currents up to 8 mA. Pulsed operation allowed us to extend the current range to 80 mA with corresponding linear increase in optical power. Spatially resolved measurements showed that the source of the excimer radiation at atmospheric pressure and currents of less than 8 mA is confined to the cathode opening. The radiative emittance at 8 mA and atmospheric pressure is approximately 20 W/cm^2. With reduced pressure and increased current, respectively, the excimer source extends into the area outside the cathode hole. Besides in xenon, excimer emission in argon at a peak wavelength of 128 nm has been recorded. In addition to operating the discharge in rare gases, we have also explored its use as rare gas-halide excimer source. In a gas mixture containing 1% ArF we were able to generate stable dc discharges in flowing gas at pressures ranging from 100 Torr to atmospheric pressure. The spectra of the high-pressure ArF discharges are dominated by excimer radiation peaking at 193 nm. The excimer emission of a single ArF discharge at 700 Torr was measured as 150 mW at an efficiency of 3%. Parallel operation of these discharges by means of a resistive anode, which has recently been demonstrated for argon discharges, offers the possibility to use microhollow cathode discharge arrays as dc-excimer lamps, with estimated power densities exceeding 10 W/cm^2. abstract

  10. Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Feng Dong

    2016-12-01

    Full Text Available In this work, Cu2O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM and Brunauer-Emmett-Teller (BET tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS and cyclic voltammetry (CV results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV and electrochemical impedance spectroscopy (EIS results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode.

  11. Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell

    Science.gov (United States)

    Dong, Feng; Zhang, Peng; Li, Kexun; Liu, Xianhua; Zhang, Pingping

    2016-01-01

    In this work, Cu2O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode.

  12. Arc Behavior and Droplet Transfer of CWW CO2 Welding

    Institute of Scientific and Technical Information of China (English)

    Zhi-dong YANG; Chen-fu FANG; Yong CHEN; Guo-xiang XU; Qing-xian HU; Xiao-yan GU

    2016-01-01

    Cable-type welding wire (CWW)CO2 welding is an innovative process arc welding with high quality,high efficiency and energy saving,in which CWW is used as consumable electrode.The CWW is composed of seven wires with a diameter of 1.2 mm.One is in the center,while others uniformly distribute around it.The diameter of twisted wire is up to 3.6 mm,which can increase the deposition rate significantly.With continual wire-feeding and melting of CWW,the formed rotating arc improved welding quality obviously.The arc behavior and droplet transfer were ob-served by the electrical signal waveforms and corresponding synchronous images,based on the high speed digital camera and electrical signal system.The results showed that the shape of welding arc changed from bell arc to beam arc with the increase of welding parameter.The droplet transfer mode changed from repelled transfer,globular transfer to projected transfer in turn.Droplet transfer frequency increased from 18.17 Hz to 119.05 Hz,while the droplet diameter decreased from 1.5 times to 0.3 times of the CWW diameter.

  13. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dong; Liu, Mingfei; Lai, Samson; Blinn, Kevin; Liu, Meilin

    2012-09-30

    conditions. This was also confirmed by x-ray analyses. For example, soft x-ray XANES data reveal that Co cations displace the Mn cations as being more favored to be reduced. Variations in the Sr-O in the annealed LSCF Fourier-transformed (FT) EXAFS suggest that some Sr segregation is occurring, but is not present in the annealed LSM-infiltrated LSCF cathode materials. Further, a surface enhanced Raman technique was also developed into to probe and map LSM and LSCF phase on underlying YSZ substrate, enabling us to capture important chemical information of cathode surfaces under practical operating conditions. Electrochemical models for the design of test cells and understanding of mechanism have been developed for the exploration of fundamental properties of electrode materials. Novel catalyst coatings through particle depositions (SDC, SSC, and LCC) or continuous thin films (PSM and PSCM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized LSM infiltration process. Microstructure examination of the tested cells did not show obvious differences between blank and infiltrated cells, suggesting that the infiltrated LSM may form a coherent film on the LSCF cathodes. There was no significant change in the morphology or microstructure of the LSCF cathode due to the structural similarity of LSCF and LSM. Raman analysis of the tested cells indicated small peaks emerging on the blank cells that correspond to trace amounts of secondary phase formation during operation (e.g., CoO{sub x}). The formation of this secondary phase might be attributed to performance degradation. In contrast, there was no such secondary phase observed in the LSM infiltrated cells, indicating that the LSM modification staved off secondary phase formation and thus improved the stability.

