WorldWideScience

Sample records for cathodic antigen cca

  1. Accuracy of urine circulating cathodic antigen (CCA test for Schistosoma mansoni diagnosis in different settings of Cote d'Ivoire.

    Directory of Open Access Journals (Sweden)

    Jean T Coulibaly

    2011-11-01

    Full Text Available BACKGROUND: Promising results have been reported for a urine circulating cathodic antigen (CCA test for the diagnosis of Schistosoma mansoni. We assessed the accuracy of a commercially available CCA cassette test (designated CCA-A and an experimental formulation (CCA-B for S. mansoni diagnosis. METHODOLOGY: We conducted a cross-sectional survey in three settings of Côte d'Ivoire: settings A and B are endemic for S. mansoni, whereas S. haematobium co-exists in setting C. Overall, 446 children, aged 8-12 years, submitted multiple stool and urine samples. For S. mansoni diagnosis, stool samples were examined with triplicate Kato-Katz, whereas urine samples were tested with CCA-A. The first stool and urine samples were additionally subjected to an ether-concentration technique and CCA-B, respectively. Urine samples were examined for S. haematobium using a filtration method, and for microhematuria using Hemastix dipsticks. PRINCIPAL FINDINGS: Considering nine Kato-Katz as diagnostic 'gold' standard, the prevalence of S. mansoni in setting A, B and C was 32.9%, 53.1% and 91.8%, respectively. The sensitivity of triplicate Kato-Katz from the first stool and a single CCA-A test was 47.9% and 56.3% (setting A, 73.9% and 69.6% (setting B, and 94.2% and 89.6% (setting C. The respective sensitivity of a single CCA-B was 10.4%, 29.9% and 75.0%. The ether-concentration technique showed a low sensitivity for S. mansoni diagnosis (8.3-41.0%. The specificity of CCA-A was moderate (76.9-84.2%; CCA-B was high (96.7-100%. The likelihood of a CCA-A color reaction increased with higher S. mansoni fecal egg counts (odds ratio: 1.07, p<0.001. A concurrent S. haematobium infection or the presence of microhematuria did not influence the CCA-A test results for S. mansoni diagnosis. CONCLUSION/SIGNIFICANCE: CCA-A showed similar sensitivity than triplicate Kato-Katz for S. mansoni diagnosis with no cross-reactivity to S. haematobium and microhematuria. The low sensitivity

  2. Evaluation of Circulating Cathodic Antigen (CCA) Urine-Tests for Diagnosis of Schistosoma mansoni Infection in Cameroon

    Science.gov (United States)

    Tchuem Tchuenté, Louis-Albert; Kueté Fouodo, Césaire Joris; Kamwa Ngassam, Romuald Isaka; Sumo, Laurentine; Dongmo Noumedem, Calvine; Kenfack, Christian Mérimé; Gipwe, Nestor Feussom; Nana, Esther Dankoni; Stothard, J. Russell; Rollinson, David

    2012-01-01

    Background The Kato-Katz is the most common diagnostic method for Schistosoma mansoni infection. However, the day-to-day variability in host egg-excretion and its low detection sensitivity are major limits for its use in low transmission zones and after widespread chemotherapy. We evaluated the accuracy of circulating cathodic antigen (CCA) urine-assay as a diagnostic tool of S. mansoni. In comparison, a low sensitive CCA test (CCA-L) was assessed. Methodology The study was conducted in three settings: two foci with single S. mansoni infections (settings A and B), and one mixed S. mansoni – S. haematobium focus (setting C). Stool and urine samples were collected from school-children on three consecutive days. Triplicate Kato-Katz readings were performed per stool sample. Each urine sample was tested with one CCA and only the first urine sample was subjected to CCA-L. Urine samples were also examined for S. haematobium eggs using the filtration method and for microhaematuria using urine reagent strips. Overall, 625 children provided three stool and three urine samples. Principal Findings Considering nine Kato-Katz thick smears as ‘reference’ diagnostic test, the prevalence of S. mansoni was 36.2%, 71.8% and 64.0% in settings A, B and C, respectively. The prevalence of S. haematobium in setting C was 12.0%. The sensitivities of single Kato-Katz, CCA and CCA-L from the first stool or urine samples were 58%, 82% and 46% in setting A, 56.8%, 82.4% and 68.8% in setting B, and 49.0%, 87.7% and 55.5% in setting C. The respective specificities were 100%, 64.7% and 100%; 100%, 62.3% and 91.3%; and 100%, 42.5% and 92.0%. Mixed infection with S. haematobium did not influence the CCA test results for S. mansoni diagnosis. Conclusions/Significance Urine CCA revealed higher sensitivity than CCA-L and triplicate Kato-Katz, and produced similar prevalence as nine Kato-Katz. It seems an attractive method for S. mansoni diagnosis. PMID:22860148

  3. Evaluation of circulating cathodic antigen (CCA urine-tests for diagnosis of Schistosoma mansoni infection in Cameroon.

    Directory of Open Access Journals (Sweden)

    Louis-Albert Tchuem Tchuenté

    Full Text Available BACKGROUND: The Kato-Katz is the most common diagnostic method for Schistosoma mansoni infection. However, the day-to-day variability in host egg-excretion and its low detection sensitivity are major limits for its use in low transmission zones and after widespread chemotherapy. We evaluated the accuracy of circulating cathodic antigen (CCA urine-assay as a diagnostic tool of S. mansoni. In comparison, a low sensitive CCA test (CCA-L was assessed. METHODOLOGY: THE STUDY WAS CONDUCTED IN THREE SETTINGS: two foci with single S. mansoni infections (settings A and B, and one mixed S. mansoni - S. haematobium focus (setting C. Stool and urine samples were collected from school-children on three consecutive days. Triplicate Kato-Katz readings were performed per stool sample. Each urine sample was tested with one CCA and only the first urine sample was subjected to CCA-L. Urine samples were also examined for S. haematobium eggs using the filtration method and for microhaematuria using urine reagent strips. Overall, 625 children provided three stool and three urine samples. PRINCIPAL FINDINGS: Considering nine Kato-Katz thick smears as 'reference' diagnostic test, the prevalence of S. mansoni was 36.2%, 71.8% and 64.0% in settings A, B and C, respectively. The prevalence of S. haematobium in setting C was 12.0%. The sensitivities of single Kato-Katz, CCA and CCA-L from the first stool or urine samples were 58%, 82% and 46% in setting A, 56.8%, 82.4% and 68.8% in setting B, and 49.0%, 87.7% and 55.5% in setting C. The respective specificities were 100%, 64.7% and 100%; 100%, 62.3% and 91.3%; and 100%, 42.5% and 92.0%. Mixed infection with S. haematobium did not influence the CCA test results for S. mansoni diagnosis. CONCLUSIONS/SIGNIFICANCE: Urine CCA revealed higher sensitivity than CCA-L and triplicate Kato-Katz, and produced similar prevalence as nine Kato-Katz. It seems an attractive method for S. mansoni diagnosis.

  4. Accuracy of Urine Circulating Cathodic Antigen (CCA) Test for Schistosoma mansoni Diagnosis in Different Settings of Côte d'Ivoire

    Science.gov (United States)

    Coulibaly, Jean T.; Knopp, Stefanie; N'Guessan, Nicaise A.; Silué, Kigbafori D.; Fürst, Thomas; Lohourignon, Laurent K.; Brou, Jean K.; N'Gbesso, Yve K.; Vounatsou, Penelope; N'Goran, Eliézer K.; Utzinger, Jürg

    2011-01-01

    Background Promising results have been reported for a urine circulating cathodic antigen (CCA) test for the diagnosis of Schistosoma mansoni. We assessed the accuracy of a commercially available CCA cassette test (designated CCA-A) and an experimental formulation (CCA-B) for S. mansoni diagnosis. Methodology We conducted a cross-sectional survey in three settings of Côte d'Ivoire: settings A and B are endemic for S. mansoni, whereas S. haematobium co-exists in setting C. Overall, 446 children, aged 8–12 years, submitted multiple stool and urine samples. For S. mansoni diagnosis, stool samples were examined with triplicate Kato-Katz, whereas urine samples were tested with CCA-A. The first stool and urine samples were additionally subjected to an ether-concentration technique and CCA-B, respectively. Urine samples were examined for S. haematobium using a filtration method, and for microhematuria using Hemastix dipsticks. Principal Findings Considering nine Kato-Katz as diagnostic ‘gold’ standard, the prevalence of S. mansoni in setting A, B and C was 32.9%, 53.1% and 91.8%, respectively. The sensitivity of triplicate Kato-Katz from the first stool and a single CCA-A test was 47.9% and 56.3% (setting A), 73.9% and 69.6% (setting B), and 94.2% and 89.6% (setting C). The respective sensitivity of a single CCA-B was 10.4%, 29.9% and 75.0%. The ether-concentration technique showed a low sensitivity for S. mansoni diagnosis (8.3–41.0%). The specificity of CCA-A was moderate (76.9–84.2%); CCA-B was high (96.7–100%). The likelihood of a CCA-A color reaction increased with higher S. mansoni fecal egg counts (odds ratio: 1.07, p<0.001). A concurrent S. haematobium infection or the presence of microhematuria did not influence the CCA-A test results for S. mansoni diagnosis. Conclusion/Significance CCA-A showed similar sensitivity than triplicate Kato-Katz for S. mansoni diagnosis with no cross-reactivity to S. haematobium and microhematuria. The low sensitivity of

  5. Performance of circulating cathodic antigen (CCA urine-dipsticks for rapid detection of intestinal schistosomiasis in schoolchildren from shoreline communities of Lake Victoria

    Directory of Open Access Journals (Sweden)

    Kariuki HC

    2010-02-01

    Full Text Available Abstract For disease surveillance and mapping within large-scale control programmes, RDTs are becoming popular. For intestinal schistosomiasis, a commercially available urine-dipstick which detects schistosome circulating cathodic antigen (CCA in host urine is being increasingly applied, however, further validation is needed. In this study, we compared the CCA urine-dipstick test against double thick Kato-Katz faecal smears from 171 schoolchildren examined along the Tanzanian and Kenyan shorelines of Lake Victoria. Diagnostic methods were in broad agreement; the mean prevalence of intestinal schistosomiasis inferred by Kato-Katz examination was 68.6% (95% confidence intervals (CIs = 60.7-75.7% and 71.3% (95% CIs = 63.9-78.8% by CCA urine-dipsticks. There were, however, difficulties in precisely 'calling' the CCA test result, particularly in discrimination of 'trace' reactions as either putative infection positive or putative infection negative, which has important bearing upon estimation of mean infection prevalence; considering 'trace' as infection positive mean prevalence was 94.2% (95% CIs = 89.5-97.2%. A positive association between increasing intensity of the CCA urine-dipstick test band and faecal egg count was observed. Assigning trace reactions as putative infection negative, overall diagnostic sensitivity (SS of the CCA urine-dipstick was 87.7% (95% CIs = 80.6-93.0%, specificity (SP was 68.1% (95% CIs = 54.3-80.0%, positive predictive value (PPV was 86.1% (95% CIs = 78.8-91.7% and negative predictive value (NPV was 71.1% (95% CIs = 57.2-82.8%. To assist in objective defining of the CCA urine-dipstick result, we propose the use of a simple colour chart and conclude that the CCA urine-dipstick is a satisfactory alternative, or supplement, to Kato-Katz examination for rapid detection of intestinal schistosomiasis.

  6. Performance of circulating cathodic antigen (CCA) urine-dipsticks for rapid detection of intestinal schistosomiasis in schoolchildren from shoreline communities of Lake Victoria

    Science.gov (United States)

    2010-01-01

    For disease surveillance and mapping within large-scale control programmes, RDTs are becoming popular. For intestinal schistosomiasis, a commercially available urine-dipstick which detects schistosome circulating cathodic antigen (CCA) in host urine is being increasingly applied, however, further validation is needed. In this study, we compared the CCA urine-dipstick test against double thick Kato-Katz faecal smears from 171 schoolchildren examined along the Tanzanian and Kenyan shorelines of Lake Victoria. Diagnostic methods were in broad agreement; the mean prevalence of intestinal schistosomiasis inferred by Kato-Katz examination was 68.6% (95% confidence intervals (CIs) = 60.7-75.7%) and 71.3% (95% CIs = 63.9-78.8%) by CCA urine-dipsticks. There were, however, difficulties in precisely 'calling' the CCA test result, particularly in discrimination of 'trace' reactions as either putative infection positive or putative infection negative, which has important bearing upon estimation of mean infection prevalence; considering 'trace' as infection positive mean prevalence was 94.2% (95% CIs = 89.5-97.2%). A positive association between increasing intensity of the CCA urine-dipstick test band and faecal egg count was observed. Assigning trace reactions as putative infection negative, overall diagnostic sensitivity (SS) of the CCA urine-dipstick was 87.7% (95% CIs = 80.6-93.0%), specificity (SP) was 68.1% (95% CIs = 54.3-80.0%), positive predictive value (PPV) was 86.1% (95% CIs = 78.8-91.7%) and negative predictive value (NPV) was 71.1% (95% CIs = 57.2-82.8%). To assist in objective defining of the CCA urine-dipstick result, we propose the use of a simple colour chart and conclude that the CCA urine-dipstick is a satisfactory alternative, or supplement, to Kato-Katz examination for rapid detection of intestinal schistosomiasis. PMID:20181101

  7. The Urine Circulating Cathodic Antigen (CCA) Dipstick: A Valid Substitute for Microscopy for Mapping and Point-Of-Care Diagnosis of Intestinal Schistosomiasis

    Science.gov (United States)

    Sousa-Figueiredo, José Carlos; Betson, Martha; Kabatereine, Narcis B.; Stothard, J. Russell

    2013-01-01

    Background The World Health Organization now recommends the provision of praziquantel treatment to preschool-aged children infected with schistosomiasis. For intestinal schistosomiasis the current operational field diagnostic standard is examination of a thick Kato-Katz smear by microscopy prepared from a single stool specimen, and although pragmatic, this methodology has well-known shortcomings. Here, as a potential alternative, the performance of the urine circulating cathodic antigen (CCA) dipstick test was assessed in terms of disease-mapping and point-of-care diagnosis for intestinal schistosomiasis in preschool-aged children. Our manuscript reports on findings at baseline and at the end of a one-year longitudinal treatment study. Methodology/Principal Findings A total of 925 children (mean age 2.8 years) were initially recruited from six lakeshore villages representative of high, moderate and low levels of disease transmission. At baseline, all children were tested for intestinal schistosomiasis by microscopic examination of duplicate Kato-Katz smears prepared from a single stool faecal, by antigen detection with the urine CCA dipstick test and by serology with a commercially available ELISA test (as ‘gold-standard’) that measures host antibody titres to soluble egg antigens. As a point-of-care diagnosis, the urine CCA dipstick test achieved sensitivity and specificity values ranging from 52.5–63.2% and 57.7–75.6%, respectively, with faecal microscopy achieving very high specificities (>87%) but sensitivities as low as 16.7% in the low transmission setting. Conclusion/Significance The urine CCA test was shown to be more effective than faecal microscopy especially in lower transmission settings. The diagnostic performance of this test was not significantly impacted by treatment history or co-infections with other intestinal helminths. PMID:23359826

  8. The urine circulating cathodic antigen (CCA dipstick: a valid substitute for microscopy for mapping and point-of-care diagnosis of intestinal schistosomiasis.

    Directory of Open Access Journals (Sweden)

    José Carlos Sousa-Figueiredo

    Full Text Available BACKGROUND: The World Health Organization now recommends the provision of praziquantel treatment to preschool-aged children infected with schistosomiasis. For intestinal schistosomiasis the current operational field diagnostic standard is examination of a thick Kato-Katz smear by microscopy prepared from a single stool specimen, and although pragmatic, this methodology has well-known shortcomings. Here, as a potential alternative, the performance of the urine circulating cathodic antigen (CCA dipstick test was assessed in terms of disease-mapping and point-of-care diagnosis for intestinal schistosomiasis in preschool-aged children. Our manuscript reports on findings at baseline and at the end of a one-year longitudinal treatment study. METHODOLOGY/PRINCIPAL FINDINGS: A total of 925 children (mean age 2.8 years were initially recruited from six lakeshore villages representative of high, moderate and low levels of disease transmission. At baseline, all children were tested for intestinal schistosomiasis by microscopic examination of duplicate Kato-Katz smears prepared from a single stool faecal, by antigen detection with the urine CCA dipstick test and by serology with a commercially available ELISA test (as 'gold-standard' that measures host antibody titres to soluble egg antigens. As a point-of-care diagnosis, the urine CCA dipstick test achieved sensitivity and specificity values ranging from 52.5-63.2% and 57.7-75.6%, respectively, with faecal microscopy achieving very high specificities (>87% but sensitivities as low as 16.7% in the low transmission setting. CONCLUSION/SIGNIFICANCE: The urine CCA test was shown to be more effective than faecal microscopy especially in lower transmission settings. The diagnostic performance of this test was not significantly impacted by treatment history or co-infections with other intestinal helminths.

  9. Evaluation of circulating cathodic antigen (CCA) urine-cassette assay as a survey tool for Schistosoma mansoni in different transmission settings within Bugiri District, Uganda.

    Science.gov (United States)

    Adriko, M; Standley, C J; Tinkitina, B; Tukahebwa, E M; Fenwick, A; Fleming, F M; Sousa-Figueiredo, J C; Stothard, J R; Kabatereine, N B

    2014-08-01

    Diagnosis of schistosomiasis at the point-of-care (POC) is a growing topic in neglected tropical disease research. There is a need for diagnostic tests which are affordable, sensitive, specific, user-friendly, rapid, equipment-free and delivered to those who need it, and POC is an important tool for disease mapping and guiding mass deworming. The aim of present study was to evaluate the relative diagnostic performance of two urine-circulating cathodic antigen (CCA) cassette assays, one commercially available and the other in experimental production, against results obtained using the standard Kato-Katz faecal smear method (six thick smears from three consecutive days), as a 'gold-standard', for Schistosoma mansoni infection in different transmission settings in Uganda. Our study was conducted among 500 school children randomly selected across 5 schools within Bugiri district, adjacent to Lake Victoria in Uganda. Considering results from the 469 pupils who provided three stool samples for the six Kato-Katz smears, 293 (76%) children had no infection, 109 (23%) were in the light intensity category, while 42 (9%) and 25 (5%) were in the moderate and heavy intensity categories respectively. Following performance analysis of CCA tests in terms of sensitivity, specificity, negative and positive predictive values, overall performance of the commercially available CCA test was more informative than single Kato-Katz faecal smear microscopy, the current operational field standard for disease mapping. The current CCA assay is therefore a satisfactory method for surveillance of S. mansoni in an area where disease endemicity is declining due to control interventions. With the recent resolution on schistosomiasis elimination by the 65th World Health Assembly, the urine POC CCA test is an attractive tool to augment and perhaps replace the Kato-Katz sampling within ongoing control programmes.

  10. Field-based evaluation of a reagent strip test for diagnosis of Schistosomiasis mansoni by detecting circulating cathodic antigen (CCA in urine in low endemic area in Ethiopia

    Directory of Open Access Journals (Sweden)

    Legesse M.

    2008-06-01

    Full Text Available The sensitivity, specificity, positive and negative predictive values of a reagent strip test for the diagnosis of schistosomiasis mansoni by detecting circulating cathodic antigen (CCA in urine were evaluated using 184 stool and urine samples collected from schoolchildren living in relatively low endemic area of schistosomiasis mansoni in Ethiopia. A combined result of stool samples processed by Kato and formol-ether concentration methods was used as gold standard. The results showed that detection of CCA in urine using reagent strip test was slightly higher than the combined results of the stool techniques (65.2% vs 42.4%, p > 0.05 in suggesting the prevalence of the disease. The sensitivity, specificity, positive and negative predictive values of the reagent strip test were 76.9%, 43.4%, 50% and 71.9%, respectively. The result of egg counts using Kato method suggested that detection of urine CCA could be used to indicate the intensity of infection. Nevertheless, like that of stool examination, the reagent strip test was found to be less sensitive in case of light to moderate infections. About 23.1% of the study children who were excreting the eggs of the parasite were found negative by the reagent strip test. The relative insensitivity of a reagent strip test in low intensity of infection necessitates for the development of more sensitive assay that can truly discriminate schistosome-infected from non-infected individuals.

  11. Evaluation and optimization of the Circulating Cathodic Antigen (POC-CCA) cassette test for detecting Schistosoma mansoni infection by using image analysis in school children in Mwanza Region, Tanzania

    DEFF Research Database (Denmark)

    Partal, Miriam Casacuberta; Kinunghi, Safari; Vennervald, Birgitte J

    2016-01-01

    There is a need for diagnostic techniques which are sensitive, specific, rapid and easy to perform at the point-of-care. The aim of this study was to evaluate the diagnostic performance of the Circulating Cathodic Antigen (POC-CCA) assay for Schistosoma mansoni in four schools along the coast...

  12. Evaluation of circulating cathodic antigen (CCA strip for diagnosis of urinary schistosomiasis in Hassoba school children, Afar, Ethiopia

    Directory of Open Access Journals (Sweden)

    Ayele B.

    2008-03-01

    Full Text Available A total of 206 urine samples collected from Hassoba Elementary schoolchildren, Afar, Ethiopia, a low Schistosoma haematobium endemic setting, was diagnosed to evaluate the performance of CCA strip using double references, urine filtration technique and urinalysis dipstick (Combur 10 Test® that detect schistosome eggs and blood in urine, respectively. The former was used as a gold standard reference method. Sensitivity, specificity, positive and negative predictive values for the CCA were 52%, 63.8%, 56.7% and 59% respectively, with reference to urine filtration technique whereas these parameters were 50.4%, 62.4%, 55.6% and 57.5% respectively, with reference to Combur 10 Test®. 47 S. haematobium egg-positive children were found negative by CCA strip while 38 egg-negative children were found positive by CCA strip. Moreover, among the pre-tests done in duplicate, inconsistent results were also recorded. Assays were also compared with regard to the cost of equipment and reagents, speed and simplicity of use. Though CCA strip was found to be rapid and could be performed with minimal training, it was found to be expensive (US $ 4.95 per test to use it for large-scale field use even if its diagnostic value would have been satisfactory. Further development and standardization of the CCA strip are required for its applicability for field use. It is also recommended that its cost per strip should be substantially cut down if it is to be used in poor schistosomiasis endemic countries.

  13. Evaluation and optimization of the Circulating Cathodic Antigen (POC-CCA) cassette test for detecting Schistosoma mansoni infection by using image analysis in school children in Mwanza Region, Tanzania.

    Science.gov (United States)

    Casacuberta, Miriam; Kinunghi, Safari; Vennervald, Birgitte J; Olsen, Annette

    2016-06-01

    There is a need for diagnostic techniques which are sensitive, specific, rapid and easy to perform at the point-of-care. The aim of this study was to evaluate the diagnostic performance of the Circulating Cathodic Antigen (POC-CCA) assay for Schistosoma mansoni in four schools along the coast of Lake Victoria in Mwanza Region, Tanzania, and to optimize the reading of the POC-CCA test lines by using a computer software image analysis. Initially, a pilot study in 106 school children indicated that time of urine collection did not have an impact on CCA results as 84.9% (90) had identical scores from a urine collected in the morning and a urine taken at midday after drinking 0.5 L of water. The main study was conducted among 404 school children (aged 9-12 years) where stool and urine samples were collected for three consecutive days. For S. mansoni diagnosis, stool samples were examined for eggs with duplicate Kato-Katz smears, whereas urine samples were tested for presence of antigen by POC-CCA. The proportion of positive individuals for S. mansoni by one POC-CCA was higher compared to two Kato-Katz smears (66.1% vs. 28.7%; p < 0.0001). Both proportions increased expectedly when three POC-CCAs were compared to six Kato-Katz smears (75.0% vs. 42.6%; p < 0.0001). Three POC-CCAs were more sensitive (94.7%) than six Kato-Katz smears (53.8%) using the combined results of three POC-CCAs and six Kato-Katz smears as the 'gold standard'. To optimize the reading of the POC-CCA, a Software tool (Image Studio Lite®) was used to read and quantify the colour (expressed as pixels) of the test line on all positive tests, showing a positive correlation between number of pixels and the visually scored intensities and between number of pixels and egg counts. In conclusion, the POC-CCA assay seems to be a more appropriate tool for S. mansoni diagnosis compared to the Kato-Katz method in endemic communities such as Mwanza Region. Optimization of the tool in terms of cassette

  14. Circulating cathodic antigen cassette test versus haematuria strip test in diagnosis of urinary schistosomiasis.

    Science.gov (United States)

    El-Ghareeb, Azza S; Abd El Motaleb, Ghada S; Waked, Nevien Maher; Osman Hany Kamel, Nancy; Aly, Nagwa Shaban

    2016-12-01

    Urinary schistosomiasis caused by Schistosoma haematobium constitutes a major public health problem in many tropical and sub-tropical countries. This study was conducted to evaluate circulating cathodic antigen cassette test and haematuria strip test for detection of S. haematobium in urine samples and to evaluate their screening performance among the study population. Microscopy was used as a gold standard. A total of 600 urine samples were examined by microscopy for detection of S. haematobium eggs, screened for microhaematuria using Self-Stik reagent strips and screened for circulating cathodic antigen (CCA) using the urine-CCA cassette test. The specificity of CCA, microhaematuria and macrohaematuria was 96.4, 40.6 and 31.2 % respectively while the sensitivity was 88.2, 99.3 and 100 % respectively which was statistically significant (P < 0.001). These findings suggest that using of urine-CCA cassette test in diagnosis of urinary schistosomiasis is highly specific (96.4 %) compared with the highly sensitive haematuria strip test (100 %). The degree of agreement between microscopic examination and CCA detection was 99.3 % with highly statistically significant difference (P < 0.001). The combination of two techniques could potentially use for screening and mapping of S. haematobium infection.

  15. Additional Evaluation of the Point-of-Contact Circulating Cathodic Antigen Assay for Schistosoma mansoni Infection

    Directory of Open Access Journals (Sweden)

    Pauline N.M. Mwinzi

    2015-03-01

    Full Text Available Studies of the urine-based point-of-contact Cathodic Circulating Antigen test (POC-CCA in S. mansoni-endemic settings in Africa indicate it has good sensitivity in detecting infections, but in areas of low prevalence, the POC-CCA can be positive for persons who are egg-negative by Kato-Katz stool assays. We examined the POC-CCA assay for: a batch- to-batch stability; b intra-reader and inter-reader variability; c day-to-day variability compared to Kato-Katz stool assays, and d to see if praziquantel (PZQ treatment converted Kato-Katz-negative/POC-CCA positive individuals to POC-CCA negativity. We found essentially no batch-to-batch variation, negligible intra-reader variability (2% and substantial agreement for inter-reader reliability. Some day-to-day variation was observed over 5 days of urine collection, but less than the variation in Kato-Katz stool assays over 3 days. To evaluate the effect of treatment on Kato-Katz(- /POC-CCA(+ children, 149 children in an area of 10-15% prevalence who were Kato-Katz(- based on 3 stool samples but POC-CCA(+ were enrolled. Seven days after treatment (PZQ 40mg/kg samples were again collected and tested. Almost half (47% POC-CCA positive children turned negative. Those still POC-CCA positive received a second treatment, and 34% of them turned POC-CCA negative upon this second treatment. Most who remained POC-CCA positive shifted each time to a lesser POC-CCA level of positivity. The data suggest that most Kato-Katz-negative/POC-CCA positive individuals harbor low intensity infections, and each treatment kills all or some of their adult worms. The data also suggest that when evaluated by a more sensitive assay, the effective cure rates for PZQ are significantly less than those inferred from fecal testing. These findings have public health significance for the mapping and monitoring of Schistosoma infections and in planning the transition from schistosomiasis morbidity control to elimination of transmission.

  16. Additional Evaluation of the Point-of-Contact Circulating Cathodic Antigen Assay for Schistosoma mansoni Infection.

    Science.gov (United States)

    Mwinzi, Pauline N M; Kittur, Nupur; Ochola, Elizabeth; Cooper, Philip J; Campbell, Carl H; King, Charles H; Colley, Daniel G

    2015-01-01

    Studies of the urine-based point-of-contact cathodic circulating antigen test (POC-CCA) in Schistosoma mansoni-endemic settings in Africa indicate it has good sensitivity in detecting infections, but in areas of low prevalence, the POC-CCA can be positive for persons who are egg-negative by Kato-Katz stool assays. We examined the POC-CCA assay for: (a) batch-to-batch stability; (b) intra-reader and inter-reader variability; (c) day-to-day variability compared to Kato-Katz stool assays, and (d) to see if praziquantel (PZQ) treatment converted Kato-Katz-negative/POC-CCA positive individuals to POC-CCA negativity. We found essentially no batch-to-batch variation, negligible intra-reader variability (2%), and substantial agreement for inter-reader reliability. Some day-to-day variation was observed over 5 days of urine collection, but less than the variation in Kato-Katz stool assays over 3 days. To evaluate the effect of treatment on Kato-Katz(-)/POC-CCA(+) children, 149 children in an area of 10-15% prevalence who were Kato-Katz(-) based on 3 stool samples but POC-CCA(+) were enrolled. Seven days after treatment (PZQ 40 mg/kg) samples were again collected and tested. Almost half (47%) POC-CCA positive children turned negative. Those still POC-CCA positive received a second treatment, and 34% of them turned POC-CCA negative upon this second treatment. Most who remained POC-CCA positive shifted each time to a "lesser" POC-CCA "level of positivity." The data suggest that most Kato-Katz-negative/POC-CCA positive individuals harbor low-intensity infections, and each treatment kills all or some of their adult worms. The data also suggest that when evaluated by a more sensitive assay, the effective cure rates for PZQ are significantly less than those inferred from fecal testing. These findings have public health significance for the mapping and monitoring of Schistosoma infections and in planning the transition from schistosomiasis morbidity control to elimination of

  17. New approaches with different types of circulating cathodic antigen for the diagnosis of patients with low Schistosoma mansoni load.

    Directory of Open Access Journals (Sweden)

    Rafaella Grenfell

    Full Text Available BACKGROUND: Schistosomiasis mansoni is a debilitating and sometimes fatal disease. Accurate diagnosis plays a key role in patient management and infection control. However, currently available parasitological methods are laborious and lack sensitivity. The selection of target antigen candidates has turned out to be a promising tool for the development of more sensitive diagnostic methods. In our previous investigations, the use of crude antigens led to false-positive results. Recently, focus has been given to highly purified Schistosoma mansoni antigens, especially to circulating antigens. METHOD: Thus, our main goal was to test different types of circulating cathodic antigen glycoprotein (CCA, as "crude antigen," the protein chain of recombinant CCA and two individual peptides. These schistosome proteins/peptides were tested in a new diagnostic method employing immunomagnetic separation based on the improvement of antigen-antibody binding. PRINCIPAL FINDINGS: Use of recombinant CCA as a diagnostic antigen allowed us to develop a diagnostic assay with high sensitivity and specificity with no false-negative results. Interestingly, the "crude antigen" worked as a good marker for control of cure after praziquantel treatment. CONCLUSIONS/SIGNIFICANCE: Our new diagnostic method was superior to enzyme-linked immunosorbent assay in diagnosing low endemicity patients.

  18. A Latent Markov Modelling approach to the evaluation of Circulating Cathodic Antigen strips for Schistosomiasis diagnosis pre- and post-praziquantel treatment in Uganda

    DEFF Research Database (Denmark)

    Koukounari, Artemis; Donnelly, Christl A.; Moustaki, Irini

    2013-01-01

    Markov Models (LMMs). The aim was to evaluate the diagnostic accuracy of Circulating Cathodic Antigen (CCA) and of double Kato-Katz (KK) faecal slides over three consecutive days for Schistosoma mansoni infection simultaneously by age group at baseline and at two follow-up times post treatment...

  19. A Five-Country Evaluation of a Point-of-Care Circulating Cathodic Antigen Urine Assay for the Prevalence of Schistosoma mansoni

    Science.gov (United States)

    Colley, Daniel G.; Binder, Sue; Campbell, Carl; King, Charles H.; Tchuem Tchuenté, Louis-Albert; N'Goran, Eliézer K.; Erko, Berhanu; Karanja, Diana M. S.; Kabatereine, Narcis B.; van Lieshout, Lisette; Rathbun, Stephen

    2013-01-01

    We evaluated a commercial point-of-care circulating cathodic antigen (POC-CCA) test for assessing Schistosoma mansoni infection prevalence in areas at risk. Overall, 4,405 school-age children in Cameroon, Côte d'Ivoire, Ethiopia, Kenya, and Uganda provided urine for POC-CCA testing and stool for Kato-Katz assays. By latent class analysis, one POC-CCA test was more sensitive (86% versus 62%) but less specific (72% versus ∼100%) than multiple Kato-Katz smears from one stool. However, only 1% of POC-CCA tests in a non-endemic area were false positives, suggesting the latent class analysis underestimated the POC-CCA specificity. Multivariable modeling estimated POC-CCA as significantly more sensitive than Kato-Katz at low infection intensities (< 100 eggs/gram stool). By linear regression, 72% prevalence among 9–12 year olds by POC-CCA corresponded to 50% prevalence by Kato-Katz, whereas 46% POC-CCA prevalence corresponded to 10% Kato-Katz prevalence. We conclude that one urine POC-CCA test can replace Kato-Katz testing for community-level S. mansoni prevalence mapping. PMID:23339198

  20. New Approaches with Different Types of Circulating Cathodic Antigen for the Diagnosis of Patients with Low Schistosoma mansoni Load

    Science.gov (United States)

    Grenfell, Rafaella; Harn, Donald A.; Tundup, Smanla; Da'dara, Akram; Siqueira, Liliane; Coelho, Paulo Marcos Zech

    2013-01-01

    Background Schistosomiasis mansoni is a debilitating and sometimes fatal disease. Accurate diagnosis plays a key role in patient management and infection control. However, currently available parasitological methods are laborious and lack sensitivity. The selection of target antigen candidates has turned out to be a promising tool for the development of more sensitive diagnostic methods. In our previous investigations, the use of crude antigens led to false-positive results. Recently, focus has been given to highly purified Schistosoma mansoni antigens, especially to circulating antigens. Method Thus, our main goal was to test different types of circulating cathodic antigen glycoprotein (CCA), as “crude antigen,” the protein chain of recombinant CCA and two individual peptides. These schistosome proteins/peptides were tested in a new diagnostic method employing immunomagnetic separation based on the improvement of antigen–antibody binding. Principal Findings Use of recombinant CCA as a diagnostic antigen allowed us to develop a diagnostic assay with high sensitivity and specificity with no false-negative results. Interestingly, the “crude antigen” worked as a good marker for control of cure after praziquantel treatment. Conclusions/Significance Our new diagnostic method was superior to enzyme-linked immunosorbent assay in diagnosing low endemicity patients. PMID:23469295

  1. Evaluation of point-of-contact circulating cathodic antigen assays for the detection of Schistosoma mansoni infection in low-, moderate-, and high-prevalence schools in western Kenya.

    Science.gov (United States)

    Foo, Karen T; Blackstock, Anna J; Ochola, Elizabeth A; Matete, Daniel O; Mwinzi, Pauline N M; Montgomery, Susan P; Karanja, Diana M S; Secor, W Evan

    2015-06-01

    We evaluated the performance of a point-of-contact circulating cathodic antigen assay (POC-CCA) to detect schistosome infections in primary school children (N = 1,801) living in areas with low, moderate, and high Schistosoma mansoni prevalence in western Kenya. The commercially available assay (CCA-1) and a second, experimental formulation (CCA-2) were compared against Kato-Katz stool examinations and an anti-schistosome enzyme-linked immunosorbent assay (ELISA). A latent class model based on the four tests was used to establish "true infection status" in three different zones based on their distance from Lake Victoria. As a screening tool for community treatment according to World Health Organization (WHO) guidelines, the Kato-Katz examination was in closest agreement with the latent class model, followed by the experimental CCA-2, soluble adult worm antigen preparation (SWAP) ELISA, and CCA-1, which had high sensitivity compared with the other tests but was consistently the least specific. Our experience suggests that POC-CCA tests offer a field-friendly alternative to Kato-Katz, but need further interpretation for appropriate field use.

  2. Mapping of Schistosoma mansoni in the Nile Delta, Egypt: Assessment of the prevalence by the circulating cathodic antigen urine assay.

    Science.gov (United States)

    Haggag, Ayat A; Rabiee, Amal; Abd Elaziz, Khaled M; Gabrielli, Albis F; Abdel Hay, Rehab; Ramzy, Reda M R

    2017-03-01

    In line with WHO recommendations on elimination of schistosomiasis, accurate identification of all areas of residual transmission is a key step to design and implement measures aimed at interrupting transmission in low-endemic settings. To this purpose, we assessed the prevalence of active S. mansoni infection in five pilot governorates in the Nile Delta of Egypt by examining schoolchildren (6-15 years) using the Urine-Circulating Cathodic Antigen (Urine-CCA) cassette test; we also carried out the standard Kato-Katz (KK) thick smear, the monitoring and evaluation tool employed by Egypt's national schistosomiasis control programme. Prevalence rates determined by the Urine-CCA test for all governorates were higher than those determined by KK (p<0.01). Of 35 districts surveyed in the five governorates, S. mansoni infection was detected in 19 districts (54.3%) using KK, and in 31 districts (88.6%) by Urine-CCA (χ2=9.94; P=0.0016). S. mansoni infections were detected by Urine-CCA, but not by KK in 12 districts (34.3%), and infection was not detected by either of the two diagnostic methods in four districts in Qalyubia governorate. Males and higher age-groups have significantly higher Urine-CCA prevalence rates. Based on the findings of the current S. mansoni mapping exercise, authorities of the Ministry of Health and Population (MoHP) adopted a new elimination strategy by readjusting thresholds for mass treatment with praziquantel and targeting all transmission areas. MoHP is now planning to remap in all other endemic governorates using Urine-CCA with the aim of identifying all areas of transmission where the elimination strategy should be applied.

  3. Accuracy of Urine Circulating Cathodic Antigen Test for the Diagnosis of Schistosoma mansoni in Preschool-Aged Children before and after Treatment

    Science.gov (United States)

    Coulibaly, Jean T.; N'Gbesso, Yves K.; Knopp, Stefanie; N'Guessan, Nicaise A.; Silué, Kigbafori D.; van Dam, Govert J.; N'Goran, Eliézer K.; Utzinger, Jürg

    2013-01-01

    Background The Kato-Katz technique is widely used for the diagnosis of Schistosoma mansoni, but shows low sensitivity in light-intensity infections. We assessed the accuracy of a commercially available point-of-care circulating cathodic antigen (POC-CCA) cassette test for the diagnosis of S. mansoni in preschool-aged children before and after praziquantel administration. Methodology A 3-week longitudinal survey with a treatment intervention was conducted in Azaguié, south Côte d'Ivoire. Overall, 242 preschoolers (age range: 2 months to 5.5 years) submitted two stool and two urine samples before praziquantel administration, and 86 individuals were followed-up posttreatment. Stool samples were examined with duplicate Kato-Katz thick smears for S. mansoni. Urine samples were subjected to POC-CCA cassette test for S. mansoni, and a filtration method for S. haematobium diagnosis. Principal Findings Before treatment, the prevalence of S. mansoni, as determined by quadruplicate Kato-Katz, single CCA considering ‘trace’ as negative (t−), and single CCA with ‘trace’ as positive (t+), was 23.1%, 34.3% and 64.5%, respectively. Using the combined results (i.e., four Kato-Katz and duplicate CCA(t−)) as diagnostic ‘gold’ standard, the sensitivity of a single Kato-Katz, a single CCA(t−) or CCA(t+) was 28.3%, 69.7% and 89.1%, respectively. Three weeks posttreatment, the sensitivity of a single Kato-Katz, single CCA(t−) and CCA(t+) was 4.0%, 80.0% and 84.0%, respectively. The intensity of the POC-CCA test band reaction was correlated with S. mansoni egg burden (odds ratio = 1.2, p = 0.04). Conclusions/Significance A single POC-CCA cassette test appears to be more sensitive than multiple Kato-Katz thick smears for the diagnosis of S. mansoni in preschool-aged children before and after praziquantel administration. The POC-CCA cassette test can be recommended for the rapid identification of S. mansoni infections before treatment. Additional studies are

  4. Accuracy of urine circulating cathodic antigen test for the diagnosis of Schistosoma mansoni in preschool-aged children before and after treatment.

    Directory of Open Access Journals (Sweden)

    Jean T Coulibaly

    Full Text Available BACKGROUND: The Kato-Katz technique is widely used for the diagnosis of Schistosoma mansoni, but shows low sensitivity in light-intensity infections. We assessed the accuracy of a commercially available point-of-care circulating cathodic antigen (POC-CCA cassette test for the diagnosis of S. mansoni in preschool-aged children before and after praziquantel administration. METHODOLOGY: A 3-week longitudinal survey with a treatment intervention was conducted in Azaguié, south Côte d'Ivoire. Overall, 242 preschoolers (age range: 2 months to 5.5 years submitted two stool and two urine samples before praziquantel administration, and 86 individuals were followed-up posttreatment. Stool samples were examined with duplicate Kato-Katz thick smears for S. mansoni. Urine samples were subjected to POC-CCA cassette test for S. mansoni, and a filtration method for S. haematobium diagnosis. PRINCIPAL FINDINGS: Before treatment, the prevalence of S. mansoni, as determined by quadruplicate Kato-Katz, single CCA considering 'trace' as negative (t-, and single CCA with 'trace' as positive (t+, was 23.1%, 34.3% and 64.5%, respectively. Using the combined results (i.e., four Kato-Katz and duplicate CCA(t- as diagnostic 'gold' standard, the sensitivity of a single Kato-Katz, a single CCA(t- or CCA(t+ was 28.3%, 69.7% and 89.1%, respectively. Three weeks posttreatment, the sensitivity of a single Kato-Katz, single CCA(t- and CCA(t+ was 4.0%, 80.0% and 84.0%, respectively. The intensity of the POC-CCA test band reaction was correlated with S. mansoni egg burden (odds ratio = 1.2, p = 0.04. CONCLUSIONS/SIGNIFICANCE: A single POC-CCA cassette test appears to be more sensitive than multiple Kato-Katz thick smears for the diagnosis of S. mansoni in preschool-aged children before and after praziquantel administration. The POC-CCA cassette test can be recommended for the rapid identification of S. mansoni infections before treatment. Additional studies are warranted

  5. Countrywide Reassessment of Schistosoma mansoni Infection in Burundi Using a Urine-Circulating Cathodic Antigen Rapid Test: Informing the National Control Program.

    Science.gov (United States)

    Ortu, Giuseppina; Ndayishimiye, Onésime; Clements, Michelle; Kayugi, Donatien; Campbell, Carl H; Lamine, Mariama Sani; Zivieri, Antonio; Magalhaes, Ricardo Soares; Binder, Sue; King, Charles H; Fenwick, Alan; Colley, Daniel G; Jourdan, Peter Mark

    2017-01-23

    Following implementation of the national control program, a reassessment of Schistosoma mansoni prevalence was conducted in Burundi to determine the feasibility of moving toward elimination. A countrywide cluster-randomized cross-sectional study was performed in May 2014. At least 25 schools were sampled from each of five eco-epidemiological risk zones for schistosomiasis. Fifty randomly selected children 13-14 years of age per school were included for a single urine-circulating cathodic antigen (CCA) rapid test and, in a subset of schools, for duplicate Kato-Katz slides preparation from a single stool sample. A total of 17,331 children from 347 schools were tested using CCA. The overall prevalence of S. mansoni infection, when CCA trace results were considered negative, was 13.5% (zone range [zr] = 4.6-17.8%), and when CCA trace results were considered positive, it was 42.8% (zr = 34.3-49.9%). In 170 schools, prevalence of this infection determined using Kato-Katz method was 1.5% (zr ==0-2.7%). The overall mean intensity of S. mansoni infection determined using Kato-Katz was 0.85 eggs per gram (standard deviation = 10.86). A majority of schools (84%) were classified as non-endemic (prevalence = 0) using Kato-Katz; however, a similar proportion of schools were classified as endemic when CCA trace results were considered negative (85%) and nearly all (98%) were endemic when CCA trace results were considered positive. The findings of this nationwide reassessment using CCA rapid test indicate that Schistosoma infection is still widespread in Burundi, although its average intensity is probably low. Further evidence is now needed to determine the association between CCA rapid test positivity and low-intensity disease transmission.

  6. CCA Newsletters

    Science.gov (United States)

    ... meck's match play - horseheads, NY brings wonder to students - all the way for cca - craniofacial acceptance month CCA 2014 Issue 1 Newsletter - message from the executive director - chocolate festival - friends of jeremy - lily's dinner - pete's oktoberfest - ...

  7. Validation of a Point-of-Care Circulating Cathodic Antigen Urine Cassette Test for Schistosoma mansoni Diagnosis in the Sahel, and Potential Cross-Reaction in Pregnancy.

    Science.gov (United States)

    Greter, Helena; Krauth, Stefanie J; Ngandolo, Bongo N R; Alfaroukh, Idriss O; Zinsstag, Jakob; Utzinger, Jürg

    2016-02-01

    On the shores of Lake Chad, schistosomiasis among mobile pastoralists was investigated in a field laboratory. Point-of-care circulating cathodic antigen (POC-CCA) cassette test, reagent strip, and filtration were conducted on urine samples. Fresh stool samples were subjected to the Kato-Katz technique, and fixed samples were examined with an ether-concentration method at a reference laboratory. POC-CCA urine cassette tests revealed a Schistosoma mansoni prevalence of 6.9%, compared with only 0.5% by stool microscopy. Three pregnant women with otherwise negative urine and stool testing had positive POC-CCA. This observation raises concern of cross-reactivity in pregnancy. Hence, two pregnant women in Switzerland with no history of schistosomiasis were subjected to POC-CCA and one tested positive. Our data suggest that POC-CCA can be performed under extreme Sahelian conditions (e.g., temperatures > 40°C), and it is more sensitive than stool microscopy for S. mansoni diagnosis. However, potential cross-reactivity in pregnancy needs further investigation.

  8. Evaluation of banked urine samples for the detection of circulating anodic and cathodic antigens in Schistosoma mekongi and S. japonicum infections: a proof-of-concept study.

    Science.gov (United States)

    van Dam, Govert J; Odermatt, Peter; Acosta, Luz; Bergquist, Robert; de Dood, Claudia J; Kornelis, Dieuwke; Muth, Sinuon; Utzinger, Jürg; Corstjens, Paul L A M

    2015-01-01

    In Asia, Schistosoma japonicum is the predominant schistosome species, while Schistosoma mekongi is confined to limited foci in Cambodia and Lao People's Democratic Republic. While the People's Republic of China has been successful in controlling schistosomiasis, the disease remains a major public health issue in other areas. In order to prioritise intervention areas, not only accurate diagnosis is important but also other factors, such as practicality, time-efficiency and cost-effectiveness, since they strongly influence the success of control programmes. To evaluate the highly specific urine-based assays for the schistosome circulating cathodic antigen (CCA) and the circulating anodic antigen (CAA), banked urine samples from Cambodia (n=106) and the Philippines (n=43) were examined by the upconverted phosphor lateral flow (UCP-LF) CAA assay and the point-of-care (POC)-CCA urine assay. Based on 250 μl urine samples, UCP-LF CAA sensitivity outcomes surpassed a single stool examination by the Kato-Katz technique. The banked urine samples in the current study did not allow the evaluation of larger volumes, which conceivably should deliver considerably higher readings. The sensitivity of a single urine POC-CCA was in the same order as that of a single Kato-Katz thick smear examination, while the sensitivity approached that of triplicate Kato-Katz when a combination of both CAA and CCA assays was used. The promising results from the current proof-of-concept study call for larger investigations that will determine the accuracy of the urine-based CCA and CAA assays for S. mekongi and S. japonicum diagnosis.

  9. Sensitivity and Specificity of Multiple Kato-Katz Thick Smears and a Circulating Cathodic Antigen Test for Schistosoma mansoni Diagnosis Pre- and Post-repeated-Praziquantel Treatment

    Science.gov (United States)

    Lamberton, Poppy H. L.; Kabatereine, Narcis B.; Oguttu, David W.; Fenwick, Alan; Webster, Joanne P.

    2014-01-01

    Background Two Kato-Katz thick smears (Kato-Katzs) from a single stool are currently recommended for diagnosing Schistosoma mansoni infections to map areas for intervention. This ‘gold standard’ has low sensitivity at low infection intensities. The urine point-of-care circulating cathodic antigen test (POC-CCA) is potentially more sensitive but how accurately they detect S. mansoni after repeated praziquantel treatments, their suitability for measuring drug efficacy and their correlation with egg counts remain to be fully understood. We compared the accuracies of one to six Kato-Katzs and one POC-CCA for the diagnosis of S. mansoni in primary-school children who have received zero to ten praziquantel treatments. We determined the impact each diagnostic approach may have on monitoring and evaluation (M&E) and drug-efficacy findings. Method/Principle Findings In a high S. mansoni endemic area of Uganda, three days of consecutive stool samples were collected from primary school-aged children (six - 12 years) at five time-points in year one: baseline, one-week-post-, four-weeks-post-, six-months-post-, and six-months-one-week-post-praziquantel and three time-points in years two and three: pre-, one-week-post- and four-weeks-post-praziquantel-treatment/retreatment (n = 1065). Two Kato-Katzs were performed on each stool. In parallel, one urine sample was collected and a single POC-CCA evaluated per child at each time-point in year one (n = 367). At baseline, diagnosis by two Kato-Katzs (sensitivity = 98.6%) or one POC-CCA (sensitivity = 91.7%, specificity = 75.0%) accurately predicted S. mansoni infections. However, one year later, a minimum of three Kato-Katzs, and two years later, five Kato-Katzs were required for accurate diagnosis (sensitivity >90%) and drug-efficacy evaluation. The POC-CCA was as sensitive as six Kato-Katzs four-weeks-post and six-months-post-treatment, if trace readings were classified as positive. Conclusions

  10. Sensitivity and specificity of multiple Kato-Katz thick smears and a circulating cathodic antigen test for Schistosoma mansoni diagnosis pre- and post-repeated-praziquantel treatment.

    Directory of Open Access Journals (Sweden)

    Poppy H L Lamberton

    2014-09-01

    Full Text Available Two Kato-Katz thick smears (Kato-Katzs from a single stool are currently recommended for diagnosing Schistosoma mansoni infections to map areas for intervention. This 'gold standard' has low sensitivity at low infection intensities. The urine point-of-care circulating cathodic antigen test (POC-CCA is potentially more sensitive but how accurately they detect S. mansoni after repeated praziquantel treatments, their suitability for measuring drug efficacy and their correlation with egg counts remain to be fully understood. We compared the accuracies of one to six Kato-Katzs and one POC-CCA for the diagnosis of S. mansoni in primary-school children who have received zero to ten praziquantel treatments. We determined the impact each diagnostic approach may have on monitoring and evaluation (M&E and drug-efficacy findings.In a high S. mansoni endemic area of Uganda, three days of consecutive stool samples were collected from primary school-aged children (six - 12 years at five time-points in year one: baseline, one-week-post-, four-weeks-post-, six-months-post-, and six-months-one-week-post-praziquantel and three time-points in years two and three: pre-, one-week-post- and four-weeks-post-praziquantel-treatment/retreatment (n = 1065. Two Kato-Katzs were performed on each stool. In parallel, one urine sample was collected and a single POC-CCA evaluated per child at each time-point in year one (n = 367. At baseline, diagnosis by two Kato-Katzs (sensitivity = 98.6% or one POC-CCA (sensitivity = 91.7%, specificity = 75.0% accurately predicted S. mansoni infections. However, one year later, a minimum of three Kato-Katzs, and two years later, five Kato-Katzs were required for accurate diagnosis (sensitivity >90% and drug-efficacy evaluation. The POC-CCA was as sensitive as six Kato-Katzs four-weeks-post and six-months-post-treatment, if trace readings were classified as positive.Six Kato-Katzs (two/stool from three stools and/or one POC-CCA are required

  11. A Latent Markov Modelling Approach to the Evaluation of Circulating Cathodic Antigen Strips for Schistosomiasis Diagnosis Pre- and Post-Praziquantel Treatment in Uganda

    Science.gov (United States)

    Koukounari, Artemis; Donnelly, Christl A.; Moustaki, Irini; Tukahebwa, Edridah M.; Kabatereine, Narcis B.; Wilson, Shona; Webster, Joanne P.; Deelder, André M.; Vennervald, Birgitte J.; van Dam, Govert J.

    2013-01-01

    Regular treatment with praziquantel (PZQ) is the strategy for human schistosomiasis control aiming to prevent morbidity in later life. With the recent resolution on schistosomiasis elimination by the 65th World Health Assembly, appropriate diagnostic tools to inform interventions are keys to their success. We present a discrete Markov chains modelling framework that deals with the longitudinal study design and the measurement error in the diagnostic methods under study. A longitudinal detailed dataset from Uganda, in which one or two doses of PZQ treatment were provided, was analyzed through Latent Markov Models (LMMs). The aim was to evaluate the diagnostic accuracy of Circulating Cathodic Antigen (CCA) and of double Kato-Katz (KK) faecal slides over three consecutive days for Schistosoma mansoni infection simultaneously by age group at baseline and at two follow-up times post treatment. Diagnostic test sensitivities and specificities and the true underlying infection prevalence over time as well as the probabilities of transitions between infected and uninfected states are provided. The estimated transition probability matrices provide parsimonious yet important insights into the re-infection and cure rates in the two age groups. We show that the CCA diagnostic performance remained constant after PZQ treatment and that this test was overall more sensitive but less specific than single-day double KK for the diagnosis of S. mansoni infection. The probability of clearing infection from baseline to 9 weeks was higher among those who received two PZQ doses compared to one PZQ dose for both age groups, with much higher re-infection rates among children compared to adolescents and adults. We recommend LMMs as a useful methodology for monitoring and evaluation and treatment decision research as well as CCA for mapping surveys of S. mansoni infection, although additional diagnostic tools should be incorporated in schistosomiasis elimination programs. PMID:24367250

  12. A latent Markov modelling approach to the evaluation of circulating cathodic antigen strips for schistosomiasis diagnosis pre- and post-praziquantel treatment in Uganda.

    Directory of Open Access Journals (Sweden)

    Artemis Koukounari

    Full Text Available Regular treatment with praziquantel (PZQ is the strategy for human schistosomiasis control aiming to prevent morbidity in later life. With the recent resolution on schistosomiasis elimination by the 65th World Health Assembly, appropriate diagnostic tools to inform interventions are keys to their success. We present a discrete Markov chains modelling framework that deals with the longitudinal study design and the measurement error in the diagnostic methods under study. A longitudinal detailed dataset from Uganda, in which one or two doses of PZQ treatment were provided, was analyzed through Latent Markov Models (LMMs. The aim was to evaluate the diagnostic accuracy of Circulating Cathodic Antigen (CCA and of double Kato-Katz (KK faecal slides over three consecutive days for Schistosoma mansoni infection simultaneously by age group at baseline and at two follow-up times post treatment. Diagnostic test sensitivities and specificities and the true underlying infection prevalence over time as well as the probabilities of transitions between infected and uninfected states are provided. The estimated transition probability matrices provide parsimonious yet important insights into the re-infection and cure rates in the two age groups. We show that the CCA diagnostic performance remained constant after PZQ treatment and that this test was overall more sensitive but less specific than single-day double KK for the diagnosis of S. mansoni infection. The probability of clearing infection from baseline to 9 weeks was higher among those who received two PZQ doses compared to one PZQ dose for both age groups, with much higher re-infection rates among children compared to adolescents and adults. We recommend LMMs as a useful methodology for monitoring and evaluation and treatment decision research as well as CCA for mapping surveys of S. mansoni infection, although additional diagnostic tools should be incorporated in schistosomiasis elimination programs.

  13. Evaluation of urine CCA assays for detection of Schistosoma mansoni infection in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Hillary L Shane

    Full Text Available Although accurate assessment of the prevalence of Schistosoma mansoni is important for the design and evaluation of control programs, the most widely used tools for diagnosis are limited by suboptimal sensitivity, slow turn-around-time, or inability to distinguish current from former infections. Recently, two tests that detect circulating cathodic antigen (CCA in urine of patients with schistosomiasis became commercially available. As part of a larger study on schistosomiasis prevalence in young children, we evaluated the performance and diagnostic accuracy of these tests--the carbon test strip designed for use in the laboratory and the cassette format test intended for field use. In comparison to 6 Kato-Katz exams, the carbon and cassette CCA tests had sensitivities of 88.4% and 94.2% and specificities of 70.9% and 59.4%, respectively. However, because of the known limitations of the Kato-Katz assay, we also utilized latent class analysis (LCA incorporating the CCA, Kato-Katz, and schistosome-specific antibody results to determine their sensitivities and specificities. The laboratory-based CCA test had a sensitivity of 91.7% and a specificity of 89.4% by LCA while the cassette test had a sensitivity of 96.3% and a specificity of 74.7%. The intensity of the reaction in both urine CCA tests reflected stool egg burden and their performance was not affected by the presence of soil transmitted helminth infections. Our results suggest that urine-based assays for CCA may be valuable in screening for S. mansoni infections.

