WorldWideScience

Sample records for cathodes

  1. Cathodic Protection Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs Navy design and engineering of ship and submarine impressed current cathodic protection (ICCP) systems for underwater hull corrosion control and...

  2. Cathodes - Technological review

    Energy Technology Data Exchange (ETDEWEB)

    Cherkouk, Charaf; Nestler, Tina [Institut für Experimentelle Physik, Technische Universität Bergakademie Freiberg, Leipziger Straße 23, 09596 Freiberg (Germany)

    2014-06-16

    Lithium cobalt oxide (LiCoO{sub 2}) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO{sub 2} is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO{sub 2}. Electrochemical and structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented.

  3. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  4. Cathodes - Technological review

    International Nuclear Information System (INIS)

    Lithium cobalt oxide (LiCoO2) was already used in the first commercialized Li-ion battery by SONY in 1990. Still, it is the most frequently used cathode material nowadays. However, LiCoO2 is intrinsically unstable in the charged state, especially at elevated temperatures and in the overcharged state causing volume changes and transport limitation for high power batteries. In this paper, some technological aspects with large impact on cell performance from the cathode material point of view will be reviewed. At first it will be focused on the degradation processes and life-time mechanisms of the cathode material LiCoO2. Electrochemical and structural results on commercial Li-ion batteries recorded during the cycling will be discussed. Thereafter, advanced nanomaterials for new cathode materials will be presented

  5. Cathode materials review

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus, E-mail: danielc@ornl.gov; Mohanty, Debasish, E-mail: danielc@ornl.gov; Li, Jianlin, E-mail: danielc@ornl.gov; Wood, David L., E-mail: danielc@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Road, MS6472 Oak Ridge, TN 37831-6472 (United States)

    2014-06-16

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO{sub 2} cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  6. Cathode materials review

    Science.gov (United States)

    Daniel, Claus; Mohanty, Debasish; Li, Jianlin; Wood, David L.

    2014-06-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  7. Cathode materials review

    International Nuclear Information System (INIS)

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403-431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead-acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide-hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J. Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783-789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research

  8. Highly Efficient Micro Cathode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Company, Inc. proposes to develop a micro thermionic cathode that requires extremely low power and provides long lifetime. The basis for the cathode is a...

  9. Advanced Cathode Electrolyzer (ACE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a static, cathode-fed, 2000 psi, balanced-pressure Advanced Cathode Electrolyzer (ACE) based on PEM electrolysis technology. It...

  10. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  11. Smart cathodic protection systems

    NARCIS (Netherlands)

    Polder, R.B.; Leggedoor, J.; Schuten, G.; Sajna, S.; Kranjc, A.

    2010-01-01

    Cathodic protection delivers corrosion protection in concrete structures exposed to aggressive environments, e.g. in de-icing salt and marine climates. Working lives of a large number of CP systems are at least more than 13 years and probably more than 25 years, provided a minimum level of maintenan

  12. Pipeline integrity through cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N. [Gas Authority India Ltd., New Delhi (India); Khanna, A.S. [Indian Inst. of Technology, Bombay (India)

    2008-07-01

    Pipeline integrity management is defined as a process for assessing and mitigating pipeline risks in an effort to reduce both the likelihood and consequences of incidents. Defects on pipelines result in production losses, environmental losses, as well as loss of goodwill and subsequent financial losses. This presentation addressed pipeline integrity through cathodic protection. It noted that pipeline integrity can be strengthened by successfully controlling, monitoring and mitigating corrosion strategies. It can also be achieved by avoiding external and internal corrosion failures. A good coating offers the advantages of low current density; lower power consumption; low wear of anodes; larger spacing between cathodic protection stations; and minimization of interference problems. The presentation reviewed cathodic protection of cross-country pipelines; a sacrificial cathodic protection system; and an impressed current cathodic protection system. The efficiency of a cathodic system was shown to depend on the use of reliable power sources; proper protection criterion; efficient and effective monitoring of cathodic protection; proper maintenance of the cathodic protection system; and effective remedial measures. Selection criteria, power sources, and a comparison of cathodic protection sources were also presented. Last, the presentation addressed protection criteria; current interruption circuits; monitoring of the cathodic protection system; use of corrosion coupons; advantages of weightless coupons; checking the insulating flanges for shorted bolts; insulated/short casings; anodic and cathodic interference; common corridor problems; and intelligent pigging. tabs., figs.

  13. The cathode plasma simulation

    Science.gov (United States)

    Suksila, Thada

    Since its invention at the University of Stuttgart, Germany in the mid-1960, scientists have been trying to understand and explain the mechanism of the plasma interaction inside the magnetoplasmadynamics (MPD) thruster. Because this thruster creates a larger level of efficiency than combustion thrusters, this MPD thruster is the primary cadidate thruster for a long duration (planetary) spacecraft. However, the complexity of this thruster make it difficult to fully understand the plasma interaction in an MPD thruster while operating the device. That is, there is a great deal of physics involved: the fluid dynamics, the electromagnetics, the plasma dynamics, and the thermodynamics. All of these physics must be included when an MPD thruster operates. In recent years, a computer simulation helped scientists to simulate the experiments by programing the physics theories and comparing the simulation results with the experimental data. Many MPD thruster simulations have been conducted: E. Niewood et al.[5], C. K. J. Hulston et al.[6], K. D. Goodfellow[3], J Rossignol et al.[7]. All of these MPD computer simulations helped the scientists to see how quickly the system responds to the new design parameters. For this work, a 1D MPD thruster simulation was developed to find the voltage drop between the cathode and the plasma regions. Also, the properties such as thermal conductivity, electrical conductivity and heat capacity are temperature and pressure dependent. These two conductivity and heat capacity are usually definded as constant values in many other models. However, this 1D and 2D cylindrical symmetry MPD thruster simulations include both temperature and pressure effects to the electrical, thermal conductivities and heat capacity values interpolated from W. F. Ahtye [4]. Eventhough, the pressure effect is also significant; however, in this study the pressure at 66 Pa was set as a baseline. The 1D MPD thruster simulation includes the sheath region, which is the

  14. Nanostructured lanthanum manganate composite cathode

    DEFF Research Database (Denmark)

    Wang, Wei Guo; Liu, Yi-Lin; Barfod, Rasmus;

    2005-01-01

    that the (La1-xSrx)(y)MnO3 +/-delta (LSM) composite cathodes consist of a network of homogenously distributed LSM, yttria-stabilized zirconia (YSZ), and pores. The individual grain size of LSM or YSZ is approximately 100 nm. The degree of contact between cathode and electrolyte is 39% on average. (c) 2005...

  15. Virtual cathode microwave devices -- Basics

    Energy Technology Data Exchange (ETDEWEB)

    Thode, L.E.; Snell, C.M.

    1991-01-01

    Unlike a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential can cause electron reflection. The region associated with this electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and through the bunching of electrons trapped in a potential well between the real and virtual cathodes. These two mechanisms are competitive. There are three basic classes of virtual cathode devices: (1) reflex triode; (2) reditron and side-shoot vircator; and (3) reflex diode or vircator. The reflex diode is the highest power virtual-cathode device. For the reflex diode the energy exchange between the beam and electromagnetic wave occurs in both the axial and radial directions. In some designs the oscillating-virtual-cathode frequency exceeds the reflexing-electron frequency exceeds the oscillating-virtual-cathode frequency. For the flex diode a periodic disruption in magnetic insulation can modulate the high- frequency microwave power. Overall, particle-in-cell simulation predictions and axial reflex diode experiments are in good agreement. Although frequency stability and phase locking of the reflex diode have been demonstrated, little progress has been made in efficiency enhancement. 58 refs., 11 figs.

  16. Virtual cathode microwave devices: Basics

    Science.gov (United States)

    Thode, L. E.; Snell, C. M.

    Unlike a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential can cause electron reflection. The region associated with this electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and through the bunching of electrons trapped in a potential well between the real and virtual cathodes. These two mechanisms are competitive. There are three basic classes of virtual cathode devices: (1) reflex triode; (2) reditron and side-shoot vircator; and (3) reflex diode or vircator. The reflex diode is the highest power virtual-cathode device. For the reflex diode the energy exchange between the beam and electromagnetic wave occurs in both the axial and radial directions. In some designs the oscillating virtual-cathode frequency exceeds the reflexing-electron frequency while in other designs the reflexing-electron frequency exceeds the oscillating virtual-cathode frequency. For the flex diode, a periodic disruption in magnetic insulation can modulate the high-frequency microwave power. Overall, particle-in-cell simulation predictions and axial reflex diode experiments are in good agreement. Although frequency stability and phase locking of the reflex diode have been demonstrated, little progress has been made in efficiency enhancement.

  17. Hollow Cathode With Multiple Radial Orifices

    Science.gov (United States)

    Brophy, John R.

    1992-01-01

    Improved hollow cathode serving as source of electrons has multiple radial orifices instead of single axial orifice. Distributes ion current more smoothly, over larger area. Prototype of high-current cathodes for ion engines in spacecraft. On Earth, cathodes used in large-diameter ion sources for industrial processing of materials. Radial orientation of orifices in new design causes current to be dispersed radially in vicinity of cathode. Advantageous where desireable to produce plasma more nearly uniform over wider region around cathode.

  18. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a reservoir cathode to improve performance in both ion and Hall-effect thrusters. We propose to adapt our existing reservoir cathode technology to this...

  19. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a hollow reservoir cathode to improve performance in ion and Hall thrusters. We will adapt our existing reservoir cathode technology to this purpose....

  20. Hollow cathode arc: effect of the cathode material on the internal plasma

    International Nuclear Information System (INIS)

    In discharges with hollow cathodes functioning in the arc regime, the cathode emits thermionic electrons which ionize the gas. To reduce the electrical power consumed by these discharges, cathodes made of thoriated tungsten and lathanum hexaboride have been used. The parameters of the plasma generated into the cathode have been measured with electrostatic probes. (Auth.)

  1. Mechanistic Enhancement of SOFC Cathode Durability

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, Eric [Univ. of Maryland, College Park, MD (United States)

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  2. Novel Cathodes Prepared by Impregnation Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Eduardo Paz

    2006-09-30

    (1) We showed that similar results were obtained when using various LSM precursors to produce LSM-YSZ cathodes. (2) We showed that enhanced performance could be achieved by adding LSCo to LSMYSZ cathodes. (3) We have preliminary results showing that there is a slow deactivation with LSFYSZ cathodes.

  3. Cathodic protection to control microbiologically influenced corrosion

    International Nuclear Information System (INIS)

    Information about the cathodic protection performance in environments with microbiologically influenced corrosion (MIC) effects is very fragmented and often contradictory. Not enough is known about the microbial effects on cathodic protection effectiveness, criteria, calcareous deposits, corrosion rates and possible hydrogen embrittlement of titanium and some stainless steel condenser tubes. This paper presents a review of cathodic protection systems, describes several examples of cathodic protection in environments with MIC effects and provides preliminary conclusions about cathodic protection design parameters, criteria and effectiveness in MIC environments. 30 refs

  4. Cathodes for molten-salt batteries

    Science.gov (United States)

    Argade, Shyam D.

    1993-02-01

    Viewgraphs of the discussion on cathodes for molten-salt batteries are presented. For the cathode reactions in molten-salt cells, chlorine-based and sulfur-based cathodes reactants have relatively high exchange current densities. Sulfur-based cathodes, metal sulfides, and disulfides have been extensively investigated. Primary thermal batteries of the Li-alloy/FeS2 variety have been available for a number of years. Chlorine based rechargable cathodes were investigated for the pulse power application. A brief introduction is followed by the experimental aspects of research, and the results obtained. Performance projections to the battery system level are discussed and the presentation is summarized with conclusions.

  5. Synopsis of Cathode No.4 Activation

    International Nuclear Information System (INIS)

    The purpose of this report is to describe the activation of the fourth cathode installed in the DARHT-II Injector. Appendices have been used so that an extensive amount of data could be included without danger of obscuring important information contained in the body of the report. The cathode was a 612 M type cathode purchased from Spectra-Mat. Section II describes the handling and installation of the cathode. Section III is a narrative of the activation based on information located in the Control Room Log Book supplemented with time plots of pertinent operating parameters. Activation of the cathode was performed in accordance with the procedure listed in Appendix A. The following sections provide more details on the total pressure and constituent partial pressures in the vacuum vessel, cathode heater power/filament current, and cathode temperature

  6. Hybrid microwave oscillators with a virtual cathode

    International Nuclear Information System (INIS)

    A review is given of the developments and theoretical investigations of a fundamentally new class of microwave devices, namely, hybrid microwave oscillators with a virtual cathode, which combine the useful properties of virtual cathodes with the advantages of those traditional microwave oscillators that operate with subcritical-current beams and have a high efficiency in generating ultrarelativistic electron beams. Among such devices are the following: a hybrid diffractional microwave oscillator with a virtual cathode, a hybrid gyro-device with a virtual cathode, a hybrid beam-plasma vircator, a hybrid gyrocon with a virtual cathode, a hybrid Cherenkov oscillator with a virtual cathode, a hybrid microwave oscillator of the 'vircator + traveling-wave tube' type, an original two-beam tube with a virtual cathode, and a klystron-like vircator

  7. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2002-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is

  8. A pulsed cathodic arc spacecraft propulsion system

    Science.gov (United States)

    Neumann, P. R. C.; Bilek, M. M. M.; Tarrant, R. N.; McKenzie, D. R.

    2009-11-01

    We investigate the use of a centre-triggered cathodic arc as a spacecraft propulsion system that uses an inert solid as a source of plasma. The cathodic vacuum arc produces almost fully ionized plasma with a high exhaust velocity (>104 m s-1), giving a specific impulse competitive with other plasma or ion thrusters. A centre trigger design is employed that enables efficient use of cathode material and a high pulse-to-pulse repeatability. We compare three anode geometries, two pulse current profiles and two pulse durations for their effects on impulse generation, energy and cathode material usage efficiency. Impulse measurement is achieved through the use of a free-swinging pendulum target constructed from a polymer material. Measurements show that impulse is accurately controlled by varying cathode current. The cylindrical anode gave the highest energy efficiency. Cathode usage is optimized by choosing a sawtooth current profile. There is no requirement for an exhaust charge neutralization system.

  9. Cathode materials: A personal perspective

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Texas Materials Institute, University of Texas at Austin, ETC 9.102, 1 University Station, Austin, TX 78712-1063 (United States)

    2007-12-06

    A thermodynamically stable rechargeable battery has a voltage limited by the window of the electrolyte. An aqueous electrolyte has a window of 1.2 eV, which prevents achieving the high energy density desired for many applications. A non-aqueous electrolyte with a window of 5 eV requires Li{sup +} rather than H{sup +} as the working ion. Early experiments with Li{sub x}TiS{sub 2} cathodes showed competitive capacity and rate capability, but problems with a lithium anode made the voltage of a safe cell based on a sulfide cathode too low to be competitive with a nickel/metal-hydride battery. Transition-metal oxides can give voltages of 4.5 V versus Li{sup +}/Li{sup 0}. However, the challenge with oxides has been to obtain a competitive capacity and rate capability while retaining a high voltage with low-cost, environmentally friendly cathode materials. Comparisons will be made between layered Li{sub 1-x}MO{sub 2}, spinels Li{sub 1-x}[M{sub 2}]O{sub 4}, and olivines Li{sub 1-x}MPO{sub 4} having 0 < x < 1. Although higher capacities can be obtained with layered Li{sub 1-x}MO{sub 2} compounds, which have enabled the wireless revolution, their metastability makes them unlikely to be used in power applications. The spinel and olivine framework structures have been shown to be capable of charge/discharge rates of over 10C with a suitable temperature range for plug-in hybrid vehicles. (author)

  10. Cathode-follower power amplifier

    International Nuclear Information System (INIS)

    In circular accelerators and particularly in storage rings it is essential that the total impedance, as seen by the beam, be kept below some critical value. A model of the accelerating system was built using a single-ended cathode-follower amplifier driving a ferrite-loaded cavity. The system operated at 234.5 kHz with a peak output voltage of +-10 kV on the gap. The dynamic output impedance, as measured on the gap, was < 15 ohms

  11. Hollow cathode lamp-construction aspects

    International Nuclear Information System (INIS)

    The hollow cathode discharge is a source used for absorption and fluorescence atomic spectrophotometry. In this paper various aspect like construction, cleanliness and operation have been described. The life time of the hollow cathode discharge for specific current is about 500 hs. The range of current for the non significant self-absorption of the recommended wavelenght has been determinated. (Author)

  12. Klystron Amplifier Utilizing Scandate Cathode and Electrostatic Focusing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build an electrostatically focused klystron that exploits recent breakthroughs in scandate cathode technology. We have built cathodes with greater...

  13. Analysis of cathode geometry to minimize cathode erosion in direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Causa, Federica [Dipartimento di Scienze dell' Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Universita degli studi di Messina, 98122 Messina (Italy); Ghezzi, Francesco; Caniello, Roberto; Grosso, Giovanni [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dellasega, David [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Via R. Cozzi 53, 20125 Milano (Italy); Dipartimento di Energia, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy)

    2012-12-15

    Microplasma jets are now widely used for deposition, etching, and materials processing. The present study focuses on the investigation of the influence of cathode geometry on deposition quality, for microplasma jet deposition systems in low vacuum. The interest here is understanding the influence of hydrogen on sputtering and/or evaporation of the electrodes. Samples obtained with two cathode geometries with tapered and rectangular cross-sections have been investigated experimentally by scanning electron microscopy and energy dispersion X-ray spectroscopy. Samples obtained with a tapered-geometry cathode present heavy contamination, demonstrating cathode erosion, while samples obtained with a rectangular-cross-section cathode are free from contamination. These experimental characteristics were explained by modelling results showing a larger radial component of the electric field at the cathode inner wall of the tapered cathode. As a result, ion acceleration is larger, explaining the observed cathode erosion in this case. Results from the present investigation also show that the ratio of radial to axial field components is larger for the rectangular geometry case, thus, qualitatively explaining the presence of micro-hollow cathode discharge over a wide range of currents observed in this case. In the light of the above findings, the rectangular cathode geometry is considered to be more effective to achieve cleaner deposition.

  14. Hall-effect thruster--Cathode coupling: The effect of cathode position and magnetic field topology

    Science.gov (United States)

    Sommerville, Jason D.

    2009-12-01

    Hall-effect thruster (HET) cathodes are responsible for the generation of the free electrons necessary to initiate and sustain the main plasma discharge and to neutralize the ion beam. The position of the cathode relative to the thruster strongly affects the efficiency of thrust generation. However, the mechanisms by which the position affects the efficiency are not well understood. This dissertation explores the effect of cathode position on HET efficiency. Magnetic field topology is shown to play an important role in the coupling between the cathode plasma and the main discharge plasma. The position of the cathode within the magnetic field affects the ion beam and the plasma properties of the near-field plume, which explains the changes in efficiency of the thruster. Several experiments were conducted which explored the changes of efficiency arising from changes in cathode coupling. In each experiment, the thrust, discharge current, and cathode coupling voltage were monitored while changes in the independent variables of cathode position, cathode mass flow and magnetic field topology were made. From the telemetry data, the efficiency of the HET thrust generation was calculated. Furthermore, several ion beam and plasma properties were measured including ion energy distribution, beam current density profile, near-field plasma potential, electron temperature, and electron density. The ion beam data show how the independent variables affected the quality of ion beam and therefore the efficiency of thrust generation. The measurements of near-field plasma properties partially explain how the changes in ion beam quality arise. The results of the experiments show that cathode position, mass flow, and field topology affect several aspects of the HET operation, especially beam divergence and voltage utilization efficiencies. Furthermore, the experiments show that magnetic field topology is important in the cathode coupling process. In particular, the magnetic field

  15. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  16. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  17. Plasma distribution of cathodic ARC deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Raoux, S.; Krishnan, K.; MacGill, R.A.; Brown, I.G. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    The plasma distribution using a cathodic arc plasma source with and without magnetic macroparticle filter has been determined by depositing on a transparent plastic substrate and measuring the film absorption. It was found that the width of the distribution depends on the arc current, and it also depends on the cathode material which leads to a spatial separation of the elements when an alloy cathode is used. By applying a magnetic multicusp field near the exit of the magnetic filter, it was possible to modify the plasma distribution and obtain a flat plasma profile with a constant and homogeneous elemental distribution.

  18. Cyclotron resonance in a cathode ray tube

    International Nuclear Information System (INIS)

    Absorption of the RF energy by the electron beam in a cathode ray tube due to the cyclotron resonance is described. The cathode ray tube is placed within a Helmholtz coils system supplied by a sawtooth current generator. In order to generate RF field and to detect RF absorption a gate dip-meter equipped with a FET transistor is used. The bias voltage variations of the FET transistors as a function of the magnetic field are recorded. The operating point of the cathode ray tube has been chosen so that the relaxation oscillations of the detection system can be observed. (authors)

  19. High power microwave generation from coaxial virtual cathode oscillator using graphite and velvet cathodes

    Science.gov (United States)

    Menon, Rakhee; Roy, Amitava; Singh, S. K.; Mitra, S.; Sharma, Vishnu; Kumar, Senthil; Sharma, Archana; Nagesh, K. V.; Mittal, K. C.; Chakravarthy, D. P.

    2010-05-01

    High power microwave (HPM) generation studies were carried out in KALI-5000 pulse power system. The intense relativistic electron beam was utilized to generate HPMs using a coaxial virtual cathode oscillator. The typical electron beam parameters were 350 kV, 25 kA, and 100 ns, with a few hundreds of ampere per centimeter square current density. Microwaves were generated with graphite and polymer velvet cathode at various diode voltage, current, and accelerating gaps. A horn antenna setup with diode detector and attenuators was used to measure the microwave power. It was observed that the microwave power increases with the diode voltage and current and reduces with the accelerating gap. It was found that both the peak power and width of the microwave pulse is larger for the velvet cathode compared to the graphite cathode. In a coaxial vircator, velvet cathode is superior to the graphite cathode due to its shorter turn on time and better electron beam uniformity.

  20. RF Electron Gun with Driven Plasma Cathode

    CERN Document Server

    Khodak, Igor

    2005-01-01

    It's known that RF guns with plasma cathodes based on solid-state dielectrics are able to generate an intense electron beam. In this paper we describe results of experimental investigation of the single cavity S-band RF gun with driven plasma cathode. The experimental sample of the cathode based on ferroelectric ceramics has been designed. Special design of the cathode permits to separate spatially processes of plasma development and electron acceleration. It has been obtained at RF gun output electron beam with particle energy ~500 keV, pulse current of 4 A and pulse duration of 80 ns. Results of experimental study of beam parameters are referred in. The gun is purposed to be applied as the intense electron beam source for electron linacs.

  1. Hollow cathode ion source without magnetic field

    International Nuclear Information System (INIS)

    On the base of the IBM-4 ion source a hollow cathode source operating in the continuous regime is developed. The gas discharge chamber diameter equals 100 mm, chamber height - 50 mm. A hollow cathode represents a molybdenum tube with an internal diameter 13 mm and wall thickness 0,7-0,8 mm. An emitter is manufactured from zirconium carbide and lanthanum hexaboride. The investigations of the source operation have shown both cathodes operated efficiency. Electron emission density consitutes 25 A/cm2. At the 50 A discharge current ion current density in a center of plasma emitter constitutes 120 mA/cm2. As a result of the investigations carried out the compatibility of the hollow cathode and the IBM-type source is shown

  2. Reservoir Scandate Cathode for Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to combine two revolutionary cathode technologies into a single device for use in electric space propulsion. This will overcome problems that both...

  3. High current density cathode for electrorefining in molten electrolyte

    Science.gov (United States)

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  4. Salt taste inhibition by cathodal current

    OpenAIRE

    Hettinger, Thomas P.; Frank, Marion E.

    2009-01-01

    Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of −40 to −80 µA were applied to human subjects’ tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, sodium su...

  5. Co-Flow Hollow Cathode Technology

    Science.gov (United States)

    Hofer, Richard R.; Goebel, Dan M.

    2011-01-01

    Hall thrusters utilize identical hollow cathode technology as ion thrusters, yet must operate at much higher mass flow rates in order to efficiently couple to the bulk plasma discharge. Higher flow rates are necessary in order to provide enough neutral collisions to transport electrons across magnetic fields so that they can reach the discharge. This higher flow rate, however, has potential life-limiting implications for the operation of the cathode. A solution to the problem involves splitting the mass flow into the hollow cathode into two streams, the internal and external flows. The internal flow is fixed and set such that the neutral pressure in the cathode allows for a high utilization of the emitter surface area. The external flow is variable depending on the flow rate through the anode of the Hall thruster, but also has a minimum in order to suppress high-energy ion generation. In the co-flow hollow cathode, the cathode assembly is mounted on thruster centerline, inside the inner magnetic core of the thruster. An annular gas plenum is placed at the base of the cathode and propellant is fed throughout to produce an azimuthally symmetric flow of gas that evenly expands around the cathode keeper. This configuration maximizes propellant utilization and is not subject to erosion processes. External gas feeds have been considered in the past for ion thruster applications, but usually in the context of eliminating high energy ion production. This approach is adapted specifically for the Hall thruster and exploits the geometry of a Hall thruster to feed and focus the external flow without introducing significant new complexity to the thruster design.

  6. Development of plasma cathode electron guns

    Science.gov (United States)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  7. Determination of Nd, Ho, Er, Tm and Y in solutions by hollow cathode discharge with copper cathodes

    International Nuclear Information System (INIS)

    A hollow cathode discharge has been applied to the determination of Nd, Ho, Er, Tm and Y in solutions using copper cathodes and argon as a carrier gas. The solutions were evaporated to dryness in the cathodes without a pretreatment. Absolute detection limit for the elements studied here were found to be lower in the copper cathode by about one order than those obtained in previous studies in graphite hollow cathodes

  8. Compact Rare Earth Emitter Hollow Cathode

    Science.gov (United States)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  9. 2013 Estorm - Invited Paper - Cathode Materials Review

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, Claus [ORNL; Mohanty, Debasish [ORNL; Li, Jianlin [ORNL; Wood III, David L [ORNL

    2014-01-01

    The electrochemical potential of cathode materials defines the positive side of the terminal voltage of a battery. Traditionally, cathode materials are the energy-limiting or voltage-limiting electrode. One of the first electrochemical batteries, the voltaic pile invented by Alessandro Volta in 1800 (Phil. Trans. Roy. Soc. 90, 403 431) had a copper-zinc galvanic element with a terminal voltage of 0.76 V. Since then, the research community has increased capacity and voltage for primary (nonrechargeable) batteries and round-trip efficiency for secondary (rechargeable) batteries. Successful secondary batteries have been the lead acid with a lead oxide cathode and a terminal voltage of 2.1 V and later the NiCd with a nickel(III) oxide hydroxide cathode and a 1.2 V terminal voltage. The relatively low voltage of those aqueous systems and the low round-trip efficiency due to activation energies in the conversion reactions limited their use. In 1976, Wittingham (J. Electrochem. Soc., 123, 315) and Besenhard (J Power Sources 1(3), 267) finally enabled highly reversible redox reactions by intercalation of lithium ions instead of by chemical conversion. In 1980, Goodenough and Mizushima (Mater. Res. Bull. 15, 783 789) demonstrated a high-energy and high-power LiCoO2 cathode, allowing for an increase of terminal voltage far beyond 3 V. Over the past four decades, the international research community has further developed cathode materials of many varieties. Current state-of-the-art cathodes demonstrate voltages beyond any known electrolyte stability window, bringing electrolyte research once again to the forefront of battery research.

  10. Preparation of nanocomposite thoriated tungsten cathode by swaging technique

    Institute of Scientific and Technical Information of China (English)

    王发展; 诸葛飞; 张晖; 丁秉钧

    2002-01-01

    By using the high energy ball milling method,the nanosized ThO2 powders were obtained.Through mixing powders,sintering and hot swaging processing,a nanocomposite thoriated tungsten cathode was fabricated.The relative density of the nanocomposite material is near 100%.The microstructure of nanocomposite cathode is quite different from that of conventional thoriated tungsten cathode.Most of thoria particles are less than 100 nm in diameter,and distribute on the boundaries of tungsten grains.The nanocomposite cathode shows a much lower arc starting field than that of conventional cathode,which will improve the performance of the cathode significantly.

  11. Sheet Plasma Produced by Hollow Cathode Discharge

    Institute of Scientific and Technical Information of China (English)

    张龙; 张厚先; 杨宣宗; 冯春华; 乔宾; 王龙

    2003-01-01

    A sheet plasma is produced by a hollow cathode discharge under an axial magnetic field.The plasma is about 40cm in length,4 cm in width and 1cm in thickness.The electron density is about 108cm-3.The hollow cathode is made to be shallow with a large opening,which is different from the ordinary deep hollow cathode.A Langmuir probe is used to detect the plasma.The electron density and the spatial distribution of the plasma change when voltage,pressure and the magnetic field vary.A peak and a data fluctuation at about 200 G-300 G are observed in the variation of electron density(or thickness of the sheet plasma)with the magnetic field.Our work will be helpful in characterizing the sheet plasma and will make the production of dense sheet plasma more controllable.

  12. Sheet plasma produced by hollow cathode discharge

    International Nuclear Information System (INIS)

    A sheet plasma is produced by a hollow cathode discharge under an axial magnetic field. The plasma is about 40 cm in length, 4 cm in width and 1 cm in thickness. The electron density is about 108 cm-3. The hollow cathode is made to be shallow with a large opening, which is different from the ordinary deep hollow cathode. A Langmuir probe is used to detect the plasma. The electron density and the spatial distribution of the plasma change when voltage, pressure and the magnetic field vary. A peak and a data fluctuation at about 200 G - 300 G are observed in the variation of electron density (or thickness of the sheet plasma) with the magnetic field. Our work will be helpful in characterizing the sheet plasma and will make the production of dense sheet plasma more controllable

  13. Synchrotron Investigations of SOFC Cathode Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Idzerda, Yves

    2013-09-30

    The atomic variations occurring in cathode/electrolyte interface regions of La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3-δ} (LSCF) cathodes and other SOFC related materials have been investigated and characterized using soft X-ray Absorption Spectroscopy (XAS) and diffuse soft X-ray Resonant Scattering (XRS). X-ray Absorption Spectroscopy in the soft X-ray region (soft XAS) is shown to be a sensitive technique to quantify the disruption that occurs and can be used to suggest a concrete mechanism for the degradation. For LSC, LSF, and LSCF films, a significant degradation mechanism is shown to be Sr out-diffusion. By using the XAS spectra of hexavalent Cr in SrCrO4 and trivalent Cr in Cr2O3, the driving factor for Sr segregation was identified to be the oxygen vacancy concentration at the anode and cathode side of of symmetric LSCF/GDC/LSCF heterostructures. This is direct evidence of vacancy induced cation diffusion and is shown to be a significant indicator of cathode/electrolyte interfacial degradation. X-ray absorption spectroscopy is used to identify the occupation of the A-sites and B-sites for LSC, LSF, and LSCF cathodes doped with other transition metals, including doping induced migration of Sr to the anti-site for Sr, a significant cathode degradation indicator. By using spatially resolved valence mapping of Co, a complete picture of the surface electrochemistry can be determined. This is especially important in identifying degradation phenomena where the degradation is spatially localized to the extremities of the electrochemistry and not the average. For samples that have electrochemical parameters that are measured to be spatially uniform, the Co valence modifications were correlated to the effects of current density, overpotential, and humidity.

  14. DARHT 2 kA Cathode Development

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B.; Roy, P.K.; Waldron, W.; Westenskow, G.; Yu, S.; Bieniosek, F.M.

    2009-03-09

    In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm{sup 2} of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm{sup 2}. The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10{sup -8} Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function

  15. DARHT 2 kA Cathode Development

    International Nuclear Information System (INIS)

    In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm2 of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm2. The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10-8 Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function value). We reexamined all

  16. Cathode architectures for alkali metal / oxygen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  17. Hollow-Cathode Source Generates Plasma

    Science.gov (United States)

    Deininger, W. D.; Aston, G.; Pless, L. C.

    1989-01-01

    Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.

  18. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  19. Long Life Cold Cathodes for Hall effect Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electron source incorporating long life, high current density cold cathodes inside a microchannel plate for use with ion thrusters is proposed. Cathode lifetime...

  20. Nano-Particle Scandate Cathode for Space Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an improved cathode based on our novel theory of the role of scandium oxide in enhancing emission in tungsten impregnate cathodes. Recent results have...

  1. Optimized high-temperature cathode-heating unit

    International Nuclear Information System (INIS)

    Description of structure and test results of cathode-heating unit for electron accelerators are presented. In the given cathode unit LaB6 cathode area is enlarged, efficient heat isolations are used, heating element stiffness and strength are increased. Compact shild packets are used in a cathode unit. The heating element is made in the form of concentric rings. The unit heat efficiency is >80%, nonisothermality ΔT2 emitter area at T=2050 K constituted 700 h

  2. Uniform large-area thermionic cathode for SCALPEL

    Science.gov (United States)

    Katsap, Victor; Sewell, Peter B.; Waskiewicz, Warren K.; Zhu, Wei

    1999-11-01

    An electron beam lithography tool, which employs the SCALPEL technique, requires an extremely uniform beam to illuminate the scattering Mask, with the cathode operating in the temperature limited mode. It has been previously shown that LaB6 cathodes are not stable in this mode of operation. We have explored the possibility of implementing refined Tantalum-based emitters in the SCALPEL source cathode, and have developed large-area flat cathodes featuring suitably high emission uniformity under temperature limited operation.

  3. Feature of "Cold" Fusion Reaction in a Deuterated Complex Cathode

    OpenAIRE

    ARATA, Yoshiaki; ZHANG, Yue-Chang

    1992-01-01

    [Abstract] In order to corroborate the evidence of "cold" fusion reaction, a new-type, complex cathode was developed, consisting of a Ni rod with a Pd layer applied by plasma spraying. High reproducibility of a "cold" fusion reaction was confirmed, using a deuterated complex cathode. The Pd layer showed to have activated the surface functions of the deuterated cathode, and a reliable evidence was obtained that a new type of heat generation occurred in the complex cathode.

  4. Radial profiles of electron density and current components at cathode surface in LaB6 hollow cathode arc

    International Nuclear Information System (INIS)

    Experimental studies on a hydrogen-fed LaB6 hollow cathode arc have been pursued. The plasma parameter in the cathode has been measured by a Langmuir probe. The radial variation in the electron density inside the cathode was calculated using the continuity and momentum equations, showing good agreement with the experimental results. The electron density at the cathode surface was estimated to be 15 % - 20 % of that at the cathode axis. It was also found from the current balance that the arc current components at the cathode surface consist of a thermionic current which takes into account the Schottky effect, the ion current and the secondary electron current induced by ion bombardment. The ion current and the cathode surface is larger than the electron current emitted from the cathode. (author)

  5. High-voltage virtual-cathode microwave simulations

    Energy Technology Data Exchange (ETDEWEB)

    Thode, L.; Snell, C.M.

    1991-01-01

    In contrast to a conventional microwave tube, a virtual-cathode device operates above the space-charge limit where the depth of the space-charge potential is sufficiently large to cause electron reflection. The region associated with electron reflection is referred to as a virtual cathode. Microwaves can be generated through oscillations in the position of the virtual cathode and by reflexing electrons trapped in the potential well formed between the real and virtual cathodes. A virtual-cathode device based on the first mechanism is a vircator while one based on latter mechanism is a reflex diode. A large number of low-voltage virtual-cathode microwave configurations have been investigated. Initial simulations of a high-voltage virtual-cathode device using a self-consistent particle-in-cell code indicated reasonable conversion efficiency with no frequency chirping. The nonchirping character of the high-voltage virtual-cathode device lead to the interesting possibility of locking four very-high-power microwave devices together using the four transmission lines available at Aurora. Subsequently, in support of two high-voltage experiments, simulations were used to investigate the effect of field-emission threshold and velvet position on the cathode; anode and cathode shape; anode-cathode gap spacing; output waveguide radius; diode voltage; a cathode-coaxial-cavity resonator; a high-frequency ac-voltage drive; anode foil scattering and energy loss; and ion emission on the microwave frequency and power. Microwave

  6. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson

    2000-03-31

    . However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

  7. The double sheath on cathodes of discharges burning in cathode vapour

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M S; Benilova, L G [Departamento de Fisica, Universidade da Madeira, Largo do MunicIpio, 9000 Funchal (Portugal)

    2010-09-01

    The model of a collisionless near-cathode space-charge sheath with ionization of atoms emitted by the cathode surface is considered. Numerical calculations showed that the mathematical problem is solvable and its solution is unique. In the framework of this model, the sheath represents a double layer with a potential maximum, with the ions which are produced before the maximum returning to the cathode surface and those produced after the maximum escaping into the plasma. Numerical results are given in a form to be readily applicable in analysis of discharges burning in cathode vapour, such as vacuum arcs. In particular, the results indicate that the ion backflow coefficient in such discharges exceeds 0.5, in agreement with values extracted from the experiment.

  8. Barium depletion in hollow cathode emitters

    Energy Technology Data Exchange (ETDEWEB)

    Polk, James E., E-mail: james.e.polk@jpl.nasa.gov; Mikellides, Ioannis G.; Katz, Ira [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Capece, Angela M. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States)

    2016-01-14

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al{sub 2}O{sub 3} source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values.

  9. Renovation of the cathodic protection system

    NARCIS (Netherlands)

    Schuten, G.; Leggedoor, J.; Polder, R.B.; Peelen, W.H.A.

    2003-01-01

    The first system for Cathodic Protection of concrete in the Netherlands was applied to a one bicycle lane of a bridge suffering corrosion due to de-icing salt penetration in 1986. This CP system was based on the Ferex 100S conducting polymer cable anode in a cementitious overlay. Its functioning was

  10. Barium depletion in hollow cathode emitters

    International Nuclear Information System (INIS)

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al2O3 source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values

  11. Improved cathodes for a dense plasma focus

    International Nuclear Information System (INIS)

    A series of modified cathodes have been tested in our ultra-high vacuum dense plasma focus (DPF) device in an effort to improve both neutron output and shot-to-shot reproducibility. Inspiration for these modifications originated from time resolved photographs of the initial current sheet as it approaches the cathode. In particular, the current sheet develops a slight annular protrusion, or ''bump'', that contacts the inside wall of the cathode at a distance from the breach approximately coincident with the end of the insulator. In an attempt to take advantage of this protrusion, a series of modified cathodes was provided with a decreased waist diameter in the vicinity of the end of the insulator. As previously discussed, this DPF device is constructed from high vacuum components using metal-to-metal and ceramic (Al2O3)-to-metal seals; the entire assembly is given a vacuum bake at 2500C resulting in a pre-fill vacuum of approx. =5 x 10-9 Torr. The DPF is powered by a 7 μf capacitor bank. The short circuit ringing frequency is 412 kHz corresponding to a free circuit inductance of 21 nH. With the DPF in operation at 20 kV, a current peak of 200 kA occurs at 0.8 μs. Neutron output was measured side on with a silver activation counter, and end on with an arsenic activation counter

  12. Improved Rare-Earth Emitter Hollow Cathode

    Science.gov (United States)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  13. Polymer coatings as separator layers for microbial fuel cell cathodes

    KAUST Repository

    Watson, Valerie J.

    2011-03-01

    Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production. © 2010 Elsevier B.V. All rights reserved.

  14. Emission current control system for multiple hollow cathode devices

    Science.gov (United States)

    Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)

    1988-01-01

    An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.

  15. Emission mechanism in high current hollow cathode arcs

    International Nuclear Information System (INIS)

    Large (2 cm-diameter) hollow cathodes have been operated in a magnetoplasmadynamic (MPD) arc over wide ranges of current (0.25 to 17 kA) and mass flow (10-3 to 8 g/sec), with orifice current densities and mass fluxes encompassing those encountered in low current steady-state hollow cathode arcs. Detailed cathode interior measurements of current and potential distributions show that maximum current penetration into the cathode is about one diameter axially upstream from the tip, with peak inner surface current attachment up to one cathode diameter upstream of the tip. The spontaneous attachment of peak current upstream of the cathode tip is suggested as a criterion for characteristic hollow cathode operation. This empirical criterion is verified by experiment

  16. Design of ANSYS-based Cathode with Complex Groove

    Institute of Scientific and Technical Information of China (English)

    范植坚; 赵刚刚; 张丽娟

    2012-01-01

    The profile of cathode with complex groove needs to be modified time after time during design of electrochemical machining (ECM) cathode.A design scheme using finite element method (FEM) for cathode with complex profile is put forward to shorten the period of cathode design.Based on Laplace equation,the potential distribution on parameter-transformation model was calculated by using ANSYS,which is compared to the potential distribution calculated by substituting conductivity and current efficiency into Laplace equation.According to the difference between the results calculated and simulated by ANSYS,the cathode profile was modified by adjusting the cathode boundary.The experiments show that the dimensions and shape of workpiece machined by numerically simulated cathode conform well with the blueprint.

  17. Erosion behaviour of composite Al-Cr cathodes in cathodic arc plasmas in inert and reactive atmospheres

    CERN Document Server

    Franz, Robert; Hawranek, Gerhard; Polcik, Peter

    2015-01-01

    Al$_{x}$Cr$_{1-x}$ composite cathodes with Al contents of x = 0.75, 0.5 and 0.25 were exposed to cathodic arc plasmas in Ar, N$_2$ and O$_2$ atmospheres and their erosion behaviour was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by X-ray diffraction analysis. Cathode poisoning effects in the reactive N$_2$ and O$_2$ atmospheres were non-uniform as a result of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded centre region of the cathodes.

  18. The coated cathode conductive layer chamber

    International Nuclear Information System (INIS)

    We describe a gaseous detector consisting of thin anode strips vacuum-evaporated on one side of a 100 μ thick plastic layer, alternating on the back side of the same foil with wider parallel cathode strips. Ionizatin released in a drift space on the anode side is amplified and detected much in the same way as in the microstrip gas chamber; in our detector however spontaenous breakdown due to surface currents is completely avoided by the presence of the insulating layer between anodes and cathodes. To reduce surface and volume charging up, we have used polymer foils with a moderate volume resistivity. The first results show good efficiency, good plateaux and time resolution in detecting low-rate minimum ionizing electrons. Although not suited for high rate or good energy resolution applications, this kind of detector seems rather promising for realizing cheaply large active surfaces. (orig.)

  19. The dependence of vircator oscillation mode on cathode material

    Science.gov (United States)

    Li, Limin; Liu, Lie; Cheng, Guoxin; Xu, Qifu; Wan, Hong; Chang, Lei; Wen, Jianchun

    2009-06-01

    This paper presents the effects of cathode materials on the oscillation mode of a virtual cathode oscillator (vircator). In the case of the stainless steel cathode, an oscillation mode hopping appeared with two separate frequencies. Interestingly, the vircator using the carbon fiber cathode exhibited an almost unchanged microwave frequency throughout the microwave pulse. To understand this phenomenon, several parameters are compared, including the diode voltage, accelerating gap, emitting area, and beam uniformity. It was found that a flat-top voltage and a relatively stable gap will provide a possibility of generating a constant microwave frequency. Further, the cathode operated in a regime where the beam current was between the space-charge limited current determined by Child-Langmuir law and the bipolar flow. On the cathode surface, the electron emission is initiated from discrete plasma spots and next from a continuing area, while there is a liberation process of multilayer gases on the anode surface. The changes in the emitting area of carbon fiber cathode showed a self-quenching process, which is not observed in the case of stainless steel cathode. The two-dimensional effect of microwave frequency is introduced, and the obtained results supported the experimental observations on the oscillation mode. By examining the cross section of electron beam, the electron beam for carbon fiber cathode was significantly centralized, while the discrete beam spots appeared for stainless steel cathode. These results show that the slowed diode closure, high emission uniformity, and stable microwave frequency tend to be closely tied.

  20. Scanning optical pyrometer for measuring temperatures in hollow cathodes

    International Nuclear Information System (INIS)

    Life-limiting processes in hollow cathodes are determined largely by the temperature of the electron emitter. To support cathode life assessment, a noncontact temperature measurement technique which employs a stepper motor-driven fiber optic probe was developed. The probe is driven inside the hollow cathode and collects light radiated by the hot interior surface of the emitter. Ratio pyrometry is used to determine the axial temperature profile. Thermocouples on the orifice plate provide measurements of the external temperature during cathode operation and are used to calibrate the pyrometer system in situ with a small oven enclosing the externally heated cathode. The diagnostic method and initial measurements of the temperature distribution in a hollow cathode are discussed

  1. Cathodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Samson, Alfred Junio

    This dissertation focuses on the development of nanostructured cathodes for solid oxide fuel cells (SOFCs) and their performance at low operating temperatures. Cathodes were mainly fabricated by the infiltration method, whereby electrocatalysts are introduced onto porous, ionic conducting backbones......degreeC. The most promising cathode was integrated onto an anode supported cell and it was found that the cell exhibits electrochemical stability with no measureable degradation during 1500 h operation at 700degreeC. LaCoO3 and Co3O4 infiltrated - CGO cathodes were also investigated and revealed...... that these nanoparticulate infiltrates have good oxygen reduction capabilities. The significance of the choice of ionic conducting backbone was also addressed by replacing the CGO with Bi2V0.9Cu0.1O5.35 (BICUVOX). Cathodes with a BICUVOX backbone exhibit performance degradation not observed in LSC infiltrated - CGO cathodes...

  2. Preliminary experimental study of a carbon fiber array cathode

    Science.gov (United States)

    Li, An-kun; Fan, Yu-wei

    2016-08-01

    The preliminary experimental results of a carbon fiber array cathode for the magnetically insulated transmission line oscillator (MILO) operations are reported. When the diode voltage and diode current were 480 kV and 44 kA, respectively, high-power microwaves with a peak power of about 3 GW and a pulse duration of about 60 ns were obtained in a MILO device with the carbon fiber array cathode. The preliminary experimental results show that the shot-to-shot reproducibility of the diode current and the microwave power is stable until 700 shots. No obvious damage or deterioration can be observed in the carbon fiber surface morphology after 700 shots. Moreover, the cathode performance has no observable deterioration after 700 shots. In conclusion, the maintain-free lifetime of the carbon fiber array cathode is more than 700 shots. In this way, this carbon fiber array cathode offers a potential replacement for the existing velvet cathode.

  3. Effect of cathodic protection on the state of steel reinforcement

    International Nuclear Information System (INIS)

    Damage of reinforced concrete structures is mainly caused by chloride or carbonation induced corrosion of steel. Cathodic protection is a very effective measure for corrosion control of steel in concrete, especially in chloride contaminated concrete. In this paper, effect of cathodic protection on the state of steel reinforcement is presented. Cathodic polarization of reinforcements in concrete was done under different submerged conditions. Cyclic potentiodynamic tests were used to determine the effect of cathodic protection on the behavior of the steel. Pitting appeared on the non-protected steel, but was not observed on the cathodically protected steel. microscopic photographs show that a close film exists on the protected steel, while the non-protected steel's film is loose. Investigated results have proved the effect of cathodic protection in restoring or strengthening passive film on the steel reinforcement

  4. Cathodic phosphate coating containing nano zinc particles on magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A technology for preparation of a cathodic phosphate coating mainly containing nano metallic zinc particles and phosphate compounds on magnesium alloy was developed.The influence of cathodic current density on the microstructure of the cathodic phosphate coating Was investigated.The results show that the crystals of the coating are finer and the microstructures of the outer surface of the coatings are zigzag at the cathodic density of 0.2-0.5 A/dm2.The content of nano metallic zinc particles in the coating decreases with the increase of the thickness of the coatings and tends to be zero when the coating thickness is 4.14 μm.The cathodic phosphate coating was applied to be a transition coating for improving the adhesion between the paints and the magnesium alloys.The formation mechanism of the cathodic phosphate coating was investigated as well.

  5. Work function measurements of dispenser cathodes by retarding potential method

    Science.gov (United States)

    Khairnar, Rajendra S.; Chopra, A. K.

    1992-11-01

    The work function of dispenser cathode pellets has been determined by means of the retarding potential technique. A low-energy electron gun was fabricated which delivers a collimated beam of electrons on the pellet surface at normal incidence. The set up is calibrated by employing samples of known work function such as gold and tungsten, prior to determining the work function of the cathode pellets. This set up provides a rapid determination of the work function of cathode pellets.

  6. Scanning optical pyrometer for measuring temperatures in hollow cathodes

    OpenAIRE

    Polk, J. E.; Marrese-Reading, C. M.; Thornber, B.; Dang, L.; Johnson, L. K.; Katz, I

    2007-01-01

    Life-limiting processes in hollow cathodes are determined largely by the temperature of the electron emitter. To support cathode life assessment, a noncontact temperature measurement technique which employs a stepper motor-driven fiber optic probe was developed. The probe is driven inside the hollow cathode and collects light radiated by the hot interior surface of the emitter. Ratio pyrometry is used to determine the axial temperature profile. Thermocouples on the orifice plate provide measu...

  7. Molten carbonate fuel cell cathode with mixed oxide coating

    Science.gov (United States)

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  8. Surface Characterization of the LCLS RF Gun Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Brachmann, Axel; /SLAC; Decker, Franz-Josef; /SLAC; Ding, Yuantao; /SLAC; Dowell, David; /SLAC; Emma, Paul; /SLAC; Frisch, Josef; /SLAC; Gilevich, Sasha; /SLAC; Hays, Gregory; /SLAC; Hering, Philippe; /SLAC; Huang, Zhirong; /SLAC; Iverson, Richard; /SLAC; Loos, Henrik; /SLAC; Miahnahri, Alan; /SLAC; Nordlund, Dennis; /SLAC; Nuhn, Heinz-Dieter; /SLAC; Pianetta, Piero; /SLAC; Turner, James; /SLAC; Welch, James; /SLAC; White, William; /SLAC; Wu, Juhao; /SLAC; Xiang, Dao; /SLAC

    2012-06-25

    The first copper cathode installed in the LCLS RF gun was used during LCLS commissioning for more than a year. However, after high charge operation (> 500 pC), the cathode showed a decline of quantum efficiency within the area of drive laser illumination. They report results of SEM, XPS and XAS studies that were carried out on this cathode after it was removed from the gun. X-ray absorption and X-ray photoelectron spectroscopy reveal surface contamination by various hydrocarbon compounds. In addition they report on the performance of the second installed cathode with emphasis on the spatial distribution of electron emission.

  9. Apparatuses for making cathodes for high-temperature, rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Meinhardt, Kerry D.; Sprenkle, Vincent L.; Coffey, Gregory W.

    2016-09-13

    The approaches and apparatuses for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

  10. Effects of three-dimensional cathode microstructure on the performance of lithium-ion battery cathodes

    International Nuclear Information System (INIS)

    Highlights: ► Segments of Li-ion battery cathodes are reconstructed from FIB-SEM experiments. ► The three-dimensional reconstructed cathode is discretized using a cut-cell approach. ► A Three-dimensional model of cathode performance is developed. ► Three-dimensional simulations reveal significant spatial variations in concentrations and voltage. -- Abstract: This paper develops a computational model that resolves the complex three-dimensional microstructure of Li-ion battery cathodes. The microstructural geometry is reconstructed from focused-ion-beam–scanning-electron-microscopy (FIB-SEM) experiments. Raw data from FIB-SEM experiments are processed into finite-volume discretizations that are directly suited for three-dimensional computational simulation. The model represents transport and electrochemistry within the solid phase of the electrode structure. The results predict the temporally and spatially varying Li concentrations and electrostatic potentials within the solid-phase electrode material (e.g., LiCoO2) as functions of discharge rate. The models predict global discharge characteristics that are consistent with experiment. Moreover, the results reveal significant three-dimensional spatial variations within the actual electrode structure that cannot be predicted with models based on idealized microstructures such as spherical electrode particles

  11. Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs. carbon brush cathode.