  14. The ARCS radial collimator

    Directory of Open Access Journals (Sweden)

    Stone M.B.

    2015-01-01

    Full Text Available We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. We present here characterization of the collimator's performance and methodologies for its effective use.

  15. The ARCS radial collimator

    Science.gov (United States)

    Stone, M. B.; Niedziela, J. L.; Overbay, M. A.; Abernathy, D. L.

    2015-01-01

    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. We present here characterization of the collimator's performance and methodologies for its effective use.

  16. Characterization and antibacterial performance of ZrCN/amorphous carbon coatings deposited on titanium implants

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chih-Ho [School of Medicine, China Medical University, Taichung, 404 Taiwan (China); Chang, Yin-Yu, E-mail: yinyu@mail2000.com.tw [Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin, Taiwan (China); Huang, Heng-Li [School of Dentistry, China Medical University, Taichung, Taiwan (China); Kao, Ho-Yi [Department of Materials Science and Engineering, Mingdao University, Changhua, Taiwan (China)

    2011-12-30

    Titanium (Ti)-based materials have been used for dental/orthopedic implants due to their excellent biological compatibility, superior mechanical strength and high corrosion resistance. The osseointegration of Ti implants is related to their composition and surface treatment. Better biocompatibility and anti-bacterial performances of Ti implant are beneficial for the osseointegration and for avoiding the infection after implantation surgery. In this study, nanocomposite ZrCN/amorphous carbon (a-C) coatings with different carbon contents were deposited on a bio-grade pure Ti implant material. A cathodic-arc evaporation system with plasma enhanced duct equipment was used for the deposition of ZrCN/a-C coatings. Reactive gas (N{sub 2}) and C{sub 2}H{sub 2} activated by the zirconium plasma in the evaporation process were used to deposit the ZrCN/a-C coatings. To verify the susceptibility of implant surface to bacterial adhesion, Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans), one of the major pathogen frequently found in the dental implant-associated infections, was chosen for in vitro anti-bacterial analyses. In addition, the biocompatibility of human gingival fibroblast (HGF) cells on coatings was also evaluated by a cell proliferation assay. The results suggested that the ZrCN/a-C coatings with carbon content higher than 12.7 at.% can improve antibacterial performance with excellent HGF cell compatibility as well.

  17. Spontaneous wrinkling of soft matter by energetic deposition of Cr and Au

    Science.gov (United States)

    Teixeira, F. S.; Araújo, W. W. R.; Salvadori, M. C.

    2016-04-01

    Wrinkling of stiff thin films deposited on compliant substrates is an effect that has been broadly investigated. However, wrinkling consequent to metal ion implantation has been less studied. In the work described here, we have explored the sub-micron wrinkling phenomena that spontaneously occur when metal ions (Au and Cr) are implanted with energy of a few tens of electron volts (49 eV for Au and 72 eV for Cr) into a compliant material (PDMS). This very low energy ion implantation was performed using a Filtered Cathodic Vacuum Arc technique, a process often referred to as energetic deposition or energetic condensation. For comparison, Au and Cr depositions with similar doses were also done using a sputtering technique (with lower particle energy of approximately 2 eV), and no wrinkle formation was then observed. In this way, we can discuss the role of ion energy in wrinkle formation. Depth profiles of the implanted material were calculated using the Tridyn computer simulation code for each metal, for several implantation doses. UV-vis absorption spectroscopy analysis confirmed the presence of metal nanoparticles. Atomic Force Microscopy imaging with spectral processing was used to compare the wrinkle morphology for each case investigated.

  18. Correlation methods in cutting arcs

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L; Kelly, H, E-mail: prevosto@waycom.com.ar [Grupo de Descargas Electricas, Departamento Ing. Electromecanica, Universidad Tecnologica Nacional, Regional Venado Tuerto, Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina)

    2011-05-01

    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  19. Oxide cathode mechanisms: Electronic and structural features of oxide cathode surfaces

    Science.gov (United States)

    Cunningham, J.; Nunan, J.