  14. Evaluation of the CCA Immuno-Chromatographic Test to Diagnose Schistosoma mansoni in Minas Gerais State, Brazil.

    Directory of Open Access Journals (Sweden)

    Alda Maria Soares Silveira

    2016-01-01

    Full Text Available The Kato-Katz (KK stool smear is the standard test for the diagnosis of Schistosoma mansoni infection, but suffers from low sensitivity when infections intensities are moderate to low. Thus, misdiagnosed individuals remain untreated and contribute to the disease transmission, thereby forestalling public health efforts to move from a modality of disease control to one of elimination. As an alternative, the urine-based diagnosis of schistosomiasis mansoni via the circulating cathodic antigen immuno-chromatographic test (CCA-ICT has been extensively evaluated in Africa with the conclusion that it may replace the KK test in areas where prevalences are moderate or high.The objective was to measure the performance of the CCA-ICT in a sample study population composed of residents from non-endemic and endemic areas for schistosomiasis mansoni in two municipalities of Minas Gerais state, Brazil. Volunteers (130 were classified into three infection status groups based on duplicate Kato-Katz thick smears from one stool sample (2KK test: 41 negative individuals from non-endemic areas, 41 negative individuals from endemic areas and 48 infected individuals from endemic areas. Infection status was also determined by the CCA-ICT and infection exposure by antibody ELISA (enzyme-linked immunosorbent assay to S. mansoni soluble egg antigen (SEA and soluble (adult worm antigen preparation (SWAP. Sensitivity and specificity were influenced by whether the trace score visually adjudicated in the CCA-ICT was characterized as positive or negative for S. mansoni infection. An analysis of a two-graph receiver operating characteristic was performed to change the cutoff point. When the trace score was interpreted as a positive rather than as a negative result, the specificity decreased from 97.6% to 78.0% whereas sensitivity increased from 68.7% to 85.4%. A significantly positive correlation between the CCA-ICT scores and egg counts was identified (r = 0.6252, p = 0

  15. Improvement of POC-CCA Interpretation by Using Lyophilization of Urine from Patients with Schistosoma mansoni Low Worm Burden: Towards an Elimination of Doubts about the Concept of Trace

    Science.gov (United States)

    Coelho, Paulo Marcos Zech; Siqueira, Liliane Maria Vidal; Grenfell, Rafaella Fortini Queiroz; Almeida, Nathalie Bonatti Franco; Katz, Naftale; Almeida, Áureo; Carneiro, Nídia Francisca de Figueiredo; Oliveira, Edward

    2016-01-01

    Background Accurate diagnostic techniques for schistosomiasis are essential for prevalence determination and identification of positive patients. A point-of-care test for detecting schistosome circulating cathodic antigen (POC-CCA) has been evaluated for its accuracy in different endemic regions. This reagent strip/dipstick based assay has showed high sensitivity for individuals with high or moderate worm burden, but the interpretation of light infections is less clear, especially for trace readings. Methodology/Principal Findings We introduced a urine lyophilization step to the POC-CCA assay to improve its sensitivity and clarify the interpretation of traces. We evaluated POC-CCA sensitivity and specificity within individuals with low parasite burdens in a Brazilian endemic area where a high number of traces were detected. Patients that were positive for other helminths were also evaluated for cross reactions. In all cases, a combined parasitological diagnosis using Kato-Katz (24 slides) and Saline Gradient (1 g of feces) were used as reference. At baseline, diagnosis by POC-CCA (1–2 cassettes) showed 6% sensitivity, inaccurately predicting a low prevalence of Schistosoma mansoni infections (2 POC-CCA positives/32 egg positives). After urine lyophilization, the sensitivity was increased significantly (p < 0.05). Prevalence rates changed from 2% to 32% (27 POC-CCA positives/32 egg positives), equivalent to parasitological techniques. Most of the trace readings changed to positive after lyophilization while some negatives turned into traces. Cross reaction analysis confirmed the specificity of POC-CCA. Conclusions/Significance Trace readings cannot be primarily defined as positive or negative cases. It is critical to verify case-by-case by concentrating urine 10 fold by lyophilization for the diagnosis. Following lyophilization, persistent trace readings should be read as negatives. No trained technician is needed and cost is restricted to the cost of a

  16. Improvement of POC-CCA Interpretation by Using Lyophilization of Urine from Patients with Schistosoma mansoni Low Worm Burden: Towards an Elimination of Doubts about the Concept of Trace.

    Directory of Open Access Journals (Sweden)

    Paulo Marcos Zech Coelho

    2016-06-01

    Full Text Available Accurate diagnostic techniques for schistosomiasis are essential for prevalence determination and identification of positive patients. A point-of-care test for detecting schistosome circulating cathodic antigen (POC-CCA has been evaluated for its accuracy in different endemic regions. This reagent strip/dipstick based assay has showed high sensitivity for individuals with high or moderate worm burden, but the interpretation of light infections is less clear, especially for trace readings.We introduced a urine lyophilization step to the POC-CCA assay to improve its sensitivity and clarify the interpretation of traces. We evaluated POC-CCA sensitivity and specificity within individuals with low parasite burdens in a Brazilian endemic area where a high number of traces were detected. Patients that were positive for other helminths were also evaluated for cross reactions. In all cases, a combined parasitological diagnosis using Kato-Katz (24 slides and Saline Gradient (1 g of feces were used as reference. At baseline, diagnosis by POC-CCA (1-2 cassettes showed 6% sensitivity, inaccurately predicting a low prevalence of Schistosoma mansoni infections (2 POC-CCA positives/32 egg positives. After urine lyophilization, the sensitivity was increased significantly (p < 0.05. Prevalence rates changed from 2% to 32% (27 POC-CCA positives/32 egg positives, equivalent to parasitological techniques. Most of the trace readings changed to positive after lyophilization while some negatives turned into traces. Cross reaction analysis confirmed the specificity of POC-CCA.Trace readings cannot be primarily defined as positive or negative cases. It is critical to verify case-by-case by concentrating urine 10 fold by lyophilization for the diagnosis. Following lyophilization, persistent trace readings should be read as negatives. No trained technician is needed and cost is restricted to the cost of a lyophilizer and the electricity to run it.

  17. Diagnosis of Schistosomiasis by reagent strip test for detection of circulating cathodic antigen

    NARCIS (Netherlands)

    Dam, van G.J.; Wichers, J.H.; Falcao Ferreira, T.M.; Ghati, D.; Amerongen, van A.; Deelder, A.M.

    2004-01-01

    A newly developed reagent strip assay for the diagnosis of schistosomiasis based on parasite antigen detection in urine of infected individuals was evaluated. The test uses the principle of lateral flow through a nitrocellulose strip of the sample mixed with a colloidal carbon conjugate of a monoclo

  18. Main: CCA1ATLHCB1 [PLACE

    Lifescience Database Archive (English)

    Full Text Available CCA1ATLHCB1 S000149 10-May-1998 (last modified) kehi CCA1 binding site; CCA1 protei...n (myb-related transcription factor) interact with two imperfect repeats of AAMAATCT in Lhcb1*3 gene of Arab

  19. SYNERGISTIC WOOD PRESERVATIVES FOR REPLACEMENT OF CCA

    Science.gov (United States)

    The objective of this project was to evaluate the potential synergistic combinations of environmentally-safe biocides as wood preservatives. These wood preservatives could be potential replacements for the heavy-metal based CCA.Didecyldimethylammonium chloride [DDAC] was...

  20. Understanding the CCA Standard Through Decaf

    Energy Technology Data Exchange (ETDEWEB)

    Kumfert, G

    2003-04-17

    This document is a tutorial on the CCA Standard as realized through the Decaf implementation. Decaf does not equal the CCA standard much in the same way that Microsoft Visual C++ is not ANSI/ISO C++. This document was created because the CCA standard is evolving and still too fluid to nail down in a tutorial document. Because of its fluidity, and that it represents a hotbed of research and development, beginners can only start learning CCA by choosing one of the frameworks (warts and all). Decaf has just enough functionality to be a useful tool for beginners in the CCA to get started on. Though it lacks many features of the bigger CCA frameworks (CCAFE [3], XCAT [10], and SciRUN [8]) where the heavy-duty research is still going on, it is the first CCA framework that is underpinned by Babel, which provides its language interoperability features. This document can also serve the dual-purpose of providing a reasonable-sized example of building an application using Babel. The entire source for Decaf is included in the examples/subdirectory of the Babel code distribution. This manual assumes the reader is a programmer who has a conceptual understanding of the Babel Language Interoperability Tool. They should be proficient in two or more of the following languages: Fortran77, C, C++, Java, or Python. Furthermore, this manual assumes the reader is familiar with the SPMD{sup 2} programming model that pervades the scientific computing community. Knowledge of and experience with MPI programming is helpful, but not strictly required.

  1. PRESERVATIVE LEACHING FROM WEATHERED CCA-TREATED WOOD

    Science.gov (United States)

    Disposal of discarded CCA-treated wood in landfills raises concerns with respect to leaching of preservative compounds. When unweathered CCA-treated wood is leached using the toxicity characteristic leaching procedure (TCLP), arsenic concentrations exceed the toxicity characteris...

  2. Performance Evaluation of LDA, CCA and AAM

    Directory of Open Access Journals (Sweden)

    M. Jasmine Pemeena Priyadarsini

    2015-03-01

    Full Text Available Wouldn't we love to replace passwords access control to avoid theft, forgotten passwords? Wouldn't we like to enter the security areas just in seconds? Yes the answer is face recognition. In this study we explore and compare the performance of three algorithms namely LDA, CCA, AAM. LDA (an evolution of PCA is a dimensionality reduction technique where it solves the problem of illumination to some extent, maximizing the inter class separation and minimizing the intra class variations. CCA, a measure of linear relationship between two multidimensional variables where it takes the advantage of PCA and LDA for maximizing the correlation and better performance. AAM is a model based approach where it just picks the landmarks of the images for recognition therefore reducing the error rate and producing good performance rate.

  3. Circulating Antigens Levels in Different Clinical Forms of the Schistosoma mansoni Infection

    Directory of Open Access Journals (Sweden)

    Yerkes Pereira e Silva

    1999-01-01

    Full Text Available With the aim to evaluate the circulating cathodic antigen (CCA levels in relation to the different clinical phases of Schistosoma sp. infection a sandwich ELISA using monoclonal antibody 5H11 was performed. The sera of three groups of 25 Brazilian patients with acute, intestinal and hepatosplenic forms of S. mansoni infection were tested and compared to a non-infected control group. Patients and control groups were matched for age and sex and the number of eggs per gram of feces was equally distributed among the three patient groups. Sensitivity of 100%, 72%, 52% of the assay was observed for the intestinal, hepatosplenic and acute toxemic groups respectively. The specificity was 100%. Intestinal and hepatosplenic groups presented CCA levels significantly higher in comparison to those observed for acute patients (F-ratio = 2,524; p = 0.000 and F-ratio = 6,314; p = 0.015 respectively. There was no significant difference of CCA serum levels between hepatosplenic and intestinal groups (F-ratio = 1,026; p = 0.316.

  4. Electrodialytic remediation of CCA treated waste wood in pilot scale

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Christensen, Iben Vernegren; Ottosen, Lisbeth M.;

    2005-01-01

    When CCA (Chromated Copper Arsenate) treated wood is removed from service and turns into waste, the contents of Cu, Cr and As is still high due to the strong fixation of CCA in the wood. This high content of toxic compounds presents a disposal challenge. Incineration of CCA treated waste wood...... study the utility of the method Electrodialytic Remediation was demonstrated for handling of CCA treated waste wood in pilot scale. The electrodialytic remediation method, which uses a low level DC current as the cleaning agent, combines elektrokinetic movement of ions in the wood matrix with the princi...

  5. [Isolation and physico-chemical characteristics of human cancerocerebral antigen].

    Science.gov (United States)

    Prokopenko, P G; Borisenko, S A; Tatarinov, Iu S

    1984-01-01

    During gel filtration on Sephadex G-200 human cancerocerebral antigen (CCA) was eluted as two protein fractions with molecular mass of 135,000 and 270.000 daltons. Only one band of protein with molecular mass of about 15,000 daltons was noted after electrophoresis in 10% polyacrylamide gel containing SDS. As characteristic properties of CCA were recognized an electrophoretic polymorphism and a distinct trend to polymerization and isomeria. The antigen was not stained with dyes designed for staining base proteins, lipo-,glyco- and ferroproteins; CCA was thermostable (5 min at 80 degrees), it was inactivated by trypsin and protease but was resistant to pronase, hexokinase, alpha-amylase and beta-glucuronidase. A procedure was developed for isolation of CCA from brain, including fractionation with ammonium sulfate, ion exchange chromatography on DEAE-Sephadex A-50. The procedure enabled to obtain the CCA preparations suitable for radioimmunological, immunobiological assays and amino acid analyses.

  6. A novel carbohydrate antigen expression during development of Opisthorchis viverrini- associated cholangiocarcinoma in golden hamster: a potential marker for early diagnosis.

    Science.gov (United States)

    Sawanyawisuth, Kanlayanee; Silsirivanit, Atit; Kunlabut, Kunlathida; Tantapotinan, Nattawat; Vaeteewoottacharn, Kulthida; Wongkham, Sopit

    2012-03-01

    Poor prognosis of cholangiocarcinoma (CCA) is primarily due to delayed diagnosis because of the lack of appropriate tumor marker(s) to detect cancer development at an early stage. We have recently established a S121 monoclonal antibody (mAb) which recognizes an unidentified glycan epitope on MUC5AC, designated as CCA-associated carbohydrate antigen (CCA-CA). This antigen is expressed in human CCA cells but not in normal biliary epithelia. Detection of CCA-CA effectively distinguished CCA patients' sera from normal control sera with high specificity and sensitivity. In the present study, we examined a time profile of the expression of CCA-CA by immunohistochemical methods in the liver tissues of Opisthorchis viverrini (Ov)-associated CCA in a hamster model. Hamsters were divided into four groups; non-treated, Ov infected, NDMA (N-nitrosodimethamine) treated and Ov+NDMA treated groups, and animals from each group were euthanized at 1, 3 and 6 months post-treatment. CCA-CA was not detected in normal biliary cells of non-treated hamsters throughout the course of experiment. CCA-CA became detectable in the cytoplasm and apical surface of biliary cells of the NDMA and Ov+NDMA groups at early stage (1 month) of tumor development and increased with tumor progression. In contrast, CCA-CA was detected as nuclear staining at the 1 month post Ov infection and declined thereafter. These results suggest the possibility of CCA-CA as an early marker for CCA.

  7. Cathodic arcs

    OpenAIRE

    Anders, Andre

    2003-01-01

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas stand out due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bia...

  8. Detection of salivary antibodies to crude antigens of Opisthorchis viverrini in opisthorchiasis and cholangiocarcinoma patients.

    Science.gov (United States)

    Chaiyarit, Ponlatham; Sithithaworn, Paiboon; Thuwajit, Chanitra; Yongvanit, Puangrat

    2011-08-01

    Opisthorchis viverrini (O. viverrini; known as human liver fluke) is a major health problem in the northeastern region of Thailand. Infection with O. viverrini is the cause of hepatobiliary disease and cholangiocarcinoma (CCA). Previous studies demonstrated specific antibodies to crude O. viverrini antigens in serum from O. viverrini-infected patients. However, no studies have measured specific antibodies to O. viverrini antigens in saliva from patients with opisthorchiasis and CCA. The objective of the study was to detect specific antibodies to crude O. viverrini antigens in saliva from patients with opisthorchiasis and CCA, and to evaluate their use for diagnosis of O. viverrini infection. Saliva samples from 23 control subjects, 30 opisthorchiasis patients, and 38 CCA patients were collected. ELISA was established for detection of salivary IgA and IgG to crude O. viverrini antigens. ANOVA was used to compare salivary IgA and IgG levels among groups. Salivary IgA to crude O. viverrini antigens in CCA patients was significantly higher than controls (p = 0.007). Salivary IgG in CCA patients was significantly higher than opisthorchiasis patients and controls (p = 0.010 and p viverrini infection than salivary IgA. In conclusion, specific antibodies to crude O. viverrini antigens were detected in saliva of patients with opisthorchiasis and CCA. Salivary antibodies reflect serum immune response to O. viverrini infection, and salivary IgG tends to be a good candidate for diagnosis of O. viverrini infection.

  9. Isolation and specific detection of two major schistosoma gut-associated circulating antigens%血吸虫肠相关循环抗原组分CAA和CCA的纯化与特异检测

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    目的为探讨血吸虫肠相关循环抗原CAA与CCA诊断靶微粒上表位特异性的差别,并试探获取其纯化制品用于定量检测的标准系列。 方法对两组分进行了亲和层析及阴离子交换剂高压液相纯化分离,并应用单抗检测系统进行同相和异相交互测试。 结果 Mono-Q HPLC梯度洗脱分离AWAj-TCA可溶组分,可获得一个带阳离子活性的非结合CCA-1峰及3个大小不等的,带阳离子活性的CCA-2,CCA-3,CCA-4非结合洗脱峰,以及一个带阴离子活性CAA-1洗脱峰。CAA活性峰在峰谱上与CCA-3有部分重叠。与单抗亲和层析纯品的活性对比测定显示CCA-1与CCA-2为该组分的主要构成,但CCA-2及CAA-1在本实验条件下均有微量的相互杂染。同相和异相双位点ELISA的4种组合交互检测,展示CCA只能在捕获与检测抗体同为抗CCA单抗的一种组合中被检示,而另3种组合都只能测出CAA组分。 结论血吸虫肠相关CCA组分为一兼含两性电荷的分子混合体;而CAA分子上具有一个可被抗CCA单抗识别的活性表位位点,从而可能影响纯化分离和特异检测。%Objectives To investigate the nature of the common epitopes of Schistosoma japonicum (S. japonicum) circulating anodic (CAA) and circulating cathodic antigen (CCA) and to try to obtain sufficient purified material to set up a standard series for quantitative determinations. Methods Isolation of the two worm fractions from a trichloroacetic acid (TCA) soluble preparation of S. japonicum adult worm antigen (AWAj-TCA) via Mono-Q anion exchange chromatography was performed and analysis of specific reactivity of the eluted fractions was done by antigen-capture Enzyme Linked Immuno Sorbent Assay (ELISA) specific for CAA or CCA with reference to affinity purified preparations of S. mansoni CAA and CCA. Results When an ionic strength gradient was used, CCA was eluted in two major peaks, an unbound

  10. Electrolytic arsenic removal for recycling of washing solutions in a remediation process of CCA-treated wood.

    Science.gov (United States)

    Nanseu-Njiki, Charles-Péguy; Alonzo, Véronique; Bartak, Duane; Ngameni, Emmanuel; Darchen, André

    2007-10-01

    The remediation of chromated copper arsenate or CCA-treated wood is a challenging problem in many countries. In a wet remediation, the recycling of the washing solutions is the key step for a successful process. Within this goal, owing to its solubility and its toxicity, the removal of arsenic from washing solution is the most difficult process. The efficiency of arsenic removal from As(III) solutions by electrolysis was investigated in view of the recycling of acidic washing solutions usable in the remediation of CCA-treated wood. Electrochemical reduction of As(III) is irreversible and thus difficult to perform at carbon electrodes. However the electrolytic extraction of arsenic can be performed by the concomitant reduction of the cupric cation and arsenite anion. The cathodic deposits obtained by controlled potential electrolysis were analyzed by X-ray diffraction (XRD) and energy dispersive X-ray microanalysis. XRD diffraction data indicated that these deposits were mixtures of copper and copper arsenides Cu(3)As and Cu(5)As(2). Electrolysis was carried out in an undivided cell with graphite cathode and copper anode, under a controlled nitrogen atmosphere. The evolution of arsine gas AsH(3) was not observed under these conditions.

  11. Cathodic arcs

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  12. LWD–TCP complex activates the morning gene CCA1 in Arabidopsis

    Science.gov (United States)

    Wu, Jing-Fen; Tsai, Huang-Lung; Joanito, Ignasius; Wu, Yi-Chen; Chang, Chin-Wen; Li, Yi-Hang; Wang, Ying; Hong, Jong Chan; Chu, Jhih-Wei; Hsu, Chao-Ping; Wu, Shu-Hsing

    2016-01-01

    A double-negative feedback loop formed by the morning genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) and the evening gene TIMING OF CAB EXPRESSION1 (TOC1) contributes to regulation of the circadian clock in Arabidopsis. A 24-h circadian cycle starts with the peak expression of CCA1 at dawn. Although CCA1 is targeted by multiple transcriptional repressors, including PSEUDO-RESPONSE REGULATOR9 (PRR9), PRR7, PRR5 and CCA1 HIKING EXPEDITION (CHE), activators of CCA1 remain elusive. Here we use mathematical modelling to infer a co-activator role for LIGHT-REGULATED WD1 (LWD1) in CCA1 expression. We show that the TEOSINTE BRANCHED 1-CYCLOIDEA-PCF20 (TCP20) and TCP22 proteins act as LWD-interacting transcriptional activators. The concomitant binding of LWD1 and TCP20/TCP22 to the TCP-binding site in the CCA1 promoter activates CCA1. Our study reveals activators of the morning gene CCA1 and provides an action mechanism that ensures elevated expression of CCA1 at dawn to sustain a robust clock. PMID:27734958

  13. A pilot study of children's exposure to CCA-treated wood from playground equipment.

    Science.gov (United States)

    Shalat, S L; Solo-Gabriele, H M; Fleming, L E; Buckley, B T; Black, K; Jimenez, M; Shibata, T; Durbin, M; Graygo, J; Stephan, W; Van De Bogart, G

    2006-08-15

    Arsenic from chromated copper arsenate (CCA)-treated wood, widely used in playgrounds and other outdoor equipment, can persist as surface residues on wood. This raises concerns about possible health risks associated with children playing on CCA-treated playgrounds. In a Pilot Study, 11 children (13-71 months) in homes with and without CCA-treated playgrounds were evaluated with post-exposure hand rinses and urine for total arsenic. Samples of wood, soil, and mulch, as well as synthetic wipes, were sampled for total arsenic. In non-CCA-treated playgrounds vs. CCA-treated playgrounds, respectively, wood arsenic was soil arsenic was playground was 0.4 mg/kg vs. two CCA-treated playgrounds of 0.6 and 69 mg/kg. The arsenic removed using a synthetic wipe at non-CCA-treated playgrounds was playgrounds was playgrounds. Mean urinary total arsenic levels were 13.6 pg/ml (range 7.2-23.1 pg/ml) for all children evaluated, but there was no association between access to CCA-playgrounds and urinary arsenic levels. Arsenic speciation was not performed. This preliminary Pilot Study of CCA-treated wood playgrounds observed dislodgeable arsenic on 11 children's hands after brief periods of play exposure. Future efforts should increase the number of children and the play exposure periods, and incorporate speciation in order to discriminate between various sources of arsenic.

  14. Electron microscopic study on pyrolysis of CCA (chromium, copper and arsenic oxide)-treated wood

    NARCIS (Netherlands)

    Hata, T.; Bronsveld, P.M; Vystavel, T.; Kooi, B.J.; de Hosson, J.T.M.; Kakitani, T.; Otono, A.; Imamura, Y.

    2003-01-01

    The effectiveness of pyrolysis as a possible technique for disposing of CCA (chromium, copper and arsenic oxide)-treated wood was studied. A CCA-treated sample given an extra heat treatment at 450 degreesC for 10 min was thoroughly investigated in order to establish the details of the reaction in wh

  15. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA

    Science.gov (United States)

    Rabiul Islam, Md; Khademul Islam Molla, Md; Nakanishi, Masaki; Tanaka, Toshihisa

    2017-04-01

    Objective. Recently developed effective methods for detection commands of steady-state visual evoked potential (SSVEP)-based brain–computer interface (BCI) that need calibration for visual stimuli, which cause more time and fatigue prior to the use, as the number of commands increases. This paper develops a novel unsupervised method based on canonical correlation analysis (CCA) for accurate detection of stimulus frequency. Approach. A novel unsupervised technique termed as binary subband CCA (BsCCA) is implemented in a multiband approach to enhance the frequency recognition performance of SSVEP. In BsCCA, two subbands are used and a CCA-based correlation coefficient is computed for the individual subbands. In addition, a reduced set of artificial reference signals is used to calculate CCA for the second subband. The analyzing SSVEP is decomposed into multiple subband and the BsCCA is implemented for each one. Then, the overall recognition score is determined by a weighted sum of the canonical correlation coefficients obtained from each band. Main results. A 12-class SSVEP dataset (frequency range: 9.25–14.75 Hz with an interval of 0.5 Hz) for ten healthy subjects are used to evaluate the performance of the proposed method. The results suggest that BsCCA significantly improves the performance of SSVEP-based BCI compared to the state-of-the-art methods. The proposed method is an unsupervised approach with averaged information transfer rate (ITR) of 77.04 bits min‑1 across 10 subjects. The maximum individual ITR is 107.55 bits min‑1 for 12-class SSVEP dataset, whereas, the ITR of 69.29 and 69.44 bits min‑1 are achieved with CCA and NCCA respectively. Significance. The statistical test shows that the proposed unsupervised method significantly improves the performance of the SSVEP-based BCI. It can be usable in real world applications.

  16. Leaching from CCA-Treated Wood into Soils: Preliminary PIXE Studies

    Science.gov (United States)

    Kelly, R. F.; Kravchenko, I. I.; Kuharik, J. C.; Van Rinsvelt, H. A.; Dunnam, F. E.; Huffman, J.

    2003-08-01

    Widespread use of chromated copper arsenate (CCA) as a wood preservative has led to increasing public concern regarding possible toxic contamination of areas surrounding CCA-treated structures, e.g., decks, playground equipment, etc. Appreciable leaching of arsenic, chromium, and copper into soils adjacent to such structures has been demonstrated via standard techniques of analytical chemistry. The advantages of PIXE [rapid analysis, quick sample turnover, possible lower cost] suggest its application to this area of interest. PIXE studies in our laboratory of CCA-contaminated soil samples show good agreement with previous analyses of As, Cu, Cr, and other heavy-elemental content, with some variability in diffusion rates.

  17. CcaR is an autoregulatory protein that binds to the ccaR and cefD-cmcI promoters of the cephamycin C-clavulanic acid cluster in Streptomyces clavuligerus.

    Science.gov (United States)

    Santamarta, Irene; Rodríguez-García, Antonio; Pérez-Redondo, Rosario; Martín, Juan F; Liras, Paloma

    2002-06-01

    The putative regulatory CcaR protein, which is encoded in the beta-lactam supercluster of Streptomyces clavuligerus, has been partially purified by ammonium sulfate precipitation and heparin affinity chromatography. In addition, it was expressed in Escherichia coli, purified as a His-tagged recombinant protein (rCcaR), and used to raise anti-rCcaR antibodies. The partially purified CcaR protein from S. clavuligerus was able to bind DNA fragments containing the promoter regions of the ccaR gene itself and the bidirectional cefD-cmcI promoter region. In contrast, CcaR did not bind to DNA fragments with the promoter regions of other genes of the cephamycin-clavulanic acid supercluster including lat, blp, claR, car-cyp, and the unlinked argR gene. The DNA shifts obtained with CcaR were prevented by anti-rCcaR immunoglobulin G (IgG) antibodies but not by anti-rabbit IgG antibodies. ccaR and the bidirectional cefD-cmcI promoter region were fused to the xylE reporter gene and expressed in Streptomyces lividans and S. clavuligerus. These constructs produced low catechol dioxygenase activity in the absence of CcaR; activity was increased 1.7- to 4.6-fold in cultures expressing CcaR. Amplification of the ccaR promoter region lacking its coding sequence in a high-copy-number plasmid in S. clavuligerus ATCC 27064 resulted in a reduced production of cephamycin C and clavulanic acid, by 12 to 20% and 40 to 60%, respectively, due to titration of the CcaR regulator. These findings confirm that CcaR is a positively acting autoregulatory protein able to bind to its own promoter as well as to the cefD-cmcI bidirectional promoter region.

  18. Narrowing the broader autism phenotype: A study using the Communication Checklist - Adult Version (CC-A)

    OpenAIRE

    Whitehouse, AJ; Coon, H.; Miller, J; Salisbury, B; Bishop, DV

    2010-01-01

    This study investigated whether the Communication Checklist – Adult (CC-A) could identify subtypes of social and communication dysfunction in autism probands and their parents. The CC-A is divided into subscales measuring linguistic ability as well as two aspects of social communication: the Pragmatic Skills subscale assesses the level of pragmatic oddities (e.g., excessive talking), while the Social Engagement subscale picks up on those behaviours that reflect a more passive communication st...

  19. Children's exposure to arsenic from CCA-treated wooden decks and playground structures.

    Science.gov (United States)

    Hemond, Harold F; Solo-Gabriele, Helena M

    2004-02-01

    CCA-treated wood is widely used in the fabrication of outdoor decks and playground equipment. Because arsenic can be removed from the surface of CCA-treated wood both by physical contact and by leaching, it is important to determine whether children who play on such structures may ingest arsenic in quantities sufficient to be of public health concern. Based on a review of existing studies, it is estimated that arsenic doses in amounts of tens of micrograms per day may be incurred by children having realistic levels of exposure to CCA-treated decks and playground structures. The most important exposure pathway appears to be oral ingestion of arsenic that is first dislodged from the wood by direct hand contact, then transferred to the mouth by children's hand-to-mouth activity. The next most important pathway appears to be dermal absorption of arsenic, while ingestion of soil that has become contaminated by leaching from CCA-treated structures appears to be of lesser importance, except possibly in the case of children with pica. Considerable uncertainty, however, is associated with quantitative estimates of children's arsenic exposure from CCA-treated wood. Priorities for refining estimates of arsenic dose include detailed studies of the hand-to-mouth transfer of arsenic, studies of the dermal and gastrointestinal absorption of dislodgeable arsenic, and studies in which doses of arsenic to children playing in contact with CCA-treated wood are directly determined by measurement of arsenic in their urine, hair, and nails.

  20. Effect of different extracting solutions on the electrodialytic remediation of CCA-treated wood waste Part I. - Behaviour of Cu and Cr

    DEFF Research Database (Denmark)

    Velizarova, E.; Ribeiro, A. B.; Mateus, E.

    2004-01-01

    Removal of Cu and Cr from chromated copper arsenate (CCA)-treated wood waste under batch electrodialytic conditions was studied. The effect of different types of extracting solutions, such as deionised water or aqueous solutions of NaCl, formic acid, oxalic acid, and EDTA, on the magnitude...... and direction of the fluxes of Cu- and Cr-containing species in the electrodialytic cell was investigated. Oxalic acid was found to have the best performance if simultaneous removal of the two elements is required (removal efficiencies of 80.5% for Cu and 87.4% for Cr, respectively). A mixture of oxalic acid....... The latter were not present if EDTA was the extracting solution resulting in directing the Cu and Cr fluxes to the anode compartment. Contrary, these fluxes were exclusively to the cathode compartment if deionised water or an aqueous solution of NaCl were used. These extracting solutions proved suitable...

  1. AcEST: DK956951 [AcEST

    Lifescience Database Archive (English)

    Full Text Available VM65|CCA_DROME Circulating cathodic antigen homolog OS=Dros... 31 3.4 >sp|Q8LBB2|KING1_ARATH SNF1-related pr...FQH Sbjct: 745 NNFQH 749 >sp|Q9VM65|CCA_DROME Circulating cathodic antigen homolo

  2. Planar-Focusing Cathodes

    CERN Document Server

    Lewellen, J W

    2005-01-01

    Conventional pi-mode rf photoinjectors typically use magnetic solenoids for emittance compensation. This provides independent focusing strength, but can complicate rf power feed placement, introduce asymmetries (due to coil crossovers), and greatly increase the cost of the photoinjector. Cathode-region focusing can also provide for a form of emittance compensation. Typically this method strongly couples focusing strength to the field gradient on the cathode, however, and also requires altering the longitudinal position of the cathode to change the focusing. We propose a new method for achieving cathode-region variable-strength focusing for emittance compensation. The new method reduces the coupling to the gradient on the cathode, and does not require a change in the longitudinal position of the cathode. Expected performance for an S-band system is similar to conventional solenoid-based designs. This paper presents the results of rf cavity and beam dynamics simulations of the new design.

  3. Cathodic Protection Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs Navy design and engineering of ship and submarine impressed current cathodic protection (ICCP) systems for underwater hull corrosion control and...

  4. Role of the CCA bulge of prohead RNA of bacteriophage ø29 in DNA packaging.

    Science.gov (United States)

    Zhao, Wei; Morais, Marc C; Anderson, Dwight L; Jardine, Paul J; Grimes, Shelley

    2008-11-14

    The oligomeric ring of prohead RNA (pRNA) is an essential component of the ATP-driven DNA packaging motor of bacteriophage ø29. The A-helix of pRNA binds the DNA translocating ATPase gp16 (gene product 16) and the CCA bulge in this helix is essential for DNA packaging in vitro. Mutation of the bulge by base substitution or deletion showed that the size of the bulge, rather than its sequence, is primary in DNA packaging activity. Proheads reconstituted with CCA bulge mutant pRNAs bound the packaging ATPase gp16 and the packaging substrate DNA-gp3, although DNA translocation was not detected with several mutants. Prohead/bulge-mutant pRNA complexes with low packaging activity had a higher rate of ATP hydrolysis per base pair of DNA packaged than proheads with wild-type pRNA. Cryoelectron microscopy three-dimensional reconstruction of proheads reconstituted with a CCA deletion pRNA showed that the protruding pRNA spokes of the motor occupy a different position relative to the head when compared to particles with wild-type pRNA. Therefore, the CCA bulge seems to dictate the orientation of the pRNA spokes. The conformational changes observed for this mutant pRNA may affect gp16 conformation and/or subsequent ATPase-DNA interaction and, consequently, explain the decreased packaging activity observed for CCA mutants.

  5. CCA performance of a new source list/EZW hybrid compression algorithm

    Science.gov (United States)

    Huber, A. Kris; Budge, Scott E.; Moon, Todd K.; Bingham, Gail E.

    2001-11-01

    A new data compression algorithm for encoding astronomical source lists is presented. Two experiments in combined compression and analysis (CCA) are described, the first using simulated imagery based upon a tractable source list model, and the second using images from SPIRIT III, a spaceborne infrared sensor. A CCA system consisting of the source list compressor followed by a zerotree-wavelet residual encoder is compared to alternatives based on three other astronomical image compression algorithms. CCA performance is expressed in terms of image distortion along with relevant measures of point source detection and estimation quality. Some variations of performance with compression bit rate and point source flux are characterized. While most of the compression algorithms reduce high-frequency quantum noise at certain bit rates, conclusive evidence is not found that such denoising brings an improvement in point source detection or estimation performance of the CCA systems. The proposed algorithm is a top performer in every measure of CCA performance; the computational complexity is relatively high, however.

  6. 2D-3D Face Recognition Method Based on a Modified CCA-PCA Algorithm

    Directory of Open Access Journals (Sweden)

    Patrik Kamencay

    2014-03-01

    Full Text Available This paper presents a proposed methodology for face recognition based on an information theory approach to coding and decoding face images. In this paper, we propose a 2D-3D face-matching method based on a principal component analysis (PCA algorithm using canonical correlation analysis (CCA to learn the mapping between a 2D face image and 3D face data. This method makes it possible to match a 2D face image with enrolled 3D face data. Our proposed fusion algorithm is based on the PCA method, which is applied to extract base features. PCA feature-level fusion requires the extraction of different features from the source data before features are merged together. Experimental results on the TEXAS face image database have shown that the classification and recognition results based on the modified CCA-PCA method are superior to those based on the CCA method. Testing the 2D-3D face match results gave a recognition rate for the CCA method of a quite poor 55% while the modified CCA method based on PCA-level fusion achieved a very good recognition score of 85%.

  7. Transgenic plants expressing GLK1 and CCA1 having increased nitrogen assimilation capacity

    Science.gov (United States)

    Coruzzi, Gloria [New York, NY; Gutierrez, Rodrigo A [Santiago, CL; Nero, Damion C [Woodside, NY

    2012-04-10

    Provided herein are compositions and methods for producing transgenic plants. In specific embodiments, transgenic plants comprise a construct comprising a polynucleotide encoding CCA1, GLK1 or bZIP1, operably linked to a plant-specific promote, wherein the CCA1, GLK1 or bZIP1 is ectopically overexpressed in the transgenic plants, and wherein the promoter is optionally a constitutive or inducible promoter. In other embodiments, transgenic plants in which express a lower level of CCA1, GLK1 or bZIP1 are provided. Also provided herein are commercial products (e.g., pulp, paper, paper products, or lumber) derived from the transgenic plants (e.g., transgenic trees) produced using the methods provided herein.

  8. Potential arsenic exposures in 25 species of zoo animals living in CCA-wood enclosures.

    Science.gov (United States)

    Gress, J; da Silva, E B; de Oliveira, L M; Zhao, Di; Anderson, G; Heard, D; Stuchal, L D; Ma, L Q

    2016-05-01

    Animal enclosures are often constructed from wood treated with the pesticide chromated copper arsenate (CCA), which leaches arsenic (As) into adjacent soil during normal weathering. This study evaluated potential pathways of As exposure in 25 species of zoo animals living in CCA-wood enclosures. We analyzed As speciation in complete animal foods, dislodgeable As from CCA-wood, and As levels in enclosure soils, as well as As levels in biomarkers of 9 species of crocodilians (eggs), 4 species of birds (feathers), 1 primate species (hair), and 1 porcupine species (quills). Elevated soil As in samples from 17 enclosures was observed at 1.0-110mg/kg, and enclosures housing threatened and endangered species had As levels higher than USEPA's risk-based Eco-SSL for birds and mammals of 43 and 46mg/kg. Wipe samples of CCA-wood on which primates sit had dislodgeable As residues of 4.6-111μg/100cm(2), typical of unsealed CCA-wood. Inorganic As doses from animal foods were estimated at 0.22-7.8μg/kg bw/d. Some As levels in bird feathers and crocodilian eggs were higher than prior studies on wild species. However, hair from marmosets had 6.37mg/kg As, 30-fold greater than the reference value, possibly due to their inability to methylate inorganic As. Our data suggested that elevated As in soils and dislodgeable As from CCA-wood could be important sources of As exposure for zoo animals.

  9. A General Construction of IND-CCA2 Secure Public Key Encryption

    DEFF Research Database (Denmark)

    Kiltz, Eike; Malone-Lee, John

    2003-01-01

    We propose a general construction for public key encryption schemes that are IND-CCA2 secure in the random oracle model. We show that the scheme proposed in [1, 2] fits our general framework and moreover that our method of analysis leads to a more efficient security reduction.......We propose a general construction for public key encryption schemes that are IND-CCA2 secure in the random oracle model. We show that the scheme proposed in [1, 2] fits our general framework and moreover that our method of analysis leads to a more efficient security reduction....

  10. Role of the CCA Bulge of Prohead RNA of Bacteriophage ø29 in DNA Packaging

    OpenAIRE

    Zhao, Wei; Morais, Marc C.; Anderson, Dwight L.; Jardine, Paul J.; Grimes, Shelley

    2008-01-01

    The oligomeric ring of prohead RNA (pRNA) is an essential component of the ATP-driven DNA packaging motor of bacteriophage ø29. The A-helix of pRNA binds the DNA translocating ATPase gp16 (gene product 16) and the CCA bulge in this helix is essential for DNA packaging in vitro. Mutation of the bulge by base substitution or deletion showed that the size of the bulge, rather than its sequence, is primary in DNA packaging activity. Proheads reconstituted with CCA bulge mutant pRNAs bound the pac...

  11. Regressional modeling of electrodialytic removal of Cu, Cr and As from CCA treated timber waste

    DEFF Research Database (Denmark)

    Moreira, E.E.; Ribeiro, Alexandra B.; Mateus, Eduardo;

    2005-01-01

    Waste of wood treated with chromated copper arsenate (CCA) is expected to increase in volume over the next decades. Alternative disposal options to landfilling are becoming more attractive to study, especially those that promote re-use. The authors have studied and modeled the electrodialytic (ED......) removal of Cu, Cr and As from CCA treated timber waste. The method uses a low-level direct current as the cleaning agent, combining the electrokinetic movement of ions in the matrix with the principle of electrodialysis. The technique was tested in eight experiments using a laboratory cell on sawdust...

  12. CCA 3101/4101 Environmental Humanities: The History of a Unit through an Ecopedagogical Lens

    Science.gov (United States)

    Ryan, John Charles

    2012-01-01

    In 2011 the author taught, for the first time, the well-established unit CCA3101/4101 Environmental Humanities in the School of Communications and Arts at ECU (Edith Cowan University) in Western Australia. The unit has a 20-year history through associate professor Rod Giblett and parallels the development of the environmental humanities as a field…

  13. BIOAVAILABILITY OF ARSENIC, CHROMIUM, AND COPPER FROM CCA CONTAMINATED SOILS AND DUSTS

    Science.gov (United States)

    It is estimated that 70% of single family homes have pressure-treated wood decks or porches and 14% of playground equipment uses pressure-treated wood. This popular form of wood contains chromated copper arsenate (CCA), which is an antimicrobial pesticide and is currently underg...

  14. BIOAVAILABILITY OF ARSENIC, CHROMIUM, AND COPPER FOR CCA CONTAMINATED SOILS AND DUST

    Science.gov (United States)

    It is estimated that 70% of single family homes have pressure-treated wood decks or porches and 14% of playground equipment uses pressure-treated wood. This popular form of wood contains chromated copper arsenate (CCA), which is an antimicrobial pesticide and is currently underg...

  15. Automatically designed machine vision system for the localization of CCA transverse section in ultrasound images.

    Science.gov (United States)

    Benes, Radek; Karasek, Jan; Burget, Radim; Riha, Kamil

    2013-01-01

    The common carotid artery (CCA) is a source of important information that doctors can use to evaluate the patients' health. The most often measured parameters are arterial stiffness, lumen diameter, wall thickness, and other parameters where variation with time is usually measured. Unfortunately, the manual measurement of dynamic parameters of the CCA is time consuming, and therefore, for practical reasons, the only alternative is automatic approach. The initial localization of artery is important and must precede the main measurement. This article describes a novel method for the localization of CCA in the transverse section of a B-mode ultrasound image. The novel method was designed automatically by using the grammar-guided genetic programming (GGGP). The GGGP searches for the best possible combination of simple image processing tasks (independent building blocks). The best possible solution is represented with the highest detection precision. The method is tested on a validation database of CCA images that was specially created for this purpose and released for use by other scientists. The resulting success of the proposed solution was 82.7%, which exceeded the current state of the art by 4% while the computation time requirements were acceptable. The paper also describes an automatic method that was used in designing the proposed solution. This automatic method provides a universal approach to designing complex solutions with the support of evolutionary algorithms.

  16. A new version of code Java for 3D simulation of the CCA model

    Science.gov (United States)

    Zhang, Kebo; Xiong, Hailing; Li, Chao

    2016-07-01

    In this paper we present a new version of the program of CCA model. In order to benefit from the advantages involved in the latest technologies, we migrated the running environment from JDK1.6 to JDK1.7. And the old program was optimized into a new framework, so promoted extendibility.

  17. Advancing Coordination Between DRM and CCA in Integrated Flood Risk Management

    DEFF Research Database (Denmark)

    Jebens, Martin; Sørensen, Carlo Sass

    lack of planning and awareness. This, we argue, may be the golden opportunity to improve the national DRM-CCA integration. Past coastal risk mitigation and adaptation in Denmark only focused on structural measures. Due to a long coastline this is neither a sustainable nor an economically feasible...

  18. Fine genetic mapping of target leaf spot resistance gene cca-3 in cucumber, Cucumis sativus L

    Science.gov (United States)

    The target leaf spot (TLS) is a very important fungal disease in cucumber. In this study, we conducted fine genetic mapping of a recessively inherited resistance gene, cca-2 against TLS with 1,083 F2 plants derived from the resistant cucumber inbred line D31 and the susceptible line D5. Initial mapp...

  19. Potential arsenic exposures in 25 species of zoo animals living in CCA-wood enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Gress, J. [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 201146 (China); Soil and Water Science Department, University of Florida, Gainesville, FL 32611 (United States); Silva, E.B. da; Oliveira, L.M. de [Soil and Water Science Department, University of Florida, Gainesville, FL 32611 (United States); Zhao, Di [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 201146 (China); Anderson, G. [Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Heard, D. [Department of Small Animal Clinical Sciences, University of Florida, Gainesville, FL 32610 (United States); Stuchal, L.D. [Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611 (United States); Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611 (United States); Ma, L.Q., E-mail: lqma@ufl.edu [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 201146 (China); Soil and Water Science Department, University of Florida, Gainesville, FL 32611 (United States)

    2016-05-01

    Animal enclosures are often constructed from wood treated with the pesticide chromated copper arsenate (CCA), which leaches arsenic (As) into adjacent soil during normal weathering. This study evaluated potential pathways of As exposure in 25 species of zoo animals living in CCA-wood enclosures. We analyzed As speciation in complete animal foods, dislodgeable As from CCA-wood, and As levels in enclosure soils, as well as As levels in biomarkers of 9 species of crocodilians (eggs), 4 species of birds (feathers), 1 primate species (hair), and 1 porcupine species (quills). Elevated soil As in samples from 17 enclosures was observed at 1.0–110 mg/kg, and enclosures housing threatened and endangered species had As levels higher than USEPA's risk-based Eco-SSL for birds and mammals of 43 and 46 mg/kg. Wipe samples of CCA-wood on which primates sit had dislodgeable As residues of 4.6–111 μg/100 cm{sup 2}, typical of unsealed CCA-wood. Inorganic As doses from animal foods were estimated at 0.22–7.8 μg/kg bw/d. Some As levels in bird feathers and crocodilian eggs were higher than prior studies on wild species. However, hair from marmosets had 6.37 mg/kg As, 30-fold greater than the reference value, possibly due to their inability to methylate inorganic As. Our data suggested that elevated As in soils and dislodgeable As from CCA-wood could be important sources of As exposure for zoo animals. - Highlights: • Daily inorganic As dose from zoo animal foods was 0.22–7.8 μg/kg bw/day. • Total As concentrations in soils of zoo animal enclosures were 1.0–110 mg/kg. • Endangered zoo animals live in soils with As above USEPA Eco-SSLs for avian and mammal species. • Dislodgeable As on CCA-wood beams where primates sit was 4.6–111 μg/100 cm{sup 2}. • Marmoset hair had 6.37 mg/kg As compared to a reference value of 0.21 mg/kg.

  20. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  1. Cathodic hydrodimerization of nitroolefins

    OpenAIRE

    Michael Weßling; Hans J. Schäfer

    2015-01-01

    Nitroalkenes are easily accessible in high variety by condensation of aldehydes with aliphatic nitroalkanes. They belong to the group of activated alkenes that can be hydrodimerized by cathodic reduction. There are many olefins with different electron withdrawing groups used for cathodic hydrodimerization, but not much is known about the behaviour of the nitro group. Synthetic applications of this group could profit from the easy access to nitroolefins in large variety, the C–C bond formation...

  2. Isolation and characterization of human brain genes with (CCA){sub n} trinucleotide repeats

    Energy Technology Data Exchange (ETDEWEB)

    Longshore, J.W.; Finley, W.H.; Descartes, M. [Univ. of Alabama, Birmingham, AL (United States)] [and others

    1994-09-01

    Expansion of trinucleotide repeats has been described as a new form of mutation. To date, only the expansion of (CGG){sub n} and (CAG){sub n} repeats have been associated with disease. Expansion of (CAG){sub n} repeats has been found to cause Huntington`s disease, Kennedy`s disease, myotonic dystrophy, spinocerebellar ataxia type 1, and dentatorubral pallidoluysian atrophy. (CGG){sub n} repeat expansion has been implicated in the fragile X syndrome and FRAXE mental retardation. In an effort to identify other potential repeats as candidates for expansion, a DNA linguistics approach was used to study 10 Mb of human DNA sequences in GenBank. Our study found the (CCA){sub n} repeat and the disease-associated (CGG){sub n} and (CAG){sub n} repeats to be over-represented in the human genome. The (CCA){sub n} repeat also shares other characteristics with (CGG){sub n} and (CAG){sub n}, making it a good candidate for expansion. Trinucleotide repeat numbers in disease-associated genes are normally polymorphic in a population. Therefore, by studying genes for polymorphisms, candidate genes may be identified. Twelve sequences previously deposited in GenBank with at least five tandem copies of (CCA) were studied and no polymorphisms were found. To identify other candidate genes, a human hippocampus cDNA library was screened with a (CCA){sub 8} probe. This approach identified 19 novel expressed sequences having long tandem (CCA){sub n} repeats which are currently under investigation for polymorphisms. Genes with polymorphic repeats may serve as markers for linkage studies or as candidate genes for genetic diseases showing anticipation.

  3. Circadian regulation of chloroplastic f and m thioredoxins through control of the CCA1 transcription factor.

    Science.gov (United States)

    Barajas-López, Juan de Dios; Serrato, Antonio Jesus; Cazalis, Roland; Meyer, Yves; Chueca, Ana; Reichheld, Jean Philippe; Sahrawy, Mariam

    2011-03-01

    Chloroplastic thioredoxins f and m (TRX f and TRX m) mediate light regulation of carbon metabolism through the activation of Calvin cycle enzymes. The role of TRX f and m in the activation of Calvin cycle enzymes is best known among the TRX family. However, the discoveries of new potential targets extend the functions of chloroplastic TRXs to other processes in non-photosynthetic tissues. As occurs with numerous chloroplast proteins, their expression comes under light regulation. Here, the focus is on the light regulation of TRX f and TRX m in pea and Arabidopsis during the day/night cycle that is maintained during the subjective night. In pea (Pisum sativum), TRX f and TRX m1 expression is shown to be governed by a circadian oscillation exerted at both the transcriptional and protein levels. Binding shift assays indicate that this control probably involves the interaction of the CCA1 transcription factor and an evening element (EE) located in the PsTRX f and PsTRX m1 promoters. In Arabidopsis, among the multigene family of TRX f and TRX m, AtTRX f2 and AtTRX m2 mRNA showed similar circadian oscillatory regulation, suggesting that such regulation is conserved in plants. However, this oscillation was disrupted in plants overexpressing CCA1 (cca1-ox) or repressing CCA1 and LHY (cca1-lhy). The physiological role of the oscillatory regulation of chloroplastic TRX f and TRX m in plants during the day/night cycle is discussed.

  4. 扩增ccaR基因提高棒状链霉菌克拉维酸产量的研究%Study on application of ccaR Streptomyces clavuligerus to increase clavulanic acid production

    Institute of Scientific and Technical Information of China (English)

    左志晗; 郑津辉

    2011-01-01

    在棒状链霉菌B71-14中扩增对克拉维酸具有正调控作用的基因ccaR,构建了ccaR的重组质粒pSET152-ccaR,通过接合转移将重组质粒pSET152-ccaR转入了S.clavuligerus B71-14中,通过pSET15 2-ccaR中的attP位点整个质粒插入到S.clavuligerus B71-14基因组中的attB位点,实现了S.clavuligerus B71-14基因组DNA中增加一个拷贝ccaR基因的目的,所得突变株S.clavuligerus::ccaR产酸量可达820.91 mg/L,较出发菌株提高了54%.

  5. Specific serum IgG, but not IgA, antibody against purified Opisthorchis viverrini antigen associated with hepatobiliary disease and cholangiocarcinoma.

    Science.gov (United States)

    Pinlaor, Porntip; Pongsamart, Porntip; Hongsrichan, Nuttanan; Sangka, Arunnee; Srilunchang, Thitima; Mairiang, Eimorn; Sithithaworn, Paiboon; Pinlaor, Somchai

    2012-03-01

    Opisthorchiasis caused by Opisthorchis viverrini infection induces hepatobiliary disease (HBD)-associated cholangiocarcinoma (CCA) via a chronic inflammatory immune response. Here, we evaluated specific IgG and IgA antibodies against different fractions of O. viverrini antigen in residents from an endemic community in Northeast Thailand with varying hepatobiliary abnormalities. Crude somatic O. viverrini antigen was purified into three fractions (viz., P1, P2 and P3) by gel infiltration chromatography and these served as antigens for detection of fluke-specific IgG and IgA antibodies by enzyme-linked immunosorbent assay (ELISA). The results revealed fluke-specific IgG and IgA antibody levels-against these antigens from subjects with O. viverrini-positive HBD-higher than in subjects with O. viverrini-negative HBD. Interestingly, the rank of fluke-specific IgG (and not IgA) antibody levels against crude extract and P1 antigens was CCA>severe HBD>mild HBD>healthy individuals. Purified antigens reduced cross-reactivity with other parasites compared to the crude antigen. Multiple linear regression analysis showed that HBD status was significantly associated with the liver fluke-specific IgG antibody against purified antigens. These results suggest that purified O. viverrini-antigen improves serodiagnosis for the evaluation of opisthorchiasis-associated HBD, and may be useful in the screening of opisthorchiasis in subjects at risk of developing CCA.

  6. Cathode materials review

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus, E-mail: danielc@ornl.gov; Mohanty, Debasish, E-mail: danielc@ornl.gov; Li, Jianlin, E-mail: danielc@ornl.gov; Wood, David L., E-mail: danielc@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS6472 Oak Ridge, TN 37831-6472 (United States)

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  7. Cathode materials review

    Science.gov (United States)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-06-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  8. Comparison of multidimensional fuzzy set ordination with CCA and DB-RDA.

    Science.gov (United States)

    Roberts, David W

    2009-09-01

    Multidimensional fuzzy set ordination (MFSO) is an ordination algorithm based on the principles of fuzzy set theory that employs a dissimilarity matrix and environmental or experimental variables directly in the calculation of ordination coordinates. The objective is similar to constrained ordinations such as canonical correspondence analysis (CCA) and distance-based redundancy analysis (DB-RDA), although MFSO employs a different conceptual and algorithmic basis. Results from MFSO, CCA, and DB-RDA are compared on four data sets to determine the relative ability of the methods to identify and quantify environmental variable effect sizes on community variability. Models were fit by best all-subsets solutions and tested for significance by permutation tests. Methods were compared on the basis of variables selected and dimensionality of results and were evaluated on the basis of the correlation of the pair-wise distances of the derived ordination solutions to a Bray-Curtis dissimilarity matrix of the taxon data, and by cross-comparisons of the inertia explained by the fitted or derived values substituted into DB-RDA and CCA analyses. MFSO and DB-RDA achieved the highest correlation with the Bray-Curtis dissimilarity matrix on one data set each, and they tied for highest correlation on the two other data sets (differences set, tied for second on another, and achieved the lowest correlation on two data sets. When substituting MFSO- and DB-RDA-derived values into CCA, MFSO results achieved higher inertia explained on two of the four data sets; MFSO and DB-RDA achieved equivalent results on the other two. Substituting MFSO- or CCA-derived or fitted values into DB-RDA, MFSO results achieved higher inertia explained on all four data sets. While goodness-of-fit statistics were often similar across methods, the methods sometimes chose solutions of different dimensionality or employed different variables. In general, all algorithms performed well, finding relatively low

  9. Filtered cathodic arc source

    Science.gov (United States)

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  10. Electrodialytic remediation of CCA-treated waste wood in a 2 m3 pilot plant

    DEFF Research Database (Denmark)

    Christensen, Iben Vernegren; Pedersen, Anne Juul; Ottosen, Lisbeth M.;

    2006-01-01

    Waste wood that has been treated with chromated-copper-arsenate (CCA) poses a potential environmental problem due to the content of copper, chromium and arsenic. A pilot plant for electrodialytic remediation of up to 2 m3 wood has been designed and tested and the results are presented here. Several...... fractions. The best remediation efficiency was obtained in an experiment with an electrode distance of 60 cm, and 100 kg wood chips. In this experiment 87% copper, 81% chromium and > 95% arsenic were removed. One other experiment was also analysed for arsenic. In this experiment the distance between...... the working electrodes was 1.5 m and here 95% As was removed. The results showed that arsenic may be the easiest removable of the copper, chromium and arsenic investigated here. This is very encouraging since arsenic is the CCA components of most environmental concern....

  11. Advancing Coordination Between DRM and CCA in Integrated Flood Risk Management

    DEFF Research Database (Denmark)

    Flood hazards in coastal regions induce risks toward lives, property, economy and the environment. In need of sustainable and holistic actions to reduce risks, these should include innovative Disaster Risk Management (DRM) and Climate Change Adaptation (CCA) measures. While differing on important...... parameters such as political commitment, awareness and uncertainty of the hazard/risk, commonalities between DRM and CCA can also be identified that affect human settlement, institutional adaptation, and the economy. This supports coordination of mitigation and adaptation measures to create resilience...... and sustainable solutions that take into account present and future outcomes. Adaptation must be integrated in existing policy making and be a planning process priority to become effective, however. In relation to coastal hazards in Denmark, deficits are identified in how DRM is brought into effect, e.g. though...

  12. Highly Efficient Micro Cathode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Company, Inc. proposes to develop a micro thermionic cathode that requires extremely low power and provides long lifetime. The basis for the cathode is a...

  13. Advanced Cathode Electrolyzer (ACE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a static, cathode-fed, 2000 psi, balanced-pressure Advanced Cathode Electrolyzer (ACE) based on PEM electrolysis technology. It...

  14. Getting full control of canonical correlation analysis with the AutoBiplot.CCA function

    Science.gov (United States)

    Alves, M. Rui

    2016-06-01

    Function AutoBiplot.CCA was built in R language. Given two multivariate data sets, this function carries out a conventional canonical correlation analysis, followed by the automatic production of predictive biplots based on the accuracy of readings as assessed by a mean standard predictive error and a user defined tolerance value. As the user's intervention is mainly restricted to the choice of the magnitude of the t.axis value, common misinterpretations, overestimations and adjustments between outputs and personal beliefs are avoided.

  15. Miniaturized cathodic arc plasma source

    Science.gov (United States)

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  16. Anonymous Multi-Receiver Identity-Based Authenticated Encryption with CCA Security

    Directory of Open Access Journals (Sweden)

    Chun-I Fan

    2015-10-01

    Full Text Available In a multi-receiver encryption system, a sender chooses a set of authorized receivers and sends them a message securely and efficiently, as the message is well encrypted and only one ciphertext corresponding to the message is generated no matter how many receivers the sender has chosen. It can be applied to video conferencing systems, pay-per-view channels, remote education, and so forth. Due to privacy considerations, an authorized receiver may not expect that his identity is revealed. In 2010, anonymous multi-receiver identity-based (ID-based encryption was first discussed, and furthermore, many works on the topic have been presented so far. Unfortunately, we find that all of those schemes fail to prove the chosen ciphertext attacks (CCA security in either confidentiality or anonymity. In this manuscript, we propose the first anonymous multi-receiver ID-based authenticated encryption scheme with CCA security in both confidentiality and anonymity. In the proposed scheme, the identity of the sender of a ciphertext can be authenticated by the receivers after a successful decryption. In addition, the proposed scheme also is the first CCA-secure one against insider attacks. Moreover, only one pairing computation is required in decryption.

  17. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  18. Bioremediation of CCA-Treated Wood By Brown-Rot Fungi Fomitopsis Palustris, Coniophora Puteana, and Laetiporus Sulphureus

    OpenAIRE

    Kartal, S Nami; Munir, Erman; Kamitani, Tomo

    2008-01-01

    This study evaluated oxalic acid accumulation and bioremediation of chromated copper arscnate (CCA)-treated wood by three brown-rot fungi Fomitopsis palustris Coniophora puteane, and Laetiporus sulphureas. The fungi were first cultivated in a fermentation broth to accumulate oxalic acid. Bioremediation of CCA-treated wood was then carried out by leaching of heavy metals with oxalic acid over a 10-day fermentation period. Higher amounts of oxalic acid were produced by F. polustris and L. sulp...

  19. Smart cathodic protection systems

    NARCIS (Netherlands)

    Polder, R.B.; Leggedoor, J.; Schuten, G.; Sajna, S.; Kranjc, A.

    2010-01-01

    Cathodic protection delivers corrosion protection in concrete structures exposed to aggressive environments, e.g. in de-icing salt and marine climates. Working lives of a large number of CP systems are at least more than 13 years and probably more than 25 years, provided a minimum level of maintenan

  20. SOFC Cathode Mechanisms

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Zachau-Christiansen, Birgit; Bay, Lasse

    1996-01-01

    The transient response of SOFC oxygen cathodes shows a characteristic inductive hysteresis and correspondingly the impedance diagram combines one or two capacitive arcs with a low frequency inductive arc. These features are discussed on the basis of a three step reaction sequence taken from...

  1. Transcriptomic analysis of Streptomyces clavuligerus ΔccaR::tsr: effects of the cephamycin C-clavulanic acid cluster regulator CcaR on global regulation.