    Science.gov (United States)

    Kakarla, Ramesh; Min, Booki

    2014-12-01

    Microbial fuel cell (MFC) and its cathode performances were compared with use of carbon fiber brush and plain carbon paper cathode electrodes in algae aeration. The MFC having carbon fiber brush cathode exhibited a voltage of 0.21 ± 0.01 V (1,000 Ω) with a cathode potential of around -0.14 ± 0.01 V in algal aeration, whereas MFC with plain carbon paper cathode resulted in a voltage of 0.06 ± 0.005 V with a cathode potential of -0.39 ± 0.01 V. During polarizations, MFC equipped with carbon fiber brush cathode showed a maximum power density of 30 mW/m(2), whereas the MFC equipped with plain carbon paper showed a power density of 4.6 mW/m(2). In algae aeration, the internal resistance with carbon fiber brush cathode was 804 Ω and with plain carbon paper it was 1,210 Ω. The peak currents of MFC operation with carbon fiber brush and plain carbon paper cathodes were -31 mA and -850 µA, respectively. PMID:24890136

  12. Organic Cathode Materials for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ruiguo; Qian, Jiangfeng; Zhang, Jiguang; Xu, Wu

    2015-06-28

    This chapter will primarily focus on the advances made in recent years and specify the development of organic electrode materials for their applications in rechargeable lithium batteries, sodium batteries and redox flow batteries. Four various organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, are introduced in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations, involved work principles in energy storage systems, and capacity fading mechanisms are also discussed.

  13. Oxide diffusion in innovative SOFC cathode materials.

    Science.gov (United States)

    Hu, Y; Thoréton, V; Pirovano, C; Capoen, E; Bogicevic, C; Nuns, N; Mamede, A-S; Dezanneau, G; Vannier, R N

    2014-01-01

    Oxide diffusion was studied in two innovative SOFC cathode materials, Ba(2)Co(9)O(14) and Ca(3)Co(4)O(9)+δ derivatives. Although oxygen diffusion was confirmed in the promising material Ba(2)Co(9)O(14), it was not possible to derive accurate transport parameters because of an oxidation process at the sample surface which has still to be clarified. In contrast, oxygen diffusion in the well-known Ca(3)Co(4)O(9)+δ thermoelectric material was improved when calcium was partly substituted with strontium, likely due to an increase of the volume of the rock salt layers in which the conduction process takes place. Although the diffusion coefficient remains low, interestingly, fast kinetics towards the oxygen molecule dissociation reaction were shown with surface exchange coefficients higher than those reported for the best cathode materials in the field. They increased with the strontium content; the Sr atoms potentially play a key role in the mechanism of oxygen molecule dissociation at the solid surface. PMID:25407246

  14. Scandia doped tungsten matrix for impregnated cathode

    Institute of Scientific and Technical Information of China (English)

    WANG Jinshu; WANG Yanchun; LIU Wei; LI Hongyi; ZHOU Meiling

    2008-01-01

    As a matrix for Sc-type impregnated cathode,scandia doped tungsten with a uniform ldistribution of SC2O3 was obtained by powder metallurgy combined with the liquid-solid doping method.The microstructure and composition of the powder and the anti-ion bombardment behavior of scandium in the matrix were studied by means of SEM,EDS,XRD,and in-situ AES methods.Tungsten powder covered with scandium oxide,an ideal scandium oxide-doped tungsten powder for the preparation of Sc-type impregnated cathode,was obtained using the liquid-solid doping method.Compared with the matrix prepared with the mechanically mixed powder of tungsten and scandium oxide,SC2O3-W matrix prepared with this kind of powder had smaller grain size and uniform distribution of scandium.Sc on the surface of Sc2O3 doped tungsten mauix had good high temperature stability and good anti-ion bombardment capability.

  15. Tests of Cathode Strip Chamber Prototypes

    CERN Document Server

    Bonushkin, Yuri; Chrisman, David; Durkin, S; Ferguson, Thomas; Giacomelli, Paolo; Gorn, William; Hauser, Jay; Hirschfelder, J; Hoftiezer, John; Hoorani, Hafeez R; Kisselev, Oleg; Klem, Daniel; Korytov, Andrey; Layter, John G; Lennous, Paul; Ling, Ta-Yung; Matthey, Christina; Medved, Serguei; Minor, C; Mitselmakher, Guenakh; Müller, Thomas; Otwinowski, Stanislaw; Preston, L; Prokofiev, O E; Rush, Chuck J; Schenk, P; Sedykh, Yu; Smirnov, Igor; Soulimov, V; Vaniachine, A; Vercelli, T; Wuest, Craig R; Zeng, Ji-Yang; von Goeler, Eberhard

    1997-01-01

    We report on the results of testing two six-layer 0.6 x 0.6 cm^2 cathode strip chamber ( CSC) prototypes in a muon beam at CERN. The prototypes were designed to simulate sections of the end-cap muon system of the Compact Muon Solenoid ( CMS) detector which will be installed at the Large Hadron Collider ( LHC). We measured the spatial and time resolutions of each chamber for different gains, different orientations with respect to the beam direction and different strength magnetic fields. The single-layer spatial resolution of a prototype with a strip pitch of 15.88 mm ranged from 78 micron to 468 micron, depending on whether the particle passed between two cathode strips or through the center of a strip; its six-layer resolution was found to be 44 micron. The single-layer spatial resolution of a prototype with a strip pitch of 6.35 mm ranged from 54 to 66 micron; its six-layer resolution w as found to be 23 micron. The efficiency for collecting an anode wire signal from one of six layers within a 20 ns time wi...

  16. Development of cathode material for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Rustam Mukhtaruly Turganaly

    2014-08-01

    Full Text Available The electrochemical characteristics of the cathode material coated with carbon layer has been developed. Various carbon coating methods. There  has been carried out a comparative electrochemical analysis of the coated and uncoated with carbon cathode material. 

  17. Effects of Humidity on Solid Oxide Fuel Cell Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, John S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Singh, Prabhakar [Univ. of Connecticut, Storrs, CT (United States); Mahapatra, Manoj K. [Univ. of Connecticut, Storrs, CT (United States); Wachsman, E. D. [Univ. of Maryland, College Park, MD (United States); Liu, Meilin [Georgia Inst. of Technology, Atlanta, GA (United States); Gerdes, Kirk R. [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2015-03-17

    This report summarizes results from experimental studies performed by a team of researchers assembled on behalf of the Solid-state Energy Conversion Alliance (SECA) Core Technology Program. Team participants employed a variety of techniques to evaluate and mitigate the effects of humidity in solid oxide fuel cell (SOFC) cathode air streams on cathode chemistry, microstructure, and electrochemical performance.

  18. The Effect of Substrate Topography on Coating Cathodic Delamination

    DEFF Research Database (Denmark)

    Weinell, Claus E.; Sørensen, Per A.; Kiil, Søren

    2011-01-01

    This article describes the effect of steel substrate topography on coating cathodic delamination. The study showed that the surface preparation can be used to control and minimize the rate of cathodic delamination. The coating should have maximum wetting properties so that substrates with high...

  19. Tandem cathode for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Björketun, Mårten E.; Strasser, Peter;

    2013-01-01

    The efficiency of proton exchange membrane fuel cells is limited mainly by the oxygen reduction reaction at the cathode. The large cathodic overpotential is caused by correlations between binding energies of reaction intermediates in the reduction of oxygen to water. This work introduces a novel...

  20. The Cathode Ramper: Application for the Duoplasmatron Ion Source

    CERN Document Server

    Sánchez-Conejo, J

    2003-01-01

    The purpose of the Cathode Ramper Application is to heat the Linac 2 duoplasmatron ion source cathode up to a desired temperature selected by the user. The application has been developed in Java, making use of the Java Development Kit 1.4 and the PS Java environment.

  1. Microbial Fuel Cell Performance with a Pressurized Cathode Chamber

    Science.gov (United States)

    Microbial fuel cell (MFC) power densities are often constrained by the oxygen reduction reaction rate on the cathode electrode. One important factor for this is the normally low solubility of oxygen in the aqueous cathode solution creating mass transport limitations, which hinder oxygen reduction a...

  2. Impressed current cathodic protection of deep water structures

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.

    Of all the various anti-corrosion systems usEd. by offshore structures and ship-building industry to reduce the ravages of sea-water corrosion, cathodic protection is one of the most important. Impressed current cathodic protection (ICCP...

  3. Cathodic disbonding of organic coatings on submerged steel

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Ole oeystein

    1998-12-31

    In offshore oil production, submerged steel structures are commonly protected by an organic coating in combination with cathodic protection. The main advantage is that the coating decreases the current demand for cathodic protection. But the coating degrades with time. This thesis studies one of the most important mechanisms for coating degradation in seawater, cathodic disbonding. Seven commercial coatings and two model coatings with various pigmentations have been studied. Parameter studies, microscopy and studies of free films were used in the mechanism investigations. Exposure to simulated North Sea conditions was used in the performance studies. The effect of aluminium and glass barrier pigments on cathodic disbonding was investigated. The mechanism for the effect of the aluminium pigments on cathodic disbonding was also investigated. The transport of charge and oxygen to the steel/coating interface during cathodic disbonding was studied for two epoxy coatings. Cathodic disbonding, blistering and current demand for cathodic protection was measured for nine commercial coatings for submerged steel structures, using the ASTM-G8 standard test and a long term test under simulated North Sea conditions. The relevance of the ASTM-G8 test as a prequalification test was evaluated. 171 refs., 40 figs., 6 tabs.

  4. Investigation of Endurance Performance of Carbon Nanotube Cathodes

    Science.gov (United States)

    Saito, Nanako; Yamagiwa, Yoshiki; Ohkawa, Yasushi; Nishida, Shin-Ichiro; Kitamura, Shoji

    The Aerospace Research and Development Directorate of the Japan Aerospace Exploration Agency (JAXA) is considering a demonstration of electrodynamic tether (EDT) systems in low Earth orbit (LEO). Carbon nanotubes (CNTs) have some advantages as electron sources compared to conventional Spindt type emitters, and so are expected to be useful in EDT systems. Experiments to investigate the durability of CNT cathodes in a space environment had been conducted in a diode mode, but it was found that electron extraction tests, in which the cathode with a gate electrode is used, are necessary to evaluate the endurance of CNTs more accurately. In this paper, we conducted long duration operating tests of a cathode with a gate. It was found that there was almost no change in cathode performance at current densities below 100 A/m2 even after the cathode was operated for over 500 hours in the high vacuum environment.

  5. Hollow cathode ion source for application to an implanter

    International Nuclear Information System (INIS)

    A hollow cathode ion source has been studied in order to improve the life-time of an ion source for an ion implanter. Both volatile and refractory elements are shown to be ionized using two types of discharge state of the hollow cathode namely hot and cold cathode discharge. The life-time of LaB6 as the hot cathode is more than 150 h and the ion beam currents reach more than 10 mA cm-2 at the extraction voltage of 10 kV. For the cold cathode operation, stable currents of approx. 40 to 70 μA are extracted of refractory metal ions such as W and Mo. (author)

  6. Focused cathode design to reduce anode heating during vircator operation

    Science.gov (United States)

    Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A.

    2013-10-01

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

  7. Focused cathode design to reduce anode heating during vircator operation

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, Curtis F.; Dickens, James C.; Neuber, Andreas A. [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-10-15

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages.

  8. Focused cathode design to reduce anode heating during vircator operation

    International Nuclear Information System (INIS)

    Virtual cathode oscillators, or vircators, are a type of high power microwave device which operates based on the instability of a virtual cathode, or cloud of electrons, which forms when electron current injected into the drift tube exceeds the space charge limited current within the drift tube. Anode heating by the electron beam during vircator operation ultimately limits achievable pulse lengths, repetition rates, and the duration of burst mode operation. This article discusses a novel cathode design that focuses electrons through holes in the anode, thus significantly reducing anode heating by the electrons emitted from the cathode during the first transit through the A-K gap. Reflexing electrons continue to deposit energy on the anode; however, the discussed minimization of anode heating by main beam electrons has the potential to enable higher repetition rates as well as efficiency and longer diode lifetime. A simulation study of this type of cathode design illustrates possible advantages

  9. Robust Low-Cost Cathode for Commercial Applications

    Science.gov (United States)

    Patterson, Michael J.

    2007-01-01

    Under funding from the NASA Commercial Technology Office, a cathode assembly was designed, developed, fabricated, and tested for use in plasma sources for ground-based materials processing applications. The cathode development activity relied on the large prior NASA investment and successful development of high-current, high-efficiency, long-life hollow cathodes for use on the International Space Station Plasma Contactor System. The hollow cathode was designed and fabricated based on known engineering criteria and manufacturing processes for compatibility with the requirements of the plasma source. The transfer of NASA GRC-developed hollow cathode technology for use as an electron emitter in the commercial plasma source is anticipated to yield a significant increase in process control, while eliminating the present issues of electron emitter lifetime and contamination.

  10. Air humidity and water pressure effects on the performance of air-cathode microbial fuel cell cathodes

    KAUST Repository

    Ahn, Yongtae

    2014-02-01

    To better understand how air cathode performance is affected by air humidification, microbial fuel cells were operated under different humidity conditions or water pressure conditions. Maximum power density decreased from 1130 ± 30 mW m-2 with dry air to 980 ± 80 mW m -2 with water-saturated air. When the cathode was exposed to higher water pressures by placing the cathode in a horizontal position, with the cathode oriented so it was on the reactor bottom, power was reduced for both with dry (1030 ± 130 mW m-2) and water-saturated (390 ± 190 mW m-2) air. Decreased performance was partly due to water flooding of the catalyst, which would hinder oxygen diffusion to the catalyst. However, drying used cathodes did not improve performance in electrochemical tests. Soaking the cathode in a weak acid solution, but not deionized water, mostly restored performance (960 ± 60 mW m-2), suggesting that there was salt precipitation in the cathode that was enhanced by higher relative humidity or water pressure. These results showed that cathode performance could be adversely affected by both flooding and the subsequent salt precipitation, and therefore control of air humidity and water pressure may need to be considered for long-term MFC operation. © 2013 Elsevier B.V. All rights reserved.

  11. Correlation of cathode parameters of high power grid tubes with material characteristics of cathode-grid units

    International Nuclear Information System (INIS)

    One way to increase the longevity of dispenser cathodes is based on reducing the Barium evaporation. This can be achieved by the decrease of the reaction 'activity' of the emitter impregnant with the porous tungsten (W) body, which supplies free Barium from the interior of the porous cathode to its surface

  12. Cationic fluorinated polymer binders for microbial fuel cell cathodes

    KAUST Repository

    Chen, Guang

    2012-01-01

    Fluorinated quaternary ammonium-containing polymers were used as catalyst binders in microbial fuel cell (MFC) cathodes. The performance of the cathodes was examined and compared to NAFION ® and other sulfonated aromatic cathode catalyst binders using linear sweep voltammetry (LSV), impedance spectroscopy, and performance tests in single chamber air-cathode MFCs. The cathodes with quaternary ammonium functionalized fluorinated poly(arylene ether) (Q-FPAE) binders showed similar current density and charge transfer resistance (R ct) to cathodes with NAFION ® binders. Cathodes containing either of these fluorinated binders exhibited better electrochemical responses than cathodes with sulfonated or quaternary ammonium-functionalized RADEL ® poly(sulfone) (S-Radel or Q-Radel) binders. After 19 cycles (19 d), the power densities of all the MFCs declined compared to the initial cycles due to biofouling at the cathode. MFC cathodes with fluorinated polymer binders (1445 mW m -2, Q-FPAE-1.4-H; 1397 mW m -2, Q-FPAE-1.4-Cl; 1277 mW m -2, NAFION ®; and 1256 mW m -2, Q-FPAE-1.0-Cl) had better performance than those with non-fluorinated polymer binders (880 mW m -2, S-Radel; 670 mW m -2, Q-Radel). There was a 15% increase in the power density using the Q-FPAE binder with a 40% higher ion exchange capacity (Q-FPAE-1.4-H compared to Q-FPAE-1.0-Cl) after 19 cycles of operation, but there was no effect on the power production due to counter ions in the binder (Cl -vs. HCO 3 -). The highest-performance cathodes (NAFION ® and Q-FPAE binders) had the lowest charge transfer resistances (R ct) in fresh and in fouled cathodes despite the presence of thick biofilms on the surface of the electrodes. These results show that fluorinated binders may decrease the penetration of the biofilm and associated biopolymers into the cathode structure, which helps to combat MFC performance loss over time. © 2012 The Royal Society of Chemistry.

  13. Novel High Rate Lithium Intercalation Cathode Materials

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Application of amorphous V2O5/carbon/neodymium oxide (Nd2O3) composite is one of ways to surmount the lower electrical conductivity of V2O5. A new type of V2O5/carbon/Nd2O3 composite was prepared by mixing vanadium oxide hydrosol, acetone, carbon and Nd2O3 powder. High rate discharge/charge property of the composite electrode was tested electrochemically. This composite with Nd2O3 added shows the improvement of not only the discharge capacity but also cycle durability discharge capacity. The rate capability of the composite cathode also increases with the addition of Nd2O3.and cycle life are probably caused by the increase in porosity of open pores and short diffusion length of the active material on the lithium-ion insertion.

  14. Cathodic Cage Plasma Nitriding: An Innovative Technique

    Directory of Open Access Journals (Sweden)

    R. R. M. de Sousa

    2012-01-01

    Full Text Available Cylindrical samples of AISI 1020, AISI 316, and AISI 420 steels, with different heights, were simultaneously treated by a new technique of ionic nitriding, entitled cathodic cage plasma nitriding (CCPN, in order to evaluate the efficiency of this technique to produce nitrided layers with better properties compared with those obtained using conventional ionic nitriding technique. This method is able to eliminate the edge effect in the samples, promoting a better uniformity of temperature, and consequently, a smaller variation of the thickness/height relation can be obtained. The compound layers were characterized by X-ray diffraction, optical microscopy, and microhardness test profile. The results were compared with the properties of samples obtained with the conventional nitriding, for the three steel types. It was verified that samples treated by CCPN process presented, at the same temperature, a better uniformity in the thickness and absence of the edge effect.

  15. Catadioptric aberration correction in cathode lens microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M. [IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 (United States); Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-04-15

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed.

  16. Catadioptric aberration correction in cathode lens microscopy

    International Nuclear Information System (INIS)

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed

  17. Nanostructured cathode materials for rechargeable lithium batteries

    Science.gov (United States)

    Myung, Seung-Taek; Amine, Khalil; Sun, Yang-Kook

    2015-06-01

    The prospect of drastic climate change and the ceaseless fluctuation of fossil fuel prices provide motivation to reduce the use of fossil fuels and to find new energy conversion and storage systems that are able to limit carbon dioxide generation. Among known systems, lithium-ion batteries are recognized as the most appropriate energy storage system because of their high energy density and thus space saving in applications. Introduction of nanotechnology to electrode material is beneficial to improve the resulting electrode performances such as capacity, its retention, and rate capability. The nanostructure is highly available not only when used alone but also is more highlighted when harmonized in forms of core-shell structure and composites with carbon nanotubes, graphene or reduced graphene oxides. This review covers syntheses and electrochemical properties of nanoscale, nanosized, and nanostructured cathode materials for rechargeable lithium batteries.

  18. Using cathode spacers to minimize reactor size in air cathode microbial fuel cells

    KAUST Repository

    Yang, Qiao

    2012-04-01

    Scaling up microbial fuel cells (MFCs) will require more compact reactor designs. Spacers can be used to minimize the reactor size without adversely affecting performance. A single 1.5mm expanded plastic spacer (S1.5) produced a maximum power density (973±26mWm -2) that was similar to that of an MFC with the cathode exposed directly to air (no spacer). However, a very thin spacer (1.3mm) reduced power by 33%. Completely covering the air cathode with a solid plate did not eliminate power generation, indicating oxygen leakage into the reactor. The S1.5 spacer slightly increased columbic efficiencies (from 20% to 24%) as a result of reduced oxygen transfer into the system. Based on operating conditions (1000ς, CE=20%), it was estimated that 0.9Lh -1 of air would be needed for 1m 2 of cathode area suggesting active air flow may be needed for larger scale MFCs. © 2012 Elsevier Ltd.

  19. Segmented cell testing for cathode parameter investigation

    Science.gov (United States)

    Tanasini, Pietro; Schuler, J. Andreas; Wuillemin, Zacharie; Ameur, Myriam L. Ben; Comninellis, Christos; Van herle, Jan

    The increasing quality and durability of solid oxide fuel cells (SOFCs) state-of-the-art materials renders the long-term testing of fuel cells difficult since considerably long equipment times are needed to obtain valuable results. Moreover, reproducibility issues are common due to the high sensitivity of the performance and degradation on the testing conditions. An original segmented cell configuration has been adopted in order to carry out four tests in parallel, thus decreasing the total experimental time and ensuring the same operating conditions for the four segments. The investigation has been performed on both anode-supported cells and symmetrical Lanthanum-Strontium Manganite-Yttria-stabilized Zirconia (LSM-YSZ) electrolyte-supported cells. In separate tests, the influence of variables like cathode thickness, current density and cathode composition on performance and degradation have been explored on anode-supported cells. Furthermore, the effect of chromium poisoning has been studied on electrolyte-supported symmetric cells by contacting one segment with a chromium-iron interconnect material. Long-term polarization of the segments is controlled with a multi-channel galvanostatic device designed in-house. Electrochemical characterization has been performed through electrochemical impedance spectroscopy (EIS) at different H 2 partial pressures, temperatures and bias current, effectively demonstrating the direct impact of each studied variable on the cell performance and degradation behavior. Segmented cell testing has been proven to be an effective strategy to achieve better reproducibility for SOFC measurements since it avoids the inevitable fluctuations found in a series of successively run tests. Moreover, simultaneous testing increased n-fold the data output per experiment, implying a considerable economy of time.

  20. Plasma characterization on carbon fiber cathode by spectroscopic diagnostics

    Institute of Scientific and Technical Information of China (English)

    Liu Lie; Li Li-Min; Xu Qi-Fu; Chang Lei; Wen Jian-Chun

    2009-01-01

    This paper mainly investigates plasma characterization on carbon fiber cathodes with and without cesium iodide (CsI) coating powered by a~300 ns,~200 kV accelerating pulse. It was found that the CsI layers can not only improve the diode voltage,but also maintain a stable perveance.This indicates a slowly changed diode gap or a low cathode plasma expansion velocity.By spectroscopic diagnostics,in the vicinity of the cathode surface the average plasma density and temperature were found to be~3×1014 cm-3 and~5 eV,respectively,for an electron current density of~40 A/cm2.Furthermore,there exists a multicomponent plasma expansion toward the anode.The plasma expansion velocity,corresponding to the carbon and hydrogen ions,is estimated to be~1.5 cm/μs.Most notably,Cs spectroscopic line was obtained only at the distance ≤0.5 mm from the cathode surface.Carbon and hydrogen ions are obtained up to the distance of 2.5 mm from the cathode surface.Cs ions almost remain at the vicinity of the cathode surface.These results show that the addition of Cal enables a slow cathode plasma expansion toward the anode,providing a positive prospect for developing long-pulse electron beam sources.

  1. High Performance Cathodes for Li-Air Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  2. Neutral hydrophilic cathode catalyst binders for microbial fuel cells

    KAUST Repository

    Saito, Tomonori

    2011-01-01

    Improving oxygen reduction in microbial fuel cell (MFC) cathodes requires a better understanding of the effects of the catalyst binder chemistry and properties on performance. A series of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) polymers with systematically varying hydrophilicity were designed to determine the effect of the hydrophilic character of the binder on cathode performance. Increasing the hydrophilicity of the PS-b-PEO binders enhanced the electrochemical response of the cathode and MFC power density by ∼15%, compared to the hydrophobic PS-OH binder. Increased cathode performance was likely a result of greater water uptake by the hydrophilic binder, which would increase the accessible surface area for oxygen reduction. Based on these results and due to the high cost of PS-b-PEO, the performance of an inexpensive hydrophilic neutral polymer, poly(bisphenol A-co-epichlorohydrin) (BAEH), was examined in MFCs and compared to a hydrophilic sulfonated binder (Nafion). MFCs with BAEH-based cathodes with two different Pt loadings initially (after 2 cycles) had lower MFC performance (1360 and 630 mW m-2 for 0.5 and 0.05 mg Pt cm-2) than Nafion cathodes (1980 and 1080 mW m -2 for 0.5 and 0.05 mg Pt cm-2). However, after long-term operation (22 cycles, 40 days), power production of each cell was similar (∼1200 and 700-800 mW m-2 for 0.5 and 0.05 mg Pt cm-2) likely due to cathode biofouling that could not be completely reversed through physical cleaning. While binder chemistry could improve initial electrochemical cathode performance, binder materials had less impact on overall long-term MFC performance. This observation suggests that long-term operation of MFCs will require better methods to avoid cathode biofouling. © 2011 The Royal Society of Chemistry.

  3. Explosive emission cathode plasmas in intense relativistic electron beam diodes

    International Nuclear Information System (INIS)

    An experimental study of cathode plasmas in planar diodes driven by a Sandia Nereus accelerator (270 kV, 60 kA, 70 ns), with particular attention devoted to plasma uniformity and expansion velocity, has been carried out. This diode current density was varied over a factor of ten and the rate of rise of the applied field dE/dt was varied over a factor of six. Different cathode materials, coatings, and surface roughnesses were used and the effects of glow discharge cleaning and in situ heating of the cathode were examined. Framing photography, electron beam dosimetry, perveance measurements, optical interferometry, and (spatially and temporally resolved) spectroscopy were used to diagnose the plasma uniformity, electron beam uniformity, plasma front motion, electron density, plasma composition, motion of distinct species, electron temperature, and ion (and neutral) densities. Electron beam uniformity is seen to be related to cathode plasma uniformity; this uniformity is enhanced by a high value of (the microscopic) dE/dt, which is determined both by the rise time of the applied field and by the cathode surface roughness. The significance of dE/dt is believed to be related to the screening effect of emitted electrons. The motion of the plasma front is seen to be affected by two phenomena. To begin with, all species of the cathode plasma are seen to expand at the same rate. The ions are believed to be accelerated to velocities on the order of 2 to 3 cm/μs in dense cathode spot regions at the cathode surface. Plasma expansion is also influenced by electric pressure effects, which are determined by the shape of the driving power pulse. A simple cathode plasma model, which explains the similarity of plasmas in diodes with greatly differing parameters, is proposed. The relevance of these results to inductively driven diodes, repetitively pulsed diodes, and magnetically insulated transmission lines is also discussed

  4. Studies on Stability of a Novel Cathode Material for MCFC

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The stability of NiO and oxidized nickel-niobium surface alloy electrode under various molten carbonate fuel cell(MCFC) cathode conditions were investigated by determination of equilibrium solubility of nickel ions in the carbonate melt of the two electrode materials.It is found that under MCFC cathode conditions the stability of NiO electrode is improved significantly by the deposition of niobium.As far as stability is concerned,oxidized nickel-niobium alloy electrode can be considered as a candidate for cathode material of MCFC.

  5. Resonant cavity operation of a virtual cathode oscillator

    International Nuclear Information System (INIS)

    Gigawatt level virtual cathode sources have been proposed for several applications. These include microwave weapons and drivers for high-energy particle accelerators. Both of these require a microwave source with very high power output that is controllable in frequency and phase. A conventional virtual cathode oscillator will not meet these requirements. The addition of a resonant cavity surrounding the oscillating virtual cathode either alone or pumped with a low-power injection signal, causing it to operate as an amplifier, could greatly influence the performance of this type of source making it more practical for accelerator and weapon applications. The progress on an experiment to test these concepts will be discussed

  6. Lanthanum hexaboride hollow cathode for dense plasma production

    International Nuclear Information System (INIS)

    A hollow tube cathode using lanthanum hexaboride as the electron emitter has been designed and constructed. Tests in both argon and hydrogen indicate that this cathode is capable of producing over 800 A of electron current continuously, corresponding to over 25 A/cm2 from the LaB6. The cathode has been operated for over 300 h and exposed to air more than 100 times with no deterioration in emission. Projected lifetime is in excess of 3500 h for the sintered LaB6 piece tested in this configuration. Construction details, performance characteristics, and discussions of space charge limits on emission are described

  7. Rep-rate explosive whisker emission cathode investigations

    Science.gov (United States)

    Litz, Marc S.; Golden, Jeffry

    1994-05-01

    An experiment is underway to study the performance of several materials as field-emission cathodes for low voltage (EQ 100 kV), repetitive (coatings, niobium wire nanocomposite, and poly-crystalline tungsten. Surface emission is monitored by an array of Faraday cups. The `turn-on' time, uniformity of emission, and gap closure time are measured as a function of the spatially averaged, macroscopic electric field at the cathode. The carbon fiber cathode produces the largest current density and has the lowest threshold voltage for emission.

  8. Iron phosphate materials as cathodes for lithium batteries

    CERN Document Server

    Prosini, Pier Paolo

    2011-01-01

    ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" describes the synthesis and the chemical-physical characteristics of iron phosphates, and presents methods of making LiFePO4 a suitable cathode material for lithium-ion batteries. The author studies carbon's ability to increase conductivity and to decrease material grain size, as well as investigating the electrochemical behaviour of the materials obtained. ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" also proposes a model to explain lithium insertion/extraction in LiFePO4 and to predict voltage profiles at variou

  9. The approach curve method for large anode-cathode distances

    Energy Technology Data Exchange (ETDEWEB)

    Mammana, Victor P.; Monteiro, Othon R.; Fonseca, Leo R.C.

    2003-09-20

    An important technique used to characterize field emission is the measurement of the emitted current against electric field (IxE). In this work we discuss a procedure for obtaining IxE data based on multiple approach curves. We show that the simulated features obtained for an idealized uniform surface matches available experimental data for small anode-cathode distances, while for large distances the simulation predicts a departure from the linear regime. We also discuss the shape of the approach curves for large anode-cathode distances for a cathode made of carbon nanotubes.

  10. Preliminary experiments with a carbon fiber tuft cathode

    Science.gov (United States)

    Fessenden, T. J.

    1984-01-01

    Initial tests of a carbon brush or tuft cathode intended for use by the Beam Research Program are reported. It was found that electric fields of approximately 100 kV/cm were required to produce current densities above 20 A/sq cm. The beam extracted from the cathode consisted of many beamlets, one for each tuft. The beamlets were found to be quite uniform in peak current density and the cathode operation was microscopically repeatable. The turn on time was estimated to be 200 ns.

  11. Preliminary experiments with a carbon fiber tuft cathode

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, T.J.

    1984-01-11

    This work reports initial tests of a carbon brush or tuft cathode intended for use by the Beam Research Program. It was found that electric fields of approximately 100 kV/cm were required to produce current densities above 20 A/sq cm. The beam extracted from the cathode consisted of many beamlets - one for each tuft. The beamlets were found to be quite uniform in peak current density and the cathode operation was microscopically repeatable. The turn-on time was estimated to be 200 ns.

  12. Erosion behavior of composite Al-Cr cathodes in cathodic arc plasmas in inert and reactive atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Franz, Robert, E-mail: robert.franz@unileoben.ac.at; Mendez Martin, Francisca; Hawranek, Gerhard [Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700 Leoben (Austria); Polcik, Peter [Plansee Composite Materials GmbH, Siebenbürgerstrasse 23, 86983 Lechbruck am See (Germany)

    2016-03-15

    Al{sub x}Cr{sub 1−x} composite cathodes with Al contents of x = 0.75, 0.5, and 0.25 were exposed to cathodic arc plasmas in Ar, N{sub 2}, and O{sub 2} atmospheres and their erosion behavior was studied. Cross-sectional analysis of the elemental distribution of the near-surface zone in the cathodes by scanning electron microscopy revealed the formation of a modified layer for all cathodes and atmospheres. Due to intermixing of Al and Cr in the heat-affected zone, intermetallic Al-Cr phases formed as evidenced by x-ray diffraction analysis. Cathode poisoning effects in the reactive N{sub 2} and O{sub 2} atmospheres were nonuniform as a result of the applied magnetic field configuration. With the exception of oxide islands on Al-rich cathodes, reactive layers were absent in the circular erosion zone, while nitrides and oxides formed in the less eroded center region of the cathodes.

  13. A series of tufted carbon fiber cathodes designed for different high power microwave sources

    Science.gov (United States)

    Liu, Lie; Li, Limin; Zhang, Jun; Zhang, Xiaoping; Wen, Jianchun; Liu, Yonggui

    2008-06-01

    We report the fabrication technique of tufted carbon fiber cathodes for different microwave sources. Three carbon fiber cathodes were constructed, including a planar cathode, an annular cathode, and a cylindrical cathode for radial emission. Experimental investigations on these cathodes were performed in a reflex triode virtual cathode oscillator (vircator), a backward wave oscillator (BWO), and a magnetically insulated transmission line oscillator (MILO), respectively. The pulse duration of microwave emission from the reflex triode vircator was lengthened by using the planar carbon fiber cathode. In the BWO with the annular carbon fiber cathode, the uniform electron beam with a kA /cm2 current density was observed. In addition, carbon fiber has great promise as field emitter for MILOs. These results show that the carbon fiber cathodes can be utilized for electron emission in high power diodes with different structures.

  14. Extended area cathode for transverse discharge gas lasers

    International Nuclear Information System (INIS)

    Laser cathodes of extended emission area are disclosed having a plurality of substantially aligned electrically conductive plates spaced from one another and disposed in respective planes perpendicular to the longitudinal axis of the laser housing. Adjacent plates are spaced by a spacing s selected to achieve the ''hollow'' cathode effect and satisfying the relation s = k/p where p is the laser gas pressure and k is a constant determined by the laser gas and lying in the range of from about 5 to about 20 torr-cm. In one embodiment the cathode plates are supported by and attached to a pair of longitudinally extending electrically conductive rods. In another embodiment the cathode consists of a laminated array of alternatively disposed aligned taller and shorter electrically conductive plates. (U.S.)

  15. Intermetallics as cathode materials in the electrolytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Stojic, D.L.; Maksic, A.D.; Kaninski, M.P.M. [Vinca Inst. of Nuclear Sciences, Belgrade (Serbia and Montenegro). Lab. of Physical Chemistry; Cekic, B.D. [Vinca Inst. of Nuclear Sciences, Belgrade (Serbia and Montenegro). Lab. of Physics; Miljanic, S.S. [Belgrade Univ. (Serbia and Montenegro). Faculty of Physical Chemistry

    2005-01-01

    The intermetallics of transition metals have been investigated as cathode materials for the production of hydrogen by electrolysis from water-KOH solutions, in an attempt to increase the electrolytic process efficiency. We found that the best effect among all investigated cathodes (Hf{sub 2}Fe, Zr-Pt, Nb-Pd(I), Pd-Ta, Nb-Pd(II), Ti-Pt) exhibits the Hf{sub 2}Fe phase. These materials were compared with conventional cathodes (Fe and Ni), often used in the alkaline electrolysis. A significant upgrade of the electrolytic efficiency using intermetallics, either in pure KOH electrolyte or in combination with ionic activators added in situ, was achieved. The effects of these cathode materials on the process efficiency were discussed in the context of transition metal features that issue from their electronic configuration. (Author)

  16. The Properties of Normal Conducting Cathodes in FZD Superconducting Gun

    CERN Document Server

    Xiang, R; Buettig, H; Janssen, D; Justus, M; Lehnert, U; Michel, P; Murcek, P; Schamlott, A; Schneider, Ch; Schurig, R; Staufenbiel, F; Teichert, J

    2009-01-01

    The superconducting radio frequency photoinjector (SRF photoinjector) is one of the latest applications of SC technology in the accelerator field. Since superconducting cathodes with high QE are not available up to now, normal conducting cathode material is the main choice for the SRF photoinjectors. However, the compatibility between the cathode and the cavity is one of the challenges for this concept. The SRF gun with Cs2Te cathode has been successfully operated under the collaboration of BESSY, DESY, FZD, and MBI. In this paper, some experience gained in the gun commissioning will be concluded. The results of the properties of Cs2Te photocathode in the cavity will be presented, such as the Q.E., the life time, the dark current and the thermal emittance.

  17. Space-charge limiting current in spherical cathode diodes

    Institute of Scientific and Technical Information of China (English)

    刘国治; 邵浩

    2003-01-01

    The results of the investigation on the space-charge limiting current for a spherical-cathode diode in the nonrelativistic situation are presented in this paper. The results show that the current enhancement factor equals the square of E-field enhancement factor on the cathode surface. The generated space-charge limiting current is deduced.In the case of a pin-shaped-cathode diode, the space-charge limiting current is also obtained, indicating that the current is independent of the geometric parameters of the diode. Analyses of the shielding effects and the conditions for generation of the uniform space-charge limiting beam show that, for pin-arrayed cathodes, the distance between pins should be in the range from 1.2D to 1.5D, where D is the distance between the two electrodes.

  18. Scandate Cathode for High Power Long Life Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Scandate cathodes are proposed as a way to boost performance and life for electric space propulsion systems. This company has recently demonstrated breakthrough...

  19. Verification of high efficient broad beam cold cathode ion source.

    Science.gov (United States)

    Abdel Reheem, A M; Ahmed, M M; Abdelhamid, M M; Ashour, A H

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition. PMID:27587108

  20. High current density nanofilament cathodes for microwave amplifiers

    NARCIS (Netherlands)

    Schnell, J-P.; Minoux, E.; Gangloff, L.; Vincent, P.; Legagneux, P.; Dieumegard, D.; David, J.-F.; Peauger, F.; Hudanski, L.; Teo, K.B.K.; Lacerda, R.; Chhowalla, M.; Hasko, D.G.; Ahmed, H.; Amaratunga, G.A.J.; Milne, W.I.; Vila, L.; Dauginet-De Pra, L.; Demoustier-Champagne, S.; Ferain, E.; Legras, R.; Piraux, L.; Gröening, O.; Raedt, H. De; Michielsen, K.

    2004-01-01

    We study high current density nanofilament cathodes for microwave amplifiers. Two different types of aligned nanofilament array have been studied: first, metallic nanowires grown by electrodeposition into nanoporous templates at very low temperature (T

  1. 12Cao-7Al2o3 Electride Hollow Cathode

    Science.gov (United States)

    Rand, Lauren P. (Inventor); Williams, John D. (Inventor); Martinez, Rafael A. (Inventor)

    2016-01-01

    The use of the electride form of 12CaO-7Al.sub.2O.sub.3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.

  2. High Performance Fe-Co Based SOFC Cathodes

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent; Hansen, Karin Vels; Mogensen, Mogens Bjerg

    2010-01-01

    With the aim of reducing the temperature of the solid oxide fuel cell (SOFC), a new high-performance perovskite cathode has been developed. An area-specific resistance (ASR) as low as 0.12 Ωcm2 at 600 °C was measured by electrochemical impedance spectroscopy (EIS) on symmetrical cells. The cathode...... is a composite between (Gd0.6Sr0.4)0.99Fe0.8Co0.2O3-δ (GSFC) and Ce0.9Gd0.1O1.95 (CGO10). Examination of the microstructure of the cathodes by scanning electron microscopy (SEM) revealed a possibility of further optimisation of the microstructure in order to increase the performance of the cathodes. It also...

  3. Development of a cathode strip chamber for minimum ionizing particles

    International Nuclear Information System (INIS)

    A cathode strip chamber (CSC) capable of measuring position information for minimum ionizing particles (MIPS) has been developed. The chamber operates in the proportional or limited proportional region, where the avalanche on the anode wire is localised to a small region around the anode wire. The position of the avalanche can be obtained by the pulse heights induced on the cathode strips which run perpendicular to direction of the anode wire. The pulse height induced on the cathode strips is proportional directly to the strip width and inversely to the distance between the strip centre to the avalanche location. Thus by measuring the pulse heights on at least three cathode strips for every event, one can reconstruct the centroid that would give the location of the avalanche on the anode

  4. A High Performance Cathode Heater for Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High current hollow cathodes are the baseline electron source for next generation high power Hall thrusters. Currently for electron sources providing current levels...

  5. Temperature variation of a thermionic cathode during electron emission

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is necessary to know the actual temperature of a thermionic cathode that works as the electron source in a microwave tube. It has been found that the temperature of the cathode drops markedly during the thermionic emission. For example, the temperature could fall by about 30oC under a current density of 2.92 A/cm2. Using the molecular thermodynamics, the dependence of the cathode temperature on the emission current density has been obtained. It has been theoretically pointed out that several factors, such as heating model and temperature coefficient of resis-tance of heater, can influence the cathode temperature. These theoretical conclu-sions were supported by the experimental results.

  6. Développement de cathodes performantes pour batteries lithium/air

    OpenAIRE

    Berenger, Sophie

    2014-01-01

    In this thesis, high-performance cathodes for lithium/air batteries have been investigated. The main limitations for lithium/air batteries are oxygen diffusion into the cathode and in the electrolyte and the progressive clogging of cathode pores by lithium oxide. The development of the air cathode is strongly dependant on the organic electrolyte used, thus the nature of the electrolyte has been here considered. Electrode porosity and the kind of catalyst employed influence the cathode perform...

  7. Electrokinetic Treatment of Cr-, Cu-, and Zn-Contaminated Sediment: Cathode Modification

    OpenAIRE

    Rajić, Ljiljana; Dalmacija, Božo; Perović, Svetlana Ugarčina; Krčmar, Dejan; Rončević, Srđan; Tomašević, Dragana

    2013-01-01

    Enhanced electrokinetic (EK) removal of Cr, Cu, and Zn from sediment by using original and modified integrated ion exchange (IIX™) cathodes was investigated. IIX cathode design and EK device process modifications were made to improve performance: separation of IIX cathode components (IIXS), combination of modified IIX cathode with pulsed electric field (IIXSP), and separation of IIX cathode components with addition of an anion exchange resin compartment (IIXA). After using the IIXSP, overall ...

  8. Tolerant chalcogenide cathodes of membraneless micro fuel cells.

    Science.gov (United States)

    Gago, Aldo Saul; Gochi-Ponce, Yadira; Feng, Yong-Jun; Esquivel, Juan Pablo; Sabaté, Neus; Santander, Joaquin; Alonso-Vante, Nicolas

    2012-08-01

    The most critical issues to overcome in micro direct methanol fuel cells (μDMFCs) are the lack of tolerance of the platinum cathode and fuel crossover through the polymer membrane. Thus, two novel tolerant cathodes of a membraneless microlaminar-flow fuel cell (μLFFC), Pt(x)S(y) and CoSe(2), were developed. The multichannel structure of the system was microfabricated in SU-8 polymer. A commercial platinum cathode served for comparison. When using 5 M CH(3)OH as the fuel, maximum power densities of 6.5, 4, and 0.23 mW cm(-2) were achieved for the μLFFC with Pt, Pt(x)S(y), and CoSe(2) cathodes, respectively. The Pt(x)S(y) cathode outperformed Pt in the same fuel cell when using CH(3)OH at concentrations above 10 M. In a situation where fuel crossover is 100 %, that is, mixing the fuel with the reactant, the maximum power density of the micro fuel cell with Pt decreased by 80 %. However, for Pt(x)S(y) this decrease corresponded to 35 % and for CoSe(2) there was no change in performance. This result is the consequence of the high tolerance of the chalcogenide-based cathodes. When using 10 M HCOOH and a palladium-based anode, the μLFFC with a CoSe(2) cathode achieved a maxiumum power density of 1.04 mW cm(-2). This micro fuel cell does not contain either Nafion membrane or platinum. We report, for the first time, the evaluation of Pt(x)S(y)- and CoSe(2)-based cathodes in membraneless micro fuel cells. The results suggest the development of a novel system that is not size restricted and its operation is mainly based on the selectivity of its electrodes.

  9. Cathodes for lithium-air battery cells with acid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yangchuan; Huang, Kan; Li, Yunfeng

    2016-07-19

    In various embodiments, the present disclosure provides a layered metal-air cathode for a metal-air battery. Generally, the layered metal-air cathode comprises an active catalyst layer, a transition layer bonded to the active catalyst layer, and a backing layer bonded to the transition layer such that the transition layer is disposed between the active catalyst layer and the backing layer.

  10. High-Current Cold Cathode Employing Diamond and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2014-10-22

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  11. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    -supported SOFC. The cathodes are obtained by infiltrating LSM into a sintered either thick (300 μm) yttria stabilized zirconia (YSZ) backbone or a thin YSZ backbone (10-15 μm) integrated onto a thick (300 μm) porous strontium substituted lanthanum manganite (LSM) and YSZ composite. Fabrication challenges...... with infiltrated LSM nanoparticles is shown in Fig. 1. Figure 1. Cross section of LSM infiltrated cathode supported cell. [Formula]...

  12. Reducing DRIFT Backgrounds with a Submicron Aluminized-Mylar Cathode

    CERN Document Server

    Battat, James B R; Dorofeev, Alexei; Ezeribe, Anthony C; Fox, Jennifer R; Gauvreau, Jean-Luc; Gold, Michael; Harmon, Lydia; Harton, John; Lafler, Randy; Lauer, Robert J; Lee, Eric R; Loomba, Dinesh; Lumnah, Alexander; Matthews, John; Miller, Eric H; Mouton, Frederic; Murphy, Alexander St J; Phan, Nguyen; Sadler, Stephen W; Scarff, Andrew; Schuckman, Fred; Snowden-Ifft, Daniel; Spooner, Neil J C; Walker, Daniel

    2015-01-01

    Background events in the DRIFT-IId dark matter detector, mimicking potential WIMP signals, are predominantly caused by alpha decays on the central cathode in which the alpha particle is completely or partially absorbed by the cathode material. We installed a 0.9 micron thick aluminized-mylar cathode as a way to reduce the probability of producing these backgrounds. We study three generations of cathode (wire, thin-film, and radiologically clean thin-film) with a focus on the ratio of background events to alpha decays. Two independent methods of measuring the absolute alpha decay rate are used to ensure an accurate result, and agree to within $10\\%$. Using alpha range spectroscopy, we measure the radiologically cleanest cathode version to have a contamination of $3.3\\pm0.1$ ppt $^{234}$U and $73\\pm2$ ppb $^{238}$U. This cathode reduces the probability of producing an RPR from an alpha decay by a factor of $70\\pm20$ % while reducing the overall background rate by $96.5\\pm0.5\\%$ compared to the original stainles...

  13. Dynamic behavior of thermionic dispenser cathodes under ion bombardment

    Science.gov (United States)

    Cortenraad, R.; van der Gon, A. W. Denier; Brongersma, H. H.; Gärtner, G.; Raasch, D.; Manenschijn, A.

    2001-04-01

    We have investigated the surface coverage and electron emission of thermionic dispenser cathodes during 3 keV Ar+ ion bombardment, thereby simulating the bombardment of the cathodes by residual gases that takes place in cathode-ray tubes as used in television sets. During the ion bombardment at the operating temperature of 1030 °C, a dynamic equilibrium is established between the sputter removal and resupply mechanisms of the Ba and O atoms that form the dipole layer on the cathode substrate. We demonstrated that the performance of the cathodes under ion bombardment is governed by the O removal and resupply rates. It was found that the Ba resupply rate is almost an order of magnitude higher than the O resupply rate, but that the Ba can only be present on the surface bound to O atoms. Therefore, the Ba/O ratio is approximately equal to unity during the ion bombardment. Based on the investigations of the removal and resupply processes, we proposed a model that accurately describes the surface coverage and electron emission during the ion bombardment, including the dependence of the ion flux and cathode temperature.

  14. High-current carbon-epoxy capillary cathode

    Science.gov (United States)

    Gleizer, J. Z.; Queller, T.; Bliokh, Yu.; Yatom, S.; Vekselman, V.; Krasik, Ya. E.; Bernshtam, V.

    2012-07-01

    The results of experiments on the reproducible generation of an electron beam having a high current density of up to 300 A/cm2 and a satisfactorily uniform cross-sectional distribution of current density in a ˜200 kV, ˜450 ns vacuum diode with a carbon-epoxy capillary cathode are presented. It was found that the source of the electrons is the plasma formed as a result of flashover inside the capillaries. It is shown that the plasma formation occurs at an electric field ≤15 kV/cm and that the cathode sustains thousands of pulses without degradation in its emission properties. Time- and space-resolved visible light observation and spectroscopy analyses were used to determine the cathode plasma's density, temperature, and expansion velocity. It was found that the density of the cathode plasma decreases rapidly in relation to the distance from the cathode. In addition, it was found that the main reason for the short-circuiting of the accelerating gap is the formation and expansion of the anode plasma. Finally, it was shown that when an external guiding magnetic field is present, the injection of the electron beam into the drift space with a current amplitude exceeding its critical value changes the radial distribution of the current density of the electron beam because the inner electrons are reflected from the virtual cathode.

  15. Cathodic protection for the bottoms of above ground storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, John P. [Tyco Adhesives, Norwood, MA (United States)

    2004-07-01

    Impressed Current Cathodic Protection has been used for many years to protect the external bottoms of above ground storage tanks. The use of a vertical deep ground bed often treated several bare steel tank bottoms by broadcasting current over a wide area. Environmental concerns and, in some countries, government regulations, have introduced the use of dielectric secondary containment liners. The dielectric liner does not allow the protective cathodic protection current to pass and causes corrosion to continue on the newly placed tank bottom. In existing tank bottoms where inadequate protection has been provided, leaks can develop. In one method of remediation, an old bottom is covered with sand and a double bottom is welded above the leaking bottom. The new bottom is welded very close to the old bottom, thus shielding the traditional cathodic protection from protecting the new bottom. These double bottoms often employ the use of dielectric liner as well. Both the liner and the double bottom often minimize the distance from the external tank bottom. The minimized space between the liner, or double bottom, and the bottom to be protected places a challenge in providing current distribution in cathodic protection systems. This study examines the practical concerns for application of impressed current cathodic protection and the types of anode materials used in these specific applications. One unique approach for an economical treatment using a conductive polymer cathodic protection method is presented. (author)

  16. Cathode erosion in high-current high-pressure arc

    CERN Document Server

    Nemchinsky, V A

    2003-01-01

    Cathode erosion rate was experimentally investigated for two types of arcs: one with tungsten cathode in nitrogen atmosphere and one with hafnium cathode in oxygen atmosphere. Conditions were typical for plasma arc cutting systems: gas pressure from 2 to 5 atm, arc current from 200 to 400 A, gas flow rate from 50 to 130 litre min sup - sup 1. It was found that the actual cathode evaporation rate G is much lower than G sub 0 , the evaporation rate that follows from the Hertz-Knudsen formula: G = nu G sub 0. The difference is because some of the evaporated particles return back to the cathode. For conditions of our experiments, the factor nu could be as low as 0.01. It was shown experimentally that nu depends strongly on the gas flow pattern close to the cathode. In particular, swirling the gas increases nu many times. To explain the influence of gas swirling, model calculations of gas flows were performed. These calculations revealed difference between swirling and non-swirling flows: swirling the gas enhances...

  17. Cathodic Protection of the Yaquina Bay Bridge

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Sophie J.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Laylor, H.M.; Cryer, C.B.

    2001-02-01

    The Yaquina Bay Bridge in Newport, Oregon, was designed by Conde B. McCullough and built in 1936. The 3,223-foot (982 m) structure is a combination of concrete arch approach spans and a steel through arch over the shipping channel. Cathodic protection is used to prevent corrosion damage to the concrete arches. The Oregon Department of Transportation (Oregon DOT) installed a carbon anode coating (DAC-85) on two of the north approach spans in 1985. This anode was operated at a current density of 6.6 mA/m2(0.6 mA/ft2). No failure of the conductive anode was observed in 1990, five years after application, or in 2000, 15 years after application. Thermal-sprayed zinc anodes 20 mils (0.5 mm) thick were applied to half the south approach spans beginning in 1990. Thermal-sprayed zinc anodes 15 mils (0.4 mm) thick were applied to the remaining spans in 1996. These anodes were operated at a current density of 2.2 mA/m2(0.2 mA/ft2). In 1999, four zones on the approach spans were included in a two-year field trial of humectants to improve zinc anode performance. The humectants LiNO3 and LiBr were applied to two zones; the two adjacent zones were left untreated as controls. The humectants substantially reduced circuit resistance compared to the controls.

  18. Pulsed microhollow cathode discharge excimer sources

    Science.gov (United States)

    Moselhy, Mohamed; Shi, Wenhui; Strak, Robert H.; Schoenbach, Karl H.