    1985-01-01

    This report describes studies made upon systems selected for their ability to model various important features of oxide cathodes and the mechanisms which enable them to function as efficient thermionic emitters at moderate temperatures. An account is given of experiments which aimed to simulate conditions upon the surfaces of polycrystalline samples of alkaline earth oxides (e.g., SrO and BaO/SrO or MgO and BaO/MgO) at various stages of their preparation in similiar fashion to that used in the thermal activation of oxide cathodes. Accounts are given of experiments which examined the interaction between the gases O2, N2O, H2 or Ch4 and appropriately preactivated surface of pure and mixed alkaline earth oxide samples. Accounts are given of experiments involving the controlled deposition in UHV conditions of zero-valent Ba ad-atoms-in amounts ranging from submonolayer to multilayer coverage - upon layers of SrO or BaO previously prepared in UHV conditions by evaporation of the corresponding metal and its subsequent oxidation. UPS spectra have been undertaken in order to examine surfaces of samples prepared by evaporation of barium metal or strontium metal and to study effects upon the UPS spectra by exposures to the gases N20, O2 and CH4.

  20. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  1. Development of novel cathodes for high energy density lithium batteries

    Science.gov (United States)

    Bhargav, Amruth

    Lithium based batteries have become ubiquitous with our everyday life. They have propelled a generation of smart personal electronics and electric transport. Their use is now percolating to various fields as a source of energy to facilitate the operation of devices from nanoscale to mega scale. This need for a portable energy source has led to tremendous scientific interest in this field to develop electrochemical devices like batteries with higher capacities, longer cycle life and increased safety at a low cost. To this end, the research presented in this thesis focuses on two emerging and promising technologies called lithium-oxygen (Li-O2) and lithium-sulfur (Li-S) batteries. These batteries can offer an order of magnitude higher capacities through cheap, environmentally safe and abundant elements namely oxygen and sulfur. The first work introduces the concept of closed system lithium-oxygen batteries wherein the cell contains the discharge product of Li-O2 batteries namely, lithium peroxide (Li2O2) as the starting active material. The reversibility of this system is analyzed along with its rate performance. The possible use of such a cathode in a full cell is explored. Also, this concept is used to verify if all the lithium can be extracted from the cathode in the first charge. In the following work, lithium peroxide is chemically synthesized and deposited in a carbon nanofiber matrix. This forms a free standing cathode that shows high reversibility. It can be cycled up to 20 times and while using capacity control protocol, a cycle life of 50 is obtained. The cause of cell degradation and failure is also analyzed. In the work on full cell lithium-sulfur system, a novel electrolyte is developed that can support reversible lithium insertion and extraction from a graphite anode. A method to deposit solid lithium polysulfide is developed for the cathode. Coupling a lithiated graphite anode with the cathode using the new electrolyte yields a full cell whose

  2. Effect of bias voltage on microstructure and mechanical properties of arc evaporated (Ti, Al)N hard coatings

    Indian Academy of Sciences (India)

    F Aliaj; N Syla; S Avdiaj; T Dilo

    2013-06-01

    In the present study, authors report on the effect that substrate bias voltage has on the microstructure and mechanical properties of (Ti, Al)N hard coatings deposited with cathodic arc evaporation (CAE) technique. The coatings were deposited from a Ti0.5Al0.5 powder metallurgical target in a reactive nitrogen atmosphere at three different bias voltages: UB = −25, −50 and −100 V. The coatings were characterized in terms of compositional, microstructural and mechanical properties. Microstructure of the coatings was investigated with the aid of X-ray diffraction in glancing angle mode, which revealed information on phase composition, crystallite size, stress-free lattice parameter and residual stress. Mechanical properties were deduced from nano-indentation measurements. The residual stress in all the coatings was compressive and increased with increasing bias voltage in a manner similar to that reported in literature for Ti–Al–N coatings deposited with CAE. The bias voltage was also found to significantly influence the phase composition and crystallite size. At −25 V bias voltage the coating was found in single phase fcc-(Ti, Al)N and with relatively large crystallites of ∼9 nm. At higher bias voltages (−50 and −100 V), the coatings were found in dual phase fcc-(Ti, Al)N and fcc-AlN and the size of crystallites reduced to approximately 5 nm. The reduction of crystallite size and the increase of compressive residual stress with increasing bias voltage both contributed to an increase in hardness of the coatings.

  3. Composition Gradient Hard Coatings by Arc Ion Plating

    Institute of Scientific and Technical Information of China (English)

    CHENJun; LINGuo-qiang; WANGFu-gang

    2004-01-01

    Arc Ion Plating can be used to synthesize multi-component composition gradient hard coatings by adjusting arc currents of metal targets. The present work aims at a comprehensive description of such a technique. The examples of TiAl multi-layer alloy coatings and (Ti,M) N composition-gradient films were taken (M representing Zr, Nb etc.) for the purpose of explaining the working process and evaluating practical effects. The results show that this technique has the advantages of easy manipulation, rapid deposition, and wide composition range.