    Science.gov (United States)

    Alvarez-Álvarez, R; Rodríguez-García, A; Santamarta, I; Pérez-Redondo, R; Prieto-Domínguez, A; Martínez-Burgo, Y; Liras, P

    2014-05-01

    Streptomyces clavuligerus ATCC 27064 and S. clavuligerus ΔccaR::tsr cultures were grown in asparagine-starch medium, and samples were taken in the exponential and stationary growth phases. Transcriptomic analysis showed that the expression of 186 genes was altered in the ccaR-deleted mutant. These genes belong to the cephamycin C gene cluster, clavulanic acid gene cluster, clavams, holomycin, differentiation, carbon, nitrogen, amino acids or phosphate metabolism and energy production. All the clavulanic acid biosynthesis genes showed Mc values in the order of -4.23. The blip gene-encoding a β-lactamase inhibitory protein was also controlled by the cephamycin C-clavulanic acid cluster regulator (Mc -2.54). The expression of the cephamycin C biosynthesis genes was greatly reduced in the mutant (Mc values up to -7.1), while the genes involved in putative β-lactam resistance were less affected (Mc average -0.88). Genes for holomycin biosynthesis were upregulated. In addition, the lack of clavulanic acid and cephamycin production negatively affected the expression of genes for the clavulanic acid precursor arginine and of miscellaneous genes involved in nitrogen metabolism (amtB, glnB, glnA3, glnA2, glnA1). The transcriptomic results were validated by quantative reverse transcription polymerase chain reaction and luciferase assay of luxAB-coupled promoters. Transcriptomic analysis of the homologous genes of S. coelicolor validated the results obtained for S. clavuligerus primary metabolism genes.

  2. Exposure to wood dust and heavy metals in workers using CCA pressure-treated wood.

    Science.gov (United States)

    Decker, Paul; Cohen, Beverly; Butala, John H; Gordon, Terry

    2002-01-01

    Chemical pesticide treatment enables relatively nonresistant woods to be used in outdoor construction projects. The most prevalent procedure used to protect these woods is pressure treatment with chromium, copper, and arsenic (CCA). This pilot study examined the airborne concentration and particle size distribution of wood particles, chromium, copper, and arsenic at both outdoor (measured over the whole work day) and indoor (measured during the performance of specific tasks) work sites. At the outdoor residential deck construction sites, the arithmetic mean total dust concentration, measured using personal filter cassette samplers, was 0.57 mg/m3. The mass median aerodynamic diameter (da) of the outdoor wood dust was greater than 20 microm. Indoor wood dust concentrations were significantly greater than those measured outdoor and were job category-dependent. The highest mean breathing zone dust concentration, 49.0 mg/m3, was measured at the indoor sanding operation. Personal impactor sampling demonstrated that the mean total airborne concentration of arsenic, but not chromium or copper, was consistently above recommended occupational exposure levels at the indoor work site, and occasionally at the outdoor work sites. At the indoor sanding operation, the mean total chromium, copper, and arsenic concentrations were 345, 170, and 342 microg/m3, respectively. Thus, significant exposure to airborne heavy metals can occur as a result of indoor and outdoor exposure to CCA pressure-treated wood dust. Therefore, current standards for wood dust may not adequately protect workers from the heavy metals commonly used in CCA pressure-treated wood.

  3. Biomonitoring for chromium and arsenic in timber treatment plant workers exposed to CCA wood Preservatives.

    Science.gov (United States)

    Cocker, J; Morton, J; Warren, N; Wheeler, J P; Garrod, A N I

    2006-07-01

    This study reports a survey of occupational exposure to copper chrome arsenic (CCA) based wood preservatives during vacuum pressure timber impregnation. The survey involved biological monitoring based on analysis of chromium and arsenic in urine samples collected from UK workers. The aim of the study was to determine the extent of occupational exposure to arsenic and chromium in the UK timber treatment industry. The objectives were to collect and analyse urine samples from as many workers as possible, where CCA wood preservatives might be used, at 6 monthly intervals for 2 years. In addition, to investigate day-to-day variations in urinary excretion of chrome and arsenic by collecting and analysing three samples a week for 3 weeks in subsets of workers and controls (people not occupationally exposed). All urine samples were analysed for chromium and inorganic arsenic. To investigate any residual interference every sample was accompanied by a short questionnaire about recent consumption of seafood and smoking. The analytical methods for arsenic used a hydride generation technique to reduce interference from dietary sources of arsenic and also a technique that would measure total arsenic concentration in urine. The main findings show that workers exposed to CCA wood preservatives have concentrations of inorganic arsenic and chromium in urine that are significantly higher than those from non-occupationally exposed people but below biological monitoring guidance values that would indicate inhalation exposure at UK occupational exposure limits for chromium and arsenic. The effects of consumption of seafood on urinary arsenic were not significant using the hydride generation method for inorganic arsenic but were significant if 'total' arsenic was measured. The 'total' arsenic method could not distinguish CCA workers from controls and is clearly unsuitable for assessment of occupational exposure to arsenic. There was a significant increase in the urinary concentration of

  4. RETENTION AND PENETRATION OF CCA IN WOOD OF FIRST AND SECOND ROTATION OF Eucalyptus urophylla S.T. Blake

    Directory of Open Access Journals (Sweden)

    Mara Lúcia Agostini Valle

    2013-06-01

    Full Text Available http://dx.doi.org/10.5902/198050989292This study aimed to evaluate the retention and penetration of copper chrome arsenate (CCA type C as well as some wood properties of two rotations of two natural hybrid of Eucalyptus urophylla S. T. Blake, aiming their use as treated wood. The study was conducted with material from commercial plantations, with 63 months of age. For the wood characterization, the relationship sapwood-heartwood, the basic density and the size of fibers and vessels were evaluated. For the evaluation of treated wood, the penetration and retention of copper chrome arsenate (CCA type C were determined. Four trees per rotation and genetic material were used, which subsequently were split into three logs, in a total of 12 logs for each treatment. The preservative treatment was performed using the full cell process in autoclave using CCA solution with 2% concentration of active ingredients. The treatment process used was effective under the conditions required by the NBR 9480, with retention values ​​higher than the minimum required by the standard, which is 6.5 kg/m3 of CCA per treated wood, and in addition, provided deep penetration and regular condom in sapwood of all timber treated. There are no restrictions on the use of wood from the first and second rotation for preservative treatment, based on the properties evaluated. There was no correlation between the type C CCA retention and wood properties evaluated.

  5. Graphic-card cluster for astrophysics (GraCCA) - Performance tests

    Science.gov (United States)

    Schive, Hsi-Yu; Chien, Chia-Hung; Wong, Shing-Kwong; Tsai, Yu-Chih; Chiueh, Tzihong

    2008-08-01

    In this paper, we describe the architecture and performance of the GraCCA system, a graphic-card cluster for astrophysics simulations. It consists of 16 nodes, with each node equipped with two modern graphic cards, the NVIDIA GeForce 8800 GTX. This computing cluster provides a theoretical performance of 16.2 TFLOPS. To demonstrate its performance in astrophysics computation, we have implemented a parallel direct N-body simulation program with shared time-step algorithm in this system. Our system achieves a measured performance of 7.1 TFLOPS and a parallel efficiency of 90% for simulating a globular cluster of 1024 K particles. In comparing with the GRAPE-6A cluster at RIT (Rochester Institute of Technology), the GraCCA system achieves a more than twice higher measured speed and an even higher performance-per-dollar ratio. Moreover, our system can handle up to 320M particles and can serve as a general-purpose computing cluster for a wide range of astrophysics problems.

  6. Characterization of DNA-binding sequences for CcaR in the cephamycin-clavulanic acid supercluster of Streptomyces clavuligerus.

    Science.gov (United States)

    Santamarta, I; López-García, M T; Kurt, A; Nárdiz, N; Alvarez-Álvarez, R; Pérez-Redondo, R; Martín, J F; Liras, P

    2011-08-01

    RT-PCR analysis of the genes in the clavulanic acid cluster revealed three transcriptional polycistronic units that comprised the ceaS2-bls2-pah2-cas2, cyp-fd-orf12-orf13 and oppA2-orf16 genes, whereas oat2, car, oppA1, claR, orf14, gcaS and pbpA were expressed as monocistronic transcripts. Quantitative RT-PCR of Streptomyces clavuligerus ATCC 27064 and the mutant S. clavuligerus ccaR::aph showed that, in the mutant, there was a 1000- to 10,000-fold lower transcript level for the ceaS2 to cas2 polycistronic transcript that encoded CeaS2, the first enzyme of the clavulanic acid pathway that commits arginine to clavulanic acid biosynthesis. Smaller decreases in expression were observed in the ccaR mutant for other genes in the cluster. Two-dimensional electrophoresis and MALDI-TOF analysis confirmed the absence in the mutant strain of proteins CeaS2, Bls2, Pah2 and Car that are required for clavulanic acid biosynthesis, and CefF and IPNS that are required for cephamycin biosynthesis. Gel shift electrophoresis using recombinant r-CcaR protein showed that it bound to the ceaS2 and claR promoter regions in the clavulanic acid cluster, and to the lat, cefF, cefD-cmcI and ccaR promoter regions in the cephamycin C gene cluster. Footprinting experiments indicated that triple heptameric conserved sequences were protected by r-CcaR, and allowed identification of heptameric sequences as CcaR binding sites.

  7. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian-Zheng, E-mail: wppzheng@126.com [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Zhu, Yu-Xia [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-guang [Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Meng, Yue-Zhong [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China)

    2016-05-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose–lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system. - Highlights: • Chitosan/collagen/alginate (CCA) scaffolds were fabricated by spray-spinning. • MCF-7 cells presented a multi-cellular tumor spheroid model (MCTS) in CCA scaffold. • MCTS in CCA possessed a more conservative phenotype of tumor than monolayer cells. • Anticancer drug screening in MCTS-CCA system is superior to 2D culture system.

  8. Cathodic hydrodimerization of nitroolefins

    Directory of Open Access Journals (Sweden)

    Michael Weßling

    2015-07-01

    Full Text Available Nitroalkenes are easily accessible in high variety by condensation of aldehydes with aliphatic nitroalkanes. They belong to the group of activated alkenes that can be hydrodimerized by cathodic reduction. There are many olefins with different electron withdrawing groups used for cathodic hydrodimerization, but not much is known about the behaviour of the nitro group. Synthetic applications of this group could profit from the easy access to nitroolefins in large variety, the C–C bond formation with the introduction of two nitro groups in a 1,4-distance and the conversions of the nitro group by reduction to oximes and amines, the conversion into aldehydes and ketones via the Nef reaction and base catalyzed condensations at the acidic CH bond. Eight 1-aryl-2-nitro-1-propenes have been electrolyzed in an undivided electrolysis cell to afford 2,5-dinitro-3,4-diaryl hexanes in high yield. The 4-methoxy-, 4-trifluoromethyl-, 2-chloro- and 2,6-difluorophenyl group and furthermore the 2-furyl and 2-pyrrolyl group have been applied. The reaction is chemoselective as only the double bond but not the nitro group undergoes reaction, is regioselective as a ß,ß-coupling with regard to the nitro group and forms preferentially two out of six possible diastereomers as major products.

  9. Cathodic hydrodimerization of nitroolefins.

    Science.gov (United States)

    Weßling, Michael; Schäfer, Hans J

    2015-01-01

    Nitroalkenes are easily accessible in high variety by condensation of aldehydes with aliphatic nitroalkanes. They belong to the group of activated alkenes that can be hydrodimerized by cathodic reduction. There are many olefins with different electron withdrawing groups used for cathodic hydrodimerization, but not much is known about the behaviour of the nitro group. Synthetic applications of this group could profit from the easy access to nitroolefins in large variety, the C-C bond formation with the introduction of two nitro groups in a 1,4-distance and the conversions of the nitro group by reduction to oximes and amines, the conversion into aldehydes and ketones via the Nef reaction and base catalyzed condensations at the acidic CH bond. Eight 1-aryl-2-nitro-1-propenes have been electrolyzed in an undivided electrolysis cell to afford 2,5-dinitro-3,4-diaryl hexanes in high yield. The 4-methoxy-, 4-trifluoromethyl-, 2-chloro- and 2,6-difluorophenyl group and furthermore the 2-furyl and 2-pyrrolyl group have been applied. The reaction is chemoselective as only the double bond but not the nitro group undergoes reaction, is regioselective as a ß,ß-coupling with regard to the nitro group and forms preferentially two out of six possible diastereomers as major products.

  10. A Hybrid LDA+gCCA Model for fMRI Data Classification and Visualization.

    Science.gov (United States)

    Afshin-Pour, Babak; Shams, Seyed-Mohammad; Strother, Stephen

    2015-05-01

    Linear predictive models are applied to functional MRI (fMRI) data to estimate boundaries that predict experimental task states for scans. These boundaries are visualized as statistical parametric maps (SPMs) and range from low to high spatial reproducibility across subjects (e.g., Strother , 2004; LaConte , 2003). Such inter-subject pattern reproducibility is an essential characteristic of interpretable SPMs that generalize across subjects. Therefore, we introduce a flexible hybrid model that optimizes reproducibility by simultaneously enhancing the prediction power and reproducibility. This hybrid model is formed by a weighted summation of the optimization functions of a linear discriminate analysis (LDA) model and a generalized canonical correlation (gCCA) model (Afshin-Pour , 2012). LDA preserves the model's ability to discriminate the fMRI scans of multiple brain states while gCCA finds a linear combination for each subject's scans such that the estimated boundary map is reproducible. The hybrid model is implemented in a split-half resampling framework (Strother , 2010) which provides reproducibility (r) and prediction (p) quality metrics. Then the model was compared with LDA, and Gaussian Naive Bayes (GNB). For simulated fMRI data, the hybrid model outperforms the other two techniques in terms of receiver operating characteristic (ROC) curves, particularly for detecting less predictable but spatially reproducible networks. These techniques were applied to real fMRI data to estimate the maps for two task contrasts. Our results indicate that compared to LDA and GNB, the hybrid model can provide maps with large increases in reproducibility for small reductions in prediction, which are jointly closer to the ideal performance point of (p=1, r=1).

  11. Removal of Copper, Chromium and Arsenic From CCA-Treated Wood by Biomediation With Brown-Rot Fungi

    OpenAIRE

    Kartal, Nami; Munir, Erman; Imamura, Yuji

    2008-01-01

    Considerable attentioan has been focused on remediation of treated wood in recent years due to public and scientific awareness concerns about such waste wood. As a result, substantial progress has been made in remediation of CCA-treated waste wood by chemical extraction with several mineral and organic acids and biodegradation using bacteria and fungi in recent years. 08E00046

  12. Arsenic levels in wipe samples collected from play structures constructed with CCA-treated wood: Impact on exposure estimates

    Energy Technology Data Exchange (ETDEWEB)

    Barraj, Leila M. [Chemical Regulation and Food Safety, Exponent, Inc., Suite 1100, 1150 Connecticut Ave., NW, Washington, DC 20036 (United States)], E-mail: lbarraj@exponent.com; Scrafford, Carolyn G. [Chemical Regulation and Food Safety, Exponent, Inc., Suite 1100, 1150 Connecticut Ave., NW, Washington, DC 20036 (United States); Eaton, W. Cary [RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709 (United States); Rogers, Robert E.; Jeng, Chwen-Jyh [Toxcon Health Sciences Research Centre Inc., 9607 - 41 Avenue, Edmonton, Alberta, T6E 5X7 (Canada)

    2009-04-01

    Lumber treated with chromated copper arsenate (CCA) has been used in residential outdoor wood structures and playgrounds. The U.S. EPA has conducted a probabilistic assessment of children's exposure to arsenic from CCA-treated structures using the Stochastic Human Exposure and Dose Simulation model for the wood preservative scenario (SHEDS-Wood). The EPA assessment relied on data from an experimental study using adult volunteers and designed to measure arsenic in maximum hand and wipe loadings. Analyses using arsenic handloading data from a study of children playing on CCA-treated play structures in Edmonton, Canada, indicate that the maximum handloading values significantly overestimate the exposure that occurs during actual play. The objective of our paper is to assess whether the dislodgeable arsenic residues from structures in the Edmonton study are comparable to those observed in other studies and whether they support the conclusion that the values derived by EPA using modeled maximum loading values overestimate hand exposures. We compared dislodgeable arsenic residue data from structures in the playgrounds in the Edmonton study to levels observed in studies used in EPA's assessment. Our analysis showed that the dislodgeable arsenic levels in the Edmonton playground structures are similar to those in the studies used by EPA. Hence, the exposure estimates derived using the handloading data from children playing on CCA-treated structures are more representative of children's actual exposures than the overestimates derived by EPA using modeled maximum values. Handloading data from children playing on CCA-treated structures should be used to reduce the uncertainty of modeled estimates derived using the SHEDS-Wood model.

  13. Cloning and Expression Analysis of Circadian Clock Gene CCA1 in Maize%玉米昼夜节律钟基因CCA1的克隆及表达分析

    Institute of Scientific and Technical Information of China (English)

    邢国芳; 杜伟建; 张雁明; 韩浩坤; 韩渊怀

    2011-01-01

    昼夜节律钟基因CCA1在调解水稻和拟南芥的光周期反应中起着重要作用.本研究利用从水稻和拟南芥中分离到的CCA1基因序列作为靶序列BLAST获取Genbank中的信息,通过RT-PCR方法克隆获得了一条2326bp的玉米CCA1基因cDNA序列.BLAST比对发现其与水稻、大麦和拟南芥的序列相似性分别达73.7%、69.4%和39.8%.利用NCBI中的ORF Finder软件分析,发现该序列包含一个2163bp的开放阅读框,编码720个氨基酸残基,蛋白的分子量约为78819.17Da,等电点为6.468.推测其含有3个myb-DNA结合域、7个N-豆蔻酰化位点、1个G-box蛋白结合域以及1个蛋白跨膜结合域.采用实时荧光定量PCR分析发现,随光照时间的变化,该基因在玉米叶片中的表达量呈现出白天不断降低而夜晚逐渐升高的昼夜变化趋势.本研究为进一步研究玉米CCA1基因在调控玉米光周期敏感现象中的功能,阐明玉米光周期敏感机制提供了科学依据.%CCA 1 gene plays an important role in circadian clock sensitivity in rice (Oryza sative L. ) and Arabidopsis thaliana. In this study, CCA1 (2326 bp) was cloned by RT-PCR using homological primers based on the highly conserved region of the multiple alignment of the rice and Arabidopsis. CCA1 from GenBank of NCBI. The similarities of these sequences were up to 73. 7% ,69. 4 and 39. 8% , respectively, to corresponding mRNA sequences of rice, barley and Arabidopsis in BLAST/nr of GenBank database. Using ORF Finder software, a 2163 bp open reading frame was found to code 720 amino acids. Analyzing this ami no acid sequence by Compute pI/Mw tool revealed that the molecular weight of this protein was about 78819.17 Da , and isoelectric point was about 6. 468. The amino acid sequence contained three myb-DNA binding domains, seven N-myristoylation sites, one G-box binding domain and one putative transmembrane spanning region. We established fluorescence quantitative RT-PCR system with maize

  14. Hollow Cathode With Multiple Radial Orifices

    Science.gov (United States)

    Brophy, John R.

    1992-01-01

    Improved hollow cathode serving as source of electrons has multiple radial orifices instead of single axial orifice. Distributes ion current more smoothly, over larger area. Prototype of high-current cathodes for ion engines in spacecraft. On Earth, cathodes used in large-diameter ion sources for industrial processing of materials. Radial orientation of orifices in new design causes current to be dispersed radially in vicinity of cathode. Advantageous where desireable to produce plasma more nearly uniform over wider region around cathode.

  15. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening.

    Science.gov (United States)

    Wang, Jian-Zheng; Zhu, Yu-Xia; Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-guang; Meng, Yue-Zhong

    2016-05-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose-lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system.

  16. Liquid cathode primary batteries

    Science.gov (United States)

    Schlaikjer, Carl R.

    1985-03-01

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150 °C, and efficient discharge at moderate rates. he lithium/sulfur dioxide cell is the most efficient system at temperatures below 0 °C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60 °C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  17. Microhollow cathode discharges

    Science.gov (United States)

    Schoenbach, K. H.; Moselhy, M.; Shi, W.; Bentley, R.

    2003-07-01

    By reducing the dimensions of hollow cathodes into the hundred micrometer range, stable, direct current, high (atmospheric) pressure glow discharges in rare gases, rare gas-halide mixtures and in air could be generated. The electron energy distribution in these microdischarges is non-Maxwellian, with a pronounced high-energy tail. The high electron energy together with the high gas density, which favors three-body collisions, is the reason for an efficient excimer generation in these microplasmas. Excimer efficiencies from 1% to 9% have been measured for argon, xenon, argon fluoride, and xenon chloride direct current excimer emitters, with a radiant excimer emittance of up to 2 W/cm2 for xenon. Adding small amounts of oxygen to argon has allowed us to generate vacuum ultraviolet line radiation at 130.5 nm with an efficiency approaching 1%. Pulsing xenon discharges with nanosecond electrical pulses has led to an increase in intensity to 15 W/cm2 and to a simultaneous increase in efficiency to more than 20%. Operating the discharges in an abnormal glow mode has allowed us to generate microdischarge arrays without individual ballast. Applications of these plasma arrays are excimer lamps and plasma reactors.

  18. Liquid cathode primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schlaikjer, C.R.

    1985-01-15

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150/sup 0/C, and efficient discharge at moderate rates. The lithium/sulfur dioxide cell is the most efficient system at temperatures below 0/sup 0/C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60/sup 0/C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  19. Application of CCA for study on modern lake diatoms and environment in the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    羊向东; 王苏民; 夏威岚; 李万春

    2001-01-01

    The relations between lake surface sediment diatoms and water environmental variables were revealed effectively by use of a new multivariate canonical correspondence analysis (CCA) based on 45 lakes in the Tibetan Plateau. Water depth, conductivity, Cl-, Mg2+, K+ and pH, identified from 12 contemporary water environmental variables, can significantly and independently explain the diatom distributions (p<0.05). The first two axes (λ1=0.34, λ2=0.27) capture 16.1% of the variance in the species data, and account for 57.4% of the variance in diatom-environment relationship. The deletion of redundant environmental variables and unusual samples do not influence the explanation to diatom data. The final CCA result indicates that the water depth and the salinity are the two important environmental gradients and influence the diatom distribution in the plateau lakes. The water depth correlates with axis 1, while conductivity, Cl-, Mg2+ and K+, indicating the direction of salinity changes, corr

  20. Evaluation of the wood CCA preservative treatment process of Eucalyptus (Eucaliptus ssp) by X-ray fluorescence technique

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Junior, Sergio Matias, E-mail: matias@ipt.br [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil); Salvador, Vera Lucia Ribeiro; Sato, Ivone Mulako, E-mail: imsato@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Brazil produces around 1,2 mi m{sup 3} of treated wood to meet the annual demand of railway, electric, rural and construction sectors. The treated woods used for poles, sleepers, fence posts and plywoods should be according to Brazilian norms requirements. The most used wood species are eucalyptus (Eucaliptus ssp)and pine (Pinus ssp). The most wood preservative products used in Brazil are CCA (Chromated Copper Arsenate) and CCB (Copper Chromium and Boron Salt). The analytical methods, such as Flame Atomic Absorption Spectrometry (FAAS) and Plasma Inductively Coupled Optical Emission Spectrometry (ICPOES) have been used for the evaluation of those treatment processes. In this work, the sapwood sample was obtained from eucalyptus trees (Eucaliptus ssp) obtained from Minas Gerais State, Brazil, cut plantation areas. Sawdust sapwood sample was grounded and submitted to different additions of CCA solutions (0.2, 0.7, 1.3, 2.3, 3.6, 6.3, 11.7and17.9 kg m{sup -3}). Power and pressed pellets sapwood samples, analyzed by EDXRFS, showed a good linear relation (r{sup 2}>0.99) between the characteristic intensity fluorescent lines (CuΚα, CrΚαand AsΚΒ) and their concentration, also, showed adequate sensitivity (LQ < 5mgkg{sup -1}) for Cu, Cr and As determination in treated woods. Cu, Cr and As were determined in powdered sawdust samples by FAA spectrometry, using the AWPA A11-93 standard method; the relation between the CCA retention and their concentration showed a lower linear relation than EDXRFS; the FAAS spreading result could be attributed to laboratorial CCA addition process. (author)

  1. Nanostructured lanthanum manganate composite cathode

    DEFF Research Database (Denmark)

    Wang, Wei Guo; Liu, Yi-Lin; Barfod, Rasmus

    2005-01-01

    Anode-supported cells were fabricated with optimized cathodes showing high power density of 1.2 W/cm(2) at 800 C under a cell voltage of 0.7 V and an active area of 4 x 4 cm. A microstructure study was performed on such cell using a field-emission gun scanning electron microscope, which revealed...... that the (La1-xSrx)(y)MnO3 +/-delta (LSM) composite cathodes consist of a network of homogenously distributed LSM, yttria-stabilized zirconia (YSZ), and pores. The individual grain size of LSM or YSZ is approximately 100 nm. The degree of contact between cathode and electrolyte is 39% on average. (c) 2005...

  2. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a reservoir cathode to improve performance in both ion and Hall-effect thrusters. We propose to adapt our existing reservoir cathode technology to this...

  3. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a hollow reservoir cathode to improve performance in ion and Hall thrusters. We will adapt our existing reservoir cathode technology to this purpose....

  4. High-current-density, high brightness cathodes for free electron laser applications

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.C. (Varian Associates, Palo Alto, CA (USA). Palo Alto Microwave Tube Div.)

    1987-06-01

    This report discusses the following topics: brightness and emittance of electron beams and cathodes; general requirements for cathodes in high brightness electron guns; candidate cathode types; plasma and field emission cathodes; true field emission cathodes; oxide cathodes; lanthanum hexaborides cathodes; laser driven thermionic cathodes; laser driven photocathodes; impregnated porous tungsten dispenser cathodes; and choice of best performing cathode types.

  5. Mechanistic Enhancement of SOFC Cathode Durability

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, Eric [Univ. of Maryland, College Park, MD (United States)

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  6. Novel Cathodes Prepared by Impregnation Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Eduardo Paz

    2006-09-30

    (1) We showed that similar results were obtained when using various LSM precursors to produce LSM-YSZ cathodes. (2) We showed that enhanced performance could be achieved by adding LSCo to LSMYSZ cathodes. (3) We have preliminary results showing that there is a slow deactivation with LSFYSZ cathodes.

  7. Determination of chromated copper arsenate (CCA) in treated wood of Eucalyptus

    Energy Technology Data Exchange (ETDEWEB)

    Parreira, Paulo S., E-mail: parreira@uel.b [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica. Lab.de Fisica Nuclear Aplicada; Vendrametto, Guilherme R.; Cunha, Magda E.T., E-mail: grvendrametto@gmail.co [Universidade Norte do Parana, Arapongas, PR (Brazil). Centro de Ciencias Humanas, da Saude, Exatas e Tecnologicas-A

    2009-07-01

    This work deals with the possible application of a portable energy dispersive handmade system (PXRF-LFNA-02) for the determination of Chromium, Copper and Arsenic in the preservative solution used to protect commercial wood of Eucalyptus, which are employed as wood fence, posts, contention fences, railroad sleepers, etc. It was prepared five body-of-proof made of eucalyptus alburnum with different concentrations for each element varying from 0.0061 to 0.0180 (g/g) for CrO{sub 3}, 0.0024 to 0.0070 (g/g) for CuO and 0.0044 to 0.0129 (g/g) for As{sub 2}O{sub 5}. Four of them were used for calibration curves and one used as reference sample. It was used a commercial CCA (Chromated Copper Arsenate ) solution to prepare the samples. The results show a good linear regression between concentrations and X-rays intensities, after applied the multiple linear regression methodology for interelemental corrections. The values obtained with this methodology were 3.01(kg/m{sup 3}), 1.18 (kg/m{sup 3}) e 2.21 (kg/m{sup 3}) for CrO{sub 3}, CuO and As{sub 2}O{sub 5}, respectively, while the nominal values are 2.90 (kg/m{sup 3}) for CrO{sub 3}, 1.13 (kg/m{sup 3}) for CuO and 2.07 (kg/m{sup 3}) for As{sub 2}O{sub 5}. The ED-XRF (Energy Dispersive X-Rays Fluorescence) is a well established technique with high-speed of analytical procedure and its portable configuration allowing a multielemental, simultaneous and non destructive analyses besides in situ application. (author)

  8. Microhollow Cathode Discharge Excimer Lamps

    Science.gov (United States)

    Schoenbach, K. H.

    1999-11-01

    character. Reducing the diameter of the cathode hole in a hollow cathode discharge geometry to values on the order of 100 μm has allowed us to extend the pressure range of stable, direct current hollow cathode gas discharges up to atmospheric pressure. The large concentration of high-energy electrons generated in the cathode fall, in combination with the high neutral gas density favors three-body processes such as excimer formation. Excimer emission in xenon discharges peaking at 172 nm, was observed with efficiencies between 6% and 9% at pressures of several hundred Torr. Typical forward voltages are 200 V at dc currents up to 8 mA. Pulsed operation allowed us to extend the current range to 80 mA with corresponding linear increase in optical power. Spatially resolved measurements showed that the source of the excimer radiation at atmospheric pressure and currents of less than 8 mA is confined to the cathode opening. The radiative emittance at 8 mA and atmospheric pressure is approximately 20 W/cm^2. With reduced pressure and increased current, respectively, the excimer source extends into the area outside the cathode hole. Besides in xenon, excimer emission in argon at a peak wavelength of 128 nm has been recorded. In addition to operating the discharge in rare gases, we have also explored its use as rare gas-halide excimer source. In a gas mixture containing 1% ArF we were able to generate stable dc discharges in flowing gas at pressures ranging from 100 Torr to atmospheric pressure. The spectra of the high-pressure ArF discharges are dominated by excimer radiation peaking at 193 nm. The excimer emission of a single ArF discharge at 700 Torr was measured as 150 mW at an efficiency of 3%. Parallel operation of these discharges by means of a resistive anode, which has recently been demonstrated for argon discharges, offers the possibility to use microhollow cathode discharge arrays as dc-excimer lamps, with estimated power densities exceeding 10 W/cm^2. abstract

  9. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2002-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is

  10. A CCA+ICA based model for multi-task brain imaging data fusion and its application to schizophrenia.

    Science.gov (United States)

    Sui, Jing; Adali, Tülay; Pearlson, Godfrey; Yang, Honghui; Sponheim, Scott R; White, Tonya; Calhoun, Vince D

    2010-05-15

    Collection of multiple-task brain imaging data from the same subject has now become common practice in medical imaging studies. In this paper, we propose a simple yet effective model, "CCA+ICA", as a powerful tool for multi-task data fusion. This joint blind source separation (BSS) model takes advantage of two multivariate methods: canonical correlation analysis and independent component analysis, to achieve both high estimation accuracy and to provide the correct connection between two datasets in which sources can have either common or distinct between-dataset correlation. In both simulated and real fMRI applications, we compare the proposed scheme with other joint BSS models and examine the different modeling assumptions. The contrast images of two tasks: sensorimotor (SM) and Sternberg working memory (SB), derived from a general linear model (GLM), were chosen to contribute real multi-task fMRI data, both of which were collected from 50 schizophrenia patients and 50 healthy controls. When examining the relationship with duration of illness, CCA+ICA revealed a significant negative correlation with temporal lobe activation. Furthermore, CCA+ICA located sensorimotor cortex as the group-discriminative regions for both tasks and identified the superior temporal gyrus in SM and prefrontal cortex in SB as task-specific group-discriminative brain networks. In summary, we compared the new approach to some competitive methods with different assumptions, and found consistent results regarding each of their hypotheses on connecting the two tasks. Such an approach fills a gap in existing multivariate methods for identifying biomarkers from brain imaging data.

  11. Characterization of multicapillary dielectric cathodes

    Science.gov (United States)

    Gleizer, J. Z.; Hadas, Y.; Yarmolich, D.; Felsteiner, J.; Krasik, Ya. E.

    2007-04-01

    Parameters of the plasma and electron beam produced by a multicapillary cathode in a diode powered by a ˜200kV, ˜300ns pulse are presented. It was found that the source of electrons is the plasma ejected from the capillaries. Inside the capillaries this plasma obtains electron density and temperature of ˜8×1015cm-3 and ˜5eV, respectively. In the vicinity of the cathode, the density and temperature of the plasma electrons were found to be 2×1014cm-3 and 4.5eV, respectively, for electron current density of ˜40A/cm2. It was shown that the plasma expansion velocity is in the range of (1-2)×106cm/s for current density of >12A/cm2.

  12. Microhollow cathode discharge excimer lamps

    Science.gov (United States)

    Schoenbach, Karl H.; El-Habachi, Ahmed; Moselhy, Mohamed M.; Shi, Wenhui; Stark, Robert H.

    2000-05-01

    Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 μm range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power to input electrical power), has for xenon and argon fluoride a maximum at ˜400 Torr. The maximum efficiency is between 6% and 9% for xenon, and ˜2% for argon fluoride.

  13. A pulsed cathodic arc spacecraft propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, P R C; Bilek, M M M; Tarrant, R N; McKenzie, D R [School of Physics, University of Sydney, NSW 2006 Australia (Australia)

    2009-11-15

    We investigate the use of a centre-triggered cathodic arc as a spacecraft propulsion system that uses an inert solid as a source of plasma. The cathodic vacuum arc produces almost fully ionized plasma with a high exhaust velocity (>10{sup 4} m s{sup -1}), giving a specific impulse competitive with other plasma or ion thrusters. A centre trigger design is employed that enables efficient use of cathode material and a high pulse-to-pulse repeatability. We compare three anode geometries, two pulse current profiles and two pulse durations for their effects on impulse generation, energy and cathode material usage efficiency. Impulse measurement is achieved through the use of a free-swinging pendulum target constructed from a polymer material. Measurements show that impulse is accurately controlled by varying cathode current. The cylindrical anode gave the highest energy efficiency. Cathode usage is optimized by choosing a sawtooth current profile. There is no requirement for an exhaust charge neutralization system.

  14. Exergy analysis of the Chartherm process for energy valorization and material recuperation of chromated copper arsenate (CCA) treated wood waste.

    Science.gov (United States)

    Bosmans, A; Auweele, M Vanden; Govaerts, J; Helsen, L

    2011-04-01

    The Chartherm process (Thermya, Bordeaux, France) is a thermochemical conversion process to treat chromated copper arsenate (CCA) impregnated wood waste. The process aims at maximum energy valorization and material recuperation by combining the principles of low-temperature slow pyrolysis and distillation in a smart way. The main objective of the exergy analysis presented in this paper is to find the critical points in the Chartherm process where it is necessary to apply some measures in order to reduce exergy consumption and to make energy use more economic and efficient. It is found that the process efficiency can be increased with 2.3-4.2% by using the heat lost by the reactor, implementing a combined heat and power (CHP) system, or recuperating the waste heat from the exhaust gases to preheat the product gas. Furthermore, a comparison between the exergetic performances of a 'chartherisation' reactor and an idealized gasification reactor shows that both reactors destroy about the same amount of exergy (i.e. 3500kWkg(wood)(-1)) during thermochemical conversion of CCA-treated wood. However, the Chartherm process possesses additional capabilities with respect to arsenic and tar treatment, as well as the extra benefit of recuperating materials.

  15. Preventing Corrosion by Controlling Cathodic Reaction Kinetics

    Science.gov (United States)

    2016-03-25

    Preventing corrosion by controlling cathodic reaction kinetics Progress Report for Period: 1 SEP 2015-31 MAR 2016 John Keith Department of...25 March 2016 Preventing corrosion by controlling cathodic reaction kinetics Annual Summary Report: FY16 PI: John Keith, 412-624-7016,jakeith...dominate the metal’s cathodic behavior. Within an alkaline environment, we expect the following reduction reactions to be catalyzed on the oxide

  16. Estudio psicométrico del Cuestionario de Conducta Antisocial (CC-A) en adolescentes tempranos de Tucumán, Argentina

    OpenAIRE

    Ana Betina Lacunza; Silvina Valeria Caballero; Evangelina Norma Contini; Anabel Llugdar

    2016-01-01

    El comportamiento antisocial se refiere a una diversidad de actos que infringen las normas sociales y de convivencia. Su delimitación está dada tanto por la valoración social de la gravedad de los comportamientos como por su alejamiento a las pautas normativas de una sociedad. El objetivo de este trabajo fue analizar las propiedades psicométricas del cuestionario de Conducta Antisocial (CC-A) en adolescentes de Tucumán, Argentina. Se aplicó el CC-A y la Batería de Socialización BAS-3 a quinie...

  17. Cathode materials: A personal perspective

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Texas Materials Institute, University of Texas at Austin, ETC 9.102, 1 University Station, Austin, TX 78712-1063 (United States)

    2007-12-06

    A thermodynamically stable rechargeable battery has a voltage limited by the window of the electrolyte. An aqueous electrolyte has a window of 1.2 eV, which prevents achieving the high energy density desired for many applications. A non-aqueous electrolyte with a window of 5 eV requires Li{sup +} rather than H{sup +} as the working ion. Early experiments with Li{sub x}TiS{sub 2} cathodes showed competitive capacity and rate capability, but problems with a lithium anode made the voltage of a safe cell based on a sulfide cathode too low to be competitive with a nickel/metal-hydride battery. Transition-metal oxides can give voltages of 4.5 V versus Li{sup +}/Li{sup 0}. However, the challenge with oxides has been to obtain a competitive capacity and rate capability while retaining a high voltage with low-cost, environmentally friendly cathode materials. Comparisons will be made between layered Li{sub 1-x}MO{sub 2}, spinels Li{sub 1-x}[M{sub 2}]O{sub 4}, and olivines Li{sub 1-x}MPO{sub 4} having 0 < x < 1. Although higher capacities can be obtained with layered Li{sub 1-x}MO{sub 2} compounds, which have enabled the wireless revolution, their metastability makes them unlikely to be used in power applications. The spinel and olivine framework structures have been shown to be capable of charge/discharge rates of over 10C with a suitable temperature range for plug-in hybrid vehicles. (author)

  18. Eosinofil Sel Penyaji Antigen

    Directory of Open Access Journals (Sweden)

    Safari Wahyu Jatmiko

    2015-04-01

    Full Text Available Sel eosinofil merupakan jenis sel lekosit yang terlibat dalam berbagai patogenesis penyakit. Sel eosinofil pada awalnya dikenal sebagai sel efektor  dari sistem imunitas alamiah. Akan tetapi, kemampuan sel eosinofil dalam memfagositosis patogen menimbulkan dugaan bahwa sel eosinofil ikut berperan sebagai sel penyaji antigen. Hal ini dianalogikan dengan sel makrofag dan sel dendritik yang bisa memfagositosis dan menyajikan antigen sebagai hasil dari degradasi patogen yang difagositosis. Untuk menjawab permasalahan ini, penulis melakukan penelusuran artikel tentang eosinofil sebagai sel penyaji antigen melalui US National Library of Medicine National Institute of Healthdengan kata kunci eoshinophil dan antigen presenting cell. Hasil penelusuran adalah ditemukannya 10 artikel yang relevan dengan topik. Hasil dari sintesis kesepuluh jurnal tersebut adalah sel eosinofil mampu berperan sebagai sel penyaji antigen yang profesional (professionalantigenpresentng cell

  19. 大麦(Hordeum vulgare)昼夜节律钟基因CCA1的克隆及表达分析%Cloning and Expression Analysis of Circadian Clock Gene CCA1 in Barley (Hordeum vulgare)

    Institute of Scientific and Technical Information of China (English)

    邢国芳; 宋萌; 姚涵; 韩渊怀

    2012-01-01

    CCA 1 gene plays an important role in circadian clock sensitivity in rice (Oryza sativa L. ) and Arabidopsis thaliana. In this study, CCAl gene in barley was cloned by RT-PCR using homological primers based on the highly conserved region of the multiple alignments of the rice and Arabidopsis. The similarities of this sequence were up to 72% and 69%, respectively, to corresponding mRNA sequences of rice and maize in BLASTx of GenBank database. Using ORF Finder software, a 2157 bp open reading frame was found to code 718 amino acids. Using Compute pI/Mw tool, the amino acid sequence was analyzed, and it revealed that the molecular weight of this protein was about 77 769. 4 Da, and isoelectric point was about 6. 55. We established fluorescence quantitative RT-PCR system with barley inbred lines HUADAMAI 1 and HUADAMAI 2, and studied the expression of CCAl in leaf under 16h/8h (light/ dark) conditions. Expression analysis showed that the gene expression peaked at dawn (ZTO) then gradually declined from ZTO to ZT15, bottomed at ZT15, then increased and returned to the initial level at ZT24. This study will provide information of barley CCAl gene for further studying the function in regulating photoperiod sensitivity in barley, and provide scientific basis for clarifying the mechanism of the circadian synchronization in barley.%昼夜节律钟基因CCA1在调解水稻和拟南芥的光周期反应中起着重要作用.利用BLAST手段以玉米中的CCA1基因序列作为靶序列,调取Genbank数据库信息,并结合RT-PCR方法获得了大麦的cDNA同源序列.BLASTx分析发现其与水稻和玉米的序列相似性分别达到72%和69%.通过ORF Finder软件分析发现,该序列包含一个2157 bp的开放阅读框,编码一个由718个氨基酸残基组成的蛋白序列,其分子量为77769.4 Da,等电点为6.55.采用实时荧光定量PCR分析发现,随光照时间的变化,该基因在大麦叶片中的表达量呈现出白天不断降低而夜晚逐渐

  20. Preliminary Results of Field Emission Cathode Tests

    Science.gov (United States)

    Sovey, James S.; Kovaleski, Scott D.

    2001-01-01

    Preliminary screening tests of field emission cathodes such as chemical vapor deposited (CVD) diamond, textured pyrolytic graphite, and textured copper were conducted at background pressures typical of electric thruster test facilities to assess cathode performance and stability. Very low power electric thrusters which provide tens to hundreds micronewtons of thrust may need field emission neutralizers that have a capability of tens to hundreds of microamperes. From current voltage characteristics, it was found that the CVD diamond and textured metals cathodes clearly satisfied the Fowler-Nordheim emission relation. The CVD diamond and a textured copper cathode had average current densities of 270 and 380 mA/sq cm, respectively, at the beginning-of-life. After a few hours of operation the cathode emission currents degraded by 40 to 75% at background pressures in the 10(exp -5) Pa to 10(exp -4) Pa range. The textured pyrolytic graphite had a modest current density at beginning-of-life of 84 mA/sq cm, but this cathode was the most stable of all. Extended testing of the most promising cathodes is warranted to determine if current degradation is a burn-in effect or whether it is a long-term degradation process. Preliminary experiments with ferroelectric emission cathodes, which are ceramics with spontaneous electric polarization, were conducted. Peak current densities of 30 to 120 mA/sq cm were obtained for pulse durations of about 500 ns in the 10(exp -4) Pa pressure range.

  1. Elemental analysis of ash residue from combustion of CCA treated wood waste before and after electrodialytic extraction

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.

    2006-01-01

    Element distribution in a combined fly ash and bottom ash from combustion of copper chromate arsenate (CCA) treated wood waste was investigated by scanning electron microscopy (SEM/EDX) before and after electrodialytic extraction. The untreated ash contained various particles, including pieces...... treatment. Instead particles rich in Ca and S were now found, indicating precipitation of Ca-sulphates due to addition of sulphuric acid in connection with the electrodialytic treatment. Cu and Cr were still found associated with incompletely combusted wood particles and incorporated in matrix particles....... Chemical analyses of untreated and treated ash confirmed that most As, but only smaller amounts of Cu and Cr was removed due to the electrodialytic extraction. Overall metal contents in the original ash residue were: 1.4 g As, 2.76 g Cu and 2.48 g Cr, after electrodialytic extraction these amounts were...

  2. The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Sergi Portolés

    2010-11-01

    Full Text Available Circadian rhythms are daily biological oscillations driven by an endogenous mechanism known as circadian clock. The protein kinase CK2 is one of the few clock components that is evolutionary conserved among different taxonomic groups. CK2 regulates the stability and nuclear localization of essential clock proteins in mammals, fungi, and insects. Two CK2 regulatory subunits, CKB3 and CKB4, have been also linked with the Arabidopsis thaliana circadian system. However, the biological relevance and the precise mechanisms of CK2 function within the plant clockwork are not known. By using ChIP and Double-ChIP experiments together with in vivo luminescence assays at different temperatures, we were able to identify a temperature-dependent function for CK2 modulating circadian period length. Our study uncovers a previously unpredicted mechanism for CK2 antagonizing the key clock regulator CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1. CK2 activity does not alter protein accumulation or subcellular localization but interferes with CCA1 binding affinity to the promoters of the oscillator genes. High temperatures enhance the CCA1 binding activity, which is precisely counterbalanced by the CK2 opposing function. Altering this balance by over-expression, mutation, or pharmacological inhibition affects the temperature compensation profile, providing a mechanism by which plants regulate circadian period at changing temperatures. Therefore, our study establishes a new model demonstrating that two opposing and temperature-dependent activities (CCA1-CK2 are essential for clock temperature compensation in Arabidopsis.

  3. Analysis of cathode geometry to minimize cathode erosion in direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Causa, Federica [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Universita degli studi di Messina, 98122 Messina (Italy); Ghezzi, Francesco; Caniello, Roberto; Grosso, Giovanni [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dellasega, David [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2012-12-15

    Microplasma jets are now widely used for deposition, etching, and materials processing. The present study focuses on the investigation of the influence of cathode geometry on deposition quality, for microplasma jet deposition systems in low vacuum. The interest here is understanding the influence of hydrogen on sputtering and/or evaporation of the electrodes. Samples obtained with two cathode geometries with tapered and rectangular cross-sections have been investigated experimentally by scanning electron microscopy and energy dispersion X-ray spectroscopy. Samples obtained with a tapered-geometry cathode present heavy contamination, demonstrating cathode erosion, while samples obtained with a rectangular-cross-section cathode are free from contamination. These experimental characteristics were explained by modelling results showing a larger radial component of the electric field at the cathode inner wall of the tapered cathode. As a result, ion acceleration is larger, explaining the observed cathode erosion in this case. Results from the present investigation also show that the ratio of radial to axial field components is larger for the rectangular geometry case, thus, qualitatively explaining the presence of micro-hollow cathode discharge over a wide range of currents observed in this case. In the light of the above findings, the rectangular cathode geometry is considered to be more effective to achieve cleaner deposition.

  4. Hall-effect thruster--Cathode coupling: The effect of cathode position and magnetic field topology

    Science.gov (United States)

    Sommerville, Jason D.

    2009-12-01

    Hall-effect thruster (HET) cathodes are responsible for the generation of the free electrons necessary to initiate and sustain the main plasma discharge and to neutralize the ion beam. The position of the cathode relative to the thruster strongly affects the efficiency of thrust generation. However, the mechanisms by which the position affects the efficiency are not well understood. This dissertation explores the effect of cathode position on HET efficiency. Magnetic field topology is shown to play an important role in the coupling between the cathode plasma and the main discharge plasma. The position of the cathode within the magnetic field affects the ion beam and the plasma properties of the near-field plume, which explains the changes in efficiency of the thruster. Several experiments were conducted which explored the changes of efficiency arising from changes in cathode coupling. In each experiment, the thrust, discharge current, and cathode coupling voltage were monitored while changes in the independent variables of cathode position, cathode mass flow and magnetic field topology were made. From the telemetry data, the efficiency of the HET thrust generation was calculated. Furthermore, several ion beam and plasma properties were measured including ion energy distribution, beam current density profile, near-field plasma potential, electron temperature, and electron density. The ion beam data show how the independent variables affected the quality of ion beam and therefore the efficiency of thrust generation. The measurements of near-field plasma properties partially explain how the changes in ion beam quality arise. The results of the experiments show that cathode position, mass flow, and field topology affect several aspects of the HET operation, especially beam divergence and voltage utilization efficiencies. Furthermore, the experiments show that magnetic field topology is important in the cathode coupling process. In particular, the magnetic field

  5. Facial expression recognition based on fuzzy-LDA/CCA%基于模糊LDA/CCA的面部表情识别

    Institute of Scientific and Technical Information of China (English)

    周晓彦; 郑文明; 邹采荣; 赵力

    2008-01-01

    提出了一种新颖的基于典型相关分析(CCA)的模糊判别分析方法(fuzzy-LDA/CCA),并应用于面部表情识别问题.首先为每幅表情图像建立一个相关联的类模糊隶属度矢量,用于表示表情图像与基本表情类别的隶属关系,在此基础上应用CCA方法建立表情图像同表情类别的关系表达式,最后通过对表情图像的类隶属度矢量的估计来实现表情的分类.此外,还将fuzzy-LDA/CCA方法在核空间中进行了非线性推广,从而来解决非线性判别分析的问题.实验证明提出的方法获得了更好的识别效果.%A novel fuzzy linear discriminant analysis method by the canonical correlation analysis (fuzzy-LDA/CCA)is presented and applied to the facial expression recognition. The fuzzy method is used to evaluate the degree of the class membership to which each training sample belongs. CCA is then used to establish the relationship between each facial image and the corresponding class membership vector, and the class membership vector of a test image is estimated using this relationship. Moreover, the fuzzy-LDA/CCA method is also generalized to deal with nonlinear discriminant analysis problems via kernel method. The performance of the proposed method is demonstrated using real data.

  6. Cathode heating mechanisms in pseudospark plasma switches

    Science.gov (United States)

    Sommerer, Timothy J.; Pak, Hoyoung; Kushner, Mark J.

    1992-10-01

    Pseudosparks, and the back-lighted thyratron (BLT) in particular, are finding increasing application as pulse power switches. An attractive feature of BLTs is that high current densities (≥ tens of kA cm-2) can be sustained from metal cathodes without auxiliary heating. The source of this current is believed to be electric-field-enhanced thermionic emission resulting from heating of the cathode by ion bombardment during commutation which ultimately melts the surface of the cathode. It is proposed that a photon-driven ionization mechanism in the interelectrode gap of the BLT is responsible for initiating the observed patterns of cathode surface melting and electron emission. A 21/2-dimensional computer model is presented that incorporates a photo-induced ionization mechanism to spread the plasma into the interelectrode gap. It predicts a melting of the cathode in a pattern similar to that which is experimentally observed, and predicts a rate of field-enhanced thermionic electron emission that is sufficient to explain the high BLT conduction current density. In the absence of these mechanisms, the model does not predict the observed large-area melting of the face of the cathode. The cathode heating rate during the BLT switching phase is maximum for operating parameters that are very close to the limit for which the switch will close (that is, the smallest possible pressure-electrode spacing product and smallest possible electrode holes).

  7. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  8. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  9. Plasma distribution of cathodic ARC deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Raoux, S.; Krishnan, K.; MacGill, R.A.; Brown, I.G. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    The plasma distribution using a cathodic arc plasma source with and without magnetic macroparticle filter has been determined by depositing on a transparent plastic substrate and measuring the film absorption. It was found that the width of the distribution depends on the arc current, and it also depends on the cathode material which leads to a spatial separation of the elements when an alloy cathode is used. By applying a magnetic multicusp field near the exit of the magnetic filter, it was possible to modify the plasma distribution and obtain a flat plasma profile with a constant and homogeneous elemental distribution.

  10. Electrochemical Impedance Studies of SOFC Cathodes

    DEFF Research Database (Denmark)

    Hjelm, Johan; Søgaard, Martin; Wandel, Marie

    2007-01-01

    impedance of the cathode at intermediate operating temperatures. The perovskite is of the La-Sr-Co-Fe type. The EIS response of symmetrical cells with a thick (similar to 200 mu m) gadolinia doped ceria electrolyte was compared with the impedance contribution of the cathode of a full anode supported cell....... The full cells had a Ni-YSZ anode and anode support, a thin YSZ electrolyte, and a CGO barrier layer. The symmetric and full cell cathode responses were compared at open-circuit voltage. Humidified hydrogen was used as the fuel in the full cell measurements. Differential analysis of the impedance data...

  11. Advances in Thermionic Cathode of Tungsten and Molybdenum

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Several kinds of tungsten thermonic cathodes have been introduced. As a promising alternative for thoriated tungsten, rare earth doped molybdenum cathode has been studied. Compared with the traditional thoriated tungsten, La-Mo cathode has higher emission current density at lower temperature, but it has poor emission stability. In order to improve the emission stability, systematical study on the emission mechanism of La-Mo cathode has been carried out. The life of La-Mo cathode has been improved and has achieved 1400 h, which exceeds the minimum life for practical uses (1000 h). As another alternative for thoriated tungsten cathode, Y-Mo cathode has shown better performance. The thermionic emission capability of Y-Mo cathode is between that of La-Mo cathode and Th-W cathode.

  12. High current density cathode for electrorefining in molten electrolyte

    Science.gov (United States)

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  13. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  14. Reservoir Scandate Cathode for Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to combine two revolutionary cathode technologies into a single device for use in electric space propulsion. This will overcome problems that both...

  15. Modeling High Pressure Micro Hollow Cathode Discharges

    Science.gov (United States)

    2007-11-02

    cathode discharge excimer lamps , Phys. Plasmas 7, 286 (2000). [3] RH Stark and KH Schoenbach, Direct high pressure glow discharges, J. Appl. Phys...temperature profiles in argon glow discharges, J. Appl. Phys. 88, 2234 (2000) [8] M. Moselhy, W. Shi, R. Stark, A flat glow discharge excimer radiation...MHCD acts as a plasma cathode for a third electrode (anode). Some experimental results in this geometry are available for argon and for air from the

  16. CCA transport in soil from treated-timber posts: pattern dynamics from the local to regional scale

    Science.gov (United States)

    Clothier, B. E.; Green, S. R.; Vogeler, I.; Greven, M. M.; Agnew, R.; van den Dijssel, C. W.; Neal, S.; Robinson, B. H.; Davidson, P.

    2006-08-01

    Winegrape growing in many parts of the world, including Marlborough, New Zealand, uses treated-timber posts to act as supports for the grapevine's canopy. At a density of 580 posts per hectare, the H4-process treated supports result in an areal loading of CCA of: Copper (12 kg-Cu ha-1), Chromium (21 kg-Cr ha-1) and Arsenic (17 kg-As ha-1). Arsenic is the most mobile and toxic of the CCA-treatment cocktail. We describe experiments which indicate that about 4-6 mg-As month-1 post-1 is released from the subterranean part of the post. We have used SPASMO (Soil Plant Atmosphere System Model) to predict post-to-soil leakage, as well as the pattern dynamics of leaching and exchange around the post. Locally the pattern dynamics of transport and fate are controlled by the soil's chemical characteristics and the prevailing weather. Over its 20-year lifetime, the concentration of arsenic, both that adsorbed on the soil and in the soil solution, exceeds guideline values for soils (100 mg-As kg-1) and drinking water (10 μg-As L-1). Under a regime of 5% annual replacement of posts, the spatially averaged concentration of arsenic leaching through the soil is predicted to rise to 1.25 to 1.7 times the drinking water standard, depending only slightly on the soil type. The steady value is primarily controlled by the arsenic-release rate from the post. These steady values were used in a simple hydrogeological model of the major Marlborough aquifer systems to determine whether the subterranean flow of water could dilute the descending plumes of arsenic coming from above. Except for the sluggish aquifers of the southern valleys in Marlborough, most of the aquifer systems seem capable of diluting the leachate to between one tenth and one twentieth of the drinking water standard. The upscaling of our modelling of the local pattern dynamics spanned six orders of spatial magnitude, and four orders of time dimension.

  17. CCA transport in soil from treated-timber posts: pattern dynamics from the local to regional scale

    Directory of Open Access Journals (Sweden)

    B. E. Clothier

    2006-08-01

    Full Text Available Winegrape growing in many parts of the world, including Marlborough, New Zealand, uses treated-timber posts to act as supports for the grapevine's canopy. At a density of 580 posts per hectare, the H4-process treated supports result in an areal loading of CCA of: Copper (12 kg-Cu ha−1, Chromium (21 kg-Cr ha−1 and Arsenic (17 kg-As ha−1. Arsenic is the most mobile and toxic of the CCA-treatment cocktail. We describe experiments which indicate that about 4–6 mg-As month−1 post−1 is released from the subterranean part of the post. We have used SPASMO (Soil Plant Atmosphere System Model to predict post-to-soil leakage, as well as the pattern dynamics of leaching and exchange around the post. Locally the pattern dynamics of transport and fate are controlled by the soil's chemical characteristics and the prevailing weather. Over its 20-year lifetime, the concentration of arsenic, both that adsorbed on the soil and in the soil solution, exceeds guideline values for soils (100 mg-As kg−1 and drinking water (10 μg-As L−1. Under a regime of 5% annual replacement of posts, the spatially averaged concentration of arsenic leaching through the soil is predicted to rise to 1.25 to 1.7 times the drinking water standard, depending only slightly on the soil type. The steady value is primarily controlled by the arsenic-release rate from the post. These steady values were used in a simple hydrogeological model of the major Marlborough aquifer systems to determine whether the subterranean flow of water could dilute the descending plumes of arsenic coming from above. Except for the sluggish aquifers of the southern valleys in Marlborough, most of the aquifer systems seem capable of diluting the leachate to between one tenth and one twentieth of the drinking water standard. The upscaling of our modelling of the local pattern dynamics spanned six orders of spatial

  18. Development of plasma cathode electron guns

    Science.gov (United States)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  19. Attribute-Based Signcryption: Signer Privacy, Strong Unforgeability and IND-CCA Security in Adaptive-Predicates Model (Extended Version

    Directory of Open Access Journals (Sweden)

    Tapas Pandit

    2016-08-01

    Full Text Available Attribute-Based Signcryption (ABSC is a natural extension of Attribute-Based Encryption (ABE and Attribute-Based Signature (ABS, where one can have the message confidentiality and authenticity together. Since the signer privacy is captured in security of ABS, it is quite natural to expect that the signer privacy will also be preserved in ABSC. In this paper, first we propose an ABSC scheme which is weak existential unforgeable and IND-CCA secure in adaptive-predicates models and, achieves signer privacy. Then, by applying strongly unforgeable one-time signature (OTS, the above scheme is lifted to an ABSC scheme to attain strong existential unforgeability in adaptive-predicates model. Both the ABSC schemes are constructed on common setup, i.e the public parameters and key are same for both the encryption and signature modules. Our first construction is in the flavor of CtE&S paradigm, except one extra component that will be computed using both signature components and ciphertext components. The second proposed construction follows a new paradigm (extension of CtE&S , we call it “Commit then Encrypt and Sign then Sign” (CtE&S . The last signature is generated using a strong OTS scheme. Since, the non-repudiation is achieved by CtE&S paradigm, our systems also achieve the same.

  20. Compact Rare Earth Emitter Hollow Cathode

    Science.gov (United States)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  1. 2013 Estorm - Invited Paper - Cathode Materials Review

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus [ORNL; Mohanty, Debasish [ORNL; Li, Jianlin [ORNL; Wood III, David L [ORNL

    2014-01-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403 431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783 789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  2. Improved cathode materials for microbial electrosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T; Nie, HR; Bain, TS; Lu, HY; Cui, MM; Snoeyenbos-West, OL; Franks, AE; Nevin, KP; Russell, TP; Lovley, DR

    2013-01-01

    Microbial electrosynthesis is a promising strategy for the microbial conversion of carbon dioxide to transportation fuels and other organic commodities, but optimization of this process is required for commercialization. Cathodes which enhance electrode-microbe electron transfer might improve rates of product formation. To evaluate this possibility, biofilms of Sporomusa ovata, which are effective in acetate electrosynthesis, were grown on a range of cathode materials and acetate production was monitored over time. Modifications of carbon cloth that resulted in a positive-charge enhanced microbial electrosynthesis. Functionalization with chitosan or cyanuric chloride increased acetate production rates 6-7 fold and modification with 3-aminopropyltriethoxysilane gave rates 3-fold higher than untreated controls. A 3-fold increase in electrosynthesis over untreated carbon cloth cathodes was also achieved with polyaniline cathodes. However, not all strategies to provide positively charged surfaces were successful, as treatment of carbon cloth with melamine or ammonia gas did not stimulate acetate electrosynthesis. Treating carbon cloth with metal, in particular gold, palladium, or nickel nanoparticles, also promoted electrosynthesis, yielding electrosynthesis rates that were 6-,4.7- or 4.5-fold faster than the untreated control, respectively. Cathodes comprised of cotton or polyester fabric treated with carbon nanotubes yielded cathodes that supported acetate electrosynthesis rates that were similar to 3-fold higher than carbon cloth controls. Recovery of electrons consumed in acetate was similar to 80% for all materials. The results demonstrate that one approach to increase rates of carbon dioxide reduction in microbial electrosynthesis is to modify cathode surfaces to improve microbe-electrode interactions.