    2001-10-01

    Microhollow cathode discharges (MHCDs) are non-equilibrium, high-pressure gas discharges between perforated electrodes separated by a dielectric layer. Typical dimensions for the electrode foil thickness and hole diameter are 100 μm. Direct current experiments in xenon, argon, neon, helium, argon fluoride, and xenon chloride [1,2] have been performed. The excimer efficiency varies between 1 % and 9 %. Pulsed operation allowed us to increase the current from 8 mA (dc) to approximately 80 mA (pulsed with a pulse width of 700 μs), limited by the onset of instabilities. The total excimer power was found to increase linearly with current, however, the radiant emittance and efficiency stayed constant. Reducing the pulse duration into the nanosecond range allowed us to increase the current into the ampere range. The maximum measured excimer power was 2.75 W per microdischarge. The maximum radiant emittance was 15 W/cm^2 and the efficiency reached values of 20 %. This effect is assumed to be due to non-equilibrium electron heating in the high-pressure plasma [3]. This work was supported by the National Science Foundation under grant # CTS0078618. 1. Karl H. Schoenbach, Ahmed El-Habachi, Mohamed M. Moselhy, Wenhui Shi, and Robert H. Stark, Physics of Plasmas 7, 2186 (2000). 2. P. Kurunczi, J. Lopez, H. Shah, and K. Becker, Int. J. Mass Spectrom. 205, 277 (2001). 3. Robert H. Stark and Karl H. Schoenbach, J. Appl. Phys. 89, 3568 (2001).

  19. Lowering of the cathode fall voltage by laser exposure of the cathode in a high-pressure mercury discharge

    International Nuclear Information System (INIS)

    The effect of an additional electrode heating by laser light exposure of one electrode has been studied in a high-pressure mercury discharge. The exposed electrode operates as cathode or anode during the corresponding half-cycles of a square-wave current which has been used for driving the discharge. The additional heating influences the discharge voltage and the electrode tip temperatures in different ways during the cathode and anode phases. Only during the cathode phase is there a noticeable decrease in the discharge voltage connected with a moderate increase in the cathode tip temperature. The maximum absorbed laser power of 6.2 W causes a voltage decrease of about 3.5 V for a discharge current of 1.8 A. The exposure during the anode phase is characterized by a strong increase in the electrode tip temperature and a nearly unchanged discharge voltage. Theoretically determined parameters of the cathode boundary layer are given. For a constant discharge current the power balance at the cathode surface suggests a nearly linear dependence of the discharge voltage lowering on the laser input power, which has been verified experimentally

  20. Ion exchange membrane cathodes for scalable microbial fuel cells.

    Science.gov (United States)

    Zuo, Yi; Cheng, Shaoan; Logan, Bruce E

    2008-09-15

    One of the main challenges for using microbial fuel cells (MFCs) is developing materials and architectures that are economical and generate high power densities. The performance of two cathodes constructed from two low-cost anion (AEM) and cation (CEM) exchange membranes was compared to that achieved using an ultrafiltration (UF) cathode, when the membranes were made electrically conductive using graphite paint and a nonprecious metal catalyst (CoTMPP). The best performance in single-chamber MFCs using graphite fiber brush anodes was achieved using an AEM cathode with the conductive coating facing the solution, at a catalyst loading of 0.5 mg/cm2 CoTMPP. The maximum power densitywas 449 mW/ m2 (normalized to the projected cathode surface area) or 13.1 W/m3 (total reactor volume), with a Coulombic efficiency up to 70% in a 50 mM phosphate buffer solution (PBS) using acetate. Decreasing the CoTMPP loading by 40-80% reduced power by 28-56%, with only 16% of the power (72 mW/m2) generated using an AEM cathode lacking a catalyst. Using a current collector (a stainless steel mesh) pressed against the inside surface of the AEM cathode and 200 mM PBS, the maximum power produced was further increased to 728 mW/m2 (21.2 W/m3). The use of AEM cathodes and brush anodes provides comparable performance to similar systems that use materials costing nearly an order of magnitude more (carbon paper electrodes) and thus represent more useful materials for reducing the costs of MFCs for wastewater treatment applications. PMID:18853817

  1. Measurement of cathode surface temperature using the method of CCD imaging in arc discharge

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A two-wavelength pyrometry device using ordinary array CCD (charge coupled device) to collect the radiation data in the horizontal and vertical directions has been developed for measuring the cathode surface temperature during the arc discharge. Analyses of experimental results show that the device can make the measurement of the cathode surface temperature feasible. The cathode surface temperatures measured are lower than the melting point of tungsten (3653 K), and the arc current, cathode diameter, and the cathode length are the main influencing factors of the cathode surface temperature.

  2. Durability and performance optimization of cathode materials for fuel cells

    Science.gov (United States)

    Colon-Mercado, Hector Rafael

    The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and

  3. Electron and ion kinetics in a micro hollow cathode discharge

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G J; Iza, F; Lee, J K [Electronics and Electrical Engineering Department, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2006-10-21

    Electron and ion kinetics in a micro hollow cathode discharge are investigated by means of two-dimensional axisymmetric particle-in-cell Monte Carlo collision simulations. Argon discharges at 10 and 300 Torr are studied for various driving currents. Electron and ion energy probability functions (IEPF) are shown at various times and locations to study the spatio-temporal behaviour of the discharge. The electron energy probability function (EEPF) evolves from the Druyvesteyn type in the early stages of the discharge into a two (or three) temperature distribution when steady state is reached. In steady state, secondary electrons accelerated across the cathode fall populate the high energy tail of the EEPF while the low energy region is populated by trapped electrons. The IEPF evolves from a Maxwellian in the negative glow (bulk) to a two temperature distribution on the cathode surface. The overpopulation of low energy ions near the cathode surface is attributed to a larger collision cross section for low energy ions and ionization within the cathode fall.

  4. Trajectory control strategy of cathodes in blisk electrochemical machining

    Institute of Scientific and Technical Information of China (English)

    Zhu Dong; Zhu Di; Xu Zhengyang; Zhou Laishui

    2013-01-01

    A turbine blisk,which combines blades and a disk together,is one of the most important components of an aero engine.In the process of blisk electrochemical machining (ECM),the sheet cathode,which is usually used as a tool electrode,has a complicated structure.In addition to that,the channel between the adjacent blades is narrow and twisted,so interference is apt to happen when the sheet cathode feeds into the channel.Therefore,it is important to choose suitable trajectory control strategy.In this paper,a new trajectory control strategy of the sheet cathode is presented and corresponding simulation analysis is conducted on the basis of an actual blisk model.The simulation results demonstrate that the sheet cathode can feed into the channel by a spatial line trajectory without interference.Moreover,the verification experiments are carried out according to the simulation.The experimental results show that the cathode can move into the channel without interference.It is verified that the new trajectory control strategy is correct and can be used in the blisk ECM process successfully.

  5. Blacking FTO by strongly cathodic polarization with enhanced photocurrent

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yun; Lu, Xiaoqing; Huang, Wei, E-mail: hjhw9513@163.com; Li, Zelin, E-mail: lizelin@hunnu.edu.cn

    2015-08-30

    Graphical abstract: - Highlights: • Transparent FTO became blackish under strongly cathodic polarization. • Part of SnO{sub 2} coating on the FTO can be reduced into Sn nanoparticles. • The black FTO increased solar absorption and enhanced photocurrent responses. • Take care in photoelectrochemistry test while FTO is strongly cathodically polarized. - Abstract: Transparent fluorine-doped tin oxide (TFTO) coating on quartz glass is widely used as substrate in photoelectrochemistry for solar energy transformation, sensing and so on. We observed that the TFTO could become blackish by strongly cathodic polarization. Characterization of the black FTO (BFTO) by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy revealed that part of SnO{sub 2} on the TFTO was reduced into metal Sn nanoparticles during the cathodic polarization. The BFTO greatly increased solar absorption and enhanced photocurrent responses in comparison with TFTO. It might be necessary to take caution in photoelectrochemical measurements while the FTO is strongly cathodically polarized.

  6. Thermionically electron emitting matrix cathodes for magnetohydrodynamic generators: Analytical model

    International Nuclear Information System (INIS)

    Current and voltage drop calculations have been made for matrix cathodes having a number of sharp pins projecting out from its surface in open-cycle magnetohydrodynamic plasmas. It is assumed that from the cathode surface to the cathode sheath edge, the current flows in current tubes formed around the projected pins. The effect of high electric field on the work function of the tip has been taken into account and calculations are made for a variable number of tips and tip area. Work functions of the tip and the slant surface are taken to be different. The current and voltage characteristics have been obtained by solving the current continuity and Poisson's equations in spherical coordinate geometry. It is observed that the current increases with an increase in the number of pins per unit area and tip area. The theoretical results have been compared with the experimental observations

  7. Wettable Ceramic-Based Drained Cathode Technology for Aluminum Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    J.N. Bruggeman; T.R. Alcorn; R. Jeltsch; T. Mroz

    2003-01-09

    The goal of the project was to develop the ceramic based materials, technology, and necessary engineering packages to retrofit existing aluminum reduction cells in order to reduce energy consumption required for making primary aluminum. The ceramic materials would be used in a drained cathode configuration which would provide a stable, molten aluminum wetted cathode surface, allowing the reduction of the anode-cathode distance, thereby reducing the energy consumption. This multi-tasked project was divided into three major tasks: (1) Manufacturing and laboratory scale testing/evaluation of the ceramic materials, (2) Pilot scale testing of qualified compositions from the first task, and (3) Designing, retrofitting, and testing the ceramic materials in industrial cells at Kaiser Mead plant in Spokane, Washington. Specific description of these major tasks can be found in Appendix A - Project Scope. Due to the power situation in the northwest, the Mead facility was closed, thus preventing the industrial cell testing.

  8. Ultra short electron beam bunches from a laser plasma cathode

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Akira [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan)]. E-mail: maekawa@nuclear.jp; Tsujii, Ryosuke [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Kinoshita, Kennichi [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Atsushi, Yamazaki [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Kobayashi, Kazuyuki [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Uesaka, Mitsuru [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Shibata, Yukio [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Kondo, Yasuhiro [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Ohkubo, Takeru [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma (Japan); Hosokai, Tomonao [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Zhidkov, Alexei [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa (Japan); Takahashi, Toshiharu [Kyoto University Research Reactor Institute, Asahiro-nishi2, Kumatori, Sennan, Osaka (Japan)

    2007-08-15

    The fluctuation of the electron bunch duration due to energy spectrum instability in a laser plasma cathode has been examined. Previous experiments clearly proved that a laser plasma cathode can generate ultrashort electron bunches with a bunch duration of 130 fs (FWHM) and a geometrical emittance 0.07{pi} mm mrad. The effect of temporal elongation of electron bunches due to their energy spread is estimated and the results are in good agreement with previous experiments. It is also clarified that the instability of the energy spectrum not only leads to a fluctuation of the bunch shape but also to a time-of-flight jitter, affecting possible future applications of a laser plasma cathode.

  9. Cyclic erosion of a cathode in high-pressure arcs

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, Valerian [ESAB Welding and Cutting Products and Francis Marion University, Florence, SC 29501 (United States)

    2003-07-07

    Erosion that occurred during arc shut down was investigated. The arc current was 200 A; the cathode was made of hafnium. Different gases were used: oxygen, nitrogen, and noble gases (argon, helium, and hydrogen-argon mixture). The gas pressure was 3 atm. It was shown that erosion in noble gases is higher compared to gases that create chemical compounds with hafnium (oxygen and nitrogen). The following model of arc-off erosion is suggested. An amount of plasma gas is diluted in the molten tip of the cathode. When the arc is terminated, the gas pressure in the cathode vicinity drops down. The diluted gas then leaves the molten puddle and carries some liquid material with it.

  10. Microwave generator experiment at LLNL. [Virtual cathode oscillator (VIRCATOR)

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, W.W.; Burkhart S.C.; Scarpetti, R.D.

    1983-02-14

    A high power microwave oscillator known as a Virtual Cathode Oscillator (VIRCATOR) is described here. It is basically a space charge limited field emission cathode injecting electrons through a thin foil into a 4.3 cm radius circular waveguide. The total injected current forms a potential which exceeds the electron energy at which point a virtual cathode forms, and the electrons are reflected back across the foil. This occurs cyclically, coupling energy into TM/sub on/ waveguide modes. The frequency and power of the oscillations are very dependent on geometry and driving voltage. The VIRCATOR is presented here in two parts. First, the VIRCATOR theory and experiment setup is discussed, then numerical analysis of various VIRCATOR geometries is shown.

  11. Impedance Modeling of Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2010-01-01

    A 1-dimensional impedance model for a solid oxide fuel cell cathode is formulated and applied to a cathode consisting of 50/50 wt% strontium doped lanthanum cobaltite and gadolinia doped ceria. A total of 42 impedance spectra were recorded in the temperature range: 555-852°C and in the oxygen...... partial pressure range 0.028-1.00 atm. The recorded impedance spectra were successfully analyzed using the developed impedance model in the investigated temperature and oxygen partial pressure range. It is also demonstrated that the model can be used to predict how impedance spectra evolve with different...... physical parameters such as the cathode thickness. ©2010 COPYRIGHT ECS - The Electrochemical Society...

  12. A Transient Model for Fuel Cell Cathode-Water Propagation Behavior inside a Cathode after a Step Potential

    Directory of Open Access Journals (Sweden)

    Der-Sheng Chan

    2010-04-01

    Full Text Available Most of the voltage losses of proton exchange membrane fuel cells (PEMFC are due to the sluggish kinetics of oxygen reduction on the cathode and the low oxygen diffusion rate inside the flooded cathode. To simulate the transient flooding in the cathode of a PEMFC, a transient model was developed. This model includes the material conservation of oxygen, vapor, water inside the gas diffusion layer (GDL and micro-porous layer (MPL, and the electrode kinetics in the cathode catalyst layer (CL. The variation of hydrophobicity of each layer generated a wicking effect that moves water from one layer to the other. Since the GDL, MPL, and CL are made of composite materials with different hydrophilic and hydrophobic properties, a linear function of saturation was used to calculate the wetting contact angle of these composite materials. The balance among capillary force, gas/liquid pressure, and velocity of water in each layer was considered. Therefore, the dynamic behavior of PEMFC, with saturation transportation taken into account, was obtained in this study. A step change of the cell voltage was used to illustrate the transient phenomena of output current, water movement, and diffusion of oxygen and water vapor across the entire cathode.

  13. PVC DISULFIDE AS CATHODE MATERIALS FOR SECONDARY LITHIUM BATTERIES

    Institute of Scientific and Technical Information of China (English)

    Guo-xiang Xu; Lu Qi; Bi-tao Yu; Lei Wen

    2006-01-01

    PVC disulfide (2SPVC) was synthesized by solution crosslink and its molecular structure was confirmed by the particle size of d0.5 = 11.3 μm. With SEM (Scanning Electron Microscope) experiment the surface morphology and obvious S-S redox reaction in charge-discharge process. When 2SPVC was used as cathode material for secondary lithium mixture of o-xylene (oxy), diglyme (DG) and dimethoxymethane (DME) at 30℃, the first discharge capacity of 2SPVC is very promising cathode candidate for rechargeable lithium batteries.

  14. An RF excited plasma cathode electron beam gun design

    OpenAIRE

    Del Pozo, S.; Ribton, C; Smith, DR

    2014-01-01

    A plasma cathode electron beam (EB) gun is presented in this work. A radio frequency (RF) excited plasma at 84 MHz was used as the electron source to produce a beam power of up to 3.2 kW at -60 kV accelerating voltage. The pressure in the plasma chamber is approximately 1 mbar. The electrons are extracted from the plasma chamber to the vacuum chamber (at 10-5 mbar) through a diaphragm with a 0.5 mm diameter nozzle. Advantages over thermionic cathode guns were demonstrated empirically. Mainten...

  15. Improved Cathode Structure for a Direct Methanol Fuel Cell

    Science.gov (United States)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been

  16. NEW CATHODE MATERIALS FOR INERT AND OXIDIZING ATMOSPHERE PLASMA APPLICATION

    OpenAIRE

    Sadek, A; Kusumoto, K.; Ushio, M; Matsuda, F.

    1990-01-01

    This study has been carried out to develop new cathode materials for two types of thermionic cathode. First is concerning to the tungsten electrodes for the plasma furnace and welding torches. The second one is the electrodes for air plasma cutting torch. Tungsten electrodes activated with a single and combined additives of rare earth metal oxides, such as La2O3, Y2O3 and CeO2, are produced and pared with pure and thoriated tungsten electrode conventionally used, from the point of view of ele...

  17. High Pressure Micro-Slot Hollow Cathode Discharge

    Institute of Scientific and Technical Information of China (English)

    Wang Xinbing; Zhou Lina; Yao Xilin

    2005-01-01

    A direct current glow discharge source structure operating at high pressure based on the micro-slot hollow cathode is presented in this article. A 100 μm width slot cathode was fabricated of copper, and a stable DC glow discharge with an area of 0.5 mm2 was produced in noble gases (He, Ne) and air over a wide pressure range (kPa ~ 10 kPa). The current-voltage characteristics and the near UV radiation emission of the discharge were studied.

  18. Web-Based Cathode Strip Chamber Data Display

    CERN Multimedia

    Firmansyah, M

    2013-01-01

    Cathode Strip Chamber (CSC) is a detector that uses gas and high electric field to detect particles. When a particle goes through CSC, it will ionize gas particles and generate electric signal in the anode and cathode of the detector. Analysis of the electric signal data can help physicists to reconstruct path of the particles and determine what happen inside the detector. Using data display, analysis of CSC data becomes easier. One can determine which data is interesting, unusual, or maybe only contain noise.\

  19. Dynamic Aspects of Solid Solution Cathodes for Electrochemical Power Sources

    DEFF Research Database (Denmark)

    Atlung, Sven; West, Keld; Jacobsen, Torben

    1979-01-01

    , in particularfor vehicle propulsion, and electrochemical and constructional factors. It isargued that the energy obtainable at a given load is limited by saturation ofthe surface layers of cathode particles with cations, and that the time beforesaturation occurs is determined by diffusion of cations and electrons......–10 cm2 sec–1. On the basis of an approximaterelation between cathode thickness and electrode spacing the specificenergy for the Li/TiS2 system with organic electrolyte is estimated to be 120–150W-hr/kg in agreement with published values. ©1979 The Electrochemical Society, Inc....

  20. Modulation transfer spectroscopy of ytterbium atoms in hollow cathode lamp

    International Nuclear Information System (INIS)

    We present the experimental study of modulation transfer spectroscopy of ytterbium atoms in a hollow cathode lamp. The dependences of its linewidth, slope and magnitude on the various experimental parameters are measured and fitted by the well-known theoretical expressions. The experimental results are in good agreement with the theoretical prediction. We have observed the Dicke narrowing effect by increasing the current of the hollow cathode lamp. It is also found that there are the optimal current and laser power to generate the better modulation transfer spectroscopy signal, which can be employed for locking the laser frequency to the atomic transition. (authors)

  1. Cathodic arc grown niobium films for RF superconducting cavity applications

    Science.gov (United States)

    Catani, L.; Cianchi, A.; Lorkiewicz, J.; Tazzari, S.; Langner, J.; Strzyzewski, P.; Sadowski, M.; Andreone, A.; Cifariello, G.; Di Gennaro, E.; Lamura, G.; Russo, R.

    2006-07-01

    Experimental results on the characterization of the linear and non-linear microwave properties of niobium film produced by UHV cathodic arc deposition are presented. Surface impedance Zs as a function of RF field and intermodulation distortion (IMD) measurement have been carried out by using a dielectrically loaded resonant cavity operating at 7 GHz. The experimental data show that these samples have a lower level of intrinsic non-linearities at low temperature and low circulating power in comparison with Nb samples grown by sputtering. These results make UHV cathodic arc deposition a promising technique for the improvement of RF superconducting cavities for particle accelerators.

  2. Cathodic arc grown niobium films for RF superconducting cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    Catani, L. [INFN-Roma2, Rome (Italy); Cianchi, A. [INFN-Roma2, Rome (Italy); Lorkiewicz, J. [INFN-Roma2, Rome (Italy); Tazzari, S. [Universita di Roma ' Tor Vergata' and INFN-Roma2, Rome (Italy); Langner, J. [Soltan Institute for Nuclear Studies, Swierk (Poland); Strzyzewski, P. [Soltan Institute for Nuclear Studies, Swierk (Poland); Sadowski, M. [Soltan Institute for Nuclear Studies, Swierk (Poland); Andreone, A. [University of Napoli ' Federico II' and INFN-NA, Naples (Italy); Cifariello, G. [University of Napoli ' Federico II' and INFN-NA, Naples (Italy); Di Gennaro, E. [University of Napoli ' Federico II' and INFN-NA, Naples (Italy); Lamura, G. [University of Napoli ' Federico II' and INFN-NA, Naples (Italy); Russo, R. [Seconda Universita di Napoli, INFN-NA, Naples (Italy)

    2006-07-15

    Experimental results on the characterization of the linear and non-linear microwave properties of niobium film produced by UHV cathodic arc deposition are presented. Surface impedance Z {sub s} as a function of RF field and intermodulation distortion (IMD) measurement have been carried out by using a dielectrically loaded resonant cavity operating at 7 GHz. The experimental data show that these samples have a lower level of intrinsic non-linearities at low temperature and low circulating power in comparison with Nb samples grown by sputtering. These results make UHV cathodic arc deposition a promising technique for the improvement of RF superconducting cavities for particle accelerators.

  3. Virtual cathode oscillator with E-beam modulation

    International Nuclear Information System (INIS)

    A new type virtual cathode oscillator (VCO) with preliminary e-beam modulation was studied by numerical simulation and experimentally tested. It was shown that the variation of the beam modulation signal leaded to the change of character of vircator. In the vircator scheme, the microwave generated by virtual cathode oscillation was partially fed back to the beam acceleration region to modulate the injected e-beam and so as to improve the performance of the vircator. Changing the length of feedback waveguide resulted in a 8dB variation of the radiated microwave power

  4. QE data for Pb/Nb deposited photo cathode samples

    CERN Document Server

    Sekutowicz, J

    2010-01-01

    This report outlines progress in the development of photo-cathodes for a hybrid lead/niobium (Pb/Nb) superconducting SRF electron injector. We have coated eight Nb samples with lead to study and determine deposition conditions leading to high quality emitting area. The results show that the oxide layer significantly influences the quantum efficiency (QE) of all measured cathodes. In addition, we learned that although the laser cleaning enhanced the QE substantially, the film morphology was strongly modified. That observation convinced us to make the coatings thicker and therefore more robust.

  5. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell

    KAUST Repository

    Zhang, Fang

    2009-11-01

    An inexpensive activated carbon (AC) air cathode was developed as an alternative to a platinum-catalyzed electrode for oxygen reduction in a microbial fuel cell (MFC). AC was cold-pressed with a polytetrafluoroethylene (PTFE) binder to form the cathode around a Ni mesh current collector. This cathode construction avoided the need for carbon cloth or a metal catalyst, and produced a cathode with high activity for oxygen reduction at typical MFC current densities. Tests with the AC cathode produced a maximum power density of 1220 mW/m2 (normalized to cathode projected surface area; 36 W/m3 based on liquid volume) compared to 1060 mW/m2 obtained by Pt catalyzed carbon cloth cathode. The Coulombic efficiency ranged from 15% to 55%. These findings show that AC is a cost-effective material for achieving useful rates of oxygen reduction in air cathode MFCs. © 2009 Elsevier B.V. All rights reserved.

  6. Compact High Current Rare-Earth Emitter Hollow Cathode for Hall Effect Thrusters

    Science.gov (United States)

    Hofer, Richard R. (Inventor); Goebel, Dan M. (Inventor); Watkins, Ronnie M. (Inventor)

    2012-01-01

    An apparatus and method for achieving an efficient central cathode in a Hall effect thruster is disclosed. A hollow insert disposed inside the end of a hollow conductive cathode comprises a rare-earth element and energized to emit electrons from an inner surface. The cathode employs an end opening having an area at least as large as the internal cross sectional area of the rare earth insert to enhance throughput from the cathode end. In addition, the cathode employs a high aspect ratio geometry based on the cathode length to width which mitigates heat transfer from the end. A gas flow through the cathode and insert may be impinged by the emitted electrons to yield a plasma. One or more optional auxiliary gas feeds may also be employed between the cathode and keeper wall and external to the keeper near the outlet.

  7. Methods and apparatus for using gas and liquid phase cathodic depolarizers

    Science.gov (United States)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor)

    1998-01-01

    The invention provides methods for using gas and liquid phase cathodic depolarizers in an electrochemical cell having a cation exchange membrane in intimate contact with the anode and cathode. The electrochemical conversion of cathodic depolarizers at the cathode lowers the cell potential necessary to achieve a desired electrochemical conversion, such as ozone evolution, at the anode. When gaseous cathodic depolarizers, such as oxygen, are used, a gas diffusion cathode having the cation exchange membrane bonded thereto is preferred. When liquid phase cathodic depolarizers are used, the cathode may be a flow-by electrode, flow-through electrode, packed-bed electrode or a fluidized-bed electrode in intimate contact with the cation exchange membrane.

  8. Study on the vibrational scraping of uranium product from a solid cathode of electrorefiner

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Bin; Kang, Young Ho; Hwang, Sung Chan; Lee, Han Soo; Paek, Seung Woo; Ahn, Do Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    A high-throughput electrorefiner has been developed for commercialization use by enhancing the uranium recovery from the reduced metal which is produced from the oxide reduction process. It is necessary to scrap and effectively collect uranium dendrites from the surface of the solid cathode for high yield. When a steel electrode is used as the cathode in the electrorefining process, uranium is deposited and regularly stuck to the steel cathode during electrorefining. The sticking coefficient of a steel cathode is very high. In order to decrease the sticking coefficient of the steel cathode effectively, vibration mode was applied to the electrode in this study. Uranium dendrites were scraped and fell apart from the steel cathode by a vibration force. The vibrational scraping of the steel cathode was compared to the self-scraping of the graphite cathode. Effects of the applied current density and the vibration stroke on the scraping of the uranium dendrites were also investigated.

  9. Nano-Particle Scandate Cathode for Space Communications Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an improved cathode based on our novel theory of the role of scandium oxide in enhancing emission in tungsten-impregnated cathodes. Recent results have...

  10. Enhanced Oxygen and Hydroxide Transport in a Cathode Interface by Efficient Antibacterial Property of a Silver Nanoparticle-Modified, Activated Carbon Cathode in Microbial Fuel Cells.

    Science.gov (United States)

    Li, Da; Qu, Youpeng; Liu, Jia; Liu, Guohong; Zhang, Jie; Feng, Yujie

    2016-08-17

    A biofilm growing on an air cathode is responsible for the decreased performance of microbial fuel cells (MFCs). For the undesired biofilm to be minimized, silver nanoparticles were synthesized on activated carbon as the cathodic catalyst (Ag/AC) in MFCs. Ag/AC enhanced maximum power density by 14.6% compared to that of a bare activated carbon cathode (AC) due to the additional silver catalysis. After operating MFCs over five months, protein content on the Ag/AC cathode was only 38.3% of that on the AC cathode, which resulted in a higher oxygen concentration diffusing through the Ag/AC cathode. In addition, a lower pH increment (0.2 units) was obtained near the Ag/AC catalyst surface after biofouling compared to 0.8 units of the AC cathode, indicating that less biofilm on the Ag/AC cathode had a minor resistance on hydroxide transported from the catalyst layer interfaces to the bulk solution. Therefore, less decrements of the Ag/AC activity and MFC performance were obtained. This result indicated that accelerated transport of oxygen and hydroxide, benefitting from the antibacterial property of the cathode, could efficiently maintain higher cathode stability during long-term operation.

  11. Enhanced Oxygen and Hydroxide Transport in a Cathode Interface by Efficient Antibacterial Property of a Silver Nanoparticle-Modified, Activated Carbon Cathode in Microbial Fuel Cells.

    Science.gov (United States)

    Li, Da; Qu, Youpeng; Liu, Jia; Liu, Guohong; Zhang, Jie; Feng, Yujie

    2016-08-17

    A biofilm growing on an air cathode is responsible for the decreased performance of microbial fuel cells (MFCs). For the undesired biofilm to be minimized, silver nanoparticles were synthesized on activated carbon as the cathodic catalyst (Ag/AC) in MFCs. Ag/AC enhanced maximum power density by 14.6% compared to that of a bare activated carbon cathode (AC) due to the additional silver catalysis. After operating MFCs over five months, protein content on the Ag/AC cathode was only 38.3% of that on the AC cathode, which resulted in a higher oxygen concentration diffusing through the Ag/AC cathode. In addition, a lower pH increment (0.2 units) was obtained near the Ag/AC catalyst surface after biofouling compared to 0.8 units of the AC cathode, indicating that less biofilm on the Ag/AC cathode had a minor resistance on hydroxide transported from the catalyst layer interfaces to the bulk solution. Therefore, less decrements of the Ag/AC activity and MFC performance were obtained. This result indicated that accelerated transport of oxygen and hydroxide, benefitting from the antibacterial property of the cathode, could efficiently maintain higher cathode stability during long-term operation. PMID:27441786

  12. Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jin

    2009-01-07

    This is the final report for project entitled 'Research and development of a new field enhanced low temperature thermionic cathode that enables fluorescent dimming and load shedding without auxiliary cathode heating', under Agreement Number: DE-FC26-04NT-42329. Under this project, a highly efficient CNT based thermionic cathode was demonstrated. This cathode is capable of emitting electron at a current density two order of magnitude stronger then a typical fluorescent cathode at same temperatures, or capable of emitting at same current density but at temperature about 300 C lower than that of a fluorescent cathode. Detailed fabrication techniques were developed including CVD growth of CNTs and sputter deposition of oxide thin films on CNTs. These are mature technologies that have been widely used in industry for large scale materials processing and device fabrications, thus, with further development work, the techniques developed in this project can be scaled-up in manufacturing environment. The prototype cathodes developed in this project were tested in lighting plasma discharge environment. In many cases, they not only lit and sustain the plasma, but also out perform the fluorescent cathodes in key parameters such like cathode fall voltages. More work will be needed to further evaluate more detailed and longer term performance of the prototype cathode in lighting plasma.

  13. One more study of argon arc binding to pure tungsten cathode

    Science.gov (United States)

    Gadzhiev, M. Kh.; Sargsyan, M. A.; Tereshonok, D. V.; Tyuftyaev, A. S.

    2016-08-01

    Pyrometric and spectroscopic investigations of pure tungsten cathode in argon arc plasma discharge at atmospheric pressure are reported. The distribution of surface cathode temperature and the radial distribution of plasma temperature at different distance from the cathode tip were measured. We conducted a comparison between our work and other studies on arc discharges where cathodes from lanthanated (W-2% La2O3) and thoriated (W-2% ThO2) tungsten were used.

  14. Explosive emission cathodes for high power microwave devices: gas evolution studies

    OpenAIRE

    Schlise, Charles A.

    2004-01-01

    Approved for public release, distribution is unlimited Present-day high power microwave devices suffer from a lack of reliable, reproducible cathodes for generating the requisite GW-level electron beam in a vacuum. Standard explosive emission cathode pulse durations have been limited to 10's or 100's of ns due to the expansion of cathode-generated plasma and the ensuing impedance collapse that debilitates microwave output. Traditional thermionic cathodes do not suffer from this drawback of...

  15. Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells

    KAUST Repository

    Xie, Xing

    2011-01-01

    A carbon nanotube (CNT)-textile-Pt cathode for aqueous-cathode microbial fuel cells (MFCs) was prepared by electrochemically depositing Pt nanoparticles on a CNT-textile. An MFC equipped with a CNT-textile-Pt cathode revealed a 2.14-fold maximum power density with only 19.3% Pt loading, compared to that with a commercial Pt coated carbon cloth cathode. © 2011 The Royal Society of Chemistry.

  16. Oxygen transport in the internal xenon plasma of a dispenser hollow cathode

    OpenAIRE

    Capece, Angela M.; Polk, James E.; Mikellides, Ioannis G.; Shepherd, Joseph E.

    2014-01-01

    Reactive gases such as oxygen and water vapor modify the surface morphology of BaO dispenser cathodes and degrade the electron emission properties. For vacuum cathodes operating at fixed temperature, the emission current drops rapidly when oxygen adsorbs on top of the low work function surface. Previous experiments have shown that plasma cathodes are more resistant to oxygen poisoning and can operate with O_2 partial pressures one to two orders of magnitude higher than vacuum cathodes before ...

  17. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dong; Liu, Mingfei; Lai, Samson; Blinn, Kevin; Liu, Meilin

    2012-09-30

    The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details and stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar

  18. Pulse-Width Increase of Reflex Triode Vircator Using the Carbon Fibre Cathode

    Institute of Scientific and Technical Information of China (English)

    LIU Lie; LI Li-Min; ZHANG Xiao-Ping; WEN Jian-Chun; WAN Hong

    2006-01-01

    @@ We present the investigation on the reflex triode virtual cathode oscillator in which performances of carbonfibre and stainless-steel cathodes are compared with each other. The experimental results and analyses show that surface tracking induces the electron emission of the carbon fibre cathode.

  19. Chromium poisoning of LSM/YSZ and LSCF/CGO composite cathodes

    DEFF Research Database (Denmark)

    Bentzen, Janet Jonna; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus;

    2009-01-01

    An electrochemical study of SOFC cathode degradation, due to poisoning by chromium oxide vapours, was performed applying 3-electrode set-ups. The cathode materials comprised LSM/YSZ and LSCF/CGO composites, whereas the electrolyte material was 8YSZ. The degradation of the cathode performance...

  20. Effect of cathode gas humidification on performance and durability of Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Hagen, Anke; Liu, Yi-Lin

    2010-01-01

    The effect of cathode inlet gas humidification was studied on single anode supported Solid Oxide Fuel Cells (SOFC's). The studied cells were Risø 2 G and 2.5 G. The former consists of a LSM:YSZ composite cathode, while the latter consists of a LSCF:CGO composite cathode on a CGO protection layer...

  1. Anodic or cathodic motor cortex stimulation for pain?

    NARCIS (Netherlands)

    Holsheimer, J.; Manola, L.

    2006-01-01

    Objective. In motor cortex stimulation (MCS) for central and trigeminal pain Resume leads are placed epidurally over the motor and sensory cortex. Several bipolar combinations are used to identify the cortical target corresponding to the painful body segment. The cathode giving the largest motor r

  2. The Cathode Strip Chamber Data Acquisition System for CMS

    CERN Document Server

    Bylsma, B G; Gilmore, J R; Gu, J H; Ling, T Y

    2007-01-01

    The Cathode Strip Chamber (CSC) [1] Data Acquisition (DAQ) system for the CMS [2] experiment at the LHC [3] will be described. The CSC system is large, consisting of 218K cathode channels and 183K anode channels. This leads to a substantial data rate of ~1.5GByte/s at LHC design luminosity (1034cm-2s-1) and the CMS first level trigger (L1A) rate of 100KHz. The DAQ system consists of three parts. The first part is on-chamber Cathode Front End Boards (CFEB)[4], which amplify, shape, store, and digitise chamber cathode signals, and Anode Front End Boards (AFEB)[5], which amplify, shape and discriminate chamber anode signals. The second part is the Peripheral Crate Data Acquisition Motherboards (DAQMB), which control the onchamber electronics and the readout of the chamber. The third part is the off-detector DAQ interface boards, which perform real time error checking, electronics reset requests and data concentration. It passes the resulting data to a CSC local DAQ farm, as well as CMS main DAQ [6]. All electron...

  3. Interactions of alkali metals and electrolyte with cathode carbons

    Energy Technology Data Exchange (ETDEWEB)

    Naas, Tyke

    1997-12-31

    The Hall-Heroult process for electrolytic reduction of alumina has been the only commercial process for production of primary aluminium. The process runs at high temperature and it is important to minimize the energy consumption. To save energy it is desirable to reduce the operating temperature. This can be achieved by adding suitable additives such as LiF or KF to the cryolitic electrolyte. This may conflict with the objective of extending the lifetime of the cathode linings of the cell as much as possible. The thesis investigates this possibility and the nature of the interactions involved. It supports the hypothesis that LiF-additions to the Hall-Heroult cell electrolyte is beneficial to the carbon cathode performance because the diminished sodium activity reduces the sodium induced stresses during the initial period of electrolysis. The use of KF as an additive is more dangerous, but the results indicate that additions up to 5% KF may be tolerated in acidic melts with semigraphitic or graphitic cathodes with little risk of cathode problems. 153 refs., 94 figs., 30 tabs.

  4. Cathodic Arcs From Fractal Spots to Energetic Condensation

    CERN Document Server

    Anders, Andre

    2009-01-01

    Emphasizes the fractal character of cathode spots, and describes strongly fluctuating plasma properties such as the presence of multiply charged ions that move with supersonic velocity. This book also deals with issues, such as arc source construction, and macroparticle removal. It is intended for scientists, practitioners, and students alike

  5. Durable cathodes for high-power inert-gas arcs

    Science.gov (United States)

    Decker, A. J.; Gettleman, C. C.; Goldman, G. C.; Hall, J. H.; Pollack, J. L.

    1971-01-01

    Cathode design minimizes evaporation of electrode material which may deposit on associated optical surfaces. It also results in stable operation and precise positioning of arc relative to optical collector. Innovation applies to high power light sources and to arcs used in industrial furnaces.

  6. FEM-models of cathodic protection systems for concrete structures

    NARCIS (Netherlands)

    Bertolini, L.; Lollini, F.; Redaelli, E.; Polder, R.B.; Peelen, W.H.A.

    2008-01-01

    A significant number of reinforced concrete structures shows deterioration due to the reinforcement corrosion and requires interventions to guarantee their residual service life. A wide range of maintenance options is available, among which cathodic protection (CP) has been found to be a successful

  7. Advanced numerical design for economical cathodic protection for concrete structures

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.

    2008-01-01

    Concrete structures under aggressive load may suffer chloride induced reinforcement corrosion, in particular with increasing age. Due to high monetary and societal cost (non-availability), replacement is often undesirable. Durable repair is necessary, e.g. by Cathodic Protection (CP). CP involves an

  8. Anion-redox nanolithia cathodes for Li-ion batteries

    Science.gov (United States)

    Zhu, Zhi; Kushima, Akihiro; Yin, Zongyou; Qi, Lu; Amine, Khalil; Lu, Jun; Li, Ju

    2016-08-01

    The development of lithium–air batteries is plagued by a high potential gap (>1.2 V) between charge and discharge, and poor cyclability due to the drastic phase change of O2 (gas) and Ox‑ (condensed phase) at the cathode during battery operations. Here we report a cathode consisting of nanoscale amorphous lithia (nanolithia) confined in a cobalt oxide, enabling charge/discharge between solid Li2O/Li2O2/LiO2 without any gas evolution. The cathode has a theoretical capacity of 1,341 Ah kg‑1, a mass density exceeding 2.2 g cm‑3, and a practical discharge capacity of 587 Ah kg‑1 at 2.55 V versus Li/Li+. It also displays stable cycling performance (only 1.8% loss after 130 cycles in lithium-matched full-cell tests against Li4Ti5O12 anode), as well as a round-trip overpotential of only 0.24 V. Interestingly, the cathode is automatically protected from O2 gas release and overcharging through the shuttling of self-generated radical species soluble in the carbonate electrolyte.

  9. Influence of substrate topography on cathodic delamination of anticorrosive coatings

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim;

    2009-01-01

    by migration of cations from the defect to the delamination front. This means that abrasive blasting, to some extent, can be applied to control and minimize the observed rate of cathodic delamination. The lifetime of the species causing disbondment suggested that sodium hydroxide or potassium hydroxide...

  10. Enhancement of Platinum Cathode Catalysis by Addition of Transition Metals

    Science.gov (United States)

    Duong, Hung Tuan

    2009-01-01

    The sluggish kinetics of oxygen reduction reaction (ORR) contributes significantly to the loss of cathode overpotential in fuel cells, thus requiring high loadings of platinum (Pt), which is an expensive metal with limited supply. However, Pt and Pt-based alloys are still the best available electrocatalysts for ORR thus far. The research presented…

  11. The fractal nature of vacuum arc cathode spots

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2005-05-27

    Cathode spot phenomena show many features of fractals, for example self-similar patterns in the emitted light and arc erosion traces. Although there have been hints on the fractal nature of cathode spots in the literature, the fractal approach to spot interpretation is underutilized. In this work, a brief review of spot properties is given, touching the differences between spot type 1 (on cathodes surfaces with dielectric layers) and spot type 2 (on metallic, clean surfaces) as well as the known spot fragment or cell structure. The basic properties of self-similarity, power laws, random colored noise, and fractals are introduced. Several points of evidence for the fractal nature of spots are provided. Specifically power laws are identified as signature of fractal properties, such as spectral power of noisy arc parameters (ion current, arc voltage, etc) obtained by fast Fourier transform. It is shown that fractal properties can be observed down to the cutoff by measurement resolution or occurrence of elementary steps in physical processes. Random walk models of cathode spot motion are well established: they go asymptotically to Brownian motion for infinitesimal step width. The power spectrum of the arc voltage noise falls as 1/f {sup 2}, where f is frequency, supporting a fractal spot model associated with Brownian motion.

  12. Experimental Optimization of a reflex triode virtual cathode oscillator

    International Nuclear Information System (INIS)

    Experimental findings on a high power Reflex Triode Virtual Cathode Oscillator (Vircator) are reported. The performance of a vircator are modified with the inclusion of reflecting strips. Motivation for this technique was driven by success of reflector inclusion to a coaxial vircator. A parametric experimental study was performed to optimize the performance of this geometry

  13. Engineering analyses of large precision cathode strip chambers for GEM

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, J.A.; Belser, F.C.; Pratuch, S.M.; Wuest, C.R. [Lawrence Livermore National Lab., CA (United States); Mitselmakher, G. [Superconducting Super Collider Lab., Dallas, TX (United States); Gordeev, A. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Johnson, C.V. [Lawrence Livermore National Lab., CA (United States)]|[Superconducting Super Collider Lab., Dallas, TX (United States); Polychronakos, V.A. [Brookhaven National Lab., Upton, NY (United States); Golutvin, I.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    1993-10-21

    Structural analyses of large precision cathode strip chambers performed up to the date of this publication are documented. Mechanical property data for typical chamber materials are included. This information, originally intended to be an appendix to the {open_quotes}CSC Structural Design Bible,{close_quotes} is presented as a guide for future designers of large chambers.

  14. Interaction between Cathodic Protection and Microbially Influenced Corrosion.

    OpenAIRE

    Bujang Masli, Azlan Bin

    2011-01-01

    The present work studied the interaction between cathodic protection and microbiallyinfluenced corrosion (MIC) on the surface of mild steel. Potential trending wasobserved when the currents were held constant, and current trending was observedwhen potentials were held constant. Scanning electron microscopy and energydispersive x-ray spectroscopy were used to study surface deposits on the samples andfurther understand the result of the interaction. Sul...

  15. Individually addressable cathodes with integrated focusing stack or detectors

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Clarence E.; Baylor, Larry R.; Voelkl, Edgar; Simpson, Michael L.; Paulus, Michael J.; Lowndes, Douglas; Whealton, John; Whitson, John C.; Wilgen, John B.

    2005-07-12

    Systems and method are described for addressable field emission array (AFEA) chips. A plurality of individually addressable cathodes are integrated with an electrostatic focusing stack and/or a plurality of detectors on the addressable field emission array. The systems and methods provide advantages including the avoidance of space-charge blow-up.

  16. Composite Cathodes for Dual-Rate Li-Ion Batteries

    Science.gov (United States)

    Whitacre, Jay; West, William; Bugga, Ratnakumar

    2008-01-01

    Composite-material cathodes that enable Li-ion electrochemical cells and batteries to function at both high energy densities and high discharge rates are undergoing development. Until now, using commercially available cathode materials, it has been possible to construct cells that have either capability for high-rate discharge or capability to store energy at average or high density, but not both capabilities. However, both capabilities are needed in robotic, standby-power, and other applications that involve duty cycles that include long-duration, low-power portions and short-duration, high-power portions. The electrochemically active ingredients of the present developmental composite cathode materials are: carbon-coated LiFePO4, which has a specific charge capacity of about 160 mA h/g and has been used as a high-discharge-rate cathode material and Li[Li(0.17)Mn(0.58)Ni(0.25)]O2, which has a specific charge capacity of about 240 mA h/g and has been used as a high-energy-density cathode material. In preparation for fabricating the composite material cathode described, these electrochemically active ingredients are incorporated into two sub-composites: a mixture comprising 10 weight percent of poly(vinylidine fluoride); 10 weight percent of carbon and 80 weight percent of carbon coated LiFePO4; and, a mixture comprising 10 weight percent of PVDF, and 80 weight percent of Li[Li(0.17)Mn(0.58)Ni(0.25)]O2. In the fabrication process, these mixtures are spray-deposited onto an aluminum current collector. Electrochemical tests performed thus far have shown that better charge/discharge performance is obtained when either 1) each mixture is sprayed on a separate area of the current collector or (2) the mixtures are deposited sequentially (in contradistinction to simultaneously) on the same current-collector area so that the resulting composite cathode material consists of two different sub-composite layers.

  17. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Harry Abernathy; Meilin Liu

    2006-12-31

    One primary suspected cause of long-term performance degradation of solid oxide fuels (SOFCs) is the accumulation of chromium (Cr) species at or near the cathode/electrolyte interface due to reactive Cr molecules originating from Cr-containing components (such as the interconnect) in fuel cell stacks. To date, considerable efforts have been devoted to the characterization of cathodes exposed to Cr sources; however, little progress has been made because a detailed understanding of the chemistry and electrochemistry relevant to the Cr-poisoning processes is still lacking. This project applied multiple characterization methods - including various Raman spectroscopic techniques and various electrochemical performance measurement techniques - to elucidate and quantify the effect of Cr-related electrochemical degradation at the cathode/electrolyte interface. Using Raman microspectroscopy the identity and location of Cr contaminants (SrCrO{sub 4}, (Mn/Cr){sub 3}O{sub 4} spinel) have been observed in situ on an LSM cathode. These Cr contaminants were shown to form chemically (in the absence of current flowing through the cell) at temperatures as low as 625 C. While SrCrO{sub 4} and (Mn/Cr){sub 3}O{sub 4} spinel must preferentially form on LSM, since the LSM supplies the Sr and Mn cations necessary for these compounds, LSM was also shown to be an active site for the deposition of Ag{sub 2}CrO{sub 4} for samples that also contained silver. In contrast, Pt and YSZ do not appear to be active for formation of Cr-containing phases. The work presented here supports the theory that Cr contamination is predominantly chemically-driven and that in order to minimize the effect, cathode materials should be chosen that are free of cations/elements that could preferentially react with chromium, including silver, strontium, and manganese.

  18. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure.

    Science.gov (United States)

    Liang, Zheng; Zheng, Guangyuan; Li, Weiyang; Seh, Zhi Wei; Yao, Hongbin; Yan, Kai; Kong, Desheng; Cui, Yi

    2014-05-27

    Sulfur is a cathode material for lithium-ion batteries with a high specific capacity of 1675 mAh/g. The rapid capacity fading, however, presents a significant challenge for the practical application of sulfur cathodes. Two major approaches that have been developed to improve the sulfur cathode performance include (a) fabricating nanostructured conductive matrix to physically encapsulate sulfur and (b) engineering chemical modification to enhance binding with polysulfides and, thus, to reduce their dissolution. Here, we report a three-dimensional (3D) electrode structure to achieve both sulfur physical encapsulation and polysulfides binding simultaneously. The electrode is based on hydrogen reduced TiO2 with an inverse opal structure that is highly conductive and robust toward electrochemical cycling. The relatively enclosed 3D structure provides an ideal architecture for sulfur and polysulfides confinement. The openings at the top surface allow sulfur infusion into the inverse opal structure. In addition, chemical tuning of the TiO2 composition through hydrogen reduction was shown to enhance the specific capacity and cyclability of the cathode. With such TiO2 encapsulated sulfur structure, the sulfur cathode could deliver a high specific capacity of ∼1100 mAh/g in the beginning, with a reversible capacity of ∼890 mAh/g after 200 cycles of charge/discharge at a C/5 rate. The Coulombic efficiency was also maintained at around 99.5% during cycling. The results showed that inverse opal structure of hydrogen reduced TiO2 represents an effective strategy in improving lithium sulfur batteries performance.

  19. Field emission of electrons from cathodes made of carbon fibers with a nanostructured emitting surface

    Science.gov (United States)

    Lupekhin, S. M.; Ibragimov, A. A.

    2011-06-01

    Field electron emission from cathodes made of a bunch of carbon fibers under the condition of technical vacuum is studied experimentally. A model to optimize the field emission properties of the cathode by optimizing its macrogeometry with regard to the emitting surface structure is suggested. The current-voltage characteristics of the cathode are taken in the working voltage range 1-3 kV and for anode-cathode spacings varying from 1 to 10 mm. The current density from the cathode may reach 10 A/cm2 or more.

  20. Effect of thermionic cathode heating current self-magnetic field on gaseous plasma generator characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lopatin, I. V., E-mail: lopatin@opee.hcei.tsc.ru; Akhmadeev, Yu. H.; Koval, N. N. [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation)

    2015-10-15

    The performance capabilities of the PINK, a plasma generator with a thermionic cathode mounted in the cavity of a hollow cathode, depending for its operation on a non-self-sustained low-pressure gas discharge have been investigated. It has been shown that when a single-filament tungsten cathode 2 mm in diameter is used and the peak filament current is equal to or higher than 100 A, the self-magnetic field of the filament current significantly affects the discharge current and voltage waveforms. This effect is due to changes in the time and space distributions of the emission current density from the hot cathode. When the electron mean free path is close to the characteristic dimensions of the thermionic cathode, the synthesized plasma density distribution is nonuniform and the cathode is etched nonuniformly. The cathode lifetime in this case is 8–12 h. Using a cathode consisting of several parallel-connected tungsten filaments ∼0.8 mm in diameter moderates the effect of the self-magnetic field of the filament current and nearly doubles the cathode lifetime. The use of this type of cathode together with a discharge igniting electrode reduces the minimum operating pressure in the plasma generator to about one third of that required for the generator operation with a single-filament cathode (to 0.04 Pa)

  1. Joule heat generation in thermionic cathodes of high-pressure arc discharges

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M. S.; Cunha, M. D. [Departamento de Fisica, CCCEE, Universidade da Madeira, Largo do Municipio, 9000 Funchal (Portugal)

    2013-02-14

    The nonlinear surface heating model of plasma-cathode interaction in high-pressure arcs is extended to take into account the Joule effect inside the cathode body. Calculation results are given for different modes of current transfer to tungsten cathodes of different configurations in argon plasmas of atmospheric or higher pressures. Special attention is paid to analysis of energy balances of the cathode and the near-cathode plasma layer. In all the cases, the variation of potential inside the cathode is much smaller than the near-cathode voltage drop. However, this variation can be comparable to the volt equivalent of the energy flux from the plasma to the cathode and then the Joule effect is essential. Such is the case of the diffuse and mixed modes on rod cathodes at high currents, where the Joule heating causes a dramatic change of thermal and electrical regimes of the cathode. The Joule heating has virtually no effect over characteristics of spots on rod and infinite planar cathodes.

  2. Mercury vapor hollow cathode component studies. [emissive materials for ion thruster requirements

    Science.gov (United States)

    Zuccaro, D. E.

    1973-01-01

    An experimental study of starting and operating characteristics of conventional hollow cathodes and of hollow cathodes without alkaline earth emissive materials demonstrated that the emissive mix is essential to obtain the desired cathode operation. Loss of the emissive mix by evaporation and chemical reaction was measured. New insert designs consisting of emissive mix supported on nickel and of barium impregnated porous tungsten were studied. Cathodes with a modified orifice geometry operated in a low voltage, 'spot' mode over a broad range of discharge current. Thermal degradation tests on cathode heaters showed the flame sprayed SERT II type to be the most durable at high temperatures. Thermal shock was observed to be a significant factor in limiting cathode heater life. A cathode having a barium impregnated porous tungsten tip and a heater which is potted in sintered alumina was found to have favorable operating characteristics.