  4. Fatigue life prediction of crankshaft repaired by twin arc spraying

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-qing; WANG Cheng-tao; PU Geng-qiang

    2005-01-01

    This paper used Baumel Jr. and Seeger's approach estimating fatigue parameters of 48MnV with 3Cr13coatings. The fatigue life of the crankshaft of a six-cylinder engine, repaired by twin arc spraying 3cr13 deposits, is respectively calculated using different damage model such as S-N method, normal strain approaches, SWT-Bannantine approaches, shear strain approaches, and fatemi-Socie method based on dynamical simulation and FE analysis of crankshaft. The results indicate that the traditional calculation is conservative and that the life of crankshaft repaired by arc spraying is sufficient.

  5. A simple arc column model that accounts for the relationship between voltage, current and electrode gap during VAR

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R.L. [Sandia National Labs., Albuquerque, NM (United States). Liquid Metal Processing Lab.

    1997-02-01

    Mean arc voltage is a process parameter commonly used in vacuum arc remelting (VAR) control schemes. The response of this parameter to changes in melting current (I) and electrode gap (g{sub e}) at constant pressure may be accurately described by an equation of the form V = V{sub 0} + c{sub 1}g{sub e}I + c{sub 2}g{sub e}{sup 2} + c{sub 3}I{sup 2}, where c{sub 1}, c{sub 2} and c{sub 3} are constants, and where the non-linear terms generally constitute a relatively small correction. If the non-linear terms are ignored, the equation has the form of Ohm`s law with a constant offset (V{sub 0}), c{sub 1}g{sub e} playing the role of resistance. This implies that the arc column may be treated approximately as a simple resistor during constant current VAR, the resistance changing linearly with g{sub e}. The VAR furnace arc is known to originate from multiple cathode spot clusters situated randomly on the electrode tip surface. Each cluster marks a point of exist for conduction electrons leaving the cathode surface and entering the electrode gap. Because the spot clusters re highly localized on the cathode surface, each gives rise to an arc column that may be considered to operate independently of other local arc columns. This approximation is used to develop a model that accounts for the observed arc voltage dependence on electrode gap at constant current. Local arc column resistivity is estimated from elementary plasma physics and used to test the model for consistency by using it to predict local column heavy particle density. Furthermore, it is shown that the local arc column resistance increases as particle density increases. This is used to account for the common observation that the arc stiffens with increasing current, i.e. the arc voltage becomes more sensitive to changes in electrode gap as the melting current is increased. This explains why arc voltage is an accurate electrode gap indicator for high current VAR processes but not low current VAR processes.

  6. Characteristics of Cu implantation into Si by PBII using UBMS cathode

    Institute of Scientific and Technical Information of China (English)

    于伟东; 夏立芳; 孙跃

    2001-01-01

    The implantation of Cu into Si substrate was carried out by plasma-based ion implantation (PBII) using unbalanced magnetron sputtering (UBMS) cathode as the metal plasma source. The different pulse bias (Up) and the distance between the cathode and the samples (ds-t) were chosen to research the characteristics of this method. The results show that the implantation of metal ions can be realized by the metal plasma source of UBMS cathode. The physical process such as the metal ion pure implantation, the gas ion implantation, the recoil implantation of the metal atoms, the deposition of the metal particles and the re-sputtering of the metal film depend on the energy, dose and deposition rate of the ions (Cu+, Ar+). The metal plasma based ion implantation of Cu into Si substrate is favored by selecting higher Up (60  kV) and larger ds-t (200  mm).

  7. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson

    2000-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates

  8. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2002-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is

  9. Alternating-Polarity Arc Welding

    Science.gov (United States)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  10. Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells

    Science.gov (United States)

    Wu, Dan; Huang, Liping; Quan, Xie; Li Puma, Gianluca

    2016-03-01

    The performance of carbon rod (CR), titanium sheet (TS), stainless steel woven mesh (SSM) and copper sheet (CS) cathode materials are investigated in microbial fuel cells (MFCs) for simultaneous electricity generation and Cu(II) reduction, in multiple batch cycle operations. After 12 cycles, the MFC with CR exhibits 55% reduction in the maximum power density and 76% increase in Cu(II) removal. In contrast, the TS and SSM cathodes at cycle 12 show maximum power densities of 1.7 (TS) and 3.4 (SSM) times, and Cu(II) removal of 1.2 (TS) and 1.3 (SSM) times higher than those observed during the first cycle. Diffusional resistance in the TS and SSM cathodes is found to appreciably decrease over time due to the copper deposition. In contrast to CR, TS and SSM, the cathode made with CS is heavily corroded in the first cycle, exhibiting significant reduction in both the maximum power density and Cu(II) removal at cycle 2, after which the performance stabilizes. These results demonstrate that the initial deposition of copper on the cathodes of MFCs is crucial for efficient and continuous Cu(II) reduction and electricity generation over prolonged time. This effect is closely associated with the nature of the cathode material. Among the materials examined, the SSM is the most effective and inexpensive cathode for practical use in MFCs.