  3. Multiple cathodic reaction mechanisms in seawater cathodic biofilms operating in sediment microbial fuel cells.

    Science.gov (United States)

    Babauta, Jerome T; Hsu, Lewis; Atci, Erhan; Kagan, Jeff; Chadwick, Bart; Beyenal, Haluk

    2014-10-01

    In this study, multiple reaction mechanisms in cathodes of sediment microbial fuel cells (SMFCs) were characterized by using cyclic voltammetry and microelectrode measurements of dissolved oxygen and pH. The cathodes were acclimated in SMFCs with sediment and seawater from San Diego Bay. Two limiting current regions were observed with onset potentials of approximately +400 mVAg/AgCl for limiting current I and -120 mVAg/AgCl for limiting current II. The appearance of two catalytic waves suggests that multiple cathodic reaction mechanisms influence cathodic performance. Microscale oxygen concentration measurements showed a zero surface concentration at the electrode surface for limiting current II but not for limiting current I, which allowed us to distinguish limiting current II as the conventional oxygen reduction reaction and limiting current I as a currently unidentified cathodic reaction mechanism. Microscale pH measurements further confirmed these results.

  4. Estudio psicométrico del Cuestionario de Conducta Antisocial (CC-A en adolescentes tempranos de Tucumán, Argentina

    Directory of Open Access Journals (Sweden)

    Ana Betina Lacunza

    2016-01-01

    Full Text Available El comportamiento antisocial se refiere a una diversidad de actos que infringen las normas sociales y de convivencia. Su delimitación está dada tanto por la valoración social de la gravedad de los comportamientos como por su alejamiento a las pautas normativas de una sociedad. El objetivo de este trabajo fue analizar las propiedades psicométricas del cuestionario de Conducta Antisocial (CC-A en adolescentes de Tucumán, Argentina. Se aplicó el CC-A y la Batería de Socialización BAS-3 a quinientos once adolescentes escolarizados de once y doce años. Se encontró una solución de tres factores que explicaban el 35 % de la varianza, congruente con la propuesta original. Los coeficientes Alpha de Cronbach fueron adecuados en Agresividad (.735, Aislamiento (.769 y Ansiedad/Retraimiento (.681, y se establecieron relaciones entre CC-A y BAS-3. Así mismo, se observaron correlaciones negativas entre Agresividad, Consideración con los demás y Autocontrol mientras que fueron positivas entre Aislamiento y Retraimiento. Posteriormente, se determinaron las categorías percentilares de esta versión (CC-A de ventiocho ítems; 18% de los adolescentes presentaban percentiles de riesgo en Agresividad mientras que un 20.9% lo hacía en Aislamiento. El estudio aporta datos con respecto a las propiedades psicométricas del instrumento en población local, indicando su sensibilidad para la evaluación del comportamiento antisocial.

  5. The Clock Protein CCA1 and the bZIP Transcription Factor HY5 Physically Interact to Regulate Gene Expression in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Christos Andronis; Simon Barak; Stephen M.Knowles; Shoji Sugano; Elaine M.Tobin

    2008-01-01

    The circadian clock regulates the expression of an array of Arabidopsis genes such as those encoding the LIGHT-HARVESTING CHLOROPHYLL A/B (Lhcb) proteins. We have previously studied the promoters of two of these Arabidopsis genes-Lhcb1*1 and Lhcb1*3-and identified a sequence that binds the clock protein CIRCADIAN CLOCK ASSOCIATED 1 (CCA1). This sequence, designated CCAl-binding site (CBS), is necessary for phytochrome and circadian responsiveness of these genes. In close proximity to this sequence, there exists a G-box core element that has been shown to bind the bZIP transcription factor HY5 in other light-regulated plant promoters. In the present study, we examined the importance of the interaction of transcription factors binding the CBS and the G-box core element in the control of normal circadian rhythmic expression of Lhcb genes. Our results show that HY5 is able to specifically bind the G-box element in the Lhcb promoters and that CCA1 can alter the binding activity of HY5. We further show that CCA1 and HY5 can physically interact and that they can act synergistically on transcription in a yeast reporter gene assay. An absence of HY5 leads to a shorter period of Lhcb1*1 circadian expression but does not affect the circadian expression of CATALASE3 (CAT3), whose promoter lacks a G-box element. Our results suggest that interaction of the HY5 and CCA1 proteins on Lhcb promoters is necessary for normal circadian expression of the Lhcb genes.

  6. Determination of the distribution of copper and chromium in partly remediated CCA-treated pine wood using SEM and EDX analyses

    DEFF Research Database (Denmark)

    Christensen, Iben Vernegren; Ottosen, Lisbeth M.; Melcher, Eckhard;

    2005-01-01

    Soaking in different acids and electrodialytic remediation (EDR) were applied for removing copper and chromium from freshly Chromated Copper Arsenate (CCA) impregnated EN 113 pine wood samples. After remedial treatments, AAS analyses revealed that the concentration of copper (Cu) and chromium (Cr...... large amounts of Cu and no Cr. Cr was most effectively removed after soaking in oxalic acid and subsequent EDR treatment or dual soaking in phosphoric acid and oxalic acid with and without subsequent EDR....

  7. Three-way FMRI-DTI-methylation data fusion based on mCCA+jICA and its application to schizophrenia.

    Science.gov (United States)

    Sui, Jing; He, Hao; Liu, Jingyu; Yu, Qingbao; Adali, Tulay; Pearlson, Godfrey D; Calhoun, Vince D

    2012-01-01

    Multi-modal fusion is an effective approach in biomedical imaging which combines multiple data types in a joint analysis and overcomes the problem that each modality provides a limited view of the brain. In this paper, we propose an exploratory fusion model, we term "mCCA+jICA", by combining two multivariate approaches: multi-set canonical correlation analysis (mCCA) and joint independent component analysis (jICA). This model can freely combine multiple, disparate data sets and explore their joint information in an accurate and effective manner, so that high decomposition accuracy and valid modal links can be achieved simultaneously. We compared mCCA+jICA with its alternatives in simulation and applied it to real fMRI-DTI-methylation data fusion, to identify brain abnormalities in schizophrenia. The results replicate previous reports and add to our understanding of the neural correlates of schizophrenia, and suggest more generally a promising approach to identify potential brain illness biomarkers.

  8. Focal adhesion kinase and Src phosphorylations in HGF-induced proliferation and invasion of human cholangiocarcinoma cell line, HuCCA-1

    Institute of Scientific and Technical Information of China (English)

    Urai Pongchairerk; Jun-Lin Guan; Vijittra Leardkamolkarn

    2005-01-01

    AIM: To study the role of focal adhesion kinase (FAK) and its association with Src in hepatocyte growth factor (HGF)-induced cell signaling in cholangiocarcinoma progression.METHODS: Previously isolated HuCCA-1 cells were re-characterized by immunofluorescent staining and reverse transcriptase-polymerase chain reaction assay for the expression of cytokeratin 19, HGF and c-Met mRNA. Cultured HuCCA-1 cells were treated with HGF and determined for cell proliferation and invasion effects by MTT and invasion assays. Western blotting, immunoprecipitation, and co-immunoprecipitation were also performed to study the phosphorylation and interaction of FAK and Src. A novel Src inhibitor (AZM555130) was applied in cultures to investigate the effects on FAK phosphorylation inhibition and on cell proliferation and invasion.RESULTS: HGF enhanced HuCCA-1 cell proliferation and invasion by mediating FAK and Src phosphorylations.FAK-Src interaction occurred in a time-dependent manner that Src was proved to be an upstream signaling molecule to FAK. The inhibitor to Src decreased FAK phosphorylation level in correlation with the reduction of cell proliferation and invasion.CONCLUSION: FAK plays a significant role in signaling pathway of HGF-responsive cell line derived from cholangiocarcinoma. Autophosphorylated Src, induced by HGF, mediates Src kinase activation, which subsequently phosphorylates its substrate, FAK, and signals to cell proliferation and invasion.

  9. Preparation of nanocomposite thoriated tungsten cathode by swaging technique

    Institute of Scientific and Technical Information of China (English)

    王发展; 诸葛飞; 张晖; 丁秉钧

    2002-01-01

    By using the high energy ball milling method,the nanosized ThO2 powders were obtained.Through mixing powders,sintering and hot swaging processing,a nanocomposite thoriated tungsten cathode was fabricated.The relative density of the nanocomposite material is near 100%.The microstructure of nanocomposite cathode is quite different from that of conventional thoriated tungsten cathode.Most of thoria particles are less than 100 nm in diameter,and distribute on the boundaries of tungsten grains.The nanocomposite cathode shows a much lower arc starting field than that of conventional cathode,which will improve the performance of the cathode significantly.

  10. The influence of cathode excavation of cathodic arc evaporator on thickness uniformity and erosion products angle distribution

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2014-01-01

    Full Text Available Cathodic arc evaporators are used for coating with functional films. Prolonged or buttend evaporators may be used for this purposes. In butt-end evaporator the cathode spots move continuously on the cathode work surface and evaporate cathode material. High depth excavation profile forms on the cathode work surface while the thick coating precipitation (tens or hundreds of microns. The cathode excavation profile is shaped like a “cup” with high walls for electrostatic discharge stabilization systems with axial magnetic fields. Cathode spots move on the bottom of the “cup”. It is very likely that high “cup” walls are formed as a result of lasting work time influence on the uniformity of precipitated films.In the present work the influence of excavation profile walls height on the uniformity of precipitated coating was carried out. The high profile walls are formed due to lasting work of DC vacuum arc evaporator. The cathode material used for tests was 3003 aluminum alloy. The extended substrate was placed parallel to the cathode work surface. Thickness distribution along the substrate length with the new cathode was obtained after 6 hours and after 12 hours of continuous operation.The thickness distribution of precipitated coating showed that the cathode excavation has an influence on the angular distribution of the matter escaping the cathode. It can be clearly seen from the normalized dependence coating thickness vs the distance from the substrate center. Also the angular distribution of the matter flow from the cathode depending on the cathode working time was obtained. It was shown that matter flow from the cathode differs from the LambertKnudsen law. The more the cathode excavation the more this difference.So, cathode excavation profile has an influence on the uniformity of precipitated coating and it is necessary to take in account the cathode excavation profile while coating the thick films.

  11. Parallel Operation of Microhollow Cathode Discharges

    Science.gov (United States)

    Stark, Robert H.; Shi, Wenhui; Schoenbach, Karl H.

    1998-10-01

    The dc current-voltage characteristics of microhollow cathode discharges has, in certain ranges of the discharge current, a positive slope [1]. In these current ranges it should be possible to operate multiple discharges in parallel without individual ballast, and be used as flat panel excimer lamps [2] or large area plasma cathodes. In order to verify this hypothesis we have studied the parallel operation of two microhollow cathode discharges of 100 micrometer hole diameter in argon at pressures from 100 Torr to 800 Torr. Stable dc operation of the two discharges, without individual ballast, was obtained if the voltage-current characteristics of the individual discharges had a positive slope greater than 10 V/mA over a voltage range of more than 5 to obtain parallel operation over the entire current range of the microhollow cathode discharges, which includes regions of negative differential conductivity, we have replaced the metal anode by a semi-insulating semiconductor, which serves as distributed resistive ballast. With this method, we were able to ignite and sustain an array of dc microhollow cathode discharges over a wide range of pressure and discharge current. [1] K.H.Schoenbach et al. Appl. Phys. Lett. 68, 13 (1996). [2] A.El-Habachi and K.H.Schoenbach, APL. 72, 1 (1998). This work was funded by the Department of Energy, Advanced Energy Division, and by the Air Force Office of Scientific Research (AFOSR) in cooperation with the DDR&E Air Plasma Ramparts MURI Program.

  12. Modeling of electrodialytic and dialytic removal of Cr, Cu and As from CCA-treated wood chips

    DEFF Research Database (Denmark)

    Ribeiro, Alexandra; Rodriguez-Maroto, J.M.; Mateus, Eduardo;

    2007-01-01

    neutralized by addition of nitric acid in the cathode compartment. The anion and cation-exchange membranes are simply represented as ionic filters that preclude the transport of co-ions (the cations and anions respectively) with the exception of H+, which is retarded but considered to pass through the anion...... the concentration gradients of their compounds and the electromigration of their ionic, simple and complex species during the operation. The model also includes the electromigration of the non-contaminant principal ionic species in the system, H+ and OH, proceeding from the electrolysis at the electrodes, Na......-exchange membrane....

  13. Sheet Plasma Produced by Hollow Cathode Discharge

    Institute of Scientific and Technical Information of China (English)

    张龙; 张厚先; 杨宣宗; 冯春华; 乔宾; 王龙

    2003-01-01

    A sheet plasma is produced by a hollow cathode discharge under an axial magnetic field.The plasma is about 40cm in length,4 cm in width and 1cm in thickness.The electron density is about 108cm-3.The hollow cathode is made to be shallow with a large opening,which is different from the ordinary deep hollow cathode.A Langmuir probe is used to detect the plasma.The electron density and the spatial distribution of the plasma change when voltage,pressure and the magnetic field vary.A peak and a data fluctuation at about 200 G-300 G are observed in the variation of electron density(or thickness of the sheet plasma)with the magnetic field.Our work will be helpful in characterizing the sheet plasma and will make the production of dense sheet plasma more controllable.

  14. Filtered cathodic arc deposition apparatus and method

    Science.gov (United States)

    Krauss, Alan R.

    1999-01-01

    A filtered cathodic arc deposition method and apparatus for the production of highly dense, wear resistant coatings which are free from macro particles. The filtered cathodic arc deposition apparatus includes a cross shaped vacuum chamber which houses a cathode target having an evaporable surface comprised of the coating material, means for generating a stream of plasma, means for generating a transverse magnetic field, and a macro particle deflector. The transverse magnetic field bends the generated stream of plasma in the direction of a substrate. Macro particles are effectively filtered from the stream of plasma by traveling, unaffected by the transverse magnetic field, along the initial path of the plasma stream to a macro particle deflector. The macro particle deflector has a preformed surface which deflects macro particles away from the substrate.

  15. Immunohistochemical demonstration of Clara cell antigen in lung tumors of bronchiolar origin induced by N-nitrosodiethylamine in Syrian golden hamsters.

    Science.gov (United States)

    Rehm, S.; Takahashi, M.; Ward, J. M.; Singh, G.; Katyal, S. L.; Henneman, J. R.

    1989-01-01

    Both alveolar type II cells and Clara cells have been suggested as cells of origin of human bronchioloalveolar lung carcinomas and other pulmonary neoplasms, based on the presence of cell specific markers identified by immunocytochemical methods. Alveolar type II cell origin of solid and papillary lung tumors of the mouse has been demonstrated, and Clara cells have been suggested as cell of origin for hamster pulmonary neoplasms. Therefore, chemically induced bronchiolar hyperplasias and pulmonary neoplasms of Syrian golden hamsters were analyzed by avidin-biotin immunohistochemistry to localize a hamster-specific Clara cell antigen (CCA) and keratin. The hamsters had been treated subcutaneously with multiple doses of N-nitrosodiethylamine (NDEA). Proliferative lesions of low cuboidal, tall columnar, or pleomorphic cells were present within bronchioles or adjacent to airways in the alveolar parenchyma. Frequently areas of squamous cell differentiation were present focally or diffusely that were immunoreactive for cytokeratin. Immunoreactivity for cytokeratin was also noted for hyperplastic bronchiolar neuroepithelial bodies. Cellular hyperplasias extending out into the alveolar parenchyma contained ciliated cells and frequently consisted of cells immunoreactive for CCA, showing them to be of bronchiolar Clara cell origin. Tumors developed from bronchiolar cell hyperplasias localized within bronchioles and from bronchiolar cells lining former alveolar walls. Neoplastic growth patterns were tubulo-papillary, forming loose networks or densely cellular areas. Immunoreactivity for cytoplasmic CCA was found in 50% of the tumors and was seen most frequently in small cuboidal cells and larger, vacuolated cells scattered throughout the neoplasms. In summary, evidence is presented that NDEA-induced pulmonary tumors of the Syrian golden hamster originated from cells lining bronchioles and from extrabronchiolar Clara cell hyperplasias of the terminal bronchioles. As the

  16. Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Kai-chao Feng

    2017-01-01

    Full Text Available Abstract Background Cholangiocarcinoma (CCA is one of the most fatal malignant tumors with increasing incidence, mortality, and insensitivity to traditional chemo-radiotherapy and targeted therapy. Chimeric antigen receptor-modified T cell (CART immunotherapy represents a novel strategy for the management of many malignancies. However, the potential of CART therapy in treating advanced unresectable/metastatic CCA is uncharted so far. Case presentation In this case, a 52-year-old female who was diagnosed as advanced unresectable/metastatic CCA and resistant to the following chemotherapy and radiotherapy was treated with CART cocktail immunotherapy, which was composed of successive infusions of CART cells targeting epidermal growth factor receptor (EGFR and CD133, respectively. The patient finally achieved an 8.5-month partial response (PR from the CART-EGFR therapy and a 4.5-month-lasting PR from the CART133 treatment. The CART-EGFR cells induced acute infusion-related toxicities such as mild chills, fever, fatigue, vomiting and muscle soreness, and a 9-day duration of delayed lower fever, accompanied by escalation of IL-6 and C reactive protein (CRP, acute increase of glutamic-pyruvic transaminase and glutamic-oxalacetic transaminase, and grade 2 lichen striatus-like skin pathological changes. The CART133 cells induced an intermittent upper abdominal dull pain, chills, fever, and rapidly deteriorative grade 3 systemic subcutaneous hemorrhages and congestive rashes together with serum cytokine release, which needed emergent medical intervention including intravenous methylprednisolone. Conclusions This case suggests that CART cocktail immunotherapy may be feasible for the treatment of CCA as well as other solid malignancies; however, the toxicities, especially the epidermal/endothelial damages, require a further investigation. Trial registration ClinicalTrials.gov NCT01869166 and NCT02541370 .

  17. Synchrotron Investigations of SOFC Cathode Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Idzerda, Yves

    2013-09-30

    The atomic variations occurring in cathode/electrolyte interface regions of La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3-δ} (LSCF) cathodes and other SOFC related materials have been investigated and characterized using soft X-ray Absorption Spectroscopy (XAS) and diffuse soft X-ray Resonant Scattering (XRS). X-ray Absorption Spectroscopy in the soft X-ray region (soft XAS) is shown to be a sensitive technique to quantify the disruption that occurs and can be used to suggest a concrete mechanism for the degradation. For LSC, LSF, and LSCF films, a significant degradation mechanism is shown to be Sr out-diffusion. By using the XAS spectra of hexavalent Cr in SrCrO4 and trivalent Cr in Cr2O3, the driving factor for Sr segregation was identified to be the oxygen vacancy concentration at the anode and cathode side of of symmetric LSCF/GDC/LSCF heterostructures. This is direct evidence of vacancy induced cation diffusion and is shown to be a significant indicator of cathode/electrolyte interfacial degradation. X-ray absorption spectroscopy is used to identify the occupation of the A-sites and B-sites for LSC, LSF, and LSCF cathodes doped with other transition metals, including doping induced migration of Sr to the anti-site for Sr, a significant cathode degradation indicator. By using spatially resolved valence mapping of Co, a complete picture of the surface electrochemistry can be determined. This is especially important in identifying degradation phenomena where the degradation is spatially localized to the extremities of the electrochemistry and not the average. For samples that have electrochemical parameters that are measured to be spatially uniform, the Co valence modifications were correlated to the effects of current density, overpotential, and humidity.

  18. Klystron Amplifier Utilizing Scandate Cathode and Electrostatic Focusing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build an electrostatically focused klystron that exploits recent breakthroughs in scandate cathode technology. We have built cathodes with greater than...

  19. Nano-Particle Scandate Cathode for Space Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an improved cathode based on our novel theory of the role of scandium oxide in enhancing emission in tungsten impregnate cathodes. Recent results have...

  20. Long Life Cold Cathodes for Hall effect Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electron source incorporating long life, high current density cold cathodes inside a microchannel plate for use with ion thrusters is proposed. Cathode lifetime...

  1. Review on MIEC Cathode Materials for Solid Oxide Fuel Cells

    Science.gov (United States)

    Burnwal, Suman Kumar; Bharadwaj, S.; Kistaiah, P.

    2016-11-01

    The cathode is one of the most important components of solid oxide fuel cells (SOFCs). The reduction of oxygen at the cathode (traditional cathodes like LSM, LSGM, etc.) is the slow step in the cell reaction at intermediate temperature (600-800∘C) which is one of the key obstacles to the development of SOFCs. The mixed ionic and electronic conducting cathode (MIEC) like LSCF, BSCF, etc., has recently been proposed as a promising cathode material for SOFC due to the improvement of the kinetic of the cathode reaction. The MIEC materials provide not only the electrons for the reduction of oxygen, but also the ionic conduction required to ensure the transport of the formed oxygen ions and thereby improves the overall electrochemical performance of SOFC system. The characteristics of MIEC cathode materials and its comparison with other traditional cathode materials is studied and presented in the paper.

  2. Hollow-Cathode Source Generates Plasma

    Science.gov (United States)

    Deininger, W. D.; Aston, G.; Pless, L. C.

    1989-01-01

    Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.

  3. DARHT 2 kA Cathode Development

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B.; Roy, P.K.; Waldron, W.; Westenskow, G.; Yu, S.; Bieniosek, F.M.

    2009-03-09

    In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm{sup 2} of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm{sup 2}. The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10{sup -8} Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function

  4. A Novel Cathode Material for Cathodic Dehalogenation of 1,1-Dibromo Cyclopropane Derivatives.

    Science.gov (United States)

    Gütz, Christoph; Selt, Maximilian; Bänziger, Markus; Bucher, Christoph; Römelt, Christina; Hecken, Nadine; Gallou, Fabrice; Galvão, Tomás R; Waldvogel, Siegfried R

    2015-09-28

    Leaded bronze turned out to be an excellent cathode material for the dehalogenation reaction of cyclopropanes without affecting the strained molecular entity. With this particular alloy, beneficial properties of lead cathodes are conserved, whereas the corrosion of cathode is efficiently suppressed. The solvent in the electrolyte determines whether a complete debromination reaction is achieved or if the process can be selectively stopped at the monobromo cyclopropane intermediate. The electroorganic conversion tolerates a variety of functional groups and can be conducted at rather complex substrates like cyclosporine A. This approach allows the sustainable preparation of cyclopropane derivatives.

  5. Low-current hollow-cathode discharge in a trigger unit of a cold cathode thyratron

    OpenAIRE

    Landl, N. V.; Korolev, Yuriy Dmitrievich; Frants, O. B.; Geyman, V. G.; Bolotov, A. V.

    2015-01-01

    The paper deals with the investigations of the effect of cathode emissivity on the regimes of low-current hollow-cathode glow discharge. It is shown that an increase in the emissivity due to the so-called high-emissivity tablet allows the essential decrease in the discharge initiation voltage and the discharge burning voltage. The model of current sustaining for the hollow-cathode discharge, which takes into account the external emission current has been developed. On basis of the model, the ...

  6. Low-current hollow-cathode discharge in a trigger unit of a cold cathode thyratron

    Science.gov (United States)

    Landl, N. V.; Korolev, Y. D.; Frants, O. B.; Geyman, V. G.; Bolotov, A. V.

    2015-11-01

    The paper deals with the investigations of the effect of cathode emissivity on the regimes of low-current hollow-cathode glow discharge. It is shown that an increase in the emissivity due to the so-called high-emissivity tablet allows the essential decrease in the discharge initiation voltage and the discharge burning voltage. The model of current sustaining for the hollow-cathode discharge, which takes into account the external emission current has been developed. On basis of the model, the current-voltage characteristics of the discharge have been interpreted.

  7. Uniform large-area thermionic cathode for SCALPEL

    Science.gov (United States)

    Katsap, Victor; Sewell, Peter B.; Waskiewicz, Warren K.; Zhu, Wei

    1999-11-01

    An electron beam lithography tool, which employs the SCALPEL technique, requires an extremely uniform beam to illuminate the scattering Mask, with the cathode operating in the temperature limited mode. It has been previously shown that LaB6 cathodes are not stable in this mode of operation. We have explored the possibility of implementing refined Tantalum-based emitters in the SCALPEL source cathode, and have developed large-area flat cathodes featuring suitably high emission uniformity under temperature limited operation.

  8. Optical properties of lamps with cold emission cathode

    Science.gov (United States)

    Kalenik, Jerzy; Czerwosz, ElŻbieta; Biernacki, Krzysztof; Rymarczyk, Joanna; Stepińska, Izabela

    2016-12-01

    A luminescent lamp was constructed and tested. Phosphor excited by electrons is the source of light. The source of electrons is field emission cathode. The cathode is covered with nickel-carbon layer containing carbon nanotubes that enhance electron emission from the cathode. Results of luminance measurements are presented. Luminance is high enough for lighting application.

  9. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson

    2000-03-31

    . However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

  10. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2001-09-30

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. In this portion of study we have focused on producing YSZ films on porous LSM substrates. When using the polymer precursor there are a number of obstacles to overcome in order to form dense electrolyte layers on porous substrates (cathode or anode). Probably the most difficult problems are: (1) Extreme penetration of the polymer into the substrate must be prevented. (2) Shrinkage cracking must be avoided. (3) Film thickness in the 1 to 5{micro}m range must be achieved. We have demonstrated that cracking due to shrinkage involved during the elimination of solvents and organic matter and densification of the remaining oxide is not a problem as long as the resulting oxide film is < {approx} 0.15 {micro}m in thickness. We have also shown that we can make thicker films by making multiple depositions if the substrate is smooth (roughness {le} 0.1 {micro}m) and contains no surface pores > 0.2 {micro}m. The penetration of the polymer into the porous substrate can be minimized by increasing the viscosity of the polymer and reducing the largest pore at the surface of the substrate to {le} 0.2 {micro}m. We have shown that this can be done, but we have also shown that it is difficult to make dense films that are defect free with areas > 1 cm{sup 2}. This is because of the roughness of the substrate and the difficulty in making a substrate which does not have surface voids > 0.2 {micro}m. Thus the process works well for dense, smooth substrates for films < 1 {micro}m thick, but is difficult to apply to rough, porous surfaces and to make film thickness > 1 {micro}m. As a result of these problems, we have been addressing the issue of how to make dense films in the thickness range of 1 to 5 {micro}m on sintered porous substrates without introducing cracks and holes due to shrinkage and surface voids? These

  11. The double sheath on cathodes of discharges burning in cathode vapour

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M S; Benilova, L G [Departamento de Fisica, Universidade da Madeira, Largo do MunicIpio, 9000 Funchal (Portugal)

    2010-09-01

    The model of a collisionless near-cathode space-charge sheath with ionization of atoms emitted by the cathode surface is considered. Numerical calculations showed that the mathematical problem is solvable and its solution is unique. In the framework of this model, the sheath represents a double layer with a potential maximum, with the ions which are produced before the maximum returning to the cathode surface and those produced after the maximum escaping into the plasma. Numerical results are given in a form to be readily applicable in analysis of discharges burning in cathode vapour, such as vacuum arcs. In particular, the results indicate that the ion backflow coefficient in such discharges exceeds 0.5, in agreement with values extracted from the experiment.

  12. High-pressure hollow cathode discharges

    Science.gov (United States)

    Schoenbach, Karl H.; El-Habachi, Ahmed; Shi, Wenhui; Ciocca, Marco

    1997-11-01

    Reducing the diameter of the cathode hole in a plane anode - hollow cathode geometry to 0963-0252/6/4/003/img1m has allowed us to generate direct current discharges in argon at atmospheric pressure. Up to pressure times cathode hole diameter (pD) values of approximately 5 Torr cm, and at sub-mA currents, glow discharges (predischarges) are observed with a shape which is determined by the vacuum electric field. In the same pD range, but at higher currents of up to approximately 4 mA, the discharges are of the hollow cathode discharge type. At pD values exceeding 5 Torr cm the predischarges turn into surface discharges along the mica spacer between the electrodes. At currents > 4 mA filamentary, pulsed discharges are observed. Qualitative information on the electron energy distribution in the microdischarges has been obtained by studying the VUV emission from ionized argon atoms and the argon excimer radiation at 130 nm. The results of the spectral measurements indicate the presence of a relatively large concentration of electrons with energies > 15 eV over the entire pressure range. The fact that the current - voltage characteristic of the microdischarges has a positive slope over much of the current range where excimer radiation is emitted indicates the possibility of forming arrays of these discharges and using them in flat panel excimer lamps.

  13. ME1/1 Cathode Strip Chambers

    CERN Document Server

    Erchov, Yu V; Kamenev, Alexey; Karjavin, Vladimir; Khabarov, Serguei; Moissenz, P V; Moissenz, K P; Movchan, Sergey; Perelygin, Victor; Vassiliev, S E; Zarubin, Anatoli; Tchekhovski, V A

    2008-01-01

    The 76 innermost ME1/1 cathode strip chambers (CSC) of the CMS Experiment were designed and produced in Dubna. The chambers have been installed in the detector and commissioning has been completed. This paper describes the design of the CSCs, their main mechanical parameters and read-out electronics, and the results of tests with cosmic-ray muons.

  14. Barium depletion in hollow cathode emitters

    Energy Technology Data Exchange (ETDEWEB)

    Polk, James E., E-mail: james.e.polk@jpl.nasa.gov; Mikellides, Ioannis G.; Katz, Ira [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Capece, Angela M. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States)

    2016-01-14

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al{sub 2}O{sub 3} source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values.

  15. Improved Rare-Earth Emitter Hollow Cathode

    Science.gov (United States)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  16. Cathode depth sensing in CZT detectors

    Science.gov (United States)

    Hong, JaeSub; Bellm, Eric C.; Grindlay, Jonathan E.; Narita, Tomohiko

    2004-02-01

    Measuring the depth of interaction in thick Cadmium-Zinc-Telluride (CZT) detectors allows improved imaging and spectroscopy for hard X-ray imaging above 100 keV. The Energetic X-ray Imaging Survey Telescope (EXIST) will employ relatively thick (5 - 10 mm) CZT detectors, which are required to perform the broad energy-band sky survey. Interaction depth information is needed to correct events to the detector "focal plane" for correct imaging and can be used to improve the energy resolution of the detector at high energies by allowing event-based corrections for incomplete charge collection. Background rejection is also improved by allowing low energy events from the rear and sides of the detector to be rejected. We present experimental results of intereaction depth sensing in a 5 mm thick pixellated Au-contact IMARAD CZT detector. The depth sensing was done by making simultaneous measurements of cathode and anode signals, where the interaction depth at a given energy is proportional to the ratio of cathode/anode signals. We demonstrate how a simple empirical formula describing the event distributions in the cathode/anode signal space can dramatically improve the energy resolution. We also estimate the energy and depth resolution of the detector as a function of the energy and the interaction depth. We also show a depth-sensing prototype system currently under development for EXIST in which cathode signals from 8, 16 or 32 crystals can be read-out by a small multi-channel ASIC board that is vertically edge-mounted on the cathode electrode along every second CZT crystal boundary. This allows CZT crystals to be tiled contiguously with minimum impact on throughput of incoming photons. The robust packaging is crucial in EXIST, which will employ very large area imaging CZT detector arrays.

  17. Over-expression of the β-carboxysomal CcmM protein in Synechococcus PCC7942 reveals a tight co-regulation of carboxysomal carbonic anhydrase (CcaA) and M58 content.

    Science.gov (United States)

    Long, Benedict M; Rae, Benjamin D; Badger, Murray R; Price, G Dean

    2011-09-01

    Carboxysomes, containing the cell's complement of RuBisCO surrounded by a specialized protein shell, are a central component of the cyanobacterial CO(2)-concentrating mechanism. The ratio of two forms of the β-carboxysomal protein CcmM (M58 and M35) may affect the carboxysomal carbonic anhydrase (CcaA) content. We have over-expressed both M35 and M58 in the β-cyanobacterium Synechococcus PCC7942. Over-expression of M58 resulted in a marked increase in the amount of this protein in carboxysomes at the expense of M35, with a concomitant increase in the observed CcaA content of carboxysomes. Conversely, M35 over-expression diminished M58 content of carboxysomes and led to a decrease in CcaA content. Carboxysomes of air-grown wild-type cells contained slightly elevated CcaA and M58 content and slightly lower M35 content compared to their 2% CO(2)-grown counterparts. Over a range of CcmM expression levels, there was a strong correlation between M58 and CcaA content, indicating a constant carboxysomal M58:CcaA stoichiometry. These results also confirm a role for M58 in the recruitment of CcaA into the carboxysome and suggest a tight regulation of M35 and M58 translation is required to produce carboxysomes with an appropriate CA content. Analysis of carboxysomal protein ratios, resulting from the afore-mentioned over-expression studies, revealed that β-carboxysomal protein stoichiometries are relatively flexible. Determination of absolute protein quantities supports the hypothesis that M35 is distributed throughout the β-carboxysome. A modified β-carboxysome packing model is presented.

  18. Heavy metals relationship with water and size-fractionated sediments in rivers using canonical correlation analysis (CCA) case study, rivers of south western Caspian Sea.

    Science.gov (United States)

    Vosoogh, Ali; Saeedi, Mohsen; Lak, Raziyeh

    2016-11-01

    Some pollutants can qualitatively affect aquatic freshwater such as rivers, and heavy metals are one of the most important pollutants in aquatic fresh waters. Heavy metals can be found in the form of components dissolved in these waters or in compounds with suspended particles and surface sediments. It can be said that heavy metals are in equilibrium between water and sediment. In this study, the amount of heavy metals is determined in water and different sizes of sediment. To obtain the relationship between heavy metals in water and size-fractionated sediments, a canonical correlation analysis (CCA) was utilized in rivers of the southwestern Caspian Sea. In this research, a case study was carried out on 18 sampling stations in nine rivers. In the first step, the concentrations of heavy metals (Cu, Zn, Cr, Fe, Mn, Pb, Ni, and Cd) were determined in water and size-fractionated sediment samples. Water sampling sites were classified by hierarchical cluster analysis (HCA) utilizing squared Euclidean distance with Ward's method. In addition, for interpreting the obtained results and the relationships between the concentration of heavy metals in the tested river water and sample sediments, canonical correlation analysis (CCA) was utilized. The rivers were grouped into two classes (those having no pollution and those having low pollution) based on the HCA results obtained for river water samples. CCA results found numerous relationships between rivers in Iran's Guilan province and their size-fractionated sediments samples. The heavy metals of sediments with 0.038 to 0.125 mm size in diameter are slightly correlated with those of water samples.

  19. Cancer testis antigen and immunotherapy

    Directory of Open Access Journals (Sweden)

    Krishnadas DK

    2013-04-01

    Full Text Available Deepa Kolaseri Krishnadas, Fanqi Bai, Kenneth G Lucas Department of Pediatrics, Division of Hematology/Oncology, University of Louisville, KY, USA Abstract: The identification of cancer testis (CT antigens has been an important advance in determining potential targets for cancer immunotherapy. Multiple previous studies have shown that CT antigen vaccines, using both peptides and dendritic cell vaccines, can elicit clinical and immunologic responses in several different tumors. This review details the expression of melanoma antigen family A, 1 (MAGE-A1, melanoma antigen family A, 3 (MAGE-A3, and New York esophageal squamous cell carcinoma-1 (NY-ESO-1 in various malignancies, and presents our current understanding of CT antigen based immunotherapy. Keywords: cancer testis antigens, immunotherapy, vaccine

  20. Polymer coatings as separator layers for microbial fuel cell cathodes

    KAUST Repository

    Watson, Valerie J.

    2011-03-01

    Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production. © 2010 Elsevier B.V. All rights reserved.

  1. Virtual cathode microwave generator having annular anode slit

    Science.gov (United States)

    Kwan, Thomas J. T.; Snell, Charles M.

    1988-01-01

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit therethrough effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators.

  2. Cathode R&D for Future Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Dowell, D.H.; /SLAC; Bazarov, I.; Dunham, B.; /Cornell U., CLASSE; Harkay, K.; /Argonne; Hernandez-Garcia; /Jefferson Lab; Legg, R.; /Wisconsin U., SRC; Padmore, H.; /LBL, Berkeley; Rao, T.; Smedley, J.; /Brookhaven; Wan, W.; /LBL, Berkeley

    2010-05-26

    This paper reviews the requirements and current status of cathodes for accelerator applications, and proposes a research and development plan for advancing cathode technology. Accelerator cathodes need to have long operational lifetimes and produce electron beams with a very low emittance. The two principal emission processes to be considered are thermionic and photoemission with the photocathodes being further subdivided into metal and semi-conductors. Field emission cathodes are not included in this analysis. The thermal emittance is derived and the formulas used to compare the various cathode materials. To date, there is no cathode which provides all the requirements needed for the proposed future light sources. Therefore a three part research plan is described to develop cathodes for these future light source applications.

  3. Design of ANSYS-based Cathode with Complex Groove

    Institute of Scientific and Technical Information of China (English)

    范植坚; 赵刚刚; 张丽娟

    2012-01-01

    The profile of cathode with complex groove needs to be modified time after time during design of electrochemical machining (ECM) cathode.A design scheme using finite element method (FEM) for cathode with complex profile is put forward to shorten the period of cathode design.Based on Laplace equation,the potential distribution on parameter-transformation model was calculated by using ANSYS,which is compared to the potential distribution calculated by substituting conductivity and current efficiency into Laplace equation.According to the difference between the results calculated and simulated by ANSYS,the cathode profile was modified by adjusting the cathode boundary.The experiments show that the dimensions and shape of workpiece machined by numerically simulated cathode conform well with the blueprint.

  4. Erosion behaviour of composite Al-Cr cathodes in cathodic arc plasmas in inert and reactive atmospheres

    CERN Document Server

    Franz, Robert; Hawranek, Gerhard; Polcik, Peter

    2015-01-01

    Al$_{x}$Cr$_{1-x}$ composite cathodes with Al contents of x = 0.75, 0.5 and 0.25 were exposed to cathodic arc plasmas in Ar, N$_2$ and O$_2$ atmospheres and their erosion behaviour was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by X-ray diffraction analysis. Cathode poisoning effects in the reactive N$_2$ and O$_2$ atmospheres were non-uniform as a result of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded centre region of the cathodes.

  5. Antigen antibody interactions

    CERN Document Server

    DeLisi, Charles

    1976-01-01

    1. 1 Organization of the Immune System One of the most important survival mechanisms of vertebrates is their ability to recognize and respond to the onslaught of pathogenic microbes to which they are conti- ously exposed. The collection of host cells and molecules involved in this recognition­ 12 response function constitutes its immune system. In man, it comprises about 10 cells 20 (lymphocytes) and 10 molecules (immunoglobulins). Its ontogenic development is c- strained by the requirement that it be capable of responding to an almost limitless variety of molecular configurations on foreign substances, while simultaneously remaining inert to those on self components. It has thus evolved to discriminate, with exquisite precision, between molecular patterns. The foreign substances which induce a response, called antigens, are typically large molecules such as proteins and polysaccharides. The portions of these with which immunoglobulins interact are called epitopes or determinants. A typical protein epitope m...

  6. Selective Reduction of Cr(VI in Chromium, Copper and Arsenic (CCA Mixed Waste Streams Using UV/TiO2 Photocatalysis

    Directory of Open Access Journals (Sweden)

    Shan Zheng

    2015-02-01

    Full Text Available The highly toxic Cr(VI is a critical component in the Chromated Copper Arsenate (CCA formulations extensively employed as wood preservatives. Remediation of CCA mixed waste and discarded treated wood products is a significant challenge. We demonstrate that UV/TiO2 photocatalysis effectively reduces Cr(VI to less toxic Cr(III in the presence of arsenate, As(V, and copper, Cu(II. The rapid conversion of Cr(VI to Cr(III during UV/TiO2 photocatalysis occurs over a range of concentrations, solution pH and at different Cr:As:Cu ratios. The reduction follows pseudo-first order kinetics and increases with decreasing solution pH. Saturation of the reaction solution with argon during UV/TiO2 photocatalysis had no significant effect on the Cr(VI reduction demonstrating the reduction of Cr(VI is independent of dissolved oxygen. Reduction of Cu(II and As(V does not occur under the photocatalytic conditions employed herein and the presence of these two in the tertiary mixtures had a minimal effect on Cr(VI reduction. The Cr(VI reduction was however, significantly enhanced by the addition of formic acid, which can act as a hole scavenger and enhance the reduction processes initiated by the conduction band electron. Our results demonstrate UV/TiO2 photocatalysis effectively reduces Cr(VI in mixed waste streams under a variety of conditions.

  7. Selective reduction of Cr(VI) in chromium, copper and arsenic (CCA) mixed waste streams using UV/TiO2 photocatalysis.

    Science.gov (United States)

    Zheng, Shan; Jiang, Wenjun; Rashid, Mamun; Cai, Yong; Dionysiou, Dionysios D; O'Shea, Kevin E

    2015-02-03

    The highly toxic Cr(VI) is a critical component in the Chromated Copper Arsenate (CCA) formulations extensively employed as wood preservatives. Remediation of CCA mixed waste and discarded treated wood products is a significant challenge. We demonstrate that UV/TiO2 photocatalysis effectively reduces Cr(VI) to less toxic Cr(III) in the presence of arsenate, As(V), and copper, Cu(II). The rapid conversion of Cr(VI) to Cr(III) during UV/TiO2 photocatalysis occurs over a range of concentrations, solution pH and at different Cr:As:Cu ratios. The reduction follows pseudo-first order kinetics and increases with decreasing solution pH. Saturation of the reaction solution with argon during UV/TiO2 photocatalysis had no significant effect on the Cr(VI) reduction demonstrating the reduction of Cr(VI) is independent of dissolved oxygen. Reduction of Cu(II) and As(V) does not occur under the photocatalytic conditions employed herein and the presence of these two in the tertiary mixtures had a minimal effect on Cr(VI) reduction. The Cr(VI) reduction was however, significantly enhanced by the addition of formic acid, which can act as a hole scavenger and enhance the reduction processes initiated by the conduction band electron. Our results demonstrate UV/TiO2 photocatalysis effectively reduces Cr(VI) in mixed waste streams under a variety of conditions.

  8. Cathodic Cage Plasma Nitriding: An Innovative Technique

    OpenAIRE

    Sousa,R.R.M.; de Araújo, F. O.; J. A. P. da Costa; Brandim,A.S.; R. A. de Brito; C. Alves

    2012-01-01

    Cylindrical samples of AISI 1020, AISI 316, and AISI 420 steels, with different heights, were simultaneously treated by a new technique of ionic nitriding, entitled cathodic cage plasma nitriding (CCPN), in order to evaluate the efficiency of this technique to produce nitrided layers with better properties compared with those obtained using conventional ionic nitriding technique. This method is able to eliminate the edge effect in the samples, promoting a better uniformity of temperature, and...

  9. FUZZY LOGIC CONTROLLED CATHODIC PROTECTION CIRCUIT DESIGN

    OpenAIRE

    AKÇAYOL, M. Ali

    2010-01-01

    In this study, output voltage of automatic transformer-rectifier (TR) unit of impressed current cathodic protection has been controlled by using fuzzy logic controller. To prevent corrosion, voltage between the protection metal and the auxiliary anode has to be controlled on a desired level. Because soil resistance in the environment changes with humidity and soil characteristics, TRs must control the output voltage between protection metal and auxiliary anode automatically. In this study, a ...

  10. The Hollow Cathode Phase of Pseudospark Operation

    Science.gov (United States)

    1993-06-01

    THE HOLLOW CATHODE PHASE OF PSEUDOSPARK OPERATION L. Pitchford and J. P. Boeuf University Paul Sabatier, France V. Puech University De Paris-Sud...ORGANIZATION NAME(S) AND ADDRESS(ES) University Paul Sabatier, France 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME...Appl. Phys. 53, 1699 (1988). [9] A. Anders, S. Anders, and M. Gundersen, submitted to Phys. Rev. Lett. [10] J. P. Boeuf and L. Pitchford , IEEE

  11. Evaluation in vitro of the infection times of engorged females of Rhipicephalus (Boophilus microplus by the entomopathogenic nematode Steinernema glaseri CCA strain Avaliação in vitro dos tempos de infecção de fêmeas ingurgitadas de Rhipicephalus (Boophilus microplus pelo nematoide entomopatogênico Steinernema glaseri estirpe CCA

    Directory of Open Access Journals (Sweden)

    Leandro Barbiéri de Carvalho

    2010-04-01

    Full Text Available Studies have shown that ticks are susceptible to infection by entomopathogenic nematodes. These studies indicate different susceptibilities of ticks to infection by these fungi, depending on the tick species, development phase, entomopathogenic nematodes species and strains and the time the ticks are exposed to them. Usually this period ranges from 24 to 72 hours. The aim of this study was to evaluate the infection times in vitro of engorged Rhipicephalus (Boophilus microplus females by the entomopathogenic nematodes Steinernema glaseri CCA strain, by analysis of the ticks' biological parameters. The results show that a 2-hour exposure time was sufficient for the engorged R. microplus females to be infected by S. glaseri CCA, but that a minimum exposure time of 24 hours was necessary to generate treatment efficacy above 90%.Os carrapatos são susceptíveis à infecção por nematoides entomopatogênicos. Essa susceptibilidade diverge quanto às espécies de carrapato estudadas, à fase evolutiva, às espécies e estirpes dos nematoides e ao tempo ao qual os carrapatos ficam expostos a estes. O presente trabalho teve como objetivo avaliar os tempos de infecção in vitro de fêmeas ingurgitadas de Rhipicephalus (Boophilus microplus pelo nematoide entomopatogênico Steinernema glaseri estirpe CCA, pela análise dos parâmetros biológicos do carrapato. Os resultados obtidos demonstraram que um período de duas horas de exposição foi suficiente para que fêmeas ingurgitadas de R. microplus fossem infectadas por S. glaseri CCA e que um período de exposição mínimo de 24h foi necessário para que houvesse infecção de fêmeas ingurgitadas de R. microplus por S. glaseri estirpe CCA, capaz de gerar, in vitro, eficácia no tratamento superior a 90%.

  12. A definitive criterion for cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Roger [Cathodic Protection Network International Ltd., Reading (United Kingdom)

    2009-07-01

    The corrosion reaction is defined using the Pourbaix Diagram and includes consideration of the pH, temperature, pressure, nobility of the metal and conductivity of the electrolyte. The passive zone can be established in a laboratory by creating a closed circuit condition in which the voltages can be measured. Natural corrosion cells occurring in simple conditions can be evaluated for the purpose of monitoring the performance of cathodic protection. Metal pipelines are complex networks of conductors submerged in electrolyte of infinitely variable qualities. The present method used to ascertain the effectiveness of cathodic protection has many inherent errors and results in costly and unpredictable corrosion failures. An electrode has been devised to define the exact electrical status of the corrosion reaction at its location. The design allows a closed circuit measurement of the corrosion current that can determine whether or not corrosion has been stopped by cathodic protection. This has allowed the development of software that can calculate the condition and corrosion status throughout a network of pipelines, using electrical circuit analysis common in the electronics industry. (author)

  13. Antigenic Variation in Bacterial Pathogens.

    Science.gov (United States)

    Palmer, Guy H; Bankhead, Troy; Seifert, H Steven

    2016-02-01

    Antigenic variation is a strategy used by a broad diversity of microbial pathogens to persist within the mammalian host. Whereas viruses make use of a minimal proofreading capacity combined with large amounts of progeny to use random mutation for variant generation, antigenically variant bacteria have evolved mechanisms which use a stable genome, which aids in protecting the fitness of the progeny. Here, three well-characterized and highly antigenically variant bacterial pathogens are discussed: Anaplasma, Borrelia, and Neisseria. These three pathogens display a variety of mechanisms used to create the structural and antigenic variation needed for immune escape and long-term persistence. Intrahost antigenic variation is the focus; however, the role of these immune escape mechanisms at the population level is also presented.

  14. Radioimmunoassays of hidden viral antigens

    Energy Technology Data Exchange (ETDEWEB)

    Neurath, A.R. (Lindsley F. Kimbell Research Inst., New York, NY); Strick, N.; Baker, L.; Krugman, S.

    1982-07-01

    Antigens corresponding to infectious agents may be present in biological specimens only in a cryptic form bound to antibodies and, thus, may elude detection. We describe a solid-phase technique for separation of antigens from antibodies. Immune complexes are precipitated from serum by polyethylene glycol, dissociated with NaSCN, and adsorbed onto nitrocellulose or polystyrene supports. Antigens remain topographically separated from antibodies after removal of NaSCN and can be detected with radiolabeled antibodies. Genomes from viruses immobilized on nitrocellulose can be identified by nucleic acid hybridization. Nanogram quantities of sequestered hepatitis B surface and core antigens and picogram amounts of hepatitis B virus DNA were detected. Antibody-bound adenovirus, herpesvirus, and measles virus antigens were discerned by the procedure.

  15. Radioimmunoassays of hidden viral antigens.

    Science.gov (United States)

    Neurath, A R; Strick, N; Baker, L; Krugman, S

    1982-01-01

    Antigens corresponding to infectious agents may be present in biological specimens only in a cryptic form bound to antibodies and, thus, may elude detection. We describe a solid phase technique for separation of antigens from antibodies. Immune complexes are precipitated from serum by polyethylene glycol, dissociated with NaSCN, and adsorbed onto nitrocellulose or polystyrene supports. Antigens remain topographically separated from antibodies after removal of NaSCN and can be detected with radiolabeled antibodies. Genomes from viruses immobilized on nitrocellulose can be identified by nucleic acid hybridization. Nanogram quantities of sequestered hepatitis B surface and core antigens and picogram amounts of hepatitis B virus DNA were detected. Antibody-bond adenovirus, herpesvirus, and measles virus antigens were discerned by the procedure. Images PMID:6956871

  16. Cathode power distribution system and method of using the same for power distribution

    Science.gov (United States)

    Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2014-11-11

    Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

  17. Effect of cathode model on arc attachment for short high-intensity arc on a refractory cathode

    Science.gov (United States)

    Javidi Shirvan, Alireza; Choquet, Isabelle; Nilsson, Håkan

    2016-12-01

    Various models coupling the refractory cathode, the cathode sheath and the arc at atmospheric pressure exist. They assume a homogeneous cathode with a uniform physical state, and differ by the cathode layer and the plasma arc model. However even the most advanced of these models still fail in predicting the extent of the arc attachment when applied to short high-intensity arcs such as gas tungsten arcs. Cathodes operating in these conditions present a non-uniform physical state. A model taking into account the first level of this non-homogeneity is proposed based on physical criteria. Calculations are done for 5 mm argon arcs with a thoriated tungsten cathode. The results obtained show that radiative heating and cooling of the cathode surface are of the same order. They also show that cathode inhomogeneity has a significant effect on the arc attachment, the arc temperature and pressure. When changing the arc current (100 A, 200 A) the proposed model allows predicting trends observed experimentally that cannot be captured by the homogeneous cathode model unless restricting a priori the size of the arc attachment. The cathode physics is thus an important element to include to obtain a comprehensive and predictive arc model.

  18. Modelling cathode spots in glow discharges in the cathode boundary layer geometry

    CERN Document Server

    Almeida, P G C; Bieniek, M S

    2015-01-01

    Self-organized patterns of cathode spots in glow discharges are computed in the cathode boundary layer geometry, which is the one employed in most of the experiments reported in the literature. The model comprises conservation and transport equations of electrons and a single ion species, written in the drift-diffusion and local-field approximations, and Poisson's equation. Multiple solutions existing for the same value of the discharge current and describing modes with different configurations of cathode spots are computed by means of a stationary solver. The computed solutions are compared to their counterparts for plane-parallel electrodes, and experiments. All of the computed spot patterns have been observed in the experiment.

  19. Cathodic phosphate coating containing nano zinc particles on magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A technology for preparation of a cathodic phosphate coating mainly containing nano metallic zinc particles and phosphate compounds on magnesium alloy was developed.The influence of cathodic current density on the microstructure of the cathodic phosphate coating Was investigated.The results show that the crystals of the coating are finer and the microstructures of the outer surface of the coatings are zigzag at the cathodic density of 0.2-0.5 A/dm2.The content of nano metallic zinc particles in the coating decreases with the increase of the thickness of the coatings and tends to be zero when the coating thickness is 4.14 μm.The cathodic phosphate coating was applied to be a transition coating for improving the adhesion between the paints and the magnesium alloys.The formation mechanism of the cathodic phosphate coating was investigated as well.

  20. Preliminary experimental study of a carbon fiber array cathode

    Science.gov (United States)

    Li, An-kun; Fan, Yu-wei

    2016-08-01

    The preliminary experimental results of a carbon fiber array cathode for the magnetically insulated transmission line oscillator (MILO) operations are reported. When the diode voltage and diode current were 480 kV and 44 kA, respectively, high-power microwaves with a peak power of about 3 GW and a pulse duration of about 60 ns were obtained in a MILO device with the carbon fiber array cathode. The preliminary experimental results show that the shot-to-shot reproducibility of the diode current and the microwave power is stable until 700 shots. No obvious damage or deterioration can be observed in the carbon fiber surface morphology after 700 shots. Moreover, the cathode performance has no observable deterioration after 700 shots. In conclusion, the maintain-free lifetime of the carbon fiber array cathode is more than 700 shots. In this way, this carbon fiber array cathode offers a potential replacement for the existing velvet cathode.

  1. Effect of cathodic protection on the state of steel reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Cam, Phan Luong; Thuy, Thi Bich [Hanoi University of Technology, Hanoi (Viet Nam)

    2002-10-15

    Damage of reinforced concrete structures is mainly caused by chloride or carbonation induced corrosion of steel. Cathodic protection is a very effective measure for corrosion control of steel in concrete, especially in chloride contaminated concrete. In this paper, effect of cathodic protection on the state of steel reinforcement is presented. Cathodic polarization of reinforcements in concrete was done under different submerged conditions. Cyclic potentiodynamic tests were used to determine the effect of cathodic protection on the behavior of the steel. Pitting appeared on the non-protected steel, but was not observed on the cathodically protected steel. microscopic photographs show that a close film exists on the protected steel, while the non-protected steel's film is loose. Investigated results have proved the effect of cathodic protection in restoring or strengthening passive film on the steel reinforcement

  2. Rf Gun with High-Current Density Field Emission Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2005-12-19

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  3. Assistant Anode in a Cathodic Arc Plasma Source

    Institute of Scientific and Technical Information of China (English)

    张涛; Paul K. Chu; 张荟星; Ian G. Brown

    2001-01-01

    The performance and characteristics of a cathodic arc plasma source, consisting of a titanium cathode, an anode with and without a tungsten mesh, and a coil producing a focusing magnetic field between the anode and cathode,are investigated. The high transparency and large area of the mesh allow a high plasma flux to penetrate the anode from the cathodic arc. The mesh helps to decrease the arc resistance and the ignition voltage of the cathodic arc in the focusing magnetic field, and to increase the life of the source, which means that the source makes the cathodic arc easily and greatly stabilized during the operation when a focusing magnetic field exists in the source.

  4. Cathodic electrocatalyst layer for electrochemical generation of hydrogen peroxide

    Science.gov (United States)

    Rhodes, Christopher P. (Inventor); Tennakoon, Charles L. K. (Inventor); Singh, Waheguru Pal (Inventor); Anderson, Kelvin C. (Inventor)

    2011-01-01

    A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.

  5. Structured electron beams from nano-engineered cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Lueangaramwong, A. [NICADD, DeKalb; Mihalcea, D. [NICADD, DeKalb; Andonian, G. [RadiaBeam Tech.; Piot, P. [Fermilab

    2017-03-07

    The ability to engineer cathodes at the nano-scale have open new possibilities such as enhancing quantum eciency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper we present numerical investigations of the beam dynamics associated to this class of cathode in the weak- and strong-field regimes.We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  6. Impedance Modeling of Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2010-01-01

    A 1-dimensional impedance model for a solid oxide fuel cell cathode is formulated and applied to a cathode consisting of 50/50 wt% strontium doped lanthanum cobaltite and gadolinia doped ceria. A total of 42 impedance spectra were recorded in the temperature range: 555-852°C and in the oxygen...... physical parameters such as the cathode thickness. ©2010 COPYRIGHT ECS - The Electrochemical Society...

  7. Structured electron beams from nano-engineered cathodes

    Science.gov (United States)

    Lueangaramwong, A.; Mihalcea, D.; Andonian, G.; Piot, P.

    2017-03-01

    The ability to engineer cathodes at the nano-scale have opened new possibilities such as enhancing quantum efficiency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper, we present numerical investigations of the beam dynamics associated with this class of cathode in the weak- and strong-field regimes. We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  8. COLONOSCOPY AND CARCINOEMBRYONIC ANTIGEN VARIATIONS

    Directory of Open Access Journals (Sweden)

    Rita G SOUSA

    2014-03-01

    Full Text Available Context Colonoscopy is essential for synchronous and metachronous cancer detection. Carcinoembryonic antigen is a colorectal cancer tumor marker, important as a follow-up tool in patients with previous colorectal cancer. False-positive carcinoembryonic antigen elevation results in multiples exams and in patient anxiety. In literature, there is reference to transient carcinoembryonic antigen increase with colonoscopy. Objective To evaluate the influence of bowel preparation and colonoscopy in carcinoembryonic antigen blood levels. Methods We prospectively studied subjects that underwent routine colonoscopy in our institution. Blood samples were collected (1 before bowel cleaning, (2 before colonoscopy and (3 immediately after colonoscopy. Blood carcinoembryonic antigen levels were determined by “Sandwich” immunoassay. The statistical methods used were the paired t-test and ANOVA. Results Thirty-seven patients (22M/15F were included; age range 28-84 (mean 56 years. Mean carcinoembryonic antigen values were 1.9, 2 and 1.8 for (1, (2 and (3, respectively. An increase in value (2 compared with (1 was observed in 20/37 patients (P = 0.018, mainly in younger patients and in patients requiring more endoluminal interventions. In 29/37 patients, the CEA value decreased from (2 to (3 (P = 1.3x10-7. Conclusions A trend for carcinoembryonic antigen increase after bowel cleaning was observed, especially in younger patients and in patients with more endoluminal interventions, but without clinical meaning.

  9. Development of spray coated cathodes for RITS-6.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Sean; Leckbee, Joshua J.; Miller, Stephen Samuel

    2013-09-01

    This report documents work conducted in FY13 to conduct a feasibility study on thermal spray coated cathodes to be used in the RITS-6 accelerator in an attempt to improve surface uniformity and repeatability. Currently, the cathodes are coated with colloidal silver by means of painting by hand. It is believed that improving the cathode coating process could simplify experimental setup and improve flash x-ray radiographic performance. This report documents the experimental setup and summarizes the results of our feasibility study. Lastly, it describes the path forward and potential challenges that must be overcome in order to improve the process for creating uniform and repeatable silver coatings for cathodes.