  3. Pulse-Width Increase of Reflex Triode Vircator Using the Carbon Fibre Cathode

    Science.gov (United States)

    Liu, Lie; Li, Li-Min; Zhang, Xiao-Ping; Wen, Jian-Chun; Wan, Hong

    2006-04-01

    We present the investigation on the reflex triode virtual cathode oscillator in which performances of carbon-fibre and stainless-steel cathodes are compared with each other. The experimental results and analyses show that surface tracking induces the electron emission of the carbon fibre cathode. There are electron emission phenomena observed not only from the top of the carbon fibre but also from its side surface. Compared with the case of the stainless steel cathode, the plasma expansion velocity for the carbon fibre cathode is slower, and using the carbon fibre cathode can widen the pulse width of output microwave. The output microwave pulse width reaches an increase of about 20%. This mechanism is different from the conventional explosive emission of metal cathodes.

  4. Pulse-width increase of reflex triode vircator using the carbon fibre cathode

    International Nuclear Information System (INIS)

    The authors present the investigation on the reflex triode virtual cathode oscillator in which performances of carbon fibre and stainless-steel cathodes are compared with each other. The experimental results and analyses show that surface tracking induces the electron emission of the carbon fibre cathode. There are electron emission phenomena observed not only from the top of the carbon fibre but also from its side surface. Compared with the case of the stainless steel cathode, the plasma expansion velocity for the carbon fibre cathode is slower, and using the carbon fibre cathode can widen the pulse width of output microwave. The output microwave pulse width reaches an increase of about 20%. This mechanism is different from the conventional explosive emission of metal cathodes. (authors)

  5. Development of spark cathode electron guns for the CO2 laser fusion program. Final report, July 1978-December 1979

    International Nuclear Information System (INIS)

    Spark cathodes are designed and constructed to replace the bladed cold cathode structure in the electron guns of the Los Alamos Scientific Laboratory, Antares, prototype power amplifier and driver amplifier. Design work is described and data from cathode testing is reported. The spark cathode offers precise control of emission site location, design flexibility, and high reliability

  6. Durability and Performance of High Performance Infiltration Cathodes

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Hjalmarsson, Per;

    2013-01-01

    The performance and durability of solid oxide fuel cell (SOFC) cathodes consisting of a porous Ce0.9Gd0.1O1.95 (CGO) infiltrated with nitrates corresponding to the nominal compositions La0.6Sr0.4Co1.05O3-δ (LSC), LaCoO3-δ (LC), and Co3O4 are discussed. At 600°C, the polarization resistance, Rp......, varied as: LSC (0.062Ωcm2)LSC and LC. The electrochemical performance of the LSC-infiltrated CGO cathode was found to depend on the infiltrate firing temperature and is suggested to originate...... from a complex interplay between the formation, percolation, and surface area of electronically conducting and catalytically active phases. Simplified models that predict the Rp of LSC-infiltrated CGO were applied and showed that the performance is not only characterized by the nanoscale size...

  7. Lanthanum Manganate Based Cathodes for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Jørgensen, Mette Juhl

    Composite cathodes for solid oxide fuel cells were investigated using electrochemical impedance spectroscopy and scanning electron microscopy. The aim was to study the oxygen reduction process in the electrode in order to minimise the voltage drop in the cathode. The electrodes contained...... a composite layer made from lanthanum strontium manganate (LSM) and yttria stabilised zirconia (YSZ) and a layer of pure LSM aimed for current collection. The performance of the composite electrodes was sensitive to microstructure and thickness. Further, the interface between the composite and the current...... five processes were found to affect the impedance of LSM/YSZ composite electrodes. Two high frequency processes were ascribed to transport of oxide ions/oxygen intermediates across LSM/YSZ interfaces and through YSZ in the composite. Several competitive elementary reaction steps, which appear as one...

  8. Titanium Dioxide as a Cathode Material in a Dry Cell

    Directory of Open Access Journals (Sweden)

    Duncan ALOKO

    2007-09-01

    Full Text Available Titanium dioxide was proposed as an alternative cathode material in place of Manganesse (IV oxide. TiO2 was found to be highly polarized when in an electric field and its surface area of adsorption of solution determined to be 1070.32 m2/g. The adsorption of alkaline anions (i.e. SO42- , NO3-, Cl- and Br- were investigated. The anions were adsorbed between the layers of the cathode material thereby altering its surface texture for a better performance. Increase in concentration of the anions solution enhances greater electric surface charge. Thus, sulphate ion is having the best result as compared to other anions because of its highest electric charge and adsorption at 1M concentration of solution. This is in agreement with the relative position of ions in the electrochemical series in the decreasing order of electro- negativity as well as in the increasing order of preference for discharge.

  9. Surface Carbonization of Mo-La2O3 Cathode

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The carbonized structures of Mo-La2O3 cathode specimens have been investigated by means of FE SEM and XRD, respectively. The substructure of carbonized layer in the Mo-La2O3 cathode has been found for the first time. The results showed that the carbonized layer with uniform Mo2C was helpful to emission,while the demixing carbonized layer with a compact MoC outside layer was harmful to emission. The uniform Mo2C layer consists of coarse particles with lots of grain boundary crevices as well as holes arranging perpendic ular to the wire axle and up to surface, which was beneficial to the migration of activated rare-earth in activa tion and operating.

  10. Sputter deposition of BSCCO films from a hollow cathode

    International Nuclear Information System (INIS)

    High-Tc superconducting thin films were deposited onto MgO single crystal substrates from a hollow cathode onto ceramic targets with the nominal composition of Bi2Sr2CaCu2Ox. Films similar in composition to those used for the targets were deposited on MgO substrates by rf sputtering. The effects of sputtering time, rf power, and post-annealing on film microstructure and properties were studied in detail. Substrate temperature was found to have a significant influence on the film characteristics. Initial results show that deposition rates from a hollow cathode are an order of magnitude higher than those of a planar magnetron source at equivalent power levels. Large deposition rates allow for the coating of long lengths of wire

  11. Aqueous cathode for next-generation alkali-ion batteries.

    Science.gov (United States)

    Lu, Yuhao; Goodenough, John B; Kim, Youngsik

    2011-04-20

    The lithium-ion batteries that ushered in the wireless revolution rely on electrode strategies that are being stretched to power electric vehicles. Low-cost, safe electrical-energy storage that enables better use of alternative energy sources (e.g., wind, solar, and nuclear) requires an alternative strategy. We report a demonstration of the feasibility of a battery having a thin, solid alkali-ion electrolyte separating a water-soluble redox couple as the cathode and lithium or sodium in a nonaqueous electrolyte as the anode. The cell operates without a catalyst and has high storage efficiency. The possibility of a flow-through mode for the cathode allows flexibility of the cell design for safe, large-capacity electrical-energy storage at an acceptable cost. PMID:21443190

  12. Higher harmonics generation in relativistic electron beam with virtual cathode

    Energy Technology Data Exchange (ETDEWEB)

    Kurkin, S. A., E-mail: KurkinSA@gmail.com; Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E. [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028, Russia and Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation)

    2014-09-15

    The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.

  13. Higher harmonics generation in relativistic electron beam with virtual cathode

    Science.gov (United States)

    Kurkin, S. A.; Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E.

    2014-09-01

    The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.

  14. High power microwave generation in virtual cathode systems

    International Nuclear Information System (INIS)

    Pulsed high-power microwave generation by means of high current accelerator system has recently become an intensive area of research, the most promising among them being virtual cathode devices or vircators. There are two mechanisms which lead to production of high-power microwaves in vircators. The first deals with electrons, oscillating near the anode and the second with virtual cathode (VC) oscillating as a whole. Generally both mechanisms are presented, but in a given device one may dominate the other. If the anode is thick enough to absorb reflected electrons thus preventing the authors from reentering the diode region, the first mechanism vanished. In this paper the authors discuss the second mechanism, which is realized, for example, in reditron. Anode plasma produced by high-current electron beam passing through the anode is taken into account

  15. Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells

    CERN Document Server

    Fu, Y; Bertei, A; Qi, C; Mohanram, A; Pietras, J D; Bazant, M Z

    2014-01-01

    A general physics-based model is developed for heterogeneous electrocatalysis in porous electrodes and used to predict and interpret the impedance of solid oxide fuel cells. This model describes the coupled processes of oxygen gas dissociative adsorption and surface diffusion of the oxygen intermediate to the triple phase boundary, where charge transfer occurs. The model accurately captures the Gerischer-like frequency dependence and the oxygen partial pressure dependence of the impedance of symmetric cathode cells. Digital image analysis of the microstructure of the cathode functional layer in four different cells directly confirms the predicted connection between geometrical properties and the impedance response. As in classical catalysis, the electrocatalytic activity is controlled by an effective Thiele modulus, which is the ratio of the surface diffusion length (mean distance from an adsorption site to the triple phase boundary) to the surface boundary layer length (square root of surface diffusivity div...

  16. Heat flux at the refractory cathode of a high-current, high-pressure arc (two modes of cathode spot attachment)

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, Valerian [ESAB Welding and Cutting Products and Francis Marion University, Florence SC 29501 (United States)

    2004-04-07

    Calorimetric measurements of a refractory (pure and thoriated tungsten) cathode in a high-current (100-500 A) high-pressure (1-5 atm) arc in nitrogen were performed. The measurements confirmed the existence of a 'high-current' mode of cathode spot (CS) operation-the mode we observed by a footprint method in our work (2003 J. Phys. D: Appl. Phys. 36 3007). In this mode, the heat load of a cathode does not depend on the pressure and is directly proportional to the arc current as opposed to the 'low current' mode where it is inversely proportional to the square root of pressure and directly proportional to the square root of current. The current density at the cathode surface calculated from the measured heat flux to the cathode is approximately half of the current density obtained by a footprint method. Both densities exhibit the same current and pressure dependences. The radial distribution of the cathode temperature inside the CS is discussed. We hypothesize that the temperature has its maximum at the spot periphery. In the case of the thoriated tungsten cathode, this maximum may be so high that, at this location, the cathode is virtually thorium free.

  17. Plasma gun with coaxial powder feed and adjustable cathode

    Science.gov (United States)

    Zaplatynsky, Isidor (Inventor)

    1991-01-01

    An improved plasma gun coaxially injects particles of ceramic materials having high melting temperatures into the central portion of a plasma jet. This results in a more uniform and higher temperature and velocity distribution of the sprayed particles. The position of the cathode is adjustable to facilitate optimization of the performance of the gun wherein grains of the ceramic material are melted at lower power input levels.

  18. Modelling cathode catalyst degradation in polymer electrolyte fuel cells

    OpenAIRE

    Rinaldo, Steven Giordano

    2013-01-01

    Nano-sized Pt particles in the cathode catalyst layer of a polymer electrolyte fuel cell afford a high initial electrochemically active surface-area. However, the gain in active surface area for desired surface reactions is offset in part by enhanced rates of degradation processes that cause losses in catalyst mass, catalyst surface-area, and electrocatalytic activity. The loss of electrochemically active surface-area of the catalyst causes severe performance degradation over relevant lifetim...

  19. Characteristics of Plasma Spraying Torch with a Hollow Cathode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A kind of plasma spraying torch with a hollow cathode is described in this paper.The plasma torch can be used for axial powder injection in plasma spray studies. The arc characteristics of the plasma torch with various gas flowrates, different gas media, are presented. The mathematical modeling and computational method are developed for predicting the temperature and velocity field inside the plasma torch.

  20. Cathodic Protection of Pipeline Using Distributed Control System

    OpenAIRE

    Gopalakrishnan Jayapalan; Ganga Agnihotri; Deshpande, D. M.

    2014-01-01

    Distributed control system (DCS) is available in most of the compressor stations of cross-country pipeline systems. Programmable logic controller (PLC) is used in all the intermediate pigging (IP) stations/sectional valve (SV) stations to collect the field data and to control the remote actuated valves. This paper presents how DCS or PLC can be used for cathodic protection of gas pipelines. Virtual instrumentation (VI) software is used here for simulation and real-time implementation purpose....

  1. NOVEL "CATHODE-ON-MEMBRANE" VME PRESSURE SENSOR

    Institute of Scientific and Technical Information of China (English)

    Xia Shanhong; Tao Xinxin; Su Jie; Chen Shaofeng

    2001-01-01

    This article proposes a novel "cathode-on-membrane" vacuum microelectronic (VME)pressure sensor. Compared with conventional VME pressure sensors, the package process of the new structured sensor is easier to control, and therefore it enable greater potential of nass production and high productivity. The properties of the new sensor have been theoretically investigated by computer simulations; the practical structure has been designed and fabricated; and the package technique has been studied.

  2. Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Lu, Anhuai; Ding, Hongrui; Yan, Yunhua; Wang, Changqiu; Zen, Cuiping; Wang, Xin [The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Jin, Song [MWH Americas, 3665 JFK Parkway, Suite 206, Fort Collins, CO 80525 (United States); Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071 (United States)

    2009-07-15

    Cathodic reduction of hexavalent chromium (Cr(VI)) and simultaneous power generation were successfully achieved in a microbial fuel cell (MFC) containing a novel rutile-coated cathode. The selected rutile was previously characterized to be sensitive to visible light and capable of both non-photo- and photocatalysis. In the MFCs containing rutile-coated cathode, Cr(VI) was rapidly reduced in the cathode chamber in presence and absence of light irradiation; and the rate of Cr(VI) reduction under light irradiation was substantially higher than that in the dark. Under light irradiation, 97% of Cr(VI) (initial concentration 26 mg/L) was reduced within 26 h, which was 1.6 x faster than that in the dark controls in which only background non-photocatalysis occurred. The maximal potential generated under light irradiation was 0.80 vs. 0.55 V in the dark controls. These results indicate that photocatalysis at the rutile-coated cathode in the MFCs might have lowered the cathodic overpotential, and enhanced electron transfer from the cathode to Cr(VI) for its reduction. In addition, photoexcited electrons generated during the cathode photocatalysis might also have contributed to the higher Cr(VI) reduction rates when under light irradiation. This work assessed natural rutile as a novel cathodic catalyst for MFCs in power generation; particularly it extended the practical merits of conventional MFCs to cathodic reduction of environmental contaminants such as Cr(VI). (author)

  3. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    Science.gov (United States)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  4. Performance of field emission cathodes prepared from diamond nanoparticles

    International Nuclear Information System (INIS)

    Nano-diamond field emission cathodes were fabricated using a two-step technique. A mixture of nano-diamond and nano-Ti powders was coated onto a Ti substrate using a spin-coating process, followed by the application of an annealing treatment to form a TiC phase. The effects of the annealing temperature and the number of coating layers on the electron field emission properties of the as-fabricated field emission cathodes were investigated. The samples fabricated under different conditions were analyzed by Raman spectroscopy, X-ray diffraction, and scanning electron microscopy. The differences in terms of the electron field emission properties were explained by a TiC network model. A higher temperature is necessary to form a continuous TiC network when a thicker coating is used on the field emission cathode. In contrast, for the thinner coating, a relatively low temperature is sufficient to form such a TiC network. Only a continuous TiC network coating can facilitate the passage of electrons through the coating and lead to emission. - Highlights: • The field emission properties of nano-diamond powder were investigated. • Nano-diamond powder was deposited by spin coating on titanium substrate. • Nano-titanium powder was mixed into the coating. • A titanium carbide network model was proposed to explain the samples' properties

  5. A knife-edge array field emission cathode

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.

    1994-08-01

    many cathode applications require a new type of cathode that is able to produce short pulsed electron beams at high emission current. Gated field emitter arrays of micrometer size are recognized as candidates to meet this need and have become the research focus of vacuum microelectronics. Existing fabrication methods produce emitters that are limited either in frequency response or in current emission. One reason is that the structure of these emitters are not sufficiently optimized. In this study, the author investigated the factors that affect the performance of field emitters. An optimum emitter structure, the knife-edge field emitter array, was developed from the analysis. Large field enhancement factor, large effective emission area, and small emitter capacitance are the advantages of the structure. The author next explored various options of fabricating the knife-edge emitter structure. He proposed a unique thin film process procedure and developed the fabrication techniques to build the emitters on (110) silicon wafers. Data from the initial cathode tests showed very low onset voltages and Fowler-Nordheim type emission. Emission simulation based on the fabricated emitter structure indicated that the knife-edge emitter arrays have the potential to produce high performance in modulation frequency and current emission. Several fabrication issues that await further development are discussed and possible solutions are suggested.

  6. High-performance lanthanum-ferrite-based cathode for SOFC

    DEFF Research Database (Denmark)

    Wang, W.G.; Mogensen, Mogens Bjerg

    2005-01-01

    (La0.6Sr0.4)(1-x)Co0.2Fe0.8O3/Ce0.9Gd0.1O3 (LSCF/CGO) composite cathodes were investigated for SOFC application at intermediate temperature, i.e., 500-700 degreesC. The LSCF/CGO cathodes have been studied on three types of tape-casted electrolyte substrates including CGO electrolyte, Yttrium......-stabilized Zirconia (YSZ) electrolyte coated with a thin layer of CGO, and YSZ electrolyte. Impedance spectra were measured to determine the polarization resistance (R,) and series resistance (R-s) on cells in a symmetric configuration. R-p of 0.19 Omega cm(2) at 600 degreesC and 0.026 Omega cm(2) at 700 degrees......C were obtained using LSCF/CGO cathode on CGO electrolyte. On the YSZ electrolyte with thin layer CGO coating, R-p of 0.6 Omega cm(2) at 600 degreesC and 0.12 Omega cm(2) at 700 degreesC were obtained. On the YSZ electrolyte directly, R-p of 1.0 Omega cm(2) at 600 degreesC and 0.13 Omega cm(2) at 700...

  7. Accelerated life ac conductivity measurements of CRT oxide cathodes

    Science.gov (United States)

    Hashim, A. A.; Barratt, D. S.; Hassan, A. K.; Nabok, A.

    2006-07-01

    The ac conductivity measurements have been carried out for the activated Ba/SrO cathode with additional 5% Ni powder for every 100 h acceleration life time at the temperature around 1125 K. The ac conductivity was studied as a function of temperature in the range 300-1200 K after conversion and activation of the cathode at 1200 K for 1 h in two cathodes face to face closed configuration. The experimental results prove that the hopping conductivity dominate in the temperature range 625-770 K through the traps of the WO 3 associate with activation energy Ea = 0.87 eV, whereas from 500-625 K it is most likely to be through the traps of the Al 2O 3 with activation energy of Ea = 1.05 eV. The hopping conductivity at the low temperature range 300-500 K is based on Ni powder link with some Ba contaminants in the oxide layer stricture which indicates very low activation energy Ea = 0.06 eV.

  8. High-power microwave emission by magnetized virtual cathode oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, K.G.; Ferreira, J.L. [Univ. of Brasilia (Brazil). Dept. of Physics

    1996-12-31

    The results of computer simulation of an axially extracted virtual cathode oscillator with an external guide magnetic field are presented. The simulation was performed using the electromagnetic relativistic particle-in-cell (PIC) computer code KARAT. The foil diode parameters as accelerating voltage, cathode diameter and anode-cathode gap are chosen in such a way that the beam current injected through the anode foil into the output waveguide exceeds the space charge limited current but on the outer side it is below the critical current for beam pinching. In this case without using an external guide magnetic field the beam expands in radial direction until it hits the conductive wall. It is shown that the vircator can operate with and without magnetic field however in the case without guide magnetic field the vircator efficiency is small due to the current losses in radial direction. The emitted microwave power with guide magnetic field is bigger than in the case without magnetic field and the microwave frequency slightly increase with magnetic field intensity increasing. The results from computer simulation are compared with experimental results obtained in a similar vircator configuration.

  9. Microbial fuel cell performance with non-Pt cathode catalysts

    Science.gov (United States)

    HaoYu, Eileen; Cheng, Shaoan; Scott, Keith; Logan, Bruce

    Various cathode catalysts prepared from metal porphyrines and phthalocyanines were examined for their oxygen reduction activity in neutral pH media. Electrochemical studies were carried out with metal tetramethoxyphenylporphyrin (TMPP), CoTMPP and FeCoTMPP, and metal phthalocyanine (Pc), FePc, CoPc and FeCuPc, supported on Ketjenblack (KJB) carbon. Iron phthalocyanine supported on KJB (FePc-KJB) carbon demonstrated higher activity towards oxygen reduction than Pt in neutral media. The effect of carbon substrate was investigated by evaluating FePc on Vulcan XC carbon (FePcVC) versus Ketjenblack carbon. FePc-KJB showed higher activity than FePcVC suggesting the catalyst activity could be improved by using carbon substrate with a higher surface area. With FePc-KJB as the MFC cathode catalyst, a power density of 634 mW m -2 was achieved in 50 mM phosphate buffer medium at pH 7, which was higher than that obtained using the precious-metal Pt cathode (593 mW m -2). Under optimum operating conditions (i.e. using a high surface area carbon brush anode and 200 mM PBM as the supporting electrolyte with 1 g L -1 acetate as the substrate), the power density was increased to 2011 mW m -2. This high power output indicates that MFCs with low cost metal macrocycles catalysts is promising in further practical applications.

  10. Novel Composite Materials for SOFC Cathode-Interconnect Contact

    Energy Technology Data Exchange (ETDEWEB)

    J. H. Zhu

    2009-07-31

    This report summarized the research efforts and major conclusions of our University Coal Research Project, which focused on developing a new class of electrically-conductive, Cr-blocking, damage-tolerant Ag-perovksite composite materials for the cathode-interconnect contact of intermediate-temperature solid oxide fuel cell (SOFC) stacks. The Ag evaporation rate increased linearly with air flow rate initially and became constant for the air flow rate {ge} {approx} 1.0 cm {center_dot} s{sup -1}. An activation energy of 280 KJ.mol{sup -1} was obtained for Ag evaporation in both air and Ar+5%H{sub 2}+3%H{sub 2}O. The exposure environment had no measurable influence on the Ag evaporation rate as well as its dependence on the gas flow rate, while different surface morphological features were developed after thermal exposure in the oxidizing and reducing environments. Pure Ag is too volatile at the SOFC operating temperature and its evaporation rate needs to be reduced to facilitate its application as the cathode-interconnect contact. Based on extensive evaporation testing, it was found that none of the alloying additions reduced the evaporation rate of Ag over the long-term exposure, except the noble metals Au, Pt, and Pd; however, these noble elements are too expensive to justify their practical use in contact materials. Furthermore, the addition of La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) into Ag to form a composite material also did not significantly modify the Ag evaporation rate. The Ag-perovskite composites with the perovskite being either (La{sub 0.6}Sr{sub 0.4})(Co{sub 0.8}Fe{sub 0.2})O{sub 3} (LSCF) or LSM were systematically evaluated as the contact material between the ferritic interconnect alloy Crofer 22 APU and the LSM cathode. The area specific resistances (ASRs) of the test specimens were shown to be highly dependent on the volume percentage and the type of the perovskite present in the composite contact material as well as the amount of thermal cycling

  11. Exfoliation and reassembly of cobalt oxide nanosheets into a reversible lithium-ion battery cathode.

    Science.gov (United States)

    Compton, Owen C; Abouimrane, Ali; An, Zhi; Palmeri, Marc J; Brinson, L Catherine; Amine, Khalil; Nguyen, SonBinh T

    2012-04-10

    An exfoliation-reassembly-activation (ERA) approach to lithium-ion battery cathode fabrication is introduced, demonstrating that inactive HCoO(2) powder can be converted into a reversible Li(1-x) H(x) CoO(2) thin-film cathode. This strategy circumvents the inherent difficulties often associated with the powder processing of the layered solids typically employed as cathode materials. The delamination of HCoO(2) via a combination of chemical and mechanical exfoliation generates a highly processable aqueous dispersion of [CoO(2) ](-) nanosheets that is critical to the ERA approach. Following vacuum-assisted self-assembly to yield a thin-film cathode and ion exchange to activate this material, the generated cathodes exhibit excellent cyclability and discharge capacities approaching that of low-temperature-prepared LiCoO(2) (~83 mAh g(-1) ), with this good electrochemical performance attributable to the high degree of order in the reassembled cathode.

  12. Note: Design and development of improved indirectly heated cathode based strip electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Namita; Patil, D. S.; Dasgupta, K. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Bade, Abhijeet; Tembhare, G. U. [Department of Mechanical Engineering, Veermata Jijabai Technological Institute, Matunga, Mumbai 400 019 (India)

    2015-02-15

    An improved design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten, which acts as an improved source of electron at lower temperature. So, high power operation is possible without affecting structural integrity of the electron gun. The design issues are addressed based on the uniformity of temperature on the solid cathode and the single long filament based design. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to tailor the non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments have been carried out and it is seen that the modified design achieves one to one correspondence of the solid cathode length and the electron beam length.

  13. Microwave energy application on carbon cathode for high efficient microbial electrosynthesis

    Science.gov (United States)

    Nie, Huarong; Cui, Mengmeng; Zhang, Tian; Lovley, Derek; Russell, Thomas

    2013-03-01

    Microbial electrosynthesis represents a promising strategy of energy storage through microbial conversion of carbon dioxide to transportation fuels or other organic commodities. One key feature for its commercialization is to enhance the cathode performance associated with microbial inoculums. A biocompatible, high surface area, multi-level porous cathode was developed from microwave pyrolysis of ferrocene on carbon felt to support the microorganism to produce acetate from carbon dioxide. The formed nanostructure flake composite on fibers increased the biofilm-cathode interfacial surface area, the interaction between the cathode surface and the microbial biofilm and the electractivity of cathode, while the macroscale porous structure of the intertwined carbon fibers provides easy microbe access. Around 743 mM cm-2 d-1 of acetate was generated by Sporomusa, which is 3.2 fold larger than the reported highest value coming from the chitosan coated carbon cloth cathode.

  14. Controlling the corrosion and cathodic activation of magnesium via microalloying additions of Ge

    Science.gov (United States)

    Liu, R. L.; Hurley, M. F.; Kvryan, A.; Williams, G.; Scully, J. R.; Birbilis, N.

    2016-06-01

    The evolution of corrosion morphology and kinetics for magnesium (Mg) have been demonstrated to be influenced by cathodic activation, which implies that the rate of the cathodic partial reaction is enhanced as a result of anodic dissolution. This phenomenon was recently demonstrated to be moderated by the use of arsenic (As) alloying as a poison for the cathodic reaction, leading to significantly improved corrosion resistance. The pursuit of alternatives to toxic As is important as a means to imparting a technologically safe and effective corrosion control method for Mg (and its alloys). In this work, Mg was microalloyed with germanium (Ge), with the aim of improving corrosion resistance by retarding cathodic activation. Based on a combined analysis herein, we report that Ge is potent in supressing the cathodic hydrogen evolution reaction (reduction of water) upon Mg, improving corrosion resistance. With the addition of Ge, cathodic activation of Mg subject to cyclic polarisation was also hindered, with beneficial implications for future Mg electrodes.

  15. Note: Design and development of improved indirectly heated cathode based strip electron gun

    International Nuclear Information System (INIS)

    An improved design of indirectly heated solid cathode based electron gun (200 kW, 45 kV, 270° bent strip type electron gun) has been presented. The solid cathode is made of thoriated tungsten, which acts as an improved source of electron at lower temperature. So, high power operation is possible without affecting structural integrity of the electron gun. The design issues are addressed based on the uniformity of temperature on the solid cathode and the single long filament based design. The design approach consists of simulation followed by extensive experimentation. In the design, the effort has been put to tailor the non-uniformity of the heat flux from the filament to the solid cathode to obtain better uniformity of temperature on the solid cathode. Trial beam experiments have been carried out and it is seen that the modified design achieves one to one correspondence of the solid cathode length and the electron beam length

  16. Effect of SO2 on Performance of Solid Oxide Fuel Cell Cathodes

    Institute of Scientific and Technical Information of China (English)

    WANG De-jun; LENG Jing

    2012-01-01

    Effects of SO2 in ambient air on the performance and durability of solid oxide fuel cell(SOFC) cathode were evaluated by galvanostatic measurement.Comparison between two cathode materials was made to consider the cathode degradation mechanisms.The degradation performance is associated with a slow decomposition of the La0.6Sr0.4Co0.2Fe0.8O3(LSCF) due to the segregation of strontium oxide.Negligible deterioration for (La0.7Sr0.3)MnO3 (LSM) cathode was caused by SO2 poisoning under a current density of 200 mA/cm2.Metal sulphate formation may explain a slight deterioration under increasing high the concentration of SO2.It was verified that the poisoning mechanism for the two cathode materials resulted from the gradual decomposition of the cathode materials.

  17. Effect of a cathode buffer layer on the stability of organic solar cells

    International Nuclear Information System (INIS)

    We present the effect of a cathode buffer layer on the performance and stability of organic photovoltaics (OPVs) based on a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM). Six kinds of cathode buffer layers, i.e. lithium fluoride, sodium chloride, NaCl/Mg, tris-(8-hydroxy-quinoline) aluminum, bathocuproine and 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene, were inserted between the photoactive layer and an Al cathode, which played a dominant role in the device’s performance. Devices with the cathode buffer layers above exhibited improved performance. The degradation of these devices with encapsulation was further investigated in an inert atmosphere. The results indicated that devices with inorganic cathode buffer layers exhibited better stability than those with organic cathode buffer layers. (paper)

  18. Effect of cathode structure on neutron yield performance of a miniature plasma focus device

    International Nuclear Information System (INIS)

    In this Letter we report the effect of two different cathode structures - tubular and squirrel cage, on neutron output from a miniature plasma focus device. The squirrel cage cathode is typical of most DPF sources, with an outer, tubular envelope that serves as a vacuum housing, but does not carry current. The tubular cathode carries the return current and also serves as the vacuum envelope, thereby minimizing the size of the DPF head. The maximum average neutron yield of (1.82±0.52)x105 n/shot for the tubular cathode at 4 mbar was enhanced to (1.15±0.2)x106 n/shot with squirrel cage cathode at 6 mbar operation. These results are explained on the basis of a current sheath loading/mass choking effect. The penalty for using a non-transparent cathode negates the advantage of the smaller size of the DPF head.

  19. Characterization of Atomic and Electronic Structures of Electrochemically Active SOFC Cathode Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Blinn; Yongman Choi; Meilin Liu

    2009-08-11

    The objective of this project is to gain a fundamental understanding of the oxygen-reduction mechanism on mixed conducting cathode materials by means of quantum-chemical calculations coupled with direct experimental measurements, such as vibrational spectroscopy. We have made progress in the elucidation of the mechanisms of oxygen reduction of perovkite-type cathode materials for SOFCs using these quantum chemical calculations. We established computational framework for predicting properties such as oxygen diffusivity and reaction rate constants for adsorption, incorporation, and TPB reactions, and formulated predictions for LSM- and LSC-based cathode materials. We have also further developed Raman spectroscopy as well as SERS as a characterization tool for SOFC cathode materials. Raman spectroscopy was used to detect chemical changes in the cathode from operation conditions, and SERS was used to probe for pertinent adsorbed species in oxygen reduction. However, much work on the subject of unraveling oxygen reduction for SOFC cathodes remains to be done.

  20. Solid Oxide Fuel Cell Cathodes. Unraveling the Relationship Between Structure, Surface Chemistry and Oxygen Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Srikanth [Boston Univ., MA (United States)

    2013-03-31

    In this work we have considered oxygen reduction reaction on LSM and LSCF cathode materials. In particular we have used various spectroscopic techniques to explore the surface composition, transition metal oxidation state, and the bonding environment of oxygen to understand the changes that occur to the surface during the oxygen reduction process. In a parallel study we have employed patterned cathodes of both LSM and LSCF cathodes to extract transport and kinetic parameters associated with the oxygen reduction process.

  1. Explosive Processes on Cathode while Forming Nanosecond Pulsed Discharge of High Pressure

    Directory of Open Access Journals (Sweden)

    A. Hashimov

    2012-01-01

    Full Text Available The paper is devoted to research of cathode surfaces with different curvature radius (r = 1–8 mm while forming nanosecond pulsed discharge in dense air. Influence of field and air pressure heterogeneity rate in gas gap on size of micro-craters being formed on working cathode surface after pulsed effect has been shown in the paper. The paper reveals a maximum expansion of separate micro-crater size on cathode surface with small curvature radius.

  2. Emission characteristics of laser ablation-hollow cathode glow discharge spectral source

    Directory of Open Access Journals (Sweden)

    Karatodorov Stefan

    2014-11-01

    Full Text Available The emission characteristics of a scheme combining laser ablation as sample introduction source and hollow cathode discharge as excitation source are presented. The spatial separation of the sample material introduction by laser ablation and hollow cathode excitation is achieved by optimizing the gas pressure and the sample-cathode gap length. At these conditions the discharge current is maximized to enhance the analytical lines intensity.

  3. The behaviour of amalgams of some d-metals during cathodic polarization in solutions

    International Nuclear Information System (INIS)

    Results of electrochemical investigation of rhenium, molybdenum and tungsten amalgams during cathodic polarization in alkali and acid solutions are presented. A variant of electrolysis with sodium amalgam as anode is used for the investigation. On the basis of experimental data on potentials of amalgam cathodes (under current and after switching off one), as well as redox-potentials of solutions near the cathode surface, formation of negative ions of metals (rhenium, molybdenum and tungsten) is established

  4. A dual pore carbon aerogel based air cathode for a highly rechargeable lithium-air battery

    OpenAIRE

    Wang, Fang; Xu, Yang-Hai; Luo, Zhong-Kuan; PANG, YAN; Liang, Chun-Sheng; Chen, Jing; Liu, Dong; Zhang, Xianghua

    2014-01-01

    International audience Cathode structure plays a vital role in lithium-air battery for that it can provide space for discharged products accommodation and free path for oxygen, e− and Li+ transport. However, pore blockage, cathode passivation and degradation all result in low discharge rates and poor cycling capability. To get rid of these predicaments, a novel highly conductive dual pore carbon aerogel based air cathode is fabricated to construct a lithium-air battery, which exhibits 18 t...

  5. Composite Organic Radical - Inorganic Hybrid Cathode for Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qian; Cosimbescu, Lelia; Koech, Phillip K.; Choi, Daiwon; Lemmon, John P.

    2013-07-01

    A new organic radical inorganic hybrid cathode comprised of PTMA/LiFePO4 composite system is developed and reported for the first time. The hybrid cathodes demonstrate high pulse power capability resulting in a significant improvement over the pure PTMA or LiFePO4 cathode which is very promising for transportation and other high pulse power applications that require long cycle life and lower cost.

  6. Cathode development for solid oxide electrolysis cells for high temperature hydrogen production

    OpenAIRE

    Yang, Xuedi

    2010-01-01

    This study has been mainly focused on high temperature solid oxide electrolysis cells (HT-SOECs) for steam electrolysis. The compositions, microstructures and metal catalysts for SOEC cathodes based on (La₀.₇₅Sr₀.₂₅)₀.₉₅Mn₀.₅Cr₀.₅O₃ (LSCM) have been investigated. Hydrogen production amounts from SOECs with LSCM cathodes have been detected and current-to-hydrogen efficiencies have been calculated. The effect of humidity on electrochemical performances from SOECs with cathodes ba...

  7. Materials Characterization of Impregnated W and W-Ir Cathodes after Oxygen Poisoning

    OpenAIRE

    Polk, James E.; Capece, Angela M.

    2015-01-01

    Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharg...

  8. The influence of cathode material on electrochemical degradation of trichloroethylene in aqueous solution.

    Science.gov (United States)

    Rajic, Ljiljana; Fallahpour, Noushin; Podlaha, Elizabeth; Alshawabkeh, Akram

    2016-03-01

    In this study, different cathode materials were evaluated for electrochemical degradation of aqueous phase trichloroethylene (TCE). A cathode followed by an anode electrode sequence was used to support reduction of TCE at the cathode via hydrodechlorination (HDC). The performance of iron (Fe), copper (Cu), nickel (Ni), aluminum (Al) and carbon (C) foam cathodes was evaluated. We tested commercially available foam materials, which provide large electrode surface area and important properties for field application of the technology. Ni foam cathode produced the highest TCE removal (68.4%) due to its high electrocatalytic activity for hydrogen generation and promotion of HDC. Different performances of the cathode materials originate from differences in the bond strength between atomic hydrogen and the material. With a higher electrocatalytic activity than Ni, Pd catalyst (used as cathode coating) increased TCE removal from 43.5% to 99.8% for Fe, from 56.2% to 79.6% for Cu, from 68.4% to 78.4% for Ni, from 42.0% to 63.6% for Al and from 64.9% to 86.2% for C cathode. The performance of the palladized Fe foam cathode was tested for degradation of TCE in the presence of nitrates, as another commonly found groundwater species. TCE removal decreased from 99% to 41.2% in presence of 100 mg L(-1) of nitrates due to the competition with TCE for HDC at the cathode. The results indicate that the cathode material affects TCE removal rate while the Pd catalyst significantly enhances cathode activity to degrade TCE via HDC. PMID:26761603

  9. On the actual cathode mixed potential in direct methanol fuel cells

    Science.gov (United States)

    Zago, M.; Bisello, A.; Baricci, A.; Rabissi, C.; Brightman, E.; Hinds, G.; Casalegno, A.

    2016-09-01

    Methanol crossover is one of the most critical issues hindering commercialization of direct methanol fuel cells since it leads to waste of fuel and significantly affects cathode potential, forming a so-called mixed potential. Unfortunately, due to the sluggish anode kinetics, it is not possible to obtain a reliable estimation of cathode potential by simply measuring the cell voltage. In this work we address this limitation, quantifying the mixed potential by means of innovative open circuit voltage (OCV) tests with a methanol-hydrogen mixture fed to the anode. Over a wide range of operating conditions, the resulting cathode overpotential is between 250 and 430 mV and is strongly influenced by methanol crossover. We show using combined experimental and modelling analysis of cathode impedance that the methanol oxidation at the cathode mainly follows an electrochemical pathway. Finally, reference electrode measurements at both cathode inlet and outlet provide a local measurement of cathode potential, confirming the reliability of the innovative OCV tests and permitting the evaluation of cathode potential up to typical operating current. At 0.25 A cm-2 the operating cathode potential is around 0.85 V and the Ohmic drop through the catalyst layer is almost 50 mV, which is comparable to that in the membrane.

  10. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    Science.gov (United States)

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-05-01

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explain elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). Simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.

  11. R and D of the gun cathode for the SPring-8 linac

    International Nuclear Information System (INIS)

    The SPring-8 linac has used Y-845 cathodes (Eimac/CPI) as an electron gun cathode. However, its cathode emission current is not sufficient in some cases. We therefor started the development of a new type cathode for reinforcement of the emission current and for reduction of the grid emission current which increases along with the heater-on time. The target in terms of the cathode emission is to double that of Y-845. To produce a solid and reliable cathode, a thin metal plate with honeycomb etched holes was adopted as a grid mesh instead of a traditional wire mesh. Because the aperture ratio of such an etched plate is lower than that of a wire mesh, we decided to employ the cathode disk which has honeycomb micro dimples on its surface forming focused multi electron beams with the aligned grid plate to result in a very high beam transmission rate. The first test of the cathode assembly, whose cathode disk has the micro-dimple array structure, presented that the emission of 13 A was obtained. The detail of the development and the first test will be reported in this paper. (author)

  12. Investigation of cold cathodes of plasma sources generating of hydrogen ion beams

    CERN Document Server

    Veresov, L P; Dzkuya, M I; Zhukov, Y N; Kuznetsov, G V; Tsekvava, I A

    2001-01-01

    Designs of a hollow cellular cathode (HCC) and of an inverse cylindrical multichamber magnetronic cathode (ICMMC), used as cold cathodes in duoplasmatron for hydrogen ion beam generation, are described. Their service characteristics are compared. It is ascertained that emission ability of both HCC and ICMMC is approximately the same. However, duoplasmatron with ICMMC features a three times higher gas effectiveness compared with HCC. Service life of duoplasmatron with both types of cathodes amounts to several thousand hours. On the basis of test results the choice is made in favour of ICMMC

  13. Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Georgia Inst. of Technology, Atlanta, GA (United States); Ding, Dong [Georgia Inst. of Technology, Atlanta, GA (United States); Wei, Tao [Georgia Inst. of Technology, Atlanta, GA (United States); Liu, Meilin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-03-31

    The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF

  14. Cathodic delamination of seawater-immersed anticorrosive coatings: Mapping of parameters affecting the rate

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Dam-Johansen, Kim; Weinell, C. E.;

    2010-01-01

    of cathodic delamination is inversely proportional to the magnitude of polarization potential when ions can penetrate the coating, while cathodic polarization does not affect cathodic delamination when the ionic transport is restricted to the coating-steel interface. Increasing the pigment loading or partial......-steel interface, where solid iron is oxidized to ferrous ions and oxygen is reduced to hydroxyl ions. In this work, the effects of various parameters on cathodic delamination have been investigated. The parameters are: permeability of the coating, concentration of dissolved oxygen and cations, polarization...

  15. Fundamental Investigations and Rational Design of Durable High-Performance SOFC Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu; Ding, Dong; Wei, Tao; Liu, Meilin

    2016-03-31

    The main objective of this project is to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants, aiming towards the rational design of cathodes with high-performance and enhanced durability by combining a porous backbone (such as LSCF) with a thin catalyst coating. The mechanistic understanding will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance and durability. More specifically, the technical objectives include: (1) to unravel the degradation mechanism of LSCF cathodes under realistic operating conditions with different types of contaminants using in situ and ex situ measurements performed on specially-designed cathodes; (2) to examine the microstructural and compositional evolution of LSCF cathodes as well as the cathode/electrolyte interfaces under realistic operating conditions; (3) to correlate the fuel cell performance instability and degradation with the microstructural and morphological evolution and surface chemistry change of the cathode under realistic operating conditions; (4) to explore new catalyst materials and electrode structures to enhance the stability of the LSCF cathode under realistic operating conditions; and (5) to validate the long term stability of the modified LSCF cathode in commercially available cells under realistic operating conditions. We have systematically evaluated LSCF cathodes in symmetrical cells and anode supported cells under realistic conditions with different types of contaminants such as humidity, CO2, and Cr. Electrochemical models for the design of test cells and understanding of mechanisms have been developed for the exploration of fundamental properties of electrode materials. It is demonstrated that the activity and stability of LSCF cathodes can be degraded by the introduction of contaminants. The microstructural and compositional evolution of LSCF cathodes as

  16. Methods and apparatuses for making cathodes for high-temperature, rechargeable batteries

    Science.gov (United States)

    Meinhardt, Kerry D; Sprenkle, Vincent L; Coffey, Gregory W

    2014-05-20

    The approaches for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

  17. Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells

    KAUST Repository

    Wei, Bin

    2012-01-01

    Activated carbon (AC) air cathodes were constructed using variable amounts of carbon (43-171 mg cm-2) and an inexpensive binder (10 wt% polytetrafluoroethylene, PTFE), and with or without a porous cloth wipe-based diffusion layer (DL) that was sealed with PDMS. The cathodes with the highest AC loading of 171 mg cm-2, and no diffusion layer, produced 1255 ± 75 mW m-2 and did not appreciably vary in performance after 1.5 months of operation. Slightly higher power densities were initially obtained using 100 mg cm-2 of AC (1310 ± 70 mW m-2) and a PDMS/wipe diffusion layer, although the performance of this cathode decreased to 1050 ± 70 mW m-2 after 1.5 months, and 1010 ± 190 mW m-2 after 5 months. AC loadings of 43 mg cm-2 and 100 mg cm-2 did not appreciably affect performance (with diffusion layers). MFCs with the Pt catalyst and Nafion binder initially produced 1295 ± 13 mW m-2, but the performance decreased to 930 ± 50 mW m -2 after 1.5 months, and then to 890 ± 20 mW m-2 after 5 months. Cathode performance was optimized for all cathodes by using the least amount of PTFE binder (10%, in tests using up to 40%). These results provide a method to construct cathodes for MFCs that use only inexpensive AC and a PTFE, while producing power densities similar to those of Pt/C cathodes. The methods used here to make these cathodes will enable further tests on carbon materials in order to optimize and extend the lifetime of AC cathodes in MFCs. © 2012 The Royal Society of Chemistry.

  18. Advanced Measurement and Modeling Techniques for Improved SOFC Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Adler; L. Dunyushkina; S. Huff; Y. Lu; J. Wilson

    2006-12-31

    The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on the mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.

  19. Microbial fuel cell performance with non-Pt cathode catalysts

    Energy Technology Data Exchange (ETDEWEB)

    HaoYu, Eileen; Scott, Keith [School of Chemical Engineering and Advanced Materials, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU (United Kingdom); Cheng, Shaoan; Logan, Bruce [Department of Civil and Environmental Engineering, The Penn State Hydrogen Energy (H{sub 2}E) Center, Penn State University, University Park, PA 16802 (United States)

    2007-09-27

    Various cathode catalysts prepared from metal porphyrines and phthalocyanines were examined for their oxygen reduction activity in neutral pH media. Electrochemical studies were carried out with metal tetramethoxyphenylporphyrin (TMPP), CoTMPP and FeCoTMPP, and metal phthalocyanine (Pc), FePc, CoPc and FeCuPc, supported on Ketjenblack (KJB) carbon. Iron phthalocyanine supported on KJB (FePc-KJB) carbon demonstrated higher activity towards oxygen reduction than Pt in neutral media. The effect of carbon substrate was investigated by evaluating FePc on Vulcan XC carbon (FePcVC) versus Ketjenblack carbon. FePc-KJB showed higher activity than FePcVC suggesting the catalyst activity could be improved by using carbon substrate with a higher surface area. With FePc-KJB as the MFC cathode catalyst, a power density of 634 mW m{sup -2} was achieved in 50 mM phosphate buffer medium at pH 7, which was higher than that obtained using the precious-metal Pt cathode (593 mW m{sup -2}). Under optimum operating conditions (i.e. using a high surface area carbon brush anode and 200 mM PBM as the supporting electrolyte with 1 g L{sup -1} acetate as the substrate), the power density was increased to 2011 mW m{sup -2}. This high power output indicates that MFCs with low cost metal macrocycles catalysts is promising in further practical applications. (author)

  20. Impregnation of LSM Based Cathodes for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Højberg, Jonathan; Søgaard, Martin

    2011-01-01

    Composites cathodes consisting of strontium doped lanthanum manganite (LSM) and yttria stabilized zirconia have been impregnated with the nitrates corresponding to the nominal compositions: La0.75Sr0.25Mn1.05O3 +/-delta (LSM25), Ce0.8Sm0.2O2 (SDC) and a combination of both (dual). The latter perf...... to 1.35 eV for cells without impregnation. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3583497] All rights reserved....

  1. Signal propagation in straw tubes with resistive cathode

    CERN Document Server

    Marzec, J; Pawlowski, Z; Konarzewski, B

    2000-01-01

    The analysis presented in this paper is part of the research performed by the authors for the COMPASS experiment at CERN. We have developed a theoretical model of the signal transmission in a straw tube. In contrast to commonly used simplified models, our approach takes into account the energy losses in the cathode resistance. This model allows determination of the main electrical parameters, such as characteristic impedance and signal attenuation, as well as a detailed simulation of the pulse shape dependent on the point of the charge injection. Simulation results have been compared with the results of experimental measurements of different types of the straw detectors. (7 refs).

  2. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    OpenAIRE

    Zhu, Jianxin

    2014-01-01

    Lithium ion batteries provide a high energy density, higher voltage as well as a long shelf life compared to traditionally used lead acid, NiMH and NiCd batteries. Thus, they are a very promising energy storage system for our daily life. As one of the most important components in a battery, cathode materials have been investigated intensively in recent years as they play a key role in determining the cell voltage and discharge capacity in a battery. Both layered Li(Ni1/3Co1/3Mn1/3)O2 (NCM) an...

  3. Corrosion induced by cathodic hydrogen in 2205 duplex stainless steel

    Science.gov (United States)

    Michalska, J.

    2011-05-01

    In this work new results about the influence of cathodic hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel are described. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the polarization curves. The conclusion is that, hydrogen deteriorated the passive film stability and corrosion resistance to pitting of 2205 duplex stainless steel. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen action was dependent on the hydrogen charging conditions.

  4. Corrosion induced by cathodic hydrogen in 2205 duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Michalska, J, E-mail: joanna.k.michalska@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    In this work new results about the influence of cathodic hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel are described. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the polarization curves. The conclusion is that, hydrogen deteriorated the passive film stability and corrosion resistance to pitting of 2205 duplex stainless steel. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen action was dependent on the hydrogen charging conditions.

  5. Field electron emission from pencil-drawn cold cathodes

    Science.gov (United States)

    Chen, Jiangtao; Yang, Bingjun; Liu, Xiahui; Yang, Juan; Yan, Xingbin

    2016-05-01

    Field electron emitters with flat, curved, and linear profiles are fabricated on flexible copy papers by direct pencil-drawing method. This one-step method is free of many restricted conditions such as high-temperature, high vacuum, organic solvents, and multistep. The cold cathodes display good field emission performance and achieve high emission current density of 78 mA/cm2 at an electric field of 3.73 V/μm. The approach proposed here would bring a rapid, low-cost, and eco-friendly route to fabricate but not limited to flexible field emitter devices.

  6. A novel electron gun with an independently addressable cathode array

    Energy Technology Data Exchange (ETDEWEB)

    Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Schneider, Larry X.

    2006-08-01

    The design of a novel electron gun with an array of independently addressable cathode elements is presented. Issues relating to operation in a 6.5 Tesla axial magnetic field are discussed. Simulations with the TriComp electromagnetic field code that were used to determine the space charge limited tube characteristic and to model focusing of the electron beam in the magnetic field are reviewed. Foil heating and stress calculations are discussed. The results of CYLTRAN simulations yielding the energy spectrum of the electron beam and the current transmitted through the foil window are presented.

  7. Quasi-Optical Cavity Virtual Cathode Oscillator for Microwave Generation

    Institute of Scientific and Technical Information of China (English)

    凌根深; 陈波; 周津娟

    2003-01-01

    A new configuration of a virtual cathode oscillator(VCO),i.e.,a quasi-optical cavity VCO,is proposed for highpower microwave generation.The analysis and simulation are carried out to investigate the characteristics of this configuration.In the numerical simulation,the microwave output power of 2.93 GW is obtained with an electron beam of 610 keV in electron energy and 26.7kA in the beam current.The beam-to-microwave power efficiency is 18%.The frequency is 17.5 GHz,and the output microwave mode is TEM10.

  8. Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M Jr; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns.

  9. Oscillating virtual cathode, large-orbit gyrotron and driver

    Energy Technology Data Exchange (ETDEWEB)

    VanHaaften, F.W.; Hoeberling, R.F.; Fazio, M.V.

    1986-01-01

    Studies using an oscillating virtual cathode (vircator) and a large-orbit gyrotron to generate microwave levels of several hundred megawatts are being conducted at the Los Alamos National Laboratory (LANL). A pulse level of approx.1 MV, with length approaching 1 ..mu..s at a repetition rate of a few hertz, is anticipated for extension of these studies from the present single-shot mode with 100-ns pulse width. The increased pulse width is needed to test longer pulse length microwave sources. Pulse forming network (PFN), transformer-coupled drivers have been studied and are part of the subject of this paper. The large-orbit gyrotron is discussed here.

  10. Use of Both Anode and Cathode Reactions in Wastewater Treatment

    Science.gov (United States)

    Brillas, Enric; Sirés, Ignasi; Cabot, Pere LluíS.