  11. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes

    OpenAIRE

    Seung Ho Lee; Ju Yeon Ban; Chung-Hun Oh; Hun-Kuk Park; Samjin Choi

    2016-01-01

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper pla...

  12. Proposal for Research on High-Brightness Cathodes for High-Power Free-Electron Lasers (FEL)

    Science.gov (United States)

    2013-05-09

    diamond field-emitter array (DFEA). The second is the gridded thermionic cathode, based on the development of gridded cathodes for high-power microwave ...possible as a method of increasing current density in exchange for higher turn-on field. Oxidation and deposition Diamond seeding : We now utilize...atmosphere or vacuum (~107 Torr) after the initial heat treatment results in performance that is slightly lower than that for operation at 450°C. This

  13. Characterization of multicapillary dielectric cathodes

    Science.gov (United States)

    Gleizer, J. Z.; Hadas, Y.; Yarmolich, D.; Felsteiner, J.; Krasik, Ya. E.

    2007-04-01

    Parameters of the plasma and electron beam produced by a multicapillary cathode in a diode powered by a ˜200kV, ˜300ns pulse are presented. It was found that the source of electrons is the plasma ejected from the capillaries. Inside the capillaries this plasma obtains electron density and temperature of ˜8×1015cm-3 and ˜5eV, respectively. In the vicinity of the cathode, the density and temperature of the plasma electrons were found to be 2×1014cm-3 and 4.5eV, respectively, for electron current density of ˜40A/cm2. It was shown that the plasma expansion velocity is in the range of (1-2)×106cm/s for current density of >12A/cm2.

  14. Microhollow cathode discharge excimer lamps

    Science.gov (United States)

    Schoenbach, Karl H.; El-Habachi, Ahmed; Moselhy, Mohamed M.; Shi, Wenhui; Stark, Robert H.

    2000-05-01

    Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 μm range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power to input electrical power), has for xenon and argon fluoride a maximum at ˜400 Torr. The maximum efficiency is between 6% and 9% for xenon, and ˜2% for argon fluoride.

  15. Characteristics of Arcs Between Porous Carbon Electrodes

    OpenAIRE

    Carvou, Erwann; Le Garrec, Jean-Luc; Mitchell, Brian

    2013-01-01

    International audience; Arcs between carbon electrodes present some specific differences compared with metallic arcs. The arc voltage is higher, but does not attain a stable value displaying large fluctuations. Indeed, the arcs are produced by the direct sublimation of the electrodes, without passing through a molten phase. The arc production is also facilitated by both circuit breaking and electric field breakdown. In this paper, arcing has been examined under various conditions (voltage, cu...

  16. Carnation-like MnO2 modified activated carbon air cathode improve power generation in microbial fuel cells

    Science.gov (United States)

    Zhang, Peng; Li, Kexun; Liu, Xianhua

    2014-10-01

    Highly active and low-cost electrocatalysts are of great importance for large-scale commercial applications of microbial fuel cells (MFCs). In this work, we prepared an activated carbon (AC) air cathode containing electrodeposited γ-MnO2 using a potentiostatic method. The results indicated that carnation-like MnO2 crystals were bound to the surface of the AC air cathode after a deposition time of 10 min, which greatly improved the performance of the cathode. BET analysis results demonstrated that the electrodeposition of MnO2 decreased the micropore surface area of the cathode but increased the mesopore surface area. When compared with a bare AC air cathode, the electrodeposited MnO2 cathode exhibited higher catalytic activity for oxygen reduction reaction. The maximum power density of the MFC equipped with the electrodeposited MnO2 AC air cathode was 1554 mW m-2, which is 1.5 times higher than the control cathode.