  10. Apparatuses for making cathodes for high-temperature, rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Meinhardt, Kerry D.; Sprenkle, Vincent L.; Coffey, Gregory W.

    2016-09-13

    The approaches and apparatuses for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

  11. Recent developments in cathode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2010-02-15

    One of the challenges for improving the performance of lithium ion batteries to meet increasingly demanding requirements for energy storage is the development of suitable cathode materials. Cathode materials must be able to accept and release lithium ions repeatedly (for recharging) and quickly (for high current). Transition metal oxides based on the {alpha}-NaFeO{sub 2}, spinel and olivine structures have shown promise, but improvements are needed to reduce cost and extend effective lifetime. In this paper, recent developments in cathode materials for lithium ion batteries are reviewed. This includes comparison of the performance characteristics of the promising cathode materials and approaches for improving their performances. (author)

  12. Importance of OH(-) transport from cathodes in microbial fuel cells.

    Science.gov (United States)

    Popat, Sudeep C; Ki, Dongwon; Rittmann, Bruce E; Torres, César I

    2012-06-01

    Cathodic limitation in microbial fuel cells (MFCs) is considered an important hurdle towards practical application as a bioenergy technology. The oxygen reduction reaction (ORR) needs to occur in MFCs under significantly different conditions compared to chemical fuel cells, including a neutral pH. The common reason cited for cathodic limitation is the difficulty in providing protons to the catalyst sites. Here, we show that it is not the availability of protons, but the transport of OH(-) from the catalyst layer to the bulk liquid that largely governs cathodic potential losses. OH(-) is a product of an ORR mechanism that has not been considered dominant before. The accumulation of OH(-) at the catalyst sites results in an increase in the local cathode pH, resulting in Nernstian concentration losses. For Pt-based gas-diffusion cathodes, using polarization curves developed in unbuffered and buffered solutions, we quantified this loss to be >0.3 V at a current density of 10 Am(-2) . We show that this loss can be partially overcome by replacing the Nafion binder used in the cathode catalyst layer with an anion-conducting binder and by providing additional buffer to the cathode catalyst directly in the form of CO(2) , which results in enhanced OH(-) transport. Our results provide a comprehensive analysis of cathodic limitations in MFCs and should allow researchers to develop and select materials for the construction of MFC cathodes and identify operational conditions that will help minimize Nernstian concentration losses due to pH gradients.

  13. Cathodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Samson, Alfred Junio

    This dissertation focuses on the development of nanostructured cathodes for solid oxide fuel cells (SOFCs) and their performance at low operating temperatures. Cathodes were mainly fabricated by the infiltration method, whereby electrocatalysts are introduced onto porous, ionic conducting backbones......degreeC. The most promising cathode was integrated onto an anode supported cell and it was found that the cell exhibits electrochemical stability with no measureable degradation during 1500 h operation at 700degreeC. LaCoO3 and Co3O4 infiltrated - CGO cathodes were also investigated and revealed...

  14. Removal of muscle artifact from EEG data: comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches

    Science.gov (United States)

    Safieddine, Doha; Kachenoura, Amar; Albera, Laurent; Birot, Gwénaël; Karfoul, Ahmad; Pasnicu, Anca; Biraben, Arnaud; Wendling, Fabrice; Senhadji, Lotfi; Merlet, Isabelle

    2012-12-01

    Electroencephalographic (EEG) recordings are often contaminated with muscle artifacts. This disturbing myogenic activity not only strongly affects the visual analysis of EEG, but also most surely impairs the results of EEG signal processing tools such as source localization. This article focuses on the particular context of the contamination epileptic signals (interictal spikes) by muscle artifact, as EEG is a key diagnosis tool for this pathology. In this context, our aim was to compare the ability of two stochastic approaches of blind source separation, namely independent component analysis (ICA) and canonical correlation analysis (CCA), and of two deterministic approaches namely empirical mode decomposition (EMD) and wavelet transform (WT) to remove muscle artifacts from EEG signals. To quantitatively compare the performance of these four algorithms, epileptic spike-like EEG signals were simulated from two different source configurations and artificially contaminated with different levels of real EEG-recorded myogenic activity. The efficiency of CCA, ICA, EMD, and WT to correct the muscular artifact was evaluated both by calculating the normalized mean-squared error between denoised and original signals and by comparing the results of source localization obtained from artifact-free as well as noisy signals, before and after artifact correction. Tests on real data recorded in an epileptic patient are also presented. The results obtained in the context of simulations and real data show that EMD outperformed the three other algorithms for the denoising of data highly contaminated by muscular activity. For less noisy data, and when spikes arose from a single cortical source, the myogenic artifact was best corrected with CCA and ICA. Otherwise when spikes originated from two distinct sources, either EMD or ICA offered the most reliable denoising result for highly noisy data, while WT offered the better denoising result for less noisy data. These results suggest that

  15. Three-way (N-way) fusion of brain imaging data based on mCCA+jICA and its application to discriminating schizophrenia.

    Science.gov (United States)

    Sui, Jing; He, Hao; Pearlson, Godfrey D; Adali, Tülay; Kiehl, Kent A; Yu, Qingbao; Clark, Vince P; Castro, Eduardo; White, Tonya; Mueller, Bryon A; Ho, Beng C; Andreasen, Nancy C; Calhoun, Vince D

    2013-02-01

    Multimodal fusion is an effective approach to better understand brain diseases. However, most such instances have been limited to pair-wise fusion; because there are often more than two imaging modalities available per subject, there is a need for approaches that can combine multiple datasets optimally. In this paper, we extended our previous two-way fusion model called "multimodal CCA+joint ICA", to three or N-way fusion, that enables robust identification of correspondence among N data types and allows one to investigate the important question of whether certain disease risk factors are shared or distinct across multiple modalities. We compared "mCCA+jICA" with its alternatives in a 3-way fusion simulation and verified its advantages in both decomposition accuracy and modal linkage detection. We also applied it to real functional Magnetic Resonance Imaging (fMRI)-Diffusion Tensor Imaging (DTI) and structural MRI fusion to elucidate the abnormal architecture underlying schizophrenia (n=97) relative to healthy controls (n=116). Both modality-common and modality-unique abnormal regions were identified in schizophrenia. Specifically, the visual cortex in fMRI, the anterior thalamic radiation (ATR) and forceps minor in DTI, and the parietal lobule, cuneus and thalamus in sMRI were linked and discriminated between patients and controls. One fMRI component with regions of activity in motor cortex and superior temporal gyrus individually discriminated schizophrenia from controls. Finally, three components showed significant correlation with duration of illness (DOI), suggesting that lower gray matter volumes in parietal, frontal, and temporal lobes and cerebellum are associated with increased DOI, along with white matter disruption in ATR and cortico-spinal tracts. Findings suggest that the identified fractional anisotropy changes may relate to the corresponding functional/structural changes in the brain that are thought to play a role in the clinical expression of

  16. Immunocytochemical localization of the surfactant apoprotein and Clara cell antigen in chemically induced and naturally occurring pulmonary neoplasms of mice.

    Science.gov (United States)

    Ward, J. M.; Singh, G.; Katyal, S. L.; Anderson, L. M.; Kovatch, R. M.

    1985-01-01

    The localization of surfactant apoprotein (SAP) and the Clara cell antigen(s) (CCA) was studied in naturally occurring and experimentally induced pulmonary hyperplasias and neoplasms by avidin-biotin peroxidase complex (ABC) immunocytochemistry. Lungs of B6C3F1 and A strain mice with naturally occurring lesions, B6C3F1 mice given injections of N-nitrosodiethylamine (DEN), BALB/c nu/nu or nu/+ mice exposed transplacentally on Day 16 of gestation to ethylnitrosourea (ENU), or BALB/c nu/+ mice exposed to ENU at 8-12 weeks of age were preserved in formalin or Bouin's fixative. After ABC immunocytochemistry, SAP was found in the cytoplasm of normal alveolar Type II cells; in the majority of cells in focal alveolar and solid hyperplasias originating in peribronchiolar or peripheral locations; and in solid, tubular, papillary, and mixed adenomas and carcinomas. The larger mixed-pattern neoplasms and small or large tubular neoplasms usually had the least number of cells with SAP. The majority of large papillary adenomas and carcinomas in BALB/c mice exposed to ENU and in untreated A strain mice contained SAP in the nuclei of many neoplastic cells but only in the cytoplasm of a few neoplastic cells. CCA was found in normal Clara cells of bronchi and bronchioles but not in any hyperplastic or neoplastic lesion of any mouse studied. This study provided immunocytochemical evidence that the vast majority of naturally occurring and experimentally induced pulmonary neoplasms of mice are alveolar Type II cell adenomas and carcinomas. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:3883798

  17. Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs. carbon brush cathode.

    Science.gov (United States)

    Kakarla, Ramesh; Min, Booki

    2014-12-01

    Microbial fuel cell (MFC) and its cathode performances were compared with use of carbon fiber brush and plain carbon paper cathode electrodes in algae aeration. The MFC having carbon fiber brush cathode exhibited a voltage of 0.21 ± 0.01 V (1,000 Ω) with a cathode potential of around -0.14 ± 0.01 V in algal aeration, whereas MFC with plain carbon paper cathode resulted in a voltage of 0.06 ± 0.005 V with a cathode potential of -0.39 ± 0.01 V. During polarizations, MFC equipped with carbon fiber brush cathode showed a maximum power density of 30 mW/m(2), whereas the MFC equipped with plain carbon paper showed a power density of 4.6 mW/m(2). In algae aeration, the internal resistance with carbon fiber brush cathode was 804 Ω and with plain carbon paper it was 1,210 Ω. The peak currents of MFC operation with carbon fiber brush and plain carbon paper cathodes were -31 mA and -850 µA, respectively.

  18. Excimer emission from cathode boundary layer discharges

    Science.gov (United States)

    Moselhy, Mohamed; Schoenbach, Karl H.

    2004-02-01

    The excimer emission from direct current glow discharges between a planar cathode and a ring-shaped anode of 0.75 and 1.5 mm diameter, respectively, separated by a gap of 250 μm, was studied in xenon and argon in a pressure range from 75 to 760 Torr. The thickness of the "cathode boundary layer" plasma, in the 100 μm range, and a discharge sustaining voltage of approximately 200 V, indicates that the discharge is restricted to the cathode fall and the negative glow. The radiant excimer emittance at 172 nm increases with pressure and reaches a value of 4 W/cm2 for atmospheric pressure operation in xenon. The maximum internal efficiency, however, decreases with pressure having highest values of 5% for 75 Torr operation. When the discharge current is reduced below a critical value, the discharge in xenon changes from an abnormal glow into a mode showing self-organization of the plasma. Also, the excimer spectrum changes from one with about equal contributions from the first and second continuum to one that is dominated by the second continuum emission. The xenon excimer emission intensity peaks at this discharge mode transition. In the case of argon, self-organization of the plasma was not seen, but the emission of the excimer radiation (128 nm) again shows a maximum at the transition from abnormal to normal glow. As was observed with xenon, the radiant emittance of argon increases with pressure, and the efficiency decreases. The maximum radiant emittance is 1.6 W/cm2 for argon at 600 Torr. The maximum internal efficiency is 2.5% at 200 Torr. The positive slope of the current-voltage characteristics at maximum excimer emission in both cases indicates the possibility of generating intense, large area, flat excimer lamps.

  19. Oncogenic cancer/testis antigens

    DEFF Research Database (Denmark)

    Gjerstorff, Morten F; Andersen, Mads H; Ditzel, Henrik J

    2015-01-01

    Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer....../testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor...... immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic...

  20. Tailored Core Shell Cathode Powders for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Scott [NexTech Materials, Ltd.,Lewis Center, OH (United States)

    2015-03-23

    In this Phase I SBIR project, a “core-shell” composite cathode approach was evaluated for improving SOFC performance and reducing degradation of lanthanum strontium cobalt ferrite (LSCF) cathode materials, following previous successful demonstrations of infiltration approaches for achieving the same goals. The intent was to establish core-shell cathode powders that enabled high performance to be obtained with “drop-in” process capability for SOFC manufacturing (i.e., rather than adding an infiltration step to the SOFC manufacturing process). Milling, precipitation and hetero-coagulation methods were evaluated for making core-shell composite cathode powders comprised of coarse LSCF “core” particles and nanoscale “shell” particles of lanthanum strontium manganite (LSM) or praseodymium strontium manganite (PSM). Precipitation and hetero-coagulation methods were successful for obtaining the targeted core-shell morphology, although perfect coverage of the LSCF core particles by the LSM and PSM particles was not obtained. Electrochemical characterization of core-shell cathode powders and conventional (baseline) cathode powders was performed via electrochemical impedance spectroscopy (EIS) half-cell measurements and single-cell SOFC testing. Reliable EIS testing methods were established, which enabled comparative area-specific resistance measurements to be obtained. A single-cell SOFC testing approach also was established that enabled cathode resistance to be separated from overall cell resistance, and for cathode degradation to be separated from overall cell degradation. The results of these EIS and SOFC tests conclusively determined that the core-shell cathode powders resulted in significant lowering of performance, compared to the baseline cathodes. Based on the results of this project, it was concluded that the core-shell cathode approach did not warrant further investigation.

  1. Organic Cathode Materials for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Qian, Jiangfeng; Zhang, Jiguang; Xu, Wu

    2015-06-28

    This chapter will primarily focus on the advances made in recent years and specify the development of organic electrode materials for their applications in rechargeable lithium batteries, sodium batteries and redox flow batteries. Four various organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, are introduced in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations, involved work principles in energy storage systems, and capacity fading mechanisms are also discussed.

  2. Cathodic Vacuum Arc Plasma of Thallium

    OpenAIRE

    Yushkov, Georgy Yu.; Anders, Andre

    2006-01-01

    Thallium arc plasma was investigated in a vacuum arc ion source. As expected from previous consideration of cathode materials in the Periodic Table of the Elements, thallium plasma shows lead-like behavior. Its mean ion charge state exceeds 2.0 immediately after arc triggering, reaches the predicted 1.60 and 1.45 after about 100 microsec and 150 microsec, respectively. The most likely ion velocity is initially 8000 m/s and decays to 6500 m/s and 6200 m/s after 100 microsec and 150 micros...

  3. Development of cathode material for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Rustam Mukhtaruly Turganaly

    2014-08-01

    Full Text Available The electrochemical characteristics of the cathode material coated with carbon layer has been developed. Various carbon coating methods. There  has been carried out a comparative electrochemical analysis of the coated and uncoated with carbon cathode material. 

  4. Microbial Fuel Cell Performance with a Pressurized Cathode Chamber

    Science.gov (United States)

    Microbial fuel cell (MFC) power densities are often constrained by the oxygen reduction reaction rate on the cathode electrode. One important factor for this is the normally low solubility of oxygen in the aqueous cathode solution creating mass transport limitations, which hinder oxygen reduction a...

  5. Cathodic disbonding of organic coatings on submerged steel

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Ole oeystein

    1998-12-31

    In offshore oil production, submerged steel structures are commonly protected by an organic coating in combination with cathodic protection. The main advantage is that the coating decreases the current demand for cathodic protection. But the coating degrades with time. This thesis studies one of the most important mechanisms for coating degradation in seawater, cathodic disbonding. Seven commercial coatings and two model coatings with various pigmentations have been studied. Parameter studies, microscopy and studies of free films were used in the mechanism investigations. Exposure to simulated North Sea conditions was used in the performance studies. The effect of aluminium and glass barrier pigments on cathodic disbonding was investigated. The mechanism for the effect of the aluminium pigments on cathodic disbonding was also investigated. The transport of charge and oxygen to the steel/coating interface during cathodic disbonding was studied for two epoxy coatings. Cathodic disbonding, blistering and current demand for cathodic protection was measured for nine commercial coatings for submerged steel structures, using the ASTM-G8 standard test and a long term test under simulated North Sea conditions. The relevance of the ASTM-G8 test as a prequalification test was evaluated. 171 refs., 40 figs., 6 tabs.

  6. Miniature High Density Scandate Cathodes for Linear Beam Devices

    Science.gov (United States)

    2008-07-14

    Gartner1 and is useful with scandate cathodes that do not exhibit sharp transmissions from space-charge limited to temperature limited flow, see...Electron Detector ( BSE ) and an Energy- dispersive X-ray detector (EDX). In Image 5 the surface of the cathode is viewed using the BSE detector

  7. The Cathode Ramper: Application for the Duoplasmatron Ion Source

    CERN Document Server

    Sánchez-Conejo, J

    2003-01-01

    The purpose of the Cathode Ramper Application is to heat the Linac 2 duoplasmatron ion source cathode up to a desired temperature selected by the user. The application has been developed in Java, making use of the Java Development Kit 1.4 and the PS Java environment.

  8. Impressed current cathodic protection of deep water structures

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.

    Of all the various anti-corrosion systems usEd. by offshore structures and ship-building industry to reduce the ravages of sea-water corrosion, cathodic protection is one of the most important. Impressed current cathodic protection (ICCP...

  9. A Preliminary Study on Cathodic Prevention in Reinforced Mortar

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.; Mol, J.M.C.; De Wit, J.H.W.

    2010-01-01

    This work presents the preliminary tests on the performance of cathodic prevention (CPre) in reinforced mortar, subjected to aggressive (10% NaCl environment). Cathodic prevention is an electrochemical technique for minimizing, actually "preventing" any eventual corrosion of the steel bars in reinfo

  10. The Effect of Substrate Topography on Coating Cathodic Delamination

    DEFF Research Database (Denmark)

    Weinell, Claus E.; Sørensen, Per A.; Kiil, Søren

    2011-01-01

    This article describes the effect of steel substrate topography on coating cathodic delamination. The study showed that the surface preparation can be used to control and minimize the rate of cathodic delamination. The coating should have maximum wetting properties so that substrates with high...

  11. Effects of Humidity on Solid Oxide Fuel Cell Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, John S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Singh, Prabhakar [Univ. of Connecticut, Storrs, CT (United States); Mahapatra, Manoj K. [Univ. of Connecticut, Storrs, CT (United States); Wachsman, E. D. [Univ. of Maryland, College Park, MD (United States); Liu, Meilin [Georgia Inst. of Technology, Atlanta, GA (United States); Gerdes, Kirk R. [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2015-03-17

    This report summarizes results from experimental studies performed by a team of researchers assembled on behalf of the Solid-state Energy Conversion Alliance (SECA) Core Technology Program. Team participants employed a variety of techniques to evaluate and mitigate the effects of humidity in solid oxide fuel cell (SOFC) cathode air streams on cathode chemistry, microstructure, and electrochemical performance.

  12. Cathodic ARC surface cleaning prior to brazing

    Energy Technology Data Exchange (ETDEWEB)

    Dave, V. R. (Vivek R.); Hollis, K. J. (Kendall J.); Castro, R. G. (Richard G.); Smith, F. M. (Frank M.); Javernick, D. A. (Daniel A.)

    2002-01-01

    Surface cleanliness is one the critical process variables in vacuum furnace brazing operations. For a large number of metallic components, cleaning is usually accomplished either by water-based alkali cleaning, but may also involve acid etching or solvent cleaning / rinsing. Nickel plating may also be necessary to ensure proper wetting. All of these cleaning or plating technologies have associated waste disposal issues, and this article explores an alternative cleaning process that generates minimal waste. Cathodic arc, or reserve polarity, is well known for welding of materials with tenacious oxide layers such as aluminum alloys. In this work the reverse polarity effect is used to clean austenitic stainless steel substrates prior to brazing with Ag-28%Cu. This cleaning process is compared to acid pickling and is shown to produce similar wetting behavior as measured by dynamic contact angle experiments. Additionally, dynamic contact angle measurements with water drops are conducted to show that cathodic arc cleaning can remove organic contaminants as well. The process does have its limitations however, and alloys with high titanium and aluminum content such as nickel-based superalloys may still require plating to ensure adequate wetting.

  13. Cathode depth sensing in CZT detectors

    CERN Document Server

    Hong, J; Grindlay, J E; Narita, T

    2003-01-01

    Measuring the depth of interaction in thick Cadmium-Zinc-Telluride (CZT) detectors allows improved imaging and spectroscopy for hard X-ray imaging above 100 keV. The Energetic X-ray Imaging Survey Telescope (EXIST) will employ relatively thick (5 - 10 mm) CZT detectors, which are required to perform the broad energy-band sky survey. Interaction depth information is needed to correct events to the detector "focal plane" for correct imaging and can be used to improve the energy resolution of the detector at high energies by allowing event-based corrections for incomplete charge collection. Background rejection is also improved by allowing low energy events from the rear and sides of the detector to be rejected. We present experimental results of interaction depth sensing in a 5 mm thick pixellated Au-contact IMARAD CZT detector. The depth sensing was done by making simultaneous measurements of cathode and anode signals, where the interaction depth at a given energy is proportional to the ratio of cathode/anode ...

  14. Scandia doped tungsten matrix for impregnated cathode

    Institute of Scientific and Technical Information of China (English)

    WANG Jinshu; WANG Yanchun; LIU Wei; LI Hongyi; ZHOU Meiling

    2008-01-01

    As a matrix for Sc-type impregnated cathode,scandia doped tungsten with a uniform ldistribution of SC2O3 was obtained by powder metallurgy combined with the liquid-solid doping method.The microstructure and composition of the powder and the anti-ion bombardment behavior of scandium in the matrix were studied by means of SEM,EDS,XRD,and in-situ AES methods.Tungsten powder covered with scandium oxide,an ideal scandium oxide-doped tungsten powder for the preparation of Sc-type impregnated cathode,was obtained using the liquid-solid doping method.Compared with the matrix prepared with the mechanically mixed powder of tungsten and scandium oxide,SC2O3-W matrix prepared with this kind of powder had smaller grain size and uniform distribution of scandium.Sc on the surface of Sc2O3 doped tungsten mauix had good high temperature stability and good anti-ion bombardment capability.

  15. Oxide diffusion in innovative SOFC cathode materials.

    Science.gov (United States)

    Hu, Y; Thoréton, V; Pirovano, C; Capoen, E; Bogicevic, C; Nuns, N; Mamede, A-S; Dezanneau, G; Vannier, R N

    2014-01-01

    Oxide diffusion was studied in two innovative SOFC cathode materials, Ba(2)Co(9)O(14) and Ca(3)Co(4)O(9)+δ derivatives. Although oxygen diffusion was confirmed in the promising material Ba(2)Co(9)O(14), it was not possible to derive accurate transport parameters because of an oxidation process at the sample surface which has still to be clarified. In contrast, oxygen diffusion in the well-known Ca(3)Co(4)O(9)+δ thermoelectric material was improved when calcium was partly substituted with strontium, likely due to an increase of the volume of the rock salt layers in which the conduction process takes place. Although the diffusion coefficient remains low, interestingly, fast kinetics towards the oxygen molecule dissociation reaction were shown with surface exchange coefficients higher than those reported for the best cathode materials in the field. They increased with the strontium content; the Sr atoms potentially play a key role in the mechanism of oxygen molecule dissociation at the solid surface.

  16. Silver vanadium oxide cathode material and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, A.M.

    1993-06-22

    A method for making an electrochemical cell having the steps of admixing silver vanadium oxide with a conductive material and a binder and forming the admixture into a cathode, combining the cathode with a lithium metal anode; and combining an electrolyte with the anode and cathode, the method is described consisting of preparing the silver vanadium oxide by a chemical addition reaction consisting of admixing AgVO[sub 3] and V[sub 2]O[sub 5] in a 2:1 mole ratio heating the admixed AgVO[sub 3] and V[sub 3]O[sub 5] at a reaction temperature in the range of 300 C to 700 C for 5 to 24 hours. An electrochemical cell having a lithium metal anode, cathode and an electrolyte having a metal salt in a nonaqueous solvent comprising: the cathode including a crystalline silver vanadium oxide prepared by a chemical addition reaction.

  17. Barium depletion study on impregnated cathodes and lifetime prediction

    Energy Technology Data Exchange (ETDEWEB)

    Roquais, J.M.; Poret, F.; Doze, R. le; Ricaud, J.L.; Monterrin, A.; Steinbrunn, A

    2003-06-15

    In the thermionic cathodes used in cathode ray-tubes (CRTs), barium is the key element for the electronic emission. In the case of the dispenser cathodes made of a porous tungsten pellet impregnated with Ba, Ca aluminates, the evaporation of Ba determines the cathode lifetime with respect to emission performance in the CRT. The Ba evaporation results in progressive depletion of the impregnating material inside the pellet. In the present work, the Ba depletion with time has been extensively characterized over a large range of cathode temperature. Calculations using the depletion data allowed modeling of the depletion as a function of key parameters. The link between measured depletion and emission in tubes has been established, from which an end-of-life criterion was deduced. Taking modeling into account, predicting accelerated life-tests were performed using high-density maximum emission current (MIK)

  18. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    The concept of using highly ionic conducting backbones with subsequent infiltration of electronically conducting particles has widely been used to develop alternative anode-supported SOFC's. In this work, the idea was to develop infiltrated backbones as an alternative design based on cathode......-supported SOFC. The cathodes are obtained by infiltrating LSM into a sintered either thick (300 μm) yttria stabilized zirconia (YSZ) backbone or a thin YSZ backbone (10-15 μm) integrated onto a thick (300 μm) porous strontium substituted lanthanum manganite (LSM) and YSZ composite. Fabrication challenges...... printed symmetrical cells. Samples with LSM/YSZ composite and YSZ backbones made with graphite+PMMA as pore formers exhibited comparable Rp values to the screen printed LSM/YSZ cathode. This route was chosen as the best to fabricate the cathode supported cells. SEM micrograph of a cathode supported cell...

  19. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m -2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation. © 2013 Elsevier B.V. All rights reserved.

  20. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    Science.gov (United States)

    Ahn, Yongtae; Zhang, Fang; Logan, Bruce E.

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m-2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation.

  1. Cationic fluorinated polymer binders for microbial fuel cell cathodes

    KAUST Repository

    Chen, Guang

    2012-01-01

    Fluorinated quaternary ammonium-containing polymers were used as catalyst binders in microbial fuel cell (MFC) cathodes. The performance of the cathodes was examined and compared to NAFION ® and other sulfonated aromatic cathode catalyst binders using linear sweep voltammetry (LSV), impedance spectroscopy, and performance tests in single chamber air-cathode MFCs. The cathodes with quaternary ammonium functionalized fluorinated poly(arylene ether) (Q-FPAE) binders showed similar current density and charge transfer resistance (R ct) to cathodes with NAFION ® binders. Cathodes containing either of these fluorinated binders exhibited better electrochemical responses than cathodes with sulfonated or quaternary ammonium-functionalized RADEL ® poly(sulfone) (S-Radel or Q-Radel) binders. After 19 cycles (19 d), the power densities of all the MFCs declined compared to the initial cycles due to biofouling at the cathode. MFC cathodes with fluorinated polymer binders (1445 mW m -2, Q-FPAE-1.4-H; 1397 mW m -2, Q-FPAE-1.4-Cl; 1277 mW m -2, NAFION ®; and 1256 mW m -2, Q-FPAE-1.0-Cl) had better performance than those with non-fluorinated polymer binders (880 mW m -2, S-Radel; 670 mW m -2, Q-Radel). There was a 15% increase in the power density using the Q-FPAE binder with a 40% higher ion exchange capacity (Q-FPAE-1.4-H compared to Q-FPAE-1.0-Cl) after 19 cycles of operation, but there was no effect on the power production due to counter ions in the binder (Cl -vs. HCO 3 -). The highest-performance cathodes (NAFION ® and Q-FPAE binders) had the lowest charge transfer resistances (R ct) in fresh and in fouled cathodes despite the presence of thick biofilms on the surface of the electrodes. These results show that fluorinated binders may decrease the penetration of the biofilm and associated biopolymers into the cathode structure, which helps to combat MFC performance loss over time. © 2012 The Royal Society of Chemistry.

  2. Using cathode spacers to minimize reactor size in air cathode microbial fuel cells

    KAUST Repository

    Yang, Qiao

    2012-04-01

    Scaling up microbial fuel cells (MFCs) will require more compact reactor designs. Spacers can be used to minimize the reactor size without adversely affecting performance. A single 1.5mm expanded plastic spacer (S1.5) produced a maximum power density (973±26mWm -2) that was similar to that of an MFC with the cathode exposed directly to air (no spacer). However, a very thin spacer (1.3mm) reduced power by 33%. Completely covering the air cathode with a solid plate did not eliminate power generation, indicating oxygen leakage into the reactor. The S1.5 spacer slightly increased columbic efficiencies (from 20% to 24%) as a result of reduced oxygen transfer into the system. Based on operating conditions (1000ς, CE=20%), it was estimated that 0.9Lh -1 of air would be needed for 1m 2 of cathode area suggesting active air flow may be needed for larger scale MFCs. © 2012 Elsevier Ltd.

  3. Catadioptric aberration correction in cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M. [IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 (United States); Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-04-15

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed.

  4. Cathodic Cage Plasma Nitriding: An Innovative Technique

    Directory of Open Access Journals (Sweden)

    R. R. M. de Sousa

    2012-01-01

    Full Text Available Cylindrical samples of AISI 1020, AISI 316, and AISI 420 steels, with different heights, were simultaneously treated by a new technique of ionic nitriding, entitled cathodic cage plasma nitriding (CCPN, in order to evaluate the efficiency of this technique to produce nitrided layers with better properties compared with those obtained using conventional ionic nitriding technique. This method is able to eliminate the edge effect in the samples, promoting a better uniformity of temperature, and consequently, a smaller variation of the thickness/height relation can be obtained. The compound layers were characterized by X-ray diffraction, optical microscopy, and microhardness test profile. The results were compared with the properties of samples obtained with the conventional nitriding, for the three steel types. It was verified that samples treated by CCPN process presented, at the same temperature, a better uniformity in the thickness and absence of the edge effect.

  5. Novel High Rate Lithium Intercalation Cathode Materials

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Application of amorphous V2O5/carbon/neodymium oxide (Nd2O3) composite is one of ways to surmount the lower electrical conductivity of V2O5. A new type of V2O5/carbon/Nd2O3 composite was prepared by mixing vanadium oxide hydrosol, acetone, carbon and Nd2O3 powder. High rate discharge/charge property of the composite electrode was tested electrochemically. This composite with Nd2O3 added shows the improvement of not only the discharge capacity but also cycle durability discharge capacity. The rate capability of the composite cathode also increases with the addition of Nd2O3.and cycle life are probably caused by the increase in porosity of open pores and short diffusion length of the active material on the lithium-ion insertion.

  6. Synchronization of the CMS Cathode Strip Chambers

    CERN Document Server

    Raknessa, G; Wang, D

    2007-01-01

    The synchronization of the trigger and data acquisition systems for the Cathode Strip Chambers (CSCs) in the Compact Muon Solenoid (CMS) detector at CERN is described. The CSC trigger system is designed to trigger CMS on muons with high efficiency (~99% per chamber) and is able to accurately identify its 25ns proton bunch crossing. To date, asynchronous cosmic ray data have been used to define the protocol and to refine timing algorithms, allowing synchronization to be realized within and between chambers to within ±10 ns. Final synchronization of the CSCs requires timing parameters to be accurate to 2 ns. This goal will be readily achieved from the cosmic ray baseline using data taken with the synchronous beam structure of the Large Hadron Collider.

  7. Ion cumulation by conical cathode electrolysis.

    CERN Document Server

    Grishin, V G

    2002-01-01

    Results of solid-state sodium stearate electrolysis with conical and cylindrical cathodes is presented here. Both electric measurement and conical samples destruction can be explained if a stress developing inside the conical sample is much bigger than in the cylindrical case and there is its unlimited amplification along cone slopes. OTHER KEYWORDS: ion, current, solid, symmetry, cumulation, polarization, depolarization, ionic conductor,superionic conductor, ice, crystal, strain, V-center, V-centre, doped crystal, interstitial impurity, intrinsic color center, high pressure technology, Bridgman, anvil, experiment, crowdion, dielectric, proton, layer, defect, lattice, dynamics, electromigration, mobility, muon catalysis, concentration, doping, dopant, conductivity, pycnonuclear reaction, permittivity, dielectric constant, point defects, interstitials, polarizability, imperfection, defect centers, glass, epitaxy, sodium hydroxide, metallic substrate, crystallization, point, tip, susceptibility, ferroelectric, ...

  8. Evaluation of externally heated pulsed MPD thruster cathodes

    Science.gov (United States)

    Myers, Roger M.; Domonkos, Matthew; Gallimore, Alec D.

    1993-01-01

    Recent interest in solar electric orbit transfer vehicles (SEOTV's) has prompted a reevaluation of pulsed magnetoplasmadynamic (MPD) thruster systems due to their ease of power scaling and reduced test facility requirements. In this work the use of externally heated cathodes was examined in order to extend the lifetime of these thrusters to the 1000 to 3000 hours required for SEOTV missions. A pulsed MPD thruster test facility was assembled, including a pulse-forming network (PFN), ignitor supply and propellant feed system. Results of cold cathode tests used to validate the facility, PFN, and propellant feed system design are presented, as well as a preliminary evaluation of externally heated impregnated tungsten cathodes. The cold cathode thruster was operated on both argon and nitrogen propellants at peak discharge power levels up to 300 kW. The results confirmed proper operation of the pulsed thruster test facility, and indicated that large amounts of gas were evolved from the BaO-CaO-Al2O3 cathodes during activation. Comparison of the expected space charge limited current with the measured vacuum current when using the heated cathode indicate that either that a large temperature difference existed between the heater and the cathode or that the surface work function was higher than expected.

  9. Cathodic degradation of antibiotics: characterization and pathway analysis.

    Science.gov (United States)

    Kong, Deyong; Liang, Bin; Yun, Hui; Cheng, Haoyi; Ma, Jincai; Cui, Minhua; Wang, Aijie; Ren, Nanqi

    2015-04-01

    Antibiotics in wastewaters must be degraded to eliminate their antibacterial activity before discharging into the environment. A cathode can provide continuous electrons for the degradation of refractory pollutants, however the cathodic degradation feasibility, efficiency and pathway for different kinds of antibiotics is poorly understood. Here, we investigated the degradation of four antibiotics, namely nitrofurazone (NFZ), metronidazole (MNZ), chloramphenicol (CAP), and florfenicol (FLO) by a poised cathode in a dual chamber electrochemical reactor. The cyclic voltammetry preliminarily proved the feasibility of the cathodic degradation of these antibiotics. The cathodic reducibility of these antibiotics followed the order of NFZ > MNZ > CAP > FLO. A decreased phosphate buffered solution (PBS) concentration as low as 2 mM or utilization of NaCl buffer solution as catholyte had significant influence on antibiotics degradation rate and efficiency for CAP and FLO but not for NFZ and MNZ. PBS could be replaced by Na2CO3-NaHCO3 buffer solution as catholyte for the degradation of these antibiotics. Reductive dechlorination of CAP proceeded only after the reduction of the nitro group to aromatic amine. The composition of the degradation products depended on the cathode potential except for MNZ. The cathodic degradation process could eliminate the antibacterial activity of these antibiotics. The current study suggests that the electrochemical reduction could serve as a potential pretreatment or advanced treatment unit for the treatment of antibiotics containing wastewaters.

  10. Plasma characterization on carbon fiber cathode by spectroscopic diagnostics

    Institute of Scientific and Technical Information of China (English)

    Liu Lie; Li Li-Min; Xu Qi-Fu; Chang Lei; Wen Jian-Chun

    2009-01-01

    This paper mainly investigates plasma characterization on carbon fiber cathodes with and without cesium iodide (CsI) coating powered by a~300 ns,~200 kV accelerating pulse. It was found that the CsI layers can not only improve the diode voltage,but also maintain a stable perveance.This indicates a slowly changed diode gap or a low cathode plasma expansion velocity.By spectroscopic diagnostics,in the vicinity of the cathode surface the average plasma density and temperature were found to be~3×1014 cm-3 and~5 eV,respectively,for an electron current density of~40 A/cm2.Furthermore,there exists a multicomponent plasma expansion toward the anode.The plasma expansion velocity,corresponding to the carbon and hydrogen ions,is estimated to be~1.5 cm/μs.Most notably,Cs spectroscopic line was obtained only at the distance ≤0.5 mm from the cathode surface.Carbon and hydrogen ions are obtained up to the distance of 2.5 mm from the cathode surface.Cs ions almost remain at the vicinity of the cathode surface.These results show that the addition of Cal enables a slow cathode plasma expansion toward the anode,providing a positive prospect for developing long-pulse electron beam sources.

  11. High Performance Cathodes for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  12. Neutral hydrophilic cathode catalyst binders for microbial fuel cells

    KAUST Repository

    Saito, Tomonori

    2011-01-01

    Improving oxygen reduction in microbial fuel cell (MFC) cathodes requires a better understanding of the effects of the catalyst binder chemistry and properties on performance. A series of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) polymers with systematically varying hydrophilicity were designed to determine the effect of the hydrophilic character of the binder on cathode performance. Increasing the hydrophilicity of the PS-b-PEO binders enhanced the electrochemical response of the cathode and MFC power density by ∼15%, compared to the hydrophobic PS-OH binder. Increased cathode performance was likely a result of greater water uptake by the hydrophilic binder, which would increase the accessible surface area for oxygen reduction. Based on these results and due to the high cost of PS-b-PEO, the performance of an inexpensive hydrophilic neutral polymer, poly(bisphenol A-co-epichlorohydrin) (BAEH), was examined in MFCs and compared to a hydrophilic sulfonated binder (Nafion). MFCs with BAEH-based cathodes with two different Pt loadings initially (after 2 cycles) had lower MFC performance (1360 and 630 mW m-2 for 0.5 and 0.05 mg Pt cm-2) than Nafion cathodes (1980 and 1080 mW m -2 for 0.5 and 0.05 mg Pt cm-2). However, after long-term operation (22 cycles, 40 days), power production of each cell was similar (∼1200 and 700-800 mW m-2 for 0.5 and 0.05 mg Pt cm-2) likely due to cathode biofouling that could not be completely reversed through physical cleaning. While binder chemistry could improve initial electrochemical cathode performance, binder materials had less impact on overall long-term MFC performance. This observation suggests that long-term operation of MFCs will require better methods to avoid cathode biofouling. © 2011 The Royal Society of Chemistry.

  13. Blacking FTO by strongly cathodic polarization with enhanced photocurrent

    Science.gov (United States)

    Xie, Yun; Lu, Xiaoqing; Huang, Wei; Li, Zelin

    2015-08-01

    Transparent fluorine-doped tin oxide (TFTO) coating on quartz glass is widely used as substrate in photoelectrochemistry for solar energy transformation, sensing and so on. We observed that the TFTO could become blackish by strongly cathodic polarization. Characterization of the black FTO (BFTO) by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy revealed that part of SnO2 on the TFTO was reduced into metal Sn nanoparticles during the cathodic polarization. The BFTO greatly increased solar absorption and enhanced photocurrent responses in comparison with TFTO. It might be necessary to take caution in photoelectrochemical measurements while the FTO is strongly cathodically polarized.

  14. The approach curve method for large anode-cathode distances

    Energy Technology Data Exchange (ETDEWEB)

    Mammana, Victor P.; Monteiro, Othon R.; Fonseca, Leo R.C.

    2003-09-20

    An important technique used to characterize field emission is the measurement of the emitted current against electric field (IxE). In this work we discuss a procedure for obtaining IxE data based on multiple approach curves. We show that the simulated features obtained for an idealized uniform surface matches available experimental data for small anode-cathode distances, while for large distances the simulation predicts a departure from the linear regime. We also discuss the shape of the approach curves for large anode-cathode distances for a cathode made of carbon nanotubes.

  15. The cathode test stand for the DARHT second-axis

    Energy Technology Data Exchange (ETDEWEB)

    Fortgang, C.; Monroe, M.; Prono, D. [Los Alamos National Lab., NM (United States); Hudson, C.; Macy, D.; Moy, K. [Bechtel Nevada, Santa Barbara, CA (United States)

    1998-12-31

    The injector for the DARHT second-axis injector will use an 8-in. thermionic dispenser cathode. Because the cathode is relatively large and requires a large amount of heat (5 kW) there are certain engineering issues that need to be addressed, before the DARHT injector reaches the final design stage. The Cathode Test Stand (CTS) will be used to address those concerns. The CTS is a new facility, presently under construction. The CTS will consist of a high-voltage pulse modulator, a high-vacuum diode test-chamber, and a short beam-transport section with diagnostics. This paper discusses the status of the project.

  16. Final Report: Wetted Cathodes for Low-Temperature Aluminum Smelting

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Craig W

    2002-09-30

    A low-temperature aluminum smelting process being developed differs from the Hall-Heroult process in several significant ways. The low-temperature process employs a more acidic electrolyte than cryolite, an alumina slurry, oxygen-generating metal anodes, and vertically suspended electrodes. Wetted and drained vertical cathodes are crucial to the new process. Such cathodes represent a significant portion of the capital costs projected for the new technology. Although studies exist of wetted cathode technology with Hall-Heoult cells, the differences make such a study desirable with the new process.

  17. Studies on Stability of a Novel Cathode Material for MCFC

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The stability of NiO and oxidized nickel-niobium surface alloy electrode under various molten carbonate fuel cell(MCFC) cathode conditions were investigated by determination of equilibrium solubility of nickel ions in the carbonate melt of the two electrode materials.It is found that under MCFC cathode conditions the stability of NiO electrode is improved significantly by the deposition of niobium.As far as stability is concerned,oxidized nickel-niobium alloy electrode can be considered as a candidate for cathode material of MCFC.

  18. Iron phosphate materials as cathodes for lithium batteries

    CERN Document Server

    Prosini, Pier Paolo

    2011-01-01

    ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" describes the synthesis and the chemical-physical characteristics of iron phosphates, and presents methods of making LiFePO4 a suitable cathode material for lithium-ion batteries. The author studies carbon's ability to increase conductivity and to decrease material grain size, as well as investigating the electrochemical behaviour of the materials obtained. ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" also proposes a model to explain lithium insertion/extraction in LiFePO4 and to predict voltage profiles at variou

  19. Cathodic corrosion protection of steel pipes; Kathodischer Korrosionsschutz von Rohrleitungsstaehlen

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Markus [SGK Schweizerische Gesellschaft fuer Korrosionsschutz, Zuerich (Switzerland); Schoeneich, Hanns-Georg [Open Grid Europe, Essen (Germany)

    2011-07-01

    The cathodic corrosion protection has been proven excellently in the practical use for buried steel pipelines. This is evidenced statistically by a significantly less frequency of loss compared to non-cathodically protected pipelines. Based on thermodynamic considerations, the authors of the contribution under consideration describe the operation of the cathodic corrosion protection and regular adjustment of the electrochemical potential at the interface steel / soil in practical use. Subsequently, the corrosion scenarios are discussed that may occur when an incorrect setting of the potential results from an operation over several decades. This incorrect setting also can be caused by the failure of individual components of the corrosion protection.

  20. Erosion behavior of composite Al-Cr cathodes in cathodic arc plasmas in inert and reactive atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Franz, Robert, E-mail: robert.franz@unileoben.ac.at; Mendez Martin, Francisca; Hawranek, Gerhard [Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700 Leoben (Austria); Polcik, Peter [Plansee Composite Materials GmbH, Siebenbürgerstrasse 23, 86983 Lechbruck am See (Germany)

    2016-03-15

    Al{sub x}Cr{sub 1−x} composite cathodes with Al contents of x = 0.75, 0.5, and 0.25 were exposed to cathodic arc plasmas in Ar, N{sub 2}, and O{sub 2} atmospheres and their erosion behavior was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by x-ray diffraction analysis. Cathode poisoning effects in the reactive N{sub 2} and O{sub 2} atmospheres were nonuniform as a result of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded center region of the cathodes.

  1. Characterization of plasma chemistry and ion energy in cathodic arc plasma from Ti-Si cathodes of different compositions

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, A. O.; Zhirkov, I.; Dahlqvist, M.; Jensen, J.; Hultman, L.; Rosen, J. [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2013-04-28

    Arc plasma from Ti-Si compound cathodes with up to 25 at. % Si was characterized in a DC arc system with respect to chemistry and charge-state-resolved ion energy. The plasma ion composition showed a lower Si content, diverging up to 12 at. % compared to the cathode composition, yet concurrently deposited films were in accordance with the cathode stoichiometry. Significant contribution to film growth from neutrals is inferred besides ions, since the contribution from macroparticles, estimated by scanning electron microscopy, cannot alone account for the compositional difference between cathode, plasma, and film. The average ion charge states for Ti and Si were higher than reference data for elemental cathodes. This result is likely related to TiSi{sub x} phases of higher cohesive energies in the compound cathodes and higher effective electron temperature in plasma formation. The ion energy distributions extended up to {approx}200 and {approx}130 eV for Ti and Si, respectively, with corresponding average energies of {approx}60 and {approx}30 eV. These averages were, however, not dependent on Si content in the cathode, except for 25 at. % Si where the average energies were increased up to 72 eV for Ti and 47 eV for Si.

  2. Painéis de partículas provenientes de rejeitos de Pinus sp. tratado com preservante cca e resina derivada de biomassa

    Directory of Open Access Journals (Sweden)

    Marília Silva Bertolini

    2014-04-01

    Full Text Available A utilização do preservante CCA (sais de cromo, cobre e arsênio tem sido questionada devido ao impacto relacionado à dispersão, principalmente, do cobre e do arsênio para o ambiente, antes de sua completa fixação na madeira. Outra questão se relaciona à disposição indevida dos resíduos provenientes da madeira tratada, viabilizando a lixiviação devido à maior área passível desses rejeitos sujeita a tal fenômeno. Este trabalho teve como objetivo a produção de painéis de partículas, avaliando o efeito da adição de resíduos de Pinus sp. tratado com sais de cromo, cobre e arsênio (CCA, em associação com material da mesma espécie sem preservantes, além de alterações no teor de adesivo poliuretano à base de mamona empregado na produção. As propriedades dos painéis produzidos foram determinadas conforme recomendações da NBR 14810-3: 2006. Por meio de análise estatística, observou-se que a adição da madeira tratada proporcionou desempenho superior no inchamento em espessura (2 h, ao passo que esse insumo utilizado na mesma proporção que a madeira sem preservantes foi significante, obtendo os melhores resultados na adesão interna. Os módulos de ruptura e de elasticidade na flexão não sofreram influência das variações nos insumos utilizados nos painéis. Os painéis, em grande parte, apresentaram-se em conformidade com os principais requisitos nesse âmbito, mostrando a possibilidade da utilização dos referidos insumos na produção, além da obtenção de um produto com considerável apelo ambiental.

  3. 集螺旋阴极笼型阴极网状阴极为一体的新型阴极(Z阴极)%A New Type of the Cathode Combining the Properties of Helix Cathode,Cage Cathode and Mesh Cathode

    Institute of Scientific and Technical Information of China (English)

    张新富

    2001-01-01

    This paper describes the derivation ,definition,properties and application of the Z cathode The conversion and replacement among Z cathode ,Helix cathode,cage cathode and mesh cathode are also discussed.%本文阐述了Z阴极的由来、定义、特性和运用,以及Z阴极与螺旋阴极、笼型阴极、网状阴极之间的转换和代替。

  4. Lipon coatings for high voltage and high temperature Li-ion battery cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Dudney, Nancy J.; Liang, Chengdu; Nanda, Jagjit; Veith, Gabriel M.; Kim, Yoongu; Martha, Surendra Kumar

    2017-02-14

    A lithium ion battery includes an anode and a cathode. The cathode includes a lithium, manganese, nickel, and oxygen containing compound. An electrolyte is disposed between the anode and the cathode. A protective layer is deposited between the cathode and the electrolyte. The protective layer includes pure lithium phosphorus oxynitride and variations that include metal dopants such as Fe, Ti, Ni, V, Cr, Cu, and Co. A method for making a cathode and a method for operating a battery are also disclosed.

  5. Concepts and applications for influenza antigenic cartography

    Science.gov (United States)

    Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2011-01-01

    Influenza antigenic cartography projects influenza antigens into a two or three dimensional map based on immunological datasets, such as hemagglutination inhibition and microneutralization assays. A robust antigenic cartography can facilitate influenza vaccine strain selection since the antigenic map can simplify data interpretation through intuitive antigenic map. However, antigenic cartography construction is not trivial due to the challenging features embedded in the immunological data, such as data incompleteness, high noises, and low reactors. To overcome these challenges, we developed a computational method, temporal Matrix Completion-Multidimensional Scaling (MC-MDS), by adapting the low rank MC concept from the movie recommendation system in Netflix and the MDS method from geographic cartography construction. The application on H3N2 and 2009 pandemic H1N1 influenza A viruses demonstrates that temporal MC-MDS is effective and efficient in constructing influenza antigenic cartography. The web sever is available at http://sysbio.cvm.msstate.edu/AntigenMap. PMID:21761589

  6. Developing Polymer Cathode Material for the Chloride Ion Battery.

    Science.gov (United States)

    Zhao, Xiangyu; Zhao, Zhigang; Yang, Meng; Xia, Hui; Yu, Tingting; Shen, Xiaodong

    2017-01-25

    The chloride ion battery is an attractive rechargeable battery owing to its high theoretical energy density and sustainable components. An important challenge for research and development of chloride ion batteries lies in the innovation of the cathode materials. Here we report a nanostructured chloride ion-doped polymer, polypyrrole chloride, as a new type of potential cathode material for the chloride ion battery. The as-prepared polypyrrole chloride@carbon nanotubes (PPyCl@CNTs) cathode shows a high reversible capacity of 118 mAh g(-1) and superior cycling stability. Reversible electrochemical reactions of the PPyCl@CNTs cathode based on the redox reactions of nitrogen species and chloride ion transfer are demonstrated. Our work may guide and offer electrode design principles for accelerating the development of rechargeable batteries with anion transfer.

  7. Scandate Cathode for High Power Long Life Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Scandate cathodes are proposed as a way to boost performance and life for electric space propulsion systems. This company has recently demonstrated breakthrough...

  8. Space-charge limiting current in spherical cathode diodes

    Institute of Scientific and Technical Information of China (English)

    刘国治; 邵浩

    2003-01-01

    The results of the investigation on the space-charge limiting current for a spherical-cathode diode in the nonrelativistic situation are presented in this paper. The results show that the current enhancement factor equals the square of E-field enhancement factor on the cathode surface. The generated space-charge limiting current is deduced.In the case of a pin-shaped-cathode diode, the space-charge limiting current is also obtained, indicating that the current is independent of the geometric parameters of the diode. Analyses of the shielding effects and the conditions for generation of the uniform space-charge limiting beam show that, for pin-arrayed cathodes, the distance between pins should be in the range from 1.2D to 1.5D, where D is the distance between the two electrodes.

  9. Photoconductive Cathode Interlayer for Highly Efficient Inverted Polymer Solar Cells.

    Science.gov (United States)

    Nian, Li; Zhang, Wenqiang; Zhu, Na; Liu, Linlin; Xie, Zengqi; Wu, Hongbin; Würthner, Frank; Ma, Yuguang

    2015-06-10

    A highly photoconductive cathode interlayer was achieved by doping a 1 wt % light absorber, such as perylene bisimide, into a ZnO thin film, which absorbs a very small amount of light but shows highly increased conductivity of 4.50 × 10(-3) S/m under sunlight. Photovoltaic devices based on this kind of photoactive cathode interlayer exhibit significantly improved device performance, which is rather insensitive to the thickness of the cathode interlayer over a broad range. Moreover, a power conversion efficiency as high as 10.5% was obtained by incorporation of our photoconductive cathode interlayer with the PTB7-Th:PC71BM active layer, which is one of the best results for single-junction polymer solar cells.

  10. Temperature variation of a thermionic cathode during electron emission

    Institute of Scientific and Technical Information of China (English)

    LIU YanWen; TIAN Hong; HAN Yong; XU ZhenYing; MENG MingFeng; ZHANG HongLai

    2008-01-01

    It is necessary to know the actual temperature of a thermionic cathode that works as the electron source in a microwave tube. It has been found that the temperature of the cathode drops markedly during the thermionic emission. For example, the temperature could fall by about 30℃ under a current density of 2.92 A/cm2. Using the molecular thermodynamics, the dependence of the cathode temperature on the emission current density has been obtained. It has been theoretically pointed out that several factors, such as heating model and temperature coefficient of resis- tance of heater, can influence the cathode temperature. These theoretical conclu- sions were supported by the experimental results.

  11. Model for solid oxide fuel cell cathodes prepared by infiltration

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Hendriksen, Peter Vang

    2017-01-01

    A 1-dimensional model of a cathode has been developed in order to understand and predict the performance of cathodes prepared by infiltration of La0.6Sr0.4Co1.05O3-δ (LSC) into porous backbones of Ce0.9Gd0.1O1.95 (CGO). The model accounts for the mixed ionic and electronic conductivity of LSC......, ionic conductivity of CGO, gas transport in the porous cathode, and the oxygen reduction reaction at the surface of percolated LSC. Geometrical variations are applied to reflect a changing microstructure of LSC under varying firing temperatures. Using microstructural parameters obtained from detailed...... parameter variations are presented and discussed with the aim of presenting specific guidelines for optimizing the microstructure of cathodes prepared by infiltration....

  12. The Properties of Normal Conducting Cathodes in FZD Superconducting Gun

    CERN Document Server

    Xiang, R; Buettig, H; Janssen, D; Justus, M; Lehnert, U; Michel, P; Murcek, P; Schamlott, A; Schneider, Ch; Schurig, R; Staufenbiel, F; Teichert, J

    2009-01-01

    The superconducting radio frequency photoinjector (SRF photoinjector) is one of the latest applications of SC technology in the accelerator field. Since superconducting cathodes with high QE are not available up to now, normal conducting cathode material is the main choice for the SRF photoinjectors. However, the compatibility between the cathode and the cavity is one of the challenges for this concept. The SRF gun with Cs2Te cathode has been successfully operated under the collaboration of BESSY, DESY, FZD, and MBI. In this paper, some experience gained in the gun commissioning will be concluded. The results of the properties of Cs2Te photocathode in the cavity will be presented, such as the Q.E., the life time, the dark current and the thermal emittance.

  13. Influence of substrate topography on cathodic delamination of anticorrosive coatings

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim

    2009-01-01

    The cathodic delamination of a commercial magnesium silicate and titanium dioxide pigmented epoxy coating on abrasive cleaned cold rolled steel has been investigated. The rate of delamination was found to depend on interfacial transport from the artificial defect to the delamination front...... and thereby the substrate topography, whereas the coating thickness had little influence. The presence of a significant potential gradient between the anode and the cathode and the dependency of the delamination rate on the tortuosity of the steel surface suggests that cathodic delamination is controlled...... by migration of cations from the defect to the delamination front. This means that abrasive blasting, to some extent, can be applied to control and minimize the observed rate of cathodic delamination. The lifetime of the species causing disbondment suggested that sodium hydroxide or potassium hydroxide...

  14. Macroparticle generation in DC arc discharge from a WC cathode

    Science.gov (United States)

    Zhirkov, Igor; Polcik, Peter; Kolozsvári, Szilard; Rosen, Johanna

    2017-03-01

    We have studied macroparticle generation from a tungsten carbide cathode used in a dc vacuum arc discharge. Despite a relatively high decomposition/melting point (˜3100 K), there is an intensive generation of visible particles with sizes in the range 20-35 μm. Visual observations during the discharge and scanning electron microscopy of the cathode surface and of collected macroparticles indicate a new mechanism for particle formation and acceleration. Based on the W-C phase diagram, there is an intensive sublimation of carbon from the melt resulting from the cathode spot. The sublimation supports the formation of a sphere, which is accelerated upon an explosion initiated by Joule heating at the critical contact area between the sphere and the cathode body. The explosive nature of the particle acceleration is confirmed by surface features resembling the remains of a splash on the droplet surface.

  15. Study of the Discharge Mode in Micro-Hollow Cathode

    Institute of Scientific and Technical Information of China (English)

    HE Feng; HE Shoujie; ZHAO Xiaofei; GUO Bingang; OUYANG Jiting

    2012-01-01

    In this study, micro-hollow cathode discharge (MHCD) is investigated by a fluid model with drift-diffusion approximation. The MHC device is a cathode/dielectric/anode sandwich structure with one hole of a diameter D=200 um. The gas is a Ne/Xe mixture at a pressure p=50-500 Torr. The evolutions of the discharge show that there are two different discharge modes. At larger pD the discharge plasma and high density excited species expand along the cathode surface and, a ringed discharge mode is formed. At smaller pD, the discharge plasma and the excited species expand along the axis of the cathode aperture to form a columnar discharge.

  16. Installation of some Cathode Strip Chambers on March 2004

    CERN Multimedia

    Richard Breedon

    2004-01-01

    Installation on the Disk of some Cathode Strip Chambers, type ME3/1, produced in the US. The installation has been performed on March 2004 at the CMS experimental site SX5 (P5) in Cessy, neighbouring France.

  17. A High Performance Cathode Heater for Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High current hollow cathodes are the baseline electron source for next generation high power Hall thrusters. Currently for electron sources providing current levels...

  18. Temperature variation of a thermionic cathode during electron emission

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is necessary to know the actual temperature of a thermionic cathode that works as the electron source in a microwave tube. It has been found that the temperature of the cathode drops markedly during the thermionic emission. For example, the temperature could fall by about 30oC under a current density of 2.92 A/cm2. Using the molecular thermodynamics, the dependence of the cathode temperature on the emission current density has been obtained. It has been theoretically pointed out that several factors, such as heating model and temperature coefficient of resis-tance of heater, can influence the cathode temperature. These theoretical conclu-sions were supported by the experimental results.

  19. Verification of high efficient broad beam cold cathode ion source

    Science.gov (United States)

    Abdel Reheem, A. M.; Ahmed, M. M.; Abdelhamid, M. M.; Ashour, A. H.

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.

  20. Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources

    DEFF Research Database (Denmark)

    Atlung, Sven; West, Keld; Jacobsen, Torben

    1979-01-01

    , in particularfor vehicle propulsion, and electrochemical and constructional factors. It isargued that the energy obtainable at a given load is limited by saturation ofthe surface layers of cathode particles with cations, and that the time beforesaturation occurs is determined by diffusion of cations and electrons...... into thehost lattice. Expressions are developed for plane, cylindrical, and sphericalparticles, giving the relation between battery load and the amount of cathodematerial utilized before saturation. The particle shape and a single parameterQ is used to describe cathode performance. Q is the ratio between...... dischargetime at 100% utilization of the cathode at the given load, and the timeconstant for diffusion through the cathode particles. This description is extendedto cover short peak loads characteristic of vehicle propulsion. On thebasis of estimated parameters for the Li/TiS2 couple with LiClO4-propylene...