    Here, we describe the fundamentals, laboratory experiments, and environmental applications of indirect electrooxidation methods based on H2O2 electrogeneration such as electro-Fenton, photoelectro-Fenton and peroxicoagulation for the treatment of acidic wastewaters containing toxic and recalcitrant organics. These methods are electrochemical advanced oxidation processes that can be used in divided and undivided electrolytic cells in which pollutants are oxidized by hydroxyl radical (•OH) produced from anode and/or cathode reactions. H2O2 is generated from the two-electron reduction of O2 at reticulated vitreous carbon, graphite, carbon-felt, and O2-diffusion cathodes. The most usual method is electro-Fenton where Fe2 + added to the wastewater reacts with electrogenerated H2O2 to yield •OH and Fe3 + from Fenton's reaction. An advantage of this technique is that Fe2 + is continuously regenerated from cathodic reduction of Fe3 +. The characteristics of different electro-Fenton systems where pollutants are simultaneously destroyed by •OH formed in the medium from Fenton's reaction and at the anode surface from water oxidation are explained. The effect of the anode [Pt or boron-doped diamond (BDD)] and cathode (carbon-felt or O2-diffusion) on the degradation rate of persistent industrial by-products, herbicides, pharmaceuticals, dyes, etc. is examined. Initial pollutants react much more rapidly with •OH formed in the medium and their degradation sequences are discussed from aromatic intermediates and finally short aliphatic acids are detected. The synergetic positive catalytic effect of Cu2 + on the electro-Fenton process is evidenced. The photoelectro-Fenton method involves the irradiation of the wastewater with UVA light that rapidly photodecomposes complexes of Fe3 + with final carboxylic acids enhancing total decontamination. The peroxicoagulation method uses a sacrificial Fe anode that is continuously oxidized to Fe2 + and organics are either mineralized

  11. Studies on niobium triselenide cathode material for lithium rechargeable cells

    Science.gov (United States)

    Ratnakumar, B. V.; Ni, C. L.; Distefano, S.; Somoano, R. B.; Bankston, C. P.

    1988-01-01

    NbSe3 exhibits superior characteristics such as high capacity, high volumetric and gravimetric energy densities, and high discharge rate capability, as compared to other intercalating cathodes. This paper reports the preparation, characterization, and performance of NbSe3. Several electrochemical techniques, such as cyclic voltammetry, constant-current/constant-potential discharges, dc potentiodynamic scans, ac impedance, and ac voltammetry, have been used to give insight to the mechanisms of intercalation of three lithiums with NbSe3 and also into the rate determining process in the reduction of NbSe3.

  12. Degradation Studies on LiFePO4 cathode

    DEFF Research Database (Denmark)

    Scipioni, Roberto; Jørgensen, Peter Stanley; Hjelm, Johan;

    2015-01-01

    In this paper we examine a laboratory LiFePO4 (LFP) cathode and propose a simple model that predicts the electrode capacity as function of C-rate, number of cycles and calendar time. Microcracks were found in Li1-xFePO4 particles in a degraded LFP electrode and low-acceleration voltage (1 kV) FIB....../SEM analysis allowed us to obtain phase contrast between FePO4 and LiFePO4. The evolution of micro-cracks is expected to increase the concentration of LFP particles which are not electronically accessible and thus cause a loss in capacity....

  13. New secondary batteries utilizing electronically conductive polymer cathodes

    Science.gov (United States)

    Martin, Charles R.; White, Ralph E.

    1989-01-01

    The objectives of this project are to characterize the transport properties in electronically conductive polymers and to assess the utility of these films as cathodes in lithium/polymer secondary batteries. During this research period, progress has been made in a literature survey of the historical background, methods of preparation, the physical and chemical properties, and potential technological applications of polythiophene. Progress has also been made in the characterization of polypyrrole flat films and fibrillar films. Cyclic voltammetry and potential step chronocoulometry were used to gain information on peak currents and potentials switching reaction rates, charge capacity, and charge retention. Battery charge/discharge studies were also performed.

  14. Transparent white organic light emitting diodes with improved cathode transparency

    Science.gov (United States)

    Lee, Jeong-Ik; Lee, Jonghee; Lee, Joowon; Shin, Jae-Heon; Hwang, Chi-Sun; Chu, Hye Yong

    2009-08-01

    We have fabricated transparent white organic light emitting diode (WOLED) for lighting application based on a hybrid white OLED and a phosphorescence white OLED. For the hybrid WOLED, a blue fluorescence emitting layer (FLEML) and green and red phosphorescence emitting layers (PH-EMLs) have been used in the device structure of ITO/hole transporting layer (HTL)/PH-EMLs/interlayer/FL-EML/ETL/LiF/Al. The balanced emissions from the FLEML and the PH-EMLs have been obtained by using appropriate carrier (hole) trapping effects in the PH-EMLs, which resulted in external and power efficiencies of 15 % and 27 lm/W, respectively, at a luminance of 1000 cd/m2 without any out-coupling enhancement. The Commission Internationale de L'Eclairage (CIE) coordinates of this hybrid WOLED is (0.43,0.44) with color rendering index (CRI) of 80 and correlated color temperature (CCT) of 3200 K, respectively, in the bottom emission structure. Based on this hybrid WOLED, we established highly efficient transparent WOLED by introduction of a transparent cathode, and obtained over 19 lm/W of power efficiency at a total luminance of 1000 cd/m2 as well as over 60 % of transmittance at 550 nm with the conventional glass encapsulation. Moreover, when the phosphorescent white OLED was combined with a transparent cathode, the power efficiency was reached up to 24 lm/W of power efficiency at a total luminance of 1000 cd/m2.

  15. Coronal and Local Thermodynamic Equilibriums in a Hollow Cathode Discharge

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xu-Tao

    2005-01-01

    @@ A characteristic two-section profile of excited-state populations is observed in a hollow cathode discharge and is explained by coexistence of the coronal equilibrium (CE) and the local thermodynamic equilibrium (LTE).At helium pressure 0.1 Torr and cathode current 200-300 mA, vacuum ultraviolet radiations from He I 1snp 1 P (n = 2-16) and He Ⅱ np2P (n = 2-14) axe resolved with a 2.2-M McPherson spectrometer. Relative populations of these states are deduced from the discrete line intensities and are plotted against energy levels. For both the He Ⅰ and He Ⅱ series, as energy level increases, populations of high-n (n > 10) states are found to decrease much more quickly than low-n (n < 7) populations. While low-n populations are described with the CE dominated by direct electron-impact excitations, high-n populations are fitted with the LTE to calculate the population temperatures of gas atoms and ions. Validities of the CE and LTE in different n-ranges are considered on the competition between radiative decays of the excited states and their collisions with gas atoms.

  16. Aberrations of the cathode objective lens up to fifth order

    Energy Technology Data Exchange (ETDEWEB)

    Tromp, R.M., E-mail: rtromp@us.ibm.com [Thomas J. Watson Research Center, IBM Research Division, 1101 Kitchawan Road, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands); Wan, W. [Ernest Orlando Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mailstop 80R0114, Berkeley, CA 94720 (United States); Schramm, S.M. [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands)

    2012-08-15

    In this paper we discuss a topic that was close to Prof. Gertrude Rempfer s interests for many years. On this occasion of her 100th birthday, we remember and honor Gertrude for her many outstanding contributions, and for the inspiring example that she set. We derive theoretical expressions for the aberration coefficients of the uniform electrostatic field up to 5th order and compare these with raytracing calculations for the cathode lens used in Low Energy Electron Microscopy and Photo Electron Emission Microscopy experiments. These higher order aberration coefficients are of interest for aberration corrected experiments in which chromatic (C{sub c}) and spherical (C{sub 3}) aberrations of the microscope are set to zero. The theoretical predictions are in good agreement with the results of raytracing. Calculations of image resolution using the Contrast Transfer Function method show that sub-nanometer resolution is achievable in an aberration corrected LEEM system. -- Highlights: Black-Right-Pointing-Pointer A theory is presented for the aberrations of the uniform electrostatic field up to fifth order. Black-Right-Pointing-Pointer Such aberrations are important for advanced LEEM and PEEM instruments. Black-Right-Pointing-Pointer Good agreement between theory and raytracing results for a full cathode objective lens. Black-Right-Pointing-Pointer Contrast Transfer Function calculations predict that spatial resolution below 1 nm is achievable.

  17. Cathodic Protection of Pipeline Using Distributed Control System

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Jayapalan

    2014-01-01

    Full Text Available Distributed control system (DCS is available in most of the compressor stations of cross-country pipeline systems. Programmable logic controller (PLC is used in all the intermediate pigging (IP stations/sectional valve (SV stations to collect the field data and to control the remote actuated valves. This paper presents how DCS or PLC can be used for cathodic protection of gas pipelines. Virtual instrumentation (VI software is used here for simulation and real-time implementation purpose. Analog input channels available in DCS/PLC can be used to measure pipe to soil potential (PSP with the help of half-cell and voltage transducer. Logic blocks available in DCS can be used as low selector switch to select the lowest PSP. Proportional-integral (PI controller available in DCS/PLC can be used for taking the controlling action. PI controller output varies the firing angle of AC phase controller. Phase controller output is rectified, filtered, and fed to the pipeline as cathodic protection current. Proposed scheme utilizes existing infrastructure to control pipeline corrosion.

  18. Microbial fuel cell with an azo-dye-feeding cathode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liang [Chinese Academy of Sciences, Guangzhou (China). Guangzhou Inst. of Geochemistry; Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou (China). Guangdon Key Lab. of Agricultural Environment Pollution Integrated Control; Graduate Univ. of Chinese Academy of Sciences, Beijing (China); Li, Fang-bai [Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou (China). Guangdon Key Lab. of Agricultural Environment Pollution Integrated Control; Feng, Chun-hua [South China Univ. of Technology, Guangzhou (China). School of Chemistry and Chemical Engineering; Li, Xiang-zhong [Hong Kong Polytechnic Univ., Hong Kong (China). Dept. of Civil and Structural Engineering

    2009-11-15

    Microbial fuel cells (MFCs) were constructed using azo dyes as the cathode oxidants to accept the electrons produced from the respiration of Klebsiella pneumoniae strain L17 in the anode. Experimental results showed that a methyl orange (MO)-feeding MFC produced a comparable performance against that of an air-based one at pH 3.0 and that azo dyes including MO, Orange I, and Orange II could be successfully degraded in such cathodes. The reaction rate constant ({kappa}) of azo dye reduction was positively correlated with the power output which was highly dependent on the catholyte pH and the dye molecular structure. When pH was varied from 3.0 to 9.0, the k value in relation to MO degradation decreased from 0.298 to 0.016 {mu}mol min{sup -1}, and the maximum power density decreased from 34.77 to 1.51 mW m{sup -2}. The performances of the MFC fed with different azo dyes can be ranked from good to poor as MO > Orange I > Orange II. Furthermore, the cyclic voltammograms of azo dyes disclosed that the pH and the dye structure determined their redox potentials. A higher redox potential corresponded to a higher reaction rate. (orig.)

  19. Electrochemical impedance analysis of SOFC cathode reaction using evolutionary programming

    Energy Technology Data Exchange (ETDEWEB)

    Hershkovitz, S.; Baltianski, S.; Tsur, Y. [Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa (Israel)

    2012-02-15

    Investigation of the cathode reaction in solid oxide fuel cells (SOFC) by impedance spectroscopy (IS) measurements using evolutionary-based programming analysis is demonstrated. In contrast to the conventional analysis methods used for impedance spectroscopy measurements, e.g., equivalent circuits, the impedance spectroscopy genetic programming (ISGP) program seeks for a distribution of relaxation times that has the form of a peak or a sum of several peaks, assuming the Debye kernel. Using this method one finds a functional (parametric) form of the distribution of relaxation times. A symmetric cell configuration of Pt vertical stroke LSCF vertical stroke GDC vertical stroke LSCF vertical stroke Pt was examined using IS measurements combined with I-V measurements. Different samples at different temperatures and different oxygen partial pressures were examined in order to investigate their influence on the oxygen reduction reaction. The resulting IS data was analyzed using the ISGP program and the resulting peaks constructing the distribution of relaxation times were assigned for the different processes that occur at the cathode side. The activation energies as well as the dependence of the processes on the oxygen partial pressure were also evaluated. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Simulation optimization of the cathode deposit growth in a coaxial electrolyzer-refiner

    Science.gov (United States)

    Smirnov, G. B.; Fokin, A. A.; Markina, S. E.; Vakhitov, A. I.

    2015-08-01

    The results of simulation of the cathode deposit growth in a coaxial electrolyzer-refiner are presented. The sizes of the initial cathode matrix are optimized. The data obtained by simulation and full-scale tests of the precipitation of platinum from a salt melt are compared.

  1. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells

    KAUST Repository

    Cheng, Shaoan

    2011-03-01

    Scaling up microbial fuel cells (MFCs) requires a better understanding the importance of the different factors such as electrode surface area and reactor geometry relative to solution conditions such as conductivity and substrate concentration. It is shown here that the substrate concentration has significant effect on anode but not cathode performance, while the solution conductivity has a significant effect on the cathode but not the anode. The cathode surface area is always important for increasing power. Doubling the cathode size can increase power by 62% with domestic wastewater, but doubling the anode size increases power by 12%. Volumetric power density was shown to be a linear function of cathode specific surface area (ratio of cathode surface area to reactor volume), but the impact of cathode size on power generation depended on the substrate strength (COD) and conductivity. These results demonstrate the cathode specific surface area is the most critical factor for scaling-up MFCs to obtain high power densities. © 2010 Elsevier Ltd.

  2. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    KAUST Repository

    Zhang, Fang

    2012-11-01

    Poly(dimethylsiloxane) (PDMS) was investigated as an alternative to Nafion as an air cathode catalyst binder in microbial fuel cells (MFCs). Cathodes were constructed around either stainless steel (SS) mesh or copper mesh using PDMS as both catalyst binder and diffusion layer, and compared to cathodes of the same structure having a Nafion binder. With PDMS binder, copper mesh cathodes produced a maximum power of 1710 ± 1 mW m -2, while SS mesh had a slightly lower power of 1680 ± 12 mW m -2, with both values comparable to those obtained with Nafion binder. Cathodes with PDMS binder had stable power production of 1510 ± 22 mW m -2 (copper) and 1480 ± 56 mW m -2 (SS) over 15 days at cycle 15, compared to a 40% decrease in power with the Nafion binder. Cathodes with the PDMS binder had lower total cathode impedance than those with Nafion. This is due to a large decrease in diffusion resistance, because hydrophobic PDMS effectively prevented catalyst sites from filling up with water, improving oxygen mass transfer. The cost of PDMS is only 0.23% of that of Nafion. These results showed that PDMS is a very effective and low-cost alternative to Nafion binder that will be useful for large scale construction of these cathodes for MFC applications. © 2012 Elsevier B.V.

  3. Asymmetric and double-cathode-pad wire chambers for the LHCb muon system

    CERN Document Server

    Kachtchouk, A; Riegler, W; Schmidt, B; Schneider, T; Souvorov, V

    2005-01-01

    We present results from two types of Multi-Wire Proportional Chambers (MWPCs) with wire pitch of 1.5 mm and cathode–cathode distance of 5 mm intended for triggering purposes in the LHCb experiment. Both prototypes use cathode readout because this allows arbitrary segmentation in order to achieve the required granularity. One MWPC prototype uses a symmetric wire–cathode distance (2.5/2.5 mm) with double cathode readout, which doubles the signal compared to reading only one cathode. The second prototype uses an asymmetric wire–cathode distance (1.25/3.75 mm) with single cathode readout which also doubles the signal and in addition reduces the width of the induced charge distribution and therefore reduces the crosstalk for small cathode pads. We also performed a dedicated optimization of readout traces and guard traces in order to reduce the pad–pad crosstalk. Both prototypes show a few hundred volts of operating plateau defined as the region with 99% efficiency in a 20 ns time window. Close to the plate...

  4. High Current Density, Long Life Cathodes for High Power RF Sources

    Energy Technology Data Exchange (ETDEWEB)

    Ives, Robert Lawrence [Calabazas Creek Research,, Inc.; Collins, George [Calabazas Creek Research, Inc.; Falce, Lou [Consultant; Schwartzkopf, Steve [Ron Witherspoon, Inc.; Busbaher, Daniel [Semicon Associates

    2014-01-22

    This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for the technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.

  5. Influence of NaCl on Cathode Performance of Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    LIU Run-ru; WANG De-jun; LENG Jing

    2013-01-01

    Degradation induced by sodium chloride in air was investigated for (La0.8Sr0.2)0.98MnO3(LSM) and La0.6Sr0.4Co0.2Fe0.8O3(LSCF) cathodes in solid oxide fuel cells(SOFC).Cell performance was measured by volatilizing NaCl to be supplied to the cathode at a constant current density of 200 mA/cm2 for up to 100 h.At 800 ℃,an exposure of the cathode to 30 mg/L NaCl caused negligible degradation of LSM at least for 100 h.Slight change in the composition of the cathode materials was observed which may imply the gradual degradation of cell performance for the long-term.In addition,cell performance degradation was compared between 700 ℃ and 900 ℃,being poisoned by 30 mg/L NaC1.Degradation was negligible for LSM cathode,while LSCF cathode showed slightly poor tolerance at 700 ℃ due to the decomposition of the cathode material.Further studies should be done to clarify the long-term influence of NaCl on cathode performance.

  6. Effect of A-site Non-stoichiometry on LSCF Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, Jared W.; Lu, Zigui; Stevenson, Jeffry W.; Hardy, John S.

    2011-09-01

    LSCF Cathodes were explored when effected with A-site non-stoichiometry. At 700-800 C, the operating temperatures of intermediate temperature (IT-) SOFCs have enabled the use of stainless steels in the SOFC framework and current collectors, allowing significant reductions in cost. However, the lower operating temperatures of IT-SOFC's also result in significant decreases in power densities of cells with LSM cathodes due to their high activation energies. LSCF is a mixed ionic electronic conducting perovskite that exhibits higher performance than LSM/YSZ composites and shows potential as a replacement cathode. This study investigates the effect of A-site stoichiometry on the performance of LSCF cathodes. Cell tests showed that A-site and Sr-deficient LSCF cathodes consistently outperformed stoichiometric LSCF cathodes, exhibiting up to 10% higher cell power densities. It was also observed that all stoichiometric, A-site, and Sr-deficient LSCF cathodes degraded over time at similar rates. Contributions of ohmic and electrode polarization losses to cell degradation rates were similar regardless of cathode composition.

  7. On the mechanism of operation of a cathode spot cell in a vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Mesyats, G. A.; Petrov, A. A. [P. N. Lebedev Physical Institute, RAS, 53 Leninsky Ave., Moscow 119991 (Russian Federation); Bochkarev, M. B. [Institute of Electrophysics, UB, RAS, 106 Amundsen St., Ekaterinburg 620016 (Russian Federation); Barengolts, S. A., E-mail: sb@nsc.gpi.ru [A. M. Prokhorov General Physics Institute, RAS, 38 Vavilov St., Moscow 119991 (Russian Federation)

    2014-05-05

    The erosive structures formed on a tungsten cathode as a result of the motion of the cathode spot of a vacuum arc over the cathode surface have been examined. It has been found that the average mass of a cathode microprotrusion having the shape of a solidified jet is approximately equal to the mass of ions removed from the cathode within the lifetime of a cathode spot cell carrying a current of several amperes. The time of formation of a new liquid-metal jet under the action of the reactive force of the plasma ejected by the cathode spot is about 10 ns, which is comparable to the lifetime of a cell. The growth rate of a liquid-metal jet is ∼10{sup 4} cm/s. The geometric shape and size of a solidified jet are such that a new explosive emission center (spot cell) can be initiated within several nanoseconds during the interaction of the jet with the dense cathode plasma. This is the underlying mechanism of the self-sustained operation of a vacuum arc.

  8. 49 CFR 195.563 - Which pipelines must have cathodic protection?

    Science.gov (United States)

    2010-10-01

    ... protection as a result of electrical inspections. See previous editions of this part in 49 CFR, parts 186 to... 49 Transportation 3 2010-10-01 2010-10-01 false Which pipelines must have cathodic protection? 195... have cathodic protection? (a) Each buried or submerged pipeline that is constructed,...

  9. Thermionic properties of Mo-La2O3 cathode wires

    Institute of Scientific and Technical Information of China (English)

    张久兴; 周美玲; 周文元; 王金淑; 聂祚仁; 左铁镛

    2002-01-01

    The recent advances in Mo-La2O3 thermionic cathode materials were presented. It is shown that Mo-La2O3 cathode has better ductility, radioactive pollution-free, excellent thermionic electron-emission properties and lower operating temperature compared with W-ThO2 cathode. At operating temperature 1350~1400℃, the average saturation current of the Mo-La2O3 cathode is 118mA, the corresponding average current density is 367mA/cm2, and the average emission efficiency is 11.8mA/W. The lifetime of diode is more than 2000h when the stable emission current is 80mA. Moreover, the lifetime of practical 6T51-type triode is more than 1000h. These advances show that the Mo-La2O3 cathode electron tube is closer to industry application.

  10. Vacuum encapsulated, high temperature diamond amplified cathode capsule and method for making same

    Science.gov (United States)

    Rao, Triveni; Walsh, Josh; Gangone, Elizabeth

    2015-12-29

    A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first high-temperature solder weld disposed between the diamond window element and the annular insulating spacer and a second high-temperature solder weld disposed between the annular insulating spacer and the cathode element. The cathode capsule is formed by a high temperature weld process under vacuum such that the first solder weld forms a hermetical seal between the diamond window element and the annular insulating spacer and the second solder weld forms a hermetical seal between the annular spacer and the cathode element whereby a vacuum encapsulated chamber is formed within the capsule.

  11. Diffuse and spot mode of cathode arc attachments in an atmospheric magnetically rotating argon arc

    International Nuclear Information System (INIS)

    A model including the cathode, near-cathode region, and arc column was constructed. Specifically, a thermal perturbation layer at the arc fringe was calculated in order to couple sheath/presheath modelling with typical arc column modelling. Comparative investigation of two modes of attachment of a dc (100, 150, 200 A) atmospheric-pressure arc in argon to a thermionic cathode made of pure tungsten was conducted. Computational data revealed that there exists two modes of arc discharge: the spot mode, which has an obvious cathode surface temperature peak in the arc attachment centre; and the diffuse mode, which has a flat cathode surface temperature distribution and a larger arc attachment area. The modelling results of the arc attachment agree with previous experimental observations for the diffuse mode. A further 3D simulation is obviously needed to investigate the non-axisymmetrical features, especially for the spot mode. (paper)

  12. Simulating different modes of current transfer to thermionic cathodes in a wide range of conditions

    Energy Technology Data Exchange (ETDEWEB)

    Benilov, M S; Cunha, M D; Faria, M J [Departamento de Fisica, Universidade da Madeira, Largo do MunicIpio, 9000 Funchal (Portugal)

    2009-07-21

    Changes in the pattern of steady-state modes of current transfer to thermionic cathodes induced by variations of the cathode geometry and temperature of the cooling fluid are studied numerically. For some combinations of control parameters, only one stable mode in a wide current range exists, which combines features of spot and diffuse modes. This mode, when attached to an elongated protrusion on the cathode surface, may be identified with the so-called super spot mode observed in experiments on low-current arcs. There is also reasonable agreement between the modelling and the experiment on cathodes of high-current arcs operating in the diffuse mode. The conclusions on existence under certain conditions of only one stable mode in a wide current range and of a minimum of the dependence of the temperature of the hottest point of the cathode on the arc current, manifested by this mode, may have industrial importance and admit a straightforward experimental verification.

  13. Optical Interference Effects by Metal Cathode in Organic Light-Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    WU Zhao-Xin; WANG Li-Duo; QIU Yong

    2004-01-01

    The dependence of light intensities of organic light-emitting diodes (OLEDs) on the distance of emission zone to metal cathode is investigated numerically. The investigation is based on the half-space optical model that accounts for optical interference effects of metal cathode. We find that light intensities of OLEDs are functions of the distance of emission zone from the metal cathode because of the effect of interference of the metal cathode.This interference leads to an optimal location of emission zone in OLEDs for the maximum of light intensities.Optimal locations of emission zone are numerically shown in various emitting colour OLEDs with different metal cathodes and these results are expected to give insight into the preparation of high efficiency full colour or white light OLEDs.

  14. Emission characteristics of Y1Ba2Cu3O7-δ cathode

    International Nuclear Information System (INIS)

    The results are presented of experimental investigation of the electron beam in diode with cathode on the base of Y1Ba2Cu3O7-δ. After corresponding cathode training, the cathode made from Y1Ba2Cu3O7-δ material may be practicable of stable current electron beam yeild. It is shown experimentally that the voltage of diode of about 100-300 kV there exists an evident possibility of forming the electron beams with the current density of 70 A-380 A/cm2. The motion velicity of cathode plasma in the direction of anode for this material of a cathode amounts to (1-3)x 106 cm/s

  15. Modeling of LaB6 hollow cathode performance and lifetime

    Science.gov (United States)

    Pedrini, Daniela; Albertoni, Riccardo; Paganucci, Fabrizio; Andrenucci, Mariano

    2015-01-01

    Thermionic hollow cathodes are currently used as sources of electrons in a variety of space applications, in particular as cathodes/neutralizers of electric thrusters (Hall effect and ion thrusters). Numerical tools are needed to guide the design of new devices before their manufacturing and testing, since multiple geometrical parameters influence the cathode performance. A reduced-order, numerical model was developed to assess the performance of orificed hollow cathodes, with a focus on the operational lifetime. The importance of the lifetime prediction is tied to its impact on the operational lifetime of the thruster to which the cathode is coupled. The cathode architecture consists of a refractory metal tube with an internal electron emitter made of lanthanum hexaboride (LaB6). The choice of LaB6 accounts for the reduced evaporation rate, the low sensitivity to poisoning and the absence of an activation procedure with respect to oxide cathodes. A LaB6 emitter is thus a valuable option for long-lasting cathodes, despite its relatively high work-function and reactivity with many refractory metals at high temperatures. The suggested reduced-order model self-consistently predicts the key parameters of the cathode operation, shedding light on the power deposition processes as well as on the main erosion mechanisms. Preliminary results showed good agreement with both the experimental data collected by Alta and data available from the literature for different operating conditions and power levels. Next developments will include further comparisons between theoretical and experimental data, considering cathodes of various size and operating conditions.

  16. Air-cathode structure optimization in separator-coupled microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2011-12-01

    Microbial fuel cells (MFC) with 30% wet-proofed air cathodes have previously been optimized to have 4 diffusion layers (DLs) in order to limit oxygen transfer into the anode chamber and optimize performance. Newer MFC designs that allow close electrode spacing have a separator that can also reduce oxygen transfer into the anode chamber, and there are many types of carbon wet-proofed materials available. Additional analysis of conditions that optimize performance is therefore needed for separator-coupled MFCs in terms of the number of DLs and the percent of wet proofing used for the cathode. The number of DLs on a 50% wet-proofed carbon cloth cathode significantly affected MFC performance, with the maximum power density decreasing from 1427 to 855mW/m 2 for 1-4 DLs. A commonly used cathode (30% wet-proofed, 4 DLs) produced a maximum power density (988mW/m 2) that was 31% less than that produced by the 50% wet-proofed cathode (1 DL). It was shown that the cathode performance with different materials and numbers of DLs was directly related to conditions that increased oxygen transfer. The coulombic efficiency (CE) was more affected by the current density than the oxygen transfer coefficient for the cathode. MFCs with the 50% wet-proofed cathode (2 DLs) had a CE of >84% (6.8A/m 2), which was substantially larger than that previously obtained using carbon cloth air-cathodes lacking separators. These results demonstrate that MFCs constructed with separators should have the minimum number of DLs that prevent water leakage and maximize oxygen transfer to the cathode. © 2011 Elsevier B.V.

  17. High surface area stainless steel brushes as cathodes in microbial electrolysis cells.

    Science.gov (United States)

    Call, Douglas F; Merrill, Matthew D; Logan, Bruce E

    2009-03-15

    Microbial electrolysis cells (MECs) are an efficient technology for generating hydrogen gas from organic matter, but alternatives to precious metals are needed for cathode catalysts. We show here that high surface area stainless steel brush cathodes produce hydrogen at rates and efficiencies similar to those achieved with platinum-catalyzed carbon cloth cathodes in single-chamber MECs. Using a stainless steel brush cathode with a specific surface area of 810 m2/m3, hydrogen was produced at a rate of 1.7 +/- 0.1 m3-H2/m3-d (current density of 188 +/- 10 A/m3) at an applied voltage of 0.6 V. The energy efficiency relative to the electrical energy input was 221 +/- 8%, and the overall energy efficiency was 78 +/- 5% based on both electrical energy and substrate utilization. These values compare well to previous results obtained using platinum on flat carbon cathodes in a similar system. Reducing the cathode surface area by 75% decreased performance from 91 +/- 3 A/m3 to 78 +/- 4 A/m3. A brush cathode with graphite instead of stainless steel and a specific surface area of 4600 m2/m3 generated substantially less current (1.7 +/- 0.0 A/m3), and a flat stainless steel cathode (25 m2/m3) produced 64 +/- 1 A/m3, demonstrating that both the stainless steel and the large surface area contributed to high current densities. Linear sweep voltammetry showed that the stainless steel brush cathodes both reduced the overpotential needed for hydrogen evolution and exhibited a decrease in overpotential over time as a result of activation. These results demonstrate for the first time that hydrogen production can be achieved at rates comparable to those with precious metal catalysts in MECs without the need for expensive cathodes. PMID:19368232

  18. Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells.

    Science.gov (United States)

    Kumru, Mert; Eren, Hilal; Catal, Tunc; Bermek, Hakan; Akarsubaşi, Alper Tunga

    2012-09-01

    Five textile azo dyes, as part of an artificial mixture, were treated in single-chamber air-cathode microbial fuel cells while simultaneously utilizing acetate for electricity production. Remazol Black, Remazol Brilliant Blue, Remazol Turquoise Blue, Reactive Yellow and Reactive Red at concentrations of 40 or 80 mg L(-1) were decolorized to a similar extent, at averages of 78, 95, 53, 93 and 74%, respectively, in 24 hours. During the process of decolorization, electricity generation from acetate oxidation continued. Power densities obtained in the presence of textile dyes ranged from 347 to 521 mW m(-2) at the current density range of 0.071 - 0.086 mA cm(-2). Microbial community analyses of cathode biofilm exhibited dynamic changes in abundant species following dye decolorization. Upon the addition of the first dye, a major change (63%) in microbial diversity was observed; however, subsequent addition of other dyes did not affect the community profile significantly. Actinobacteria, Aquamicrobium, Mesorhizobium, Ochrobactrum, Thauera, Paracoccus, Achromobacter and Chelatacoccus affiliated phylotypes were the major phylotypes detected. Our results demonstrate that microbial fuel cells could be a promising alternative for treatment of textile wastewaters and an active bacterial community can rapidly be established for simultaneous azo dye decolorization and sustainable electricity generation.

  19. Characteristics of Single Cathode Cascaded Bias Voltage Arc Plasma

    Science.gov (United States)

    Ou, Wei; Deng, Baiquan; Zeng, Xianjun; Gou, Fujun; Xue, Xiaoyan; Zhang, Weiwei; Cao, Xiaogang; Yang, Dangxiao; Cao, Zhi

    2016-06-01

    A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber, instead of the previous copper chambers, to provide better diagnostic observation and access to the plasma optical emission. The cathode chamber cooling scheme is also modified to be naturally cooled only by light emission without cooling water to improve the optical thin performance in the optical path. A single-parameter physical model has been developed to describe the power dissipated in the cascaded bias voltage arc discharge argon plasmas, which have been investigated by utilizing optical emission spectroscopy (OES) and Langmuir probe. In the experiments, discharge currents from 50 A to 100 A, argon flow rates from 800 sccm to 2000 sccm and magnetic fields of 0.1 T and 0.2 T were chosen. The results show: (a) the relationship between the averaged resistivity and the averaged current density exhibits an empirical scaling law as \\barη \\propto \\bar {j}-0.63369 and the power dissipated in the arc has a strong relation with the filling factor; (b) through the quartz, the argon ions optical emission lines have been easily observed and are dominating with wavelengths between 340 nm and 520 nm, which are the emissions of Ar+‑434.81 nm and Ar+‑442.60 nm line, and the intensities are increasing with the arc current and decreasing with the inlet argon flow rate; and (c) the electron density and temperature can reach 2.0 × 1019 m‑3 and 0.48 eV, respectively, under the conditions of an arc current of 90 A and a magnetic field of 0.2 T. The half-width of the ne radial profile is approximatively equal to a few Larmor radii of electrons and can be regarded as the diameter of the plasma jet in the experiments. supported by the International Thermonuclear Experimental Reactor (ITER) Program Special of Ministry of Science and Technology (No. 2013GB114003), and National Natural Science Foundation of China (Nos. 11275135, 11475122)

  20. Characteristics of Single Cathode Cascaded Bias Voltage Arc Plasma

    Science.gov (United States)

    Ou, Wei; Deng, Baiquan; Zeng, Xianjun; Gou, Fujun; Xue, Xiaoyan; Zhang, Weiwei; Cao, Xiaogang; Yang, Dangxiao; Cao, Zhi

    2016-06-01

    A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber, instead of the previous copper chambers, to provide better diagnostic observation and access to the plasma optical emission. The cathode chamber cooling scheme is also modified to be naturally cooled only by light emission without cooling water to improve the optical thin performance in the optical path. A single-parameter physical model has been developed to describe the power dissipated in the cascaded bias voltage arc discharge argon plasmas, which have been investigated by utilizing optical emission spectroscopy (OES) and Langmuir probe. In the experiments, discharge currents from 50 A to 100 A, argon flow rates from 800 sccm to 2000 sccm and magnetic fields of 0.1 T and 0.2 T were chosen. The results show: (a) the relationship between the averaged resistivity and the averaged current density exhibits an empirical scaling law as \\barη \\propto \\bar {j}-0.63369 and the power dissipated in the arc has a strong relation with the filling factor; (b) through the quartz, the argon ions optical emission lines have been easily observed and are dominating with wavelengths between 340 nm and 520 nm, which are the emissions of Ar+-434.81 nm and Ar+-442.60 nm line, and the intensities are increasing with the arc current and decreasing with the inlet argon flow rate; and (c) the electron density and temperature can reach 2.0 × 1019 m-3 and 0.48 eV, respectively, under the conditions of an arc current of 90 A and a magnetic field of 0.2 T. The half-width of the ne radial profile is approximatively equal to a few Larmor radii of electrons and can be regarded as the diameter of the plasma jet in the experiments. supported by the International Thermonuclear Experimental Reactor (ITER) Program Special of Ministry of Science and Technology (No. 2013GB114003), and National Natural Science Foundation of China (Nos. 11275135, 11475122)

  1. Optimized high-temperature cathode-heater unit

    International Nuclear Information System (INIS)

    In electrophysical apparatus and accelerators that form electron beams with a high current density, the most stringent requirements are imposed on the operating life, reliability, and thermal efficiency of the high-temperature cathode-heater units (CHU), the replacement of which involves great expenditures of time and prolonged shutdown of the apparatus. The shortcomings of existing CHUs with LaB6 emitters include, among others, the low optical transparency of the graphite heating element and inconstancy of the temperature field of the emitter owing to unavoidable thickening at the locations of the massive leads. All of this reduces the thermal efficiency of the CHU. The authors describe a CHU that is free of the above-mentioned shortcomings. The CHU has a thermal efficiency of > 80% and a temperature inconstancy ΔT 2, at temperature T = 2,050 K is 700 h

  2. Intense stationary H- ion source with a hollow cathode

    International Nuclear Information System (INIS)

    H- ion source with a cesium hollow cathode, operating in the stationary regime, is investigated for designing the thermonuclear device injector. The source is of an axial-symmetry geometry with the radial magnetic field. Ion extraction is being performed tranverse the magnetic field through the holes in the main anode. The movable magnetic analyzer has been used for controlling of the beam. The ion current of 109 mA and the energy of 5 keV is obtained in the stationary regime. The analysis of the ion source operation has shown: 1)the source preserves working capacity even without the magnetic field; 2)the largest H- current is in a small magnetic field (10-20 G) in the region of emission holes; 3)H- ion current increases at decreasing hydrogen consumption

  3. Chemical and electrical properties of LSM cathodes prepared by mechanosynthesis

    Science.gov (United States)

    Moriche, R.; Marrero-López, D.; Gotor, F. J.; Sayagués, M. J.

    2014-04-01

    Mechanosynthesis of La1-xSrxMnO3 (x = 0, 0.25, 0.5, 0.75 and 1) was carried out at room temperature from stoichiometric mixtures of La2O3, Mn2O3 and SrO, obtaining monophasic powders with the perovskite structure. Physical properties of these materials and their chemical compatibility with the electrolyte yttria stabilized zirconia (YSZ), which depend strongly on the La/Sr ratio, were evaluated to corroborate availability to be implemented as cathode material in solid oxide fuel cells (SOFCs). Electrical conductivity values in air ranged between 100 and 400 S cm-1 in the temperature range of 25-850 °C. Samples presented low reactivity with YSZ in the working temperature range (600-1000 °C) maintaining the grain size small enough to preserve the catalytic activity for oxygen reduction.

  4. Hollow nanoparticle cathode materials for sodium electrochemical cells and batteries

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, Elena; Rajh, Tijana; Johnson, Christopher S.; Koo, Bonil

    2016-07-12

    A cathode comprises, in its discharged state, a layer of hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles disposed between two layers of carbon nanotubes, and preferably including a metallic current collector in contact with one of the layers of carbon nanotubes. Individual particles of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles comprise a crystalline shell of .gamma.-Fe.sub.2O.sub.3 including cation vacancies within the crystal structure of the shell (i.e., iron vacancies of anywhere between 3% to 90%, and preferably 44 to 77% of available octahedral iron sites). Sodium ions are intercalated within at least some of the cation vacancies within the crystalline shell of the hollow .gamma.-Fe.sub.2O.sub.3 nanoparticles.

  5. Development of fiber laser for photo cathode electron gun

    International Nuclear Information System (INIS)

    We develop L-band photocathode RF gun which is conducted by the collaborations with the groups of Osaka University, KEK and Hiroshima University. For the photocathode, we uniquely develop laser at Osaka University. At the first laser system, we have developed passive mode lock Yb fiber laser at repetition rate of 108MHz. on the other hand, thermionic cathode electron gun generates electron with sub harmonic buncher with the repetition of 27MHz now in addition to 108MHz. For this reason, we started to develop passive mode lock Yb fiber laser at repetition rate of 27MHz uniquely. The mean power at pulse is 35∼70mW, and Max energy at a pulse is 2.7nJ. (author)

  6. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    Energy Technology Data Exchange (ETDEWEB)

    Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  7. Cathodic electrocrystallization and electrochromic properties of doped rechargeable oxotungstates

    International Nuclear Information System (INIS)

    We extend the technique of preparing oxotungstate thin films by cathodic electrocrystallization from metastable acidic solutions to fabricate vanadium- and molybdenum-doped films on platinum and fluorine-doped tin oxide (FTO). By means of cyclic voltammetry, we demonstrate a wider potential interval of highly reversible redox activity for these doped films, as compared to purely tungstate films. Electrochromic behavior in this region is dependent on the nature of the doping element. We characterize the microstructure of these films using scanning tunneling and atomic force microscopy. We also apply Raman and UV-vis spectroscopy to characterize the acidic deposition solutions. In tungstate-vanadate bath, we observe evidence of mixed isopolyanions. We also found some features of less stable mixed anions in the tungstate-molybdate bath, characterized phase composition of these films by means of XRD, and explain the results in the terms of parallel deposition from coexisting molecular precursors.

  8. Cathodic electrocrystallization and electrochromic properties of doped rechargeable oxotungstates

    Energy Technology Data Exchange (ETDEWEB)

    Laurinavichute, V.K. [Moscow State University, Leninskie Gory, 1-str. 3, Moscow 119991 (Russian Federation)], E-mail: nika@elch.chem.msu.ru; Vassiliev, S.Yu. [Moscow State University, Leninskie Gory, 1-str. 3, Moscow 119991 (Russian Federation); Plyasova, L.M.; Molina, I.Yu. [Boreskov Institute of Catalysis, Siberian Division of the Russian Academy of Sciences, Prosp. Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Khokhlov, A.A. [Moscow State University, Leninskie Gory, 1-str. 3, Moscow 119991 (Russian Federation); Pugolovkin, L.V. [Moscow State University, Leninskie Gory, 1-str. 3, Moscow 119991 (Russian Federation); Boreskov Institute of Catalysis, Siberian Division of the Russian Academy of Sciences, Prosp. Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Borzenko, M.I.; Tsirlina, G.A. [Moscow State University, Leninskie Gory, 1-str. 3, Moscow 119991 (Russian Federation)

    2009-09-30

    We extend the technique of preparing oxotungstate thin films by cathodic electrocrystallization from metastable acidic solutions to fabricate vanadium- and molybdenum-doped films on platinum and fluorine-doped tin oxide (FTO). By means of cyclic voltammetry, we demonstrate a wider potential interval of highly reversible redox activity for these doped films, as compared to purely tungstate films. Electrochromic behavior in this region is dependent on the nature of the doping element. We characterize the microstructure of these films using scanning tunneling and atomic force microscopy. We also apply Raman and UV-vis spectroscopy to characterize the acidic deposition solutions. In tungstate-vanadate bath, we observe evidence of mixed isopolyanions. We also found some features of less stable mixed anions in the tungstate-molybdate bath, characterized phase composition of these films by means of XRD, and explain the results in the terms of parallel deposition from coexisting molecular precursors.

  9. IBIS: A hollow-cathode multipole boundary ion source

    International Nuclear Information System (INIS)

    The plasma production and containment system for a high-power continuously operating magnetic multipole ion source has been designed and constructed. Preliminary tests on this system prior to high voltage extraction of large beams indicate advantageous performance for neutral-beam injection applications. The source has produced 80 A to the extractor region at 0.33 A/cm2 with a discharge of 330 A at 80 V. Density uniformity is better than 1% over a 16-cm diameter, dropping to -4% at 18 cm, with plasma noise of less than 3%. Gas utilizaion efficiency and atomic (H+) species output are anticipated to be high due to a source length of 40 cm. This quiet efficient performance is attributed to the use of a hollow-tube LaB6 cathode and an improved magnetic multipole confinement system

  10. Cathodic electrodeposition of cobalt oxide films using polyelectrolytes

    International Nuclear Information System (INIS)

    Composite films consisting of cobalt hydroxide and polyelectrolytes, such as poly(diallyldimethylammonium chloride) (PDDA) and polyethylenimine (PEI), were obtained by electrodeposition. In the proposed method, electrophoretic deposition of PDDA macromolecules or PEI-Co2+ complexes has been combined with cathodic electrosynthesis of cobalt hydroxide. By varying the concentration of the polyelectrolytes in solutions, the deposition time and the current density, the amount of deposited material and its composition can be varied. The composite deposits have been studied by scanning, transmission and atomic force microscopy, X-ray diffraction and thermogravimetric analysis. The obtained results have been compared with the results of investigation of pure cobalt hydroxide films. Heat treatment of the deposits resulted in decomposition of the hydroxide precursor and burning out of polymer to form cobalt oxide films. This method enables the formation of thick nanostructured oxide films

  11. Theoretical and experimental studies of virtual cathode microwave devices

    Energy Technology Data Exchange (ETDEWEB)

    Alyokhin, B.V.; Dubinov, A.E.; Selemir, V.D.; Shamro, O.A.; Shibalko, K.V.; Stepanov, N.V.; Vatrunin, V.E. (Russia Federation Nuclear Center, Arzamas (Russian Federation). All-Russia Scientific Research Inst. of Experimental Physics)

    1994-10-01

    The results of theoretical and experimental studies of microwave devices with virtual cathodes (VCs) are reviewed. It is shown that the basic factors affecting operation efficiency of these devices are phase separation of electron flux, diode impedance matching with the high-voltage transmission line, and the availability of two characteristic features in the output spectrum. Using nonlinear theory, the authors have observed the evolution of the electron velocity distribution function in the vicinity of the VC, have found the VC effective temperature, and have studied the fractal indices for various functions in time. This report also describes a series of experiments where 2-D features of the electron dynamics in the vircator are rather important, and 11% generation efficiency with a pinch-vircator was achieved. The understanding of the physical processes occurring in VC microwave devices gained in this work supports the proposal of several new highly efficient concepts for such devices.

  12. Atlas of uranium emission intensities in a hollow cathode discharge

    International Nuclear Information System (INIS)

    The uranium emission spectrum from a hollow cathode discharge is displayed from 11,000 to 26,000 cm-1. This atlas lists 4928 spectral lines of uranium; 3949 are classified to the neutral spectrum and 431 are classified to the singly ionized spectrum. Listed wavenumbers are accurate to +-0.003 cm-1 and the listed relative intensities to +-8%. The richness of the spectrum makes this atlas useful for wavenumber calibration of lasers, spectrographs, and monochromators to an accuracy of 1 part in 107. This atlas is also useful as a guide to the uranium spectrum, and relative oscillator strengths (gf values) can be calculated from the intensities to a precision of +-20%

  13. Modeling and Control of Impressed Current Cathodic Protection (ICCP System

    Directory of Open Access Journals (Sweden)

    Marwah S.Hashim

    2012-12-01

    Full Text Available The corrosion of metallic structures buried in soil or submerged in water which became a problem of worldwide significance and causes most of the deterioration in petroleum industry can be controlled by cathodic protection (CP.CP is a popular technique used to minimize the corrosion of metals in a variety of large structures. To prevent corrosion, voltage between the protection metal and the auxiliary anode has to be controlled on a desired level. In this study two types of controllers will be used to set a pipeline potential at required protection level. The first one is a conventional Proportional-Integral-Derivative (PID controller and the second are intelligent controllers (fuzzy and neural controllers.The results were simulated and implemented using MATLAB R 2010a program which offers predefined functions to develop PID, fuzzy and neural control systems.

  14. Lanthanum manganate based cathodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Juhl Joergensen, M.

    2001-07-01

    Composite cathodes for solid oxide fuel cells were investigated using electrochemical impedance spectroscopy and scanning electron microscopy. The aim was to study the oxygen reduction process in the electrode in order to minimise the voltage drop in the cathode. The electrodes contained a composite layer made from lanthanum strontium manganate (LSM) and yttria stabilised zirconia (YSZ) and a layer of pure LSM aimed for current collection. The performance of the composite electrodes was sensitive to microstructure and thickness. Further, the interface between the composite and the current collecting layer proved to affect the performance. In a durability study severe deg-radation of the composite electrodes was found when passing current through the electrode for 2000 hours at 1000 deg. C. This was ascribed to pore formation along the composite interfaces and densification of the composite and current collector microstructure. An evaluation of the measurement approach indicated that impedance spectroscopy is a very sensitive method. This affects the reproducibility, as small undesirable variations in for instance the microstructure from electrode to electrode may change the impedance. At least five processes were found to affect the impedance of LSM/YSZ composite electrodes. Two high frequency processes were ascribed to transport of oxide ions/oxygen intermediates across LSM/YSZ interfaces and through YSZ in the composite. Several competitive elementary reaction steps, which appear as one medium frequency process in the impedance spectra, were observed. A low frequency arc related to gas diffusion limitation in a stagnant gas layer above the composite structure was detected. Finally, an inductive process, assumed to be connected to an activation process involving segregates at the triple phase boundary between electrode, electrolyte and gas phase, was found. (au)

  15. Understanding electrochemical potentials of cathode materials in rechargeable batteries

    Directory of Open Access Journals (Sweden)

    Chaofeng Liu

    2016-03-01

    Full Text Available Presently, sustainable energy as well as efficient and economical energy conversion and storage technologies has become important work in light of the rising environmental issues and dependence on portable and uninterrupted power sources. Increasingly more researchers are focusing on harvesting and converting solar energy, mechanical vibration, waste heat, and wind to electricity. Electrical energy storage technologies play a significant role in the demand for green and sustainable energy. Rechargeable batteries or secondary batteries, such as Li-ion batteries, Na-ion batteries, and Mg-ion batteries, reversibly convert between electrical and chemical energy via redox reactions, thus storing the energy as chemical potential in their electrodes. The energy density of a rechargeable battery is determined collectively by the specific capacity of electrodes and the working voltage of the cell, which is the differential potential between the cathode and the anode. Over the past decades, a significant number of studies have focused on enhancing this specific capacity; however, studies to understand and manipulate the electrochemical potential of the electrode materials are limited. In this review, the material characteristics that determine and influence the electrochemical potentials of electrodes are discussed. In particular, the cathode materials that convert electricity and chemical potential through electrochemical intercalation reactions are investigated. In addition, we summarize the selection criteria for elements or compounds and the effect of the local atomic environment on the discharge potential, including the effects of site energy, defects, crystallinity, and microstructure, using LiMn2O4, V2O5, Mo6S8, LiFePO4, and LiCoO2 as model samples for discussion.

  16. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    Energy Technology Data Exchange (ETDEWEB)

    Dyartanti, Endah Retno; Jumari, Arif, E-mail: arifjumari@yahoo.com; Nur, Adrian; Purwanto, Agus [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO{sub 4}) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO{sub 4} and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.

  17. Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells

    KAUST Repository

    Luo, Yong

    2011-11-01

    An inexpensive carbon material, carbon mesh, was examined to replace the more expensive carbon cloth usually used to make cathodes in air-cathode microbial fuel cells (MFCs). Three different diffusion layers were tested using carbon mesh: poly(dimethylsiloxane) (PDMS), polytetrafluoroethylene (PTFE), and Goretex cloth. Carbon mesh with a mixture of PDMS and carbon black as a diffusion layer produced a maximum power density of 1355 ± 62 mW m -2 (normalized to the projected cathode area), which was similar to that obtained with a carbon cloth cathode (1390 ± 72 mW m-2). Carbon mesh with a PTFE diffusion layer produced only a slightly lower (6.6%) maximum power density (1303 ± 48 mW m-2). The Coulombic efficiencies were a function of current density, with the highest value for the carbon mesh and PDMS (79%) larger than that for carbon cloth (63%). The cost of the carbon mesh cathode with PDMS/Carbon or PTFE (excluding catalyst and binder costs) is only 2.5% of the cost of the carbon cloth cathode. These results show that low cost carbon materials such as carbon mesh can be used as the cathode in an MFC without reducing the performance compared to more expensive carbon cloth. © 2011 Elsevier B.V.

  18. Enhanced stability of multilayer graphene-supported catalysts for polymer electrolyte membrane fuel cell cathodes

    Science.gov (United States)

    Marinkas, A.; Hempelmann, R.; Heinzel, A.; Peinecke, V.; Radev, I.; Natter, H.

    2015-11-01

    One of the biggest challenges in the field of polymer electrolyte membrane fuel cells (PEMFC) is to enhance the lifetime and the long-term stability of PEMFC electrodes, especially of cathodes, furthermore, to reduce their platinum loading, which could lead to a cost reduction for efficient PEMFCs. These demands could be achieved with a new catalyst support architecture consisting of a composite of carbon structures with significant different morphologies. A highly porous cathode catalyst support layer is prepared by addition of various carbon types (carbon black particles, multi-walled carbon nanotubes (MWCNT)) to multilayer graphene (MLG). The reported optimized cathodes shows extremely high durability and similar performance to commercial standard cathodes but with 89% lower Pt loading. The accelerated aging protocol (AAP) on the membrane electrode assemblies (MEA) shows that the presence of MLG increases drastically the durability and the Pt-extended electrochemical surface area (ECSA). In fact, after the AAP slightly enhanced performance can be observed for the MLG-containing cathodes instead of a performance loss, which is typical for the commercial carbon-based cathodes. Furthermore, the presence of MLG drastically decreases the ECSA loss rate. The MLG-containing cathodes show up to 6.8 times higher mass-normalized Pt-extended ECSA compared to the commercial standard systems.

  19. Ambient temperature cured TiB2 cathode coating for aluminum electrolysis

    Institute of Scientific and Technical Information of China (English)

    赖延清; 李庆余; 杨建红; 李劼

    2003-01-01

    The concept of ambient temperature curable TiB2 cathode coating was put forward, and the ambient temperature curable TiB2 cathode coating was prepared successfully. Differing from the previous TiB2 cathode coating solidified approximately at 200 ℃,the ambient temperature curable TiB2 cathode coating can be solidified at room temperature, so the heating equipment is not necessary, which simplifies the preparation process and facilitates the industrial application of TiB2 cathode coating. Many kinds of resin and curing agent were investigated. On the above-mentioned basis, the ambient temperature curable TiB2 cathode coating was prepared with furan resin 5 500 mixed with complex resins B as carbon binder and DXG1 as curing agent in 24 h. The results show that the properties of prepared coating are excellent, the electrical resistivity is 29.8 μΩ*m, the compressive strength is 33.6 MPa, which are all better than the relevant properties of partially graphitized cathode carbon block for aluminum electrolysis prescribed by the GB 8744-88. SEM morphologies show that the section morphology of the TiB2 coating is unaltered during the electrolysis test, the TiB2 coating can be used in aluminum electrolysis industry to save energy and prolong the life of aluminum electrolysis cell.