  17. Antireflection coatings on plastics deposited by plasma polymerization process

    Indian Academy of Sciences (India)

    K M K Srivatsa; M Bera; A Basu; T K Bhattacharya

    2008-08-01

    Antireflection coatings (ARCs) are deposited on the surfaces of optical elements like spectacle lenses to increase light transmission and improve their performance. In the ophthalmic industry, plastic lenses are rapidly displacing glass lenses due to several advantageous features. However, the deposition of ARCs on plastic lenses is a challenging task, because the plastic surface needs treatment for adhesion improvement and surface hardening before depositing the ARC. This surface treatment is usually done in a multi-stage process—exposure to energetic radiations, followed by deposition of a carbonyl hard coating by spin or dip coating processes, UV curing, etc. However, this treatment can also be done by plasma processes. Moreover, the plasma polymerization process allows deposition of optical films at room temperature, essential for plastics. The energetic ions in plasma processes provide similar effects as in ion assisted physical deposition processes to produce hard coatings, without requiring sophisticated ion sources. The plasma polymerization process is more economical than ion-assisted physical vapour deposition processes as regards equipment and source materials and is more cost-effective, enabling the surface treatment and deposition of the ARC in the same deposition system in a single run by varying the system parameters at each step. Since published results of the plasma polymerization processes developed abroad are rather sketchy and the techniques are mostly veiled in commercial secrecy, innovative and indigenous plasma-based techniques have been developed in this work for depositing the complete ARCs on plastic substrates.

  18. Variation of plasma parameters of vacuum arc column with gap distance

    Science.gov (United States)

    Han, Wen; Yuan, Zhao; He, Junjia

    2016-07-01

    On the basis of a two-dimensional (2D) magneto-hydrodynamic model, we studied long-gap-distance vacuum arcs in a uniform axial magnetic field and determined the effect of gap distance varying in a large range on plasma parameters. Simulation results showed that with increasing gap distance, the parameters of the plasma near the cathode are almost invariant, except for ion number density, but the parameters of the plasma in front of the anode clearly vary; meanwhile, joule heat gradually becomes the main source of energy for the arc column. In a short gap, a clear current constriction can be found in the entire arc column. Whereas when the gap distance exceeds a certain value, a sharp contraction of the current only arises in front of the anode.

  19. RAYLEIGH WAVE STUDIES OF CATHODIC H-CHARGING OF Fe

    OpenAIRE

    Lunarska, E.; Fiore, N.

    1981-01-01

    The attenuation of 2-6 MHz Rayleigh waves /RW/ was measured in sheet samples of Fe which were undergoing electrolytic charging with H. The cathodic polarization and As2O3 addition into electrolyte were found to effect the attenuation and velocity of the surface waves. The attenuation changes were retarded by the deposition of a thin /2µm/ layer of Cu on the Fe surface, with the Cu acting as a H-permeation barrier. The decrease in attenuation was caused by the entry of H into solid solution at...

  20. Distribution of Argon Arc Contaminated with Nitrogen as Function of Frequency in Pulsed TIG Welding

    Science.gov (United States)

    Takahashi, Hiroki; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    TIG arc welding is the high-quality and much applicable material joining technology. However, the current has to be small because the cathode melting should be prevented. In this case, the heat input to the welding pool becomes low, then, the welding defect sometimes occurs. The pulsed TIG arc welding is used to improve this disadvantage This welding can be controlled by some current parameters such as frequency However, few report has reported the distribution of argon arc contaminated with nitrogen It is important to prevent the contamination of nitrogen because the melting depth increases in order to prevent the welding defects. In this paper, the distribution of argon arc contaminated as function of frequency with nitrogen in pulsed TIG welding is elucidated. The nitrogen concentration, the radial flow velocity, the arc temperature were calculated using the EMTF simulation when the time reached at the base current. As a result, the nitrogen concentration into the arc became low with increasing the frequency The diffusion coefficient decreased because of the decrement of temperature over 4000 K. In this case, the nitrogen concentration became low near the anode. Therefore, the nitrogen concentration became low because the frequency is high.

  1. The relationship between subduction zone redox budget and arc magma fertility

    Science.gov (United States)

    Evans, K.-A.; Tomkins, A.-G.