  1. Economic spatial disparities in Lanzhou- Xining CCA based on ESDA%基于ESDA的兰州-西宁城镇密集区经济空间差异分析

    Institute of Scientific and Technical Information of China (English)

    张志斌; 李书娟; 何伟; 李小虎

    2011-01-01

    以兰州-西宁城镇密集区35个城镇为研究对象,选取表征城镇经济发展水平的12项指标和4个时间截面,运用主成分分析、ESDA空间自相关分析等方法,从空间动态的角度对城镇密集区县域总体和局部空间差异的变化趋势、特征及成因进行了初步探索.结果表明:(1)自1995年以来,兰州-西宁城镇密集区总体经济空间差异还较大,但有逐渐缩小的趋势.(2)城镇密集区局部经济空间差异的发展趋势与总体相反,有逐渐扩大的迹象,城镇密集区还处于由极化向扩散过渡的阶段.(3)整体上看,近年来城镇密集区青海部分的经济发展速度和趋势较甘肃部分好.%Lanzhou - Xining City-and-Town Concentrated Areas (CCA) is the most densely populated areas in Gansu and Qinghai provinces, and it plays an important role in promoting and driving economic and social development of Gansu and Qinghai provinces. Based on the systemic data, it is the first time that this paper made comprehensive analysis on economic spatial disparity in Lanzhou - Xining CCA by using methods of principal component a-nalysis and spatial autocorrelation analysis. It provides reliable basis of practice and theory for researching planning of Lanzhou - Xining CCA and promoting sustainable development of Lanzhou - Xining CCA. First of all: The 35 cities and towns in Lanzhou - Xining (CCA) are taken for research objects in this paper. We choose 12 indices (included per capita GDP, per capita fixed asset investment, average financial income, per capita social retail commodity total, per capita savings deposit balance, per capital annual net income of rural households, average salary of the workers at their posts,urbanization level,tertiary industry proportion,average industrial output value per person, speed of economic growth, GDP proportion of revenue) , which are characterized by economic development level of cities and towns and 4 time sections (1995,2000,2005,2008). By

  2. Novel cathodes for low-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.; Xia, C. [Georgia Inst. of Tech., Atlanta, GA (United States). Center for Innovative Fuel Cell and Battery Technologies

    2002-04-04

    A solid-oxide fuel cell that operates at 500 C (instead of 600 C and higher), with lower material cost and better long-term stability, is presented. Its key piece is a cathode made of a silver/copper-doped bismuth vanadate (Ag-BI-CUVOX) composite, which reduces oxygen at lower temperatures and diminishes the resistance between the cathode and the electrolyte. (orig.)

  3. Cathodes for lithium-air battery cells with acid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan; Huang, Kan; Li, Yunfeng

    2016-07-19

    In various embodiments, the present disclosure provides a layered metal-air cathode for a metal-air battery. Generally, the layered metal-air cathode comprises an active catalyst layer, a transition layer bonded to the active catalyst layer, and a backing layer bonded to the transition layer such that the transition layer is disposed between the active catalyst layer and the backing layer.

  4. High-Current Cold Cathode Employing Diamond and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2014-10-22

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  5. Tolerant chalcogenide cathodes of membraneless micro fuel cells.

    Science.gov (United States)

    Gago, Aldo Saul; Gochi-Ponce, Yadira; Feng, Yong-Jun; Esquivel, Juan Pablo; Sabaté, Neus; Santander, Joaquin; Alonso-Vante, Nicolas

    2012-08-01

    The most critical issues to overcome in micro direct methanol fuel cells (μDMFCs) are the lack of tolerance of the platinum cathode and fuel crossover through the polymer membrane. Thus, two novel tolerant cathodes of a membraneless microlaminar-flow fuel cell (μLFFC), Pt(x)S(y) and CoSe(2), were developed. The multichannel structure of the system was microfabricated in SU-8 polymer. A commercial platinum cathode served for comparison. When using 5 M CH(3)OH as the fuel, maximum power densities of 6.5, 4, and 0.23 mW cm(-2) were achieved for the μLFFC with Pt, Pt(x)S(y), and CoSe(2) cathodes, respectively. The Pt(x)S(y) cathode outperformed Pt in the same fuel cell when using CH(3)OH at concentrations above 10 M. In a situation where fuel crossover is 100 %, that is, mixing the fuel with the reactant, the maximum power density of the micro fuel cell with Pt decreased by 80 %. However, for Pt(x)S(y) this decrease corresponded to 35 % and for CoSe(2) there was no change in performance. This result is the consequence of the high tolerance of the chalcogenide-based cathodes. When using 10 M HCOOH and a palladium-based anode, the μLFFC with a CoSe(2) cathode achieved a maxiumum power density of 1.04 mW cm(-2). This micro fuel cell does not contain either Nafion membrane or platinum. We report, for the first time, the evaluation of Pt(x)S(y)- and CoSe(2)-based cathodes in membraneless micro fuel cells. The results suggest the development of a novel system that is not size restricted and its operation is mainly based on the selectivity of its electrodes.

  6. 3个月平均气温距平的CCA预报方法%CCA FORECAST SCHEME OF 3-MONTH MEAN TEMPERATURE ANOMALY

    Institute of Scientific and Technical Information of China (English)

    余金波; 吴洪宝

    2001-01-01

    A statistical model is CCA-designed to forecast 3-month mean temperature anomaly in China,which is estimated by using cross-verification scheme,indicating that the skill decreases slowly with the increased leading time intervals;higher skills are found for quasi-global surface temperature as a predictor;it's easy to predict JAS temperature and hard to deal with OND analog.Some meaningful results are obtained from the forecast skill analysis.%用根据CCA方法设计的一个统计预报模式对我国3个月平均气温距平进行预报试验,并用交叉检验方法进行估计。结果表明:预报技巧随提前时间增长而减小得较少;用全球表面温度作预报因子有较高的预报技巧;7、8、9月3个月较易预报,而10、11、12月3个月较难预报。

  7. Effect of post treatment temperature and humidity conditions on fixation performance of CCA-C treated red pine and southern pine

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Rates of fixation in chromated copper arsenate (CCA-C) treated red pine (Pinus resinosa Ait.) and southern pine (Pinus spp) sapwood specimens using retention of 1.5, 2.0, 6.4 kg·m-3 are compared at temperature (T) ranging from 70 ℃ to 50 ℃ and 5 different relative humidity (RH) conditions. The samples were investigated using the expressate method to follow chromium fixation. Red pine fixes faster than southern pine under all 11 post treatment schedules. The fixation rates for both species are not significantly different while the blocks were fixed under 6 fixation/drying schedules that differed only in the order of T/RH conditions applied. The rate of fixation of all samples in any fixation stage were reduced when the blocks were fixed under lower humidity conditions in spite of no change in chamber temperature. Some of this influence can be attributed to the effect of humidity on heat transfer into the wood and cooling of the wood surface.

  8. An adjustable electron achromat for cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M., E-mail: rtromp@us.ibm.com [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Leiden Institute of Physics, Kamerlingh Onnes Laboratory, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-12-15

    Chromatic aberration correction in light optics began with the invention of a two-color-corrected achromatic crown/flint lens doublet by Chester Moore Hall in 1730. Such color correction is necessary because any single glass shows dispersion (i.e. its index of refraction changes with wavelength), which can be counteracted by combining different glasses with different dispersions. In cathode lens microscopes (such as Photo Electron Emission Microscopy – PEEM) we encounter a similar situation, where the chromatic aberration coefficient of the cathode lens shows strong dispersion, i.e. depends (non-linearly) on the energy with which the electrons leave the sample. Here I show how a cathode lens in combination with an electron mirror can be configured as an adjustable electron achromat. The lens/mirror combination can be corrected at two electron energies by balancing the settings of the electron mirror against the settings of the cathode lens. The achromat can be adjusted to deliver optimum performance, depending on the requirements of a specific experiment. Going beyond the achromat, an apochromat would improve resolution and transmission by a very significant margin. I discuss the requirements and outlook for such a system, which for now remains a wish waiting for fulfilment. - Highlights: • The properties of cathode objective lens plus electron mirror are discussed. • In analogy with light-optical achromats, cathode lens plus mirror can be configured as an electron achromat. • Unlike light optics, the electron achromat can be adjusted to best fulfill experimental requirements.

  9. Reducing DRIFT Backgrounds with a Submicron Aluminized-Mylar Cathode

    CERN Document Server

    Battat, James B R; Dorofeev, Alexei; Ezeribe, Anthony C; Fox, Jennifer R; Gauvreau, Jean-Luc; Gold, Michael; Harmon, Lydia; Harton, John; Lafler, Randy; Lauer, Robert J; Lee, Eric R; Loomba, Dinesh; Lumnah, Alexander; Matthews, John; Miller, Eric H; Mouton, Frederic; Murphy, Alexander St J; Phan, Nguyen; Sadler, Stephen W; Scarff, Andrew; Schuckman, Fred; Snowden-Ifft, Daniel; Spooner, Neil J C; Walker, Daniel

    2015-01-01

    Background events in the DRIFT-IId dark matter detector, mimicking potential WIMP signals, are predominantly caused by alpha decays on the central cathode in which the alpha particle is completely or partially absorbed by the cathode material. We installed a 0.9 micron thick aluminized-mylar cathode as a way to reduce the probability of producing these backgrounds. We study three generations of cathode (wire, thin-film, and radiologically clean thin-film) with a focus on the ratio of background events to alpha decays. Two independent methods of measuring the absolute alpha decay rate are used to ensure an accurate result, and agree to within $10\\%$. Using alpha range spectroscopy, we measure the radiologically cleanest cathode version to have a contamination of $3.3\\pm0.1$ ppt $^{234}$U and $73\\pm2$ ppb $^{238}$U. This cathode reduces the probability of producing an RPR from an alpha decay by a factor of $70\\pm20$ % while reducing the overall background rate by $96.5\\pm0.5\\%$ compared to the original stainles...

  10. Cathodic protection for the bottoms of above ground storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, John P. [Tyco Adhesives, Norwood, MA (United States)

    2004-07-01

    Impressed Current Cathodic Protection has been used for many years to protect the external bottoms of above ground storage tanks. The use of a vertical deep ground bed often treated several bare steel tank bottoms by broadcasting current over a wide area. Environmental concerns and, in some countries, government regulations, have introduced the use of dielectric secondary containment liners. The dielectric liner does not allow the protective cathodic protection current to pass and causes corrosion to continue on the newly placed tank bottom. In existing tank bottoms where inadequate protection has been provided, leaks can develop. In one method of remediation, an old bottom is covered with sand and a double bottom is welded above the leaking bottom. The new bottom is welded very close to the old bottom, thus shielding the traditional cathodic protection from protecting the new bottom. These double bottoms often employ the use of dielectric liner as well. Both the liner and the double bottom often minimize the distance from the external tank bottom. The minimized space between the liner, or double bottom, and the bottom to be protected places a challenge in providing current distribution in cathodic protection systems. This study examines the practical concerns for application of impressed current cathodic protection and the types of anode materials used in these specific applications. One unique approach for an economical treatment using a conductive polymer cathodic protection method is presented. (author)

  11. High-current carbon-epoxy capillary cathode

    Science.gov (United States)

    Gleizer, J. Z.; Queller, T.; Bliokh, Yu.; Yatom, S.; Vekselman, V.; Krasik, Ya. E.; Bernshtam, V.

    2012-07-01

    The results of experiments on the reproducible generation of an electron beam having a high current density of up to 300 A/cm2 and a satisfactorily uniform cross-sectional distribution of current density in a ˜200 kV, ˜450 ns vacuum diode with a carbon-epoxy capillary cathode are presented. It was found that the source of the electrons is the plasma formed as a result of flashover inside the capillaries. It is shown that the plasma formation occurs at an electric field ≤15 kV/cm and that the cathode sustains thousands of pulses without degradation in its emission properties. Time- and space-resolved visible light observation and spectroscopy analyses were used to determine the cathode plasma's density, temperature, and expansion velocity. It was found that the density of the cathode plasma decreases rapidly in relation to the distance from the cathode. In addition, it was found that the main reason for the short-circuiting of the accelerating gap is the formation and expansion of the anode plasma. Finally, it was shown that when an external guiding magnetic field is present, the injection of the electron beam into the drift space with a current amplitude exceeding its critical value changes the radial distribution of the current density of the electron beam because the inner electrons are reflected from the virtual cathode.

  12. Cathode erosion in high-current high-pressure arc

    CERN Document Server

    Nemchinsky, V A

    2003-01-01

    Cathode erosion rate was experimentally investigated for two types of arcs: one with tungsten cathode in nitrogen atmosphere and one with hafnium cathode in oxygen atmosphere. Conditions were typical for plasma arc cutting systems: gas pressure from 2 to 5 atm, arc current from 200 to 400 A, gas flow rate from 50 to 130 litre min sup - sup 1. It was found that the actual cathode evaporation rate G is much lower than G sub 0 , the evaporation rate that follows from the Hertz-Knudsen formula: G = nu G sub 0. The difference is because some of the evaporated particles return back to the cathode. For conditions of our experiments, the factor nu could be as low as 0.01. It was shown experimentally that nu depends strongly on the gas flow pattern close to the cathode. In particular, swirling the gas increases nu many times. To explain the influence of gas swirling, model calculations of gas flows were performed. These calculations revealed difference between swirling and non-swirling flows: swirling the gas enhances...

  13. A one-dimensional model illustrating virtual-cathode formation in a novel coaxial virtual-cathode oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Geoffrey R., E-mail: gturner@csir.co.za [Council for Scientific and Industrial Research, PO Box 395, Pretoria 0001 (South Africa)

    2014-09-15

    A one-dimensional electrostatic sheet model of a coaxial geometry Virtual Cathode Oscillator (VCO) is presented. The cathode is centrally located and connects to a peripherally located plate electrode to form a resonant cavity, and is thus considered to be a novel design. Charge is modelled as concentric sheets about the cathode whose absolute position and velocity are determined as a function of time by solving the relativistic equations of motion. The model predicts the formation of a virtual cathode between the grid and plate electrodes for the case of a space-charge limited current. Setting the electron reflexing frequency (as a function of the grid potential) comparable with the cavity resonant frequency is predicted to improve the efficiency of microwave emission.

  14. A one-dimensional model illustrating virtual-cathode formation in a novel coaxial virtual-cathode oscillator

    Science.gov (United States)

    Turner, Geoffrey R.

    2014-09-01

    A one-dimensional electrostatic sheet model of a coaxial geometry Virtual Cathode Oscillator (VCO) is presented. The cathode is centrally located and connects to a peripherally located plate electrode to form a resonant cavity, and is thus considered to be a novel design. Charge is modelled as concentric sheets about the cathode whose absolute position and velocity are determined as a function of time by solving the relativistic equations of motion. The model predicts the formation of a virtual cathode between the grid and plate electrodes for the case of a space-charge limited current. Setting the electron reflexing frequency (as a function of the grid potential) comparable with the cavity resonant frequency is predicted to improve the efficiency of microwave emission.

  15. Antigen Export Reduces Antigen Presentation and Limits T Cell Control of M. tuberculosis.

    Science.gov (United States)

    Srivastava, Smita; Grace, Patricia S; Ernst, Joel D

    2016-01-13

    Persistence of Mycobacterium tuberculosis results from bacterial strategies that manipulate host adaptive immune responses. Infected dendritic cells (DCs) transport M. tuberculosis to local lymph nodes but activate CD4 T cells poorly, suggesting bacterial manipulation of antigen presentation. However, M. tuberculosis antigens are also exported from infected DCs and taken up and presented by uninfected DCs, possibly overcoming this blockade of antigen presentation by infected cells. Here we show that the first stage of this antigen transfer, antigen export, benefits M. tuberculosis by diverting bacterial proteins from the antigen presentation pathway. Kinesin-2 is required for antigen export and depletion of this microtubule-based motor increases activation of antigen-specific CD4 T cells by infected cells and improves control of intracellular infection. Thus, although antigen transfer enables presentation by bystander cells, it does not compensate for reduced antigen presentation by infected cells and represents a bacterial strategy for CD4 T cell evasion.

  16. Advances in primary lithium liquid cathode batteries

    Science.gov (United States)

    Blomgren, George E.

    1989-05-01

    Recent work on cell development and various aspects of cell chemistry and cell development of lithium/thionyl chloride liquid cathode batteries is reviewed. As a result of safety studies, a number of cell sizes can now be considered satisfactory for many applications and the energy densities of these cells is higher than any other developed battery system. Primary batteries operate with low to moderate currents and the anode delay effect appears to be under reasonable control. Reserve cells are in the design stage and operate at high to very high power densities as well as very high energy densities. The nature of the anode film and the operation of the lithium anode has been studied with substantial success and understanding has grown accordingly. Also, studies of the structure of the electrolyte and the effects on the electrolyte of impurities and additives have led to improved understanding in this area as well. Work in progress on new electrolytes is reviewed. The state of the art of mathematical modeling is also discussed and it is expected that this work will continue to develop.

  17. Pulsed microhollow cathode discharge excimer sources

    Science.gov (United States)

    Moselhy, Mohamed; Shi, Wenhui; Strak, Robert H.; Schoenbach, Karl H.

    2001-10-01

    Microhollow cathode discharges (MHCDs) are non-equilibrium, high-pressure gas discharges between perforated electrodes separated by a dielectric layer. Typical dimensions for the electrode foil thickness and hole diameter are 100 μm. Direct current experiments in xenon, argon, neon, helium, argon fluoride, and xenon chloride [1,2] have been performed. The excimer efficiency varies between 1 % and 9 %. Pulsed operation allowed us to increase the current from 8 mA (dc) to approximately 80 mA (pulsed with a pulse width of 700 μs), limited by the onset of instabilities. The total excimer power was found to increase linearly with current, however, the radiant emittance and efficiency stayed constant. Reducing the pulse duration into the nanosecond range allowed us to increase the current into the ampere range. The maximum measured excimer power was 2.75 W per microdischarge. The maximum radiant emittance was 15 W/cm^2 and the efficiency reached values of 20 %. This effect is assumed to be due to non-equilibrium electron heating in the high-pressure plasma [3]. This work was supported by the National Science Foundation under grant # CTS0078618. 1. Karl H. Schoenbach, Ahmed El-Habachi, Mohamed M. Moselhy, Wenhui Shi, and Robert H. Stark, Physics of Plasmas 7, 2186 (2000). 2. P. Kurunczi, J. Lopez, H. Shah, and K. Becker, Int. J. Mass Spectrom. 205, 277 (2001). 3. Robert H. Stark and Karl H. Schoenbach, J. Appl. Phys. 89, 3568 (2001).

  18. Pulsed photoelectric field emission from needle cathodes

    CERN Document Server

    Hernandez-Garcia, C

    2002-01-01

    Experiments have been carried out to measure the current emitted by tungsten needles with 1-mu m tip radius operated up to 50 kV. This corresponds to electric fields in the order of 10 sup 9 to 10 sup 1 sup 0 V/m. The needles were illuminated with 10-ns laser pulses at 532, 355 and 266 nm. The laser intensity was varied from 10 sup 1 sup 0 to 10 sup 1 sup 2 W/m sup 2 , limited by damage to the needle tip. The observed quantum efficiency depends on the wavelength and the electric field, approaching unity at the highest electric fields when illuminated at 266 nm. Peak currents up to 100 mA were observed in nanosecond pulses, corresponding to an estimated brightness of 10 sup 1 sup 6 A/m sup 2 sr. Since the current is controlled by the laser intensity, with only a weak voltage dependence, these cathodes can be used for infrared and ultraviolet tabletop free-electron lasers and other applications that demand short electron-beam pulses with high brightness.

  19. Durabilidade de madeira de eucalipto citriodora (Corymbia citriodora (Hook. K.D. Hill & L.A.S. Johnson tratada com CCA em ambiente amazônico Durability of eucalyptus citriodora wood (Corymbia citriodora (Hook. K.D. Hill & L.A.S. Johnson treated with CCA in the Amazon environment

    Directory of Open Access Journals (Sweden)

    Henrique José Borges de Araujo

    2012-03-01

    Full Text Available A intensa exploração econômica tem causado diminuição do estoque original das espécies madeireiras amazônicas, incluindo aquelas de alta durabilidade natural destinadas a usos em contato com o solo. A escassez dessas madeiras resulta na elevação do preço, inviabilizando economicamente seu uso, sendo uma alternativa a substituição por espécies plantadas de rápido crescimento tratadas com preservativos. Outra vantagem, além da econômica, de utilizar espécies plantadas em substituição às tradicionais é ambiental, pois reduzirá a pressão exploratória sobre aquelas. Este estudo teve por objetivo avaliar o grau de degradação biológica de madeira de eucalipto citriodora (Corymbia citriodora (Hook. K.D. Hill & L.A.S. Johnson tratado por processo a vácuo e pressão com arseniato de cobre cromatado (CCA e exposta em ensaio de campo em Rio Branco-AC. O ensaio foi implantado em maio de 2005 com estacas tratadas ou não com CCA. As variáveis avaliadas foram: 1 degradação por fungos, 2 degradação por cupins, e 3 região ou parte da peça afetada. A partir da terceira avaliação (47 meses de ensaio, 100% dos corpos de prova não tratados foram classificados com o grau de degradação máximo e, ao contrário, 100% dos tratados com CCA, decorridos 60 meses de ensaio, foram classificados com o grau mínimo. As partes não tratadas com maior e menor grau de degradação foram, respectivamente, o topo inferior e a parte aérea acima de 10 cm do solo. A degradação provocada por fungos foi levemente inferior à dos cupins. O ensaio aponta para a viabilidade técnica do uso de madeira tratada de eucalipto em substituição às espécies tradicionais da Amazônia.The intense economic exploration has caused a decrease of the original stock of Amazon woody species, including those of high natural durability used in soil contact. The lack of those species results in increased price that makes economically unfeasible of the use, an

  20. THE LYMPH SELF ANTIGEN REPERTOIRE

    Directory of Open Access Journals (Sweden)

    Laura eSantambrogio

    2013-12-01

    Full Text Available The lymphatic fluid originates from the interstitial fluid which bathes every parenchymal organ and reflects the omic composition of the tissue from which it originates in its physiological or pathological signature. Several recent proteomic analyses have mapped the proteome-degradome and peptidome of this immunologically relevant fluid pointing to the lymph as an important source of tissue-derived self-antigens. A vast array of lymph-circulating peptides have been mapped deriving from a variety of processing pathways including caspases, cathepsins, MMPs, ADAMs, kallikreins, calpains and granzymes, among others. These self peptides can be directly loaded on circulatory dendritic cells and expand the self-antigenic repertoire available for central and peripheral tolerance.

  1. Time-resolved cell culture assay analyser (TReCCA Analyser) for the analysis of on-line data: data integration--sensor correction--time-resolved IC50 determination.

    Science.gov (United States)

    Lochead, Julia; Schessner, Julia; Werner, Tobias; Wölfl, Stefan

    2015-01-01

    Time-resolved cell culture assays circumvent the need to set arbitrary end-points and reveal the dynamics of quality controlled experiments. However, they lead to the generation of large data sets, which can represent a complexity barrier to their use. We therefore developed the Time-Resolved Cell Culture Assay (TReCCA) Analyser program to perform standard cell assay analyses efficiently and make sophisticated in-depth analyses easily available. The functions of the program include data normalising and averaging, as well as smoothing and slope calculation, pin-pointing exact change time points. A time-resolved IC50/EC50 calculation provides a better understanding of drug toxicity over time and a more accurate drug to drug comparison. Finally the logarithmic sensor recalibration function, for sensors with an exponential calibration curve, homogenises the sensor output and enables the detection of low-scale changes. To illustrate the capabilities of the TReCCA Analyser, we performed on-line monitoring of dissolved oxygen in the culture media of the breast cancer cell line MCF-7 treated with different concentrations of the anti-cancer drug Cisplatin. The TReCCA Analyser is freely available at www.uni-heidelberg.de/fakultaeten/biowissenschaften/ipmb/biologie/woelfl/Research.html. By introducing the program, we hope to encourage more systematic use of time-resolved assays and lead researchers to fully exploit their data.

  2. Temporal variations of cathode performance in air-cathode single-chamber microbial fuel cells with different separators

    Science.gov (United States)

    Ma, Jinxing; Wang, Zhiwei; Suor, Denis; Liu, Shumeng; Li, Jiaqi; Wu, Zhichao

    2014-12-01

    An ideal separator is essential for efficient power production from air-cathode single-chamber microbial fuel cells (MFCs). In this study, we use different kinds of membranes as separators, including Nafion 117 proton exchange membrane, polyethersulfone and poly(vinylidene fluoride) microfiltration membranes. Temporal variations of cathode performance are monitored during the experiment. Results show that MFCs with microfiltration membranes present higher power output but deterioration is still observed after about 600-h operation. With the utilization of appropriate separators (e.g., polyethersulfone membrane), biofouling, cation fouling and chemical scale fouling of the cathodes are alleviated while reaction fouling seems inevitable. Moreover, it is found that Coulombic efficiency (CE) and energy efficiency (EE) are also related to the cathode performance. Despite relatively high oxygen diffusivity (1.49 × 10-5 cm2 s-1), CE and EE of the MFC with 0.1 μm pore-size polyethersulfone membrane can reach 92.8% and 13.7%, respectively, when its average power density registers 403.5 mW m-2. This phenomenon might be attributed to the finding that the overall substrate consumption rate due to oxygen reduction and respiration is almost constant in the air-cathode MFCs. Oxygen leakage into the electrolyte can be inhibited due to the efficient oxygen reduction reaction on the surface of the cathode.

  3. Bacterial phospholipide antigens and their taxonomic significance.

    Science.gov (United States)

    Karalnik, B V; Razbash, M P; Akhmetova, E A

    1981-01-01

    The investigation of interrelationships between the phospholipides of various microorganisms (33 strains of corynebacteria, mycobacteria and staphylococci) using crossed antibody neutralization reactions with phospholipide antigenic erythrocyte diagnostic was used for the assessment of the degree of antigenic propinquity and antigenic differences between the phospholipides of bacteria of the same species, genus, and of different genera. The role of the determinants of the corresponding (their own) and "foreign" genera in the antigenic differences between the phospholipides of the microorganisms investigated was established. On the basis of the results obtained the conclusion has been drawn that the method of assessment of antigenic interrelationships between phospholipides can be used for the study of some taxonomic problems.

  4. [HLA antigens in juvenile rheumatoid arthritis].

    Science.gov (United States)

    Rumba, I V; Sochnev, A M; Kukaĭne, E M; Burshteĭn, A M; Benevolenskaia, L I

    1990-01-01

    Antigens of I class HLA system (locus A and B) were investigated in 67 patients of Latvian nationality suffering from juvenile rheumatoid arthritis (JRA). Associations of HLA antigens with juvenile rheumatoid arthritis partially coincided with the ones revealed earlier. Typing established an increased incidence of antigen B27 (p less than 0.01) and gaplotype A2, B40 (p less than 0.01). Antigen B15 possessed a protective action with respect to JRA. Interlocus combinations demonstrated a closer association with the disease than a single antigen. The authors also revealed markers of various clinico-anatomical variants of JRA.

  5. Stable solid-phase Rh antigen.

    Science.gov (United States)

    Yared, M A; Moise, K J; Rodkey, L S

    1997-12-01

    Numerous investigators have attempted to isolate the Rh antigens in a stable, immunologically reactive form since the discovery of the Rh system over 56 years ago. We report here a successful and reproducible approach to solubilizing and adsorbing the human Rh antigen(s) to a solid-phase matrix in an antigenically active form. Similar results were obtained with rabbit A/D/F red blood cell antigens. The antigen preparation was made by dissolution of the red blood cell membrane lipid followed by fragmentation of the residual cytoskeleton in an EDTA solution at low ionic strength. The antigenic activity of the soluble preparations was labile in standard buffers but was stable in zwitterionic buffers for extended periods of time. Further studies showed that the antigenic activity of these preparations was enhanced, as was their affinity for plastic surfaces, in the presence of acidic zwitterionic buffers. Adherence to plastic surfaces at low pH maintained antigenic reactivity and specificity for antibody was retained. The data show that this approach yields a stable form of antigenically active human Rh D antigen that could be used in a red blood cell-free assay for quantitative analysis of Rh D antibody and for Rh D antibody immunoadsorption and purification.

  6. Common antigens between hydatid cyst and cancers

    Directory of Open Access Journals (Sweden)

    Shima Daneshpour

    2016-01-01

    Full Text Available Background: Different research groups reported a negative correlation between cancers and parasitical infections. As an example, the prevalence of a hydatid cyst among patients with cancer was significantly lower than its prevalence among normal population. Tn antigens exist both in cancer and hydatid cyst. This common antigen may be involved in the effect of parasite on cancer growth. So in this work, common antigens between hydatid cyst and cancers have been investigated. Materials and Methods: Different hydatid cyst antigens including hydatid fluid, laminated and germinal layer antigens, and excretory secretory antigens of protoscolices were run in SDS PAGE and transferred to NCP paper. In western immunoblotting, those antigens were probed with sera of patients with different cancer and also sera of non-cancer patients. Also, cross reaction among excretory secretory products of cancer cells and antisera raised against different hydatid cyst antigen was investigated. Results: In western immunoblotting, antisera raised against laminated and germinal layers of hydatid cyst reacted with excretory secretory products of cancer cells. Also, a reaction was detected between hydatid cyst antigens and sera of patients with some cancers. Conclusion: Results of this work emphasize existence of common antigens between hydatid cyst and cancers. More investigation about these common antigens is recommended.

  7. Common antigens between hydatid cyst and cancers

    Science.gov (United States)

    Daneshpour, Shima; Bahadoran, Mehran; Hejazi, Seyed Hossein; Eskandarian, Abas Ali; Mahmoudzadeh, Mehdi; Darani, Hossein Yousofi

    2016-01-01

    Background: Different research groups reported a negative correlation between cancers and parasitical infections. As an example, the prevalence of a hydatid cyst among patients with cancer was significantly lower than its prevalence among normal population. Tn antigens exist both in cancer and hydatid cyst. This common antigen may be involved in the effect of parasite on cancer growth. So in this work, common antigens between hydatid cyst and cancers have been investigated. Materials and Methods: Different hydatid cyst antigens including hydatid fluid, laminated and germinal layer antigens, and excretory secretory antigens of protoscolices were run in SDS PAGE and transferred to NCP paper. In western immunoblotting, those antigens were probed with sera of patients with different cancer and also sera of non-cancer patients. Also, cross reaction among excretory secretory products of cancer cells and antisera raised against different hydatid cyst antigen was investigated. Results: In western immunoblotting, antisera raised against laminated and germinal layers of hydatid cyst reacted with excretory secretory products of cancer cells. Also, a reaction was detected between hydatid cyst antigens and sera of patients with some cancers. Conclusion: Results of this work emphasize existence of common antigens between hydatid cyst and cancers. More investigation about these common antigens is recommended. PMID:26962511

  8. Oxide cathode mechanisms: Electronic and structural features of oxide cathode surfaces

    Science.gov (United States)

    Cunningham, J.; Nunan, J.

    1985-01-01

    This report describes studies made upon systems selected for their ability to model various important features of oxide cathodes and the mechanisms which enable them to function as efficient thermionic emitters at moderate temperatures. An account is given of experiments which aimed to simulate conditions upon the surfaces of polycrystalline samples of alkaline earth oxides (e.g., SrO and BaO/SrO or MgO and BaO/MgO) at various stages of their preparation in similiar fashion to that used in the thermal activation of oxide cathodes. Accounts are given of experiments which examined the interaction between the gases O2, N2O, H2 or Ch4 and appropriately preactivated surface of pure and mixed alkaline earth oxide samples. Accounts are given of experiments involving the controlled deposition in UHV conditions of zero-valent Ba ad-atoms-in amounts ranging from submonolayer to multilayer coverage - upon layers of SrO or BaO previously prepared in UHV conditions by evaporation of the corresponding metal and its subsequent oxidation. UPS spectra have been undertaken in order to examine surfaces of samples prepared by evaporation of barium metal or strontium metal and to study effects upon the UPS spectra by exposures to the gases N20, O2 and CH4.

  9. Chromium poisoning of LSM/YSZ and LSCF/CGO composite cathodes

    DEFF Research Database (Denmark)

    Bentzen, Janet Jonna; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus;

    2009-01-01

    An electrochemical study of SOFC cathode degradation, due to poisoning by chromium oxide vapours, was performed applying 3-electrode set-ups. The cathode materials comprised LSM/YSZ and LSCF/CGO composites, whereas the electrolyte material was 8YSZ. The degradation of the cathode performance...... from 300 to 2,970 h. Both LSM/YSZ and LSCF/CGO cathodes were sensitive to chromium poisoning; LSCF/CGO cathodes to a lesser extent than LSM/YSZ. Humid air aggravated the degradation of the cathode performance. Post-mortem electron microscopic investigations revealed several Cr-containing compounds...

  10. Análisis dinámico del sistema de dirección de la cosechadora de caña cubana CCA-5000

    Directory of Open Access Journals (Sweden)

    Yadnel Abreu Ricardo

    2015-01-01

    Full Text Available En el presente trabajo se realiza un estudio del estado tensional-deformacional del sistema de dirección del nuevo modelo de cosechadora cañera cubana CCA-5000. Se utilizó la curva de variación de las cargas extremas que actúan sobre el sistema, a partir de la evaluación experimental extensométrica en una pista de obstáculos del modelo de cosechadora KTP-23, donde se determinaron los coeficientes dinámicos que se producen en diferentes partes de esta. Para este estudio se utiliza el Método de los Elementos Finitos y a través del análisis dinámico lineal se determinó la causa de la rotura del sistema de bisagra durante las pruebas tecnológicas y de explotación de la nueva cosechadora al aparecer tensiones de 212,4 MPa en el mismo, siendo el límite elástico del acero utilizado en su fabricación de 210 MPa. Se realiza el análisis de un nuevo diseño de este elemento, obteniéndose un coeficiente de seguridad de 2,11; se realiza a su vez el análisis de los modos de frecuencias de ambos modelos y se comparan los resultados con las frecuencias de las irregularidades de los terrenos por los que se desplaza la combinada, con el objetivo de verificar la aparición o no de grades amplitudes en las oscilaciones del sistema por el fenómeno de la resonancia.

  11. Análisis dinámico del mecanismo paralelogramo del cortacogollo desfibrador para la cosechadora cañera cubana CCA- 5000

    Directory of Open Access Journals (Sweden)

    Roberto Estrada Cingualbres

    2013-01-01

    Full Text Available En el presente trabajo se realiza un estudio del estado tensional-deformacional del mecanismo paralelogramo del cortacogollo desfibrador para la cosechadora cañera cubana CCA-5000. Se utilizó la curva de variación de las cargas extremas que actúan sobre el cortacogollo, a partir de la evaluación experimental extensométrica en una pista de obstáculos del modelo de cosechadora KTP-2M, donde se determinaron los coeficientes dinámicos que se producen en el centro de masa de este órgano. Se utiliza el Método de los Elementos Finitos y a través del análisis dinámico lineal se determinaron las causas de las deformaciones plásticas aparecidas en el tubo inferior del paralelogramo del mecanismo cortacogollo durante las pruebas tecnológico explotativas de la nueva cosechadora al aparecer tensiones de 219,3 MPa en el mismo, siendo el límite elástico del acero utilizado de 220 MPa. Se realiza el análisis de las modificaciones introducidas a la estructura, obteniéndose un coeficiente de seguridad de 1,36 para el nuevo modelo con un tubo inferior de sección rectangular, lo que asegura un comportamiento fiable del mismo durante la aparición de las cargas extremas en condiciones de explotación de la máquina.

  12. An RNA-binding complex involved in ribosome biogenesis contains a protein with homology to tRNA CCA-adding enzyme.

    Directory of Open Access Journals (Sweden)

    Jinzhong Lin

    2013-10-01

    Full Text Available A multitude of proteins and small nucleolar RNAs transiently associate with eukaryotic ribosomal RNAs to direct their modification and processing and the assembly of ribosomal proteins. Utp22 and Rrp7, two interacting proteins with no recognizable domain, are components of the 90S preribosome or the small subunit processome that conducts early processing of 18S rRNA. Here, we determine the cocrystal structure of Utp22 and Rrp7 complex at 1.97 Å resolution and the NMR structure of a C-terminal fragment of Rrp7, which is not visible in the crystal structure. The structure reveals that Utp22 surprisingly resembles a dimeric class I tRNA CCA-adding enzyme yet with degenerate active sites, raising an interesting evolutionary connection between tRNA and rRNA processing machineries. Rrp7 binds extensively to Utp22 using a deviant RNA recognition motif and an extended linker. Functional sites on the two proteins were identified by structure-based mutagenesis in yeast. We show that Rrp7 contains a flexible RNA-binding C-terminal tail that is essential for association with preribosomes. RNA-protein crosslinking shows that Rrp7 binds at the central domain of 18S rRNA and shares a neighborhood with two processing H/ACA snoRNAs snR30 and snR10. Depletion of snR30 prevents the stable assembly of Rrp7 into preribosomes. Our results provide insight into the evolutionary origin and functional context of Utp22 and Rrp7.

  13. Electron and ion kinetics in a micro hollow cathode discharge

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G J; Iza, F; Lee, J K [Electronics and Electrical Engineering Department, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2006-10-21

    Electron and ion kinetics in a micro hollow cathode discharge are investigated by means of two-dimensional axisymmetric particle-in-cell Monte Carlo collision simulations. Argon discharges at 10 and 300 Torr are studied for various driving currents. Electron and ion energy probability functions (IEPF) are shown at various times and locations to study the spatio-temporal behaviour of the discharge. The electron energy probability function (EEPF) evolves from the Druyvesteyn type in the early stages of the discharge into a two (or three) temperature distribution when steady state is reached. In steady state, secondary electrons accelerated across the cathode fall populate the high energy tail of the EEPF while the low energy region is populated by trapped electrons. The IEPF evolves from a Maxwellian in the negative glow (bulk) to a two temperature distribution on the cathode surface. The overpopulation of low energy ions near the cathode surface is attributed to a larger collision cross section for low energy ions and ionization within the cathode fall.

  14. The design of cathode for organic photovoltaic devices

    Science.gov (United States)

    Song, De; Shi, Feng; Xia, Xuan; Li, Ye; Duanmu, Qingduo

    2016-11-01

    We have discussed the effect of the residual gas in the Al metal cathode deposition process and consequently influence the performance of organic photovoltaic devices (such as organic photoelectron detector or solar cell). We believe that the origin of degradation in Jsc and FF from the Al cathode device should be the formation of AlOx in the C60-Al interface, which contaminate the interface and plays a role like an energy barrier that block the charge collect process. To solve this problem the Ag and Alq3 layer had been inserted before the Al. Owing to the advantageous of Alq3 and Ag layer, the device which Al cathode prepared at a lower vacuum condition exhibits a comparable performance to that device which Al cathode deposited in regular situation. As an additional benefit, since the introducing of Alq3/Ag layer in the VOPc/C60 organic photovoltaic device performs a better near-infrared response, this phenomenon has been confirmed by means of both simulation and experimental data. So the design of our new cathode structure provides a degree of freedom to modulate the light absorption for organic photovoltaic devices in short-wave and long-wave.

  15. Blacking FTO by strongly cathodic polarization with enhanced photocurrent

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yun; Lu, Xiaoqing; Huang, Wei, E-mail: hjhw9513@163.com; Li, Zelin, E-mail: lizelin@hunnu.edu.cn

    2015-08-30

    Graphical abstract: - Highlights: • Transparent FTO became blackish under strongly cathodic polarization. • Part of SnO{sub 2} coating on the FTO can be reduced into Sn nanoparticles. • The black FTO increased solar absorption and enhanced photocurrent responses. • Take care in photoelectrochemistry test while FTO is strongly cathodically polarized. - Abstract: Transparent fluorine-doped tin oxide (TFTO) coating on quartz glass is widely used as substrate in photoelectrochemistry for solar energy transformation, sensing and so on. We observed that the TFTO could become blackish by strongly cathodic polarization. Characterization of the black FTO (BFTO) by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy revealed that part of SnO{sub 2} on the TFTO was reduced into metal Sn nanoparticles during the cathodic polarization. The BFTO greatly increased solar absorption and enhanced photocurrent responses in comparison with TFTO. It might be necessary to take caution in photoelectrochemical measurements while the FTO is strongly cathodically polarized.

  16. High Performance Fe-Co Based SOFC Cathodes

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent; Hansen, Karin Vels; Mogensen, Mogens Bjerg

    2010-01-01

    With the aim of reducing the temperature of the solid oxide fuel cell (SOFC), a new high-performance perovskite cathode has been developed. An area-specific resistance (ASR) as low as 0.12 Ωcm2 at 600 °C was measured by electrochemical impedance spectroscopy (EIS) on symmetrical cells. The cathode...... is a composite between (Gd0.6Sr0.4)0.99Fe0.8Co0.2O3-δ (GSFC) and Ce0.9Gd0.1O1.95 (CGO10). Examination of the microstructure of the cathodes by scanning electron microscopy (SEM) revealed a possibility of further optimisation of the microstructure in order to increase the performance of the cathodes. It also...... seems that an adjustment of the sintering temperature will make a lowering of the ASR value possible. The cathodes were compatible with ceria-based electrolytes but reacted to some extent with zirconia-based electrolytes depending on the sintering temperature....

  17. Trajectory control strategy of cathodes in blisk electrochemical machining

    Institute of Scientific and Technical Information of China (English)

    Zhu Dong; Zhu Di; Xu Zhengyang; Zhou Laishui

    2013-01-01

    A turbine blisk,which combines blades and a disk together,is one of the most important components of an aero engine.In the process of blisk electrochemical machining (ECM),the sheet cathode,which is usually used as a tool electrode,has a complicated structure.In addition to that,the channel between the adjacent blades is narrow and twisted,so interference is apt to happen when the sheet cathode feeds into the channel.Therefore,it is important to choose suitable trajectory control strategy.In this paper,a new trajectory control strategy of the sheet cathode is presented and corresponding simulation analysis is conducted on the basis of an actual blisk model.The simulation results demonstrate that the sheet cathode can feed into the channel by a spatial line trajectory without interference.Moreover,the verification experiments are carried out according to the simulation.The experimental results show that the cathode can move into the channel without interference.It is verified that the new trajectory control strategy is correct and can be used in the blisk ECM process successfully.

  18. High-performance lanthanum-ferrite-based cathode for SOFC

    DEFF Research Database (Denmark)

    Wang, W.G.; Mogensen, Mogens Bjerg

    2005-01-01

    (La0.6Sr0.4)(1-x)Co0.2Fe0.8O3/Ce0.9Gd0.1O3 (LSCF/CGO) composite cathodes were investigated for SOFC application at intermediate temperature, i.e., 500-700 degreesC. The LSCF/CGO cathodes have been studied on three types of tape-casted electrolyte substrates including CGO electrolyte, Yttrium......C were obtained using LSCF/CGO cathode on CGO electrolyte. On the YSZ electrolyte with thin layer CGO coating, R-p of 0.6 Omega cm(2) at 600 degreesC and 0.12 Omega cm(2) at 700 degreesC were obtained. On the YSZ electrolyte directly, R-p of 1.0 Omega cm(2) at 600 degreesC and 0.13 Omega cm(2) at 700...... degreesC were achieved. These results are roughly six times better than our typical LSM cathodes. Slightly higher R-s was observed in the samples with LSCF/CGO cathode on the YSZ electrolyte with CGO coating due to extra contribution from the thin CGO layer and the CGO/YSZ interface. For the samples...

  19. The use of ultrasound to reduce cathodic incrustation.

    Science.gov (United States)

    Lima, J F; Vilar, E O

    2014-05-01

    Alternative technologies used to treat effluents from the petroleum industry have advanced in recent decades through the development of new physicochemical processes. Electrochemical processes such as electroflotation stand out among these advances. However, one problem remains unsolved-cathodic incrustation. This problem can increase the energy cost to maintain and operate the necessary equipment. The aim of this study is to minimize the incrustation in electrochemical cells used for the electroflotation of saline water produced by the oil industry via ultrasonic transducers operating at a frequency of 24 kHz. The optimal operating cycle of these transducers was found to occur during the electrochemical production of H2. The transducer efficiency in reducing cathodic incrustation was evaluated using the combined mass transfer coefficient (kd(g)‾). The reduction of cathodic incrustation was evaluated using the water hardness and incrustation indices from a synthetic solution with a composition similar to seawater. Finally we analyzed the morphology of the cathodic incrustation and identified its elements using scanning electron microscopy (SEM) and EDS, respectively. One can conclude that the use of these devices can significantly reduce the cathodic incrustation. Enhanced performance can be achieved with improvements in the quality of the materials used, their geometry and the assembly design of the transducers.

  20. 50 Hz electron emission from PZT ferro-electric cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Flechtner, D.; Golkowski, C.; Ivers, J.D.; Kerslick, G.S.; Nation, J.A.; Schachter, L. [Cornell Univ., Ithaca, NY (United States)

    1997-12-31

    Ferro-electric cathodes may offer a source of high current density electron beams for applications where the use of conventional field emitters is limited by repetition rate and lifetime. In a ferro-electric cathode, electrons are emitted when the spontaneous polarization is rapidly changed by a pulsed electric field applied across the ferroelectric. When no additional voltage is applied to a planar diode gap, emission current densities are on the order of 1 A/cm{sup 2}. When an additional field is applied to the gap, the authors have measured current densities up to 100 A/cm{sup 2}. In a new configuration that permits beam extraction into a drift tube, the cathode is pulsed 10--20kV negative and electron current densities of {approximately}20 A/cm{sup 2} at repetition rates up to {approximately}50 Hz (power supply limited) have been measured. The one inch diameter ferro-electric cathode is located in the fringing region of a 1.5 kG solenoid magnetic field {approximately}2.8 cm from the entrance of a grounded drift tube. A Faraday cup is located several centimeters inside the drift tube and measurements show that repeatable beam current can be extracted from the ferroelectric cathode in this geometry.

  1. Microscale Gradients of Oxygen, Hydrogen Peroxide, and pH in Freshwater Cathodic Biofilms

    Science.gov (United States)

    Babauta, Jerome T.; Nguyen, Hung Duc; Istanbullu, Ozlem

    2014-01-01

    Cathodic reactions in biofilms employed in sediment microbial fuel cells is generally studied in the bulk phase. However, the cathodic biofilms affected by these reactions exist in microscale conditions in the biofilm and near the electrode surface that differ from the bulk phase. Understanding these microscale conditions and relating them to cathodic biofilm performance is critical for better-performing cathodes. The goal of this research was to quantify the variation in oxygen, hydrogen peroxide, and the pH value near polarized surfaces in river water to simulate cathodic biofilms. We used laboratory river-water biofilms and pure culture biofilms of Leptothrix discophora SP-6 as two types of cathodic biofilms. Microelectrodes were used to quantify oxygen concentration, hydrogen peroxide concentration, and the pH value near the cathodes. We observed the correlation between cathodic current generation, oxygen consumption, and hydrogen peroxide accumulation. We found that the 2e− pathway for oxygen reduction is the dominant pathway as opposed to the previously accepted 4e− pathway quantified from bulk-phase data. Biofouling of initially non-polarized cathodes by oxygen scavengers reduced cathode performance. Continuously polarized cathodes could sustain a higher cathodic current longer despite contamination. The surface pH reached a value of 8.8 when a current of only −30 μA was passed through a polarized cathode, demonstrating that the pH value could also contribute to preventing biofouling. Over time, oxygen-producing cathodic biofilms (Leptothrix discophora SP-6) colonized on polarized cathodes, which decreased the overpotential for oxygen reduction and resulted in a large cathodic current attributed to manganese reduction. However, the cathodic current was not sustainable. PMID:23766295

  2. A Transient Model for Fuel Cell Cathode-Water Propagation Behavior inside a Cathode after a Step Potential

    Directory of Open Access Journals (Sweden)

    Der-Sheng Chan

    2010-04-01

    Full Text Available Most of the voltage losses of proton exchange membrane fuel cells (PEMFC are due to the sluggish kinetics of oxygen reduction on the cathode and the low oxygen diffusion rate inside the flooded cathode. To simulate the transient flooding in the cathode of a PEMFC, a transient model was developed. This model includes the material conservation of oxygen, vapor, water inside the gas diffusion layer (GDL and micro-porous layer (MPL, and the electrode kinetics in the cathode catalyst layer (CL. The variation of hydrophobicity of each layer generated a wicking effect that moves water from one layer to the other. Since the GDL, MPL, and CL are made of composite materials with different hydrophilic and hydrophobic properties, a linear function of saturation was used to calculate the wetting contact angle of these composite materials. The balance among capillary force, gas/liquid pressure, and velocity of water in each layer was considered. Therefore, the dynamic behavior of PEMFC, with saturation transportation taken into account, was obtained in this study. A step change of the cell voltage was used to illustrate the transient phenomena of output current, water movement, and diffusion of oxygen and water vapor across the entire cathode.

  3. Ultra short electron beam bunches from a laser plasma cathode

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Akira [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan)]. E-mail: maekawa@nuclear.jp; Tsujii, Ryosuke [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Kinoshita, Kennichi [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Atsushi, Yamazaki [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Kobayashi, Kazuyuki [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Uesaka, Mitsuru [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Shibata, Yukio [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Kondo, Yasuhiro [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Ohkubo, Takeru [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma (Japan); Hosokai, Tomonao [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Zhidkov, Alexei [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa (Japan); Takahashi, Toshiharu [Kyoto University Research Reactor Institute, Asahiro-nishi2, Kumatori, Sennan, Osaka (Japan)

    2007-08-15

    The fluctuation of the electron bunch duration due to energy spectrum instability in a laser plasma cathode has been examined. Previous experiments clearly proved that a laser plasma cathode can generate ultrashort electron bunches with a bunch duration of 130 fs (FWHM) and a geometrical emittance 0.07{pi} mm mrad. The effect of temporal elongation of electron bunches due to their energy spread is estimated and the results are in good agreement with previous experiments. It is also clarified that the instability of the energy spectrum not only leads to a fluctuation of the bunch shape but also to a time-of-flight jitter, affecting possible future applications of a laser plasma cathode.

  4. LSM-YSZ Cathodes with Reaction-Infiltrated Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun; Sholklapper, Tal Z.; Jacobson, Craig P.; Visco, StevenJ.; De Jonghe, Lutgard C.

    2006-01-31

    To improve the LSM-YSZ cathode performance of intermediate temperature solid oxide fuel cells (SOFCs), Sm0.6Sr0.4CoO3-sigma (SSC) perovskite nanoparticles are incorporated into the cathodes by a reaction-infiltration process. The SSC particles are {approx}20 to 80nm in diameter, and intimately adhere to the pore walls of the preformed LSM-YSZ cathodes. The SSC particles dramatically enhance single-cell performance with a 97 percent H2+3 percent H2O fuel, between 600 C and 800 C. Consideration of a simplified TPB (triple phase boundary) reaction geometry indicates that the enhancement may be attributed to the high electrocatalytic activity of SSC for electrochemical reduction of oxygen in a region that can be located a small distance away from the strict triple phase boundaries. The implication of this work for developing high-performance electrodes is also discussed.

  5. The base metal of the oxide-coated cathode

    Energy Technology Data Exchange (ETDEWEB)

    Poret, F. [Thomson, S.B.U. Displays, Electron Optics Laboratory, Avenue du General de Gaulle, 21110 Genlis (France)]. E-mail: fabian.poret@thomson.net; Roquais, J.M. [Thomson, S.B.U. Displays, Electron Optics Laboratory, Avenue du General de Gaulle, 21110 Genlis (France)

    2005-09-15

    The oxide-coated cathode has been the most widely used electron emitter in vacuum electronic devices. From one manufacturing company to another the emissive oxide is either a double-Ba, Sr-or a triple-Ba, Sr, Ca-oxide, having always the same respective compositions. Conversely, the base metal composition is very often proprietary because of its importance in the cathode emission performances. The present paper aims at explaining the operation of the base metal through a review. After a brief introduction, the notion of activator is detailed along with their diffusivities and their associated interfacial compounds. Then, the different cathode life models are described prior to few comments on the composition choice of a base metal. Finally, the specificities of the RCA/Thomson 'bimetal' base metal are presented with a discussion on the optimized composition choice illustrated by a long-term life-test of five different melts.

  6. Wettable Ceramic-Based Drained Cathode Technology for Aluminum Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    J.N. Bruggeman; T.R. Alcorn; R. Jeltsch; T. Mroz

    2003-01-09

    The goal of the project was to develop the ceramic based materials, technology, and necessary engineering packages to retrofit existing aluminum reduction cells in order to reduce energy consumption required for making primary aluminum. The ceramic materials would be used in a drained cathode configuration which would provide a stable, molten aluminum wetted cathode surface, allowing the reduction of the anode-cathode distance, thereby reducing the energy consumption. This multi-tasked project was divided into three major tasks: (1) Manufacturing and laboratory scale testing/evaluation of the ceramic materials, (2) Pilot scale testing of qualified compositions from the first task, and (3) Designing, retrofitting, and testing the ceramic materials in industrial cells at Kaiser Mead plant in Spokane, Washington. Specific description of these major tasks can be found in Appendix A - Project Scope. Due to the power situation in the northwest, the Mead facility was closed, thus preventing the industrial cell testing.

  7. Kinetics of Zn cathodic deposition in alkaline zincate solution

    Institute of Scientific and Technical Information of China (English)

    PENG Wen-jie; WANG Yun-yan

    2006-01-01

    Kinetic parameters of the electrode reactions were measured by investigating steady-state current-potential behaviors. The Tafel slopes of cathodic and anodic processes are -0.113 8 V and -0.041 18 V, the anodic and cathodic apparent transfer coefficients are 0.519 3 and 1.435 2, respectively, and the stoichiometric number of rate-determining step is 1. The theoretical kinetics equation of electrode reaction was deduced, from which the dynamic parameters can be calculated as follows: the cathodic and anodic Tafel slopes are -0.118 V and -0.039 4 V, respectively, consisting with the experimental values. Finally, the correctness of the mechanism was further demonstrated using apparent transfer coefficient according to the electrochemical dynamic equation of multi-electron reaction.

  8. Note: Improved heater design for high-temperature hollow cathodes

    Science.gov (United States)

    McDonald, M. S.; Gallimore, A. D.; Goebel, D. M.

    2017-02-01

    We present an improved heater design for thermionic cathodes using a rhenium filament encased in a boron nitride ceramic sleeve. This heater is relatively simple to fabricate, yet has been successfully used to reliably and repeatably light a lanthanum hexaboride (LaB6) hollow cathode based on a previously published design without noticeable filament degradation over hundreds of hours of operation. The high decomposition temperature of boron nitride (2800 C for inert environments) and melting point for rhenium (3180 C) make this heater especially attractive for use with LaB6, which may require operating temperatures upwards of 1700 C. While boron nitride decomposes in air above 1000 C, the heater was used only at vacuum with an inert gas discharge, and no degradation was observed. Limitations of current state of the art cathode heaters are also discussed and compared with the rhenium-boron nitride combination.

  9. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater.

    Science.gov (United States)

    Liu, Xian-Wei; Li, Wen-Wei; Yu, Han-Qing

    2014-11-21

    Bioelectrochemical systems (BESs), in which microorganisms are utilized as a self-regenerable catalyst at the anode of an electrochemical cell to directly extract electrical energy from organic matter, have been widely recognized as a promising technology for energy-efficient wastewater treatment or even for net energy generation. However, currently BES performance is constrained by poor cathode reaction kinetics. Thus, there is a strong impetus to improve the cathodic catalysis performance through proper selection and design of catalysts. This review introduces the fundamentals and current development status of various cathodic catalysts (including electrocatalysts, photoelectrocatalysts and bioelectrocatalysts) in BES, identifies their limitations and influential factors, compares their catalytic performances in terms of catalytic efficiency, stability, selectivity, etc., and discusses the possible optimization strategies and future research directions. Special focus is given on the analysis of how the catalytic performance of different catalysts can be improved by fine tuning their physicochemical or physiological properties.

  10. Nano-Particle Scandate Cathode for Space Communications Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an improved cathode based on our novel theory of the role of scandium oxide in enhancing emission in tungsten-impregnated cathodes. Recent results have...

  11. Study on the vibrational scraping of uranium product from a solid cathode of electrorefiner

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Bin; Kang, Young Ho; Hwang, Sung Chan; Lee, Han Soo; Paek, Seung Woo; Ahn, Do Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    A high-throughput electrorefiner has been developed for commercialization use by enhancing the uranium recovery from the reduced metal which is produced from the oxide reduction process. It is necessary to scrap and effectively collect uranium dendrites from the surface of the solid cathode for high yield. When a steel electrode is used as the cathode in the electrorefining process, uranium is deposited and regularly stuck to the steel cathode during electrorefining. The sticking coefficient of a steel cathode is very high. In order to decrease the sticking coefficient of the steel cathode effectively, vibration mode was applied to the electrode in this study. Uranium dendrites were scraped and fell apart from the steel cathode by a vibration force. The vibrational scraping of the steel cathode was compared to the self-scraping of the graphite cathode. Effects of the applied current density and the vibration stroke on the scraping of the uranium dendrites were also investigated.

  12. Compact High Current Rare-Earth Emitter Hollow Cathode for Hall Effect Thrusters

    Science.gov (United States)

    Hofer, Richard R. (Inventor); Goebel, Dan M. (Inventor); Watkins, Ronnie M. (Inventor)

    2012-01-01

    An apparatus and method for achieving an efficient central cathode in a Hall effect thruster is disclosed. A hollow insert disposed inside the end of a hollow conductive cathode comprises a rare-earth element and energized to emit electrons from an inner surface. The cathode employs an end opening having an area at least as large as the internal cross sectional area of the rare earth insert to enhance throughput from the cathode end. In addition, the cathode employs a high aspect ratio geometry based on the cathode length to width which mitigates heat transfer from the end. A gas flow through the cathode and insert may be impinged by the emitted electrons to yield a plasma. One or more optional auxiliary gas feeds may also be employed between the cathode and keeper wall and external to the keeper near the outlet.

  13. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell

    KAUST Repository

    Zhang, Fang

    2009-11-01

    An inexpensive activated carbon (AC) air cathode was developed as an alternative to a platinum-catalyzed electrode for oxygen reduction in a microbial fuel cell (MFC). AC was cold-pressed with a polytetrafluoroethylene (PTFE) binder to form the cathode around a Ni mesh current collector. This cathode construction avoided the need for carbon cloth or a metal catalyst, and produced a cathode with high activity for oxygen reduction at typical MFC current densities. Tests with the AC cathode produced a maximum power density of 1220 mW/m2 (normalized to cathode projected surface area; 36 W/m3 based on liquid volume) compared to 1060 mW/m2 obtained by Pt catalyzed carbon cloth cathode. The Coulombic efficiency ranged from 15% to 55%. These findings show that AC is a cost-effective material for achieving useful rates of oxygen reduction in air cathode MFCs. © 2009 Elsevier B.V. All rights reserved.

  14. SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Mogensen, Mogens Bjerg

    2011-01-01

    The cause of the degradation effect of moisture during operation of LSM cathode based SOFCs has been investigated by means of a detailed impedance characterization on LSM:YSZ composite cathode based SOFCs. Further the role of YSZ as cathode composite material was studied by measurements on SOFCs...... with a LSM:CGO composite cathode on a CGO interdiffusion barrier layer. It was found that both types of cathodes showed similar electrochemical characteristics towards the presence of moisture during operation. Upon addition and removal of moisture in the fed air the impedance study showed a change...... in the high frequency cathode arc, which is associated with the charge transport/transfer at the LSM/YSZ interface. On prolonged operation with the presence of moisture an ongoing increase in the high frequency cathode arc resulted in a permanent loss of cathode/electrolyte contact and thus increase...