  20. Influence of the Iron Anisothermal Sintering on the Characteristic of the Hollow Cathode Discharge

    Institute of Scientific and Technical Information of China (English)

    BRUNATTO; Silvio Francisco; MUZART; Joel Louis Rene

    2004-01-01

    This work studies the influence of anisothermal iron sintering process on hollow cathode discharge characteristics. Two independent cathodes form an annular discharge. The pressed cylindrical iron powder sample, acting as central cathode, was placed concentrically in the interior of an external cathode. The external cathode, machined from an AISI 3 l0 steel bar, besides acting to confine the geometry of the plasma, can also acts as a source of alloying elements. The sample heating is a function of the ion bombardment energy and, so, of the discharge electrical parameters: current (or current density) and the effective potential applied to the cathode. Successive anisothermal sintering is performed in a same sample until the reproducibility of the electrical parameters being obtained. The heating experiments up to 1250 ℃, in a gas mixture of 80% Ar + 20% H2, at pressure of 133 Pa, at flow of 2xl0-6 m3s-1, with an inter-cathode radial space of 5.8 mm,were carried out. It was verified the metallurgical evolution of the iron sample sintering process influences the current-ton(time switched-on of the pulse) characteristics of the discharge.

  1. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    International Nuclear Information System (INIS)

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO4) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO4 and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging

  2. In situ X-ray studies of film cathodes for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Highlights: •Synchrotron X-rays are used to study in operando the structural and chemical changes of LSM and LSCF film cathodes during half-cell operations. •A-site and B-site cations actively segregate or desegregate on the changes of temperature, pO2, and electrochemical potential. •Chemical lattice expansions show that oxygen-cathode interface is the primary source of rate-limiting processes. •The surface and subsurface of the LSM and LSCF films have different oxidation-states due to vacancy concentration changes. •Liquid-phase infiltration and coarsening processes of cathode materials into porous YSZ electrolyte backbone were monitored by USAXS. -- Abstract: Synchrotron-based X-ray techniques have been used to study in situ the structural and chemical changes of film cathodes during half-cell operations. The X-ray techniques used include X-ray reflectivity (XR), total-reflection X-ray fluorescence (TXRF), high-resolution diffraction (HRD), ultra-small angle X-ray scattering (USAXS). The epitaxial thin film model cathodes for XR, TXRF, and HRD measurements are made by pulse laser deposition and porous film cathodes for USAX measurements are made by screen printing technique. The experimental results reviewed here include A-site and B-site segregations, lattice expansion, oxidation-state changes during cell operations and liquid-phase infiltration and coarsening of cathode to electrolyte backbone

  3. Power generation by packed-bed air-cathode microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2013-08-01

    Catalysts and catalyst binders are significant portions of the cost of microbial fuel cell (MFC) cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. Packed-bed air-cathodes were constructed without expensive binders or diffusion layers using four inexpensive carbon-based materials. Cathodes made from activated carbon produced the largest maximum power density of 676±93mW/m2, followed by semi-coke (376±47mW/m2), graphite (122±14mW/m2) and carbon felt (60±43mW/m2). Increasing the mass of activated carbon and semi-coke from 5 to ≥15g significantly reduced power generation because of a reduction in oxygen transfer due to a thicker water layer in the cathode (~3 or ~6cm). These results indicate that a thin packed layer of activated carbon or semi-coke can be used to make inexpensive air-cathodes for MFCs. © 2013 Elsevier Ltd.

  4. Electrokinetic Treatment of Cr-, Cu-, and Zn-Contaminated Sediment: Cathode Modification.

    Science.gov (United States)

    Rajić, Ljiljana; Dalmacija, Božo; Perović, Svetlana Ugarčina; Krčmar, Dejan; Rončević, Srđan; Tomašević, Dragana

    2013-12-01

    Enhanced electrokinetic (EK) removal of Cr, Cu, and Zn from sediment by using original and modified integrated ion exchange (IIX™) cathodes was investigated. IIX cathode design and EK device process modifications were made to improve performance: separation of IIX cathode components (IIXS), combination of modified IIX cathode with pulsed electric field (IIXSP), and separation of IIX cathode components with addition of an anion exchange resin compartment (IIXA). After using the IIXSP, overall Cr, Cu, and Zn removal efficacies were significantly improved compared with the other treatments investigated. No improvements in overall Cr, Cu, and Zn removal efficacies were achieved by utilization of IIXA. Nevertheless, significant removal efficacies occurred at the anode region since distribution of the alkaline front was prevented. However, metal accumulation in the cathode region occurred. This was a consequence of metal cation complexation with Cl(-) released from the anion exchange resin that changed the direction of metal migration. Enhancing EK remediation of Cr-, Cu-, and Zn-contaminated sediment can be achieved by using a modified IIX cathode. PMID:24381480

  5. Frequency study of microwave generation in an axially extracted virtual cathode oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Yatsuzuka, M.; Nakayama, M.; Nobuhara, S. [Himeji Inst. of Tech., Hyogo (Japan). Dept. of Electrical Engineering; Hashimoto, Y. [Kobe City Coll. of Technology, Hyogo (Japan). Dept. of Electronic Engineering; Ishihara, O. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Electrical Engineering

    1996-12-31

    In virtual cathode oscillators (vircators) the axial electric field, driven by either reflecting electrons between the real and virtual cathodes or oscillations of the virtual cathode, couples with axially symmetric transverse magnetic waveguide mode (TM{sub 0m}). To study this mechanism in detail the dependence of radiation frequency on cathode diameter, output waveguide diameter, and anode-cathode (A-K) gap spacing was studied experimentally in an axially-extracted vircator at Himeji Institute of Technology. The radiation frequency decreased with increasing A-K gap spacing for a constant cathode diameter. The maximum power emission was observed at the A-K gap spacing for which reflecting trapped electrons between the real and virtual cathodes determine the radiation frequency. The measurement of power density profile in the radial and azimuthal directions showed the radiation pattern of TM{sub 01} mode, in agreement with the observed frequency which satisfies the dispersion relation of TM{sub 01} mode in the circular output waveguide.

  6. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    Science.gov (United States)

    Dyartanti, Endah Retno; Jumari, Arif; Nur, Adrian; Purwanto, Agus

    2016-02-01

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO4) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO4 and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.

  7. Silver electrodeposition on the activated carbon air cathode for performance improvement in microbial fuel cells

    Science.gov (United States)

    Pu, Liangtao; Li, Kexun; Chen, Zhihao; Zhang, Peng; Zhang, Xi; Fu, Zhou

    2014-12-01

    The present work was to study silver electrodeposition on the activated carbon (AC) air cathode for performance improvement in microbial fuel cells (MFCs). The treated cathodes were proved to be effective to enhance the performance of MFCs. The maximum power density of MFC with silver electrodeposition time of 50 s (Ag-50) cathode was 1080 ± 60 mW m-2, 69% higher than the bare AC air cathode. X-ray photoelectron spectroscopy (XPS) results showed that zero-valent, monovalent and divalent silver were present to transform mutually, which illustrated that the oxygen reduction reaction (ORR) at the cathode took place through four-electron pathway. From electrochemical impedance spectroscopy (EIS) analysis, the electrodeposition method made the total resistance of the electrodes largely reduced. Meanwhile the deposited silver had no toxic effects on anode culture but inhibited the biofilm growth of the cathodes. This kind of antimicrobial efficient cathode, prepared with a simple, fast and economical method, was of good benefit to the performance improvement of MFCs.

  8. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs)

    KAUST Repository

    Wang, Xi

    2011-10-01

    Several alternative cathode catalysts have been proposed for microbial fuel cells (MFCs), but effects of salinity (sodium chloride) on catalyst performance, separate from those of conductivity on internal resistance, have not been previously examined. Three different types of cathode materials were tested here with increasingly saline solutions using single-chamber, air-cathode MFCs. The best MFC performance was obtained using a Co catalyst (cobalt tetramethoxyphenyl porphyrin; CoTMPP), with power increasing by 24 ± 1% to 1062 ± 9 mW/m2 (normalized to the projected cathode surface area) when 250 mM NaCl (final conductivity of 31.3 mS/cm) was added (initial conductivity of 7.5 mS/cm). This power density was 25 ± 1% higher than that achieved with Pt on carbon cloth, and 27 ± 1% more than that produced using an activated carbon/nickel mesh (AC) cathode in the highest salinity solution. Linear sweep voltammetry (LSV) was used to separate changes in performance due to solution conductivity from those produced by reductions in ohmic resistance with the higher conductivity solutions. The potential of the cathode with CoTMPP increased by 17-20 mV in LSVs when the NaCl addition was increased from 0 to 250 mM independent of solution conductivity changes. Increases in current were observed with salinity increases in LSVs for AC, but not for Pt cathodes. Cathodes with CoTMPP had increased catalytic activity at higher salt concentrations in cyclic voltammograms compared to Pt and AC. These results suggest that special consideration should be given to the type of catalyst used with more saline wastewaters. While Pt oxygen reduction activity is reduced, CoTMPP cathode performance will be improved at higher salt concentrations expected for wastewaters containing seawater. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  9. Diffusion layer characteristics for increasing the performance of activated carbon air cathodes in microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2016-01-01

    The characteristics of several different types of diffusion layers were systematically examined to improve the performance of activated carbon air cathodes used in microbial fuel cells (MFCs). A diffusion layer of carbon black and polytetrafluoroethylene (CB + PTFE) that was pressed onto a stainless steel mesh current collector achieved the highest cathode performance. This cathode also had a high oxygen mass transfer coefficient and high water pressure tolerance (>2 m), and it had the highest current densities in abiotic chronoamperometry tests compared to cathodes with other diffusion layers. In MFC tests, this cathode also produced maximum power densities (1610 ± 90 mW m−2) that were greater than those of cathodes with other diffusion layers, by 19% compared to Gore-Tex (1350 ± 20 mW m−2), 22% for a cloth wipe with PDMS (1320 ± 70 mW m−2), 45% with plain PTFE (1110 ± 20 mW m−2), and 19% higher than those of cathodes made with a Pt catalyst and a PTFE diffusion layer (1350 ± 50 mW m−2). The highly porous diffusion layer structure of the CB + PTFE had a relatively high oxygen mass transfer coefficient (1.07 × 10−3 cm s−1) which enhanced oxygen transport to the catalyst. The addition of CB enhanced cathode performance by increasing the conductivity of the diffusion layer. Oxygen mass transfer coefficient, water pressure tolerance, and the addition of conductive particles were therefore critical features for achieving higher performance AC air cathodes.

  10. Poly(vinyl alcohol) separators improve the coulombic efficiency of activated carbon cathodes in microbial fuel cells

    KAUST Repository

    Chen, Guang

    2013-09-01

    High-performance microbial fuel cell (MFC) air cathodes were constructed using a combination of inexpensive materials for the oxygen reduction cathode catalyst and the electrode separator. A poly(vinyl alcohol) (PVA)-based electrode separator enabled high coulombic efficiencies (CEs) in MFCs with activated carbon (AC) cathodes without significantly decreasing power output. MFCs with AC cathodes and PVA separators had CEs (43%-89%) about twice those of AC cathodes lacking a separator (17%-55%) or cathodes made with platinum supported on carbon catalyst (Pt/C) and carbon cloth (CE of 20%-50%). Similar maximum power densities were observed for AC-cathode MFCs with (840 ± 42 mW/m2) or without (860 ± 10 mW/m2) the PVA separator after 18 cycles (36 days). Compared to MFCs with Pt-based cathodes, the cost of the AC-based cathodes with PVA separators was substantially reduced. These results demonstrated that AC-based cathodes with PVA separators are an inexpensive alternative to expensive Pt-based cathodes for construction of larger-scale MFC reactors. © 2013 Elsevier B.V. All rights reserved.

  11. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    Science.gov (United States)

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-10-01

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions in a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.

  12. Electrochemical reaction of sulfur cathodes with Ni foam current collector in Li-S batteries

    Science.gov (United States)

    Liu, Li-Jun; Chen, Yang; Zhang, Zhi-Feng; You, Xiao-Long; Walle, Maru Dessie; Li, Ya-Juan; Liu, You-Nian

    2016-09-01

    The electrochemical properties of sulfur cathode with Ni foam current collector are investigated in detail. Different from sulfur cathode with stain steel current collector, it is interesting found that novel redox peaks at 1.95 V/1.35 V are observed for sulfur cathode with Ni foam. The electrochemical behavior is further verified by ex-situ XRD, SEM and XPS analyses. The results indicate that Ni foam current collector is involved in the redox reaction in Li/S rechargeable battery, and NiS forms at the surface of the Ni foam. These results demonstrate that the sulfur electrode is transformed into NiS.

  13. Organic photovoltaic solar cells with cathode modified by ZnO.

    Science.gov (United States)

    Kim, Hyeong Pil; Yusoff, Abd Rashid Bin Mohd; Jang, Jin

    2013-07-01

    Solution processed cathode organic photovoltaic cells (OPVs) utilizing thin layer of ZnO with 27% increase in power conversion efficiency (PCE) to control devices have been demonstrated. Devices without the presence of ZnO layer have much lower PCE than the ones with ZnO layer. Cathode modification layer can be used to reduce photogenerated excitions and finally improve the performance of the OPVs. The successful demonstrations of OPVs with an introduction of ZnO cathode layer give promise of further device progresses.

  14. E.M.I Effects of Cathodic Protection on Electromagnetic Flowmeters

    Directory of Open Access Journals (Sweden)

    Ozge Sahin

    2007-01-01

    Full Text Available Electromagnetic flowmeters are used to measure the speed of water flow in water distribution systems. Corrosion problem in metal pipelines can be solved by cathodic protection methods. This paper presents a research on corruptive effects of the cathodic protection system on electromagnetic flowmeter depending on its measuring principle. Experimental measurements are realized on the water distribution pipelines of the Izmir Municipality, Department of Water and Drainage Administration (IZSU in Turkey and measurement results are given. Experimental results proved that the values measured by the electromagnetic flowmeter (EMF are affected by cathodic protection system current. Comments on the measurement results are made and precautions to be taken are proposed.

  15. Anode Supported Solid Oxide Fuel Cells - Deconvolution of Degradation into Cathode and Anode Contributions

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus;

    2007-01-01

    of the cathode were strongly dependent on the pO(2); they were significantly smaller when testing in oxygen compared to air. Microstructural analysis of the cathode/electrolyte interface of a not-tested reference cell carried out after removal of the cathode showed sharp craters on the electrolyte surface where...... the LSM particles had been located. After testing in air, these craters flattened out and decreased in size, indicating the decrease of three phase boundary length. In contrast, they remained almost unchanged after testing in oxygen giving an explanation for the observed smaller - mainly anode related...

  16. Effect of conductive additives in LiFePO4 cathode for lithium-ion batteries

    OpenAIRE

    Shim, J; Guerfi, A.; Zaghib, K.; Striebel, K.A.

    2003-01-01

    The electrochemical properties of LiFePO4 cathodes with different carbon contents were studied to find out the role of carbon as conductive additive. LiFePO4 cathodes containing from 0 percent to 12 percent of conductive additive (carbon black or mixture of carbon black and graphite) were cycled at different C rates. The capacity of LiFePO4 cathode increased, as conductive additive content increased. Carbon increased the utilization of active material and the electrical conductivity of e...

  17. Influence of Jet Angle and Ion Density of Cathode Side on Low Current Vacuum Arc Characteristics

    Institute of Scientific and Technical Information of China (English)

    WANG Lijun; JIA Shenli; SHI Zongqian

    2008-01-01

    In this study, the influence of the initial jet angles (IJAs) and ion number densities (INDs) at the cathode side on the low current vacuum arc (LCVA) characteristics is simulated and analysed. The results show that the ion temperature, electron temperature, ion number density, axial current density and plasma pressure all decrease with the increase of the cathode IJAs. It is also shown that LCVA can cause a current constriction for lower cathode IND, and the anode sheath potential is more nonuniform, which is mainly related to the nonuniform distribution of the axial current density at the anode side.

  18. Modeling of the lithium-air battery cathodes with broad pore size distribution

    Science.gov (United States)

    Sergeev, Artem V.; Chertovich, Alexander V.; Itkis, Daniil M.

    2016-09-01

    Achieving theoretical promises of 1000 W h/kg specific energy for lithium-air batteries is quite challenging due to limited transport in the cathode along with electrode passivation. Transport can be enhanced in the electrodes with complex hierarchical pore architecture. Here, using computer simulations we analyze the effects of cathode pore size distribution (PSD) on capacity and discharge curve shape. Calculations considering a broad PSD revealed that even small discharge product resistivity prevents larger pores from accumulating the discharge product and thus turning them into non-clogging oxygen supply channels. Thus optimization of cathode architecture by adding of large-scale cavities enables cell capacity enhancement.

  19. Outcoupling efficiency of OLEDs with 2D periodical corrugation at the cathode

    International Nuclear Information System (INIS)

    We study theoretically the optical performance of organic light-emitting diodes (OLEDs) with 2D periodical corrugation at the cathode. We show how emergence of radiative surface plasmon resonances at the 2D corrugated cathode leads to the enhancement of the outcoupling efficiency of the OLED, which is primarily due to the outcoupling of emission generated by vertically oriented emitting excitons in the emission layer. We analyze the outcoupling efficiency of the OLED as a function of geometrical parameters of the corrugation and establish design rules for optimal outcoupling enhancement with the 2D corrugation at the cathode. (paper)

  20. Microstructure and properties of a Mo-CeO2 heated cathode material

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiuxing; WAN Xiaofeng; LI Xiangbo; ZHOU Wenyuan; ZHOU Meiling

    2004-01-01

    The microstructure, mechanical properties, and electron-emission properties of a newly developed heated cath ode material Mo-CeO2 with 4.0% (mass fraction) of CeO2 were investigated. It is shown that the Mo-CeO2 cathode material possesses high tensile strength and good room-temperature ductility. After carbonized, the Mo-CeO2 cathode material has a higher zero field emission current density and a lower work function compared with the W-ThO2 cathode material.

  1. Selection of high-brightness, laser-driven cathodes for electron accelerators and FELS

    International Nuclear Information System (INIS)

    Very intense, low emittance pulsed beams of electrons can be generated from laser-driven cathodes either by thermionic- or photo-emission. Several hundreds of amperes of electrons per square centimeter were observed for pulse lengths up to 50 ns. A normalized beam brightness of 107 A/cm2/rad2 has been measured. These beams can be emission-gated at the cathode surface by modulating the laser-beam. Such beam bunching will generate picosecond-to-microsecond-long pulses at the source. A variety of cathodes are described, and a method of selection for specific applications is presented

  2. Polymer–Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zhiping; Xu, Terrence (Tianren); Gordin, Mikhail; Jiang, Yingbing; Bae, In-Tae; Xiao, Qiangfeng; Zhan, Hui; Liu, Jun; Wang, Donghai

    2012-05-09

    Electroactive polymers are a new generation of 'green' cathode materials for rechargeable lithium batteries. We have developed nanocomposites combining graphene with two promising polymer cathode materials, poly(anthraquinonyl sulfide) and polyimide, to improve their high-rate performance. The polymer-graphene nanocomposites were synthesized through a simple in-situ polymerization in the presence of graphene sheets. The highly dispersed graphene sheets in the nanocomposite drastically enhanced the electronic conductivity and allowed the electrochemical activity of the polymer cathode to be efficiently utilized. This allows for ultrafast charging and discharging - the composite can deliver more than 100 mAh/g within just a few seconds.

  3. Pore former induced porosity in LSM/CGO cathodes for electrochemical cells for flue gas purification

    DEFF Research Database (Denmark)

    Skovgaard, M.; Andersen, Kjeld Bøhm; Kammer Hansen, Kent

    2012-01-01

    In this study the effect of the characteristics of polymethyl methacrylate (PMMA) pore formers on the porosity, pore size distribution and the air flow through the prepared lanthanum strontium manganate/gadolinium-doped cerium oxide (LSM/CGO) cathodes was investigated. Porous cathodes were obtained...... and the highest porosity measured was 46.4% with an average pore diameter of 0.98 μm. The air flow through this cathode was measured to 5.8 ml/(min mm2). Also the effect of exposure time to the solvent was tested for the most promising PMMA pore former and it was found that the average pore diameter decreases...

  4. Resonant cavity Vircator driven by a thermionic cathode electron beam gun

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, R. [Texas Instrument, Dallas, TX (United States)

    1993-12-01

    A resonant cavity Vircator (virtual cathode oscillator) driven by an electron beam emitted from a broad area thermionic cathode has been tested at Textron Defense Systems. Narrow bandwidth (1.0 MHz at the {minus}3 dB level) excitation of the TM{sub 0.23} mode of a cylindrical resonant cavity was observed at a frequency of 986 MHz with a pulse length of 1.2 {mu}s. The single cavity mode excitation is attributed to the constant voltage and current electron beam emitted form the thermionic cathode.

  5. Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries

    Science.gov (United States)

    Manthiram, Arumugam; Choi, Wongchang

    2014-05-13

    The present invention includes compositions and methods of making cation-substituted and fluorine-substituted spinel cathode compositions by firing a LiMn.sub.2-y-zLi.sub.yM.sub.zO.sub.4 oxide with NH.sub.4HF.sub.2 at low temperatures of between about 300 and 700.degree. C. for 2 to 8 hours and a .eta. of more than 0 and less than about 0.50, mixed two-phase compositions consisting of a spinel cathode and a layered oxide cathode, and coupling them with unmodified or surface modified graphite anodes in lithium ion cells.

  6. Microstructural studies on degradation of interface between LSM–YSZ cathode and YSZ electrolyte in SOFCs

    DEFF Research Database (Denmark)

    Liu, Yi-Lin; Hagen, Anke; Barfod, Rasmus;

    2009-01-01

    The changes in the cathode/electrolyte interface microstructure have been studied on anode-supported technological solid oxide fuel cells (SOFCs) that were subjected to long-term (1500 h) testing at 750 °C under high electrical loading (a current density of 0.75 A/cm2). These cells exhibit...... different cathode degradation rates depending on, among others, the composition of the cathode gas, being significantly smaller in oxygen than in air. FE-SEM and high resolution analytical TEM were applied for characterization of the interface on a submicron- and nano-scale. The interface degradation has...

  7. Nitrogen-doped carbonaceous catalysts for gas-diffusion cathodes for alkaline aluminum-air batteries

    Science.gov (United States)

    Davydova, E. S.; Atamanyuk, I. N.; Ilyukhin, A. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2016-02-01

    Cobalt tetramethoxyphenyl porphyrin and polyacrylonitrile - based catalysts for oxygen reduction reaction were synthesized and characterized by means of SEM, TEM, XPS, BET, limited evaporation method, rotating disc and rotating ring-disc electrode methods. Half-cell and Al-air cell tests were carried out to determine the characteristics of gas-diffusion cathodes. Effect of active layer thickness and its composition on the characteristics of the gas-diffusion cathodes was investigated. Power density of 300 mW cm-2 was achieved for alkaline Al-air cell with an air-breathing polyacrylonitrile-based cathode.

  8. On the dispersion of lithium-sulfur battery cathode materials effected by electrostatic and stereo-chemical factors of binders

    Science.gov (United States)

    Hong, Xiaoheng; Jin, Jun; Wen, Zhaoyin; Zhang, Sanpei; Wang, Qingsong; Shen, Chen; Rui, Kun

    2016-08-01

    Sodium carboxymethyl cellulose-styrene butadiene rubber (CMC-SBR), sodium alginate (SA) and LA132 are utilized as the polymer binders for the cathodes of Li-S batteries to study their dispersion mechanism on the cathode materials and the consequent influence on the performance of Li-S batteries. Zeta potential tests, differential scanning calorimetry analysis and calculations of the rotational barriers of the links of the polymer chains by General Atomic and Molecular Electronic Structure System (GAMESS) reveal that higher charge densities and better chain flexibility of the binders promise the dispersion of the downsized cathode materials. LA132 is found to have optimal characteristic for dispersing and stabilizing the cathode materials in aqueous environment. The cycling performance and SEM images of the cathodes demonstrate that cathodes with higher dispersion degree achieve higher discharge capacities. The electrochemical impedance spectroscopy (EIS) results further support that better dispersed cathodes have lower impedance resulting from their well established conducting frameworks.

  9. Study of electron current extraction from a radio frequency plasma cathode designed as a neutralizer for ion source applications

    Energy Technology Data Exchange (ETDEWEB)

    Jahanbakhsh, Sina, E-mail: sinajahanbakhsh@gmail.com; Satir, Mert; Celik, Murat [Department of Mechanical Engineering, Bogazici University, Istanbul 34342 (Turkey)

    2016-02-15

    Plasma cathodes are insert free devices that are developed to be employed as electron sources in electric propulsion and ion source applications as practical alternatives to more commonly used hollow cathodes. Inductively coupled plasma cathodes, or Radio Frequency (RF) plasma cathodes, are introduced in recent years. Because of its compact geometry, and simple and efficient plasma generation, RF plasma source is considered to be suitable for plasma cathode applications. In this study, numerous RF plasma cathodes have been designed and manufactured. Experimental measurements have been conducted to study the effects of geometric and operational parameters. Experimental results of this study show that the plasma generation and electron extraction characteristics of the RF plasma cathode device strongly depend on the geometric parameters such as chamber diameter, chamber length, orifice diameter, orifice length, as well as the operational parameters such as RF power and gas mass flow rate.

  10. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous–cathode MEC improves power generation in air–cathode MFCs

    KAUST Repository

    Cheng, Shaoan

    2011-01-01

    Cellulose has been used in two-chamber microbial fuel cells (MFCs), but power densities were low. Higher power densities can be achieved in air-cathode MFCs using an inoculum from a two-chamber, aqueous-cathode microbial electrolysis cell (MEC). Air-cathode MFCs with this inoculum produced maximum power densities of 1070mWm-2 (cathode surface area) in single-chamber and 880mWm-2 in two-chamber MFCs. Coulombic efficiencies ranged from 25% to 50%, and COD removals were 50-70% based on total cellulose removals of 60-80%. Decreasing the reactor volume from 26 to 14mL (while maintaining constant electrode spacing) decreased power output by 66% (from 526 to 180mWm-2) due to a reduction in total mass of cellulose added. These results demonstrate that air-cathode MFCs can produce high power densities with cellulose following proper acclimation of the inoculum, and that organic loading rates are important for maximizing power densities from particulate substrates. © 2010 Elsevier Ltd.

  11. Oxygen reduction kinetics on mixed conducting SOFC model cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, F.S.

    2006-07-01

    The kinetics of the oxygen reduction reaction at the surface of mixed conducting solid oxide fuel cell (SOFC) cathodes is one of the main limiting factors to the performance of these promising systems. For ''realistic'' porous electrodes, however, it is usually very difficult to separate the influence of different resistive processes. Therefore, a suitable, geometrically well-defined model system was used in this work to enable an unambiguous distinction of individual electrochemical processes by means of impedance spectroscopy. The electrochemical measurements were performed on dense thin film microelectrodes, prepared by PLD and photolithography, of mixed conducting perovskite-type materials. The first part of the thesis consists of an extensive impedance spectroscopic investigation of La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) microelectrodes. An equivalent circuit was identified that describes the electrochemical properties of the model electrodes appropriately and enables an unambiguous interpretation of the measured impedance spectra. Hence, the dependencies of individual electrochemical processes such as the surface exchange reaction on a wide range of experimental parameters including temperature, dc bias and oxygen partial pressure could be studied. As a result, a comprehensive set of experimental data has been obtained, which was previously not available for a mixed conducting model system. In the course of the experiments on the dc bias dependence of the electrochemical processes a new and surprising effect was discovered: It could be shown that a short but strong dc polarisation of a LSCF microelectrode at high temperature improves its electrochemical performance with respect to the oxygen reduction reaction drastically. The electrochemical resistance associated with the oxygen surface exchange reaction, initially the dominant contribution to the total electrode resistance, can be reduced by two orders of magnitude. This &apos

  12. Preparation and Characterization of Cathode Materials for Lithium-Oxygen Batteries

    DEFF Research Database (Denmark)

    Storm, Mie Møller

    A possible future battery type is the Li-air battery which theoretically has the potential of reaching gravimetric energy densities close to those of gasoline. The Li-airbattery is discharged by the reaction of Li-ions and oxygen, drawn from the air, reacting at the battery cathode to form Li2O2....... The type of cathode material affects the battery discharge capacity and charging potential and with a carbon based cathode many questions are still unanswered. The focus of this Ph.D. project has been the synthesis of reduced graphene oxide as well as the investigation of the effect of reduced graphene...... the discharge capacity of the battery as well as the charging potential. In situ X-ray diffraction studies on carbon black cathodes in a capillary battery showed the formation of crystalline Li2O2 on the first discharge cycle, the intensity of Li2O2 on the second discharge cycle was however diminished...

  13. Cathodic delamination: Quantification of ionic transport rates along coating-steel interfaces

    DEFF Research Database (Denmark)

    Sørensen, P.A.; Dam-Johansen, Kim; Weinell, C.E.;

    2010-01-01

    coefficients and Fick's second law, under the assumption of a transport-controlled mechanism, show qualitative agreement with the observed delamination rates in 0.5 M sodium chloride. This confirms that the rate-determining step of cathodic delamination is the transport of sodium ions along the coating...... continuously be transported from the bulk solution to the cathodic areas. The transport of sodium ions from a defect in the coating to the cathodic areas is generally considered the rate-determining step for cathodic delamination because the transport of oxygen and water through the coating is sufficient for...... previously reported values and show an acceptable repeatability. The method was used to obtain the apparent diffusion coefficients of sodium ions in the coating-steel interface for three commercial inert-pigmented epoxy coatings. The delamination rates predicted using the apparent interfacial diffusion...

  14. Cathodic delamination: Quantification of ionic transport rates along coating-steel interfaces

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Dam-Johansen, Kim; Weinell, C. E.;

    2010-01-01

    coefficients and Fick's second law, under the assumption of a transport controlled mechanism, show qualitative agreement with the observed delamination rates in 0.5 M sodium chloride. This confirms that the rate-determining step of cathodic delamination is the transport of sodium ions along the coating...... continuously be transported from the bulk solution to the cathodic areas. The transport of sodium ions from a defect in the coating to the cathodic areas is generally considered the rate-determining step for cathodic delamination because the transport of oxygen and water through the coating is sufficient for...... previously reported values and show an acceptable repeatability. The method was used to obtain the apparent diffusion coefficients of sodium ions in the coating-steel interface for three commercial inert-pigmented epoxy coatings. The delamination rates predicted using the apparent interfacial diffusion...

  15. A new insight into the oxygen diffusion in porous cathodes of lithium-air batteries

    International Nuclear Information System (INIS)

    Slow air transport in the cathodes limits the performance of the metal-air battery. In this work, the diffusion mechanisms in the lithium-air battery have been investigated. It has been found that Knudsen diffusivity can be influenced dramatically by the different pore sizes while bulk diffusivity is almost a constant at a fixed temperature. Limiting current density and concentration polarization, both limited by impeded gas diffusion in the porous cathode, have been evaluated systematically. The analysis of the correlation between those electrochemical parameters and diffusivities improves the quantitative evaluation of gas-based batteries at various materials and operation conditions. - Highlights: • Gas diffusion models are applied to evaluate the lithium-air battery cathode. • Knudsen and bulk diffusivities are introduced to analyze cathode materials. • Analysis is performed for assessing the battery efficiency

  16. Characteristics of a toroidal planar hollow cathode and its use for the preparation of Bi nanoparticles

    Science.gov (United States)

    Perez, A.; Luna, A. T.; Muhl, S.

    2013-12-01

    Using ideas from the sputter deposition by gas flow hollow cathode (GFHC) we have designed a new version in the form of a toroidal planar hollow cathode. Here the flow of gas is used to entrain the sputtered atoms and nanoparticles formed by agglomeration in the gas phase, through the cathode central exit aperture towards the substrate. We have studied the characteristics of the deposit as a function of the applied pulsed dc electrical power, the argon gas pressure and flow. By varying the different operating parameters, such as pressure (6.7-267 Pa), power (40-120 W) and gas flow (20-140 sccm), it was possible to control the size of the nanoparticles (10-150 nm) and the deposition rate (0.4-4.0 nm min-1). We demonstrate that the nanoparticles are of crystalline bismuth, even though the cathode is made of graphite with small added pieces of bismuth.

  17. Development of carbon-based cathodes for Li-air batteries: Present and future

    Science.gov (United States)

    Woo, Hyungsub; Kang, Joonhyeon; Kim, Jaewook; Kim, Chunjoong; Nam, Seunghoon; Park, Byungwoo

    2016-09-01

    Rechargeable lithium-air (Li-air) batteries are regarded as one of the most fascinating energy storage devices for use in the future electric vehicles, since Li-air batteries provide ten-times-higher theoretical capacities than those from current Li-ion batteries. Nonetheless, Li-air batteries have not yet been implemented to the market because of several major drawbacks such as low capacity, poor cycle life, and low round-trip efficiency. These battery performances are highly dependent on the design of air cathodes, thus much effort has been devoted to the development of high performance cathode. Among various materials, carbonaceous materials have been widely studied as the basis of air cathodes especially for non-aqueous Li-O2 cells due to their high electric conductivity, low cost, and ease of fabrication. This review summarizes the history, scientific background, and perspectives of Liair batteries, particularly from the viewpoint of carbon-based air cathodes.

  18. Chemical Extraction Preparation of Delithiated Cathode Materials of Li-ion Battery

    Institute of Scientific and Technical Information of China (English)

    YAN Shijian; ZHANG Mingang; CHAI Yuesheng; TIAN Wenhuai

    2009-01-01

    A method of conventional chemical reaction to prepare delithiated cathode materials of Li-ion battery was introduced.The cathode material of Li-ion battery was mixed with oxidizing agent Na_2S_2O_8 in water solution,and the solution was stirred continuously to make the chemical re-action proceed sufficiently,then the reaction product was filtered and finally the insoluble delithiated cathode material was obtained.A series of tests were conducted to verify the composition,crystal structure and electrochemical property of the delithiated cathode materials were all desirable.This method overcomes the shortcomings of battery charging preparation and chemical extraction prepa-ration employing other oxidizing agents.

  19. Investigation of Corrosion and Cathodic Protection in Reinforced Concrete. II: Properties of Steel Surface Layers

    NARCIS (Netherlands)

    Koleva, D.A.; De Wit, J.H.W.; Van Breugel, K.; Lodhi, Z.F.; Ye, G.

    2007-01-01

    The present study explores the formation of corrosion products on the steel surface (using as-received low carbon construction steel) in reinforced concrete in conditions of corrosion and subsequent transformation of these layers in conditions of cathodic protection (CP).

  20. Investigation of Corrosion and Cathodic Protection in Reinforced Concrete. I: Application of Electrochemical Techniques

    NARCIS (Netherlands)

    Koleva, D.A.; De Wit, J.H.W.; Van Breugel, K.; Lodhi, Z.F.; Van Westing, E.

    2007-01-01

    The electrochemical behavior of steel reinforcement in conditions of corrosion and cathodic protection was studied, using electrochemical impedance spectroscopy (EIS) and compared to reference (noncorroding) conditions. Polarization resistance (PR) method and potentiodynamic polarization (PDP) were

  1. Electrochemical Oscillations during Cathodic Polarization Process of Aluminum Covered with Talc Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Talc coatings were produced with chemical method on the surface of pure aluminum. The characteristics of cathodic polarization in a 3.5% NaCl solution have been studied through the observation of the‘current oscillations' phenomenon.

  2. NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-10-01

    Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO4) cathodes for lithium-ion batteries.

  3. Xinjiang Non-ferrous Metals Wuxin Copper 100,000-ton Cathode Copper Project Commences

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>The construction of Xinjiang Nonferrous Met-als’ Wuxin Copper’s 100,000-ton Cathode Copper Project commenced at the Fukang Xin-jiang Industrial Park of Innovative Non-Ferrous Materials recently. Xinjiang Wuxin Copper

  4. Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation

    Directory of Open Access Journals (Sweden)

    Ruixian Wu

    2016-06-01

    Full Text Available One of the key challenges for electrochemical water splitting is the development of low-cost and efficient hydrogen evolution cathode. In this work, a self-supported Ni-P cathode was synthesized by a facile electrodeposition method. The composition and morphology were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The Ni-P cathode performed low onset over-potential, good catalytic activity and long-term stability under neutral and alkaline conditions. The mechanism of Ni-P electrode for hydrogen production was discussed by electrochemical impedance spectroscopy. The excellent performance of Ni-P cathode was mainly attributed to the synergistic effect of phosphate anions and the self-supported feature.

  5. Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation

    Institute of Scientific and Technical Information of China (English)

    Ruixian Wu; Yuming Dong n; Pingping Jiang; Guangli Wang; Yanmei Chen; Xiuming Wu

    2016-01-01

    One of the key challenges for electrochemical water splitting is the development of low-cost and efficient hydrogen evolution cathode. In this work, a self-supported Ni-P cathode was synthesized by a facile electrodeposition method. The composition and morphology were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The Ni-P cathode performed low onset over-potential, good catalytic activity and long-term stability under neutral and alkaline conditions. The mechanism of Ni-P electrode for hydrogen production was discussed by electrochemical impedance spectroscopy. The excellent performance of Ni-P cathode was mainly attributed to the synergistic effect of phosphate anions and the self-supported feature.

  6. An Improved Blue Polymer Light-Emitting Diode by Using Sodium Hydroxide/Ca/Al Cathode

    Institute of Scientific and Technical Information of China (English)

    MA Liang; XIE Zhi-Yuan; LIU Jun; YANG Jun-Wei; CHENG Yan-Xiang; WANG Li-Xiang; WANG Fo-Song

    2005-01-01

    @@ The performance of blue polymer light-emitting diodes (PLEDs) based on poly(9,9-dioctylfluorene) (PFO) is improved by introducing a thin layer of sodium hydroxide (NaOH) between the calcium cathode and the PFO emissive layer. By replacing the commonly used Ca/Al cathode by a NaOH (2.5nm)/Ca (10 nm)/Al cathode,the driving voltage is reduced from 8.3 V to 5.4 V and the light-emitting efficiency is enhanced from 0.46cd/A to 0. 72 cd/A for achieving a luminance of 500 cd/m2, respectively. Moreover, the device with NaOH/Ca/Al cathode shows a pure blue emission of (0.17, 0. 12) at high brightnesses. These improvements are attributed to introduction of a thin layer of NaOH that can lower the interfacial barrier and facilitate electron injection.

  7. Advanced Nanostructured Cathode for Ultra High Specific Energy Lithium Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate advanced nanotechnology with energy storage technology to develop advanced cathode materials for use in Li-ion batteries while maintaining a high level of...

  8. High Capacity and High Voltage Composite Oxide Cathode for Li-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Currently used cathode materials in energy storage devices do not fully satisfy the power density and energy density requirements for NASA's exploration missions....

  9. Microwave generation from an axially extracted virtual cathode oscillator with a guide magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kostov, K.G.; Nikolov, N.A. (Department of General Physics, Sofia University, Sofia 1126 (Bulgaria))

    1994-04-01

    The operation of a virtual cathode oscillator (vircator) with strong axial magnetic field has been experimentally studied. Depending on the cathode--anode gap and cathode diameter, the operating voltage varies from 200 kV up to 480 kV with 2--7 kA diode current. Microwave emission is produced by the oscillating virtual cathode. The central microwave frequency follows the beam plasma frequency. It varies by 11.5 GHz up to 22 GHz, depending on the current density. The oscillation frequency does not depend on the guide magnetic field magnitude. A maximal output power of 15[plus minus]5 MW in asymmetric transverse magnetic (TM) modes is achieved by the axially extracted vircator. Variation of the magnetic field intensity in a range of 0--40 kG has an insignificant effect upon the emitted microwave power. An electron beam power to microwave power conversion efficiency of approximately 1% is obtained.

  10. Microwave generation from an axially extracted virtual cathode oscillator with a guide magnetic field

    International Nuclear Information System (INIS)

    The operation of a virtual cathode oscillator (vircator) with strong axial magnetic field has been experimentally studied. Depending on the cathode--anode gap and cathode diameter, the operating voltage varies from 200 kV up to 480 kV with 2--7 kA diode current. Microwave emission is produced by the oscillating virtual cathode. The central microwave frequency follows the beam plasma frequency. It varies by 11.5 GHz up to 22 GHz, depending on the current density. The oscillation frequency does not depend on the guide magnetic field magnitude. A maximal output power of 15±5 MW in asymmetric transverse magnetic (TM) modes is achieved by the axially extracted vircator. Variation of the magnetic field intensity in a range of 0--40 kG has an insignificant effect upon the emitted microwave power. An electron beam power to microwave power conversion efficiency of approximately 1% is obtained

  11. Advanced Cathode Material For High Energy Density Lithium-Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced cathode materials having high red-ox potential and high specific capacity offer great promise to the development of high energy density lithium-based...

  12. Contribution to crystallographical and mechanical analysis of molybdenum coatings prepared by magnetron cathode sputtering

    International Nuclear Information System (INIS)

    Molybdenum coatings with different compression stresses are obtained by magnetron cathode sputtering by varying negative voltage applied to the substrate during deposition. Stress evolution, crystal texture and argon content are studied

  13. Nano-Composite Cathodes for High Performance Lithium Ion Microbatteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TPL Inc. proposes to develop a novel, high performance, nanostructured cathode material for lithium ion (Li-ion) batteries. The proposed approach will modify...

  14. High Capacity and High Voltage Composite Oxide Cathode for Li-ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NEI Corporation and University of Florida propose to develop a mixed metal oxide cathode that is a composite of two and three dimensional structures. At the atomic...

  15. Transition characteristics from radio-frequency discharge to arc in hollow cathode configuration

    Institute of Scientific and Technical Information of China (English)

    许建平; 巩春志; 吴明忠; 田修波

    2014-01-01

    The technique ofglow discharges in radio frequency configuration was applied to ignite hollow cathode vacuum arc discharge.The effect of discharge parameters on the building up of hollow cathode arc discharge was investigated.The emission spectrum during the vacuum arc ignition process was measured to disclose the discharge dynamics.There exists a threshold radio frequency power (300 W),beyond which hollow cathode is in γmode discharge status while radio frequency discharge changes into the arc discharge.With the increase of the radio frequency power,the plasma temperature and electronic density increase,and the discharge mode transits more rapidly.The ignition time ofhollow cathode vacuum arc discharge is less than 4 s with a radio frequency power of700 W.

  16. Screen printed cathode for non-aqueous lithium-oxygen batteries

    Science.gov (United States)

    Jung, C. Y.; Zhao, T. S.; An, L.; Zeng, L.; Wei, Z. H.

    2015-11-01

    An issue with conventional non-aqueous Li-O2 battery cathodes that are formed by spraying/brushing/casting/coating carbon black slurries is a lack of sufficiently large pores, vulnerable to clogging by solid discharge products, and hence resulting in a low capacity. In this work, we report a novel cathode structure formed by screen-printing method. This deposition method allows the creation of evenly distributed large pores (∼10 μm). As compared with the cathode formed by slurry-coating method, the cathode formed by the present method increases the battery's capacity by two times. The cyclability is also seen a significant improvement. The improved performance may be attributed to large pores that give more appropriate distributions of discharge products and hence facilitate the transportation of oxygen during cycling.

  17. Energetic Ion Mitigation Methodology for High Power Plasma Thruster Cathodes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The presence of energetic ions, that appear under high cathode current operation, stand as a showstopper to the realization of high power electric propulsion....

  18. Modified Separator Using Thin Carbon Layer Obtained from Its Cathode for Advanced Lithium Sulfur Batteries.

    Science.gov (United States)

    Liu, Naiqiang; Huang, Bicheng; Wang, Weikun; Shao, Hongyuan; Li, Chengming; Zhang, Hao; Wang, Anbang; Yuan, Keguo; Huang, Yaqin

    2016-06-29

    The realization of a practical lithium sulfur battery system, despite its high theoretical specific capacity, is severely limited by fast capacity decay, which is mainly attributed to polysulfide dissolution and shuttle effect. To address this issue, we designed a thin cathode inactive material interlayer modified separator to block polysulfides. There are two advantages for this strategy. First, the coating material totally comes from the cathode, thus avoids the additional weights involved. Second, the cathode inactive material modified separator improve the reversible capacity and cycle performance by combining gelatin to chemically bond polysulfides and the carbon layer to physically block polysulfides. The research results confirm that with the cathode inactive material modified separator, the batteries retain a reversible capacity of 644 mAh g(-1) after 150 cycles, showing a low capacity decay of about 0.11% per circle at the rate of 0.5C. PMID:27267483

  19. Application of Electrochemical Impedance Spectroscopy in the Evaluation of Corrosion and Cathodic Protection in Reinforced Concrete

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.; De Wit, J.H.W.; Fraaij, A.L.A.; Boshkov, N.

    2007-01-01

    The electrochemical behavior of steel reinforcement in conditions of corrosion and cathodic protection (CP) was studied, using electrochemical impedance spectroscopy (EIS) and compared to reference (non-corroding) conditions. Polarization resistance (PR) method and potentio-dynamic polarization (PDP

  20. Analytical, 1-Dimensional Impedance Model of a Composite Solid Oxide Fuel Cell Cathode

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2014-01-01

    An analytical, 1-dimensional impedance model for a composite solid oxide fuel cell cathode is derived. It includes geometrical parameters of the cathode, e.g., the internal surface area and the electrode thickness, and also material parameters, e.g., the surface reaction rate and the vacancy...... diffusion coefficient. The model is successfully applied to a total of 42 impedance spectra, obtained in the temperature range 555°C–852°C and in the oxygen partial pressure range 0.028 atm–1.00 atm for a cathode consisting of a 50/50 wt% mixture of (La0.6Sr0.4)0.99CoO3 − δ and Ce0.9Gd0.1O1.95 − δ...... and providing both qualitative and quantitative information on the evolution of the impedance spectra of cathodes with changing parameters....

  1. INFLUENCE OF VACUUM ARC PLASMA EVAPORATOR CATHODE GEOMETRY OF ON VALUE OF ADMISSIBLE ARC DISCHARGE CURRENT

    Directory of Open Access Journals (Sweden)

    I. A. Ivanou

    2015-01-01

    Full Text Available An analysis of main design parameters that determine a level of droplet formation intensity at the generating stage of plasma flow has been given in the paper. The paper considers the most widely used designs of water cooled consumable cathodes. Ti or Ti–Si and Fe–Cr alloys have been taken as a material for cathodes. The following calculated data: average ionic charge Zi for titanium plasma +1.6; for «titanium–silicon plasma» +1.2, an electronic discharge 1.6022 ⋅ 10–19 C, an ion velocity vi = 2 ⋅ 104 m/s, an effective volt energy equivalent of heat flow diverted in the cathode Uк = 12 V, temperature of erosion cathode surface Тп = 550 К; temperature of the cooled cathode surface То = 350 К have been accepted in order to determine dependence of a maximum admissible arc discharge current on cathode height. The calculations have been carried out for various values of the cathode heights hк (from 0.02 to 0.05 m. Diameter of a target cathode is equal to 0.08 m for a majority of technological plasma devices, therefore, the area of the erosion surface is S = 0.005 m2.A thickness selection for a consumable target cathode part in the vacuum arc plasma source has been justified in the paper. The thickness ensures formation of minimum drop phase in the plasma flow during arc cathode material evaporation. It has been shown that a maximum admissible current of an arc discharge is practically equal to the minimum current of stable arcing when thickness of the consumable cathode part is equal to 0.05 m. The admissible discharge current can be rather significant and ensure high productivity during coating process with formation of relatively low amount of droplet phase in the coating at small values of hк.

  2. Hydrogen Induced Stress Cracking of Materials Under Cathodic Protection

    Science.gov (United States)

    LaCoursiere, Marissa P.

    Hydrogen embrittlement of AISI 4340, InconelRTM 718, Alloy 686 and Alloy 59 was studied using slow strain rate tests of both smooth and notched cylindrical specimens. Two heat treatments of the AISI 4340 material were used as a standard for two levels of yield strength: 1479 MPa, and 1140 MPa. A subset of the 1140 MPa AISI 4340 material also underwent plasma nitriding. The InconelRTM 718 material was hardened following AMS 5663M to obtain a yield strength of 1091 MPa. The Alloy 686 material was obtained in the Grade 3 condition with a minimum yield strength of 1034 MPa. The Alloy 59 material was obtained with a cold worked condition similar to the Alloy 686 and with a minimum yield strength of 1034 MPa. Ninety-nine specimens were tested, including smooth cylindrical tensile test specimens and smooth and notched cylindrical slow strain rate tensile tests specimens. Testing included specimens that had been precharged with hydrogen in 3.5% NaCl at 50°C for 2 weeks (AISI 4340), 4 weeks (InconelRTM 718, Alloy 686, Alloy 59) and 16 weeks (InconelRTM 718, Alloy 686, Alloy 59) using a potentiostat to deliver a cathodic potential of -1100 mV vs. SCE. The strain rate over the gauge section for the smooth specimens and in the notch root for the notched specimens was 1 x 10-6 /s. It was found that the AISI 4340 was highly embrittled in simulated ocean water when compared to the nickel based superalloys. The higher strength AISI 4340 showed much more embrittlement, as expected. Testing of the AISI 4340 at both 20°C and 4°C showed that the temperature had no effect on the hydrogen embrittlement response. The InconelRTM 718 was highly embrittled when precharged, although it only showed low levels of embrittlement when unprecharged. Both the Alloy 686 and Alloy 59 showed minimal embrittlement in all conditions. Therefore, for the materials examined, the use of Alloy 686 and Alloy 59 for components in salt water environments when under a cathodic potential of -1100 mV vs. SCE is

  3. Cathode Assessment for Maximizing Current Generation in Microbial Fuel Cells Utilizing Bioethanol Effluent as Substrate

    Directory of Open Access Journals (Sweden)

    Guotao Sun

    2016-05-01

    Full Text Available Implementation of microbial fuel cells (MFCs for electricity production requires effective current generation from waste products via robust cathode reduction. Three cathode types using dissolved oxygen cathodes (DOCs, ferricyanide cathodes (FeCs and air cathodes (AiCs were therefore assessed using bioethanol effluent, containing 20.5 g/L xylose, 1.8 g/L arabinose and 2.5 g/L propionic acid. In each set-up the anode and cathode had an electrode surface area of 88 cm2, which was used for calculation of the current density. Electricity generation was evaluated by quantifying current responses to substrate loading rates and external resistance. At the lowest external resistance of 27 Ω and highest substrate loading rate of 2 g chemical oxygen demand (COD per L·day, FeC-MFC generated highest average current density (1630 mA/m2 followed by AiC-MFC (802 mA/m2 and DOC-MFC (184 mA/m2. Electrochemical impedance spectroscopy (EIS was used to determine the impedance of the cathodes. It was thereby confirmed that the FeC-MFC produced the highest current density with the lowest internal resistance for the cathode. However, in a setup using bioethanol effluent, the AiC-MFC was concluded to be the most sustainable option since it does not require ferricyanide. The data offer a new add-on option to the straw biorefinery by using bioethanol effluent for microbial electricity production.