    2011-08-01

    A number of lines of evidence point to a causal link between oxidised slab-derived fluids, oxidised sub-arc mantle, and the formation of economic concentrations of metals such as Cu and Au that require oxidised magmas. However, trace element evidence from some trace element and isotope data suggests that sub-arc mantle is no more oxidised than mantle elsewhere. A simple analytical model is applied to constrain the evolution of sub-arc mantle oxidation state as a function of redox-budget fluxes from the subducting slab. Influential variables include the solubility of Fe 3+ and SO 42 - in slab-derived fluids, the geometry of the infiltration of slab-derived fluids in sub-arc mantle, the coupling between slab-derived and arc-output redox budgets, and the concentration of redox-buffering elements such as Fe and S in the sub-arc mantle. Plausible Archean and Proterozoic redox budget fluxes would not have created oxidised sub-arc mantle without input from ferric iron or sulphate dissolved in non-aqueous fluids such as silicate melts. Aqueous-borne Phanerozoic redox budget fluxes, on the other hand, which are dominated by the sulphate component, could have increased sub-arc fO 2 by up to three log 10 units. The results are generally consistent with the proposed elevated fO 2 for sub-arc mantle, but no resolution was found for the apparent contradiction between high proposed fO 2 values derived from iron-based oxybarometry and the lower values inferred from trace element and isotope evidence. Increases in sub-arc mantle fO 2 are favoured by focussed fluid infiltration and magma generation, weak coupling between slab and arc-output redox budgets, and restricted redox-buffering in the sub-arc mantle. Fertile arc segments for ore deposits associated with oxidised magmas require fluid chemistry and pressure-temperature gradients that enhance Fe 3+ and SO 42 - solubility in aqueous and silica-rich fluids, tectonic stress regimes that favour focussed transfer of components into

  2. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Science.gov (United States)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  3. Uncovering the role of cathode buffer layer in organic solar cells

    Science.gov (United States)

    Qi, Boyuan; Zhang, Zhi-Guo; Wang, Jizheng

    2015-01-01

    Organic solar cells (OSCs) as the third generation photovoltaic devices have drawn intense research, for their ability to be easily deposited by low-cost solution coating technologies. However the cathode in conventional OSCs, Ca, can be only deposited by thermal evaporation and is highly unstable in ambient. Therefore various solution processible cathode buffer layers (CBLs) are synthesized as substitute of Ca and show excellent effect in optimizing performance of OSCs. Yet, there is still no universal consensus on the mechanism that how CBL works, which is evidently a critical scientific issue that should be addressed. In this article detailed studies are targeted on the interfacial physics at the interface between active layer and cathode (with and without treatment of a polar CBL) by using ultraviolet photoelectron spectroscopy, capacitance-voltage measurement, and impedance spectroscopy. The experimental data demonstrate that CBL mainly takes effect in three ways: suppressing surface states at the surface of active layer, protecting the active layer from being damaged by thermally evaporated cathode, and changing the energy level alignment by forming dipole moments with active layer and/or cathode. Our findings here provide a comprehensive picture of interfacial physics in devices with and without CBL.

  4. Microwave synthesis of copper network onto lithium iron phosphate cathode materials for improved electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chien-Te, E-mail: cthsieh@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Liu, Juan-Ru [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Juang, Ruey-Shin [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan (China); Lee, Cheng-En; Chen, Yu-Fu [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China)

    2015-03-01

    Herein reported is an efficient microwave-assisted (MA) approach for growing Cu network onto LiFePO{sub 4} (LFP) powders as cathode materials for high-performance Li-ion batteries. The MA approach is capable of depositing highly-porous Cu network, fully covered the LFP powders. The electrochemical performance of Cu-coated LFP cathodes are well characterized by charge/discharge cycling and electrochemical impedance spectroscopy (EIS). The Cu network acts as the key role in improving the specific capacity, rate capability, electrode polarization, as compared to fresh LFP cathode without the Cu coating. The EIS incorporated with equivalent circuit reveals that the completed Cu network obviously suppresses the charge transfer resistance. This result can be attributed to the fact that the Cu network ensures the LFP crystals to get electron easily, alleviating the electrode polarization in view of one-dimensional Li{sup +} ion mobility in the olivine crystals. Based on the analysis of Randles plots, the relatively higher Li{sup +} diffusion coefficient reflects the more efficient Li{sup +} pathway in the LFP powders through the aid of porous Cu network. - Highlights: • An efficient route was used to prepare Cu/LiFePO{sub 4} (LFP) hybrid as cathode material. • The Cu/LFP cathodes exhibit an improved performance as compared to fresh LFP one. • The microwave approach can deposit Cu network, fully covered the LFP powders. • The Cu network ensures LFP to get electrons, alleviating electrode polarization.