  15. The Cathodic Corrosion of TiAl and Effect of Hydrogen

    Institute of Scientific and Technical Information of China (English)

    褚武杨; 高克玮; 乔利杰; 肖纪美

    1994-01-01

    TiAl can undergo severe corrosion, called cathodic corrosion, when cathodically charged with hydrogen in aqueous solutions or molten salt at 160℃. The mechanism of this phenomenon is experimentally discussed, and the results are analysed.

  16. Tandem cathode for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Björketun, Mårten E.; Strasser, Peter

    2013-01-01

    The efficiency of proton exchange membrane fuel cells is limited mainly by the oxygen reduction reaction at the cathode. The large cathodic overpotential is caused by correlations between binding energies of reaction intermediates in the reduction of oxygen to water. This work introduces a novel...... reaction intermediate each, and they occur on different catalyst surfaces. As a result they can be optimized independently and the fundamental problem associated with the four-electron catalysis is avoided. A combination of density functional theory calculations and published experimental data is used...

  17. Cold cathodes based on carbonic nanostructured layered structures

    Directory of Open Access Journals (Sweden)

    Belyanin A. F.

    2013-06-01

    Full Text Available The paper describes formation conditions for and the structure of diamond-like materials films used in the manufacture of layered cold cathodes of emission electronics devices. The authors study the structure and field emission properties of layered structures with polycluster diamond and diamond-like carbon films (DCF formed by various methods. It has been found that the best emission properties are characteristic of DCFs obtained by cathode sputtering. Emission from the surface of such films occurs on the boundaries of the globules.

  18. Web-Based Cathode Strip Chamber Data Display

    CERN Multimedia

    Firmansyah, M

    2013-01-01

    Cathode Strip Chamber (CSC) is a detector that uses gas and high electric field to detect particles. When a particle goes through CSC, it will ionize gas particles and generate electric signal in the anode and cathode of the detector. Analysis of the electric signal data can help physicists to reconstruct path of the particles and determine what happen inside the detector. Using data display, analysis of CSC data becomes easier. One can determine which data is interesting, unusual, or maybe only contain noise.\

  19. QE data for Pb/Nb deposited photo cathode samples

    CERN Document Server

    Sekutowicz, J

    2010-01-01

    This report outlines progress in the development of photo-cathodes for a hybrid lead/niobium (Pb/Nb) superconducting SRF electron injector. We have coated eight Nb samples with lead to study and determine deposition conditions leading to high quality emitting area. The results show that the oxide layer significantly influences the quantum efficiency (QE) of all measured cathodes. In addition, we learned that although the laser cleaning enhanced the QE substantially, the film morphology was strongly modified. That observation convinced us to make the coatings thicker and therefore more robust.

  20. Carbonization kinetics of La2O3-Mo cathode materials

    Institute of Scientific and Technical Information of China (English)

    王金淑; 周美玲; 左铁镛; 张久兴; 聂祚仁; 胡延槽

    2001-01-01

    The carbonization kinetics of La2O3-Mo cathode materials was studied by thermal analysis method. Three-stage model of the carbonization was presented. The carbonization rate is initially controlled by chemical reaction, then by chemical reaction mixed with diffusion, finally by diffusion. The experimental data are processed according to this model and the correlation coefficients of the kinetic curves are satisfactory. The apparent activation energy of carbonization of La2O3-Mo cathode materials was obtained. At the same time, the empirical expressions of the rate constant against temperature in the temperature range of 1393~1493K were deduced.

  1. High Pressure Micro-Slot Hollow Cathode Discharge

    Institute of Scientific and Technical Information of China (English)

    Wang Xinbing; Zhou Lina; Yao Xilin

    2005-01-01

    A direct current glow discharge source structure operating at high pressure based on the micro-slot hollow cathode is presented in this article. A 100 μm width slot cathode was fabricated of copper, and a stable DC glow discharge with an area of 0.5 mm2 was produced in noble gases (He, Ne) and air over a wide pressure range (kPa ~ 10 kPa). The current-voltage characteristics and the near UV radiation emission of the discharge were studied.

  2. PVC DISULFIDE AS CATHODE MATERIALS FOR SECONDARY LITHIUM BATTERIES

    Institute of Scientific and Technical Information of China (English)

    Guo-xiang Xu; Lu Qi; Bi-tao Yu; Lei Wen

    2006-01-01

    PVC disulfide (2SPVC) was synthesized by solution crosslink and its molecular structure was confirmed by the particle size of d0.5 = 11.3 μm. With SEM (Scanning Electron Microscope) experiment the surface morphology and obvious S-S redox reaction in charge-discharge process. When 2SPVC was used as cathode material for secondary lithium mixture of o-xylene (oxy), diglyme (DG) and dimethoxymethane (DME) at 30℃, the first discharge capacity of 2SPVC is very promising cathode candidate for rechargeable lithium batteries.

  3. NEW CATHODE MATERIALS FOR INERT AND OXIDIZING ATMOSPHERE PLASMA APPLICATION

    OpenAIRE

    1990-01-01

    This study has been carried out to develop new cathode materials for two types of thermionic cathode. First is concerning to the tungsten electrodes for the plasma furnace and welding torches. The second one is the electrodes for air plasma cutting torch. Tungsten electrodes activated with a single and combined additives of rare earth metal oxides, such as La2O3, Y2O3 and CeO2, are produced and pared with pure and thoriated tungsten electrode conventionally used, from the point of view of ele...

  4. [Antigenic relationships between Debaryomyces strains (author's transl)].

    Science.gov (United States)

    Aksoycan, N

    1980-01-01

    The results of the agglutinations between homologous and heterologous Debaryomyces strains and their agglutinating sera are shown in table I. According to these findings, D. hansenii and D. marama are antigenically different from other Debaryomyces strains in this genus. In a previous study Aksoycan et al. have shown a common antigenic factor between D. hansenii, D. marama strains and Salmonella 0:7 antigen. This factor was not present in other six strains of Debaryomyces. These results also show that D. tamarii does not have any antigenic relationship with the other seven species of Debaryomyces in this genus.

  5. Enhanced Oxygen and Hydroxide Transport in a Cathode Interface by Efficient Antibacterial Property of a Silver Nanoparticle-Modified, Activated Carbon Cathode in Microbial Fuel Cells.

    Science.gov (United States)

    Li, Da; Qu, Youpeng; Liu, Jia; Liu, Guohong; Zhang, Jie; Feng, Yujie

    2016-08-17

    A biofilm growing on an air cathode is responsible for the decreased performance of microbial fuel cells (MFCs). For the undesired biofilm to be minimized, silver nanoparticles were synthesized on activated carbon as the cathodic catalyst (Ag/AC) in MFCs. Ag/AC enhanced maximum power density by 14.6% compared to that of a bare activated carbon cathode (AC) due to the additional silver catalysis. After operating MFCs over five months, protein content on the Ag/AC cathode was only 38.3% of that on the AC cathode, which resulted in a higher oxygen concentration diffusing through the Ag/AC cathode. In addition, a lower pH increment (0.2 units) was obtained near the Ag/AC catalyst surface after biofouling compared to 0.8 units of the AC cathode, indicating that less biofilm on the Ag/AC cathode had a minor resistance on hydroxide transported from the catalyst layer interfaces to the bulk solution. Therefore, less decrements of the Ag/AC activity and MFC performance were obtained. This result indicated that accelerated transport of oxygen and hydroxide, benefitting from the antibacterial property of the cathode, could efficiently maintain higher cathode stability during long-term operation.

  6. Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jin

    2009-01-07

    This is the final report for project entitled 'Research and development of a new field enhanced low temperature thermionic cathode that enables fluorescent dimming and load shedding without auxiliary cathode heating', under Agreement Number: DE-FC26-04NT-42329. Under this project, a highly efficient CNT based thermionic cathode was demonstrated. This cathode is capable of emitting electron at a current density two order of magnitude stronger then a typical fluorescent cathode at same temperatures, or capable of emitting at same current density but at temperature about 300 C lower than that of a fluorescent cathode. Detailed fabrication techniques were developed including CVD growth of CNTs and sputter deposition of oxide thin films on CNTs. These are mature technologies that have been widely used in industry for large scale materials processing and device fabrications, thus, with further development work, the techniques developed in this project can be scaled-up in manufacturing environment. The prototype cathodes developed in this project were tested in lighting plasma discharge environment. In many cases, they not only lit and sustain the plasma, but also out perform the fluorescent cathodes in key parameters such like cathode fall voltages. More work will be needed to further evaluate more detailed and longer term performance of the prototype cathode in lighting plasma.

  7. Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells

    KAUST Repository

    Xie, Xing

    2011-01-01

    A carbon nanotube (CNT)-textile-Pt cathode for aqueous-cathode microbial fuel cells (MFCs) was prepared by electrochemically depositing Pt nanoparticles on a CNT-textile. An MFC equipped with a CNT-textile-Pt cathode revealed a 2.14-fold maximum power density with only 19.3% Pt loading, compared to that with a commercial Pt coated carbon cloth cathode. © 2011 The Royal Society of Chemistry.

  8. Blastogenic response of human lymphocytes to early antigen(s) of human cytomegalovirus.

    OpenAIRE

    Waner, J L; Kong, N; Biano, S

    1983-01-01

    The lymphocytes of asymptomatic, seropositive donors demonstrated blastogenic responses to early antigens of human cytomegalovirus whether or not antibodies to early antigens were detectable. The lymphocytes of six of nine patients with active cytomegalovirus infections gave stimulation indexes of greater than or equal to 2.00 with antigens of productively infected cells, whereas only two patients demonstrated comparable stimulation indexes with early antigens. Four patients with stimulation ...

  9. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dong; Liu, Mingfei; Lai, Samson; Blinn, Kevin; Liu, Meilin

    2012-09-30

    The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details and stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar

  10. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells

    Science.gov (United States)

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2...

  11. High-Current-Density Thermionic Cathodes and the Generation of High-Voltage Electron Beams

    Science.gov (United States)

    1989-04-30

    dispenser, and photo cathodes. Friedman and Eninger [14] achieved 30 A/cm 2 from a 100-cm 2 porous tungsten matrix dispenser cathode. The actual emission...area lanthanum hexaboride cathodes," J. Appl. Phys., vol. 63, no. 8, pp. 2552-2557, Apr. 1988. [141 ii. W. Friedman and J. E. Eninger , "Repetitively

  12. Impedance of porous IT-SOFC LSCF:CGO composite cathodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jacobsen, Torben; Wandel, Marie

    2011-01-01

    performing cathodes showed a slightly suppressed Gerischer impedance, while the impedance spectra of the well performing cathodes showed the presence of an arc due to oxygen gas diffusion. The overall impedance of the well performing cathodes could be described with a slightly suppressed Gerischer impedance...

  13. Pulse-Width Increase of Reflex Triode Vircator Using the Carbon Fibre Cathode

    Institute of Scientific and Technical Information of China (English)

    LIU Lie; LI Li-Min; ZHANG Xiao-Ping; WEN Jian-Chun; WAN Hong

    2006-01-01

    @@ We present the investigation on the reflex triode virtual cathode oscillator in which performances of carbonfibre and stainless-steel cathodes are compared with each other. The experimental results and analyses show that surface tracking induces the electron emission of the carbon fibre cathode.

  14. Effect of cathode gas humidification on performance and durability of Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Hagen, Anke; Liu, Yi-Lin

    2010-01-01

    The effect of cathode inlet gas humidification was studied on single anode supported Solid Oxide Fuel Cells (SOFC's). The studied cells were Risø 2 G and 2.5 G. The former consists of a LSM:YSZ composite cathode, while the latter consists of a LSCF:CGO composite cathode on a CGO protection layer...

  15. A computational framework for influenza antigenic cartography.

    Directory of Open Access Journals (Sweden)

    Zhipeng Cai

    Full Text Available Influenza viruses have been responsible for large losses of lives around the world and continue to present a great public health challenge. Antigenic characterization based on hemagglutination inhibition (HI assay is one of the routine procedures for influenza vaccine strain selection. However, HI assay is only a crude experiment reflecting the antigenic correlations among testing antigens (viruses and reference antisera (antibodies. Moreover, antigenic characterization is usually based on more than one HI dataset. The combination of multiple datasets results in an incomplete HI matrix with many unobserved entries. This paper proposes a new computational framework for constructing an influenza antigenic cartography from this incomplete matrix, which we refer to as Matrix Completion-Multidimensional Scaling (MC-MDS. In this approach, we first reconstruct the HI matrices with viruses and antibodies using low-rank matrix completion, and then generate the two-dimensional antigenic cartography using multidimensional scaling. Moreover, for influenza HI tables with herd immunity effect (such as those from Human influenza viruses, we propose a temporal model to reduce the inherent temporal bias of HI tables caused by herd immunity. By applying our method in HI datasets containing H3N2 influenza A viruses isolated from 1968 to 2003, we identified eleven clusters of antigenic variants, representing all major antigenic drift events in these 36 years. Our results showed that both the completed HI matrix and the antigenic cartography obtained via MC-MDS are useful in identifying influenza antigenic variants and thus can be used to facilitate influenza vaccine strain selection. The webserver is available at http://sysbio.cvm.msstate.edu/AntigenMap.

  16. A computational framework for influenza antigenic cartography.

    Science.gov (United States)

    Cai, Zhipeng; Zhang, Tong; Wan, Xiu-Feng

    2010-10-07

    Influenza viruses have been responsible for large losses of lives around the world and continue to present a great public health challenge. Antigenic characterization based on hemagglutination inhibition (HI) assay is one of the routine procedures for influenza vaccine strain selection. However, HI assay is only a crude experiment reflecting the antigenic correlations among testing antigens (viruses) and reference antisera (antibodies). Moreover, antigenic characterization is usually based on more than one HI dataset. The combination of multiple datasets results in an incomplete HI matrix with many unobserved entries. This paper proposes a new computational framework for constructing an influenza antigenic cartography from this incomplete matrix, which we refer to as Matrix Completion-Multidimensional Scaling (MC-MDS). In this approach, we first reconstruct the HI matrices with viruses and antibodies using low-rank matrix completion, and then generate the two-dimensional antigenic cartography using multidimensional scaling. Moreover, for influenza HI tables with herd immunity effect (such as those from Human influenza viruses), we propose a temporal model to reduce the inherent temporal bias of HI tables caused by herd immunity. By applying our method in HI datasets containing H3N2 influenza A viruses isolated from 1968 to 2003, we identified eleven clusters of antigenic variants, representing all major antigenic drift events in these 36 years. Our results showed that both the completed HI matrix and the antigenic cartography obtained via MC-MDS are useful in identifying influenza antigenic variants and thus can be used to facilitate influenza vaccine strain selection. The webserver is available at http://sysbio.cvm.msstate.edu/AntigenMap.

  17. Early stage beneficial effects of cathodic protection in concrete structures

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.; Neeft, E.A.C.; Stoop, B.T.J.

    2010-01-01

    Over the last 25 years, cathodic protection (CP) of reinforced concrete structures suffering from chloride induced reinforcement corrosion has shown to be successful and durable. CP current causes steel polarisation, electrochemical reactions and ion transport in the concrete. CP systems are designe

  18. FEM-models of cathodic protection systems for concrete structures

    NARCIS (Netherlands)

    Bertolini, L.; Lollini, F.; Redaelli, E.; Polder, R.B.; Peelen, W.H.A.

    2008-01-01

    A significant number of reinforced concrete structures shows deterioration due to the reinforcement corrosion and requires interventions to guarantee their residual service life. A wide range of maintenance options is available, among which cathodic protection (CP) has been found to be a successful

  19. Advanced numerical design for economical cathodic protection for concrete structures

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.

    2008-01-01

    Concrete structures under aggressive load may suffer chloride induced reinforcement corrosion, in particular with increasing age. Due to high monetary and societal cost (non-availability), replacement is often undesirable. Durable repair is necessary, e.g. by Cathodic Protection (CP). CP involves an

  20. Cathodic protection of RC structures - Far more than bridge decks

    NARCIS (Netherlands)

    Nerland, O.C.; Polder, R.B.

    2002-01-01

    When the first trials with Cathodic Protection (CP) on reinforced concrete (RC) structures were carried out nearly 30 years ago the main aim was treating steel in bridge decks, suffering from chloride induced corrosion. Various types of anode systems (conductive asphalt, conductive mortars, carbon f

  1. Enhancement of Platinum Cathode Catalysis by Addition of Transition Metals

    Science.gov (United States)

    Duong, Hung Tuan

    2009-01-01

    The sluggish kinetics of oxygen reduction reaction (ORR) contributes significantly to the loss of cathode overpotential in fuel cells, thus requiring high loadings of platinum (Pt), which is an expensive metal with limited supply. However, Pt and Pt-based alloys are still the best available electrocatalysts for ORR thus far. The research presented…

  2. Multichannel discharge between jet electrolyte cathode and jet electrolyte anode

    NARCIS (Netherlands)

    Shakirova, E. F.; Gaitsin, Al. F.; Son, E. E.

    2011-01-01

    We present the results of an experimental study of multichannel discharge between a jet electrolyte cathode and jet electrolyte anode within a wide range of parameters. We pioneer the reveal of the burning particularities and characteristics of multichannel discharge with jet electrolyte and droplet

  3. Anodic or cathodic motor cortex stimulation for pain?

    NARCIS (Netherlands)

    Holsheimer, J.; Manola, L.

    2006-01-01

    Objective. In motor cortex stimulation (MCS) for central and trigeminal pain Resume leads are placed epidurally over the motor and sensory cortex. Several bipolar combinations are used to identify the cortical target corresponding to the painful body segment. The cathode giving the largest motor r

  4. Cathode Strip Chambers (CSC) Sag Measurements and Predictions

    CERN Document Server

    Kriesel, K; Loveless, D

    1997-01-01

    We describe the measurements of sag on P1A 2 layer prototype Cathode Strip Chamber and compare the results with calculated values. Using this information we predict the sag of P1 6-layer chamber with the present design for the aluminium frame, and compare this value to measured sag.

  5. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS...

  6. Ningbo is Becoming a New Concentration Ground of Copper Cathode

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>This year witnessed significant slowdown in transactions in China’s copper market;however Ningbo’s copper cathode transaction bucked the trend to record profit.The reporter yesterday learned from the Ningbo Commodity Exchange that in the first quarter,this commodity exchange fulfilled delivery of16700 tonnes,recording a robust growth of

  7. Long-Term Stability of LSM-YSZ Based Cathodes

    DEFF Research Database (Denmark)

    Baqué, Laura; Jørgensen, Peter Stanley; Hansen, Karin Vels

    2013-01-01

    A transmission line based model was successfully applied to study the ageing effect in LSM-YSZ cathodes after being exposed to humidified air at 900 °C for up to 3000 h. A decrease in the YSZ conductivity was correlated with the formation of the less conducting monoclinic zirconia. The amount of La...

  8. The Cathode Strip Chamber Data Acquisition System for CMS

    CERN Document Server

    Bylsma, B G; Gilmore, J R; Gu, J H; Ling, T Y

    2007-01-01

    The Cathode Strip Chamber (CSC) [1] Data Acquisition (DAQ) system for the CMS [2] experiment at the LHC [3] will be described. The CSC system is large, consisting of 218K cathode channels and 183K anode channels. This leads to a substantial data rate of ~1.5GByte/s at LHC design luminosity (1034cm-2s-1) and the CMS first level trigger (L1A) rate of 100KHz. The DAQ system consists of three parts. The first part is on-chamber Cathode Front End Boards (CFEB)[4], which amplify, shape, store, and digitise chamber cathode signals, and Anode Front End Boards (AFEB)[5], which amplify, shape and discriminate chamber anode signals. The second part is the Peripheral Crate Data Acquisition Motherboards (DAQMB), which control the onchamber electronics and the readout of the chamber. The third part is the off-detector DAQ interface boards, which perform real time error checking, electronics reset requests and data concentration. It passes the resulting data to a CSC local DAQ farm, as well as CMS main DAQ [6]. All electron...

  9. Durability and Performance of High Performance Infiltration Cathodes

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Hjalmarsson, Per

    2013-01-01

    The performance and durability of solid oxide fuel cell (SOFC) cathodes consisting of a porous Ce0.9Gd0.1O1.95 (CGO) infiltrated with nitrates corresponding to the nominal compositions La0.6Sr0.4Co1.05O3-δ (LSC), LaCoO3-δ (LC), and Co3O4 are discussed. At 600°C, the polarization resistance, Rp......, varied as: LSC (0.062Ωcm2)cathode was found to depend on the infiltrate firing temperature and is suggested to originate...... of the infiltrate but also from a better surface exchange property. A 450h test of an LSC-infiltrated CGO cathode showed an Rp with final degradation rate of only 11mΩcm2kh-1. An SOFC with an LSC-infiltrated CGO cathode tested for 1,500h at 700°C and 0.5Acm-2 (60% fuel, 20% air utilization) revealed no measurable...

  10. Cathodic Arcs From Fractal Spots to Energetic Condensation

    CERN Document Server

    Anders, Andre

    2009-01-01

    Emphasizes the fractal character of cathode spots, and describes strongly fluctuating plasma properties such as the presence of multiply charged ions that move with supersonic velocity. This book also deals with issues, such as arc source construction, and macroparticle removal. It is intended for scientists, practitioners, and students alike

  11. Abrasive-assisted Nickel Electroforming Process with Moving Cathode

    Science.gov (United States)

    REN, Jianhua; ZHU, Zengwei; XIA, Chunqiu; QU, Ningsong; ZHU, Di

    2017-03-01

    In traditional electroforming process for revolving parts with complex profiles, the drawbacks on surface of deposits, such as pinholes and nodules, will lead to varying physical and mechanical properties on different parts of electroformed components. To solve the problem, compositely moving cathode is employed in abrasive-assisted electroforming of revolving parts with complicated profiles. The cathode translates and rotates simultaneously to achieve uniform friction effect on deposits without drawbacks. The influences of current density and translation speed on the microstructure and properties of the electroformed nickel layers are investigated. It is found that abrasive-assisted electroforming with compound cathode motion can effectively remove the pinholes and nodules, positively affect the crystal nucleation, and refine the grains of layer. The increase of current density will lead to coarse microstructure and lower micro hardness, from 325 HV down to 189 HV. While, faster translational linear speed produces better surface quality and higher micro hardness, from 236 HV up to 283 HV. The weld-ability of the electroformed layers are also studied through the metallurgical analysis of welded joints between nickel layer and 304 stainless steel. The electrodeposited nickel layer shows fine performance in welding. The novel compound motion of cathode promotes the mechanical properties and refines the microstructure of deposited layer.

  12. Degradation Studies on LiFePO4 cathode

    DEFF Research Database (Denmark)

    Scipioni, Roberto; Jørgensen, Peter Stanley; Hjelm, Johan

    2015-01-01

    In this paper we examine a laboratory LiFePO4 (LFP) cathode and propose a simple model that predicts the electrode capacity as function of C-rate, number of cycles and calendar time. Microcracks were found in Li1-xFePO4 particles in a degraded LFP electrode and low-acceleration voltage (1 kV) FIB...

  13. Readout Electronics of the ATLAS Muon Cathode Strip Chambers

    CERN Document Server

    Gough Eschrich, I

    2008-01-01

    The ATLAS muon spectrometer employs cathode strip chambers (CSC) to measure high momentum muons in the forward regions (2.0 < | | < 2.7). Due to the severe radiation levels expected in this environment, the on-detector electronics are limited to amplifying and digitizing the signal while sparsification, event building and other tasks are performed off-detector.

  14. Readout Electronics of the ATLAS Muon Cathode Strip Chambers

    CERN Document Server

    Gough Eschrich, I

    2008-01-01

    The ATLAS muon spectrometer employs cathode strip chambers (CSC) to measure high momentum muons in the forward regions $(2.0 < |eta| < 2.7)$. Due to the severe radiation levels expected in this environment, the on-detector electronics are limited to amplifying and digitizing the signal while sparsification, event building and other tasks are performed off-detector.

  15. Impregnation of LSM Based Cathodes for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Højberg, Jonathan; Søgaard, Martin

    2011-01-01

    Composites cathodes consisting of strontium doped lanthanum manganite (LSM) and yttria stabilized zirconia have been impregnated with the nitrates corresponding to the nominal compositions: La0.75Sr0.25Mn1.05O3 +/-delta (LSM25), Ce0.8Sm0.2O2 (SDC) and a combination of both (dual). The latter perf...

  16. Engineering analyses of large precision cathode strip chambers for GEM

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, J.A.; Belser, F.C.; Pratuch, S.M.; Wuest, C.R. [Lawrence Livermore National Lab., CA (United States); Mitselmakher, G. [Superconducting Super Collider Lab., Dallas, TX (United States); Gordeev, A. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Johnson, C.V. [Lawrence Livermore National Lab., CA (United States)]|[Superconducting Super Collider Lab., Dallas, TX (United States); Polychronakos, V.A. [Brookhaven National Lab., Upton, NY (United States); Golutvin, I.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    1993-10-21

    Structural analyses of large precision cathode strip chambers performed up to the date of this publication are documented. Mechanical property data for typical chamber materials are included. This information, originally intended to be an appendix to the {open_quotes}CSC Structural Design Bible,{close_quotes} is presented as a guide for future designers of large chambers.

  17. Interactions of alkali metals and electrolyte with cathode carbons

    Energy Technology Data Exchange (ETDEWEB)

    Naas, Tyke

    1997-12-31

    The Hall-Heroult process for electrolytic reduction of alumina has been the only commercial process for production of primary aluminium. The process runs at high temperature and it is important to minimize the energy consumption. To save energy it is desirable to reduce the operating temperature. This can be achieved by adding suitable additives such as LiF or KF to the cryolitic electrolyte. This may conflict with the objective of extending the lifetime of the cathode linings of the cell as much as possible. The thesis investigates this possibility and the nature of the interactions involved. It supports the hypothesis that LiF-additions to the Hall-Heroult cell electrolyte is beneficial to the carbon cathode performance because the diminished sodium activity reduces the sodium induced stresses during the initial period of electrolysis. The use of KF as an additive is more dangerous, but the results indicate that additions up to 5% KF may be tolerated in acidic melts with semigraphitic or graphitic cathodes with little risk of cathode problems. 153 refs., 94 figs., 30 tabs.

  18. The fractal nature of vacuum arc cathode spots

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2005-05-27

    Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f {sup 2}, where f is frequency, supporting a fractal spot model associated with Brownian motion.

  19. Individually addressable cathodes with integrated focusing stack or detectors

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Clarence E.; Baylor, Larry R.; Voelkl, Edgar; Simpson, Michael L.; Paulus, Michael J.; Lowndes, Douglas; Whealton, John; Whitson, John C.; Wilgen, John B.

    2005-07-12

    Systems and method are described for addressable field emission array (AFEA) chips. A plurality of individually addressable cathodes are integrated with an electrostatic focusing stack and/or a plurality of detectors on the addressable field emission array. The systems and methods provide advantages including the avoidance of space-charge blow-up.

  20. Antigen/Antibody Analyses in Leishmaniasis.

    Science.gov (United States)

    1983-09-01

    antibodies in human sera with antigens of protozoan parasites . It was found that enzyme substrate reactions had distinct advantages over typical...autoradiographic procedures. Analyses of various sera identified a number of antigens of protozoan parasites which may be useful in discriminating infections

  1. Virosomes for antigen and DNA delivery

    NARCIS (Netherlands)

    Daemen, T; de Mare, A; Bungener, L; de Jonge, J; Huckriede, A; Wilschut, J

    2005-01-01

    Specific targeting and delivery as well as the display of antigens on the surface of professional antigen-presenting cells (APCs) are key issues in the design and development of new-generation vaccines aimed at the induction of both humoral and cell-mediated immunity. Prophylactic vaccination agains

  2. Lithium-ferrate-based cathodes for molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lanagan, M.T.; Bloom, I.; Kaun, T.D. [Argonne National Lab., IL (United States)] [and others

    1996-12-31

    Argonne National Laboratory is developing advanced cathodes for pressurized operation of the molten carbonate fuel cell (MCFC) at {approximately}650{degrees}C. To be economically viable for stationary power generation, molten carbonate fuel cells must have lifetimes of more than 25,000 h while exhibiting superior cell performance. In the present technology, lithiated NiO is used as the cathode. Over the lifetime of the cell, however, N{sup 2+} ions tend to transport to the anode, where they are reduced to metallic Ni. With increased CO{sub 2} partial pressure, the transport of Ni increases because of the increased solubility of NiO in the carbonate electrolyte. Although this process is slow in MCFCs operated at 1 atm and a low CO{sub 2} partial pressure (about 0.1 atm), transport of nickel to the anode may be excessive at a higher pressure (e.g., 3 atm) and a high CO{sub 2} partial pressure (e.g., about 0.3 arm). This transport is expected to lead eventually to poor MCFC performance and/or short circuiting. Several alternative cathode compositions have been explored to reduce cathode solubility in the molten salt electrolyte. For example, LiCoO{sub 2} has been studied extensively as a potential cathode material. The LiCoO{sub 2} cathode has a low resistivity, about 10-cm, and can be used as a direct substitute for NiO. Argonne is developing advanced cathodes based on lithium ferrate (LiFeO{sub 2}), which is attractive because of its very low solubility in the molten (Li,K){sub 2}CO{sub 3} electrolyte. Because of its high resistivity (about 3000-cm), however, LiFeO{sub 2} cannot be used as a direct substitute for NiO. Cation substitution is, therefore, necessary to decrease resistivity. We determined the effect of cation substitution on the resistivity and deformation of LiFeO{sub 2}. The substituents were chosen because their respective oxides as well as LiFeO{sub 2} crystallize with the rock-salt structure.

  3. Protein antigen delivery by gene gun-mediated epidermal antigen incorporation (EAI).

    Science.gov (United States)

    Scheiblhofer, Sandra; Ritter, Uwe; Thalhamer, Josef; Weiss, Richard

    2013-01-01

    The gene gun technology can not only be employed for efficient transfer of gene vaccines into upper layers of the skin, but also for application of protein antigens. As a tissue rich in professional antigen presenting cells, the skin represents an attractive target for immunizations. In this chapter we present a method for delivery of the model antigen ovalbumin into the skin of mice termed epidermal antigen incorporation and describe in detail how antigen-specific proliferation in draining lymph nodes can be followed by flow cytometry.

  4. Tumor antigens as related to pancreatic cancer.

    Science.gov (United States)

    Chu, T M; Holyoke, E D; Douglass, H O

    1980-01-01

    Data are presented suggesting the presence of pancreas tumor-associated antigens. Slow progress has been made during the past few years in the identification of pancreatic tumor antigens that may be of clinical usefulness and it seems unlikely that many of the practical problems now being faced in identification and isolation of these antigens and in development of a specific, sensitive assay will be solved by conventional immunochemical approaches. The study of antigen and/or antibody purified from immune complexes in the host and the application of leukocyte adherence inhibition techniques to immunodiagnosis of pancreatic cancer are among the new approaches that may provide effective alternatives in the study of pancreatic tumor antigens.

  5. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.

    Science.gov (United States)

    Liang, Zheng; Zheng, Guangyuan; Li, Weiyang; Seh, Zhi Wei; Yao, Hongbin; Yan, Kai; Kong, Desheng; Cui, Yi

    2014-05-27

    Sulfur is a cathode material for lithium-ion batteries with a high specific capacity of 1675 mAh/g. The rapid capacity fading, however, presents a significant challenge for the practical application of sulfur cathodes. Two major approaches that have been developed to improve the sulfur cathode performance include (a) fabricating nanostructured conductive matrix to physically encapsulate sulfur and (b) engineering chemical modification to enhance binding with polysulfides and, thus, to reduce their dissolution. Here, we report a three-dimensional (3D) electrode structure to achieve both sulfur physical encapsulation and polysulfides binding simultaneously. The electrode is based on hydrogen reduced TiO2 with an inverse opal structure that is highly conductive and robust toward electrochemical cycling. The relatively enclosed 3D structure provides an ideal architecture for sulfur and polysulfides confinement. The openings at the top surface allow sulfur infusion into the inverse opal structure. In addition, chemical tuning of the TiO2 composition through hydrogen reduction was shown to enhance the specific capacity and cyclability of the cathode. With such TiO2 encapsulated sulfur structure, the sulfur cathode could deliver a high specific capacity of ∼1100 mAh/g in the beginning, with a reversible capacity of ∼890 mAh/g after 200 cycles of charge/discharge at a C/5 rate. The Coulombic efficiency was also maintained at around 99.5% during cycling. The results showed that inverse opal structure of hydrogen reduced TiO2 represents an effective strategy in improving lithium sulfur batteries performance.

  6. Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells

    Science.gov (United States)

    Zhu, Yimin; Zelenay, Piotr

    2006-03-21

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  7. Improvement of the Output Characteristics of a Relativistic Magnetron using a Small Diameter Cathode Surrounded by a Transparent Cathode

    Science.gov (United States)

    2006-04-01

    frequency Ve "t Vph in the total interaction space when the gap o, = dv,/dr, which is approximately equal to frequency between electrodes is narrow [1, 2...techniques of factors can promote synchronism in the wider interaction cathode [7] and magnetic [8] priming alone. space: i) stronger space charge and

  8. Cathodic protection of reinforced concrete structures in the Netherlands - Experience and developments: Cathodic protection of concrete - 10 years experience

    NARCIS (Netherlands)

    Polder, R.B.

    1998-01-01

    Cathodic protection (CP) of reinforcing steel in concrete structures has been used successfully for over 20 years. CP is able to stop corrosion in a reliable and economical way where chloride contamination has caused reinforcement corrosion and subsequent concrete damage. To new structures where cor

  9. Effect of thermionic cathode heating current self-magnetic field on gaseous plasma generator characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lopatin, I. V., E-mail: lopatin@opee.hcei.tsc.ru; Akhmadeev, Yu. H.; Koval, N. N. [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation)

    2015-10-15

    The performance capabilities of the PINK, a plasma generator with a thermionic cathode mounted in the cavity of a hollow cathode, depending for its operation on a non-self-sustained low-pressure gas discharge have been investigated. It has been shown that when a single-filament tungsten cathode 2 mm in diameter is used and the peak filament current is equal to or higher than 100 A, the self-magnetic field of the filament current significantly affects the discharge current and voltage waveforms. This effect is due to changes in the time and space distributions of the emission current density from the hot cathode. When the electron mean free path is close to the characteristic dimensions of the thermionic cathode, the synthesized plasma density distribution is nonuniform and the cathode is etched nonuniformly. The cathode lifetime in this case is 8–12 h. Using a cathode consisting of several parallel-connected tungsten filaments ∼0.8 mm in diameter moderates the effect of the self-magnetic field of the filament current and nearly doubles the cathode lifetime. The use of this type of cathode together with a discharge igniting electrode reduces the minimum operating pressure in the plasma generator to about one third of that required for the generator operation with a single-filament cathode (to 0.04 Pa)

  10. Joule heat generation in thermionic cathodes of high-pressure arc discharges

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M. S.; Cunha, M. D. [Departamento de Fisica, CCCEE, Universidade da Madeira, Largo do Municipio, 9000 Funchal (Portugal)

    2013-02-14

    The nonlinear surface heating model of plasma-cathode interaction in high-pressure arcs is extended to take into account the Joule effect inside the cathode body. Calculation results are given for different modes of current transfer to tungsten cathodes of different configurations in argon plasmas of atmospheric or higher pressures. Special attention is paid to analysis of energy balances of the cathode and the near-cathode plasma layer. In all the cases, the variation of potential inside the cathode is much smaller than the near-cathode voltage drop. However, this variation can be comparable to the volt equivalent of the energy flux from the plasma to the cathode and then the Joule effect is essential. Such is the case of the diffuse and mixed modes on rod cathodes at high currents, where the Joule heating causes a dramatic change of thermal and electrical regimes of the cathode. The Joule heating has virtually no effect over characteristics of spots on rod and infinite planar cathodes.

  11. Enhanced catalytic activity and inhibited biofouling of cathode in microbial fuel cells through controlling hydrophilic property

    Science.gov (United States)

    Li, Da; Liu, Jia; Wang, Haiman; Qu, Youpeng; Zhang, Jie; Feng, Yujie

    2016-11-01

    The hydrophilicity of activated carbon cathode directly determines the distribution of three-phase interfaces where oxygen reduction occurs. In this study, activated carbon cathodes are fabricated by using hydrophobic polytetrafluoroethylene (PTFE) and amphiphilic LA132 at various weight ratio to investigate the effect of hydrophilic property on cathode performance. Contact angle tests confirm the positive impact of LA132 content on hydrophilicity. Cathode with 67 wt% LA132 content shows the highest electrochemical activity as exchange current density increases by 71% and charge transfer resistance declines by 44.6% compared to that of PTFE cathode, probably due to the extended reaction interfaces by optimal hydrophilicity of cathode so that oxygen reduction is facilitated. As a result, the highest power density of 1171 ± 71 mW m-2 is obtained which is 14% higher than PTFE cathode. In addition to the hydrophilicity, this cathode had more negative charged surface of catalyst layer, therefore the protein content of cathodic biofilm decreased by 47.5%, indicating the effective bacterial inhibition when 67 wt% LA132 is used. This study shows that the catalytic activity of cathode is improved by controlling proper hydrophilicity of cathode, and that biofilm can be reduced by increasing hydrophilicity and lowering the surface potential.

  12. Mercury vapor hollow cathode component studies. [emissive materials for ion thruster requirements

    Science.gov (United States)

    Zuccaro, D. E.

    1973-01-01

    An experimental study of starting and operating characteristics of conventional hollow cathodes and of hollow cathodes without alkaline earth emissive materials demonstrated that the emissive mix is essential to obtain the desired cathode operation. Loss of the emissive mix by evaporation and chemical reaction was measured. New insert designs consisting of emissive mix supported on nickel and of barium impregnated porous tungsten were studied. Cathodes with a modified orifice geometry operated in a low voltage, 'spot' mode over a broad range of discharge current. Thermal degradation tests on cathode heaters showed the flame sprayed SERT II type to be the most durable at high temperatures. Thermal shock was observed to be a significant factor in limiting cathode heater life. A cathode having a barium impregnated porous tungsten tip and a heater which is potted in sintered alumina was found to have favorable operating characteristics.

  13. Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application

    Energy Technology Data Exchange (ETDEWEB)

    Barik, R.K.; Bera, A. [School of Electrical Engineering and Computer Science, Seoul National University, Seoul (Korea, Republic of); Raju, R.S. [Central Electronics Engineering Research Institute (CEERI), Rajasthan (India); Tanwar, A.K.; Baek, I.K.; Min, S.H.; Kwon, O.J.; Sattorov, M.A. [Department of Physics and Astronomy, Center for THz-Bio Application Systems, and Seoul-Teracom Inc., Seoul National University, Seoul (Korea, Republic of); Lee, K.W. [LIG Nex1, Seoul (Korea, Republic of); Park, G.-S., E-mail: gunsik@snu.ac.kr [School of Electrical Engineering and Computer Science, Seoul National University, Seoul (Korea, Republic of); Department of Physics and Astronomy, Center for THz-Bio Application Systems, and Seoul-Teracom Inc., Seoul National University, Seoul (Korea, Republic of); Advanced Institute of Convergence Technology, Suwon-si, Gyeonggi-do (Korea, Republic of)

    2013-07-01

    High power terahertz vacuum electron devices demand high current density and uniform emission dispenser cathode. It was found that the coating of noble metals e.g., Os, Ir, and Re on the surface of tungsten dispenser cathodes enhances the emission capabilities and uniformity. Hence metal coated cathode might be the best candidate for terahertz devices applications. In this study, ternary-alloy-film cathode (2Os:2Re:1 W) and Os coated cathode have been developed and the results are presented. The cathodes made out of this alloy coating showed 1.5 times higher emission and 0.02 eV emission uniformity as compared to those of simply Os coated cathodes which can be used in terahertz devices application.

  14. Electrochemical generation of volatile lead species using a cadmium cathode: Comparison with graphite, glassy carbon and platinum cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Saenz, Maria; Fernandez, Lenys, E-mail: lfernandez@usb.ve; Dominguez, Jose; Alvarado, Jose

    2012-05-15

    Working electrodes made out of pyrolytic graphite, glassy carbon, platinum and cadmium were compared for the electrochemical generation of volatile lead species. The same electrolytic cell, using each of the different working electrodes was coupled to an atomic absorption spectrometer and the experimental conditions were optimized in each case, using a univariate approach, to produce the maximum possible amount of volatile lead species. The experiments were focused on the variation of cathode hydrogen overvoltage by the application of a constant current during analysis. Under optimum conditions the performance of the electrochemical hydride generator cell should depend on the cathode material selected due to the different hydrogen overpotential of each material. The lead absorbance signal was taken as a measure of the efficiency of volatile lead species production. Best results were obtained using the Cd cathode, due to its relatively highest hydrogen overpotential, a carrier gas (Ar) flow rate of 55 mL min{sup -1} an electrolytic current of 0.8 A and a catholyte (HCl) concentration 0.05 mol L{sup -1}. The analytical figures of merit of the method using the Cd electrode were evaluated and the susceptibility of the method to interferences was assessed by its application to the determination of trace amounts of lead in the presence of the most significant interferents. The calibration curve was linear between 0.5 and 15 {mu}g L{sup -1} Pb. Detection limits and characteristic mass values were 0.21 {mu}g L{sup -1} and 0.26 {mu}g L{sup -1} respectively. A bovine liver standard reference material and a spiked urine sample were analyzed to check accuracy. - Highlights: Black-Right-Pointing-Pointer Cadmium cathode for the electrochemical generation (ECHG) of lead volatile species. Black-Right-Pointing-Pointer Cadmium cathode for the ECHG of lead hydrides improve merit figures. Black-Right-Pointing-Pointer The ECHG of the volatile species depends on the hydrogen

  15. Using Multispectral Imaging to Measure Temperature Profiles and Emissivity of Large Thermionic Dispenser, Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    D.F. Simmons; C.M. Fortgang; D.B. Holtkamp

    2001-09-01

    Thermionic dispenser cathodes are widely used in modern high-power microwave tubes. Use of these cathodes has led to significant improvement in performance. In recent years these cathodes have been used in electron linear accelerators (LINACs), particularly in induction LINACs, such as the Experimental Test Accelerator at Lawrence Livermore National Laboratory and the Relativistic Test Accelerator at Lawrence Berkeley National Laboratory. For induction LINACs, the thermionic dispenser cathode provides greater reproducibility, longer pulse lengths, and lower emittance beams than does a field emission cathode. Los Alamos National Laboratory is fabricating a dual-axis X-ray radiography machine called dual-axis radiograph hydrodynamic test (DARHT). The second axis of DARHT consists of a 2-kA, 20-MeV induction LINAC that uses a 3.2-MeV electron gun with a tungsten thermionic-dispenser cathode. Typically the DARHT cathode current density is 10 A/cm{sup 2} at 1050 C. Under these conditions current density is space-charge limited, which is desirable since current density is independent of temperature. At lower temperature (the temperature-limited regime) there are variations in the local current density due to a nonuniform temperature profile. To obtain the desired uniform current density associated with space-charge limited operation, the coolest area on the cathode must be at a sufficiently high temperature so that the emission is space-charge limited. Consequently, the rest of the cathode is emitting at the same space-charge-limited current density but is at a higher temperature than necessary. Because cathode lifetime is such a strong function of cathode temperature, there is a severe penalty for nonuniformity in the cathode temperature. For example, a temperature increase of 50 C means cathode lifetime will decrease by a factor of at least four. Therefore, we are motivated to measure the temperature profiles of our large-area cathodes.

  16. Development of novel cathodes for high energy density lithium batteries

    Science.gov (United States)

    Bhargav, Amruth

    Lithium based batteries have become ubiquitous with our everyday life. They have propelled a generation of smart personal electronics and electric transport. Their use is now percolating to various fields as a source of energy to facilitate the operation of devices from nanoscale to mega scale. This need for a portable energy source has led to tremendous scientific interest in this field to develop electrochemical devices like batteries with higher capacities, longer cycle life and increased safety at a low cost. To this end, the research presented in this thesis focuses on two emerging and promising technologies called lithium-oxygen (Li-O2) and lithium-sulfur (Li-S) batteries. These batteries can offer an order of magnitude higher capacities through cheap, environmentally safe and abundant elements namely oxygen and sulfur. The first work introduces the concept of closed system lithium-oxygen batteries wherein the cell contains the discharge product of Li-O2 batteries namely, lithium peroxide (Li2O2) as the starting active material. The reversibility of this system is analyzed along with its rate performance. The possible use of such a cathode in a full cell is explored. Also, this concept is used to verify if all the lithium can be extracted from the cathode in the first charge. In the following work, lithium peroxide is chemically synthesized and deposited in a carbon nanofiber matrix. This forms a free standing cathode that shows high reversibility. It can be cycled up to 20 times and while using capacity control protocol, a cycle life of 50 is obtained. The cause of cell degradation and failure is also analyzed. In the work on full cell lithium-sulfur system, a novel electrolyte is developed that can support reversible lithium insertion and extraction from a graphite anode. A method to deposit solid lithium polysulfide is developed for the cathode. Coupling a lithiated graphite anode with the cathode using the new electrolyte yields a full cell whose

  17. Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation

    Science.gov (United States)

    Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.; Montaño, Sherwin P.; Kurosawa, Kohei; Zheng, Yupeng; Akin, Louesa R.; Świst-Rosowska, Kalina M.; Grzybowski, Adrian T.; Koide, Akiko; Krajewski, Krzysztof; Strahl, Brian D.; Kelleher, Neil L.; Ruthenburg, Alexander J.; Koide, Shohei

    2016-01-01

    Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. This “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies. PMID:26862167

  18. Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells

    CERN Document Server

    Fu, Y; Bertei, A; Qi, C; Mohanram, A; Pietras, J D; Bazant, M Z

    2014-01-01

    A general physics-based model is developed for heterogeneous electrocatalysis in porous electrodes and used to predict and interpret the impedance of solid oxide fuel cells. This model describes the coupled processes of oxygen gas dissociative adsorption and surface diffusion of the oxygen intermediate to the triple phase boundary, where charge transfer occurs. The model accurately captures the Gerischer-like frequency dependence and the oxygen partial pressure dependence of the impedance of symmetric cathode cells. Digital image analysis of the microstructure of the cathode functional layer in four different cells directly confirms the predicted connection between geometrical properties and the impedance response. As in classical catalysis, the electrocatalytic activity is controlled by an effective Thiele modulus, which is the ratio of the surface diffusion length (mean distance from an adsorption site to the triple phase boundary) to the surface boundary layer length (square root of surface diffusivity div...

  19. The Impact of Strong Cathodic Polarization on SOC Electrolyte Materials

    DEFF Research Database (Denmark)

    Kreka, Kosova; Hansen, Karin Vels; Jacobsen, Torben

    2016-01-01

    of impurities at the grain boundaries, electrode poisoning, delamination or cracks of the electrolyte etc., have been observed in cells operated at such conditions, lowering the lifetime of the cell1,2. High polarizations are observed at the electrolyte/cathode interface of an electrolysis cell operated at high...... current density. In case of a cell voltage above 1.6 V, p-type and n-type electronic conductivity are often observed at the anode and cathode respectively3. Hence, a considerable part of the current is lost as leakage through the electrolyte, thus lowering the efficiency of the cell considerably.......One of the most promising reversible energy conversion/storage technologies is that of Solid Oxide Fuel/Electrolysis Cells (SOFC/SOEC, collectively termed SOC). Long term durability is typically required for such devises to become economically feasible, hence considerable amount of work has...

  20. Excimer Emission from Direct Current Microhollow Cathode Discharges

    Science.gov (United States)

    Stark, R. H.; El-Habachi, A.; Shi, W.; Schoenbach, K. H.

    1997-10-01

    Reducing the dimensions of the cathode hole to less than 200 micrometer has allowed us to operate argon discharges in a hollow cathode discharge mode, dc, up to pressures of one atmosphere. Spectral measurements in the VUV have shown that the microdischarges are strong sources of argon excimer radiation at 128 nm. This points to a nonthermal electron energy distribution where a considerable part of the electrons have energies exceeding the ionization potential of argon. Whereas the discharges in argon were dc up to atmospheric pressure, discharges in xenon became unstable at pressures exceeding 300 Torr, and current spikes were observed. The xenon excimer emission at 172 nm, however, was found to increase, independent of the mode, dc or pulsed, when the pressure was increased to one atmosphere. The microdischarges have resistive current-voltage characteristics. This has allowed us to generate simple arrays of these discharges, with possible applications as flat panel excimer lamps.

  1. Performance Improvement of an Inhomogeneous Cathode by Infiltration

    DEFF Research Database (Denmark)

    Seyed-Vakili, S. V.; Graves, Christopher R.; Babaei, A.

    2017-01-01

    The performance of solid oxide fuel cells (SOFCs) is considerably influenced by the microstructure and chemical composition of cathode materials. Porous La0.85Sr0.15FeO3– Ce0.9Gd0.1O2 composite electrodes were infiltrated by La0.6Sr0.4CoO3 and La0.6Sr0.4FeO3. The effects of infiltration loading...... performance of the electrodes. The electrochemical results revealed that the polarization resistance of the cathodes significantly was decreased by infiltration from 2.59 to 0.034 Ω cm2 measured at 670 °C. The best electrode performance was achieved at a calcination temperature of 770 °C. It was also found...

  2. Surface Carbonization of Mo-La2O3 Cathode

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The carbonized structures of Mo-La2O3 cathode specimens have been investigated by means of FE SEM and XRD, respectively. The substructure of carbonized layer in the Mo-La2O3 cathode has been found for the first time. The results showed that the carbonized layer with uniform Mo2C was helpful to emission,while the demixing carbonized layer with a compact MoC outside layer was harmful to emission. The uniform Mo2C layer consists of coarse particles with lots of grain boundary crevices as well as holes arranging perpendic ular to the wire axle and up to surface, which was beneficial to the migration of activated rare-earth in activa tion and operating.

  3. Generalized Mechanism of Field Emission from Nanostructured Semiconductor Film Cathodes

    Science.gov (United States)

    Wang, Ru-Zhi; Zhao, Wei; Yan, Hui

    2017-03-01

    Considering the effect of both the buffer layer and substrate, a series of ultrathin multilayered structure cathodes (UTMC) is constructed to simulate the field emission (FE) process of nanostructured semiconductor film cathodes (NSFCs). We find a generalized FE mechanism of the NSFCs, in which there are three distinct FE modes with the change of the applied field. Our results clearly show significant differences of FE between conventional emitters and nanofilm emitters, which the non-Fowler-Nordheim characteristics and the resonant FE will be inevitable for NSFCs. Moreover, the controllable FE can be realized by fine-tuning the quantum structure of NSFCs. The generalized mechanism of NSFCs presented here may be particularly useful for design high-speed and high-frequency vacuum nano-electronic devices.

  4. Titanium Dioxide as a Cathode Material in a Dry Cell

    Directory of Open Access Journals (Sweden)

    Duncan ALOKO

    2007-09-01

    Full Text Available Titanium dioxide was proposed as an alternative cathode material in place of Manganesse (IV oxide. TiO2 was found to be highly polarized when in an electric field and its surface area of adsorption of solution determined to be 1070.32 m2/g. The adsorption of alkaline anions (i.e. SO42- , NO3-, Cl- and Br- were investigated. The anions were adsorbed between the layers of the cathode material thereby altering its surface texture for a better performance. Increase in concentration of the anions solution enhances greater electric surface charge. Thus, sulphate ion is having the best result as compared to other anions because of its highest electric charge and adsorption at 1M concentration of solution. This is in agreement with the relative position of ions in the electrochemical series in the decreasing order of electro- negativity as well as in the increasing order of preference for discharge.

  5. Pressurized air cathodes for enhanced stability and power generation by microbial fuel cells

    Science.gov (United States)

    He, Weihua; Yang, Wulin; Tian, Yushi; Zhu, Xiuping; Liu, Jia; Feng, Yujie; Logan, Bruce E.

    2016-11-01

    Large differences between the water and air pressure in microbial fuel cells (MFCs) can deform and damage cathodes. To avoid deformation, the cathode air pressure was controlled to balance pressure differences between the air and water. Raising the air pressures from 0 to 10 kPa at a set cathode potential of -0.3 V (versus Ag/AgCl) enhanced cathode performance by 17%, but pressures ≥25 kPa decreased current and resulted in air leakage into the solution. Matching the air pressure with the water pressure avoided cathode deformation and improved performance. The maximum power density increased by 15%, from 1070 ± 20 to 1230 ± 70 mW m-2, with balanced air and water pressures of 10-25 kPa. Oxygen partial pressures ≥12.5 kPa in the cathode compartment maintained the oxygen reduction rate to be within 92 ± 1% of that in ambient air. The use of pressurized air flow through the cathode compartments can enable closer spacing of the cathodes compared to passive gas transfer systems, which could make the reactor design more compact. The energy cost of pressurizing the cathodes was estimated to be smaller than the increase in power that resulted from the use of pressurized cathodes.

  6. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.

    Science.gov (United States)

    Butler, Caitlyn S; Nerenberg, Robert

    2010-05-01

    Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.

  7. Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Lu, Anhuai; Ding, Hongrui; Yan, Yunhua; Wang, Changqiu; Zen, Cuiping; Wang, Xin [The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Jin, Song [MWH Americas, 3665 JFK Parkway, Suite 206, Fort Collins, CO 80525 (United States); Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071 (United States)

    2009-07-15

    Cathodic reduction of hexavalent chromium (Cr(VI)) and simultaneous power generation were successfully achieved in a microbial fuel cell (MFC) containing a novel rutile-coated cathode. The selected rutile was previously characterized to be sensitive to visible light and capable of both non-photo- and photocatalysis. In the MFCs containing rutile-coated cathode, Cr(VI) was rapidly reduced in the cathode chamber in presence and absence of light irradiation; and the rate of Cr(VI) reduction under light irradiation was substantially higher than that in the dark. Under light irradiation, 97% of Cr(VI) (initial concentration 26 mg/L) was reduced within 26 h, which was 1.6 x faster than that in the dark controls in which only background non-photocatalysis occurred. The maximal potential generated under light irradiation was 0.80 vs. 0.55 V in the dark controls. These results indicate that photocatalysis at the rutile-coated cathode in the MFCs might have lowered the cathodic overpotential, and enhanced electron transfer from the cathode to Cr(VI) for its reduction. In addition, photoexcited electrons generated during the cathode photocatalysis might also have contributed to the higher Cr(VI) reduction rates when under light irradiation. This work assessed natural rutile as a novel cathodic catalyst for MFCs in power generation; particularly it extended the practical merits of conventional MFCs to cathodic reduction of environmental contaminants such as Cr(VI). (author)

  8. Antigen-specific memory B cell development.

    Science.gov (United States)

    McHeyzer-Williams, Louise J; McHeyzer-Williams, Michael G

    2005-01-01

    Helper T (Th) cell-regulated B cell immunity progresses in an ordered cascade of cellular development that culminates in the production of antigen-specific memory B cells. The recognition of peptide MHC class II complexes on activated antigen-presenting cells is critical for effective Th cell selection, clonal expansion, and effector Th cell function development (Phase I). Cognate effector Th cell-B cell interactions then promote the development of either short-lived plasma cells (PCs) or germinal centers (GCs) (Phase II). These GCs expand, diversify, and select high-affinity variants of antigen-specific B cells for entry into the long-lived memory B cell compartment (Phase III). Upon antigen rechallenge, memory B cells rapidly expand and differentiate into PCs under the cognate control of memory Th cells (Phase IV). We review the cellular and molecular regulators of this dynamic process with emphasis on the multiple memory B cell fates that develop in vivo.

  9. Platelet antigens and antibodies. Literature review

    Directory of Open Access Journals (Sweden)

    N. V. Mineeva

    2014-07-01

    Full Text Available Platelet antigens structure, role of platelet antibodies in the pathogenesis of various clinical conditions, characteristic of modern antibodies detection methods are presented in this article.

  10. Platelet antigens and antibodies. Literature review

    Directory of Open Access Journals (Sweden)

    N. V. Mineeva

    2013-01-01

    Full Text Available Platelet antigens structure, role of platelet antibodies in the pathogenesis of various clinical conditions, characteristic of modern antibodies detection methods are presented in this article.

  11. A miniature origami biofuel cell based on a consumed cathode.

    Science.gov (United States)

    Yu, You; Han, Yujie; Lou, Baohua; Zhang, Lingling; Han, Lei; Dong, Shaojun

    2016-11-10

    Considerable interest has been focused on miniature biofuel cells (BFCs) because of their portability and possibility to be implantable. Origami devices with hollow channels will provide novel insight into the assembly methods of miniature BFCs. Herein a miniature origami BFC has been fabricated from a MnO2-graphite flake consumed solid-state cathode. For further practical applications, miniature origami BFCs can directly generate energy from soft drinks.

  12. Porous nickel MCFC cathode coated by potentiostatically deposited cobalt oxide

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, M.J.; Gonzalez, T.; Daza, L. [Dpto. Energia, CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Mendoza, L.; Cassir, M. [Instituto de Catalisis y Petroleoquimica (CSIC), Campus Cantoblanco, 28049 Madrid (Spain)

    2006-10-06

    Cobalt oxide was deposited on porous nickel by an electrodeposition technique as precursor of a novel MCFC cathode. The behavior of this cathode in molten (Li{sub 0.52}Na{sub 0.48}){sub 2}CO{sub 3} eutectics at 650{sup o}C under an atmosphere of CO{sub 2}:air (30:70) was studied before and after 50h of exposure by different techniques. Before the exposure, the deposit of cobalt corresponded to a Co{sub 3}O{sub 4} thin layer of. This crystalline structure was identified by XRD and Raman spectroscopy. After its exposure in the eutectic melt a loss of cobalt was observed by XRD, Raman spectroscopy, XPS, EDS and ICP-AES. The change in the Co{sub 3}O{sub 4} structure into lithium-cobalt-nickel oxide (LiCo{sub 1-y}Ni{sub y}O{sub 2}) was observed by Raman spectroscopy. The SEM micrographs for Co{sub 3}O{sub 4}-coated porous nickel showed different angular shapes with respect to porous Ni. The nickel solubility for the coated porous nickel, measured by ICP-AES, decreased with respect to uncoated nickel. The Co{sub 3}O{sub 4}-coated porous nickel cathode showed, after its immersion in the molten carbonate melt, a similar porosity but a higher pore size. LiCo{sub 1-y}Ni{sub y}O{sub 2}-coated NiO offers interesting features which combine the properties of nickel, lithium and cobalt in molten carbonate. This could be a promising novel MCFC cathode material. (author)

  13. Plasma gun with coaxial powder feed and adjustable cathode

    Science.gov (United States)

    Zaplatynsky, Isidor (Inventor)

    1991-01-01

    An improved plasma gun coaxially injects particles of ceramic materials having high melting temperatures into the central portion of a plasma jet. This results in a more uniform and higher temperature and velocity distribution of the sprayed particles. The position of the cathode is adjustable to facilitate optimization of the performance of the gun wherein grains of the ceramic material are melted at lower power input levels.

  14. On the Emission Mechanism of Barium Containing Thermionic Cathodes

    Science.gov (United States)

    1991-03-27

    easily be transported to the emissions center. From the deposited activated material to the minimum work function, we estimate the size of 13 the emission...theories were not able to explain the electrospark phenomenon. Experiments show that electrosparkz are spurts carrying positively charged atoms" . A...cathode with good conductivity shouldn’t let out electrosparks , because there is no reason for them to be able to spurt out positively charged atom groups

  15. Formation of metal oxides by cathodic arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Anders, A.; Rubin, M.; Wang, Z.; Raoux, S.; Kong, F.; Brown, I.G.