  4. Materials characterization of impregnated W and W–Ir cathodes after oxygen poisoning

    International Nuclear Information System (INIS)

    Highlights: • Impregnated W and W–Ir cathodes were operated with 100 ppm of oxygen in Xe gas. • High concentrations of oxygen accelerated the formation of tungstate layers. • The W–Ir emitter exhibited less erosion and redeposition at the upstream end. • Tungsten was preferentially transported in the insert plasma of the W–Ir cathode. - Abstract: Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten–iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W–Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W–Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W–Ir. However, the W–Ir emitter exhibited less erosion

  5. Two Models of DMFC under Effects of Cathode Humidification Temperature and Anode Flow Rate

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper introduced a novel self-adjustment of parameters of fuzzy neural networks. Then,the effects of cathode humidification temperature and anode flow rate on the performance of direct methanol fuel cell (DMFC)were described respectively. Two dynamic performance models of DMFC under the influences of cathode humidification temperature and anode flow rate were established separately based on fuzzy neural networks. The simulation results show the accuracy of the models established is satisfactory.

  6. High-performance cathode elements for gas-discharge light sources

    Directory of Open Access Journals (Sweden)

    Sevastyanov V. V.

    2009-02-01

    Full Text Available Application of cathode elements of the arc-discharge activator made on the basis of developed material — alloy of iridium and rare-earth metals (of cerium group — has been suggested. The working samples of arc lamps have been produced and tested. The location of metal-alloy cathode has been optimized. The tests demonstrated, that after 4500 hours of work the lighting-up and glowing parameters of such lamps remained stable.

  7. Characterisation of an RF excited argon plasma cathode electron beam gun

    OpenAIRE

    Del Pozo, S.; Ribton, C; Smith, DR

    2014-01-01

    This work describes the experimental set up used for carrying out spectroscopic measurements in a plasma cathode electron beam (EB) gun. Advantages of plasma cathode guns over thermionic guns are described. The factors affecting electron beam power such as plasma pressure, excitation power and plasma chamber geometry are discussed. The maximum beam current extracted was 53 mA from a 0.5 mm diameter aperture in the plasma chamber. In this work, the electron source is an argon plasma excited at...

  8. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); James, Christine [Michigan State Univ., East Lansing, MI (United States); Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States); Gallagher, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States); Kelly, Jarod C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. Lithium metal is also an emerging anode material. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  9. Materials characterization of impregnated W and W–Ir cathodes after oxygen poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Polk, James E., E-mail: james.e.polk@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Capece, Angela M. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2015-05-30

    Highlights: • Impregnated W and W–Ir cathodes were operated with 100 ppm of oxygen in Xe gas. • High concentrations of oxygen accelerated the formation of tungstate layers. • The W–Ir emitter exhibited less erosion and redeposition at the upstream end. • Tungsten was preferentially transported in the insert plasma of the W–Ir cathode. - Abstract: Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten–iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W–Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W–Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W–Ir. However, the W–Ir emitter exhibited less erosion

  10. Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries.

    Science.gov (United States)

    Yu, Zhijing; Kang, Zepeng; Hu, Zongqian; Lu, Jianhong; Zhou, Zhigang; Jiao, Shuqiang

    2016-08-16

    Hexagonal NiS nanobelts served as novel cathode materials for rechargeable Al-ion batteries based on an AlCl3/[EMIm]Cl ionic liquid electrolyte system. The nano-banded structure of the materials can facilitate the electrolyte immersion and enhance Al(3+) diffusion. The hexagonal NiS nanobelt based cathodes exhibit high storage capacity, good cyclability and low overpotential. PMID:27487940

  11. Graphene-Based Composites as Cathode Materials for Lithium Ion Batteries

    OpenAIRE

    Libao Chen; Ming Zhang; Weifeng Wei

    2013-01-01

    Owing to the superior mechanical, thermal, and electrical properties, graphene was a perfect candidate to improve the performance of lithium ion batteries. Herein, we review the recent advances in graphene-based composites and their application as cathode materials for lithium ion batteries. We focus on the synthesis methods of graphene-based composites and the superior electrochemical performance of graphene-based composites as cathode materials for lithium ion batteries.

  12. Assessment of the cathode contribution to the degradation of anode-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus;

    2008-01-01

    The degradation of anode-supported cells was studied over 1500 h as a function of cell polarization either in air or oxygen on the cathode side. Based on impedance analysis, contributions of the anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rate......-stabilized zirconia electrolyte and consequently a reduced three-phase boundary length. (C) 2008 The Electrochemical Society....

  13. Effect of cathode separator structure on performance characteristics of free-breathing PEMFCs

    OpenAIRE

    Tabe, Yutaka; Park, Sang-Kyun; Kikuta, Kazushige; Chikahisa, Takemi; Hishinuma, Yukio

    2006-01-01

    The performance of free-breathing polymer electrolyte membrane fuel cells (PEMFCs) was studied experimentally and the effect of the cathode separator structure on the cell performance was investigated. Two types of cathode separators were used for a cell with an 18 cm2 active area: an open type with parallel rectangular open-slits and a channel type with straight vertical channels with open ends. The polarization curves, cell impedance, and contact pressure distribution of the separators were...

  14. Applying cathodically polarised substrata to the restoration of a high value coral

    OpenAIRE

    Benedetti, Alessandro; Bramanti, Lorenzo; Tsounis, Gerogios; Faimali, Marco; Pavanello, Giovanni; Rossi, Sergio; Gili, Josep Maria; Santangelo, Giovanni

    2011-01-01

    Larval settlement of the high value red coral, Corallium rubrum, was studied on three different CaCO3 substrata, viz. lithogenic (marble), electro-accreted calcium carbonate in the presence and in the absence of cathodic polarisation. The last two substrata consisted of stainless steel plates galvanically coupled with Zn anodes. The electrochemical characterization of the settlement device was studied in order to investigate correlations between cathodic parameters (polarisation potential, cu...

  15. A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source

    OpenAIRE

    Alexander N. Obraztsov; Kleshch, Victor I.; Smolnikova, Elena A

    2013-01-01

    The development of new types of light sources is necessary in order to meet the growing demands of consumers and to ensure an efficient use of energy. The cathodoluminescence process is still under-exploited for light generation because of the lack of cathodes suitable for the energy-efficient production of electron beams and appropriate phosphor materials. In this paper we propose a nano-graphite film material as a highly efficient cold cathode, which is able to produce high intensity electr...

  16. Investigation of chlorination of zirconium and hafnium and their compounds in discharge from hollow cathode

    International Nuclear Information System (INIS)

    The possibility is investigated of chlorinating various zirconium and hafnium compounds (metal, oxide, carbide) in a hot discharge from a hollow cathode with various chlorinating reagents: copper monochloride, nickel chloride, magnesium chloride, for the purpose of accelerating their entrance into the excitation zone. It has been shown thermodynamically and experimentally that chlorination of metal zirconium and hafnium and their carbides with copper monochloride in hot hollow cathode conditions provides a sharp increase in the intensity of the lines of these elements

  17. Fe-Mo alloy coatings as cathodes in chlorate production process

    Directory of Open Access Journals (Sweden)

    Gajić-Krstajić Ljiljana M.

    2016-01-01

    Full Text Available The aim of this study was to gain a better understanding of the feasibility of partial replacement of dichromate, Cr(VI, with phosphate buffer, focusing on the cathode reaction selectivity for hydrogen evolution on mild steel and Fe-Mo cathodes in undivided cell for chlorate production. To evaluate the ability of phosphate and Cr(VI additions to hinder hypochlorite and chlorate reduction, overall current efficiency (CE measurements in laboratory cell for chlorate production on stationary electrodes were performed. The concentration of hypochlorite was determined by a conventional potentiometric titration method using 0.01 mol dm-3 As2O3 solution as a titrant. The chlorate concentration was determined by excess of 1.0 mol dm-3 As2O3 solution and excess of arsenic oxide was titrated with 0.1 mol dm-3 KBrO3 solution in a strong acidic solution. Cathodic hypochlorite and chlorate reduction were suppressed efficiently by addition of 3 g dm-3 dichromate at both cathodes, except that Fe-Mo cathode exhibited higher catalytic activity for hydrogen evolution reaction (HER. The overvoltage for the HER was around 0.17 V lower on Fe-Mo cathode than on mild steel at the current density of 3 kA m-2. It was found that a dichromate content as low as 0.1 g dm-3 is sufficient for complete suppression of cathodic hypochlorite and chlorate reduction onto Fe-Mo catalyst in phosphate buffering system (3 g dm-3 Na2HPO4 + NaH2PO4. The overall current efficiency was practically the same as in the case of the presence of 3 g dm-3 dichromate buffer (98 %. However, for the mild steel cathode, the overall current efficiency for the chlorate production was somewhat lower in the above mentioned mixed phosphate + dichromate buffering system (95% than in the pure dichromate buffering solution (97.5%.

  18. Preparation, characterization and degradation investigations of cathode catalysts for automotive PEM fuel cells systems

    OpenAIRE

    Marcu, Alina

    2014-01-01

    This research was designed to meet Daimler systematic efforts to address future electromobility demands. The work focuses on developing potential cathode catalysts and tests procedures to be employed in prototype fuel cells. In order to achieve commercial cost-competitive polymer electrolyte membrane fuel cells (PEM FC), the following major challenges have to be addressed: i) The catalytic mass activity of the cathode catalysts has to be at least 0.44 A/mg Pt representing an increased factor ...

  19. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.

    Science.gov (United States)

    Zheng, Shiyou; Chen, Yvonne; Xu, Yunhua; Yi, Feng; Zhu, Yujie; Liu, Yihang; Yang, Junhe; Wang, Chunsheng

    2013-12-23

    Highly stable sulfur/microporous carbon (S/MC) composites are prepared by vacuum infusion of sulfur vapor into microporous carbon at 600 °C, and lithium sulfide/microporous carbon (Li2S/MC) cathodes are fabricated via a novel and facile in situ lithiation strategy, i.e., spraying commercial stabilized lithium metal powder (SLMP) onto a prepared S/MC film cathode prior to the routine compressing process in cell assembly. The in situ formed Li2S/MC film cathode shows high Coulombic efficiency and long cycling stability in a conventional commercial Li-ion battery electrolyte (1.0 M LiPF6 + EC/DEC (1:1 v/v)). The reversible capacities of Li2S/MC cathodes remain about 650 mAh/g even after 900 charge/discharge cycles, and the Coulombic efficiency is close to 100% at a current density of 0.1C, which demonstrates the best electrochemical performance of Li2S/MC cathodes reported to date. Furthermore, this Li2S/MC film cathode fabricated via our in situ lithiation strategy can be coupled with a Li-free anode, such as graphite, carbon/tin alloys, or Si nanowires to form a rechargeable Li-ion cell. As the Li2S/MC cathode is paired with a commercial graphite anode, the full cell of Li2S/MC-graphite (Li2S-G) shows a stable capacity of around 600 mAh/g in 150 cycles. The Li2S/MC cathodes prepared by high-temperate sulfur infusion and SLMP prelithiation before cell assembly are ready to fit into current Li-ion batteries manufacturing processes and will pave the way to commercialize low-cost Li2S-G Li-ion batteries. PMID:24251957

  20. Graphene-Based Composites as Cathode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Libao Chen

    2013-01-01

    Full Text Available Owing to the superior mechanical, thermal, and electrical properties, graphene was a perfect candidate to improve the performance of lithium ion batteries. Herein, we review the recent advances in graphene-based composites and their application as cathode materials for lithium ion batteries. We focus on the synthesis methods of graphene-based composites and the superior electrochemical performance of graphene-based composites as cathode materials for lithium ion batteries.

  1. Oxygen transport in the internal xenon plasma of a dispenser hollow cathode

    Energy Technology Data Exchange (ETDEWEB)

    Capece, Angela M., E-mail: acapece@pppl.gov; Shepherd, Joseph E. [California Institute of Technology, Pasadena, California 91125 (United States); Polk, James E.; Mikellides, Ioannis G. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, California 91109 (United States)

    2014-04-21

    Reactive gases such as oxygen and water vapor modify the surface morphology of BaO dispenser cathodes and degrade the electron emission properties. For vacuum cathodes operating at fixed temperature, the emission current drops rapidly when oxygen adsorbs on top of the low work function surface. Previous experiments have shown that plasma cathodes are more resistant to oxygen poisoning and can operate with O{sub 2} partial pressures one to two orders of magnitude higher than vacuum cathodes before the onset of poisoning occurs. Plasma cathodes used for electric thrusters are typically operated with xenon; however, gas phase barium, oxygen, and tungsten species may be found in small concentrations. The densities of these minor species are small compared with the plasma density, and thus, their presence in the discharge does not significantly alter the xenon plasma parameters. It is important, however, to consider the transport of these minor species as they may deposit on the emitter surface and affect the electron emission properties. In this work, we present the results of a material transport model used to predict oxygen fluxes to the cathode surface by solving the species conservation equations in a cathode with a 2.25 mm diameter orifice operated at a discharge current of 15 A, a Xe flow rate of 3.7 sccm, and 100 ppm of O{sub 2}. The dominant ionization process for O{sub 2} is resonant charge exchange with xenon ions. Ba is effectively recycled in the plasma; however, BaO and O{sub 2} are not. The model shows that the oxygen flux to the surface is not diffusion-limited; therefore, the high resistance to oxygen poisoning observed in plasma cathodes likely results from surface processes not considered here.

  2. Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode

    OpenAIRE

    Kaya, Sarp; Casalongue, Hernan Sanchez; Viswanathan, Venkatasubramanian ; Miller, Daniel J. ; Friebel, Daniel ; Hansen, Heine A. ; Nørskov, Jens K. ; Nilsson, Anders ; Ogasawara, Hirohito

    2013-01-01

    The performance of polymer electrolyte membrane fuel cells is limited by the reduction at the cathode of various oxygenated intermediates in the four-electron pathway of the oxygen reduction reaction. Here we use ambient pressure X-ray photoelectron spectroscopy, and directly probe the correlation between the adsorbed species on the surface and the electrochemical potential. We demonstrate that, during the oxygen reduction reaction, hydroxyl intermediates on the cathode surface occur in sever...

  3. Characterization by acoustic emission and electrochemical impedance spectroscopy of the cathodic disbonding of Zn coating

    Energy Technology Data Exchange (ETDEWEB)

    Amami, Souhail [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)], E-mail: souhail.amami@utc.fr; Lemaitre, Christian; Laksimi, Abdelouahed; Benmedakhene, Salim [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)

    2010-05-15

    Galvanized steel has been tested in a synthetic sea water solution under different cathodic overprotection conditions. The generated hydrogen flux caused the damage of the metal-zinc interface and led to a progressive coating detachment. Scanning electron microscopy, electrochemical impedance spectroscopy and acoustic emission technique were used to characterize the damage chronology under different cathodic potentials. A damage mechanism was proposed and the acoustic signature related to the coating degradation was statistically identified using clustering techniques.

  4. La2NiO4+δ Infiltration of Plasma-Sprayed LSCF Coating for Cathode Performance Improvement

    Science.gov (United States)

    Li, Ying; Zhang, Shan-Lin; Li, Cheng-Xin; Wei, Tao; Yang, Guan-Jun; Li, Chang-Jiu; Liu, Meilin

    2016-01-01

    Perovskite-structured (La0.6Sr0.4Co0.2Fe0.8O3) LSCF has been widely studied as a cathode material for intermediate-temperature solid oxide fuel cells. However, the application of LSCF cathode is likely to be limited by its sluggish surface catalytic properties and long-term stability issues. Oxygen hyper-stoichiometric La2NiO4+δ with K2NiF4 structure exhibits higher catalytic properties, ionic conductivity, and stability in comparison with LSCF cathode. Due to the good chemical compatibility of these two cathode materials, it is possible to prepare a composite cathode by the infiltration of La2NiO4+δ in the porous LSCF. This composite structure fully utilizes the advantages of the two cathodes and enhances the LSCF cathode performance. In this study, the LSCF cathode was deposited by using an atmospheric plasma spray technique, and the porous LSCF cathode was then infiltrated by La2NiO4+δ. The atmospheric plasma spray technique was used to reduce the SOFC manufacturing cost. The microstructure of coatings was characterized by SEM and EDS. The cathode polarization resistance was found to decrease by ~40% after the La2NiO4+δ infiltration. Also, the activation energy decreased from 1.53 to 1.40 eV.

  5. Effect of Cathode Designs on Radiation Emission of Compact Diode (CD) Device

    Science.gov (United States)

    Khan, Muhammad Zubair; Yap, Seong Ling; Khan, Muhammad Afzal; Attiq-ur-Rehman; Zakaullah, Muhammad

    2013-02-01

    A comparative study on the radiation emission such as X-ray yield and efficiency has been carried out in compact diode device. Two different designs of cathode having sharp-edged razor blade (of 0.5 mm thickness with width 2 mm) and a sewing machine needle (of 0.5 mm diameter at tip with length of 39 mm) have been tested for this study. The radiation emission (X-ray yield) was determined by employing two set of PIN diodes at fixed positions. The maximum X-ray yield depends on cathode designs and electrodes separation in few mm. The yield of X-ray is small in the case of sharp-edged razor blade cathode than the sewing machine needle cathode. The X-ray yield, measured by 4π-geometry, shows its dependence on the cathode designs. The maximum X-ray yield is found to be 939.2 ± 65.7 mJ with efficiency of 0.4142 ± 0.0289%. This study indicates that the compact diode device could be optimized to a great extent for optimal X-ray yield by using an appropriate cathode design.

  6. A 10B-based neutron detector with stacked Multiwire Proportional Counters and macrostructured cathodes

    CERN Document Server

    Stefanescu, I; Birch, J; Defendi, I; Hall-Wilton, R; Hoglund, C; Hultman, L; Zee, M; Zeitelhack, K

    2013-01-01

    We present the results of the measurements of the detection efficiency for a 4.7 \\r{A} neutron beam incident upon a detector incorporating a stack of up to five MultiWire Proportional Counters (MWPC) with Boron-coated cathodes. The cathodes were made of Aluminum and had a surface exhibiting millimeter-deep V-shaped grooves of 45{\\deg}, upon which the thin Boron film was deposited by DC magnetron sputtering. The incident neutrons interacting with the converter layer deposited on the sidewalls of the grooves have a higher capture probability, owing to the larger effective absorption film thickness. This leads to a higher overall detection efficiency for the grooved cathode when compared to a cathode with a flat surface. Both the experimental results and the predictions of the GEANT4 model suggests that a 5-counter detector stack with coated grooved cathodes has the same efficiency as a 7-counter stack with flat cathodes. The reduction in the number of counters in the stack without altering the detection efficie...

  7. Nickel fibers/sulfur composites cathode with enhanced electrochemical performance for rechargeable lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Highlights: • A novel Nickel fibers was developed as additive for sulfur cathode. • Composite cathode containing 3% nickel fibers has remarkable cycling stability and great rate capability. • Electrochemical analysis shows nickel fibers can absorb polysulfides, improve electronic conductivity, and facilitate the redox reactions in sulfur cathode. - Abstract: The commercialization of lithium sulfur batteries have so far hindered by the low electrochemical utilization and rapid capacity fading of sulfur cathode, which is induced by low electron conductivity and high dissolution of intermediate polysulfides. Recent studies have shown that the metal (Pt, Au, Ni) as electrocatalyst of lithium polysulfides and its metallic porous nanostructure can suppress the shuttle effect. In this work, we use the porous nanostructure of nickel fibers/sulfur as-designed composite cathode material for lithium sulfur batteries. The initial discharge capacity of the cathode with the added 3(%) nickel fibers was 805 mAh g−1, and the remaining capacity was 440 mAh g−1 after 50 cycles at 0.766 mA cm−2. Even at a high current density of 1.532 mA cm−2, it also kept a high discharge capacity of 310 mAh g−1. Compared with pure sulfur electrodes, the electrodes containing nickel fibers showed an obviously improved cycle and rate performances, confirming that metallic porous nanostructure of nickel can not only contribute to reducing the dissolution of polysulfides into electrolytes, but also has a catalytic effect on the redox reactions during charge-discharge process

  8. A review of blended cathode materials for use in Li-ion batteries

    Science.gov (United States)

    Chikkannanavar, Satishkumar B.; Bernardi, Dawn M.; Liu, Lingyun

    2014-02-01

    Several commercial automotive battery suppliers have developed lithium ion cells which use cathodes that consist of a mixture of two different active materials. This approach is intended to take advantage of the unique properties of each material and optimize the performance of the battery with respect to the automotive operating requirements. Certain cathode materials have high coulombic capacity and good cycling characteristics, but are costly and exhibit poor thermal stability (e.g., LiNixCo1-x-yAlyO2). Alternately, other cathode materials exhibit good thermal stability, high voltage and high rate capability, but have low capacity (e.g., LiMn2O4). By blending two cathode materials the shortcomings of the parent materials could be minimized and the resultant blend can be tailored to have a higher energy or power density coupled with enhanced stability and lower cost. In this review, we survey the developing field of blended cathode materials from a new perspective. Targeting a range of cathode materials, we survey the advances in the field in the current review. Limitations, such as capacity decay due to metal dissolution are also discussed, as well as how the appropriate balance of characteristics of the blended materials can be optimized for hybrid- and electric-vehicle applications.

  9. Design and characterization of the annular cathode high current pulsed electron beam source for circular components

    Science.gov (United States)

    Jiang, Wei; Wang, Langping; Wang, Xiaofeng

    2016-08-01

    In order to irradiate circular components with high current pulsed electron beam (HCPEB), an annular cathode based on carbon fiber bunches was designed and fabricated. Using an acceleration voltage of 25 kV, the maximum pulsed irradiation current and energy of this annular cathode can reach 7.9 kA and 300 J, respectively. The irradiation current density distribution of the annular cathode HCPEB source measured along the circumferential direction shows that the annular cathode has good emission uniformity. In addition, four 9310 steel substrates fixed uniformly along the circumferential direction of a metal ring substrate were irradiated by this annular cathode HCPEB source. The surface and cross-section morphologies of the irradiated samples were characterized by scanning electron microscopy (SEM). SEM images of the surface reveal that crater and surface undulation have been formed, which hints that the irradiation energy of the HCPEB process is large enough for surface modification of 9310 steel. Meanwhile, SEM cross-section images exhibit that remelted layers with a thickness of about 5.4 μm have been obtained in all samples, which proves that a good practical irradiation uniformity can be achieved by this annular cathode HCPEB source.

  10. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell

    KAUST Repository

    Deng, Qian

    2010-02-01

    An activated carbon fiber felt (ACFF) cathode lacking metal catalysts is used in an upflow microbial fuel cell (UMFC). The maximum power density with the ACFF cathode is 315 mW m-2, compared to lower values with cathodes made of plain carbon paper (67 mW m-2), carbon felt (77 mW m-2), or platinum-coated carbon paper (124 mW m-2, 0.2 mg-Pt cm-2). The addition of platinum to the ACFF cathode (0.2 mg-Pt cm-2) increases the maximum power density to 391 mW m-2. Power production is further increased to 784 mW m-2 by increasing the cathode surface area and shaping it into a tubular form. With ACFF cutting into granules, the maximum power is 481 mW m-2 (0.5 cm granules), and 667 mW m-2 (1.0 cm granules). These results show that ACFF cathodes lacking metal catalysts can be used to substantially increase power production in UMFC compared to traditional materials lacking a precious metal catalyst. © 2009 Elsevier B.V.

  11. Performance improvement of a PEMFC system controlling the cathode outlet air flow

    Energy Technology Data Exchange (ETDEWEB)

    Feroldi, Diego; Serra, Maria; Riera, Jordi [Institut de Robotica i Informatica Industrial, Universitat Politecnica de Catalunya-Consejo Superior de Investigaciones Cientificas, C. Llorens i Artigas 4, 08028 Barcelona (Spain)

    2007-06-10

    This paper presents a stationary and dynamic study of the advantages of using a regulating valve for the cathode outlet flow in combination with the compressor motor voltage as manipulated variables in a fuel cell system. At a given load current, the cathode input and output flow rate determine the cathode pressure and stoichiometry, and consequently determine the oxygen partial pressure, the generated voltage and the compressor power consumption. In order to maintain a high efficiency during operation, the cathode output regulating valve has to be adjusted to the operating conditions, specially marked by the current drawn from the stack. Besides, the appropriate valve manipulation produces an improvement in the transient response of the system. The influence of this input variable is exploited by implementing a predictive control strategy based on dynamic matrix control (DMC), using the compressor voltage and the cathode output regulating valve as manipulated variables. The objectives of this control strategy are to regulate both the fuel cell voltage and oxygen excess ratio in the cathode, and thus, to improve the system performance. All the simulation results have been obtained using the MATLAB-Simulink environment. (author)

  12. Lifetime experimental study of graphite cathode for relativistic backward wave oscillator

    Science.gov (United States)

    Wu, Ping; Sun, Jun; Chen, Changhua

    2016-07-01

    Graphite cathodes are widely used due to their good emission properties, especially their long lifetime. Some previous papers have researched their lifetime under certain conditions and uncovered some important phenomena. This paper is dedicated to research the lifetime of the graphite cathode under higher power. In the lifetime test, the voltage and current amplitudes are about 970 kV and 9.7 kA, respectively. The repetition rate is 20 Hz. An X-band relativistic backward wave oscillator is used to generate high power microwave by utilizing the electron beam energy. The experimental results demonstrate that the emission property of the graphite cathode remains quite stable during 105 pulses, despite some slight deteriorations regarding the beam and microwave parameters. The macroscopic morphology change of the cathode blade due to material evaporation is observed by a laser microscope. The mass loss of the graphite cathode is about 60 μg/C. Meanwhile, the observation by a scanning electron microscope uncovers that the original numerous flaky micro-structures are totally replaced by a relatively smooth surface at the mid region of the cathode blade and a large number of new micro-protrusions at the blade edges during the lifetime test.

  13. Comparative study on power generation of dual-cathode microbial fuel cell according to polarization methods.

    Science.gov (United States)

    Lee, Kang-yu; Ryu, Wyan-seuk; Cho, Sung-il; Lim, Kyeong-ho

    2015-11-01

    Microbial fuel cells (MFCs) exist in various forms depending on the type of pollutant to be removed and the expected performance. Dual-cathode MFCs, with their simple structure, are capable of removing both organic matter and nitrogen. Moreover, various methods are available for the collection of polarization data, which can be used to calculate the maximum power density, an important factor of MFCs. Many researchers prefer the method of varying the external resistance in a single-cycle due to the short measurement time and high accuracy. This study compared power densities of dual-cathode MFCs in a single-cycle with values calculated over multi-cycles to determine the optimal polarization method. External resistance was varied from high to low and vice versa in the single-cycle, to calculate power density. External resistance was organized in descending order with initial start-up at open circuit voltage (OCV), and then it was organized in descending order again after the initial start-up at 1000 Ω. As a result, power density was underestimated at the anoxic cathode when the external resistance was varied from low to high, and overestimated at the aerobic cathode and anoxic cathode when external resistance at OCV was reduced following initial start-up. In calculating the power densities of dual-cathode MFCs, this paper recommends the method of gradually reducing the external resistance after initial start-up with high external resistance.

  14. Space-charge-limited currents for cathodes with electric field enhanced geometry

    Science.gov (United States)

    Lai, Dingguo; Qiu, Mengtong; Xu, Qifu; Huang, Zhongliang

    2016-08-01

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that the space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(βE)2J0, where J0 is the classical (1D) Child-Langmuir current density, βE is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.

  15. Cathode material for lithium ion accumulators prepared by screen printing for Smart Textile applications

    Science.gov (United States)

    Syrový, T.; Kazda, T.; Syrová, L.; Vondrák, J.; Kubáč, L.; Sedlaříková, M.

    2016-03-01

    The presented study is focused on the development of LiFePO4 based cathode for thin and flexible screen printed secondary lithium based accumulators. An ink formulation was developed for the screen printing technique, which enabled mass production of accumulator's cathode for Smart Label and Smart Textile applications. The screen printed cathode was compared with an electrode prepared by the bar coating technique using an ink formulation based on the standard approach of ink composition. Obtained LiFePO4 cathode layers were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and galvanostatic charge/discharge measurements at different loads. The discharge capacity, capacity retention and stability at a high C rate of the LiFePO4 cathode were improved when Super P and PVDF were replaced by conductive polymers PEDOT:PSS. The achieved capacity during cycling at various C rates was approximately the same at the beginning and at the end, and it was about 151 mAh/g for cycling under 1C. The obtained results of this novelty electrode layer exceed the parameters of several electrode layers based on LiFePO4 published in literature in terms of capacity, cycling stability and overcomes them in terms of simplicity/industrial process ability of cathode layer fabrication and electrode material preparation.

  16. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning.

    Science.gov (United States)

    He, Li-Po; Sun, Shu-Ying; Song, Xing-Fu; Yu, Jian-Guo

    2015-12-01

    Cathode materials are difficult to separate from Al-foil substrates during the recycling of spent lithium-ion batteries (LIBs), because of the strong bonding force present. In this study, ultrasonic cleaning was used to separate and recycle these cathode materials. The mechanism of separation was ascribed to the dissolution of polyvinylidene fluoride (PVDF) and the cavitation caused by ultrasound. Based on this mechanism, the key parameters affecting the peel-off efficiency of cathode materials from Al foil was identified as solvent nature, temperature, ultrasonic power, and ultrasonic time. The peel-off efficiency of cathode materials achieved ∼ 99% under the optimized conditions of N-methyl-2-pyrrolidone (NMP) cleaning fluid, 70°C process temperature, 240 W ultrasonic power, and 90 min of ultrasonication. The cathode materials separated from Al foil displayed a low agglomeration degree, which is beneficial to the subsequent leaching process. Finally, a new, environmentally-sound process was proposed to efficiently recycle cathode materials and Al from spent LIBs, consisting of manual dismantling, ultrasonic cleaning, and picking.

  17. Continuous flow membrane-less air cathode microbial fuel cell with spunbonded olefin diffusion layer.

    Science.gov (United States)

    Tugtas, Adile Evren; Cavdar, Pelin; Calli, Baris

    2011-11-01

    The power production performance of a membrane-less air-cathode microbial fuel cell was evaluated for 53 days. Anode and cathode electrodes and the micro-fiber cloth separator were configured by sandwiching the separator between two electrodes. In addition, the air-facing side of the cathode was covered with a spunbonded olefin sheet instead of polytetrafluoroethylene (PTFE) coating to control oxygen diffusion and water loss. The configuration resulted in a low resistance of about 4Ω and a maximum power density of 750 mW/m2. However, as a result of a gradual decrease in the cathode potential, maximum power density decreased to 280 mW/m2. The declining power output was attributed to loss of platinum catalyst (8.26%) and biomass growth (38.44%) on the cathode. Coulombic efficiencies over 55% and no water leakage showed that the spunbonded olefin sheet covering the air-facing side of the cathode can be a cost-effective alternative to PTFE coating.

  18. Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, C.; Basseguy, R.; Etcheverry, L.; Bergel, A. [Laboratoire de Genie Chimique, CNRS-INPT, Toulouse Cedex (France); Mollica, A. [CNR-ISMAR, Genoa (Italy); Feron, D. [SCCME, CEA Saclay, Gif-sur-Yvette (France)

    2007-12-01

    Numerous biocorrosion studies have stated that biofilms formed in aerobic seawater induce an efficient catalysis of the oxygen reduction on stainless steels. This property was implemented here for the first time in a marine microbial fuel cell (MFC). A prototype was designed with a stainless steel anode embedded in marine sediments coupled to a stainless steel cathode in the overlying seawater. Recording current/potential curves during the progress of the experiment confirmed that the cathode progressively acquired effective catalytic properties. The maximal power density produced of 4 mW m{sup -2} was lower than those reported previously with marine MFC using graphite electrodes. Decoupling anode and cathode showed that the cathode suffered practical problems related to implementation in the sea, which may found easy technical solutions. A laboratory fuel cell based on the same principle demonstrated that the biofilm-covered stainless steel cathode was able to supply current density up to 140 mA m{sup -2} at +0.05 V versus Ag/AgCl. The power density of 23 mW m{sup -2} was in this case limited by the anode. These first tests presented the biofilm-covered stainless steel cathodes as very promising candidates to be implemented in marine MFC. The suitability of stainless steel as anode has to be further investigated. (author)

  19. Cathodic protection criteria for controlling microbially influenced corrosion in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Nekoksa, G. (Corrosion Failure Analysis and Control, San Ramon, CA (USA)); Gutherman, B. (Florida Power Corp., St. Petersburg, FL (USA))

    1991-05-01

    The main objective of this project was to evaluate galvanic corrosion on coupled samples and to determine cathodic protection criteria and effectiveness on four materials in an untreated seawater cooling system with microbially influenced corrosion. Hydrogen embrittlement of two cathodically protected high performance condenser tube materials was also evaluated. The long-term field testing was conducted at the intake structure of Florida Power Corporation's Crystal River Unit 3 Nuclear Power Plant. The test results indicate that Type 304L stainless steel can be galvanically corroded when coupled to Cu/Ni and fully cathodically protected when coupled to a carbon steel anode. Cathodic protection did protect carbon steel, but less than expected from the literature. The cathodic protection effectiveness on carbon steel was approximately 82% at {minus}1.01 V (SCE). To prevent hydrogen embrittlement, the tested titanium or ferritic stainless steel should not be polarized to more negative potentials than {minus}0.75 V (SCE). This report consists of a literature search, preliminary laboratory polarization testing, laboratory testing to determine microbial effects caused by an interruption of cathodic current, development of exposure racks for long-term electrochemical testing and analyses of corrosion, metallurgical, microbial and chemical data. 44 refs., 26 figs., 9 tabs.

  20. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    KAUST Repository

    Zhang, Fang

    2011-02-01

    Mesh current collectors made of stainless steel (SS) can be integrated into microbial fuel cell (MFC) cathodes constructed of a reactive carbon black and Pt catalyst mixture and a poly(dimethylsiloxane) (PDMS) diffusion layer. It is shown here that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid volume), while the finest mesh (120-mesh) had the lowest power density (599 ± 57 mW m-2). Electrochemical impedance spectroscopy showed that charge transfer and diffusion resistances decreased with increasing mesh opening size. In MFC tests, the cathode performance was primarily limited by reaction kinetics, and not mass transfer. Oxygen permeability increased with mesh opening size, accounting for the decreased diffusion resistance. At higher current densities, diffusion became a limiting factor, especially for fine mesh with low oxygen transfer coefficients. These results demonstrate the critical nature of the mesh size used for constructing MFC cathodes. © 2010 Elsevier B.V. All rights reserved.

  1. Extracellular electron transfer from cathode to microbes: application for biofuel production.

    Science.gov (United States)

    Choi, Okkyoung; Sang, Byoung-In

    2016-01-01

    Extracellular electron transfer in microorganisms has been applied for bioelectrochemical synthesis utilizing microbes to catalyze anodic and/or cathodic biochemical reactions. Anodic reactions (electron transfer from microbe to anode) are used for current production and cathodic reactions (electron transfer from cathode to microbe) have recently been applied for current consumption for valuable biochemical production. The extensively studied exoelectrogenic bacteria Shewanella and Geobacter showed that both directions for electron transfer would be possible. It was proposed that gram-positive bacteria, in the absence of cytochrome C, would accept electrons using a cascade of membrane-bound complexes such as membrane-bound Fe-S proteins, oxidoreductase, and periplasmic enzymes. Modification of the cathode with the addition of positive charged species such as chitosan or with an increase of the interfacial area using a porous three-dimensional scaffold electrode led to increased current consumption. The extracellular electron transfer from the cathode to the microbe could catalyze various bioelectrochemical reductions. Electrofermentation used electrons from the cathode as reducing power to produce more reduced compounds such as alcohols than acids, shifting the metabolic pathway. Electrofuel could be generated through artificial photosynthesis using electrical energy instead of solar energy in the process of carbon fixation. PMID:26788124

  2. Selenium and selenium-sulfur cathode materials for high-energy rechargeable magnesium batteries

    Science.gov (United States)

    Zhao-Karger, Zhirong; Lin, Xiu-Mei; Bonatto Minella, Christian; Wang, Di; Diemant, Thomas; Behm, R. Jürgen; Fichtner, Maximilian

    2016-08-01

    Magnesium (Mg) is an attractive metallic anode material for next-generation batteries owing to its inherent dendrite-free electrodeposition, high capacity and low cost. Here we report a new class of Mg batteries based on both elemental selenium (Se) and selenium-sulfur solid solution (SeS2) cathode materials. Elemental Se confined into a mesoporous carbon was used as a cathode material. Coupling the Se cathode with a metallic Mg anode in a non-nucleophilic electrolyte, the Se cathode delivered a high initial volumetric discharge capacity of 1689 mA h cm-3 and a reversible capacity of 480 mA h cm-3 was retained after 50 cycles at a high current density of 2 C. The mechanistic insights into the electrochemical conversion in Mg-Se batteries were investigated by microscopic and spectroscopic methods. The structural transformation of cyclic Se8 into chainlike Sen upon battery cycling was revealed by ex-situ Raman spectroscopy. In addition, the promising battery performance with a SeS2 cathode envisages the perspective of a series of SeSn cathode materials combining the benefits of both selenium and sulfur for high energy Mg batteries.

  3. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.

    2010-01-01

    Although platinum is commonly used as catalyst on the cathode in microbial electrolysis cells (MEC), non-precious metal alternatives are needed to reduce costs. Cathodes were constructed using a nickel powder (0.5-1 μm) and their performance was compared to conventional electrodes containing Pt (0.002 μm) in MECs and electrochemical tests. The MEC performance in terms of coulombic efficiency, cathodic, hydrogen and energy recoveries were similar using Ni or Pt cathodes, although the maximum hydrogen production rate (Q) was slightly lower for Ni (Q = 1.2-1.3 m3 H2/m3/d; 0.6 V applied) than Pt (1.6 m3 H2/m3/d). Nickel dissolution was minimized by replacing medium in the reactor under anoxic conditions. The stability of the Ni particles was confirmed by examining the cathodes after 12 MEC cycles using scanning electron microscopy and linear sweep voltammetry. Analysis of the anodic communities in these reactors revealed dominant populations of Geobacter sulfurreduces and Pelobacter propionicus. These results demonstrate that nickel powder can be used as a viable alternative to Pt in MECs, allowing large scale production of cathodes with similar performance to systems that use precious metal catalysts. © 2009 Professor T. Nejat Veziroglu.

  4. Lanthanides: new metallic cathode materials for organic photovoltaic cells.

    Science.gov (United States)

    Nikiforov, Maxim P; Strzalka, Joseph; Jiang, Zhang; Darling, Seth B

    2013-08-21

    Organic photovoltaics (OPVs) are compliant with inexpensive, scalable, and environmentally benign manufacturing technologies. While substantial attention has been focused on optimization of active layer chemistry, morphology, and processing, far less research has been directed to understanding charge transport at the interfaces between the electrodes and the active layer. Electrical properties of these interfaces not only impact efficiency, but also play a central role in stability of organic solar cells. Low work function metals are the most widely used materials for the electron transport layer with Ca being the most common material. In bulk heterojunction OPV devices, low work function metals are believed to mirror the role they play in OLEDs, where such metals are used to control carrier selectivity, transport, extraction, and blocking, as well as interface band bending. Despite their advantages, low work function materials are generally prone to reactions with water, oxygen, nitrogen, and carbon dioxide from air leading to rapid device degradation. Here we discuss the search for a new metallic cathode interlayer material that increases device stability and still provides device efficiency similar to that achieved with a Ca interlayer.

  5. Permanent cathodic protection monitoring systems for offshore pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Jim [Deepwater Corrosion Services Inc., Houston, TX (United States)

    2009-07-01

    Historically offshore pipeline cathodic protection monitoring has relied on the use of portable survey techniques. This has typically relied on ROV assisted or surface deployed survey methods. These methods have been shown to have technical as well as economic shortcomings, this is particularly true of buried offshore pipelines where accuracy is always questionable. As more focus is being placed on offshore pipeline integrity, it was time for a new method to emerge. The technology discussed involves the retro-placement of permanent clamp-on monitors onto the pipeline which can measure pipeline to seawater potential as well as current density. The sensors can be interrogated locally using light powered subsea voltage readouts. Application of the technology can be either during pipeline construction, during installation of life extension CP systems, or during routine subsea pipeline interventions. The new method eliminates the need for long cables or expensive acoustic or modulated data transfer and provides all the information required to fully verify CP system performance, thus eliminating the need for expensive close-interval surveys. Some deployment case histories will be presented along with feasibility of application on deep water pipelines and comparative economics. (author)

  6. A new high power thermal battery cathode material

    International Nuclear Information System (INIS)

    Smaller and lighter thermal batteries are major aims of the battery research programme at RAE Farnborough. Modern designs of thermal batteries, for use as power supplies in weapon systems, almost invariably use the Li:molten salt:FeS/sub 2/ system because of the significant increase in energy density achieved in comparison with the earlier Ca/CaCrO/sub 4/ couple. The disadvantage of the FeS/sub 2/ system is that the working cell voltage, between 1.5 and 2.0 V, is significantly lower so leading to more cells per battery than the earlier system. Further work at RAE and MSA (Britain) Ltd showed that the poor thermal stability of TiS/sub 2/ limited its use in thermal batteries, whilst the more stable V/sub 6/O/sub 13/ oxidised the electrolyte, giving poor efficiencies. However, the resulting reduced vanadium oxide material, subsequently called lithiated vanadium oxide (LVO), was found to be an excellent high voltage thermal battery cathode, being the subject of both UK and US patents. In this study both V/sub 6/O/sub 13/ made by the direct stoichiometric reaction of V/sub 2/O/sub 5/ and V and also by thermal decomposition of NH/sub 4/VO/sub 3/ under argon, have been used with equal success as the starting material for the preparation of LVO

  7. Performance Simulation of Cathode Strip Chamber Protype P1.

    CERN Document Server

    Velichko, Georgy

    2000-01-01

    The results of simulation of the P1 prototype performance are presented. The P1 prototype is a full scale six-layers trapezoidal cathode strip chamber module designed for the CMS End Cap Muon System. The module was tested at Fermilab with cosmic rays. In this work, complete simulation from the initial ionization to the final amplitude and time distributions of the signals from the CSC as well as the reconstruction of the track coordinate was performed. The physical parameters of the electron behaviour in the gas mixture ( 27% Ar, 29% CF4, 44% CO2) are taken from the Biagi program with the Townsend coefficient and electrons attachment renormalized to fit the observed gas amplification factor and the spatial resolution dependence on a beam entrance angle. The simulation program has reproduced well the measured parameters of the P0' prototype including the time and spatial resolutions. This consideration showed also that 85% of the initial number of ionization electrons are lost due to attachment to gas mixture ...

  8. Optimization of Layered Cathode Materials for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Christian Julien

    2016-07-01

    Full Text Available This review presents a survey of the literature on recent progress in lithium-ion batteries, with the active sub-micron-sized particles of the positive electrode chosen in the family of lamellar compounds LiMO2, where M stands for a mixture of Ni, Mn, Co elements, and in the family of yLi2MnO3•(1 − yLiNi½Mn½O2 layered-layered integrated materials. The structural, physical, and chemical properties of these cathode elements are reported and discussed as a function of all the synthesis parameters, which include the choice of the precursors and of the chelating agent, and as a function of the relative concentrations of the M cations and composition y. Their electrochemical properties are also reported and discussed to determine the optimum compositions in order to obtain the best electrochemical performance while maintaining the structural integrity of the electrode lattice during cycling.

  9. Hollow cathode lamp based Faraday anomalous dispersion optical filter.

    Science.gov (United States)

    Pan, Duo; Xue, Xiaobo; Shang, Haosen; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2016-01-01

    The Faraday anomalous dispersion optical filter (FADOF), which has acquired wide applications, is mainly limited to some gaseous elements and low melting-point metals before, for the restriction of the attainable atomic density. In conventional FADOF systems a high atomic density is usually achieved by thermal equilibrium at the saturated vapor pressure, hence for elements with high melting-points a high temperature is required. To avoid this restriction, we propose a scheme of FADOF based on the hollow cathode lamp (HCL), instead of atomic vapor cells. Experimental results in strontium atoms verified this scheme, where a transmission peak corresponding to the (88)Sr (5s(2))(1)S0 - (5s5p)(1)P1 transition (461 nm) is obtained, with a maximum transmittance of 62.5% and a bandwith of 1.19 GHz. The dependence of transmission on magnetic field and HCL discharge current is also studied. Since the state-of-art commercial HCLs cover about 70 elements, this scheme can greatly expand the applications of FADOFs, and the abundant atomic transitions they provide bring the HCL based FADOFs potential applications for frequency stabilization. PMID:27418112

  10. Life Cycle Tests on a Hollow Cathode Based Plasma Contactor

    Science.gov (United States)

    Vaughn, Jason A.; Schneider, Todd A.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The propulsive Small Expendable Deployer System (ProSEDS) mission is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta II unmanned expendable booster with a mission duration of 12 days. A 5-km conductive tether is attached to the Delta II second stage and collects current from the low Earth orbit (LEO) plasma, and a Hollow Cathode Plasma Contactor (HCPC) emits the collected electrons from the Delta II, completing the electrical circuit to the ambient plasma. The HCPC for the ProSEDS mission have made it necessary to turn off the HCPC once a minute throughout the entire mission. Because of the unusual operating requirements by the ProSEDS mission, an engineering development unit of the HCPC was built to demonstrate the HCPC design would start reliably for the life of the ProSEDS mission. During the life test the engineering unit cycled for over 10,000 on/off cycles without missing a single start, and during that same test the HCPC unit demonstrated the capability to emit 0 to 5 A electron emission current. The performance of the HCPC unit during this life test will be discussed.

  11. Nanocomposite Materials for Cathodes and Electrolytes in Lithium Batteries

    Institute of Scientific and Technical Information of China (English)

    F. Croce; C.R. Martin; B. Scrosati; L. Settimi; C. Sides

    2005-01-01

    @@ 1Introduction Lithium-ion batteries are today the power sources of choice far portable electronics, a multi-billion dollar market[1]. This outstanding success has spawned great international interest in applying this technology to more demanding systems, such as electric of hybrid vehicles[2]. However, to achieve full success in this area,new electrode materials, less expensive, more energetic and more compatible with the environment than the present ones, have to be identified. Accordingly, intense R&D are in progress to reach this goal and few variable alternatives to the original lithium-ion battery design, have been proposed. Particularly interesting is the olivine-structured LiFePO4 cathode developed by Goodenough and co-workers[3], which offers several appealing features, such as high, flat voltage profile and relatively high specific capacity, combined with low cost and low toxicity. However, LiFePO4 has one crucial disadvantage, i.e. its inherently low electric conductivity which reflects in the inability to deliver high capacity at high discharge rates. Such as poor rate capability has been the object of investigation by various groups who have proposed different approaches to overcome it, including carbon coating[4], nano-fibril textures[5], optimized synthesis procedures[6] and foreign metal doping[7].

  12. Photoelectrochemical Carbon Dioxide Reduction Using a Nanoporous Ag Cathode.

    Science.gov (United States)

    Zhang, Yan; Luc, Wesley; Hutchings, Gregory S; Jiao, Feng

    2016-09-21

    Solar fuel production from abundant sources using photoelectrochemical (PEC) systems is an attractive approach to address the challenges associated with the intermittence of solar energy. In comparison to electrochemical systems, PEC cells directly utilize solar energy as the energy input, and if necessary, then an additional external bias can be applied to drive the desired reaction. In this work, a PEC cell composing of a Ni-coated Si photoanode and a nanoporous Ag cathode was developed for CO2 conversion to CO. The thin Ni layer not only protected the Si wafer from photocorrosion but also served as the oxygen evolution catalyst. At an external bias of 2.0 V, the PEC cell delivered a current density of 10 mA cm(-2) with a CO Faradaic efficiency of ∼70%. More importantly, a stable performance up to 3 h was achieved under photoelectrolysis conditions, which is among the best literature-reported performances for PEC CO2 reduction cells. The photovoltage of the PEC cell was estimated to be ∼0.4 V, which corresponded to a 17% energy saving by solar energy utilization. Postreaction structural analysis showed the corrosion of the Ni layer at the Si photoanode/catalyst interface, which caused performance degradation under prolonged operations. A stable oxygen evolution catalyst with a robust interface is crucial to the long-term stability of PEC CO2 reduction cells. PMID:27588723

  13. Ignition and extinction phenomena in helium micro hollow cathode discharges

    CERN Document Server

    Kulsreshath, M K; Schwaederle, L; Dufour, T; Overzet, L J; Lefaucheux, P; Dussart, R

    2016-01-01

    Micro hollow cathode discharges (MHCD) were produced using 250 m thick dielectric layer of alumina sandwiched between two nickel electrodes of 8 m thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*(3S1) metastable atoms density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2 s long current peak as high as 24 mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400 Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the ext...

  14. Microwave synthesis of LiCoO2 cathode materials

    Institute of Scientific and Technical Information of China (English)

    YU Yong-li; ZHAI Xiu-jing; FU Yan; YAO Guang-chun

    2005-01-01

    LiCoO2 powder used as cathode material for lithium ion battery was synthesized by microwave heating markedly affect the purity, morphology and electrochemical behaviors of the samples. X-ray diffraction (XRD) patterns display that the samples synthesized at 360 W for 10 min are pure layered LiCoO2, and SEM photos show that the powders are crystalline with well-defined facets whose sizes are about 5 μm. The performance of Co3O4 and starting materials by microwave heating and conventional heating was investigated. It is indicated that Co3O4 decomposes into CoO in microwave field at 750 ℃ and the mechanism of preparing LiCoO2 by microwave heating is different from that by conventional heating. The electrochemical behaviors of samples were tested. As a result, the highest specific discharge capacity is 134.3 mAh/g and the coulomb efficiency is 92.56%.

  15. Photovoltaic power without batteries for continuous cathodic protection

    Science.gov (United States)

    Muehl, W. W., Sr.

    1994-02-01

    The COASTSYSTA designed, installed, and started up on 20 Jan. 1990, a state-of-the-art stand alone photovoltaic powered impressed current cathodic protection system (PVCPSYS) not requiring any auxiliary/battery backup power for steel and iron submerged structures. The PVCPSYS installed on 775' of steel sheet piling of a Navy bulkhead is continuing to provide complete, continuous corrosion protection. This has been well documented by COASTSYSTA and verified on-site by the U.S. Army Civil Engineering Research Laboratory, Champaign, Illinois and the Navy Energy Program Office-Photovoltaic Programs, China Lake, California. The Department of Defense (DoD) Photovoltaic Review Committee and Sandia National Laboratories consider this successful and cost effective system a major advance in the application of photovoltaic power. The PVCPSYS uses only renewable energy and is environmentally clean. A patent is pending on the new technology. Other possible PVCPSYS applications are mothballed ships, docks, dams, locks, bridges, marinas, offshore structures, and pipelines. The initial cost savings by installing a PVCPSYS vs. a conventional CP system was in excess of $46,000.00.

  16. Intermittent cathodic protection for steel reinforced concrete bridges

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, Sophie J.; Ziomek-Moroz, Margaret; Cramer, Stephen D.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Soltesz, S.M. (ODOT)

    2002-01-01

    Thermal-sprayed zinc anodes are used for impressed current cathodic protection (ICCP) systems on Oregon's reinforced concrete coastal bridges to prevent chloride-induced corrosion damage. Thermal-sprayed zinc performs well as an ICCP anode but the service life of the zinc anode is directly related to the average current density used to operate the systems. After a ICCP system is turned off, the rebar in the concrete remains passive and protected for a period of time. Intermittent operation of CP systems is possible when continuous corrosion rate monitoring is used to identify conditions when the CP system needs to be turned on to reestablish protection conditions for the rebar. This approach applies CP protection only when needed and reflects the fact that external protection may not be needed for a range of environmental conditions. In doing so, intermittent CP would lower the average current necessary to protect rebar, increase the anode service life, and reduce the lifetime costs for protecting reinforced concrete bridges.