  5. Field Emission Lamps Prepared with Dip-Coated and Nickel Electroless Plated Carbon Nanotube Cathodes.

    Science.gov (United States)

    Pu, N W; Youh, M J; Chung, K J; Liu, Y M; Ger, M D

    2015-07-01

    Fabrication and efficiency enhancement of tubal field emission lamps (FELs) using multi-walled carbon nanotubes (MWNTs) as the cathode field emitters were studied. The cathode filaments were prepared by eletrolessly plating a nickel (Ni) film on the cathode made of a 304 stainless steel wire dip-coated with MWNTs. The 304 wire was dip-coated with MWNTs and nano-sized Pd catalyst in a solution, and then eletrolessly plated with Ni to form an MWNT-embedded composite film. The MWNTs embedded in Ni not only had better adhesion but also exhibited a higher FE threshold voltage, which is beneficial to our FEL system and can increase the luminous efficiency of the anode phosphor. Our results show that the FE cathode prepared by dipping three times in a solution containing 400 ppm Pd nano-catalysts and 0.2 wt.% MWNTs and then eletrolessly plating a Ni film at a deposition temperature of 60 °C, pH value of 5, and deposition time of 7 min has the best FE uniformity and efficiency. Its emission current can stay as low as 2.5 mA at a high applied voltage of 7 kV, which conforms to the high-voltage-and-low-current requirement of the P22 phosphor and can therefore maximize the luminous efficiency of our FEL. We found that the MWNT cathodes prepared by this approach are suitable for making high-efficiency FELs.

  6. Performance of field emission cathodes prepared from diamond nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, C.X., E-mail: cxzhai@nwu.edu.cn; Zhang, Z.Y.; Zhao, L.L.; Wang, X.W.; Zhao, W.

    2015-01-01

    Nano-diamond field emission cathodes were fabricated using a two-step technique. A mixture of nano-diamond and nano-Ti powders was coated onto a Ti substrate using a spin-coating process, followed by the application of an annealing treatment to form a TiC phase. The effects of the annealing temperature and the number of coating layers on the electron field emission properties of the as-fabricated field emission cathodes were investigated. The samples fabricated under different conditions were analyzed by Raman spectroscopy, X-ray diffraction, and scanning electron microscopy. The differences in terms of the electron field emission properties were explained by a TiC network model. A higher temperature is necessary to form a continuous TiC network when a thicker coating is used on the field emission cathode. In contrast, for the thinner coating, a relatively low temperature is sufficient to form such a TiC network. Only a continuous TiC network coating can facilitate the passage of electrons through the coating and lead to emission. - Highlights: • The field emission properties of nano-diamond powder were investigated. • Nano-diamond powder was deposited by spin coating on titanium substrate. • Nano-titanium powder was mixed into the coating. • A titanium carbide network model was proposed to explain the samples' properties.

  7. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye

    2013-01-01

    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  8. Preventing Corrosion by Controlling Cathodic Reaction Kinetics

    Science.gov (United States)

    2016-03-25

    Preventing corrosion by controlling cathodic reaction kinetics Progress Report for Period: 1 SEP 2015-31 MAR 2016 John Keith Department of...25 March 2016 Preventing corrosion by controlling cathodic reaction kinetics Annual Summary Report: FY16 PI: John Keith, 412-624-7016,jakeith...dominate the metal’s cathodic behavior. Within an alkaline environment, we expect the following reduction reactions to be catalyzed on the oxide

  9. Controllability of arc jet from arc horns with slits. Slit tsuki arc horn no arc jet seigyo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sunabe, K.; Inaba, T.; Fukagawa, H. (Central Research Institute of Electric Power Industry, Tokyo (Japan)); Kito, Y. (Nagoya University, Nagoya (Japan))

    1993-09-20

    To improve the corona discharge characteristics, test preparation was made of hollow rod form horns with slits for the overhead power transmission line use. Two types of horn electrode were prepared. The first horn electrode is of a hollow hemisphere fitted with and divided by slits on its tip. The second horn electrode is the first one which is further fitted with rod form electrode at the center of its tip. In experiment, relation was obtained between the deflection angle of arc jet and arc current, electrode diameter, etc., through an observation of arc jet by high speed camera. Melting loss of electrode was also made clear. The following knowledge was obtained: For the first horn electrode, the deflection angle can be limited to a narrow range by a division with slits, e.g., within 30 degrees under the condition of 5kA in arc current, 4 in number of sectors and 200mm in diameter. For the second horn electrode, the deflection angle can be limited to within 20 degrees under the condition of 5kA in arc current and 4 in number of sectors. The arc current is also limited to below 5kA by an addition of 50mm diameter central electrode. As a conclusion for the