    1995-03-01

    Metal oxide thin films are of interest for a number of applications. Cathodic arc deposition, an established, industrially applied technique for formation of nitrides (e.g. TiN), can also be used for metal oxide thin film formation. A cathodic arc plasma source with desired cathode material is operated in an oxygen atmosphere, and metal oxides of various stoichiometric composition can be formed on different substrates. We report here on a series of experiments on metal oxide formation by cathodic arc deposition for different applications. Black copper oxide has been deposited on ALS components to increase the radiative heat transfer between the parts. Various metal oxides such as tungsten oxide, niobium oxide, nickel oxide and vanadium oxide have been deposited on ITO glass to form electrochromic films for window applications. Tantalum oxide films are of interest for replacing polymer electrolytes. Optical waveguide structures can be formed by refractive index variation using oxide multilayers. We have synthesized multilayers of Al{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/AI{sub 2}O{sub 3}/Si as possible basic structures for passive optoelectronic integrated circuits, and Al{sub 2-x}Er{sub x}O{sub 3} thin films with a variable Er concentration which is a potential component layer for the production of active optoelectronic integrated devices such as amplifiers or lasers at a wavelength of 1.53 {mu}m. Aluminum and chromium oxide films have been deposited on a number of substrates to impart improved corrosion resistance at high temperature. Titanium sub-oxides which are electrically conductive and corrosion resistant and stable in a number of aggressive environments have been deposited on various substrates. These sub-oxides are of great interest for use in electrochemical cells.

  16. Research of Air Cathodes for Aluminum Air Batteries

    Science.gov (United States)

    2006-05-31

    Catalysts used in the existing cathodes include: platinum, silver, manganese and cobalt . Ruthenium is known for its catalytic ability and has received much...manganese, silver, cobalt , platinum, and ruthenium. The carbons used were Black Pearls 2000, proprietary carbons, Vulcan XC-72R, and Vapor Grown...discharge, the dissolved aluminate ion produced in this reaction precipitates out as crystalline hydrargillite (aluminum hydroxide): In addition to

  17. Cathodic Protection of Pipeline Using Distributed Control System

    OpenAIRE

    Gopalakrishnan Jayapalan; Ganga Agnihotri; D. M. Deshpande

    2014-01-01

    Distributed control system (DCS) is available in most of the compressor stations of cross-country pipeline systems. Programmable logic controller (PLC) is used in all the intermediate pigging (IP) stations/sectional valve (SV) stations to collect the field data and to control the remote actuated valves. This paper presents how DCS or PLC can be used for cathodic protection of gas pipelines. Virtual instrumentation (VI) software is used here for simulation and real-time implementation purpose....

  18. NOVEL "CATHODE-ON-MEMBRANE" VME PRESSURE SENSOR

    Institute of Scientific and Technical Information of China (English)

    Xia Shanhong; Tao Xinxin; Su Jie; Chen Shaofeng

    2001-01-01

    This article proposes a novel "cathode-on-membrane" vacuum microelectronic (VME)pressure sensor. Compared with conventional VME pressure sensors, the package process of the new structured sensor is easier to control, and therefore it enable greater potential of nass production and high productivity. The properties of the new sensor have been theoretically investigated by computer simulations; the practical structure has been designed and fabricated; and the package technique has been studied.

  19. Unusual Cathode Erosion Patterns Observed for Steered Arc Sources

    CERN Document Server

    Kolbeck, Jonathan

    2014-01-01

    A cathodic arc source with a magnetron-type magnetic field was investigated for stability, erosion, and compatibility with a linear macroparticle filter. Here we report about unusual arc spot erosion patterns, which were narrow (~ 2 mm) with periodic pits when operating in argon, and broad (~ 10 mm) with periodic groves and ridges when operating in an argon and oxygen mixtures. These observations can be correlated with the ignition probability for type 2 and type 1 arc spots, respectively.

  20. Self-pulsing of a micro thin cathode discharge

    CERN Document Server

    Gebhardt, Markus; Hemke, Torben; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2011-01-01

    Microplasmas operated at atmospheric pressure show a number of peculiar dynamic phenomena. One of these phenomena is self-pulsing, which is characterized by intrinsic pulsing behavior of a DC driven plasma discharge. This work focuses on the numerical simulation of self-pulsing in a micro thin cathode discharge operated in atmospheric pressure argon. By means of a hybrid plasma model we show self-pulsing of the discharge in the expected MHz frequency range and described its actual origin.

  1. ICCP cathodic protection of tanks with photovoltaic power supply

    Directory of Open Access Journals (Sweden)

    Janowski Mirosław

    2016-01-01

    Full Text Available Corrosion is the result of the electrochemical reaction between a metal or composite material usually having conducting current properties. Control of corrosion related defect is a very important problem for structural integrity in ground based structures. Cathodic protection (CP is a technique to protect metallic structures against corrosion in an aqueous environment, it is employed intense on the steel drains in oil and gas industry, specifically to protect underground tanks and pipelines. CP is commonly applied to a coated structure to provide corrosion control to areas where the coating may be damaged. It may be applied to existing structures to prolong their life. There are two types of cathodic protection systems: sacrificial (galvanic anode cathodic protection (SACP; the other system is Impressed Current Cathodic Protection (ICCP. Majority of the structures protected employ impressed current system. The main difference between the two is that SACP uses the galvanic anodes which are electrochemically more electronegative than the structure to be protected - the naturally occurring electrochemical potential difference between different metallic elements to provide protection; ICCP uses an external power source (electrical generator with D.C. with inert anodes, and this system is used for larger structures, or where electrolyte resistivity is high and galvanic anodes cannot economically deliver enough current to provide protection. The essential of CP is based on two parameters, the evolution of the potential and the current of protection. A commonly accepted protection criterion used for steel is a potential value of minus 850 mV. ICCP system consist of anodes connected to a DC power source. As power sources may be used such as solar panels, wind turbines, etc. The object of this study is analysis of the possibilities and operating parameters of ICCP system supplied with photovoltaic solar panels. Photovoltaic generator made up of the

  2. Characteristics of Plasma Spraying Torch with a Hollow Cathode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A kind of plasma spraying torch with a hollow cathode is described in this paper.The plasma torch can be used for axial powder injection in plasma spray studies. The arc characteristics of the plasma torch with various gas flowrates, different gas media, are presented. The mathematical modeling and computational method are developed for predicting the temperature and velocity field inside the plasma torch.

  3. First tests of "bulk" MICROMEGAS with resistive cathode mesh

    CERN Document Server

    Olivera, R; Pietropaolo, F; Picchi, P

    2010-01-01

    We present the first results from tests of a MICROMEGAS detector manufactured using the so-called "bulk" technology and having a resistive cathode mesh instead of the conventional metallic one. This detector operates as usual MICROMEGAS, but in the case of sparks, which may appear at high gas gains, the resistive mesh reduces their current and makes the sparks harmless. This approach could be complementary to the ongoing efforts of various groups to develop spark-protected MICROMEGAS with resistive anode planes.

  4. High Performance Pillared Vanadium Oxide Cathode for Lithium Ion Batteries

    Science.gov (United States)

    2015-04-24

    Automotive Research Development and Engineering Center, Warren, MI 48387, USA Keywords: nanostructured materials, lithium ion batteries, cathode... key consideration for batteries used in vehicle applications, the rate capability, cyclability, and safety of LIBs have been identified as critical...diffraction planes ( Figure 1). With the intercalation of the Al13 Keggin pillars, the position of the 001 plane shifts to 6.7 degrees two-theta, along with

  5. MAGE-A Antigens and Cancer Immunotherapy

    Science.gov (United States)

    Zajac, Paul; Schultz-Thater, Elke; Tornillo, Luigi; Sadowski, Charlotte; Trella, Emanuele; Mengus, Chantal; Iezzi, Giandomenica; Spagnoli, Giulio C.

    2017-01-01

    MAGE-A antigens are expressed in a variety of cancers of diverse histological origin and germinal cells. Due to their relatively high tumor specificity, they represent attractive targets for active specific and adoptive cancer immunotherapies. Here, we (i) review past and ongoing clinical studies targeting these antigens, (ii) analyze advantages and disadvantages of different therapeutic approaches, and (iii) discuss possible improvements in MAGE-A-specific immunotherapies. PMID:28337438

  6. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    Science.gov (United States)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  7. Humectant use in the cathodic protection of reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Russell, James H.; Bullard, Sophie J.; Cramer, Stephen D.; Collins, W.K.; Bennett, J.E. (JE Bennett Consulting); Laylor, H.M. (ODOT)

    2000-11-01

    Use of humectants to improve the thermal-sprayed zinc anode performance during the cathodic protection (CP) of reinforced concrete was examined. A humectant is a hygroscopic material. It is applied onto the surface of the zinc anode to keep the concrete-anode interface moist and a good conductor. The thermodynamics of humectants are discussed. Laboratory results are presented on the effects of using lithium bromide (LiBr) and lithium nitrate (LiNO{sub 3}) as humectants in galvanic cathodic protection (GCP) and impressed current cathodic protection (ICCP) systems, in high and low relative humidities, and on new and previously electrochemically aged CP systems. LiNO{sub 3} and LiBr promoted more effective CP performance. Both improved the performance of aged slabs, suggesting that application of humectants onto existing CP systems would be of benefit. Microscopy showed that humectant-treated slabs develop the same cement-reaction zone, zinc anode structures as untreated slabs. Microscopy of LiBr-treated slabs revealed that the highest concentration of bromide was in the reaction zone. In GCP tests, LiBr was more effective than LiNO{sub 3}. In accelerated ICCP tests, LiNO{sub 3} was more effective than LiBr. It was surmised that bromide could be oxidized in the high-voltage accelerated ICCP tests. At the lower impressed currents of most installed ICCP systems, LiBr may perform as well as or better than LiNO{sub 3}.

  8. Performance of field emission cathodes prepared from diamond nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, C.X., E-mail: cxzhai@nwu.edu.cn; Zhang, Z.Y.; Zhao, L.L.; Wang, X.W.; Zhao, W.

    2015-01-01

    Nano-diamond field emission cathodes were fabricated using a two-step technique. A mixture of nano-diamond and nano-Ti powders was coated onto a Ti substrate using a spin-coating process, followed by the application of an annealing treatment to form a TiC phase. The effects of the annealing temperature and the number of coating layers on the electron field emission properties of the as-fabricated field emission cathodes were investigated. The samples fabricated under different conditions were analyzed by Raman spectroscopy, X-ray diffraction, and scanning electron microscopy. The differences in terms of the electron field emission properties were explained by a TiC network model. A higher temperature is necessary to form a continuous TiC network when a thicker coating is used on the field emission cathode. In contrast, for the thinner coating, a relatively low temperature is sufficient to form such a TiC network. Only a continuous TiC network coating can facilitate the passage of electrons through the coating and lead to emission. - Highlights: • The field emission properties of nano-diamond powder were investigated. • Nano-diamond powder was deposited by spin coating on titanium substrate. • Nano-titanium powder was mixed into the coating. • A titanium carbide network model was proposed to explain the samples' properties.

  9. Fuel cell cathode air filters: Methodologies for design and optimization

    Science.gov (United States)

    Kennedy, Daniel M.; Cahela, Donald R.; Zhu, Wenhua H.; Westrom, Kenneth C.; Nelms, R. Mark; Tatarchuk, Bruce J.

    Proton exchange membrane (PEM) fuel cells experience performance degradation, such as reduction in efficiency and life, as a result of poisoning of platinum catalysts by airborne contaminants. Research on these contaminant effects suggests that the best possible solution to allowing fuel cells to operate in contaminated environments is by filtration of the harmful contaminants from the cathode air. A cathode air filter design methodology was created that connects properties of cathode air stream, filter design options, and filter footprint, to a set of adsorptive filter parameters that must be optimized to efficiently operate the fuel cell. Filter optimization requires a study of the trade off between two causal factors of power loss: first, a reduction in power production due to poisoning of the platinum catalyst by chemical contaminants and second, an increase in power requirements to operate the air compressor with a larger pressure drop from additional contaminant filtration. The design methodology was successfully applied to a 1.2 kW fuel cell using a programmable algorithm and predictions were made about the relationships between inlet concentration, breakthrough time, filter design, pressure drop, and compressor power requirements.

  10. Composition demixing effect on cathodic arc ion plating

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The composition demixing effect has been found often in alloy coatings deposited by cathodic arc ion plating using various alloy cathode targets.The characteristics of composition demixing phenomena were summarized.Beginning with the ionization zone near the surface of the cathode target, a physical model in terms of the ions generated in the ionization zone and their movement in the plating room modified by bias electric field was proposed.Based on the concept of electric charge state, the simulation calculation of the composition demixing effect was carried out.The percentage of atoms of an element in coating and from the alloy target was demonstrated by direct comparison.The influences of the composition change of the alloy target and the bias electric field on the composition demixing effect were discussed in detail.It is also proposed that the average charge states of the elements may be used to calculate the composition demixing effect and to design the composition of the alloy target.

  11. Process for Low Cost Domestic Production of LIB Cathode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Thurston, Anthony

    2012-10-31

    The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASF’s battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASF’s already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111, 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEM’s and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.

  12. Photovoltaic-powered regulated cathodic-protection system

    Science.gov (United States)

    Anis, Wagdy R.; Alfons, Hany A.

    The objective of a cathodic protection system is to protect metallic structures against corrosion. To achieve this, a sacrificial anode is connected to the protected structure (which acts as a cathode) through a d.c. power supply. To stop the corrosion, the protected structure requires a constant current. The current is determined by the metal and area of the structure, as well as the surrounding medium. The major difficulty in achieving a constant current is the variation in the resistivity of the surrounding medium that is caused by changes in the climatic conditions. Conventional cathodic-protection systems resolve this problem by manual adjustment of the d.c. voltage periodically to obtain a constant current. Such adjustment depends on the experience of the technician and the accuracy of the measuring equipment. Moreover if the interval between successive adjustments is relative long, the corrosion could become excessive. To overcome such difficulties, an automatically regulated system has been developed. The proposed system senses variations is the resistivity of the surrounding medium and adjusts the d.c. voltage accordingly so that the current is kept constant at the required level. The design of a solar photovoltaic system to supply the required d.c. power is discussed in this communication.

  13. Presentation of antigen by B cells subsets. Pt. 2. The role of CD5 B cells in the presentation of antigen to antigen-specific T cells

    Energy Technology Data Exchange (ETDEWEB)

    Zimecki, Michal [Polish Academy of Sciences, Wroclaw (Poland). Institute of Immunology and Experimental Therapy; Kapp, Judith A. [Emory Univ., Atlanta, GA (United States). School of Medicine

    1994-12-31

    We demonstrate that peritoneal B cells have a much higher ability to present antigen to antigen-specific T cell lines splenic B cells. Presentation of antigen by B cells is abrogated or drastically reduced after removal of Lyb-5{sup +} cells from the population of splenic or peritoneal B cells. Peritoneal B cells, precultured for 7 days prior to the antigen presentation assay, retain their antigen presenting cell (APC) function. Enrichment for CD5{sup +} cells in the peritoneal B cell population results in a more effective antigen presentation. Lastly, stimulation of B cells via CD5 antigen, by treatment of cells with anti-CD5 antibodies or cross-linking of CD5 receptors, enhances APC function of these cells. The results indicate, both indirectly and directly, that CD5{sup +} B cells play a predominant role in the presentation of conventional antigens to antigen-specific T cells. (author). 30 refs, 6 tabs.

  14. Electrolyte and Cathode Degradation Mechanisms in Lithium Ion Batteries

    Science.gov (United States)

    Tebbe, Jonathon

    Lithium ion battery technologies suffer from limitations in performance, such as capacity fading, due in part to degradation of the cathode and electrolyte materials. Quantum chemical simulations were employed to investigate the reactions leading to degradation of LiCoO2 cathodes and the electrolyte molecules. Formation of HF in the electrolyte resulting from reaction between PF5 and H2O impurities was first investigated. This research predicts HF is produced as a result of PF5 complexing with H2O, then reacting through ligand exchange to form HF and PF4OH with an activation barrier of 1.18 eV and reaction enthalpy of 0.15 eV. HF undergoes dissociative adsorption at that the (101¯4) surface of LiCoO2 without a barrier, leading to formation of LiF-Li+ precipitates and H 2O on the surface with a reaction energy of -2.41 eV. The formation of H2O is of particular concern because H2O drives further formation of HF in the electrolyte, resulting in an autocatalytic cycle of degradation. These findings indicate that HF initially occurs in low concentrations rapidly increases due to H2O generation upon HF attack. Reduction in capacity fading is observed in alumina ALD coated LiCoO2 cathodes and we have investigated a monolayer alumina coating on the LiCoO2 (101¯4) surface to identify the mechanism by which the alumina coating protects the cathode surface. We have found that HF will preferentially dissociate at the alumina coating with a reaction energy of -2.84 eV and without any resolvable barrier to dissociation. Additionally, our calculations predict that H2O does not form as a result of HF dissociation at the alumina monolayer; instead HF dissociation produces neighboring hydroxyl sites on the alumina surface. Consequently, the alumina coating prevents the autocatalytic degradation of the cathode by sequestering HF impurities in the alumina film. Finally, we found that Lewis acid-base complexation between ethylene carbonate (EC) electrolyte molecules and PF5 or the Li

  15. Novel Composite Materials for SOFC Cathode-Interconnect Contact

    Energy Technology Data Exchange (ETDEWEB)

    J. H. Zhu

    2009-07-31

    This report summarized the research efforts and major conclusions of our University Coal Research Project, which focused on developing a new class of electrically-conductive, Cr-blocking, damage-tolerant Ag-perovksite composite materials for the cathode-interconnect contact of intermediate-temperature solid oxide fuel cell (SOFC) stacks. The Ag evaporation rate increased linearly with air flow rate initially and became constant for the air flow rate {ge} {approx} 1.0 cm {center_dot} s{sup -1}. An activation energy of 280 KJ.mol{sup -1} was obtained for Ag evaporation in both air and Ar+5%H{sub 2}+3%H{sub 2}O. The exposure environment had no measurable influence on the Ag evaporation rate as well as its dependence on the gas flow rate, while different surface morphological features were developed after thermal exposure in the oxidizing and reducing environments. Pure Ag is too volatile at the SOFC operating temperature and its evaporation rate needs to be reduced to facilitate its application as the cathode-interconnect contact. Based on extensive evaporation testing, it was found that none of the alloying additions reduced the evaporation rate of Ag over the long-term exposure, except the noble metals Au, Pt, and Pd; however, these noble elements are too expensive to justify their practical use in contact materials. Furthermore, the addition of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) into Ag to form a composite material also did not significantly modify the Ag evaporation rate. The Ag-perovskite composites with the perovskite being either (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.8}Fe{sub 0.2})O{sub 3} (LSCF) or LSM were systematically evaluated as the contact material between the ferritic interconnect alloy Crofer 22 APU and the LSM cathode. The area specific resistances (ASRs) of the test specimens were shown to be highly dependent on the volume percentage and the type of the perovskite present in the composite contact material as well as the amount of thermal cycling

  16. Controlling the corrosion and cathodic activation of magnesium via microalloying additions of Ge

    Science.gov (United States)

    Liu, R. L.; Hurley, M. F.; Kvryan, A.; Williams, G.; Scully, J. R.; Birbilis, N.

    2016-06-01

    The evolution of corrosion morphology and kinetics for magnesium (Mg) have been demonstrated to be influenced by cathodic activation, which implies that the rate of the cathodic partial reaction is enhanced as a result of anodic dissolution. This phenomenon was recently demonstrated to be moderated by the use of arsenic (As) alloying as a poison for the cathodic reaction, leading to significantly improved corrosion resistance. The pursuit of alternatives to toxic As is important as a means to imparting a technologically safe and effective corrosion control method for Mg (and its alloys). In this work, Mg was microalloyed with germanium (Ge), with the aim of improving corrosion resistance by retarding cathodic activation. Based on a combined analysis herein, we report that Ge is potent in supressing the cathodic hydrogen evolution reaction (reduction of water) upon Mg, improving corrosion resistance. With the addition of Ge, cathodic activation of Mg subject to cyclic polarisation was also hindered, with beneficial implications for future Mg electrodes.

  17. Effect of SO2 on Performance of Solid Oxide Fuel Cell Cathodes

    Institute of Scientific and Technical Information of China (English)

    WANG De-jun; LENG Jing

    2012-01-01

    Effects of SO2 in ambient air on the performance and durability of solid oxide fuel cell(SOFC) cathode were evaluated by galvanostatic measurement.Comparison between two cathode materials was made to consider the cathode degradation mechanisms.The degradation performance is associated with a slow decomposition of the La0.6Sr0.4Co0.2Fe0.8O3(LSCF) due to the segregation of strontium oxide.Negligible deterioration for (La0.7Sr0.3)MnO3 (LSM) cathode was caused by SO2 poisoning under a current density of 200 mA/cm2.Metal sulphate formation may explain a slight deterioration under increasing high the concentration of SO2.It was verified that the poisoning mechanism for the two cathode materials resulted from the gradual decomposition of the cathode materials.

  18. Note: Design and development of improved indirectly heated cathode based strip electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Namita; Patil, D. S.; Dasgupta, K. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Bade, Abhijeet; Tembhare, G. U. [Department of Mechanical Engineering, Veermata Jijabai Technological Institute, Matunga, Mumbai 400 019 (India)

    2015-02-15

    An improved design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten, which acts as an improved source of electron at lower temperature. So, high power operation is possible without affecting structural integrity of the electron gun. The design issues are addressed based on the uniformity of temperature on the solid cathode and the single long filament based design. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to tailor the non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments have been carried out and it is seen that the modified design achieves one to one correspondence of the solid cathode length and the electron beam length.

  19. Exfoliation and reassembly of cobalt oxide nanosheets into a reversible lithium-ion battery cathode.

    Science.gov (United States)

    Compton, Owen C; Abouimrane, Ali; An, Zhi; Palmeri, Marc J; Brinson, L Catherine; Amine, Khalil; Nguyen, SonBinh T

    2012-04-10

    An exfoliation-reassembly-activation (ERA) approach to lithium-ion battery cathode fabrication is introduced, demonstrating that inactive HCoO(2) powder can be converted into a reversible Li(1-x) H(x) CoO(2) thin-film cathode. This strategy circumvents the inherent difficulties often associated with the powder processing of the layered solids typically employed as cathode materials. The delamination of HCoO(2) via a combination of chemical and mechanical exfoliation generates a highly processable aqueous dispersion of [CoO(2) ](-) nanosheets that is critical to the ERA approach. Following vacuum-assisted self-assembly to yield a thin-film cathode and ion exchange to activate this material, the generated cathodes exhibit excellent cyclability and discharge capacities approaching that of low-temperature-prepared LiCoO(2) (~83 mAh g(-1) ), with this good electrochemical performance attributable to the high degree of order in the reassembled cathode.

  20. Anisotropic etching of platinum electrodes at the onset of cathodic corrosion.

    Science.gov (United States)

    Hersbach, Thomas J P; Yanson, Alexei I; Koper, Marc T M

    2016-08-24

    Cathodic corrosion is a process that etches metal electrodes under cathodic polarization. This process is presumed to occur through anionic metallic reaction intermediates, but the exact nature of these intermediates and the onset potential of their formation is unknown. Here we determine the onset potential of cathodic corrosion on platinum electrodes. Electrodes are characterized electrochemically before and after cathodic polarization in 10 M sodium hydroxide, revealing that changes in the electrode surface start at an electrode potential of -1.3 V versus the normal hydrogen electrode. The value of this onset potential rules out previous hypotheses regarding the nature of cathodic corrosion. Scanning electron microscopy shows the formation of well-defined etch pits with a specific orientation, which match the voltammetric data and indicate a remarkable anisotropy in the cathodic etching process, favouring the creation of (100) sites. Such anisotropy is hypothesized to be due to surface charge-induced adsorption of electrolyte cations.

  1. Cathodic delamination: Quantification of ionic transport rates along coating-steel interfaces

    DEFF Research Database (Denmark)

    Sørensen, P.A.; Dam-Johansen, Kim; Weinell, C.E.

    2010-01-01

    So-called cathodic delamination is one of the major modes of failure for organic coatings immersed in electrolyte solutions (e.g. seawater). Cathodic delamination occurs as a result of the electrochemical reactions, which takes place on a corroding steel surface. This means that reactants must...... continuously be transported from the bulk solution to the cathodic areas. The transport of sodium ions from a defect in the coating to the cathodic areas is generally considered the rate-determining step for cathodic delamination because the transport of oxygen and water through the coating is sufficient...... and Fick's second law, under the assumption of a transport-controlled mechanism, show qualitative agreement with the observed delamination rates in 0.5 M sodium chloride. This confirms that the rate-determining step of cathodic delamination is the transport of sodium ions along the coating-steel interface....

  2. Controlling the corrosion and cathodic activation of magnesium via microalloying additions of Ge.

    Science.gov (United States)

    Liu, R L; Hurley, M F; Kvryan, A; Williams, G; Scully, J R; Birbilis, N

    2016-06-28

    The evolution of corrosion morphology and kinetics for magnesium (Mg) have been demonstrated to be influenced by cathodic activation, which implies that the rate of the cathodic partial reaction is enhanced as a result of anodic dissolution. This phenomenon was recently demonstrated to be moderated by the use of arsenic (As) alloying as a poison for the cathodic reaction, leading to significantly improved corrosion resistance. The pursuit of alternatives to toxic As is important as a means to imparting a technologically safe and effective corrosion control method for Mg (and its alloys). In this work, Mg was microalloyed with germanium (Ge), with the aim of improving corrosion resistance by retarding cathodic activation. Based on a combined analysis herein, we report that Ge is potent in supressing the cathodic hydrogen evolution reaction (reduction of water) upon Mg, improving corrosion resistance. With the addition of Ge, cathodic activation of Mg subject to cyclic polarisation was also hindered, with beneficial implications for future Mg electrodes.

  3. Cathode Erosion of Graphite and Cu/C Materials in Airarcs

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chengyu; QIAO Shengru; LIU Yiwen; YANG Zhimao; WANG Yaping; GUO Yong

    2012-01-01

    Cathode erosion of graphite and Cu/C was studied in direct current arcs,which were ignited between two electrodes comprised of two kinds of carbon materials and a tungsten anode in air.The arced zones on the cathode surface were investigated by a scanning electron microscope.Also,the cathode erosion rates of the investigated materials were measured.The results show that two distinct zone can be seen on both cathodes.The eroded area was located at the zone just opposite to the anode and surrounded by a white zone.The arced surface on the Cu/C containing 9.3 % Cu is rougher than that of the pure graphite.Many particles with various sizes distributed on the Cu/C.The vaporization of Cu can lower the surface temperature and reduce the cathode erosion.Therefore,the cathode erosion rate of the Cu/C is lower than that of the pure graphite.

  4. Cathodic delamination: Quantification of ionic transport rates along coating-steel interfaces

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Dam-Johansen, Kim; Weinell, C. E.

    2010-01-01

    So-called cathodic delamination is one of the major modes of failure for organic coatings immersed in electrolyte solutions (e.g. seawater). Cathodic delamination occurs as a result of the electrochemical reactions. which takes place on a corroding steel surface. This means that reactants must...... continuously be transported from the bulk solution to the cathodic areas. The transport of sodium ions from a defect in the coating to the cathodic areas is generally considered the rate-determining step for cathodic delamination because the transport of oxygen and water through the coating is sufficient...... and Fick's second law, under the assumption of a transport controlled mechanism, show qualitative agreement with the observed delamination rates in 0.5 M sodium chloride. This confirms that the rate-determining step of cathodic delamination is the transport of sodium ions along the coating-steel interface...

  5. Expression and Antigenic Evaluation of VacA Antigenic Fragment of Helicobacter Pylori

    Directory of Open Access Journals (Sweden)

    Leila Hasanzadeh

    2013-07-01

    Full Text Available Objective(s: Helicobacter pylori, a human specific gastric pathogen is a causative agent of chronic active gastritis. The vacuolating cytotoxin (VacA is an effective virulence factor involved in gastric injury. The aim of this study was to construct a recombinant protein containing antigenic region of VacA gene and determine its antigenicity.   Materials and Methods: The antigenic region of VacA gene was detected by bioinformatics methods. The polymerase chain reaction method was used to amplify a highly antigenic region of VacA gene from chromosomal DNA of H. pylori. The eluted product was cloned into the prokaryotic expression vector pET32a. The target protein was expressed in the Escherichia coli BL21 (DE3 pLysS. The bacteria including pET32a-VacA plasmids were induced by IPTG. The antigenicity was finally studied by western blotting using sera of 15 H. pylori infected patients after purification. Results: Enzyme digestion analysis, PCR and DNA sequencing results showed that the target gene was inserted correctly into the recombinant vector. The expressed protein was purified successfully via affinity chromatography. Data indicated that antigenic region of VacA protein from Helicobacter pylori was recognized by all 15 patient’s sera. Conclusion : Our data showed that antigenic region of VacA protein can be expressed by in E. co.li. This protein was recognized by sera patients suffering from H. pylori infection. the recombinant protein has similar epitopes and close antigenic properties to the natural form of this antigen. Recombinant antigenic region of VacA protein also seems to be a promising antigen for protective and serologic diagnosis .

  6. Composite Organic Radical - Inorganic Hybrid Cathode for Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qian; Cosimbescu, Lelia; Koech, Phillip K.; Choi, Daiwon; Lemmon, John P.

    2013-07-01

    A new organic radical inorganic hybrid cathode comprised of PTMA/LiFePO4 composite system is developed and reported for the first time. The hybrid cathodes demonstrate high pulse power capability resulting in a significant improvement over the pure PTMA or LiFePO4 cathode which is very promising for transportation and other high pulse power applications that require long cycle life and lower cost.

  7. Solid Oxide Fuel Cell Cathodes. Unraveling the Relationship Between Structure, Surface Chemistry and Oxygen Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Srikanth [Boston Univ., MA (United States)

    2013-03-31

    In this work we have considered oxygen reduction reaction on LSM and LSCF cathode materials. In particular we have used various spectroscopic techniques to explore the surface composition, transition metal oxidation state, and the bonding environment of oxygen to understand the changes that occur to the surface during the oxygen reduction process. In a parallel study we have employed patterned cathodes of both LSM and LSCF cathodes to extract transport and kinetic parameters associated with the oxygen reduction process.

  8. Cold test results for the test cavities w/out the deposited lead photo cathode

    CERN Document Server

    Sekutowicz, J

    2013-01-01

    In this report we present tests of a 1.5-cell superconducting photo-injector cavity, which was built in the frame of Task 4. The cavity was tested twice: without the cathode (baseline test) and with the lead photo-cathode. The result of tests was very encouraging and the decision was made to continue the experiment, beyond scope of the task, at HZB in Berlin to learn more about quality of the cathode.

  9. The influence of cathode material on electrochemical degradation of trichloroethylene in aqueous solution.

    Science.gov (United States)

    Rajic, Ljiljana; Fallahpour, Noushin; Podlaha, Elizabeth; Alshawabkeh, Akram

    2016-03-01

    In this study, different cathode materials were evaluated for electrochemical degradation of aqueous phase trichloroethylene (TCE). A cathode followed by an anode electrode sequence was used to support reduction of TCE at the cathode via hydrodechlorination (HDC). The performance of iron (Fe), copper (Cu), nickel (Ni), aluminum (Al) and carbon (C) foam cathodes was evaluated. We tested commercially available foam materials, which provide large electrode surface area and important properties for field application of the technology. Ni foam cathode produced the highest TCE removal (68.4%) due to its high electrocatalytic activity for hydrogen generation and promotion of HDC. Different performances of the cathode materials originate from differences in the bond strength between atomic hydrogen and the material. With a higher electrocatalytic activity than Ni, Pd catalyst (used as cathode coating) increased TCE removal from 43.5% to 99.8% for Fe, from 56.2% to 79.6% for Cu, from 68.4% to 78.4% for Ni, from 42.0% to 63.6% for Al and from 64.9% to 86.2% for C cathode. The performance of the palladized Fe foam cathode was tested for degradation of TCE in the presence of nitrates, as another commonly found groundwater species. TCE removal decreased from 99% to 41.2% in presence of 100 mg L(-1) of nitrates due to the competition with TCE for HDC at the cathode. The results indicate that the cathode material affects TCE removal rate while the Pd catalyst significantly enhances cathode activity to degrade TCE via HDC.

  10. Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes

    Science.gov (United States)

    Li, Yihong; Gemmen, Randall; Liu, Xingbo

    In recent years, various models have been developed for describing the reaction mechanisms in solid oxide fuel cell (SOFC) especially for the cathode electrode. However, many fundamental issues regarding the transport of oxygen and electrode kinetics have not been fully understood. This review tried to summarize the present status of the SOFC cathode modeling efforts, and associated experimental approaches on this topic. In addition, unsolved problems and possible future research directions for SOFC cathode kinetics had been discussed.

  11. Stability of Conductive Carbon Additives for High-voltage Li-ion Battery Cathodes

    OpenAIRE

    Nilssen, Benedicte Eikeland

    2014-01-01

    Conductive carbon additives are important constituents of the current state-of-the-art Li-ion battery cathodes, as the traditional active cathode materials are characterized by too low electronic conductivities. In high-voltage Li-ion batteries, these additives are subject for anion intercalation and electrolyte oxidation, which might cause changes in the conductive carbon network in the cathode, and hence the overall cycling performance of the electrode. This thesis has focused on study the ...

  12. Emission characteristics of laser ablation-hollow cathode glow discharge spectral source

    Directory of Open Access Journals (Sweden)

    Karatodorov Stefan

    2014-11-01

    Full Text Available The emission characteristics of a scheme combining laser ablation as sample introduction source and hollow cathode discharge as excitation source are presented. The spatial separation of the sample material introduction by laser ablation and hollow cathode excitation is achieved by optimizing the gas pressure and the sample-cathode gap length. At these conditions the discharge current is maximized to enhance the analytical lines intensity.

  13. Antigen cross-presentation of immune complexes.

    Science.gov (United States)

    Platzer, Barbara; Stout, Madeleine; Fiebiger, Edda

    2014-01-01

    The ability of dendritic cells (DCs) to cross-present tumor antigens has long been a focus of interest to physicians, as well as basic scientists, that aim to establish efficient cell-based cancer immune therapy. A prerequisite for exploiting this pathway for therapeutic purposes is a better understanding of the mechanisms that underlie the induction of tumor-specific cytotoxic T-lymphocyte (CTL) responses when initiated by DCs via cross-presentation. The ability of humans DC to perform cross-presentation is of utmost interest, as this cell type is a main target for cell-based immunotherapy in humans. The outcome of a cross-presentation event is guided by the nature of the antigen, the form of antigen uptake, and the subpopulation of DCs that performs presentation. Generally, CD8α(+) DCs are considered to be the most potent cross-presenting DCs. This paradigm, however, only applies to soluble antigens. During adaptive immune responses, immune complexes form when antibodies interact with their specific epitopes on soluble antigens. Immunoglobulin G (IgG) immune complexes target Fc-gamma receptors on DCs to shuttle exogenous antigens efficiently into the cross-presentation pathway. This receptor-mediated cross-presentation pathway is a well-described route for the induction of strong CD8(+) T cell responses. IgG-mediated cross-presentation is intriguing because it permits the CD8(-) DCs, which are commonly considered to be weak cross-presenters, to efficiently cross-present. Engaging multiple DC subtypes for cross-presentation might be a superior strategy to boost CTL responses in vivo. We here summarize our current understanding of how DCs use IgG-complexed antigens for the efficient induction of CTL responses. Because of its importance for human cell therapy, we also review the recent advances in the characterization of cross-presentation properties of human DC subsets.

  14. Methods and apparatuses for making cathodes for high-temperature, rechargeable batteries

    Science.gov (United States)

    Meinhardt, Kerry D; Sprenkle, Vincent L; Coffey, Gregory W

    2014-05-20

    The approaches for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

  15. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    Science.gov (United States)

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-05-01

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explain elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). Simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.

  16. On the actual cathode mixed potential in direct methanol fuel cells

    Science.gov (United States)

    Zago, M.; Bisello, A.; Baricci, A.; Rabissi, C.; Brightman, E.; Hinds, G.; Casalegno, A.

    2016-09-01

    Methanol crossover is one of the most critical issues hindering commercialization of direct methanol fuel cells since it leads to waste of fuel and significantly affects cathode potential, forming a so-called mixed potential. Unfortunately, due to the sluggish anode kinetics, it is not possible to obtain a reliable estimation of cathode potential by simply measuring the cell voltage. In this work we address this limitation, quantifying the mixed potential by means of innovative open circuit voltage (OCV) tests with a methanol-hydrogen mixture fed to the anode. Over a wide range of operating conditions, the resulting cathode overpotential is between 250 and 430 mV and is strongly influenced by methanol crossover. We show using combined experimental and modelling analysis of cathode impedance that the methanol oxidation at the cathode mainly follows an electrochemical pathway. Finally, reference electrode measurements at both cathode inlet and outlet provide a local measurement of cathode potential, confirming the reliability of the innovative OCV tests and permitting the evaluation of cathode potential up to typical operating current. At 0.25 A cm-2 the operating cathode potential is around 0.85 V and the Ohmic drop through the catalyst layer is almost 50 mV, which is comparable to that in the membrane.

  17. IMPROVEMENT OF THE PERFORMANCE OF THE DISPENSER CATHODE WITH Re AS A MIDDLE LAYER

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new type of dispenser cathode with dual-layer (Os-W/Re) is developed. The cathode coated with Os-W/Re shows better emission performance than the cathode coated with Os-W alloy. X-ray Photoelectron Spectroscopy (XPS) spectra demonstrate that ternary alloy coating (Os-W-Re) formed on the surface of the cathode with dual-layer (Os-W/Re) after full activation is the major reason why it has better emission than the cathode with Os-W alloy. The surface of each variety of the cathode is characterized with Scanning Electron Microscope (SEM) before and after activation: the emitting surface of the cathode with Os-W alloy after ageing appeared non-adherence (flaking) in localized areas, which is one of the reasons for non-uniform emission.However, the surface of the cathode with dual-layer (Os-W/Re) does not present film peeling under the same conditions. Thus it ensures better emission uniformity and functional reliability for the dispenser cathode.

  18. Thermal and electrical influences from bulk plasma in cathode heating modeling

    Science.gov (United States)

    Chen, Tang; Wang, Cheng; Zhang, Xiao-Ning; Zhang, Hao; Xia, Wei-Dong

    2017-02-01

    In this paper, a numerical calculation is performed for the purpose of estimating the thermal and electrical influences from bulk plasma in cathode heating modeling, in other words researching the necessity of a coupling bulk plasma in near-cathode layer modeling. The proposed model applied in the present work is an improved one from previous work. In this model, the near-cathode region is divided into two parts: the sheath and the ionization layer. The Schottky effect at the cathode surface is considered based on the analytic solution of a 1D sheath model. It is noted that the arc column is calculated simultaneously in the near-cathode region and the cathode bulk. An application is presented for an atmospheric free burning argon arc with arc currents of 50 A-600 A. The modeling results show three interesting points: (1) at the cathode surface, energy transport due to heat conduction of heavy particles and electrons is comparable to total heating flux, no matter whether the arc discharge is performed in a high (400 A) or low current (50 A) situation; (2) the electrical influence from bulk plasma on the cathode heating modeling becomes obvious in a high current situation (>400 A) for the spot mode; (3) the near-cathode layer voltage drop ({{U}\\text{tot}} ) is larger in the diffuse mode than in the spot mode for the same current, which is just the opposite to that for decoupled modeling.

  19. Two-dimensional, hybrid model of glow discharge in hollow cathode geometries

    Energy Technology Data Exchange (ETDEWEB)

    Fiala, A.; Pitchford, L.C.; Boeuf, J.P. [Universite Paul Sabatier, Toulouse (France)

    1995-12-31

    Low pressure glow discharges in plane-plane geometries have been studied extensively over the years and most of their features are known from experiments and numerical simulation. If a plane cathode is replaced by a cathode with some hollow structure, then, for a certain range of conditions, the negative glows of opposite (adjacent) cathode walls overlap and the discharge behaviour dramatically changes. The voltage is lower at a constant current and the current is even several orders of magnitude higher for a given voltage than for the plane cathode. At the same time, the intensity of the light emission from the discharge considerably increases. This effect is called the hollow cathode effect. There are several physical phenomena which could be responsible for the big efficiency of the hollow cathode discharges. The recent investigations based on the Monte Carlo simulation of the electron kinetics have shown that the trapping of energetic electrons in the hollow cathode cavity can explain the order of magnitude of the hollow cathode effect. The configuration of the discharge tube presented in fig. 1 is used here to study the behaviour of glow discharges in a hollow cathode means of numerical simulation.

  20. Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Georgia Inst. of Technology, Atlanta, GA (United States); Ding, Dong [Georgia Inst. of Technology, Atlanta, GA (United States); Wei, Tao [Georgia Inst. of Technology, Atlanta, GA (United States); Liu, Meilin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-03-31

    The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF

  1. PIC-DSMC simulation of a triggered vacuum switch with a copper/beryllium cathode

    Science.gov (United States)

    Fierro, Andrew; Moore, Chris; Moore, Stan; Biedermann, Laura; Hopkins, Matthew

    2016-09-01

    Typical vacuum discharge simulations rely on the injection of neutral or ionized metal vapor from the cathode into an electrically stressed anode-cathode gap. Simultaneous electron emission, also from the cathode, allows for electron-impact ionization of the emitted metal vapor allowing for plasma formation and subsequent closing mechanism to begin. This work looks to analyze the effect of photoemission from the cathode and/or photoionization of metal vapor on the switch closing process through kinetic simulation techniques. A 500 micron anode-cathode gap is chosen with a variable voltage applied to the anode and a grounded half copper, half beryllium cathode. Injection of the metal vapor for both cathode materials is modeled as a linearly ramped flux with a temperature of 1500 K and a bulk velocity (13.2 km/s for Cu and 22 km/s for Be) away from the cathode. Electron-impact excitation of the emitted metal vapor allows for subsequent spontaneous emission of photons which can then photoionize the metal vapor or cause photoemission from the cathode. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's NNSA under contract DE-AC04-94AL85000.

  2. Seroreactivity of Salmonella-infected cattle herds against a fimbrial antigen in comparison with lipopolysaccharide antigens

    DEFF Research Database (Denmark)

    Hoorfar, Jeffrey; Lind, Peter; Bell, M.M.

    1996-01-01

    The IgG seroreaction of Salmonella-infected cattle herds against a fimbrial antigen (SEF14) was compared with that against lipopolysaccharide (LPS) antigens. Sera from 23 dairy herds (n = 205) from an island with no occurrence of salmonellosis, four herds (n = 303) with recent outbreaks of S...

  3. The antigenic relationship between Brettanomyces-Debaryomyces strains and the Salmonella cholerae-suis O antigen.

    Science.gov (United States)

    Aksoycan, N; Sağanak, I; Wells, G

    1978-01-01

    The immune sera for Brettanomyces lambicus, B. claussenii, Debaryomyces hansenii and D. marama agglutinated Salmonella cholerae-suis (0:6(2), 7). The immune serum for S. cholerae-suis agglutinated B. lambicus, B. clausenni, D. hansenii and D. marama. Absorption and agglutination cross-tested demonstrated common antigen factor(s) in the tested yeasts and Salmonella 0:7 antigen.

  4. STUDY OF EXPANSIVE REACTIONS IN MORTAR MADE OF PORTLAND CEMENT WITH RICE HUSK ASH (RHA = ESTUDO DE REAÇÕES EXPANSIVAS EM ARGAMASSAS DE CIMENTO PORTLAND COM CINZA DE CASCA DE ARROZ (CCA

    Directory of Open Access Journals (Sweden)

    Jorge Luis Akasaki

    2007-01-01

    acaba sendo descartada de modo inadequado, gerando poluição no meio ambiente. No sentido de encontrar uma finalidade viável para a utilização de cinza de casca de arroz na construção civil, o presente trabalho estuda avariação do comportamento de argamassas com diferentes teores de CCA. (Cinza de Casca de Arroz. Trabalhou-se com corpos-de-prova prismáticos, com dimensões de 25x25x285mm, moldados com 0% (referência, 5%, 10% e 25% de CCA, em substituição em massa ao cimento. A influência da cinza foi constatada através dos seguintes ensaios: eficiência de materiais pozolânicos em evitar a expansão e reação álcali-agregado. O resultado obtido no ensaio de redução da expansão (NBR 12651 mostrou que a CCA reduz consideravelmente a expansão de argamassas devido à reação com o álcalis do cimento (94,29%, quando o limite mínimo de redução exigido pela norma para uma pozolana é de 75%. Embora no ensaio de reação álcaliagregado(ASTM C-1260 os valores de expansão tenham ficado acima do limitepermitido para considerar o material inócuo, tanto o teor de 5% quanto o de 10% de CCA obtiveram resultados melhores (expandiram menos que o traço de referência.

  5. Superexpression of tuberculosis antigens in plant leaves.

    Science.gov (United States)

    Dorokhov, Yuri L; Sheveleva, Anna A; Frolova, Olga Y; Komarova, Tatjana V; Zvereva, Anna S; Ivanov, Peter A; Atabekov, Joseph G

    2007-05-01

    Recent developments in genetic engineering allow the employment of plants as factories for 1/foreign protein production. Thus, tuberculosis (TB) ESAT6 antigen was expressed in different plant systems, but the level of vaccine protein accumulation was extremely low. We describe the technology for superexpression of TB vaccine proteins (Ag85B, ESAT6, and ESAT6:Ag85B fusion) in plant leaves which involves: (i) construction of tobacco mosaic virus-based vectors with the coat protein genes substituted by those for TB antigens; (ii) Agrobacterium-mediated delivery to plant leaf tissues of binary vectors containing the cDNA copy of the vector virus genome; and (iii) replication of virus vectors in plant cells under conditions suppressing the virus-induced gene silencing. This technology enables efficient production of the TB vaccine proteins in plants; in particular, the level of Ag85B antigen accumulation was not less than 800 mg/kg of fresh leaves. Expression of TB antigens in plant cells as His(6)-tagged proteins promoted their isolation and purification by Ni-NTA affinity chromatography. Deletion of transmembrane domains from Ag85B caused a dramatic increase in its intracellular stability. We propose that the strategy of TB antigens superproduction in a plant might be used as a basis for the creation of prophylactic and therapeutic vaccine against TB.

  6. Antigen presentation by MHC-dressed cells

    Directory of Open Access Journals (Sweden)

    Masafumi eNakayama

    2015-01-01

    Full Text Available Professional antigen presenting cells (APCs such as conventional dendritic cells (DCs process protein antigens to MHC-bound peptides and then present the peptide-MHC complexes to T cells. In addition to this canonical antigen presentation pathway, recent studies have revealed that DCs and non-APCs can acquire MHC class I (MHCI and/or MHC class II (MHCII from neighboring cells through a process of cell-cell contact-dependent membrane transfer called trogocytosis. These MHC-dressed cells subsequently activate or regulate T cells via the preformed antigen peptide-MHC complexes without requiring any further processing. In addition to trogocytosis, intercellular transfer of MHCI and MHCII can be mediated by secretion of membrane vesicles such as exosomes from APCs, generating MHC-dressed cells. This review focuses on the physiological role of antigen presentation by MHCI- or MHCII-dressed cells, and also discusses differences and similarities between trogocytosis and exosome-mediated transfer of MHC.

  7. Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells

    KAUST Repository

    Wei, Bin

    2012-01-01

    Activated carbon (AC) air cathodes were constructed using variable amounts of carbon (43-171 mg cm-2) and an inexpensive binder (10 wt% polytetrafluoroethylene, PTFE), and with or without a porous cloth wipe-based diffusion layer (DL) that was sealed with PDMS. The cathodes with the highest AC loading of 171 mg cm-2, and no diffusion layer, produced 1255 ± 75 mW m-2 and did not appreciably vary in performance after 1.5 months of operation. Slightly higher power densities were initially obtained using 100 mg cm-2 of AC (1310 ± 70 mW m-2) and a PDMS/wipe diffusion layer, although the performance of this cathode decreased to 1050 ± 70 mW m-2 after 1.5 months, and 1010 ± 190 mW m-2 after 5 months. AC loadings of 43 mg cm-2 and 100 mg cm-2 did not appreciably affect performance (with diffusion layers). MFCs with the Pt catalyst and Nafion binder initially produced 1295 ± 13 mW m-2, but the performance decreased to 930 ± 50 mW m -2 after 1.5 months, and then to 890 ± 20 mW m-2 after 5 months. Cathode performance was optimized for all cathodes by using the least amount of PTFE binder (10%, in tests using up to 40%). These results provide a method to construct cathodes for MFCs that use only inexpensive AC and a PTFE, while producing power densities similar to those of Pt/C cathodes. The methods used here to make these cathodes will enable further tests on carbon materials in order to optimize and extend the lifetime of AC cathodes in MFCs. © 2012 The Royal Society of Chemistry.

  8. Advanced Measurement and Modeling Techniques for Improved SOFC Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Adler; L. Dunyushkina; S. Huff; Y. Lu; J. Wilson

    2006-12-31

    The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on the mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.

  9. Electrochemical performances of BSCF cathode materials for composite electrolyte LTSOFC

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.L.; Li, S.; Sun, J.C. [Dalian Maritime Univ., Dalian (China). Inst. of Materials and Technology; Zhu, B. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering]|[Dalian Maritime Univ., Dalian (China). Inst. of Materials and Technology

    2006-07-01

    The high temperature of solid oxide fuel cells (SOFCs) places high demands on the electrolytes and cathode materials used within them. A reduction in the operating temperatures of the SOFC may lead to improvements in sealing and corrosion problems and improve their long-term stability. However, performance of the SOFC may be negatively impacted due to an unavoidable increase in the oxygen reduction reaction in the cathode. This study investigated the use of BSCF on low temperature SOFCs. In an experiment, BSCF precursor powders were prepared using the sol-gel method. Cell assembly and tests were performed from the cell of a nickel and samaria-doped ceria carbonate/BSCF-Ag. The perovskite structure of the BSCF was characterized by X-ray diffraction. Results showed that the powder could be crystallized well after calcination. The morphology of the BSFC powder from a scanning electron microscopy (SEM) analysis was demonstrated. Some agglomerates were observed. A characterization of the fuel cell showed that the open circuit voltage was higher when the temperature decreased. Maximum power density was 452.6 mW/cm{sup 2} and 540.1 mW/cm{sup 2}. Short circuit currents of 1619 mA/cm{sup 2} and 1604 mA/cm{sup 2} were obtained at 450 degrees C and 500 degrees C respectively. The maximum power density of the fuel cell increased with increases in temperature. It was concluded that the power density of the fuel cell using the BSCF cathode was satisfactorily high for low temperature SOFCs. Further research is needed to improve the fuel cell performance when thinner electrolytes are used. 4 refs., 3 figs.

  10. Antigenic typing Polish isolates of canine parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Mizak, B. [National Veterinary Research Institute, Pulawy (Poland); Plucienniczak, A. [Polish Academy ofd Sciences. Microbiology and Virology Center, Lodz (Poland)

    1995-12-31

    Polish strains of canine parvovirus isolated between 1982 and 1993 were examined to determine the extent to which the virus has evolved antigenically and genetically over eleven years. Two CPV isolates obtained in Warsaw in 1982 and Pulawy in 1993, were examined using monoclonal antibody typing, restriction analysis and sequencing VP-2 protein gene. Five other isolates from Warsaw and Pulawy were tested with the panel of monoclonal antibodies specific to CPV-2, CPV-2a and common for canine parvovirus, feline panleukopenia virus and milk enteritis virus. Results of the studies demonstrated that all isolates tested represented CPV-2a antigenic type. Rapid antigenic strain replacement recorded by Parrish and Senda in the U.S.A and Japan was not confirmed in Poland. (author). 30 refs, 2 tabs.

  11. Harnessing Dendritic Cells for Tumor Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Nierkens, Stefan [Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA (Netherlands); Janssen, Edith M., E-mail: edith.janssen@cchmc.org [Division of Molecular Immunology, Cincinnati Children' s Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States)

    2011-04-26

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8{sup +} and CD4{sup +} T cells; the in vitro loading of DCs with tumor antigens.

  12. New secondary batteries utilizing electronically conductive polymer cathodes

    Science.gov (United States)

    Martin, Charles R.; White, Ralph E.

    1989-01-01

    The objectives of this project are to characterize the transport properties in electronically conductive polymers and to assess the utility of these films as cathodes in lithium/polymer secondary batteries. During this research period, progress has been made in a literature survey of the historical background, methods of preparation, the physical and chemical properties, and potential technological applications of polythiophene. Progress has also been made in the characterization of polypyrrole flat films and fibrillar films. Cyclic voltammetry and potential step chronocoulometry were used to gain information on peak currents and potentials switching reaction rates, charge capacity, and charge retention. Battery charge/discharge studies were also performed.

  13. Nano-patterned superconducting surface for high quantum efficiency cathode

    Energy Technology Data Exchange (ETDEWEB)

    Hannon, Fay; Musumeci, Pietro

    2017-03-07

    A method for providing a superconducting surface on a laser-driven niobium cathode in order to increase the effective quantum efficiency. The enhanced surface increases the effective quantum efficiency by improving the laser absorption of the surface and enhancing the local electric field. The surface preparation method makes feasible the construction of superconducting radio frequency injectors with niobium as the photocathode. An array of nano-structures are provided on a flat surface of niobium. The nano-structures are dimensionally tailored to interact with a laser of specific wavelength to thereby increase the electron yield of the surface.

  14. Porous cathode design and optimization of lithium systems

    Science.gov (United States)

    Chen, Yen-Hung

    Narrowing the gap between theoretical and actual capacity in key Li-based battery systems can be achieved through improvements in both electronic and ionic conductivities of materials, via addition of conductive species. Additives do, however, penalize both volumetric and gravimetric properties, and also limit liquid transport and high rate performance. In this work, we developed techniques to design and optimize cathode system based directly on the relationships among ionic and electronic conductivities, and specific energy. We also investigated formation mechanisms, and resulting geometric characteristics in nanoparticle agglomerates, to systematically study percolation and conductivity in self-assembled structures. In our study of selection of conductive additives, architectures of model composite cathodes, comprised of active material, graphite, carbon black, and PVDF, were generated using our prior approach in simulating polydisperse arrangements. A key finding of this portion of the work, was that the conductive coatings strongly influence conductivity, via reduction of contact resistance. Thus, we conclude that neither surface nor bulk modifications of active material particles conductivities seem to be desirable targets for improvement of laminate conductivity, for the ranges of materials studied. In the cathode optimization study, our results quantified trade-offs among ionic and electronic conductivity, and conductivity and specific energy. We also provided quantitative relationships for improved utilization and specific power, with higher specific energy. Finally, we provided quantitative guidance for design of high energy density Li(Ni1/3Co1/3Mn1/3)O2 cells using conductive additives, and also provided guidelines for design of cathode systems, based directly on solid and liquid phase transport limitations. In the agglomeration and aggregation study, 3D, branch-like nanoparticle agglomerates were systematically studied via use of new algorithms in

  15. Multicapillary cathode controlled by a ferroelectric plasma source

    Science.gov (United States)

    Gleizer, J. Z.; Hadas, Y.; Krasik, Ya. E.

    2008-06-01

    We present results of high-current microsecond and sub-microsecond duration electron beam generation in a ~200 kV diode with a multicapillary dielectric cathode (MCDC) assisted by a ferroelectric plasma source (FPS). Electron beam current densities are achieved up to 40 A/cm2. It was shown that the operation of the MCDC is determined by the parameters of the plasma flow generated by the FPS. Also, it was found that the high resistivity of the plasma produced inside the capillaries allows effective de-coupling of individual capillary plasma discharges which results in uniform electron beam generation.

  16. Ultra High Energy Density Cathodes with Carbon Nanotubes

    Science.gov (United States)

    2013-12-10

    34Enhanced Capacity and Rate Capability of Carbon Nanotube Based Anodes with Titanium Contacts for Lithium Ion Batteries," ACS Nano, vol. 4, pp. 6121- 6131...2010/10/26 2010. [2] S. L. Chou, et al., "Silicon/Single-Walled Carbon Nanotube Composite Paper as a Flexible Anode Material for Lithium Ion...AFRL-RV-PS- AFRL-RV-PS- TR-2013-0170 TR-2013-0170 ULTRA HIGH ENERGY DENSITY CATHODES WITH CARBON NANOTUBES Brian J. Landi, et al. Rochester

  17. Signal propagation in straw tubes with resistive cathode

    CERN Document Server

    Marzec, J; Pawlowski, Z; Konarzewski, B

    2000-01-01

    The analysis presented in this paper is part of the research performed by the authors for the COMPASS experiment at CERN. We have developed a theoretical model of the signal transmission in a straw tube. In contrast to commonly used simplified models, our approach takes into account the energy losses in the cathode resistance. This model allows determination of the main electrical parameters, such as characteristic impedance and signal attenuation, as well as a detailed simulation of the pulse shape dependent on the point of the charge injection. Simulation results have been compared with the results of experimental measurements of different types of the straw detectors. (7 refs).

  18. Performance Testing of the CMS Cathode Strip Chambers

    CERN Document Server

    Breedon, Richard; Andreev, M. Tripathi V; Arisaka, Katsushi; Cline, David; Hauser, Jay; Ignatenko, Mikhail; Lisowsky, B; Matthey, Christina; Rakness, Gregory; Wenman, Daniel

    2009-01-01

    The production, installation, and testing of 468 cathode strip chambers for the endcap muon system of the CMS experiment played a critical role in the preparation of the endcap muon system for the final commissioning. Common testing procedures and sets of standard equipment were used at 5 international assembly centers. The chambers were then thoroughly retested after shipment to CERN. Final testing was performed after chamber installation on the steel disks in the CMS detector assembly building. The structure of the detector quality control procedure is presented along with the results of chamber performance validation tests.

  19. Ultrasonic-assisted cathodic electrochemical discharge for graphene synthesis.

    Science.gov (United States)

    Van Thanh, Dang; Oanh, Phung Phi; Huong, Do Tra; Le, Phuoc Huu

    2017-01-01

    We present a novel and highly efficient method for exfoliating of graphite to produce graphene via the synergistic effects of in-situ plasma induced electrochemical exfoliation with ultrasonic energy, called ultrasonic-assisted cathodic electrochemical discharge. This method can work at moderate temperatures without the need of acidic media or expensive ionic electrolyte. The produced graphene exhibited a large lateral dimension of approximately 6μm and a thickness of 2.5nm, corresponding to approximately seven layers of graphene. An exfoliating mechanism of graphite to produce graphene sheets is also proposed in this study.

  20. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    A four-step infiltration method has been developed to infiltrate La0.75Sr0.25MnO3+δ (LSM25) nanoparticles into porous structures (YSZ or LSM-YSZ backbones). The pore size distribution in the backbones is obtained either by using PMMA and/or graphites as pore formers or by leaching treatment of sa...... of samples with Ni remained in the YSZ structure at high temperatures. All impregnated backbones, presented Rs comparable to a standard screen printed cathode, which proves that LSM nanoparticles forms a pathway for electron conduction....