  17. Determination of selenium in nuts by cathodic stripping potentiometry (CSP).

    Science.gov (United States)

    Dugo, Giacomo; La Pera, Lara; Lo Turco, Vincenzo; Mavrogeni, Ekaterini; Alfa, Maria

    2003-06-18

    The aim of this work was to determine the selenium content in nut samples by cathodic stripping potentiometry. Dry-powdered nuts were digested by HNO(3) and dissolved with concentrated hydrochloric acid. To avoid the interference of natural oxygen, the potentiometric determination of selenium was carried out in an electrolyte solution consisting of 2 M CaCl(2) and 4 M HCl. The analysis was executed applying an electrolysis potential of -150 mV for 60 s and a constant current of -30 microA. Under these conditions, detection limits lower than 1.0 ng g(-)(1) were obtained for selenium analysis in nuts. The relative standard deviation of these measurements (expressed as rsd %) ranged from 0.44 to 0.88% while recoveries ranged from 90.2 to 95.3%. The results obtained with the proposed method were compared with those obtained via hydride vapor generation atomic absorption spectroscopy, a common method for determining selenium. The results of the two methods agreed within 5% for almond, hazelnut, and pistachio samples. The mean concentrations of selenium determined in Sicilian samples of almond, hazelnut, and pistachio were 531 +/- 1, 865 +/- 1, and 893 +/- 4 microg/kg, respectively.

  18. High power microwave generation from a virtual cathode oscillator (Viracator)

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, D.J.

    1983-08-01

    High power microwaves, up to Gigawatt levels in the centimeter regime, have been observed in reflex triode, foil and foilless diode systems. Generation efficiencies range from 1% to 12%. The source of the microwaves is an oscillating virtual cathode - the nonlinear state which develops when the electron beam injection current exceeds the space-charge limiting current defined by the beam energy and wave guide geometry. This stable oscillation results in severe longitudinal charge bunching giving rise to large time dependent current variations. The experimental frequency dependence and broadband characteristics are explained by the scaling of the oscillator frequency with ..sqrt..n /SUB b/ /..gamma.., where n /SUB b/ is the beam density and ..gamma.. its relativistic factor, in conjunction with the Child-Langmuir relation. The optimal design for a narrowband millimeter wave vircator is based on a foilless diode with a strong axial magnetic field. It will be tunable over an order of magnitude in frequency by varying the magnetic field strength.

  19. Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries.

    Science.gov (United States)

    Wu, Min; Cui, Yi; Bhargav, Amruth; Losovyj, Yaroslav; Siegel, Amanda; Agarwal, Mangilal; Ma, Ying; Fu, Yongzhu

    2016-08-16

    An organotrisulfide (RSSSR, R is an organic group) has three sulfur atoms which could be involved in multi-electron reduction reactions; therefore it is a promising electrode material for batteries. Herein, we use dimethyl trisulfide (DMTS) as a model compound to study its redox reactions in rechargeable lithium batteries. With the aid of XRD, XPS, and GC-MS analysis, we confirm DMTS could undergo almost a 4 e(-) reduction process in a complete discharge to 1.0 V. The discharge products are primarily LiSCH3 and Li2 S. The lithium cell with DMTS catholyte delivers an initial specific capacity of 720 mAh g(-1) DMTS and retains 82 % of the capacity over 50 cycles at C/10 rate. When the electrolyte/DMTS ratio is 3:1 mL g(-1) , the reversible specific energy for the cell including electrolyte can be 229 Wh kg(-1) . This study shows organotrisulfide is a promising high-capacity cathode material for high-energy rechargeable lithium batteries. PMID:27411083

  20. Voltammetric characteristics of miconazole and its cathodic stripping voltammetric determination

    Directory of Open Access Journals (Sweden)

    PEREIRA FRANCISCO C.

    2002-01-01

    Full Text Available Miconazole is reduced at mercury electrode above pH 6 involving organometallic compound formation, responsible for an anomalous polarographic behavior. The electrodic process presents a large contribution of the adsorption effects. The drug can be determined by cathodic stripping voltammetry from 8.0 x 10-8 to 1, 5 x 10-6 molL-1 in Britton-Robinson buffer pH 8.0, when pre-accumulated for 30s at an accumulation potential of 0V. A relative standard deviation of 3.8% was obtained for ten measurements of 1.0 x 10-7 molL-1 miconazole in B-R buffer pH 8.0 and a limit detection of 1, 7 x 10-8 molL-1 was determined using 60s of deposition time and scan rate of 100 mVs-1. The proposed method is simple, precise and it was applied successfully for the determination of the miconazole in pure form and in commercial formulations, showing mean recoveries of 99.7-98.4%.

  1. Software design of the ATLAS Muon Cathode Strip Chamber ROD

    Science.gov (United States)

    Murillo, R.; Huffer, M.; Claus, R.; Herbst, R.; Lankford, A.; Schernau, M.; Panetta, J.; Sapozhnikov, L.; Eschrich, I.; Deng, J.

    2012-12-01

    The ATLAS Cathode Strip Chamber system consists of two end-caps with 16 chambers each. The CSC Readout Drivers (RODs) are purpose-built boards encapsulating 13 DSPs and around 40 FPGAs. The principal responsibility of each ROD is for the extraction of data from two chambers at a maximum trigger rate of 75 KHz. In addition, each ROD is in charge of the setup, control and monitoring of the on-detector electronics. This paper introduces the design of the CSC ROD software. The main features of this design include an event flow schema that decentralizes the different dataflow streams, which can thus operate asynchronously at its own natural rate; an event building mechanism that associates data transferred by the asynchronous streams belonging to the same event; and a sparcification algorithm that discards uninteresting events and thus reduces the data occupancy volume. The time constraints imposed by the trigger rate have made paramount the use of optimization techniques such as the curiously recurrent template pattern and the programming of critical code in assembly language. The behaviour of the CSC RODs has been characterized in order to validate its performance.

  2. Robust, easily shaped, and epoxy-free carbon-fiber-aluminum cathodes for generating high-current electron beams

    Science.gov (United States)

    Liu, Lie; Li, Limin; Wen, Jianchun; Wan, Hong

    2009-02-01

    This paper presents the construction of carbon-fiber-aluminum (CFA) cathode by squeezing casting and its applications for generating high-current electron beams to drive high-power microwave sources. The fabrication process avoided using epoxy, a volatile deteriorating the vacuum system. These cathodes had a higher hardness than conventional aluminum, facilitating machining. After surface treatment, carbon fibers became the dominator determining emission property. A multineedle CFA cathode was utilized in a triode virtual cathode oscillator (vircator), powered by a ˜450 kV, ˜400 ns pulse. It was found that 300-400 MW, ˜250 ns microwave was radiated at a dominant frequency of 2.6 GHz. Further, this cathode can endure high-current-density emission without detectable degradation in performance as the pulse shot proceeded, showing the robust nature of carbon fibers as explosive emitters. Overall, this new class of cold cathodes offers a potential prospect of developing high-current electron beam sources.

  3. Influence of (La,Sr)MnO3+δ cathode composition on cathode/electrolyte interfacial structure during long-term operation of solid oxide fuel cells

    Science.gov (United States)

    Matsui, Toshiaki; Mikami, Yuichi; Muroyama, Hiroki; Eguchi, Koichi

    2013-11-01

    Time-dependent events during operation of SOFCs, i.e., performance enhancement and/or deterioration, can be readily observed for the cell composed of strontium-doped lanthanum manganite (LSM) cathode and yttria-stabilized zirconia (YSZ) electrolyte, concomitant with the change in interfacial structure of LSM/YSZ. The influence of LSM composition on the electrochemical properties and microstructure of LSM/YSZ interface during prolonged operation was investigated. Four different LSM cathodes were used and the change in microstructure, especially TPB-length, was evaluated quantitatively by a focused ion beam-scanning electron microscope (FIB-SEM). For LSM cathodes with A-site deficient compositions, the change in TPB-length had a minor contribution to the performance enhancement after 20 h of galvanostatic operation. On the other hand, for 100 h duration an increase in cathode overpotential was confirmed, accompanied with the formation of thin layer of LSM over YSZ electrolyte. A series of phenomena were triggered by the change in oxygen nonstoichiometry of LSM under polarized states. The mechanism for microstructural change was proposed and the long-term stability of LSM/YSZ interface was discussed.

  4. Charge-state and element-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    CERN Document Server

    Franz, Robert; Anders, André

    2014-01-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al$^{+}$ regardless of the background gas species, whereas Cr$^{2+}$ ions were dominating in Ar and N$_2$ and Cr$^{+}$ in O$_2$ atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were mainly thermalised. In addition to the positively charged metal and gas ions, negatively charged oxygen an...

  5. Characterization of LiFePO4 cathode by addition of graphene for lithium ion batteries

    International Nuclear Information System (INIS)

    The improvement of LiFePO4 (LFP) cathode performance has been performed by addition of Graphene (LFP+Graphene). The cathode was prepared from the active material with 5 wt % graphene and 10 wt % polyvinylidene fluoride in an n-methyl pyrrolidone solvent. Another cathode material used only 5% artificial graphite for comparison (LFP+Graphite). The crystal structure, microstructure, electronic conductivity, electrochemical impedance spectroscopy (EIS) of the cathodes were characterized by X-ray diffraction, SEM, and Impedance spectroscopy, respectively. Two half cell coin batteries were assembled using a lithium metal as an anode and LiPf6 as an electrolyte, and two cathodes (LFP+Graphene) and (LFP+Graphite). Charge discharge performance of battery was characterized by Battery analyser (BTS 8). The electronic conductivity of cathode with grapheme increased of about one order magnitude compared with the only cathode with graphite, namely from 1.97E-7S/cm (LFP+Graphite) to 1.92E-6S/cm (LFP+Graphene). The charge-discharge capacity after 10th cycles of LiFePO4 with graphene decreased of about 0.68% from 114.3 mAh/g to113.1 mAh/g, while LFP with graphite decreased of about 2.84% from 110.2 mAh/g to 107.1 mAh, at 0.1C-rates. It could be concluded that the addition of graphene has increased the ionic conductivity, and improved performance of the LFP lithium ion battery, such as higher capacity and better efficiency

  6. The cooperative electrochemical oxidation of chlorophenols in anode-cathode compartments

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hui [Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084 (China); Wang Jianlong [Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084 (China)], E-mail: wangjl@tsinghua.edu.cn

    2008-06-15

    By using a self-made carbon/polytetrafluoroethylene (C/PTFE) O{sub 2}-fed as the cathode and Ti/IrO{sub 2}/RuO{sub 2} as the anode, the degradation of three organic compounds (phenol, 4-chlorophenol, and 2,4-dichlorophenol) was investigated in the diaphragm (with terylene as diaphragm material) electrolysis device by electrochemical oxidation process. The result indicated that the concentration of hydrogen peroxide (H{sub 2}O{sub 2}) was 8.3 mg/L, and hydroxyl radical (HO{center_dot}) was determined in the cathodic compartment by electron spin resonance spectrum (ESR). The removal efficiency for organic compounds reached about 90% after 120 min, conforming to the sequence of phenol, 4-chlorophenol, and 2,4-dichlorophenol. And the dechlorination degree of 4-chlorophenol exceeded 90% after 80 min. For H{sub 2}O{sub 2}, HO{center_dot} existed in the catholyte and reduction dechlorination at the cathode, the mineralization of organics in the cathodic compartment was better than that in the anodic compartment. The degradation of organics was supposed to be cooperative oxidation by direct or indirect electrochemical oxidation at the anode and H{sub 2}O{sub 2}, HO{center_dot} produced by oxygen reduction at the cathode. High-performance liquid chromatography (HPLC) allowed identifying phenol as the dechlorination product of 4-chlorophenol in the cathodic compartment, and hydroquinone, 4-chlorocatechol, benzoquinone, maleic, fumaric, oxalic, and formic acids as the main oxidation intermediates in the cathodic and anodic compartments. A reaction scheme involving all these intermediates was proposed.

  7. Characterization of LiFePO4 cathode by addition of graphene for lithium ion batteries

    Science.gov (United States)

    Honggowiranto, Wagiyo; Kartini, Evvy

    2016-02-01

    The improvement of LiFePO4 (LFP) cathode performance has been performed by addition of Graphene (LFP+Graphene). The cathode was prepared from the active material with 5 wt % graphene and 10 wt % polyvinylidene fluoride in an n-methyl pyrrolidone solvent. Another cathode material used only 5% artificial graphite for comparison (LFP+Graphite). The crystal structure, microstructure, electronic conductivity, electrochemical impedance spectroscopy (EIS) of the cathodes were characterized by X-ray diffraction, SEM, and Impedance spectroscopy, respectively. Two half cell coin batteries were assembled using a lithium metal as an anode and LiPf6 as an electrolyte, and two cathodes (LFP+Graphene) and (LFP+Graphite). Charge discharge performance of battery was characterized by Battery analyser (BTS 8). The electronic conductivity of cathode with grapheme increased of about one order magnitude compared with the only cathode with graphite, namely from 1.97E-7S/cm (LFP+Graphite) to 1.92E-6S/cm (LFP+Graphene). The charge-discharge capacity after 10th cycles of LiFePO4 with graphene decreased of about 0.68% from 114.3 mAh/g to113.1 mAh/g, while LFP with graphite decreased of about 2.84% from 110.2 mAh/g to 107.1 mAh, at 0.1C-rates. It could be concluded that the addition of graphene has increased the ionic conductivity, and improved performance of the LFP lithium ion battery, such as higher capacity and better efficiency.

  8. Preparation and Characterization of Ultralong Spinel Lithium Manganese Oxide Nanofiber Cathode via Electrospinning Method

    International Nuclear Information System (INIS)

    Highlights: • Ultralong LiMn2O4 nanofibercathode for lithium ion batteries is synthesized by electrospinning. • Nanofiber cathode shows good cycle stability, high-rate capacity. • LiMn2O4 nanofiber cathode forms porous “network-like” structure. - Abstract: Aim: ng at improving the high rate capability of spinel lithium manganese oxide (LiMn2O4) cathode, ultralong LiMn2O4 nanofibers are prepared by combination of electrospinning and sol-gel techniques. The effect of processing parameters, including the weight ratio of polyvinylpyrrolidone (PVP) to Li and Mn precursor, calcination temperature and time, on the morphology and the resultant cathode performance of spinel LiMn2O4 nanofiber cathodes have been systematically investigated. Thermal behavior of LiMn2O4 precursor nanofibers is performed on a differential scanning calorimetry-differential thermal analysis (DSC-DTA), indicating the spinel LiMn2O4 began forming at 513 °C. The cathode materials appear porous “network-like” morphology with nanosize in diameter (∼170 nm), microsize in length (∼20 μm) and pure spinel structure, confirmed by scanning electron microscopy (SEM) and X-ray diffractometer (XRD). The ultralong LiMn2O4 nanofiber cathode calcined at 700 °C for 8 h shows highest capacity and best rate capability. Its discharge capacity is 146 mAh g−1 at 0.1 C; more importantly, the discharge capacities are 112 mAh g−1, 103 mAh g−1 and 92 mAh g−1 at high discharge rates of 10 C, 20 C and 30 C, respectively

  9. CASTOR: Cathode/Anode Satellite Thruster for Orbital Repositioning

    Science.gov (United States)

    Mruphy, Gloria A.

    2010-01-01

    The purpose of CASTOR (Cathode/Anode Satellite Thruster for Orbital Repositioning) satellite is to demonstrate in Low Earth Orbit (LEO) a nanosatellite that uses a Divergent Cusped Field Thruster (DCFT) to perform orbital maneuvers representative of an orbital transfer vehicle. Powered by semi-deployable solar arrays generating 165W of power, CASTOR will achieve nearly 1 km/s of velocity increment over one year. As a technology demonstration mission, success of CASTOR in LEO will pave the way for a low cost, high delta-V orbital transfer capability for small military and civilian payloads in support of Air Force and NASA missions. The educational objective is to engage graduate and undergraduate students in critical roles in the design, development, test, carrier integration and on-orbit operations of CASTOR as a supplement to their curricular activities. This program is laying the foundation for a long-term satellite construction program at MIT. The satellite is being designed as a part of AFRL's University Nanosatellite Program, which provides the funding and a framework in which student satellite teams compete for a launch to orbit. To this end, the satellite must fit within an envelope of 50cmx50cmx60cm, have a mass of less than 50kg, and meet stringent structural and other requirements. In this framework, the CASTOR team successfully completed PDR in August 2009 and CDR in April 2010 and will compete at FCR (Flight Competition Review) in January 2011. The complexity of the project requires implementation of many systems engineering techniques which allow for development of CASTOR from conception through FCR and encompass the full design, fabrication, and testing process.

  10. Chromium poisoning in (La,Sr)MnO3 cathode: Three-dimensional simulation of a solid oxide fuel cell

    Science.gov (United States)

    Miyoshi, Kota; Iwai, Hiroshi; Kishimoto, Masashi; Saito, Motohiro; Yoshida, Hideo

    2016-09-01

    A three-dimensional numerical model of a single solid oxide fuel cell (SOFC) considering chromium poisoning on the cathode side has been developed to investigate the evolution of the SOFC performance over long-term operation. The degradation model applied in the simulation describes the loss of the cathode electrochemical activity as a decrease in the active triple-phase boundary (TPB) length. The calculations are conducted for two types of cell: lanthanum strontium manganite (LSM)/yttria-stabilized zirconia (YSZ)/Ni-YSZ and LSM-YSZ/YSZ/Ni-YSZ. Their electrode microstructures are acquired by imaging with a focused ion beam scanning-electron microscope (FIB-SEM). The simulation results qualitatively reproduce the trends of chromium poisoning reported in the literature. It has been revealed that the performance degradation by chromium is primarily due to an increase in the cathode activation overpotential. In addition, in the LSM-YSZ composite cathode, TPBs in the vicinity of the cathode-electrolyte interface preferentially deteriorate, shifting the active reaction site towards the cathode surface. This also results in an increase in the cathode ohmic loss associated with oxide ion conduction through the YSZ phase. The effects of the cell temperature, the partial pressure of steam at the chromium source, the cathode microstructure, and the cathode thickness on chromium poisoning are also discussed.

  11. Gas-discharge sources with charged particle emission from the plasma of glow discharge with a hollow cathode

    CERN Document Server

    Semenov, A P

    2001-01-01

    One studied properties of a magnetron discharge with a cold hollow and uncooled rod cathodes. One demonstrated the dominant effect of thermoelectron emission of a rod cathode heated in a discharge on characteristics of discharge and on emission properties of a gas-discharge plasma and the possibility pf a smooth transition of glow discharge to diffusion mode of arc discharge combustion. Paper describes sources of ions and electrons with improved physical and generalized design and engineering parameters. One shows the promise of the electrode structure of a hollow cathode magnetron discharge to be used as a source, in particular, of the atomic hydrogen and of atom flow of a working rod cathode

  12. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells

    KAUST Repository

    Zhang, Fang

    2011-08-01

    Activated carbon (AC) air-cathodes are inexpensive and useful alternatives to Pt-catalyzed electrodes in microbial fuel cells (MFCs), but information is needed on their long-term stability for oxygen reduction. AC cathodes were constructed with diffusion layers (DLs) with two different porosities (30% and 70%) to evaluate the effects of increased oxygen transfer on power. The 70% DL cathode initially produced a maximum power density of 1214±123mW/m 2 (cathode projected surface area; 35±4W/m 3 based on liquid volume), but it decreased by 40% after 1 year to 734±18mW/m 2. The 30% DL cathode initially produced less power than the 70% DL cathode, but it only decreased by 22% after 1 year (from 1014±2mW/m 2 to 789±68mW/m 2). Electrochemical tests were used to examine the reasons for the degraded performance. Diffusion resistance in the cathode was found to be the primary component of the internal resistance, and it increased over time. Replacing the cathode after 1 year completely restored the original power densities. These results suggest that the degradation in cathode performance was due to clogging of the AC micropores. These findings show that AC is a cost-effective material for oxygen reduction that can still produce ~750mW/m 2 after 1 year. © 2011 Elsevier B.V.

  13. Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air–Cathode Catalyst in Microbial Fuel Cells

    KAUST Repository

    Xia, Xue

    2013-08-28

    Activated carbon (AC) is a cost-effective catalyst for the oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). To enhance the catalytic activity of AC cathodes, AC powders were pyrolyzed with iron ethylenediaminetetraacetic acid (FeEDTA) at a weight ratio of FeEDTA:AC = 0.2:1. MFCs with FeEDTA modified AC cathodes and a stainless steel mesh current collector produced a maximum power density of 1580 ± 80 mW/m2, which was 10% higher than that of plain AC cathodes (1440 ± 60 mW/m 2) and comparable to Pt cathodes (1550 ± 10 mW/m2). Further increases in the ratio of FeEDTA:AC resulted in a decrease in performance. The durability of AC-based cathodes was much better than Pt-catalyzed cathodes. After 4.5 months of operation, the maximum power density of Pt cathode MFCs was 50% lower than MFCs with the AC cathodes. Pyridinic nitrogen, quaternary nitrogen and iron species likely contributed to the increased activity of FeEDTA modified AC. These results show that pyrolyzing AC with FeEDTA is a cost-effective and durable way to increase the catalytic activity of AC. © 2013 American Chemical Society.

  14. Assessment of the effects of flow rate and ionic strength on the performance of an air-cathode microbial fuel cell using electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, D.; Tsouris, C. [School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Tsouris, C. [Nuclear Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hamilton, Ch. Y. [The University of Tennessee, Knoxville, TN 37996 (United States); Borole, A. P. [BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2010-07-01

    Impedance changes of the anode, cathode and solution were examined for an air-cathode microbial fuel cell (MFC) under varying conditions. An MFC inoculated with a pre-enriched microbial culture resulted in a startup time of less than ten days. Over this period, the anode impedance decreased below the cathode impedance, suggesting a cathode-limited power output. Increasing the anode flow rate did not impact the anode impedance significantly, but it decreased the cathode impedance by 65%. Increasing the anode-medium ionic strength also decreased the cathode impedance. These impedance results provide insight into electron and proton transport mechanisms and can be used to improve MFC performance. (author)

  15. Plasma-Surface Interactions in Hollow Cathode Discharges for Electric Propulsion

    Science.gov (United States)

    Capece, Angela Maria

    Electric thrusters generate high exhaust velocities and can achieve specific impulses in excess of 1000 s. The low thrust generation and high specific impulse make electric propulsion ideal for interplanetary missions, spacecraft station keeping, and orbit raising maneuvers. Consequently, these devices have been used on a variety of space missions including Deep Space 1, Dawn, and hundreds of commercial spacecraft in Earth orbit. In order to provide the required total impulses, thruster burn time can often exceed 10,000 hours, making thruster lifetime essential. One of the main life-limiting components on ion engines is the hollow cathode, which serves as the electron source for ionization of the xenon propellant gas. Reactive contaminants such as oxygen can modify the cathode surface morphology and degrade the electron emission properties. Hollow cathodes that operate with reactive impurities in the propellant will experience higher operating temperatures, which increase evaporation of the emission materials and reduce cathode life. A deeper understanding of the mechanisms initiating cathode failure will improve thruster operation, increase lifetime, and ultimately reduce cost. A significant amount of work has been done previously to understand the effects of oxygen poisoning on vacuum cathodes; however, the xenon plasma adds complexity, and its role during cathode poisoning is not completely understood. The work presented here represents the first attempt at understanding how oxygen impurities in the xenon discharge plasma alter the emitter surface and affect operation of a 4:1:1 BaO-CaO-Al2O3 hollow cathode. A combination of experimentation and modeling was used to investigate how oxygen impurities in the discharge plasma alter the emitter surface and reduce the electron emission capability. The experimental effort involved operating a 4:1:1 hollow cathode at various conditions with oxygen impurities in the xenon flow. Since direct measurements of the emitter

  16. Influence of emission threshold of explosive emission cathodes on current waveform in foilless diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P.; Liu, G. Z. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Huo, S. F.; Sun, J.; Chen, C. H. [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2015-08-15

    The emission threshold of explosive emission cathodes (EECs) is an important factor for beam quality. It can affect the explosive emission delay time, the plasma expansion process on the cathode surface, and even the current amplitude when the current is not fully space-charge-limited. This paper researches the influence of the emission threshold of an annular EEC on the current waveform in a foilless diode when the current is measured by a Rogowski coil. The particle-in-cell simulation which is performed under some tolerable and necessary simplifications shows that the long explosive emission delay time of high-threshold cathodes may leave an apparent peak of displacement current on the rise edge of the current waveform, and this will occur only when the electron emission starts after this peak. The experimental researches, which are performed under a diode voltage of 1 MV and a repetitive frequency of 20 Hz, demonstrate that the graphite cathode has a lower emission threshold and a longer lifetime than the stainless steel cathode according to the variation of the peak of displacement current on the rise edge of the current waveform.

  17. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron

    Science.gov (United States)

    Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi

    2016-09-01

    Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun.

  18. Determination of the cathode and anode voltage drops in high power low-pressure amalgam lamps

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Vasiliev, A. I., E-mail: vasiliev@npo.lit.ru; Kostyuchenko, S. V.; Sokolov, D. V.; Startsev, A. Yu. [Joint Stock Company NPO LIT (Russian Federation); Kudryavtsev, N. N. [Moscow Institute of Physics and Technology (State University) (Russian Federation)

    2011-12-15

    For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.

  19. Determination of the cathode and anode voltage drops in high power low-pressure amalgam lamps

    International Nuclear Information System (INIS)

    For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.

  20. Improved electrochemical performance of the Cr doped cathode materials for energy storage/conversion devices

    Science.gov (United States)

    Sangeeta, Agnihotri, Shruti; Arya, Anil; Sharma, A. L.

    2016-05-01

    Successful synthesis of a nanostructured Cr-doped LiFePO4 cathode material has been prepared by a sol-gel technique followed by a single step thermal treatment at 750° C for 12 hours. As olivine type LiFePO4 has already gained much attention due to its advantages over other cathode materials, doping of metal ion is done in the paper to improve its drawback of lower conductivity. FESEM couples with EDX were done to characterize the morphology and particle size of the materials. LiFe(1-x)CrxPO4 (x=0.1, 0.2, 0.3) materials have average particle size of 30 to 50 nm. EDX analysis confirmed the precursor used and also confirmed the presence of carbon which is in good agreement with chemical analysis result. Electrical conductivity of the prepared cathode materials is estimated of the order of 10-5 Scm-1 by AC impedance analysis. The energy density and power density of the cathode materials is improved drastically after addition of Cr as dopant. The estimated parameters appear at desirable value for use of materials as cathode in energy storage/conversion devices.

  1. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Mingjia; Lee, Shiwoo; Miller, Nicholas; Menzler, Norbert H.; Wu, Nianqiang

    2012-05-01

    Lanthanum strontium cobalt ferrite (LSCF) nanofibers have been fabricated by the electrospinning method and used as the cathode of an intermediate-temperature solid oxide fuel cell (SOFC) with yttria-stabilized zirconia (YSZ) electrolyte. The three-dimensional nanofiber network cathode has several advantages: (i) high porosity; (ii) high percolation; (iii) continuous pathway for charge transport; (iv) good thermal stability at the operating temperature; and (v) excellent scaffold for infiltration. The fuel cell with the monolithic LSCF nanofiber cathode exhibits a power density of 0.90 W cm{sup −2} at 1.9 A cm{sup −2} at 750 °C. The electrochemical performance of the fuel cell has been further improved by infiltration of 20 wt% of gadolinia-doped ceria (GDC) into the LSCF nanofiber cathode. The fuel cell with the LSCF–20% GDC composite cathode shows a power density of 1.07 W cm{sup −2} at 1.9 A cm{sup −2} at 750 °C. The results obtained show that one-dimensional nanostructures such as nanofibers hold great promise as electrode materials for intermediate-temperature SOFCs.

  2. Experimental investigation of a capacitive blind hollow cathode discharge with central gas injection

    Science.gov (United States)

    Hoffmann, D.; Müller, M.; Petkow, D.; Herdrich, G.; Lein, S.

    2014-12-01

    The operating parameters and resulting plasma properties of a blind hollow cathode (BHC) discharge have been investigated. The hollow cathode was driven capacitively with a pulsed dc signal of 200 kHz in a power range between 50 and 100 W at an ambient pressure of about 10 Pa. The working gas was argon, which was introduced with a ceramic capillary at different positions of the longitudinal axis of the hollow cathode with flow rates of between 30 and 1000 sccm. The current-voltage characteristics were recorded. The pressure at the end of the BHC was measured with a miniaturized pressure transducer with varying volumetric flow rate and axial position of the capillary in the hollow cathode. To characterize the ignition behaviour of the system, the measured breakdown voltages were compared with phenomenological Paschen curves calculated from the pressure data. Optical emission spectroscopy was used to examine the origins of the light emission, comparing the glow mode and hollow cathode mode in particular. A high-speed camera recorded some plasma processes. A mounting with an indium tin oxide coated glass was used to observe the inner volume of the BHC along the longitudinal axis, while the plasma was operated with different parameters. The optical observations revealed an inhomogeneous plasma condition along the axis.

  3. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    Science.gov (United States)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  4. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.

    Science.gov (United States)

    Cheng, Shaoan; Liu, Weifeng; Guo, Jian; Sun, Dan; Pan, Bin; Ye, Yaoli; Ding, Weijun; Huang, Haobin; Li, Fujian

    2014-06-15

    Scaling up of microbial fuel cells (MFCs) without losing power density requires a thorough understanding of the effect of hydraulic pressure on MFC performance. In this work, the performance of an activated carbon air-cathode MFC was evaluated under different hydraulic pressures. The MFC under 100 mmH2O hydraulic pressure produced a maximum power density of 1260 ± 24 mW m(-2), while the power density decreased by 24.4% and 44.7% as the hydraulic pressure increased to 500 mmH2O and 2000 mmH2O, respectively. Notably, the performance of both the anode and the cathode had decreased under high hydraulic pressures. Electrochemical impedance spectroscopy tests of the cathode indicated that both charge transfer resistance and diffusion transfer resistance increased with the increase in hydraulic pressure. Denaturing gradient gel electrophoresis of PCR-amplified partial 16S rRNA genes demonstrated that the similarity among anodic biofilm communities under different hydraulic pressures was ≥ 90%, and the communities of all MFCs were dominated by Geobacter sp. These results suggested that the reduction in power output of the single chamber air-cathode MFC under high hydraulic pressures can be attributed to water flooding of the cathode and suppression the metabolism of anodic exoelectrogenic bacteria.

  5. Effect of MWNT electroless Ag plating on field emission properties of MWNT/Ag nanocomposite cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Ye Yun, E-mail: yeyun07@fzu.edu.cn [College of Physics and Information Engineering, Fuzhou University, Fuzhou 350002 (China); Guo Tailiang [College of Physics and Information Engineering, Fuzhou University, Fuzhou 350002 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Ag nanoparticles and coating were electroless plated onto the surface of CNTs. Black-Right-Pointing-Pointer A low turn on field of CNT/Ag cathode was achieved. Black-Right-Pointing-Pointer A new way for high stability of CNT/Ag cathode was suggested. - Abstract: Field emission properties of multiwall carbon nanotube (MWNT) electroless Ag plating nanocomposite cathodes fabricated using screen printing were studied. The MWNT was purified and electroless plated with Ag. The results of field emission scanning electron microscopy (FESEM) showed that the morphology of Ag electroless plating on the surface of MWNT depended on the temperature of electroless plating. Experiments showed that the stability of MWNT/Ag nanocomposite cathodes had no more than 10% degradation, achieving a field emission current density of 4.0 mA/cm{sup 2} at an applied electric field of 0.5 V/{mu}m for 50 h. The proposed MWNT/Ag nanocomposite cathodes possess good field emission properties and have potential for application in field emission displays.

  6. Nd-nickelate solid oxide fuel cell cathode sensitivity to Cr and Si contamination

    Science.gov (United States)

    Andreas Schuler, J.; Lübbe, Henning; Hessler-Wyser, Aïcha; Van herle, Jan

    2012-09-01

    The stability of Nd-nickelate, considered as an alternative solid oxide fuel cell (SOFC) cathode material, was evaluated in this work on its tolerance towards contaminants. Symmetrical cells with Nd1.95NiO4+δ (NNO) electrodes sintered on gadolinia-doped ceria electrolyte supports were monitored over time-spans of 1000 h at 700 °C under polarization in an air-flux with deliberate chromium contamination. Impedance spectroscopy pointed out a polarization increase with time by the growth of the low frequency arc describing the electrode's oxygen reduction and incorporation processes. Post-test observations revealed polluted cathode regions with increasing amounts of Cr accumulations towards the electrolyte/cathode interface. Cr deposits were evidenced to surround active nickelate grain surfaces forming Nd-containing Cr oxides. In addition to exogenous Cr contamination, endogenous contamination was revealed. Silicon, present as impurity material in the raw NNO powder (introduced by milling during powder processing), reacts during sintering steps to form Nd-silicate phases, which decreases the active cathode surface. Nd-depletion of the nickelate, as a result of secondary phase formation with the contaminants Cr and Si (NdCrO4 and Nd4Si3O12), then triggers the thermally-induced decomposition of NNO into stoichiometric Nd2NiO4+δ and NiO. Summarized, the alternative Nd-nickelate cathode also suffers from degradation caused by pollutant species, like standard perovskites.

  7. AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

    Directory of Open Access Journals (Sweden)

    Renate Hiesgen

    2013-10-01

    Full Text Available In this work, material-sensitive atomic force microscopy (AFM techniques were used to analyse the cathodes of lithium–sulfur batteries. A comparison of their nanoscale electrical, electrochemical, and morphological properties was performed with samples prepared by either suspension-spraying or doctor-blade coating with different binders. Morphological studies of the cathodes before and after the electrochemical tests were performed by using AFM and scanning electron microscopy (SEM. The cathodes that contained polyvinylidene fluoride (PVDF and were prepared by spray-coating exhibited a superior stability of the morphology and the electric network associated with the capacity and cycling stability of these batteries. A reduction of the conductive area determined by conductive AFM was found to correlate to the battery capacity loss for all cathodes. X-ray diffraction (XRD measurements of Li2S exposed to ambient air showed that insulating Li2S hydrolyses to insulating LiOH. This validates the significance of electrical ex-situ AFM analysis after cycling. Conductive tapping mode AFM indicated the existence of large carbon-coated sulfur particles. Based on the analytical findings, the first results of an optimized cathode showed a much improved discharge capacity of 800 mA·g(sulfur−1 after 43 cycles.

  8. Electrochemical transformation of thichloroethylene in groundwater by Ni-containing cathodes

    Science.gov (United States)

    Rajic, Ljiljana; Fallahpour, Noushin; Oguzie, Emeka; Alshawabkeh, Akram

    2015-01-01

    In this study, we evaluate the use of different stainless steel (SS) materials as cost-effective cathode materials for electrochemical transformation of trichloroethylene (TCE) in contaminated groundwater. Ni, which is present in certain SS, has low hydrogen overpotential that promotes fast formation of atomic hydrogen and, therefore, its content can enhance hydrodechlorination (HDC). We a flow-through electrochemical reactor with a SS cathode followed by an anode. The performance of Ni containing foam cathodes (Fe/Ni and Ni foam) was also evaluated for electrochemical transformation of TCE in groundwater. SS type 316 (12% Ni) removed 61.7% of TCE compared to 52.6% removed by SS 304 (9.25% Ni) and 37.5% removed by SS 430 (0.75% Ni). Ni foam cathode produced the highest TCE removal rate (68.4%) compared with other cathodes. The slightly lower performance of SS type 316 mesh is balanced by the reduction in treatment costs for larger-scale systems. The results prove that Ni content in SS highly influences TCE removal rate. PMID:26538681

  9. Effects of pore formers on microstructure and performance of cathode membranes for solid oxide fuel cells

    Science.gov (United States)

    Nie, Lifang; Liu, Juncheng; Zhang, Yujun; Liu, Meilin

    La 0.6Sr 0.4Co 0.2Fe 0.8O 3- δ (LSCF) is the most widely used cathode material for intermediate temperature solid oxide fuel cells. In the present communication, porous LSCF cathodes are fabricated by tape casting, a low-cost and reproducible fabrication process. The effects of four different pore formers, namely, graphite, carbon black, rice starch, and corn starch, on the microstructure and electrochemical performance of the LSCF cathode are investigated. Examination of the microstructures reveals that the shape of the pores, the pore size, and the pore distribution in the final ceramic are related to the type of pore formers. Impedance analysis and cell testing show that the best performance is obtained from the cathode using graphite as the pore former. The microstructure indicates that graphite results in a porous LSCF cathode with a large surface area and high porosity, which can offer a considerably long triple phase boundary for catalytic reactions as well as channels for gas phase transport.

  10. Uncovering the role of cathode buffer layer in organic solar cells

    Science.gov (United States)

    Qi, Boyuan; Zhang, Zhi-Guo; Wang, Jizheng

    2015-01-01

    Organic solar cells (OSCs) as the third generation photovoltaic devices have drawn intense research, for their ability to be easily deposited by low-cost solution coating technologies. However the cathode in conventional OSCs, Ca, can be only deposited by thermal evaporation and is highly unstable in ambient. Therefore various solution processible cathode buffer layers (CBLs) are synthesized as substitute of Ca and show excellent effect in optimizing performance of OSCs. Yet, there is still no universal consensus on the mechanism that how CBL works, which is evidently a critical scientific issue that should be addressed. In this article detailed studies are targeted on the interfacial physics at the interface between active layer and cathode (with and without treatment of a polar CBL) by using ultraviolet photoelectron spectroscopy, capacitance-voltage measurement, and impedance spectroscopy. The experimental data demonstrate that CBL mainly takes effect in three ways: suppressing surface states at the surface of active layer, protecting the active layer from being damaged by thermally evaporated cathode, and changing the energy level alignment by forming dipole moments with active layer and/or cathode. Our findings here provide a comprehensive picture of interfacial physics in devices with and without CBL.

  11. On the suppression of cathodic hypochlorite reduction by electrolyte additions of molybdate and chromate ions

    Directory of Open Access Journals (Sweden)

    JOHN GUSTAVSSON

    2012-11-01

    Full Text Available The goal of this study was to gain a better understanding of the feasibility of replacing Cr(VI in the chlorate process by Mo(VI, focusing on the cathode reaction selectivity for hydrogen evolution on steel and titanium in a hypochlorite containing electrolyte. To evaluate the ability of Cr(VI and Mo(VI additions to hinder hypochlorite reduction, potential sweep experiments on rotating disc electrodes and cathodic current efficiency (CE measurements on stationary electrodes were performed. Formed electrode films were investigated with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cathodic hypochlorite reduction is hindered by the Mo-containing films formed on the cathode surface after Mo(VI addition to the electrolyte, but much less efficient compared to Cr(VI addition. Very low levels of Cr(VI, in the mM range, can efficiently suppress hypochlorite reduction on polished titanium and steel. Phosphate does not negatively influence the CE in the presence of Cr(VI or Mo(VI but the Mo-containing cathode films become thinner if the electrolyte during the film build-up also contains phosphate. For a RuO2-TiO2 anode polarized in electrolyte with 40 mM Mo(VI, the anode potential increased and increased molybdenum levels were detected on the electrode surface

  12. Temporal evolution of anode and cathode plasmas in a vircator diode

    Energy Technology Data Exchange (ETDEWEB)

    Yatsuzuka, M.; Nakayama, M.; Nobuhara, S. [Himeji Inst. of Tech., Himeji, Hyogo (Japan). Dept. of Electrical Engineering; Hashimoto, Y. [Kobe City Coll. of Technology (Japan); Ishihara, O. [Texas Tech Univ., Lubbock, TX (United States); Azuma, K.

    1995-12-31

    The electron beam current in the diode region of a vircator at Himeji Institute of Technology is well characterized by the electron space-charge-limited current in bipolar flow. The beam current is well below the critical current defined for diode pinching and the observed microwave emission is accompanied by the strongly pinched electron beam. These results suggest the presence of anode and cathode plasma expanding in the anode-cathode (A-K) gap. In this paper the authors report the experimental observation of the evolution of anode and cathode plasmas in time and space. The experiments were performed with the pulsed power generator HARIMA-II. An anode plasma appears on the anode surface immediately after the rise of a beam current and at about 10 nsec later a cathode plasma on the cathode surface is formed. Both plasmas expand with approximately the same speed of 2 {times} 10{sup 4} m/sec. The A-K gap is closed by plasmas after about 100 nsec from the onset of anode plasma. The microwave emission occurs just before the gap closure. The anode plasma in the initial phase was identified as a hydrogen plasma with an aid of the optical filter for H{sub {alpha}} and H{sub {beta}} lines.

  13. Cathodic Cage Plasma Nitriding of Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Maciej OSSOWSKI

    2016-05-01

    Full Text Available Glow discharge nitriding is being used increasingly more often for modifying the properties of titanium and its alloys with the aim to increase their frictional wear resistance, fatigue strength, and, in the case of medical applications, to eliminate the metallosis effect. Unlike PVD methods, ion nitriding ensures the formation of diffusive layers with very good adhesion to the substrate, but which still have some disadvanteges such as the “edge effect” or “hollow cathode effect” which hinders treatment of complex workpieces. The paper compares nitrided layers produced on Ti6Al4V alloy using two different types of nitriding processes. The first process is conventional dc plasma nitriding (DCPN where the samples were placed at the cathode potential, while the second one is a new method of cathodic cage plasma nitriding (CCPN process, where the substrate is insulated from the cathode and anode. The experiments have shown that the treatment conducted in a cathodic cage can be alternative for conventional ion nitriding, especially when used for small parts with complicated shapes used in the space or medical industry. DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7343

  14. Using elastin protein to develop highly efficient air cathodes for lithium-O2 batteries

    Science.gov (United States)

    Guo, Guilue; Yao, Xin; Ang, Huixiang; Tan, Huiteng; Zhang, Yu; Guo, Yuanyuan; Fong, Eileen; Yan, Qingyu

    2016-01-01

    Transition metal-nitrogen/carbon (M-N/C, M = Fe, Co) catalysts are synthesized using environmentally friendly histidine-tag-rich elastin protein beads, metal sulfate and water soluble carbon nanotubes followed by post-annealing and acid leaching processes. The obtained catalysts are used as cathode materials in lithium-O2 batteries. It has been discovered that during discharge, Li2O2 nanoparticles first nucleate and grow around the bead-decorated CNT regions (M-N/C centres) and coat on the catalysts at a high degree of discharge. The Fe-N/C catalyst-based cathodes deliver a capacity of 12 441 mAh g-1 at a current density of 100 mA g-1. When they were cycled at a limited capacity of 800 mAh g-1 at current densities of 200 or 400 mA g-1, these cathodes showed stable charge voltages of ˜3.65 or 3.90 V, corresponding to energy efficiencies of ˜71.2 or 65.1%, respectively. These results are considerably superior to those of the cathodes based on bare annealed CNTs, which prove that the Fe-N/C catalysts developed here are promising for use in non-aqueous lithium-O2 battery cathodes.

  15. A Fully-Sealed Carbon-Nanotube Cold-Cathode Terahertz Gyrotron.

    Science.gov (United States)

    Yuan, Xuesong; Zhu, Weiwei; Zhang, Yu; Xu, Ningsheng; Yan, Yang; Wu, Jianqiang; Shen, Yan; Chen, Jun; She, Juncong; Deng, Shaozhi

    2016-01-01

    Gigahertz to terahertz radiation sources based on cold-cathode vacuum electron technology are pursued, because its unique characteristics of instant switch-on and power saving are important to military and space applications. Gigahertz gyrotron was reported using carbon nanotube (CNT) cold-cathode. It is reported here in first time that a fully-sealed CNT cold-cathode 0.22 THz-gyrotron is realized, typically with output power of 500 mW. To achieve this, we have studied mechanisms responsible for CNTs growth on curved shape metal surface, field emission from the sidewall of a CNT, and crystallized interface junction between CNT and substrate material. We have obtained uniform growth of CNTs on and direct growth from cone-cylinder stainless-steel electrode surface, and field emission from both tips and sidewalls of CNTs. It is essential for the success of a CNT terahertz gyrotron to have such high quality, high emitting performance CNTs. Also, we have developed a magnetic injection electron gun using CNT cold-cathode to exploit the advantages of such a conventional gun design, so that a large area emitting surface is utilized to deliver large current for electron beam. The results indicate that higher output power and higher radiation frequency terahertz gyrotron may be made using CNT cold-cathode electron gun. PMID:27609247

  16. Two-photon photoemission from a copper cathode in an X -band photoinjector

    Science.gov (United States)

    Li, H.; Limborg-Deprey, C.; Adolphsen, C.; McCormick, D.; Dunning, M.; Jobe, K.; Raubenheimer, T.; Vrielink, A.; Vecchione, T.; Wang, F.; Weathersby, S.

    2016-02-01

    This paper presents two-photon photoemission from a copper cathode in an X -band photoinjector. We experimentally verified that the electron bunch charge from photoemission out of a copper cathode scales with laser intensity (I) square for 400 nm wavelength photons. We compare this two-photon photoemission process with the single photon process at 266 nm. Despite the high reflectivity (R ) of the copper surface for 400 nm photons (R =0.48 ) and higher thermal energy of photoelectrons (two-photon at 200 nm) compared to 266 nm photoelectrons, the quantum efficiency of the two-photon photoemission process (400 nm) exceeds the single-photon process (266 nm) when the incident laser intensity is above 300 GW /cm2 . At the same laser pulse energy (E ) and other experimental conditions, emitted charge scales inversely with the laser pulse duration. A thermal emittance of 2.7 mm-mrad per mm root mean square (rms) was measured on our cathode which exceeds by sixty percent larger compared to the theoretical predictions, but this discrepancy is similar to previous experimental thermal emittance on copper cathodes with 266 nm photons. The damage of the cathode surface of our first-generation X -band gun from both rf breakdowns and laser impacts mostly explains this result. Using a 400 nm laser can substantially simplify the photoinjector system, and make it an alternative solution for compact pulsed electron sources.

  17. A Particle and Energy Balance Model of the Orificed Hollow Cathode

    Science.gov (United States)

    Domonkos, Matthew T.

    2002-01-01

    A particle and energy balance model of orificed hollow cathodes was developed to assist in cathode design. The model presented here is an ensemble of original work by the author and previous work by others. The processes in the orifice region are considered to be one of the primary drivers in determining cathode performance, since the current density was greatest in this volume (up to 1.6 x 10(exp 8) A/m2). The orifice model contains comparatively few free parameters, and its results are used to bound the free parameters for the insert model. Next, the insert region model is presented. The sensitivity of the results to the free parameters is assessed, and variation of the free parameters in the orifice dominates the calculated power consumption and plasma properties. The model predictions are compared to data from a low-current orificed hollow cathode. The predicted power consumption exceeds the experimental results. Estimates of the plasma properties in the insert region overlap Langmuir probe data, and the predicted orifice plasma suggests the presence of one or more double layers. Finally, the model is used to examine the operation of higher current cathodes.

  18. Design of an electro-Fenton system with a novel sandwich film cathode for wastewater treatment.

    Science.gov (United States)

    Fan, Yan; Ai, Zhihui; Zhang, Lizhi

    2010-04-15

    In this study, we demonstrate an electro-Fenton (E-Fenton) system constructed with a novel sandwich film cathode (SFC). For the fabrication of SFC, Fe(2+)-chitosan (Fe-CHI) was first deposited on foam nickel (Fe-CHI/Ni). Then two pieces of Fe-CHI/Ni was used to fasten one piece of activated carbon fiber (ACF) to obtain a Fe-CHI/Ni|ACF|Fe-CHI/Ni sandwich film cathode. We interestingly found that this SFC based E-Fenton system could effectively degrade rodamine B with in situ generating both hydrogen peroxide and iron ions. Its degradation efficiency was significantly higher than those of the E-Fenton systems constructed with composite cathodes of carbon nanotubes with Fe@Fe(2)O(3) core-shell nanowires or Cu(2)O nanocubes reported in our previous studies. Hydrogen peroxide electrogenerated through the reduction of O(2) adsorbed on the sandwich film cathode and the iron ions produced by the leakage from Fe(2+)-chitosan film during the E-Fenton reaction were, respectively, monitored, providing clues to understand the high efficiency of this novel SFC based E-Fenton system. More importantly, this low-cost sandwich film cathode was very stable and could be reused without catalytic activity decrease, suggesting its potential application in the wastewater treatment.

  19. Effect of Ti-Al cathode composition on plasma generation and plasma transport in direct current vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Zhirkov, I., E-mail: igozh@ifm.liu.se; Petruhins, A.; Dahlqvist, M.; Ingason, A. S.; Rosen, J. [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Eriksson, A. O. [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Oerlikon Balzers Coating AG, Iramali 18, 9496 Balzers (Liechtenstein)

    2014-03-28

    DC arc plasma from Ti, Al, and Ti{sub 1-x}Al{sub x} (x = 0.16, 0.25, 0.50, and 0.70) compound cathodes was characterized with respect to plasma chemistry and charge-state-resolved ion energy. Scanning electron microscopy, X-ray diffraction, and Energy-dispersive X-ray spectroscopy of the deposited films and the cathode surfaces were used for exploring the correlation between cathode-, plasma-, and film composition. Experimental work was performed at a base pressure of 10{sup −6} Torr, to exclude plasma-gas interaction. The plasma ion composition showed a reduction of Al of approximately 5 at. % compared to the cathode composition, while deposited films were in accordance with the cathode stoichiometry. This may be explained by presence of neutrals in the plasma/vapour phase. The average ion charge states (Ti = 2.2, Al = 1.65) were consistent with reference data for elemental cathodes, and approximately independent on the cathode composition. On the contrary, the width of the ion energy distributions (IEDs) were drastically reduced when comparing the elemental Ti and Al cathodes with Ti{sub 0.5}Al{sub 0.5}, going from ∼150 and ∼175 eV to ∼100 and ∼75 eV for Ti and Al ions, respectively. This may be explained by a reduction in electron temperature, commonly associated with the high energy tail of the IED. The average Ti and Al ion energies ranged between ∼50 and ∼61 eV, and ∼30 and ∼50 eV, respectively, for different cathode compositions. The attained energy trends were explained by the velocity rule for compound cathodes, which states that the most likely velocities of ions of different mass are equal. Hence, compared to elemental cathodes, the faster Al ions will be decelerated, and the slower Ti ions will be accelerated when originating from compound cathodes. The intensity of the macroparticle generation and thickness of the deposited films were also found to be dependent on the cathode composition. The presented results

  20. Current density at the refractory cathode of a high-current high-pressure arc (two modes of cathode spot attachment)

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, Valerian [ESAB Welding and Cutting Products and Francis Marion University, Florence, SC 29501 (United States)

    2003-12-07

    The attachment of a high-pressure arc at a refractory cathode was investigated theoretically and experimentally. Simple model considerations showed that an isolated cathode spot (CS) could function in two different modes. At relatively low currents and pressures, the CS mode (first mode) corresponds to the existing model (Bade W L and Yos Y M 1963 Technical Documentary Report No ASD-TDR-62-729 vol 1 (part II); Neumann W 1969 Beitr Plasmaphysik 9 499-526; Benilov M S 1993 Phys. Rev. 48 506-15, 1994 IEEE Trans. Plasma Sci. 22 73-7, 1999 J. Phys. D: Appl. Phys. 32 257-62; Benilov M S and Marotta A 1995 J. Phys. D: Appl. Phys. 28 1869-82; Benilov M S and Cunha M D 2002 J. Phys. D: Appl. Phys. 35 1736-50, 2003 J. Phys. D: Appl. Phys. 36 603-14). In this mode current density does not depend on the arc current and is directly proportional to the gas pressure. At higher currents and/or higher pressures the CS exists in a different mode (second mode). In this mode current density does not depend on pressure and decreases as the current increases. If the product of the arc current, I, and the gas pressure, p, is lower than some critical value, then the first mode is realized; at a higher Ip product, the second one is realized. For discharges in nitrogen, the critical value was estimated as {approx}7 x 10{sup 7} A Pa. In the experimental part of this work, we investigated the footprints that the arc left at the cathode after it was terminated. Cathodes were made of pure and thoriated tungsten and the gases were nitrogen and argon. We have observed both modes. At 3 x 10{sup 5} Pa, the second mode was observed at currents higher than {approx}300 A; at 200 A, it was observed at pressures higher than {approx}3 x 10{sup 5} Pa. The CS footprint appearances are quite different. In the first mode the footprint has a smooth central part and a heavily eroded periphery. We believe that the cathode temperature is maximal not at the CS centre but at its periphery in this mode. With a